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Abstract - This paper develops a machine leaning framework that evolves an optimal propagation model 

for the last mile with Low Altitude Platforms from existing propagation models. Existing propagation 

models reviewed exhibit both advantages and shortcomings in relation to a set of factors that affect 

performance across different terrains, i.e. path loss, elevation angle, altitude, coverage, power 

consumption, operational frequency, interference, and antenna type. A comparison of the predictions 

between the optimized and the existing models in relation to above set of factors reveals significant 

improvements are achieved with the optimal model. 

Keywords - Propagation models; Low Altitude Platforms; Machine learning; 

 

1  INTRODUCTION 

Interest in helium-filled solar-powered airship platforms that operate at altitudes up to 20km above ground is on 

the increase. High Altitude Platforms (HAPs) have many merits, including a capability of providing regional 

footprint and a long endurance but their deployment is an expensive option when considering the delivery of 

wireless communications in remote areas. Therefore, in the case of short-term large-scale events or during and 

immediately after natural disasters, Low Altitude Platforms (LAPs) are preferred for providing dynamic and 

scalable networks as they can cover quickly a wide area with a radius running into tens of kilometres, depending 

on configuration and communication payloads [1-2]. Fig.1 gives an overview of the deployment of a LAP as an 

aerial Base Station (BS) to serve the last mile. It also shows a propagation model configuration with two path 

loss components, i.e., Free Space Path Loss (FSPL), and an additive path loss due to shadowing effects. 

 

Fig.1: Deploying a LAP as an aerial BS to serve last mile connectivity 
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Last mile connectivity refers to the maximum distance at which a propagation model may reach users on the 

ground. This is may be affected by, for instance, the terrain morphology, buildings, trees, interference, fading 

and atmospheric conditions. Our research review on propagation models reveals several factors that are 

significant when considering last mile connectivity via LAPs: antenna type, elevation angle, LAP altitude, path 

loss, coverage area, power consumption, operation frequency and interference. The first three are input factors 

and the remaining five are output factors. These factors can help with monitoring system performance, network 

planning, coverage footprint, receivers’ line-of-sight, quality of service requirements, and data rates which 

may all vary across different terrain geomorphologies. Several competing propagation models have been 

developed over the years but whilst they collectively offer many advantages in relation to the factors, they also 

exhibit shortcomings across different environments. Therefore, there is no individual or generic propagation 

model that suits every environment and exhibits optimal performance in relation to all these factors. In our 

study, four propagation models have been selected that are representatives of their types and exhibit better 

performance across different terrains in relation to other models.  

This paper aims to design a new propagation model for last-mile connectivity with LAPs technology as an 

alternative to an aerial base station that exhibits optimal performance in relation to the above set of factors 

above and none of the shortcomings of existing models. The new propagation model is evolved from the four 

propagation models using a machine learning framework of Neural Networks. The four models are first 

adapted to include the elevation angle alongside the multiple-input multiple-output antenna diversity gain and 

deployed at various altitudes. The adaptation enhances their performance. 

The rest of this paper is organized as follows: section 2 reviews related work in relation to the set of factors 

that affect LAP performance, section 3 discusses the selected propagation models, their adaptation and 

implementation, section 4 discusses the machine learning framework for evolving an optimal propagation 

model and its implementation, section 5 compares the predictions of the optimised against the adapted models, 

section 6 follows suit in a wireless sensor network and section 7 concludes. 

 

2  RELATED RESEARCH REVIEW 

This section reviews those issues that reportedly affect the performance of a LAP as an alternative to a BS, i.e. 

path loss, elevation angle, LAP altitude, coverage area, power consumption, operation frequency, interference, 

and antenna type (gain, height, transmission power, and loss). 

2.1 Path Loss 

Propagation models predict signal attenuation or path loss as a measure of the power density of an 

electromagnetic wave as it propagates through space from a transmitter. Calculating path loss is useful for 

monitoring system performance, network planning and coverage to achieve perfect reception. Many factors may 

affect a signal when propagating to a maximum distance such as terrain, frequency, transmitter and receiver 

antenna heights [3]. With aerial platform propagation path loss models, radio signals propagate through free 

space until reaching the complex ground ubiquitous environment, where shadowing, scattering and other effects 

occur by nature and/or man-made structures. Thus, it is essential to identify the different type of environments 

that have been categorized by International Telecommunication Union (ITU) namely: Urban, Suburban, and 

Rural [2, 4]. Fig.2 shows the conceptual propagation model from a LAP perspective in different environments. 

In each environment, factors such as path loss, Received Signal Strength (RSS), coverage, and other link budget 

parameters may vary in response to geometrical and topography characteristics as well as user profiles. [5] 

introduces a recent comprehensive survey on aerial platforms in relation to propagation models, altitude, 

coverage, and power consumption. [6] considers how a propagation path loss model for emergency or security 

applications may lead to network congestion. 

The propagation models for LAPs technology reported in literature are broadly based either on empirical 

propagation [7-10], or Air-To-Ground (ATG) models [2, 4, 11-13]. Empirical propagation models use a pre-

defined set of constants and constraints for different topographies, and different geographical factors such as 



hills, terrain, streets, and building heights [7, 14, 15]. Models like UI, COST-231, log-distance, ITU indoor & 

outdoor, WINNER II, Okumura-Hata, and COST Walfish-Ikegami are typical of the types reported widely in 

the literature. Despite their results accuracy these empirical propagation models exhibit limitations as a result 

of their limited antenna heights and short transmission distances. ATG with ray tracing exemplify deterministic 

models with their use of Maxwell’s formula and reflection and diffraction laws [14, 15]. The ATG propagation 

model is reportedly preferred in the literature for LAP deployments, as it yields an improvement in cell capacity 

and downlink coverage. Path loss in ATG is calculated by using a closed-form method between a LAP and 

terrestrial receivers based on two key ATG propagation types. The first type is a LoS condition or near-Line-

of-Sight condition, the second type is No Line-of-Sight (NLoS) condition, but still receiving coverage with 

strong reflections and diffractions. 

The authors of [16] emphasise that ATG propagation models have not been investigated in detail when 

compared to other existing terrestrial propagation models. Thus, in their paper they introduce wide range large- 

and small-scale fading channel models and highlight their limitations. They argue that the main challenge with 

ATG models is the high altitude at which optimal performance is achieved, as a result of a decreased shadowing 

effect and the higher transmission power required. Recommendations have been raised in [2, 4] about the 

significance of investigating various LAP propagation models that yield an optimum altitude and achieve 

maximum coverage area in different rural or urban environments. Recommendations also are made in [12] about 

the significance of exploiting environment properties, urban statistics, and bandwidth as they affect considerably 

LAP capacity and may help with maximizing footprint and throughput whilst maintaining LoS. The authors of 

[17, 18] present a survey on various propagation models for aerial platforms and highlight their current research 

trends and as well as underlining their key future insights including the need to consider a machine learning 

approach to support various aerial platforms operation at low power consumption and wide coverage. 

[19] discuses multiple-hop communication and self-organization of multiple UAVs using a free space 

propagation model. The multi-tiered network can serve heterogeneous networks for both commercial and 

military applications. The main findings highlight some challenges that face multi-tiered network including 

coverage gaps scalability and reliability, network formation, network connectivity, information delivery, and 

energy management. [20] reviews an IoT architecture and service virtualization from different perspectives 

including aerial platforms. Where the medium is not homogeneous, selecting a propagation of electromagnetic 

models is significantly important to sustain network connectivity, achieve wide coverage, minimize path loss 

and power consumption, especially as we are approaching the broader level of 5G technology with high demand 

of heterogeneous networks. [21] discusses recent advances and future trends with 5G and beyond for aerial 

platforms with the researchers highlighting the positive correlation between operational aerial platform altitudes 

and LoS connectivity at different urban environments with path loss and the shadowing effect optimized.  

