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Abstract- This paper develops a machine leaning framework that evolves an optimal propagation model
for the last mile with Low Altitude Platforms from existing propagation models. Existing propagation
models reviewed exhibit both advantages and shortcomings in relatido a set of factors that affect
performance across different terrains, i.e. path loss, elevation angle, altitude, coverage, power
consumption, operational frequency, interference, and antenna type. A comparison of the predictions
between the optimized andthe existing models in relation to above set of factors reveals significant
improvements are achieved with the optimal model
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1 INTRODUCTION

Interest inheliumtfilled solarpowered airship platforms that operate at altitudes up to 20km above ground is on
the increase. High Altitude Platforms (HAPs) have many merits, including a capability of providing regional
footprint and a long endurance but their dgpient is an expensive option when considering the delivery of
wireless communications in remote areas. Therefore, in the case etesiolirgescale events or during and
immediately after natural disasters, Low Altitude Platforms (LAPSs) are prefemrguidieiding dynamic and
scalable networks as they can cover quickly a wide area with a radius running into tens of kilometres, depending
on configuration and communicatipayloads [12]. Fig.1 gives an overview of the deployment of a LAP as an
aerial BaseStation (BS) to serve the last mile. It also shows a propagation model configuration with two path
loss components, i.e., Free Space Path Loss (FSPL), and an additive path loss due to shadowing effects.

= Free Space Path Loss (FSPL)
sne Additive Path Loss
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Fig.1: Deploying a LAP as an aerial BS to sdast mile connectivity
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Last mile connectivityefers tothe maximum distancat whicha propagation modehay reachusers on the

ground. This isnay be #ected by for instancethe terrainmorphology buildings, trees, interference, fading

and atmosphericonditions Our research review on propagation models reveals several factors that are
significant when considering last mile connectivity via LAPs: antenna type, elevation angle, LAP altitude, path
loss, coverage area, power consumption, operation frequency and interference. The first three are input factors
and the remaining five are output factors. These factors can help with monitoring system performance, network
planning, coverage footprint, reces e r sobsight,iquelkty of service requirements, and data rates which

may all vary across different terrain geomorphologies. Several competing propagation models have been
developed over the years but whilst they collectively offer many advantaggation to thdactors,they also

exhibit shortcomings across different environments. Therefore, there is no individual or generic propagation
model that suits every environment and exhibits optimal performance in relation to all these factors. In our
study, four propagation models have been selected that are representatives of their types and exhibit better
performance across different terrains in relation to other models.

This paper aims to design a new propagation model fom#stconnectivity withLAPs technologyas an
alternative to an aerial base station that exhibits optimal performance in relation to the above set of factors
above and none of the shortcomings of existing models. The new propagation model is evolved from the four
propagation moels using a machine learning framework of Neural Networks. The four models are first
adapted to include the elevation angle alongside the muiltiplé multipleoutput antenna diversity gain and
deployed at various altitudes. The adaptation enhancepér@rmance.

The rest of this paper is organized as follows: se@ioeviews related work in relation to the set of factors
that affect LAP performance, sectiéhdiscusses the selected propagation models, their adaptation and
implementation, sectiod discusses the machine learning framework for evolving an optimal propagation
model and its implementation, sectnompares the predictions of the optimised against the adapted models,
section6 follows suit in a wireless sensor network and sectioorcludes.

2 RELATED RESEARCH REV IEW

This section reviews those issues that reportedly affect the performance of a LAP as an alternative to a BS, i.e.
path loss, elevation angle, LAP altitude, coverage area, power consumption, operation fréuediecgnce,
and antenna type (gain, height, transmission power, and loss).

2.1 Path Loss

Propagation models predict signal attenuation or path loss as a measure of the power density of an
electromagnetic wave as it propagates through space from a trans@aitarlating path loss is useful for
monitoring system performance, network planning and coverage to achieve perfect reception. Many factors may
affect a signal when propagating to a maximum distance such as terrain, frequency, transmitter and receiver
artenna heights3. With aerial platform propagation path loss models, radio signals propagate through free
space until reaching the complex ground ubiquitous environment, where shadowing, scattering and other effects
occur by nature and/or manade structtes. Thus, it is essential to identify the different type of environments

that have been categorized by International Telecommunication Union (ITU) namely: Urban, Suburban, and
Rural [2,4]. Fig.2 shows the conceptual propagation model from a LAP pengpétiilifferent environments.

