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ABSTRACT eXfiltration Advanced Persistent Threats (XAPTs) increasingly account for incidents con-
cerned with critical information exfiltration from High Valued Targets (HVTs). Existing Cyber Defence
frameworks and data fusion models cannot cope with XAPTs due to a lack of provision for multi-phase
attacks characterized by uncertainty and conflicting information. The Markov Multi-phase Transferable
Belief Model (MM-TBM) extends the Transferable Belief Model to address the multi-phase nature of
cyber-attacks and to obtain previously indeterminable Cyber SA. As a data fusion technique, MM-TBM
constitutes a novel approach for performing hypothesis assessment and evidence combination across phases,
by means of a new combination rule, called the Multi-phase Combination Rule with conflict Reset (MCR2).
The impact of MM-TBM as a Cyber Situational Awareness capability and its implications as a multi-phase
data fusion theory have been empirically validated through a series of scenario-based Cyber SA experiments
for detecting, tracking, and predicting XAPTs.

INDEX TERMS APT, combination rule, conflict, cyberspace, kill-chain, Markov processes, prediction,
sensor fusion, situational awareness, uncertainty.

I. INTRODUCTION
Cyber attacks account for an estimated $1 trillion annual
cost [1], of which $445 billion is attributable to cyber-
crime [2]. Some of the most prominent cyber incidents,
such as the US Investigations Services hack [3], the Equifax
hack [4], the Home Depot and the JP Morgan Chase
incidents [5] involve massive information theft, i.e. inter-
nal communications and sensitive customer information.
High-profile cyber incidents are the results of eXfiltration
Advanced Persistent Threat (XAPT) campaigns [6]. XAPTs
are launched by individuals, organizations or state-sponsored
representatives that employ a wide range of sophisticated
reconnaissance and information gathering tools. The moti-
vations for these multi-phased attack vectors are systems
sabotage, extortion or stealing proprietary information from
high-valued assets and Critical Information Infrastructure [7].

Cyber network operators are required to retain concise
and relevant Situational Awareness (SA), and often face
the challenge of protecting critical information from XAPT
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attacks within a contested, congested, cluttered connected
and constrained cyberspace [8]. A solution for informing SA
against XAPTs is provided by the kill-chain [9]–[11] which
models how an XAPT takes place as a sequence of distinct
and finite attack phases. Each phase serves a certain purpose
within the attacker’s plan in order to reach their ultimate
target behind defenses and exfiltrate information from a High
Valued Target. The kill-chain model serves as a valid starting
point for developing new theories and approaches where
multi-phased attacks are concerned, taking into account the
characteristics of the cyberspace, the limitations of intrusion
detection systems and existing cyber threat models.

Cyber SA systems for facilitating decision support are
tightly coupled with data fusion systems [12] which pro-
vide the means for combining the various information cues
within the cyberspace for informing Levels 1 and 2 of
SA [13]–[15]. Data fusion techniques are designed to handle
a large number of sources of evidence which makes them
suitable for Computer Network Defence (CND) applications.
Existing mathematical theories such as the Dempster-Shafer
theory [16], the Transferable Belief Model [17] and Bayesian
fusion [18] are used as data fusion methods for enhancing
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Cyber SA [19]–[21]. However, these conventional data fusion
theories are constrained to applications that do not con-
sider multiple, causally linked hypothesis spaces. A review
of the relevant literature [33]–[35] shows that research on
developing theories for detecting multi-phased attacks like
XAPTs is limited and does not take into account conflicting
information and uncertainty within the sources of evidence.
Moreover, the majority of scientific data fusion research has
been concerned with eliminating the conflict within sources
of evidence, bymeans of redistributing the associated conflict
mass [22], adaptively switching between combination rules
when conflict mass becomes high [23], discounting of the
contradicting evidence sources [24] or by treating it as a
consequence of measurement error [25].

This paper proposes an extension to the Transferable
Belief Model [17], the Markov Multi-phase Transferable
Belief Model (MM-TBM), for enhancing the SA of cyber
network operators against XAPTs. As a Cyber SA sys-
tem, MM-TBM links the kill-chain model to the concept
of Attack trees [56], [57] which are graph structures that
depict the potential sequence of actions an attacker may
take.MM-TBMoffers first-time capabilities such as Tracking
and Prediction of XAPTs, multiple and concurrent attack
detection and diagnostic functionality for handling situations
of missing evidence. In the field of data fusion, MM-TBM
is the first approach which is oriented towards managing
the multi-phase class of problems that satisfies the Markov
property bymeans of theMulti-phase Combination Rule with
Reset (MCR2). This is the first combination rule that handles
multiple causally-linked hypothesis spaces across the phases
of a multi-phased cyber-attack by migrating within these
spaces according to the attack’s progression. Building on the
concepts developed by [26], MM-TBM utilizes conflict as an
indicator for identifying paradoxes in order to improve attack
detection capability. Furthermore, based on the concept of
Bayesian updating, a diagnostic formula for tree structures
is proposed which allows for handling situations of hidden
evidence.

II. RELATED WORK
A. XAPT DETECTION
Several proposals for detecting or preventing data exfiltration
attacks exist, such as profiling legitimate user behavior and
anomaly detection [27], [28], deep packet inspection tech-
niques [29], stochastic forensics upon the filesystem [30] or
a combination of traffic behavior analysis and file access pat-
terns [31]. Dube et al. [32] consider XAPTs simply as attacks
that contain sophisticated malware and focus on developing a
solution that identifies malware based on the assets they may
target.

Under a kill-chain perspective, these solutions operate
exclusively at the final phase where attackers are close to
achieving their mission objectives. Although these techniques
may under certain circumstances be proven effective in iden-
tifying the evidence relevant to the data being exfiltrated

from a protected computer network, they fail to adhere
to the multi-phase nature of XAPTs. The data exfiltration
phase, which is the adversary’s main effort, occurs at the
final stage of an XAPT which implies that single-phase
approaches [27]–[32] do not pick up or utilize important
cues and necessary evidence, thereby resulting in ‘‘perception
myopia’’.

Preliminary work on the development of multi-phase based
detection for Advanced Persistent Threats [33]–[35] is now
considered. In [33] a scheme is proposed for correlating user
behavior, network transactions and security policy autho-
rizations, but does not consider the sequence that links the
distinct attack phases. A graph-based framework [34] has
been developed for modelling attack behavior, though user
input is necessary for correlating alert related information.
A 3DAttack tree representation of XAPTs is proposed in [35]
but does not consider uncertainty and conflict. It is therefore
apparent that the full range of XAPT characteristics are not
sufficiently addressed, hence there is a gap within the state-
of-the-art in Cyber Defence.