 

Fig.1: Bird’s-eye-view of LAP propagation model in different terrains 



2.2 Elevation Angle 

It is a necessary condition for ionospheric communication signals to propagate in a correct angle to enhance last 

mile connectivity. Space-based wireless communication systems take into consideration the elevation angle in 

their channel FSPL calculation. Nevertheless, there is no consideration of the elevation angle in propagation 

models reported in literature in relation to LAPs, possibly due to the low transmitter altitude. In aerial platform 

technology, path loss in a propagation model depends on elevation angle, if aiming to achieve LoS most of the 

time [2, 4]. Authors of [22, 23] and ITU [24] argue that the elevation angle in urban environments can range 

between 30° and 90°, 15° and 30° in suburban, and between 5° and 15° in rural. A wide range of elevation 

angles between 5° and 90° have been investigated in [25] as a function of aerial platforms altitudes in a 3D 

raytracing propagation model. Their results showcase a clear distinction between LoS and NLoS as elevation 

angles vary in relation to shadowing fade. In [26] the authors are suggesting that the angle range of 30° to 90° 

is a realistic elevation range for near space platforms in dense urbans. The proposed model in [11] sets 15° as 

the minimum elevation angle in urban, as a lower angle range in urban environments would increase the 

shadowing effect and decrease the probability of a clear LOS path. Moreover, authors in [22] claim that a 

minimum elevation angle range between 20° to 30° may be more desirable in urban. The authors of [27] consider 

a 10° elevation angle in addition to altitude, user density and building heights whilst calculating path loss. In 

[28] authors aim at enhancing the coverage range by choosing a 2° elevation angle at a 320m altitude. 

2.3 LAP Altitude and Coverage Area 

Several wireless network topologies of aerial platforms that provide footprint coverage at different altitudes 

are reported in the literature. Adopting any topology depends on the Quality of Service (QoS) requirements, 

type of application, payload weight, and power consumption, each exhibiting its own advantages and 

challenges [29, 30]. As part of their continuous effort to bridge coverage gaps in wireless communication, 

researchers in [2, 4, 8, 31, 32] aim at maximising footprint coverage with direct consideration of the LAP 

altitude in relation to, for instance, maximum allowable path loss (MAPL), RSS, ITU’s statistics on urban 

atmospheric effects such as pressure, wind and temperature, transmission power, and different antenna types. 

However, issues like power consumption, and the trade-off between coverage and throughput are reported as 

the main challenges. In [33] the selected propagation models are affected directly by parameters such as carrier 

frequency and antenna height from both transmitter and receiver sides. The authors in [34] consider various 

tools of trajectory optimization to analyse the performance of aerial platforms at different aspects, e.g. coverage 

footprint, throughput, power consumption. They suggest the use of optimization techniques for covering 

different channel models.  [35] proposes a method that tackles the coverage gap that is caused by inefficient 

planning and deployment of mobile networks. The method is based on a self-deployable mobile network. 

Results show an average improvement of 50%. 

The authors in [16] argue that high altitudes offer larger coverage areas and increased LOS connectivity, but 

may result in high path loss and higher power consumption. In contrast, low altitude delivers a signal with low 

path loss, but with increased NLOS and shadowing effects. [36] considers network performance between the 

Internet of public safety things (IoPST) and drones. The study shows an improvement in the level of public 

safety in smart cities via measuring LoS probability, delay, and throughput. The results of communication 

between smart wearable devices and drones show high efficiency and information accuracy. However, the 

study does not offer details about the altitude of the drones considered or the coverage footprint. [37] offers to 

reduce the cost of Information-Centric Internet of Things along with enhancing the coverage of communication 

links between unmanned aerial vehicles (UAVs) and terrestrial receivers via optimization of various 

parameters such as UAVs altitude, fly duration, power consumption. Their results show an improvement in 

coverage by approximately 21.42% and reduction in data cost by an average between 13.335% to 34.32%. 

2.4 Power Consumption 

Unmanned platforms are powered mostly by renewable energy from either directly using photovoltaic or 

indirectly using concentrated solar power [31, 38]. Power in aerial platforms is mainly consumed by all on-

board components and by communication links to terrestrial receivers and other aerial platforms using Radio 

http://en.wikipedia.org/wiki/Photovoltaics
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Frequency (RF) or optical inter-platform links [4, 7]. Power consumption is an open challenge for other 

wireless systems including LAP. Therefore, power consumption has received varied considerations with some 

researchers considering its hardware nature [39, 40] whereas others address the software nature using 

optimisation techniques [13, 41, 42]. The authors in [16] highlight the relationship between high aerial platform 

altitude and power consumption that needs to be balanced in consideration of the application and priority. In 

[34] various optimization techniques are considered to enhance the performance of power consumption at 

various aerial platforms angles. [21] argues that energy efficiency is a bottleneck challenge for aerial platforms 

and point at recent developments in battery technologies both in software and hardware. Examples of hardware 

developments include enhanced lithium-ion batteries, solar energy and hydrogen fuel cells. Examples of 

software developments include energy beamforming via MIMO techniques. In order to achieve maximum cell 

coverage for long distances, path loss and aerial platform altitude are considered as opposing aspects. 

2.5 Operational Frequency and Interference 

The frequency band is one of many factors that affect signal propagation. Authors in [9, 43, 44] argue that the 

design of propagation models is experimentally driven, hence, the parameters chosen often vary widely but 

operational frequency seems to be a common choice in consideration of terrain morphology, interference 

avoidance, and RSS and throughput enhancement. A frequency band of 850 MHz is chosen in [27] based on 

the availability offered by the cellular operator. Although this yields wider coverage it results in reduced 

throughput. The ITU’s International Mobile Telecommunications-Advanced (IMT-Advanced) standard for 4G 

offers access to various telecommunication services and supports mobile applications for heterogeneous 

wireless environments that offer various frequency bands that can support the performance and high QoS 

requirements for multimedia applications, and high data rates to user and service requirements. 

The ITU has long been considering technologies that meet the criteria of the standard: LTE, WiMAX, and 

WiFi [45-47]. WiFi [10, 44, 48-51], WiMAX [7, 44, 51, 52] and LTE [1, 10, 12, 48, 50, 51] have been 

considered widely in aerial platform technology in the literature to serve various applications for better 

coverage, whether in LoS or NLoS, increased capacity and less interference. However, opinions and decisions 

vary in relation to application types, operational environment and duration and the LAP’s onboard 

communication payloads and power supply. For instance, Aerial Base Stations with Opportunistic Links for 

Unexpected and Temporary Events (ABSOLUTE) is one of the most important LAP project worldwide that 

deploys LTE in their specifications [1]. Google balloon projects base their design and telecommunications 

payloads on LTE technology to provide Internet access globally. However, emergency or security applications 

considering LTE may lead to network congestion and interference in comparison to WiMAX.  Authors in [8, 

52-54] emphasize the advantages of WiMAX over LTE-A in supporting military operations in disaster relief 

environments where users’ requirements change rapidly. Yet, WiMAX offers less coverage and data rates in 

comparison to LTE, and it has large installation and operational costs. WiFi is still a candidate in LAP 

deployment in increasing connectivity for short distances. The main limitations are vulnerability to interference 

as it is unlicensed, and it does not serve longer distances, and whilst increasing transmission power may 

increase coverage, it also raises power consumption and interference. [21] emphasises the use of LTE 

unlicensed band that has the advantage of direct transmission to terrestrial users. 