In each environment, factors such as path loss, Received Signal Strength (RSS), coverage, and other link budget
parameters may vary in response to geometrical and topography characteristics as well as usdibprofiles.
introducesa recentcomprehensive survey on aerial platforinsrelation topropagation modelsltitude,
coverage, angower consumptiorj6] considers how a propagation path loss modetfioergency or security
applicationanaylead to network congestio

The propagation models for LAPs technology reported in literature are broadly based either on empirical
propagtion [7-10], or Air-To-Ground (ATG)models [24, 11-13]. Empirical propagation models use a pre
defined set of constants and constraints for different topographies, and different geographical factors such as



hills, terrain, streets, and buildifgights ¥, 14, 15]. Modelslike Ul, COST-231, logdistance, ITU indoor &

outdoor, WINNER II, OkumureHata, and COST Walfistkegami are typical of the types reported widely in

the literature. Despite their results accuracy these empirical propagation models exhibit limitations as a result
of their limited antenna heights and sttomnsmission distances. ATG with ray tracing exemplify deterministic
model s with their use of Hffractioelhws P4sly.fTreATi@uplopagatiomd r e |
model is reportedly preferred in the literature for LAP deployments, eddsyan improvement in cell capacity

and downlink coverage. Path loss in ATG is calculated by using a dlmsednethod between a LAP and
terrestrial receivers based on two key ATG propagation types. The first type is a LoS conditiorLarerear

of-Sight condition, the second type is No Lin&Sight (NLoS) condition, but still receiving coverage with

strong reflections and diffractions.

The authors of 16] emphasise that ATG propagation models have not been investigated in detail when
compared to othexxisting terrestrial propagation models. Thus, in their paper they introduce wide range large
and smaliscale fading channel models and highlight their limitations. They argue that the main challenge with
ATG models is the high altitude at which optimatjprmance is achieved, as a result of a decreased shadowing
effect and the higher transmission power required. Recommendations have been raisdjl abdat the
significance of investigating various LAP propagation models that yield an optimum akitddaechieve
maximum coverage area in different rural or urban environments. Recommendations also arelr?jaadeoint [

the significance of exploiting environment properties, urban statistics, and bandwidth as they affect considerably
LAP capacity and malgelp with maximizing footprint and throughput whilst maintaining LoS. The authors of
[17, 18] present a survey on various propagation models for aerial platforms and highlight their current research
trends and as well as underlining their key fuingghts including the need to consider a machine learning
approach to support various aerial platforms operation at low power consumption and wide coverage.

[19 discuses multipldiop communication and seadfganization of multiple UAVs usin@ free space
propagation model. The muliered network can serve heterogeneous networks for both commercial and
military applications. The main findings highlight some challenges that face-tracgtil networkincluding
coverage gapscalability and reliability, netork formation, network connectivity, information delivery, and
energy managemeriR0] reviewsan loT architecture and service virtualization from different perspectives
including aerial platforms. Where the mediunmig homogeneous, selecting a propagabf electromagnetic
modek is significantly important to sustain network connectivity, achieve wide coverage, minimize path loss
and power consumption, especially as we are approaching the broader level of 5G technology with high demand
of heterogeneousetworks. 1] discusesrecent advances and future tremdth 5G andbeyond for aerial
platformswith the researchers highlighg the positive correlation between operational aerial platform altitudes
and LoS connectivity at different urban environnsavith path loss antheshadowing effect optimized.

Transmitter
Altitude

Fig.l: B teyedidwf LAP propagation model in different terrains



2.2 Elevation Angle

It is a necessary condition for ionospheric communication signals to propagate in a correct angle to enhance last
mile connectivity. Spacbased wireless communication systems take into consideration the elevation angle in
their channel FSPL calculationeMertheless, there is no consideration of the elevation angle in propagation
models reported in literature in relation to LAPs, possibly due to the low transmitter altitude. In aerial platform
technology, path loss in a propagation model depends on eleeaijle, if aiming to achieve LoS most of the
time [2,4]. Authors of R2, 23] and ITU [24] argue that the elevation angle in urban environments can range
between 30° and 90°, 15° and 30° in suburban, and between 5° and 15° iA wirdé range of elevan

angles betweerb® and 90°have been investigated i85 as a function of aerial platforms altitudiesa 3D
raytracing propagation moddiheir resultsshowcase a clear distinctitietween_LoS and NLoS as elevation
angles vary in relation toshadowig fade.In [26] the authors are suggesting that the angle range of 30° to 90°
is a realistic elevation range for near space platforms in dense urbans. The proposed htjdsts15° as

the minimum elevation angle in urban, as a lower angle rangeban wenvironments would increase the
shadowing effect and decrease the probability of a clear LOS path. Moreover, autta@sclaifn that a
minimum elevation angle range between 20° to 3@y be more desirable in urban. The authof8dfconside

a 10°elevation anglen addition to altitude, user density and building heights whilst calculpttigloss. In

[28] authorsaim at enhancinghe coverage range lghoosing a 2&levation anglata 320maltitude.

2.3LAP Altitude and Coverage Area

Several vireless network topologies of aerial platforms that provide footprint coverage at different altitudes
are reported in the literature. Adopting any topology depends on the Quality of Service (QoS) requirements,
type of application, payload weight, and powmmsumption, each exhibiting its own advantages and
challenges 29, 30]. As part of their continuous effort to bridge coverage gaps in wireless communication,
researchers in [, 8, 31, 32] aim at maximising footprint coverage with direct consideratibthe LAP
altitude in relation t o, for i nstance, maxi mum al
atmospheric effects such as pressure, wind and temperature, transmission power, and different antenna types.
However, issues like power caumption, and the traesf between coverage and throughput are reported as

the main challenge® [33] the selected propagation models are affediexttly by parametersuch agarrier

frequency and antenna height from both transmitter and receiess. Bitk authorsn [34] considervarious

tools of trajectory optimization to analyse the performance of guaihbrms at different aspectsg. coverage

footprint, throughput, power consumptiohey suggesthe use ofoptimization technique$or coveing

different channel modeld35] proposes a methadthattackles the coverage gap thas caused by inefficient

planning and deployment of mobile networks.eThethod is based oa selfdeployable mobile network.