B. CYBER SITUATIONAL AWARENESS
Existing research [18] on Cyber SA commonly extends
the concepts defined by Endsley [36] and the JDL data
fusion model [37]. The proposed models rely on risk-
assessment [39], [40], visualization of network traffic [41]
or converting raw data from the network to an ontological
structure for interpretation by users [42].

Markov models are commonly applied for Situational
Awareness in Cyber Defence [67]–[69] and other applica-
tions such as maritime surveillance [70]. Shen et al. [67] use
insights from game theory to improve situational awareness
by fusing sensor data from the perspective of a Markov
game-theoretic model to make predictions about future attack
states. Situational Awareness for insider cyber threats is con-
sidered in [68] where Hidden Markov Models are used in
conjunction with Dynamic Bayesian Networks for foresee-
ing future behavior of adversaries. Similarly, behavioral pat-
terns are extracted from historical attacks in terms of attack
sequence and transition probabilities in [69] to generate Vari-
able Length Markov models. However, these models are not
robust enough to handle missing evidence that correspond to
attack steps; hence they cannot maintain tracking of an attack
path when a phase is not detected.

Cyber defenders are facing a great deal of uncertainty [40]
which could lead to distorted Cyber SA. Special reference is
given to uncertainty management, with existing approaches
being insufficient [43]. With respect to multi-phased cyber-
attacks like XAPTs, Cyber SA research has focused primarily
on attack model definitions such as kill-chains. Even though
there exists a large body of research in this area, work has
been limited to the single activity of attacks [45]. There is a
lack of research on methods or tools that provide the capabil-
ity for informing Cyber SA across all the phases of the attack
kill-chain, i.e., in the presence of an XAPT. Consequently,
Cyber SA is informed by evidence from individual phases of
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anXAPTwith no clear linking between these phases, forming
an incomplete operational picture.

C. DATA FUSION AND THEORIES OF EVIDENCE
Cyber SA systems rely heavily on data fusion techniques
to facilitate the combination of the various information cues
within the cyberspace for informing Levels 1 and 2 of
SA [13]–[15]. Decision support systems for enhancing Cyber
SA are tightly coupled with data fusion systems [12].

Data fusion is the process of combining data collected
from various sources within an environment in order to
develop a concise and accurate representation of the envi-
ronment’s true state. Within operational environments that
are characterized by uncertainty and conflict, evidence the-
ories such as Dempster-Shafer and the Transferable Belief
Model [16], [17], [49] are employed which utilize combi-
nation rules for fusing heterogeneous pieces of evidence
and reasoning under uncertainty. The core component of
Dempster-Shafer theory is Dempster’s rule of combination.
This rule is used to combine beliefs from more than one
source (or agents). The rule is defined as:

m12(A) =
1

1− k

∑
B∩C

m1(B)m2(C)

where

k =
∑

B∩C=∅
m1(B)m2(C), k 6= 1

The termm12 represents the beliefmass derived by combining
the belief masses m1 and m2. The rule of combination is the
‘fusion’ part of Dempster-Shafer theory (DST). Dempster’s
rule can be used to combine the belief assignments that
are reported from multiple sources of evidence, provided
that they refer to the same power set 2�. The denominator
in Dempster’s rule of combination is called the normaliza-
tion factor. Through this normalization, the rule redistributes
the calculated conflict (represented by k) evenly across the
hypotheses.

D. THE MULTI-PHASE GAP IN DATA FUSION
The kill-chainmodel is a convenient expression for the phases
of an XAPT. Each attack phase has certain pieces of evidence
associated with it. These attack phases and their correspond-
ing pieces of evidence can be pinpointed by conducting a
security assessment of the computer network.

Moreover, each attack phase constitutes a single, isolated
hypothesis space which is associated with a specific pool
of evidence. Essentially, the number of ‘ground-truths’ is
equal to the number of attack phases. If one attempts to
approach this problem using DST or TBM, a single frame
of discernment (FoD) would be used and it would have to
include all the hypothesis sub-spaces that are concerned with
each phase. Under the traditional approaches ([16], [17]),
a complete attack path would comprise of several members
of the frame of discernment. This is a violation of the mutual

exclusivity property which renders DST and TBM impracti-
cable for multi-phase problems.

An additional implication of conventional fusion tech-
niques ([16], [17]) stems from the characteristics of the
cyberspace. A computer network can be subject to multiple
concurrent cyber-attacks (that may or may not be part of an
XAPT)which generate a vast amount of cyber evidence. Only
a subset of this evidencewould be relevant to anXAPT.Under
these conditions, it is vital to distinguish between the relevant
and irrelevant pieces of evidence in order to track an XAPT
efficiently. Using a conventional fusion technique would
allow heterogeneous pieces of evidence to be combined,
which would effectively cause an uncontrolled increase in
uncertainty, particularly in the conflict mass, incorporated by
combining evidence from different phases. Such a conflict
mass does not constitute a useful metric since it is instigated
by pieces of evidence which refer to different phases, and
hence different hypothesis spaces. DST will accommodate
this conflict mass through normalization and therefore will
produce inconsistent results. Instead, TBM will reveal the
conflict mass but the result will not be alignedwith the ground
truth. It is impossible to distinguish whether the derived con-
flict mass is created by truly conflicting evidence referring to
the same FoD or by heterogeneous pieces of evidence which
refer to different FoD’s. Therefore, it is impossible to employ
traditional fusion theories in a multi-phase problem’ since
these theories are ‘agnostic’ towards this type of scenario.

III. THE MARKOV MULTI-PHASE TRANSFERABLE
BELIEF MODEL
This section presents the Markov Multi-phase Transferable
Belief Model (MM-TBM) designed to accommodate the
detection, tracking and prediction of XAPTs. It employs a
tree structure for modelling an attacker’s behavior across
all phases of an XAPT kill-chain. MM-TBM uses Smets’
TBM [17] as its starting point to develop a new and more
generalized approach to deal with complex, multi-phased
attack vectors that standard TBM treatment cannot address.
Incumbent to MM-TBM is the utilization of the associated
conflict mass for managing and negotiating paradoxes across
the phases of the kill-chain.