The authors of [16] argue that the frequency band should be balanced against the altitude to minimize the 

tropospheric effects such as fading due to temperature, rain or snow. The authors in [55] emphasise the 

importance of new rules and regulations on aerial platforms frequency identification by the International 

Telecommunication Union (ITU) Radio Regulation (RR) and International Civil Aviation Organization 

(ICAO), the two regulatory bodies responsible for frequency assignment and civil flight. On the one hand, low 

frequency bands of sub 1 GHz may provide extensive coverage which is against RR, but on the other hand, high 

frequency bands provide high data rates but experience snow/rain attenuation issues like satellites do. In [56], 

the authors consider both LoS and NLoS from the perspective of antennas and propagation mode. During their 

experiments they report that in contrast to the 2.4/5 GHz crowded frequency bands, higher frequency bands may 

be more suitable for commercial aerial platforms. 



2.6 Antenna Types 

Typical antennas, whether directional or omni-directional are large in size, consume more power, increase 

interference, and offer small coverage [57, 58]. In contrast, aerial platforms require small-sized antennas, 

consuming less power, whilst maintaining a high-performance level. The effect of MIMO and smart antennas 

on near space solar-powered platform performance and capacity is discussed in [29, 40, 59, 60], where it is 

being argued that the antenna gain need to be optimised, otherwise end-users may experience weak radio across 

distances running into several miles. The advantages of deploying these antennas include maximizing capacity, 

improving QoS, extending coverage range, reducing transmission power and relaxing battery requirements, 

reducing radio signal fading as a result of diversity gain, and maximizing link budget as a result of smooth user 

tracking with main lobes and interference nulls. Considering the use of either smart or MIMO antenna 

technology to improve performance is suggested in [61, 62]. The authors of [16] confirm that considering 

MIMO functionality for aerial platforms, such as Diversity, could enhance the channel capacity and channel 

performance. MIMO antenna is introduced in [34, 63] to contribute effectively to a heterogeneous and massive 

number of IoT devices leading to improved wireless connectivity via aerial platforms. In [64], the authors 

provide a comprehensive survey of channel characterization from aerial platforms perspectives and argue on 

open challenging issues such as considering NLoS alongside LoS in propagation models to include shadowing 

effects in channel calculations and MIMO diversity gain to enhance the reliability of communication.  [21] 

argues that energy efficiency can be maintained by using beamforming via MIMO techniques.  

Table 1 reports research gaps and current work on last mile connectivity that evolve from the research review. 

It then uses this to justify our own motivation for pursuing the research underpinning this paper.  

Table 1: Related review windup 

Areas 

Open Issues  

Approaches 

 
Being Addressed Unresolved / Suggestions 

Propagation 

Models 

• Wider outdoors channel modelling 

• Two ATG propagation types: LoS 

and NLoS  

• Shadowing effect partially considered 

• Full link budget considered across 

various environments  

ATG 

models 

• Few outdoor LAP empirical models 

• Mathematical models empirically 

drawn across various environments 

• Wireless network planning 

• Limited LAP altitudes 

• Additional empirical models to be 

considered 

Empirical 

models 

 

Coverage  

and 

LAP Altitude 

•  Optimum LAP altitude calculation 

using RSS, MAPL and ITU statistics 

on urban and atmospheric effects 

•  Enhancing RSS and coverage by 

increasing LAP altitude, 

transmission power, utilization, or 

deploying multi-tethered platform 

topology 

•  Helical directional or 

omnidirectional antennas for RF 

channel modelling to improve RSS 

and LAP coverage 

•  Trade-off between LAP altitude, RSS 

and interference in urban environments  

•  Rise in interference as number of LAPs 

rise in an area  

•  Updating of urban ITU statistics 

•  Interference management between 

multi-LAPs 

•  Limited LAP altitudes in empirical 

models 

•  Large size of directional or 

omnidirectional antennas, power 

consumption, and increased interference 

RSS 

Antenna 

Specifications 

•  Widespread calculation of LAP 

coverage footprint  

•  Achieving better connectivity at low 

elevation angles with directive 

antennas  

• Some elevation angles are unsuitable for 

all environments 

• Lack of consideration of elevation angle 

in empirical models due to low 

transmission altitude 

Elevation 

Angle 



• Trade-off between low elevation angles, 

path loss, coverage 

•  MIMO antennas for high elevation 

angles may yield better LoS 

connectivity, reduced path loss and 

extended coverage 

• Some consideration of smart/ 

MIMO antennas impact on 

improving link budget performance 

and minimizing interference 

• Smart switched beam antennas need to 

be considered, although difficult to 

mount on small LAPs 

• Advanced MIMO antennas may 

improve performance 

Smart 

Antenna 

Power 

Consumption 

•  Resource allocation that use gaming 

to minimize power consumption 

•  Dynamic techniques that calculate 

optimal LAP location, minimize path 

loss, improve RSS, reduce power 

consumption 

•  Trade-off between throughput and 

power consumption to guarantee 

fairness amongst users 

•  Optimisation of path loss to minimize 

transmitting power, and reduce power 

consumption 

Software 

•  Direction of antenna reduces power 

consumption 

•  Antennas that serve various 

frequency bands 

•  Hardware that may reduce power 

consumption such as batteries, thin 

solar panels, or propellers 

•  Antenna direction reduces RSS as 

altitude rises 

•  MIMO antenna gain diversity may 

enhance accuracy and reduce power 

consumption 

•  Some antennas are unsuitable for 

mounting on small LAPs 

Hardware 

Operation 

Frequency 

and 

Interference 

•  WiFi, WiMAX, and LTE are widely 

considered for LAPs in relation to 

application types, operational 

environment and duration and LAP 

onboard communication payloads 

and power supply  

•  Vulnerability to interference in 

unlicensed bands 

•  Limited coverage 

•  Increase in transmission power may 

increase coverage, but also increase 

power consumption and interference 

•  Lack of consideration of WiFi HaLow 

due to immaturity   

WiFi 

•  Large installation and operational costs 

•  Less coverage and data rates than LTE 
WiMAX 

•  Emergency or security applications may 

lead to network congestion and 

interference in comparison to WiMAX 

 

LTE 

 

3  PROPAGATION MODEL SELECTION AND ADAPTATION 

Fig. 3 shows 17 of the propagation models that we have reviewed in detail that are representative of their 

respective types along with their main parameters of maximum transmission distance, transmitter and receiver 

antenna heights and high range of frequency band [11, 14, 15, 65-69]. Propagation models that feature an 

antenna height ℎ𝑡  of less than 0.1km have not been selected, as the LAP altitude ranges between 0.2km and 

5km above ground. Some propagation models offer an advantage of high ℎ𝑡 but offer short range of coverage, 

e.g. ECC-33, low frequency band (Ibrahim-Parsons), limited environment types (e.g. EPM-73), or low perdition 

accuracy (e.g. ITU-RP.1546). 



 

Fig. 3: Landscape of 17 propagation models 

Four models that offer advantages of high LAP altitude, antenna high 𝒉𝒕, a wide coverage range ≥ 100km, 

terrain diversity have been selected: ITU-R P.529-3, Okumura, Hata-Davidson, and ATG. All four have the 

merit of including correction factors that yield high prediction accuracy. Other models also have the same 

advantages but either yield low perdition accuracy or are not suitable for all terrains [11, 14, 15, 65-69]. 