A. XAPTs AS MARKOV PROCESSES
AMarkov process is a stochastic modelling technique which
generates sequences of events in which the probability of
an event depends only on the previous event. Sequences
which are consistent with this statement are satisfying the
Markov property: The future state Hn+1 of a discrete time
Markov process in time n + 1 is dependent only upon
the current state Hn and not on any of the previous states
(H1,H2, . . . ,Hn−2,Hn−1). Transitioning between each state
is associated with a probability mass. Hence, the kill-chain
model within the context of XAPTs satisfies the Markov
property; the ensuing actions of an attacker are determined
by the outcome of the current ones. This is illustrated
with the following example: With reference to Fig.1, the
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FIGURE 1. The XAPT kill-chain model.

Reconnaissance phase will reveal the target network’s vulner-
abilities and entry points. The Insertion phase will attempt a
breach at the discovered weaknesses by specially crafted mal-
ware. The Exploitation phase involves the establishment of
the attacker’s presence on the target using the tools that were
implemented in the Insertion phase. The Target Identification
phase involves the control traffic from the attacker’s location
and the movement within the target network. This communi-
cation channel is maintained through the malware employed
within the Exploitation phase. During the Exfiltration phase,
data is uploaded to an attacker’s server; this data was located
and identified during the Target Identification phase.

According to the outcome of each phase, attackers may
select from a pool of available actions to proceed with their
mission, based on the properties of the target network, such
as software vulnerabilities, security policies and counter-
measures, network architecture, operating systems, network
services and the location of the valuable data to be exfiltrated.
The likelihood of an attacker’s future actions can be estimated
with knowledge of prior beliefs.

Markov models are ideal for modelling discrete or
continuous-time state transitions of a stochastic process. They
are commonly expressed as graphs, in order to illustrate the
interdependency among the states.

B. ATTACK TREE
The MM-TBM algorithm employs an attack tree for mod-
elling an adversary’s actions towards exfiltrating data from
a High Value Target (HVT) within a computer network.
We view the Attack tree as a probabilistic network where
nodes represent events associated with probabilities or beliefs
and edges represent causal links between the events [65].
A concise definition of the attack tree is presented in (1) and
a graphical representation of an attack tree, based on (1) is
given in Fig.2.
Definition: Let H denote a set of nodes that represent

potential attack steps of an XAPT against and HVT. Given
i the index of the node, N (i) the name of the node with index
i = 1, Par(i) the parent node of N (i) and Pr(i) the prior belief
associated with N (i), this tree H is an Attack tree with nodes
Hi defined as:

Hi = {i,N (i),Par(i),Pr(i)} (1)

with i = [1,m],m : the number of nodes.
The tree structure models all the likely attack paths that

an adversary will follow during an XAPT. A node corre-
sponds to the attacker’s action that forms an attack phase. The
children of a given node represent the plausible hypotheses
with respect to the subsequent phases of the attack. Pr(i)
represents the belief mass allocated to a node given that
the parent node has been confirmed by the evidence i.e. the

FIGURE 2. Attack tree.

likelihood that the attack will follow a certain path given an
attack phase has been completed.

C. HYPOTHESIS ASSESSMENT - THE ALERT AND
AWARENESS FRAMES OF DISCERNMENT
MM-TBM incorporates two levels of knowledge for facil-
itating the monitoring of current malicious activities and
enabling prediction for future actions. These two levels are
represented by two frames of discernment, namely Alert
frame (�Al) and Awareness frame (�Aw).
The Alert frame contains the actions associated with the

next attack phase. It is made up of the children of the nodes
that have been supported by the evidence intercepted in the
current phase.
Alert Frame Definition: Let pc denote the current phase of

the attack, X the Attack tree, �al(pc) the current Alert frame
and Ipc−1 the collection of the nodes that have been supported
by the evidence in phase pc − 1. The Alert frame is defined
by (2).

�al(p) =
{
Ha : Par(a) ∈ Ipc−1

}
(2)

The Awareness frame �aw represents the attacker’s poten-
tial courses of action to complete an XAPT against one or
more HVTs within the protected computer network. Each
distinct path of the Attack tree, from the root to each of the
leaf nodes becomes a member of �aw.
Awareness Frame Definition: Assume a tree H with k leaf

nodes, with J = (j1, j2, . . . , jk ) the set that contains the
identities of these nodes. The Awareness frame in phase p is
defined as:

�aw(p) = [H1, . . . ,Hj1], [H1, . . . ,Hj2], . . . , [H1, . . . ,Hjm]

(3)

with 1 ≤ m ≤ k .

D. COMBINING EVIDENCE - THE MULTIPHASE
COMBINATION RULE WITH RESET (MCR2)
The evidence from the network sensors relevant to �Al is
converted into basic belief masses. The conversion is made
according to pre-defined rules trained based on the sensors’
credibility and assessed according to previous evaluation of
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the sensors, manufacturer’s specifications and shared intel-
ligence. The combination of evidence in MM-TBM is per-
formed by employing the Multi-phase Combination Rule
with Reset (MCR2). This is a novel rule for multi-phased
fusion problems which cannot be addressed by Smets’ com-
bination rule. The formal proof for MCR2 is presented
below.

The combination of evidence using Smets’ combination
rule is an iterative process. For n sources of evidence (which
are represented by n sets of basic belief masses m(.)), n − 1
combinations are required. Given a frame of discernment
�, the corresponding power set 2� and two pieces of evi-
dence m1 and m2 which refer to 2�, Smets’ combination
rule is:

m(X ) =
∑

A∩B=X

m1(A)m2(B), ∀A,B,X ∈ 2� (4)

MCR2 Formal Proof: Consider a tree structure that models
the potential paths of an XAPT against a specific computer
network. Let p the current phase, � the current frame of
discernment, 2� the power set and the number of sources of
evidence n that generate sets of beliefs (m1,m2, . . .mn).
When new sets of beliefs (m1,m2, . . . ,mn) are received the

fused belief for each member of the power set 2� is calcu-
lated by using Smets’ combination rule. Let z = |2�|, then
2� = {H1,H2, . . . ,Hz}. The fused belief for Hi using the
conventional Smets’ rule, is calculated by iteratively fusing
the pieces of evidence:

m1,...,n(H1) =
∑

A∩B=H1

m1,...,n−1(A)mn(B)

∀A,B,H1 ∈ 2� (5)

If (3) is true, then for all hypotheses H1,...,n, i = [2�],
it follows that:

m1,...,n(Hi) =
∑

A∩B=Hi

m1,...,n−1(A)mn(B)

∀A,B,Hi ∈ 2�, i = [1, 2�] (6)

Equation (6) is an alternative interpretation of Smets’ rule.
In a multi-phased fusion problem, the above rule must be
applied across all the phases, to ensure that the per-phase
relevant evidence is fused.