3.1 Calculation of Path Loss 

Calculation of path loss 𝑃𝐿 for ITU-R P.529-3: 

Case 1:  urban area 

PL = 69.55 + 26.16log (f) − 13.82 log (ht) − a(hr) + [44.9 − 6.55 log (ht)] × [log (d)]b                  (1) 

a(hr) = 1.11 log (f) − 0.7(hr) − [1.56 log (f) − 0.8]                                                                               (2)  

b = 1        for d ≤ 20,000 m 

b = 1 + (0.14 + 1.87 × 10−4 (f) + 1.07 ×   10−3 (ht
′)    (log ( 

d

20,000
))

0.8
  for 20,000 m <  d <

 100,000 m                                                                                (3) 

 ht
′ =

 ht

[1+(7×10−6)×( ht)2]
1
2

                                                                                                       (4) 

Case 2: suburban area  

PL = PL(urban) − 2[log (
f

28
)]2 − 5.4                                                                                          (5) 

 

Case 3: rural areas 

PL = PL(urban) − 4.78[log (f)]2 + 18.33log (f) − 40.49                                                                              (6)  

Calculation of path loss PLfor Okumura: 

PL = Lf + Amn (f, d) − G(ht) − G(hr) −  Garea                                                                                            (7) 

Lf = 32.44 + 20 log(f) + 20log(d)                                                                                             (8) 



G(ht)= 20 log (ht/200), 10m˂ ht˂1000m                                                                                (9) 

G(hr) =10 log (hr/3),  hr≤ 3m                                                                                              (10) 

G(hr) =20 log (hr/3), 10 >hr>3m                                                                                 (11) 

Calculation of path loss PL for Hata-Davidson: 

PL = PLHata + A (ht, d) − S1(d) − S2(ht, d) − S3(f) − S4(f, d)                                              (12) 

where:  

PLHata = 69.55 + 26.16log (f) − 13.82 log (ht) − a(hr) + [44.9 − 6.55 log (ht)]log (d)            (13) 

Case 1: for urban area 

a(hr) = (3.2[log (11.75 x hr)]2) − 4.9                                                                                             (14) 

Case 2: for sub-urban, or rural areas 

a(hr) = (1.1 log(f) − 0.7)(hr) − (1.56 log (f) − 0.8)                                                                                  (15) 

Calculation of path loss for ATG: 

PLT = ρLoS × PLLoS +  ρNLoS × PLNLoS                                                                                (16) 

The probability of having LoS connections at an elevation angle θ is given by: 

ρLoS = a − 
a−b

1+ [
θ−c

d
]e

                                                                                               (17) 

 ρNLoS = 1 − PLoS                                                                                                (18) 
 

The path loss for LoS and NLoS are: 

PLLoS (dB) = 20 log
4 π (f)(d)

c
+  ηLoS                                                                                             (19) 

PLNLoS (dB) = 20 log
4 π (f)(d)

c
+  ηNLoS                                                                                             (20) 

 

where PL: Path Loss (dB), f: Carrier Frequency (GHz), ht: Transmitter Antenna Height (m), hr: Receiver 

Antenna Height (m), d: Distance (m), a(hr):  Antenna Correction Factor,  ht
′
 correction factor for  LAP height 

ht, Lf: Free Space Path Loss (dB), Amn (f, d): Median Attenuation Relative to Free Space (dB), G(ht): 

Transmitter Antenna Height Gain Factor (dB), G(h𝑟): Receiver Antenna Height Gain Factor (dB), Garea: Gain 

due to Type of Environment (dB), PLHata: Path Loss of Hata Model (dB), a(hr): Correction Factor for mobile 

antenna height, A, S1: factors that extend distance to 300,000m, S2: correction factor for height ht of base station 

antenna extending the value of ht to 2500m, S3, S4 : correction factors that extend frequency to 1.5 GHz, a, b, 

c, d and e are ITU-R parameters for the three types of environments, θ: Elevation Angle in degrees depends on 

environment type, ηLoS, ηNLoS: average additional loss to free space depending on environment type. ηLoS  

ranges between 3 to 5dB, whereas ηNLoS ranges between 8 to 12dB. 

3.2 Calculation of Link Budget Parameters 

Prediction of RSS, coverage, SNIR, and optimum altitude are reported in [48, 71, 72]. RSS depends on 

transmitter power (Pt), path loss (PL), transmitter antenna gains (Gt), receiver antenna gains (Gr) as well as (L) 

connector and cable loss. RSS for cellular network is expressed in dBm as: 

RSS = Pt + Gt + Gr − PL − L                                                                                                        (21) 

The footprint from a LAP altitude can be derived from the path loss and RSS results. SNIR is RSS (dB) over N: 

Noise figure (dB) plus I: Interference (dB): 

SNIR (dB) =
RSS

N+I
                                                                                                              (22) 

There is no formula with which to calculate the exact throughput based on 𝑃𝐿 and SINR. However, a prediction 

can be made using Shannon's formula. Thus, predicted throughput (C) in bits per second (b/s) is predicted as: 

 C = B × log (1 + SNIR)                                                                                                       (23) 

where BW: bandwidth (MHz), SINR: linear power ratio not dB. 

When providing coverage of a large area, it becomes increasingly necessary to consider the earth’s curvature 

and radius. An adaptation that has been considered in our work takes into account the elevation angle to the 



LAP’s quasi-stationary condition, at various LAP altitudes. This adaptation yields improved LoS service 

connectivity, coverage range, and RSS and QoS service to receivers that would normally experience outage or 

low connectivity as a result of their distance, the earth’s curvature, or terrain morphology. Fig. 4 shows the 

trigonometric geometry for a LAP, whereby distance 𝐷 of the selected propagation models is computed. 

 

Fig. 4: Trigonometric geometry for a LAP 

 

Given a LAP’s altitude H, 𝐸𝑟 is the Earth’s radius at 6378 km, and 𝜃 is the elevation angle from a user’s location 

using ITU’s environmental factors for urban, suburban, or rural terrains: 

cos 𝜃 =
𝐸𝑟

𝐸𝑟+𝐻
                                                                                                                                               (24) 

 𝜃 = cos−1 𝐸𝑟

𝐸𝑟+𝐻
                                                                                                                                          (25) 

𝐷 = 𝜃. 𝐸𝑟                                                                                                                                                    (26)    

               𝐷 = 2 𝐸𝑟[cos−1 (
𝐸𝑟

𝐸𝑟+𝐻
∗ cos(𝜃)) − 𝜃]                                                                                                         (27) 

The literature offers various considerations and assumptions with regards to selecting an appropriate elevation 

angle that suits an environment. The assumptions drawn from literature is to set the elevation angles of 15°, 10°, 

5° as thresholds in urban, suburban, and rural environments respectively, where the LAP is in a quasi-stationary 

position.  

3.3 Adapted model implementation 

Each of the four selected models estimates values for path loss, RSS, SINR, throughput, and coverage or 

footprint which correlate respectively to the five output performance factors, i.e. path loss, power consumption, 

interference, capacity and coverage. Path loss is the reception performance indicator. RSS is the power strength 

indicator and is used to estimate the coverage range when the signal weakens as the receiver moves away from 

the transmitter. RSS depends on path loss, transmitter and receiver height and gain and environment factors. 

The SINR is the interference performance indicator and is used to measure the quality of a wireless link and bit 

error ratio. Throughput is the capacity performance indicator, and decreases with path loss, distance, and 

shadowing [7, 71, 72]. The four propagation models are simulated under the same conditions using MATLAB. 

Whilst the transmitter antenna height ℎ𝑡 will vary, the receiver antenna height ℎ𝑟 is set at 5m, as this has been 

widely adapted in the reviewed literature as well as in the data provided by Airspan WiMAX. Table 2 shows the 

simulation parameters that relate to MIMO antenna specifications as used by Airspan’s 3.5GHz WiMAX [69, 

73].  

 



Equations (1) through to (27) are simulated in MATLAB under the same conditions using the link budget 

specification of Table 2. The simulation has considered two types of receivers based on antenna gains for Base 

station (BS), and Handset (HS). Simulated predictions are shown first as line graphs on Fig. 5 through to Fig. 

16. The altitude chosen (0.2, 1, 2.5, 5) km above the ground are representative altitudes across the full range for 

transmitter antenna altitude ℎ𝑡. Coverage footprint in all four models is based on an elevation angle from a 

user’s location which is a significant departure from current empirical models. 