In addition, when the combinations for phase p − 1 are
completed and a new �al(p) is selected, mp(∅) refers to
a new hypothesis space hence is reset to zero. This paper
introduces a new operator (∅) ← 0 called the conflict mass
reset operator for resetting the conflict mass of the previous
phase (mp−1(∅)) to 0 when a new Alert frame is selected.
Let Cpbe a body of evidence which contains a number of

evidence sources across p phases with corresponding pieces
of evidence mpi .

In order to combine the evidence sources in Cp across all
the p phases and to represent the conflict mass reset during

the transition from phase p− 1 to p, (6) is generalised to:

mp1,...,n(H
p
i ) =

mp(∅)←0

∑
A∩B=Hp

i

mp1,...,n−1(A)m
p
n(B),

∀A,B,Hp
i ∈ 2�al (p), i = [1, 2�] (7)

Finally, the rule is further generalised to represent
any binary combination of sources of evidence within a
multi-phased TBM context and is concisely presented for the
first time:

mp1,...,n = mp1,...,n−1
⊕

mp−1(∅)←0

mpn ∀C
p, n ≤ 2 (8)

The symbol
⊕

mp−1(∅)←0
denoted in (8) is the novel MCR2

operator which is an extension to Smets’ conjunctive oper-
ator [66]. The distinction of the MCR2 operator is that any
conflict mass generated by the combination is reset with every
transition to the next Alert frame. Equation 7 is the analytical
form and (8) is the general form of the Multi-phase Combi-
nation Rule with Reset (MCR2). TheMCR2 combination rule
yields two outputs:

1) The combined beliefs in respect of the current Alert
frame (�al).

2) The conflict mass generated for the current Alert frame
(�al)

As soon as all the pieces of evidence have been fused, the out-
puts are converted to pignistic probabilities using Smets’
Pignistic Transformation (see (9)). These probability values
are used for updating the prior beliefs associated with each
hypothesis represented upon the tree as a node Hi hence
Pr(i) = BetP[Hi]. Effectively, the new prior beliefs are
assigned to their corresponding nodes on the tree, expressing
the revised likelihoods for the future events, given the most
recent evidence. The bias caused by prior beliefs is thus
eliminated and prediction of future events relies on up-to-date
information regarding attack status.

BetP[Hi] =
∑

A⊆�al (p)

|H (i) ∩ A|
|A|

m(A)
1− mp(∅)

∀H (i) /∈ �al(p) (9)

We consider this novel extension to be along the same lines
of [17] upon the Dempster-Shafer theory [16], particularly
to the generalization of Dempster’s rule of combination by
means of Smets’ conjunctive rule. Similarly, we consider the
MCR2 to serve as a generalization of the conjunctive rule for
multiple, causally linked frames of discernment.

E. PREDICTION OF FUTURE ATTACK STEPS
In accordance with belief updating defined in section III-C,
we now proceed with calculating the joint beliefs of the
Attack tree paths. To calculate the joint belief or predicted
belief (mpredicted ) for each member of the Awareness frame,
the beliefs associated with each node from root to leaf are
multiplied. The predicted belief of each path represents the
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FIGURE 3. Limited objectives experiment predicted belief plots.

likelihood of each outcome of in the Awareness frame as
previously specified in (3).
Prediction Formula Definition: Assume an Attack tree H

with k leaf nodes. A pathway of the tree consisting of m
nodes starting from the root until a leaf nodeHleaf is reached,
is defined as Path. The predicted belief for each Path is given
by the following formula:

mpredicted (Path) =
∏

i=(1,m)

Pr(i) (10)

F. TREE PRUNING
The prior beliefs of the attack tree nodes are updated based on
received and relevant pieces of evidence which are generated
during each phase. If the evidence yields zero BetP to a node,
that node and its descendants represent implausible events
and implausible attack paths respectively. Therefore, retain-
ing a zero BetP node and its descendants causes redundant
information to remain in scope and infers unnecessary noise.
The algorithm should, therefore incorporate a functionality
for removing implausible hypothesis based on the evidence.

A limited objectives experiment was conducted in
order to explore tree pruning within an MM-TBM
approach. It involved six use cases, whereby each case
assessed an exfiltration attack which followed a certain path
across the attack tree. During this experiment, the nodes
which were assigned zero BetP by the evidence were
removed, which includes their descendants i.e. the corre-
sponding subtree. Fig.3 shows the evolution of the predicted
beliefs of competing attack paths across the attack phases.
The leaf nodes are identified for each attack path in the
figure. Inspection of the results shows that, if the mpredicted
of an attack path declines during an attack phase, eventually
mpredicted for this attack path becomes zero in a subsequent
phase. At the same time, mpredicted for ground-truth paths
consistently increase across the phases. Therefore, the deci-
sion for pruning a path can be made before the phase-relevant
evidence presents itself. Based on the empirical evidence and
the preceding argument, the rule for removing an attack path
is stated as follows:

LetH be an Attack tree that consists of ν paths, where each
path is denoted by pathj where j = [1, ν]. Let p be the number
of phases, so that the predicted belief for each pathj at phase

i is denoted by m(pathij) where i = [1, p]. The condition for
pruning a path is given in (11):

mpredicted (path
i−1
j ) > mpredicted (pathij) −→ prune(pathj)

(11)

Based on this finding, the size and shape of the attack
tree can adapt to an attack. As the attack progresses through
the kill-chain and more relevant pieces of evidence are inter-
cepted, some of the nodes (and their matching paths) are
pruned, causing the tree to reduce in size and the hypothesis
space to decrease.

The prior beliefs associated with the remaining nodes of
the Alert frame are updated in accordance with the belief
updating process described in section III-B. The next Alert
frame will consist of the children of the nodes that were
allocated a BetP at the last combination.

G. DIAGNOSTIC FUNCTIONALITY
In order to handle situations of missing evidence, MM-TBM
incorporates a diagnostic functionality for assessing hypothe-
ses which belong to future phases. Effectively, this function
is performed by monitoring events which belong to a lower
level of the tree, precisely one phase ahead of the current Alert
frame. The belief associated with the specified nodes is calcu-
lated using the combination rule and the pignistic transforma-
tion as in normal operation. In this case however, the derived
beliefs enable the revision of the tree state, by employing a
bottom-up approach, as opposed to the top-bottom approach
applied during normal operation.
Diagnostic Formula Proof: Let us consider a Bayesian

network with hypotheses (H1,H2, . . . ,Hn), the body of evi-
dence e and the conditional probabilities P(e|H1), P(e|H2) to
P(e|Hn).
The Bayesian rule states that:

P(Hi|e) =
P(e|Hi)P(Hi)

P(e|H1)P(H1)+ . . .+ P(e|Hn)P(Hn)
(12)

With i = [1, n].
Provided that P(H1|e)+ P(H2|e)+ . . .+ P(Hn|e) = 1.
The Bayesian rule can be expanded to directed acyclic

graphs, such as the Attack tree within the context of
MM-TBM. Assume the tree structure in Fig.4, whereby
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hypothesis H0 has been supported by evidence, �al =

[H1, . . . ,Hn] and the prior beliefs of the nodes are denoted
by Pr(.).
Let us assume that the new incoming evidence is associ-

ated with the leaf nodes and not with the current �al . The
pignistic probabilities calculated from the evidence can be
used to update the prior beliefs for their respective branches
[Pr(H11),Pr(H12), . . . ,Pr(Hnk )]. However, the prior beliefs
of the hypotheses within the Alert framemust also be updated
[Pr(H1), . . . ,Pr(Hn)], to ensure that the joint probability
of each path is calculated based only on the observed evi-
dence and by omitting any pre-assigned prior beliefs. Due
to missing evidence with respect to the hypotheses of the
Alert frame, the evidence which is relevant to the Next Alert
frame denoted as�Nal = [H11, . . . ,H1k , . . . ,Hnk ] is the only
source of useful information. Hence, for every hypothesis in
the leaf nodes the prior beliefs are updated as follows:

Pr(Hij) = BetP(eij|Hi)

where i = [1, n], j = [1, k] and eij = Hij.
It is also known that:∑

i=[1,n],j=[1,k]

BetP(Hi|eij) = 1 (13)

The pignistic probability for each member of�Nal is given
by:

BetP(ei|Hi) =
∑
j=[1,k]

BetP(eij|Hi) ∀i ∈ [1, n] (14)

where ei = [ei1, ei2, . . . , eik ] By combining (12) with (13),
it follows that:

BetP(Hi|e)

=
BetP(ei|Hi)Pr(Hi)

BetP(e1|H1)Pr(H1)+ . . .+ BetP(en|Hn)Pr(Hn)
(15)

By combining (14) with (15), it follows that:

BetP(Hi|e) =

Pr(Hi)
k∑
j=1

BetP(eij|Hi)

n∑
i=1

[Pr(Hi)
k∑
j=1

BetP(eij|Hi)]

∀i ∈ [1, n]

(16)

which is MM-TBM’s diagnostic formula.

H. TREE SLICING
XAPTs may originate from different adversaries at the same
time. It is therefore necessary to develop a mechanism for
detecting the presence of concurrent multiple attacks within
the network. In order to address this class of problems, a Tree
slicing function has been developed. This function creates
slices of the tree which track each individual attack path that
is occurring in parallel with additional attacks.

The slices are generated when the conflict mass computed
by theMCR2 is greater than zero. Whenm(∅) > 0, the tree is

sliced at the portion that was referring to the last known Alert
frame. The number of the new tree slices is equal to |�al |.
Let X be an Attack tree, the current Alert frame�al and xn

the members of �al with n = [1, |�al |]. If the combination
of evidence results in m�al (∅) > 0 then the tree X will be
divided into n slices.

Each new slice will contain the following: 1) one member
of the Alert Frame, 2) its predecessors and 3) its descendants.
An illustration of a Tree slicing is illustrated in Fig. 4. The
n slices are generated when �al = [H1,Hn]. After the split,
each slice is tracked individually as an independent Attack
tree, using the same pool of evidence but focusing on the
subset of evidence which is relevant, as defined by the Alert
Frame.

FIGURE 4. Attack tree before and after slicing on nodes H1 and H2.

I. MCR2 v SMETS’ RULE: A CONCRETE ILLUSTRATION
Lofti Zadeh [50] showed that Dempster’s rule of combina-
tion results in misleading and counterintuitive conclusions
when disagreement between sources of evidence is very high.
In a similar way, we illustrate by the following example that
Smets’ rule of combination cannot cope with situations where
pieces of evidence refer to multiple and disjoint frames of
discernment.

Consider a fusion problem which is concerned with a
dual-phase process. In order for the second phase to materi-
alize, it is mandatory that the first phase is completed. In the
first phase, the potential events are {A1,A2,A3}. In the second
phase, the potential events are {B1,B2,B3}. In order to track
the specified process, the events of both phases must be inter-
cepted, reported by the sources of evidence and combined
accordingly. There are two available sensors for phase 1 and
two sensors for phase 2 which are labelled as ma1, ma2, mb1
andmb2 respectively. Table 1 contains themeasurements from
the four sensors. The combinations are performed by using
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TABLE 1. Sensor outputs.

MCR2 (7) and Smets’ combination rule [17]. The results are
given in Table 2.

Using the Smets’ rule the sources of evidence are not
combined in accordance to the mutual-exclusivity property,
hence the value of the conflict mass becomes unity, which
does not allow any kind of inference or decision. On the other
hand, the MCR2 is applied within an appropriate hypothesis
assessment, whereby the observed process is decomposed
into its constituent phases and two frames of discernment that
follow the mutual exclusivity property are constructed.

The results of MCR2 provide a clear winner in both
phases, namely A1 and B1 respectively. This example shows
that TBM as well as conventional single-phase techniques
such as Dempster-Shafer theory are inadequate for handling
multi-phase fusion problems as opposed toMM-TBM, which
is designed for this specific class of problems and utilizes
a combination rule for representing the transition between
phases including the reset of the associated conflict mass.

IV. SCENARIO AND EXPERIMENTAL DESIGN
This section describes the scenario design for developing
and validating the MM-TBM approach through a number
of experiments. The scenario and experimental designs were
validated by Subject Matter Experts from the UK’s Defense
and Science Technology Laboratory. This section describes
theMain experiment and evaluation ofMM-TBM. The objec-
tives of the Main experiment are to:

1) Assess the performance of MM-TBM.
2) Identify the limits and optimal operational parameters

of MM-TBM with reference to sampling of the alert
database.