Table 2: WiMAX MIMO antennas 

Parameters Value 

Frequency band [GHz] 3.5 

Bandwidth [MHz] 10 

Modulation type QPSK 

Noise figure [dBm] 6 

Transmitter side 

Transmitter Power [dBm] 40 

Transmitter Antenna Gain [dBi] 17 

Diversity gain [dBi] 6 

Transmitter Rx Sensitivity [dBm] -88.9 

Interference margin loss [dB] 3 

Connector loss [dB] 0.3 

Receiver side 

Receiver Power [dBm] 27 

Receiver Antenna Gain [dBi] (stations) 15 

Receiver Antenna Gain [dBi] (handset) 2 

Diversity gain [dBi] 3 

Receiver Rx Sensitivity [dBm] -90.9 

Interference margin loss [dB] 3 

Connector loss [dB] 0.1 

Body loss [dB] 0 

 

 

Fig. 5: Prediction plots of ITU-R P.529-3 model, at 0.2km LAP altitude, in an Urban environment – BS and HS 

receivers 



 

Fig. 6: Prediction plots of Okumura model, at 1km LAP altitude, in an Urban environment – BS and HS 

receivers 

 

Fig. 7: Prediction plots of Hata-Davidson model, at 2.5km LAP altitude, in an Urban environment – BS and 

HS receivers 



 

Fig. 8: Prediction plots of ATG model, at 5km LAP altitude, in an Urban environment – BS and HS receivers 

 

Fig. 9: Prediction plots of ITU-R P.529-3 model, at 0.2km LAP altitude, in a Suburban environment – BS 

and HS receivers 



 

Fig. 10: Prediction plots of Okumura model, at 1km LAP altitude, in a Suburban environment – BS and HS 

receivers 

 

Fig. 11: Prediction plots of Hata-Davidson model, at 2.5km LAP altitude, in a Suburban environment – BS 

and HS receivers 



 

Fig. 12: Prediction plots of ATG model, at 5km LAP altitude, in a Suburban environment – BS and HS 

receivers 

 

Fig. 13: Prediction plots of ITU-R P.529-3 model, at 0.2km LAP altitude, in a Rural environment – BS and 

HS receivers 



 

Fig. 14: Prediction plots of Okumura model, at 1km LAP altitude, in a Rural environment – BS and HS 

receivers 

 

Fig. 15: Prediction plots of Hata-Davidson model, at 2.5km LAP altitude, in a Rural environment – BS and 

HS receivers 



 

Fig. 16: Prediction plots of ATG model, at 5km LAP altitude, in a Rural environment – BS and HS receivers 

 

4  EVOLUTION OF AN OPTIMAL PROPAGATION MODEL 

The machine learning technique deployed for evolution of an optimal propagation model is Neural Nets’ (NNs) 

Self-Organizing Map (SOM) alongside its NNs Feedback Forward fitting tool, as Fig.17 below illustrates.  

 
         Fig.17: Machine Learning Optimization Framework using Neural Nets 

 



The first step in optimization deploys a minimax technique at several LAP altitudes across urban, suburban, and 

rural environments to optimize the PL, RSS, SINR, Throughput, and Radius. The second step in optimization 

deploys the Levenberg-Marquardt backpropagation algorithm using the NNs Feedback Forward fitting tool to 

evaluate the performance of the optimized set of parameters with the four simulated models. 

The application of NNs commences with its training with sample input data that produces a 2D discrete 

representation of the input space, the map, through the SOM’s pattern recognition and clustering and thereby 

enabling it to predict optimal output values based on three basic components of a neuron: synaptic weights, 

summing function, and activation function. Usually, the SOM has a 2D lattice of neurons and each neuron is 

considered as a cluster [74-77]. The SOM algorithm runs over two phases: Learning and Adaptive. 

4.1 Learning Phase 

The learning phase commences with initializing, as per equation 28, each neuron’s weight, 𝑤𝑖, with a random 

value between 0 and 1, the learning rate 𝜂(𝑛), to 1, and the maximum number of iterations, 𝑛 𝑚𝑎𝑥, to 1000. 

𝜂(𝑛) is a training parameter that controls the size of the weight vector in learning of SOM. 

𝑤1 = [𝑤𝑗1 … … 𝑤𝑗𝑚]T                                                                                                                                       (28) 

𝜂(𝑛) = 1,      𝑛 𝑚𝑎𝑥 = 1000 

We adopt an unsupervised NN approach which is typical of Kohonen’s NN-SOM, for which no labelled training 

data is required during the learning process. Instead it learns from input data [76]. Following initialization, a 

stimulus, i.e. a random representative input sample from the data set, 𝐱, is presented to the network for training, 

as per equation 29. 

𝑥 = [𝑥1 … … 𝑥𝑚]T                                                                                                                                              (29)  

All inputs (𝐱) used for training the network are sourced from a training data set. PL varies from the lowest value 

to the MAPL threshold of -146.5dB and -133.5dB for BS and HS respectively.  RSS varies from the lowest 

value to WiMAX threshold of -91dBm, SINR ranges between 4dBi and 19dBi, Throughput ranges between 1 

and 10, and Radius ranges between 1 and 100km.  The learning phase then proceeds with the definition of the 

topological map, Ӎ𝐴, using a lattice of neurons, 𝐴, as per equation 30. 

Ӎ𝐴 = {
𝛹𝐴→𝑋 ∶ 𝑋 → 𝐴;       𝑥 ∈ 𝑋 → 𝑠(𝑥) ∈ 𝐴
𝛹𝑋→𝐴 ∶ 𝐴 → 𝑋;       𝑖 ∈ 𝐴 → 𝑤𝑖 ∈ 𝑋𝑖

                                                                                                 (30)                                                                                

The map, Ӎ𝐴 = 𝛹𝐴→𝑋, 𝛹𝑋→𝐴, defines concurrently two mappings, from an input vector 𝑥 ∈ 𝑋 to a neuron i ∈

𝐴, and an inverse mapping from neuron 𝑖 ∈ 𝐴 to a weight vector 𝑤𝑖 ∈ 𝑋. Finally, with each input pattern all 

neurons attempt to compute the Best Matching Unit (BMU) by calculating the Euclidean distance between the 

input vector and the weights of each neuron. The shortest distance between a matching winning neuron and the 

input data x is declared as the BMU as per equation 31, where m denotes the dimension of the input pattern, 𝑑𝑗,𝑖 

denotes the distance between two neurons i and j and ℎ𝑗,𝑖 denotes a function of topological neighbourhood to 

measure how close the neurons i and j  are. 

𝑑𝑤,𝑥 = √∑ (𝑥𝑚 − 𝑤𝑗𝑚)
2𝑛

𝑚=1                                                                                                                           (31)  

4.2 Adaptive Phase 

The adaptive phase involves updating of synaptic weight vectors of winning neuron and neighbours as per 

equations 32 and 33, where σ is the effective width of the neighborhood which decreases with each iteration, 

𝜎0 is the initial value of σ, and 𝝉 is the time constant defining the slope of the graph. The winner neuron updates 

itself and its neighbour neurons with the patterns of the input dataset using synaptic weight adjustments as per 

equation 34, where 𝑤𝑗(𝑛) stops the weight from going to infinity. Topological ordering of clusters to detect 

rapidly both different and similar clusters gets underway and over the course of this phase, the algorithm 

converges to the most suitable clusters. The neighbourhood function is a Gaussian.  

In equation 35 each minimax parameter is optimized through its updated synaptic weight 𝑤𝑗(𝑛 + 1), whereby 

it attempts to optimize the values of the vector; minimizing PL, maintaining SINR, and maximizing RSS, 

Throughput, and Radius. Throughput which refers to the average rate of data that be transmitted successfully 



over a set period of time through a communication channel, is one of performance indicators that decreases with 

path loss, distance, and shadowing.  𝑀𝑗 refers to each of the four propagation models and 𝑀𝑜𝑝𝑡 refers to 

optimized model at each altitude at a specific environment. After each cycle, the parameters are recomputed, 

and new vectors are put on the converged map. Min <> Max denotes the lower and upper bound values 

respectively of a floating parameter. An example of this is maintaining SINR between 4dBi and 20dBi. The 

process is repeated through equations 28-35 up to the maximum number of iterations (𝑛), or no significant 

change in the map has occurred. 