At first, we defined three experimental Vignettes for
assessing key functionalities of MM-TBM. A computer net-
work for recreating a number of XAPT kill-chains was
developed as the experimental setup within the experimental
design. This setup influenced the design of an Attack tree
that maps the potential kill-chains that could be presented
in the computer network. To comply with the Concept of
Employment for developing new Cyber SA capabilities [8],
we incorporated the five characteristics of the cyberspace
(Contested, Congested, Cluttered, Connected, Constrained).
More details with regards to the conformity of the scenario
design to the cyberspace characteristics are given in Table 3.

In our approach, the attack tree-driven hypothesis assess-
ment scheme creates Alert frames of discernment based on
the attack’s state and fuses the relevant evidence using the
MCR2 combination rule. Consequently, the scope of the
algorithm is constantly focused on the state of the attack
and is permitted to consider only a subset of the evidence
presented. Assuming that an XAPT will create zones of
relevant evidence within the alert log, where each zone will
correspond to an attack phase, identification of these zones
becomes a challenge. The question remains however, as to
how many of the alerts should be allocated at each time in
order to identify and combine relevant pieces of evidence.
Since the interval between attack phases is unknown, how
can one decide how many alerts to allocate in a sample of the
alert log to: 1) isolate the ground-truth from clutter as much
as possible; 2) contain precisely one phase in a sample and;
3) prevent the evidence of an attack phase from being divided
into two or more consecutive samples?

To investigate the implications of choosing various sam-
pling sizes, we utilize several different sampling periods,
based on the timestamps of the alerts. The results produced by
each sampling period are compared using the Kruskal-Wallis
and Nemenyi tests to identify the optimal sampling strategy
for MM-TBM within the experimental scenario.

A. VIGNETTES
To evaluate the functionality of MM-TBM, a set of scenarios
to test this functionality were developed in accordance with
the evidence presented during each attack phase of the Cyber
Kill Chain. These scenarios are divided into three Vignettes
(categories).

The set of scenarios under Vignette V1 test howMM-TBM
responds to multi-phased XAPTs by means of assessing the

TABLE 2. Belief masses after combination.
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TABLE 3. Scenario design compliance.

TABLE 4. Attack vectors.

Hypothesis Assessment, MCR2, Prediction and Tree Prun-
ing functionalities (Sections III-C to F). Vignette V2 con-
tains scenarios where an attack phase is not intercepted,
so that we could additionally test the Diagnostic functionality

FIGURE 5. Cyber range network topology.

FIGURE 6. Attack tree.

(Section III-G). In Vignette V3, we were concerned with
MM-TBM’s capacity to detect two concurrent XAPTs hence
evaluate the Tree slicing functionality (Section III-H). The
Vignettes are illustrated in Table 5.

B. NETWORK TOPOLOGY
The experiments were conducted in a controlled computer
network environment. The network topology of the envi-
ronment is given in Fig.5. There are three target machines
(two Windows 2008 R2 servers with Microsoft SQL Server
2012 and oneWindows XPmachine). One server is protected
by Zentyal firewall whereas the remaining two targets are
in the Demilitarized Zone. Five stations are used for gener-
ating legitimate traffic by issuing SQL queries against the
database servers and HTTP GET requests at an Apache web
server. With reference to the vignettes, the attackers seek to
exfiltrate data by 1) submitting SQL queries to a database
server, 2) downloading database backup files through FTP
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TABLE 5. Vignettes.

and 3) by downloading sensitive files from a commander’s
workstation.

C. ATTACK TREE
For the purpose of this paper, the Attack tree structure and
prior beliefs have been co-designed with Subject Matter
Experts from Airbus and the Defense and Science Technol-
ogy Laboratory. The tree models the potential attack path-
ways of an adversary during an XAPT mission against the
designated High Valued Targets. Each node corresponds to a
specific attack vector against a given network station and the
branches are labelled with the prior beliefs associated with
the corresponding node.

Various approaches and techniques exist for designing
attack graphs and training prior probabilities (see [63], [64]
for a detailed review). The attack tree for the experiment pre-
sented in this paper (Fig.6) is designed based on the network
topology, the operating systems and the installed services and
applications of the controlled computer network environment
(see Section II-B). The data exfiltration targets are selected
servers or workstations where critical information is pre-
served and constitute the HighValued Targets of the reference
network. By focusing on the most valuable assets, the attack
surface and potential multi-step paths across the network
can be assessed through red-team/blue-team exercises [65].
Hence, the search space for potential attack paths is much
reduced and tractable. Moreover, as HVT’s are commonly
located deep within the network and are accessible only from
a limited number of network components (i.e. through a
web-application firewall), there are very few routes available
for an adversary to reach their target.

This design approach is good for building a knowledge-
base of potential attacks for multi-phase detection which is
robust to false positives but is nevertheless limited in address-
ing alternative attack routes or zero-day attacks [64] which
a ‘‘smarter’’ attacker may employ. MM-TBM is designed to
address the effects of zero-day attack vectors by means of the
diagnostic functionality. Zero-day attacks may not be traced
because a matching signature has not been incorporated in
the IDS or any other signature-based detection scheme. Even
in the absence of the appropriate signature, MM-TBM can
accommodate evidence of any kind, such as anomaly detec-
tors or log management tools where a zero-day attack may
leave a matching trail.

Similarly, an XAPT may follow a path that is not repre-
sented on the Attack tree either because of a non-exhaustive
assessment of attack paths, or because a zero-day attack made
it possible to follow alternative routes. In this case, the diag-
nostic functionality can resolve attack paths that follow alter-
native routes provided that the attacker’s path converges to
the tree-prescribed path after a phase. Nevertheless, there
is always a chance that a zero-day attack will follow an
attack path that is not represented on the Attack tree and
therefore completes without being detected. This is a case that
the MM-TBM will not manage, however the post-incident
forensic analysis will help reveal the undetected path which
can then be incorporated into the Attack tree.

D. DATA GENERATION AND COLLECTION
The XAPT attacks as well as the clutter traffic (see next para-
graph) were launched from an attacker’s station running the
Kali Linux operating system. The exploits used for running
the experiments are given in Table 4.When these attacks were
launched, they were detected by the Security Onion SIEM
and generated IDS alerts and Windows Log entries which
were stored in aMySQL database. The alert log created by an
attack scenario forms the dataset for the respective scenario.
The experiments are conducted in the presence of legitimate
background traffic and spurious attacks which may or may
not be relevant to theAttack tree nodes (hereby called clutter).
Three types of clutter are introduced in order to confuse
the algorithm into committing to false hypotheses within an
attack phase. In Low clutter, the attack scenario was launched
alongside constantly emitted legitimate background traffic
and spurious attacks that generated evidence which was not
relevant to any of the hypotheses represented on the attack
tree, and therefore deemed out of scope. In Medium clutter
conditions, the same attacks were launched as in Low clutter,
plus a constantly emitted attack which corresponds to a single
node of the attack tree. In High clutter conditions, the same
attacks were launched as in Low clutter, plus repeatedly
emitted two or three attack phases; these correspond to partial
attack paths along the tree. It is anticipated that Low clutter
shall have zero effect on MM-TBM performance. Regarding
Medium clutter, it is expected that the algorithm will detect
a false phase and cause the tree to slice (according to the
Tree slicing functionality described in Section III-H). With
reference to High clutter, it is expected that the algorithm
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will detect at least one false phase, create a slice and track
a bogus path. Within this cluttered network environment,
the experiment evaluates how the MM-TBM can cope with
various adverse conditions that may be realized in an actual
XAPT.

Each of the 11 scenarios (See Table 5) is executed three
times, one for each type of clutter, resulting in a total of
3 × 11 = 33 datasets. Each of these datasets is processed
by MM-TBM with 7 different sampling periods. The alerts
contained in the dataset are converted to basic belief assign-
ments using pre-defined lookup tables. The dataset contains
60 seconds of collected alerts generated before the 1st phase
of the XAPT is launched. An interval of 60 seconds is kept
between each attack phase to ensure that they are kept dis-
tinct. Background traffic is generated constantly during the
experiment and the corresponding alerts are populated in the
alert table. The generated dataset contains three columns:
signature_id, timestamp and dst_ip since these are the fea-
tures that are used for generating the belief assignments. The
table entries are then divided into a number of segments for
processing.

Seven different periods are used for segmenting the alerts,
namely: 30, 45, 60, 75, 90, 105 and 120 seconds. These
values have been set to straddle the phase separation time
of 60 seconds. An alert table with r number of entries is
divided into a number of segments, based on the values of
the timestamp column. Each segment contains the entries
[r(tn), r(tn+1)], where tn+1 − t0 = sample period . The last
segment contains the entries [r(tn), rend ] where rend denotes
the last entry. |seg| denotes the number of segments produced
for each sampling period.

The algorithm is executed once for each dataset and for
|seg| iterations, processing each segment sequentially. If the
pieces of evidence located in the current segment are relevant
to the current Alert or Next Alert frames, then these pieces
of evidence are processed and utilized for updating the tree.
If no relevant evidence is detected, the segment is discarded
(See Fig.7 for algorithm pseudocode).

E. STATISTICAL ANALYSIS AND CYBER SA
EVALUATION APPROACH
This experiment utilizes a set of variables which are adapted
from the SA metrics proposed by [45]. These variables are
used to measure the Situational Awareness of MM-TBM
users by comparing the algorithm output to the ground truth
at each phase of the XAPT. Table 7 contains the definition of
the variables.

The Phase Recall (PR) values represent the algorithm’s
capability to efficiently track the XAPT across the phases.
Therefore, high Phase Recall indicates that the XAPT attack
phases are tracked and predicted with high accuracy whereas
low Phase Recall indicates that some ground truth phases are
missed. The Phase Precision (PP) values represent the effect
of noise caused by legitimate traffic and clutter in tracking
the attack phases. When Phase Precision is high, the detected
attack phases correspond to the ground truth. On the other

FIGURE 7. MM-TBM Pseudo algorithm.

hand, if Phase Precision is low, a large number of phase
detections are a consequence of clutter, instead of the ground
truth.

Similarly, Evidence Recall (ER) represents the capability
to focus on the relevant evidence. High Evidence Recall
values indicates that the pieces of evidence processed by
MM-TBM were indeed part of the ground truth whereas
low values show that the relevant pieces of evidence were
missed. Evidence Precision (EP) represents the algorithm’s
efficiency in distinguishing the ground truth evidence from
noise. Therefore, high Evidence Precision values indicate
that the pieces of evidence that MM-TBM combined were
relevant to the ground truth, whereas low values indicated
that a high number of evidence processed were generated by
clutter traffic. The above metrics are used to assess the effects
of utilizing the various sampling periods. The first part of the
analysis is concerned with picking out the optimal sampling
period using the Kruskal-Wallis test (due to the non-Gaussian
distribution of the data). This is a non-parametric statistical
test for measuring statistically significant differences among
groups. Further, the Nemenyi post-hoc test reveals which of
the significantly different groups, at the p < 0.01 level are
the best performers for the experiments.

VOLUME 7, 2019 39315



G. Ioannou et al.: MM-TBM for Cyber Situational Awareness

TABLE 6. Clutter conditions.

TABLE 7. Experimental performance variables.

V. RESULTS AND FINDINGS
In this Section, the results and findings of the scenario-based
experiments for testing MM-TBM are presented. Firstly,
the optimum sampling period for the scenarios is determined
using Kruskal-Wallis [59] and Nemenyi [60] hypothesis test-
ing, given the non-Gaussian nature of the data.

Having identified the optimum sampling period, we then
evaluate the performance of MM-TBM using the Cyber SA
experimental performance variables (Table 7) with respect
to identifying the ground truth and distinguishing an XAPT
from background clutter and congestion. Lastly, we discuss
the benefits and trade-offs associated with an MM-TBM
approach for resolving XAPTs.

A. SELECTING THE OPTIMAL SAMPLING PERIOD
Table 8 shows that Phase and Evidence Recall variables
produce significantly different results under different sam-
pling periods for Medium, High and Overall clutter for a p
value of 0.01. On the other hand, Phase and Evidence Pre-
cision variables produce significantly different results under
different sampling periods only for Low clutter conditions.
Table 9 presents the results of the post-hoc Nemenyi test for
identifying the significant differences between the sampling
times.

Each cell of Table 9 contains the variables and clutter
type for which the sampling period of the cell row produces
significantly higher means compared to the sampling period
of the cell column. The results show that the best performing
sampling period is 90 seconds which maximizes the perfor-
mance of MM-TBM, i.e. all the means for PR(O, M), ER(O,
M, H), EP(L) were significantly higher at the p < 0.01 level.