ℎ𝑗,𝑖 = 𝑒𝑥𝑝(
−𝑑𝑗,𝑖

2

2𝜎2 )                                                                                                                                               (32) 

𝜎(𝑛) = 𝜎0𝑒𝑥𝑝(
−𝑛

𝜏
)
  ,      𝜎0 =  5                                                                                                                       (33) 

𝑤𝑗(𝑛 + 1) = 𝑤𝑗(𝑛) + 𝜂(𝑛) ℎ𝑗,𝑖(𝑥)(𝑛)(𝑥 − 𝑤𝑗(𝑛))                                                                                        (34) 

𝑀𝑜𝑝𝑡 = [𝑤𝑗(𝑛 + 1) ∗ Mjmin (PL), 𝑤𝑗(𝑛 + 1) ∗ Mjmax (RSS),  𝑤𝑗(𝑛 + 1) ∗ Mjmin< >max (SINR), 𝑤𝑗(𝑛 + 1) ∗ Mjmax (Throughput),   𝑤𝑗(𝑛 + 1) ∗ Mjmax (Radius)] (35) 

The NN fitting tool in MATLAB supports data selection, network creation and training, and network 

performance evaluation using Mean Square Error (MSE) and regression analysis. The NN design of a two-layer 

feedforward network consists of one hidden layer using a tan-sigmoid transfer function, and a linear neuron 

output layer. This enables the network to learn of nonlinear and linear relations between input and output 

vectors. The linear transfer function, however, to the tan-sigmoid function, allows the network to produce values 

outside the -1 to + 1 range. NN suits multi-dimensional plotting problems well, given reliable data and adequate 

neurons in its hidden layer. Adjusting weights and biases during training of a network are considered to 

minimize a network performance function that uses the MSE, the correlation and average squared error between 

the network outputs and target outputs. Another design decision is the choice of the training function. The 

Levenberg-Marquardt algorithm uses the Hessian matrix approximation of Newton's method, which is regarded 

as faster and more accurate near an error minimum. Thus, the scalar 𝝁 decreases after each drop-in performance 

function, which means the performance function is continuously reduced at each iteration of the algorithm [75, 

78-79].  

The Hessian matrix can be approximated as: 

𝐻 = 𝐽𝑇𝐽                                                                                                                                                              (36) 

The gradient is calculated as: 

𝑔 = 𝐽𝑇𝑒                                                                                                                                                               (37) 

The Hessian matrix approximation of Newton's method is as:  

𝑥𝑘 + 1 = 𝑥𝑘 − [𝐽𝑇𝐽 + 𝜇𝐽] − 1𝐽𝑇𝑒                                                                                                                   (38) 

where 𝐽 is a Jacobian matrix which consists of first values of the network errors in consideration of the assigned 

weights and biases and 𝑒 is a vector of network errors. The Jacobian matrix can be computed via a 

backpropagation technique that is less complex than the Hessian matrix. The available input vectors and target 

vectors will be randomly divided into three sets: Training makes offerings to the network while training, and 

the network is tuned in response to its error, hence, calculating the gradient and updating the weights and biases, 

Validation which measures network generalization and stops training when generalization halts improving and 

Testing which delivers an autonomous measure of performance during and after training, thus with no effect on 

training.  

Equations (28) through to (35) are simulated in MATLAB under the same conditions. PL is kept as low as 

possible to achieve a certain level of reception with the smallest attenuated signal not exceeding the MAPL, i.e. 

between -146.5dB and -133.5dB for BS and HS respectively. SINR is maintained between 4dBi and 19dBi. 

RSS is kept as high as possible to achieve a wider wireless connectivity, and to avoid service degradation and/or 

interruption. A threshold for RSS and SINR for both BS and HS antennas depends on modulation methods and 

receiver sensitivity as in the WiMAX link budget specification of Table 2. The maximum RSS value is kept 

between -85dBm and -91dBm [69, 80]. Throughput and coverage radius are kept as high as possible for higher 

data rates and wider connectivity. Fig. 18 through to Fig. 23 show an optimal set of parameters obtained across 



three terrains (U, S, R) for both BS and HS antennas. The X and Y axes on Fig. 18 through to Fig. 23 represent 

respectively the number of rows and columns of the SOM. 

 

Fig. 18: Parameter optimization in an Urban Terrain – BS 

 

 

Fig. 19: Parameter optimization in an Urban Terrain – HS 



 

Fig. 20: Parameter optimization in a Suburban Terrain – BS 

 

Fig. 21: Parameter optimization in a Suburban Terrain – HS 

 

Fig. 22: Parameter optimization in a Rural Terrain – BS 



 

 

Fig. 23: Parameter optimization in a Rural Terrain – HS 

After several cycles, the percentage of Training, Validation, and Testing is set at 70, 15, and 15, respectively, 

with the optimum number of hidden layers that yields best performance and regression being 10. The aim is not 

to define an optimum number of neurons, but to see if this kind of network can represent a solution. Assigning 

different number of neurons to the hidden layer obtains an approximation of how this impacts network 

performance. Small networks are trained easier, generalized better, and fewer training pairs are needed. The 

input vector, [96x5], is sourced from Fig. 5 through to Fig. 16. The target vector, [24x5], is sourced from Fig. 

18 through to Fig. 23. A training simulation was carried out in MATLAB and results are shown on Fig. 24 

through to Fig. 26. 

Fig. 24 depicts how the error function minimizes during training. Batch training is carried out and completed 

when all training sets are input through the learning algorithm in one epoch, i.e. the maximum number of 

iterations, before weights get updated. The process determines the optimal number of iterations during which 

validation produces a minimal value. Validation uses regression plotting to determine that value. The 

performance is changed after each iteration of the training algorithm. This training set and validation set 

decreases continuously to the point where overfitting happens. The network is trained for 18 epochs (iterations). 

After the 12th epoch the validation performance starts to increase to satisfy the condition of exhibiting an 

acceptable performance. After seven validation checks the network stops its training and returns to the state 

where the minimum validation performance is observed as indicated by the green circle. The result is fitting 

because, firstly, the final MSE is small, secondly, the test and validation set errors have similar characteristics, 

thirdly, no significant overfitting occurs before iteration 12 after which best validation performance occurs. 



 

Fig. 24: Training performance 

The next step in validating is to create a regression plot of outputs in relation to the targets. Fig. 25 plots targets 

against training, validation, and test sets, where Y and T stand respectively for output and target. Perfect fit 

means the data should fall along a 45-degree line, where the network outputs are equal to the targets. The dashed 

lines represent the targets which are equal to the difference between the perfect results and the outputs. The 

solid line indicates the best fit linear regression line between targets and outputs. The R value is a correlation 

coefficient and indicates the relationship between the outputs and targets. If R = 1, then there is an exact linear 

relationship between the two vectors. If R is close to zero, then there is no such linear relationship. For this NN, 

the fit is good for most of the data sets, with R values in each case at 0.99 and above. Overall, the R values are 

satisfactory and represent the best levels of fitness. 

 

Fig. 25: Regression plots 

The error histogram gives an additional verification of network performance, as Fig. 26 shows. The blue, green 

and red bars indicate training data, validation data and testing data, respectively. The largest part of data fall on 

the zero-error line, which requires further examination of the outliers to decide if the data is correct, or if those 

data points are disparate than the rest of the data set. If it is the former, then the network is generalizing these 



points, which is exactly the case with ours. It can be observed that the dataset distribution nears zero with only 

a few exceptions for the log sigmoid and tan sigmoid activation function. Therefore, as the figure shows the 

data fitting errors are distributed within a reasonably good range around zero. 

 
Fig. 26: Error Histogram plot for Training data 

Overall, R values are fitting and represent best fitness levels. Therefore, the NN optimized models deliver 

reasonable prediction results. Overfitting might happen during the training of the NN, which is undesirable, thus 

the MSE on the training set is already at a small value, so that is a reasonable indicator. 

 

5  COMPARATIVE EVALUATION  

This section compares the prediction results generated by both the optimised and the non-optimised propagation 

models via MATLAB software. This method has provided further opportunities for data interpretation and 

validation of the optimised propagation model. Numerical prediction results of the both optimized and non-

optimized models are shown on Fig. 27 through to Fig. 32. M1, M2, M3, and M4 denote ITU-R P.529-3, 

Okumura, Hata-Davidson, and ATG models respectively.  

Optimised PL values float between -94.68dB and -136.28dB across all three environments with an improvement 

average between 4% to 15% in comparison to those of the four models. The optimised PL is also below the 

MAPL for BS and HS antennas across all environments. The optimised RSS achieves better predictions in 

comparison to ITU-R P.529-3, Hata-Davidson, and ATG models by an average of 3% through to 27%. 

However, the Okumura model tops for the highest RSS value. The RSS for the HS antenna is less than the value 

of BS because of the antenna gain values. Unsurprisingly, increasing transmitter altitude or transmission power, 

increases both the coverage area and RSS. Keeping transmission power constant at different transmitter altitudes 

yields varying levels of RSS. Optimised SINR is kept within the acceptable average of 5.17dB and 10.91dB, 

with values below 4dB deemed unacceptable and considered inadequate, while any values above 19dBi are 

regarded as wasted transmitter power. SINR values in BS are higher than those in HS across all environments 

and altitudes due to achieved RSS results. Optimised throughput yields an improved predicted result between 

2% and 10% in comparison to the four models. Throughput decreases with LAP altitudes in all terrains, and due 

to increases in path loss and distance, and shadowing. 

The optimised radius predicts a wider wireless connectivity across the three environments with an average range 

between 2km and 6km. The modification that has been considered in the empirical models in calculating the 

coverage radius distance, i.e. the adaptation of an elevation angle, instead of the traditional approach of coverage 

calculation seems more suitable to LAP quasi-stationary condition. Overall, the optimised predictions show that 

PL is kept as low as possible to achieve a certain level of reception with the smallest attenuated signal. Radius, 

throughput and RSS are kept as high as possible to achieve a wider and stronger connectivity. The radius 

increases with transmitter altitude, as well as with changing from an urban to a rural environment, due to a 



decrease in the elevation angle. In addition, the limited effect of shadowing and reflection leads to an increase 

in distance. 

Overall, the non-optimised predictions show that PL, RSS, and SINR values increase across all models and 

environments as the transmitter altitude increases, due to the increase in coverage. Throughput decreases as the 

transmitter altitude increases. It is observed that all the considered link budget parameters are different between 

HS and BS due to the differences in antenna gain. The receiver antenna height is set at 1m for HS and 5m for 

BS which yields an advantage for the Okumura model in achieving better coverage since a receiver antenna 

height of over 3m yields the same result. However, as the other adapted models accommodate receiver antenna 

heights of up to 30m, every increase in receiver antenna height impacts their coverage range. The adaptation of 

an elevation angle in calculating the coverage instead of the traditional coverage calculation, and the inclusion 

of MIMO diversity gain techniques to improve reliability in all four adapted models yield improved predictions. 

The improvement is evidenced in the low PL and extended coverage range. Thus, the combined antenna and 

diversity gains are of importance to enhance RSS as low elevation angles leads to increase in the distance 

between platform and terrestrial users. 

 

Fig. 27: Optimised parameters in comparison to predictions with the four adapted models in an urban environment – BS 

 

Fig.28: Optimised parameters in comparison to predictions with the four adapted models in an urban environment – HS 



 

Fig. 29: Optimised parameters in comparison to predictions with the four adapted models in a suburban environment – 

BS 

 

Fig.30: Optimised parameters in comparison to predictions with the four adapted models in a suburban environment – HS 

 

Fig. 31: Optimised parameters in comparison to predictions with the four adapted models in a rural environment – BS 



 

Fig. 32: Optimised parameters in comparison to predictions with the four adapted models in a rural environment – HS 

5.1 Comparative evaluation to the four selected models following their optimisation with the Framework 

In this section, we compare the performance of our optimized model to that of the four selected propagation 

models following their optimisation with our machine learning optimization framework in the context of a 

WSN in which the Eb/No and BER of an AWGN channel are assessed. Table 3 shows a matrix of the four 

adapted propagation models with five link budget predictions at an LAP altitude of 0.2km above ground in an 

urban environment and table 4 shows a matrix of our optimised propagation model with the same link budget 

parameters at the same altitude and in the same environment. 

Table 3: The four selected propagation models after optimization with our framework 

 

Optimized Model 
Parameters 

-PL (dB) -RSS (dBm) SINR (dB) Throughput (Mb/S) Radius (km) 

ITU-R P.529-3 120.43 50.79 6.27 2.89 2.8 

Okumura 109.67 37.88 4.94 4.7 2.5 

Hata-Davidson 131.09 61.64 7.89 2.11 2.3 

ATG 108.02 39.15 5.1 3.9 3.7 
 

Table 4: Our optimised model 

 

Model 

Parameters 

-PL (dB) -RSS (dBm) SINR (dB) Throughput (Mb/S) Radius (km) 

NN model   108.11 35.42 5.17 4.78 4 

 

Fig. 33 pitches the four optimised models against our optimised model, and Fig. 34 compares the five models 

in the context of a WSN in which the Eb/No and BER of an AWGN channel are assessed at an LAP altitude of 

0.2km above ground in an urban environment. It can be observed that the optimised versions of the four models 

yield better results in comparison to the non-optimized versions, but our optimised model outperforms all four.   



 

Fig. 33: A parametric comparison between our optimised model and the four optimized models 

 

Fig. 34: A BER comparison between our optimised model and the four optimized models for Urban BS at 0.2km  

 

6  OPTIMIZED MODEL DEPLOYMENT 

A planned deployment in a Wireless Sensor Network (WSN) reveals the usefulness of developing an optimized 

propagation model for wireless telecommunications that serve cutting-edge applications during disaster relief, 

security, surveillance, traffic control, and Internet of Things (IoT) [41, 80-83]. Such an ad hoc network may 

contain several remote sensors that collect ground segment data as Fig. 35 illustrates. The link quality between 

a LAP sink and ground sensors depends on factors such as elevation angle between the LAP and the sensors, 

operation frequency, transmission power, transmit and receive antenna gains, RSS, atmospheric conditions, bit 

rate and link distance.  