TABLE 8. Kruskal-Wallis test results.

TABLE 9. Nemenyi post-hoc test results p-value < 0.01.

Based on the findings, when the sampling period is small,
the algorithm becomes more susceptible to losing track of the
attack path under Medium and High levels of clutter. On the
other hand, sampling at small intervals becomes effective
when the clutter is Low. Further, as the sampling period
becomes larger, evidence across subsequent phases are more
likely to be captured in a single sample hence an attack phase
will be missed irrespective of the clutter volume. It follows
that MM-TBM delivers best performance when the sampling
period is of sufficient duration to capture sufficient evidence.
Based on this principle, the optimal sampling period can be
dynamically assigned taking into account the characteristics
of an attack phase such as the attack vectors and tactics
utilized by the adversary. Recent work [63], [64] has shown
that the duration of an attack phase can be approximated
to a normal distribution. Therefore, an estimation of the
attack phase duration is possible and facilitates the dynamic
selection of the sampling period to successfully track the
subsequent phases.

B. CYBER SA PERFORMANCE
With reference to Fig.8, we observe a number of find-
ings. Phase Recall is high in 85% of the scenarios i.e. the
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FIGURE 8. Radar diagrams of experimental performance variables in vignettes V1, V2, V3 for Low, Medium, High clutter.

hypothesis space of the awareness frame reduces to a single
element when PR ≥ 80%. Equally, Evidence Recall is high
in 82% of the scenarios, Phase Precision in 52% and Evidence
Precision in 63% of the scenarios. The results indicate that the
ground-truth phases and evidence are being detected hence
the attack is tracked accurately and the future phases remain
within scope.

A drop below 80% in Phase and Evidence Recall is
observed in V2 results (Fig. 8(c), 8(d)). In these cases, where
evidence is missing (see Table 5), MM-TBM dismissed the
ground-truth hypothesis within the Alert frame because of
clutter and did not manage to track the right path. Nonetheless
MM-TBM still achieves high performance over 70% of the

time for all the other scenario settings associated with V2,
which is still beneficial for cyber SA.

Phase and Evidence Precision values deteriorate under
Medium clutter. Clutter traffic triggers more IDS detections
hence an increase in the denominator (see Table 7 for the
formulae) and the drop in Precision. Medium and High clut-
ter cause the tree to slice (see Tree Slicing functionality,
Section III-H) because the MCR2 yields m(∅) > 0. High
clutter causes further uncertainty to MM-TBM by forcing it
to detect clutter evidence for two or three consecutive phases,
effectively tracking a bogus path. The increase in the number
of false detections cause a further decrease in Precision (due
to the increase in the denominator). Nonetheless, this drop
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in Precision is an indication of how MM-TBM copes with
uncertainty. In some cases (i.e. V1s4&5-High and V2s1&2-
High) we observe large differences between Recall and Preci-
sion. These discrepancies occur when the algorithm creates a
slice and tracks a bogus path. Given that Phase and Evidence
Recall remain high, we infer that the ground-truth path is
successfully tracked and predicted despite the high volumes
of clutter. Specifically, MM-TBM tolerates false detections
to sustain Recall and keep the ground-truth within scope,
the trade-off being the drop in Precision. This is an insurance
mechanism that prevents the algorithm from committing to
a wrong path which is then disposed of when the collected
evidence no longer supports it.

The above findings show that the sources of uncertainty are
well understood and MM-TBM employs the necessary cop-
ing mechanisms, in respect of tree slicing and tree pruning,
to deal with these situations. These mechanisms could not be
realized without the MCR2 and the conflict mass reset opera-
tor which provide a novel capability for handling uncertainty
where multi-phase fusion problems are concerned. In addi-
tion, the findings confirm that the scenario design has tested
the MM-TBM approach to its functional limits and assisted
in determining its optimal operating parameters within an
overall approach.

VI. CONCLUSIONS
This paper set out to develop new Cyber SA capabilities and
an algorithmic approach for detecting, tracking and predict-
ing XAPTs across the cyber kill-chain. Thus far there has
been no theory capable of dealing with the multi-phase nature
of cyber-attacks whilst still attending to problems associated
with managing conflicting evidence and inherent uncertainty.
This new approach, MM-TBM, with its novel combination
rule (MCR2) provides the means to elicit previously indeter-
minable Cyber SA for complex, multi-phase cyber-attacks.

The MCR2 (8) with its reset operator is introduced to facil-
itate management of the conflict mass. This overcomes the
inadequacy of Dempster’s [16] and Smets’ [17] combination
rules formulti-phase problems.We have demonstratedMCR2

allows us to tackle a class of hitherto unresolved problems
by proving the Smets’ combination rule violates the mutual
exclusivity property i.e. m(∅) = 1.
With reference to XAPT cyber-attacks, in order to over-

come the challenges of a congested, cluttered and contested
environment found in practice, MM-TBM employs tree prun-
ing, tree slicing (when m(∅) > 0) and the diagnostic func-
tionality as part of the overall control mechanism for effective
Cyber SA.

From a practical perspective this research has also demon-
strated that sampling time matters to the performance of
MM-TBM. Specifically, sampling period should be of suffi-
cient duration to capture sufficient evidence for MM-TBM to
deliver best Cyber SA performance. Until now this vital point
in the assessment of Cyber SA algorithmic performances has
been ignored [33]–[35].

The findings confirm that the scenario design has tested
the implementation of MM-TBM to its functional limits.
Namely, in terms of overall performance, MM-TBM success-
fully tracks attack phases over 85% of the time and therefore
predicts possible outcomes by reducing the hypothesis space
�Aw to h at each phase transition such that h ⊂ |�Aw|. This is
achieved by utilizing the coping mechanisms (tree slicing and
tree pruning) for dealing with clutter whilst compensating for
any drop in precision.

In conclusion, we have shown the MM-TBM approach,
premised on our MCR2, is a new Cyber SA capability
for addressing previously intractable multi-phase attacks.
MM-TBM establishes a fresh perspective for problems where
Cyber SA is considered indeterminable and where uncer-
tainty and paradox are a source of unresolved confusion.
Furthermore,MM-TBM constitutes a contribution to the field
of data fusion with future application to: big data analyt-
ics, medical diagnosis, fault detection, forensics, etc. where
detection, tracking and prediction is essential for superior SA
and decision making.
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