 

Fig. 35: LAP sink-WSNs architecture 

The NN-optimized model resolves several WSN issues: channel impairments because of high path losses and 

fading, battery lifetime, propagation path loss. Therefore, an initial consideration of an optimized propagation 

model promises not only to extend the coverage range and reduce fading, but also to optimize power 

consumption without using sensor power enhancements or external power sources because of the low 

propagation path loss and high RSS. The performance of wireless ad hoc networks may be analysed by 

considering their two main QoS indicators: the energy per bit to noise power spectral density ratio (Eb/No) 

and the bit error rate (BER) which highlights the performance of different digital modulation schemes. These 

indicators are considered in the link budget to set QoS guarantees for the applications they serve. Setting the 

Equivalent Isotopically Radiated Power (EIRP) parameter values and path loss PL from the initial four 

propagation models and the optimized model [41, 80, 81], the Eb/No can be expressed (in dBm) as:  

Eb

N0 
=

C

N 
+ 10 log BW − 10 log Rb                                                                                                                  (39) 

C

N 
= EIRP − PL − 𝐴𝑅 + (

G

T 
) − 10 log

𝐾 𝐵𝑤

0.001
                                                                                                   (40) 

EIRP =  Pt + Gt + Gr − L                                                                                                                             (41)                                    

G

T 
=  Gr − 10 log 𝑇                                                                                                                                        (42) 

where C/N is carrier power measured in dB, BW is bandwidth measured in Hz, Rb is the data rate of WiMAX 

for specific QPSK modulation and bandwidth value set at 6.048 Mb/s, EIRP is measured in dBm, transmitter 

power (Pt), transmitter antenna gains (Gt), receiver antenna gains (Gr) as well as (L) connector and cable loss, 

𝐴𝑅 is rain attenuation and atmospheric gas attenuation which are negligible, K is Boltzmann’s 

constant (1.38065 × 10−23), 0.001 represents a normalization, G/T the ratio of the receive antenna gain to 

system noise temperature measured in dB0, T is an effective temperature in this model (310K). The link 

performance indicator for signal quality is BER/Probability of Error which in turn is directly related to Eb/No. 

Thus, we calculate the BER as a function of Eb/No for a QPSK modulation in an AWGN channel as:  

BER =  
1

2
𝑒𝑟𝑓𝑐 √

Eb

N0 
                                                                                                                                        (43) 

where erfc is a complementary error function that describes the cumulative probability curve of Gaussian 

distribution. 

  



Simulations of the optimised and non-optimised propagation models have been mathematically modelled in 

MATLAB across different environments and LAP altitudes. Figures 36 to 41 show the predicted Eb/No results 

for both BS and HS for the four non-optimised and optimised propagation models at a 0.2km altitude across 

urban, suburban, and rural environments using the “semilogy” function in MATLAB. The simulation results 

on Table 5 show the Eb/No performance of all models at various LAP altitudes, receiver gains and across 

different environments at the lowest BER achieved of  1𝑥10−6. 

 

 

Fig. 36: BER of a signal as a function of Eb/No for Urban BS at 0.2km 

 

Fig. 37: BER of a signal as a function of Eb/No for Urban HS at 0.2km 

 



 

Fig. 38: BER of a signal as a function of Eb/No for Suburban BS at 0.2km 

 

 

Fig. 39: BER of a signal as a function of Eb/No for Suburban HS at 0.2km 

 

 

Fig. 40: BER of a signal as a function of Eb/No for Rural BS at 0.2km 

 



 

Fig. 41: BER of a signal as a function of Eb/No for Rural HS at 0.2km 

Table 5: BER as a function of Eb/No @ 0.2km altitude 

Model 
M1 M2 M3 M4 MOP 

Parameter 

0.2km LAP Altitude - Large gain sensors (Urban) 

Eb/No (dB) 17.90 13.87 21.31 14.24 11.89 

0.2km LAP Altitude - Small gain sensors (Urban) 

Eb/No (dB) 17.90 13.87 19.21 14.24 12.16 

0.2km LAP Altitude - Large gain sensors (Suburban) 

Eb/No (dB) 15.23 9.07 21.02 15.04 7.86 

0.2km  LAP Altitude - Small gain sensors (Suburban) 

Eb/No (dB) 15.23 9.07 18.85 15.04 8.23 

0.2km LAP Altitude - Large gain sensors (Rural) 

Eb/No (dB) 10.80 12.51 22.72 16.25 10.45 

0.2km LAP Altitude - Small gain sensors (Rural) 

Eb/No (dB) 10.80 12.51 19.44 16.25 10.67 

M1: ITU-R P.529-3 model,    M2: Okumura model,    M3: Hata-

Davidson model,   M4: ATG model,     MOP: Optimised model 

 

The best link performance is the one that allows for the lowest possible BER with the lowest possible Eb/No. 

That prescribes a robust channel, where a low error rate is achieved without requiring a high transmission 

power. Figures 34 to 39 show that at the lowest BER 1𝑥10−6, the optimised model, drawn in green, exhibits 

the lowest Eb/No with range floats between 0.5dB and 15dB which helps optimise performance. It is observed 

that as PL decreases, both BER and Eb/No decrease and system performance improves. Both the Okumura 

and ATG models exhibit the second best Eb/No performance after the optimised model due to their low PL 

across all environments and altitudes. Varying LAP altitudes with an increase in distance across different 

geomorphologies also affects BER and Eb/No. Unsurprisingly, small gain sensors perform better than larger 

ones because of antenna gains, but their transmission is suitable for shorter distances. The overall results of 

these two QoS indicators reveal reasonable improvements. This may lead to a reduction in the required 

transmission power from sensors and an improved link performance between LAP and ground sensors, thus, 

increasing network lifetime and performance. 

 



7 CONCLUDING DISCUSSION AND FUTURE WORK 

Propagation models are invaluable in the prediction of signal propagation loss between a transmitter and its 

receivers in locations where a wireless communication systems network has or is being deployed. Research 

work on near space platforms that considers empirical propagation models is sparse apart from that. This has 

motivated, on one hand, our selection of the empirical models considered in this paper and their suitability for 

last mile LAP connectivity, on the other hand. Consequently, each model has been customized to a close 

approximation of a LAP quasi-stationary condition at a specific realistic altitude. This included the elevation 

angle in calculating the coverage radius distance instead of the traditional approach of coverage calculation. The 

prediction results suggest that such a customization suits a LAP quasi-stationary condition. The simulation 

results predict significant improvements across the three environments at various altitudes. Finally, a WSN 

simulation study validates the optimized model performance in comparison to the other models as it yields the 

lowest Eb/No and lowest BER. This may lead to reduction in power consumption and improvements in link 

performance between LAP and ground sensors, thus, increasing the lifetime and performance of the network. 

Generating predictions in any location using a model that integrates Google Maps is gaining momentum. 

7.1 Complexity Analysis 

We use complexity theory to analyse, and Big-O notation to map, the complexity of our proposed ML 

framework’s two main phases as can be seen on the optimisation flowchart on Fig. 42: Phase 1 that uses NN-

SOMs, and Phase 2 that uses NNs Feedback Forward fitting tool to estimate the runtime behaviour in each 

phase. Our complexity approach focuses on the relationship between the number of basic operations with 

respect to the size of input, i.e. the number of iterations, and the number of LAP altitudes. The complexity 

functions are expressed as follows: 

𝑂𝑃ℎ1
(𝑛) = 𝑛2 + 𝐶𝑃ℎ1

                                                                                                                                     (44) 

𝑂𝑃ℎ1
(𝑛) = 𝑛 × 2 + 𝐶𝑃ℎ2

                                                                                                                                (45) 

where 𝑂𝑝ℎ(𝑛) denotes the complexity level, n is the number of operations, 𝐶𝑃ℎ1
= 0.70, and 𝐶𝑃ℎ2

= 0.55. 

Fig. 43 demonstrates the level of complexity for the two phases and the overall complexity using the Big-O 

notation, which is an expression of how the execution time of a program scales with the input data. Clearly, 

the complexity figure shows that the number of iterations grows exponentially in relation to the number of 

LAP altitudes, as at each altitude height the number of parameters considered and used as inputs to NN 

especially during phase 1 increases in relation to the number of iterations until the input converges. Phase 1 

yields a higher level of complexity in comparison to phase 2, partly due to the number of parameters at each 

LAP altitude in consideration during this phase, and partly due to the higher number of iterations. The overall 

complexity, therefore, increases in relation to the number of LAPs altitudes. Overall this suggests a medium 

level of complexity. 



 

Fig. 42: Optimisation Flowchart  

 

Fig. 43: Complexity Analysis 
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