Results shovan averag@nprovement of 5%.

Theauthors in [L6] arguethat high altitudesffer larger coverage areandincreased_OS connectivity put

may result irhigh path loss ankdigherpower consumptiorin contrastjow altitude delivera signal with low

path loss, but witincreasedNLOS and shadowing effectg6] considersietwork performance between the
Internet of public safety things (Ilo0PST) and drones. The study shows an improvement in the level of public
safety in smart cities via measuring LoS probability, delay, and throughipeiresults of communication
between smart wearable devices and drones show high efficiency and information accuracy. However, the
study does not offatetails about the altitude of tdeonesconsideredr the coverage footprinf37] offers to
reducehe cost olnformationCentric Internet of Things along with enhancihgcoverage of communication

links between unmanned aerial vehicles (UAVS) and terrestrial receivers via agiominf various
parametersuch adJAVs altitude, fly duration, powetonsumptionTheir results show an improvement in
coverage by approximately 21.42% and reduction in clzgtiby an average between 13.335% to 34.32%.

2.4 Power Consumption

Unmanned platforms are powered mostly by renewable energy from either directlyphsiogoltaicor
indirectly usingconcentrated solar powgs1, 38]. Power in adal platforms is mainly consumed by all-on
board components and by communication links to terrestrial receivers and other aerial platforms using Radio
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Frequency (RF) or optical intgdatform links @, 7]. Power consumption is an open challenge for other
wireless systems including LAP. Therefore, power consumption has received varied considerations with some
researchers considering its hardware nat@% 0] whereas others address the software nature using
optimisation techniqued38, 41, 42]. The authas in [16] highlightthe relationshifpetween high aerial platform
atitude and power consumption thated to be balanced in consideration of the applicatiad priority. In

[34] various optimization techniquesre considered to enhance the performant@awer consumptiorat
variousaerial platforms angg[21] argueghat energy efficiency is a bottleneck challenge for aerial platforms
andpointatrecent developments in battery technolobieth insoftwareandhardware Examples of hardware
developmats include enhanced lithiurion batteries, solar energgnd hydrogen fuel cellExamples of
softwaredevelopments includenergy beamforming via MIMO techniquds.order toachieve maximum cell
coverage for long distances, path loss and aerial platform altitedmonsidered agpposing aspects.

2.5 Operational Frequency and Interference

The frequency band is one of many factors that affect signal propagation. Auttiy3my] argue that the

design of propagation models is experimentally driven, hence, the parameters chosen often vary widely but
operational frequency seems to be a common choice in consideration of terrain morphology, interference
avoidance, and RSS and thghput enhancemeri. frequency band of 850 MHg choserin [27] based on

the availabilityoffered by the cellular operator. Although this yieldigler coveraget results in reduced
throughputThe | TUOGs I nternat i on aAdvaimedfMTAdvantes) sarcardiondtn i c at
offers access to various telecommunication services and supports mobile applications for heterogeneous
wireless environments that offer various frequency bands that can support the performance @uEhigh
requirements for mtimedia applications, and high data rateager and service requirements.

The ITU has long been considering technologies that meet the criteria of the standard: LTE, WiMAX, and
WiFi [45-47]. WiFi [10, 44, 48-51], WIMAX [ 7, 44, 51, 52] and LTE [1,10, 12, 48, 50, 51] have been
considered widely in aerial platform technology in the literature to serve various applications for better
coverage, whether in LoS or NLoS, increased capacity and less interference. However, opinions and decisions
vary in relationt o application types, operational enviro
communication payloads and power supply. For instance, Aerial Base Stations with Opportunistic Links for
Unexpected and Temporary Events (ABSOLUTE) is one of the most impbA&hproject worldwide that

deploys LTE in their specifications [1]. Google balloon projects base their design and telecommunications
payloads on LTE technology to provide Internet access globally. However, emergency or security applications
considering ME may lead to network congestion and interference in comparison to WiMAX. Auth@&s in [
52-54] emphasize the advantages of WiMAX over l-AEn supporting military operations in disaster relief
environments wher e user s b WiMAXadifdrsriessnteverage and dat natgein r a p
comparison to LTE, and it has large installation and operational costs. WiFi is still a candidate in LAP
deployment in increasing connectivity for short distances. The main limitations are vulnerabilityféoentasr

as it is unlicensed, and it does not serve longer distances, and whilst increasing transmission power may
increase coverage, it also raises power consumption and interfef2ticemphasise the use of LTE
unlicensed band that ithe advantage afirect transmission to terrestrial users.

The authorof [16] arguethat the frequency bandhould be balanced against #étude to minimize the
tropospheric effects such as fading due to temperature, rain or $hewauthors in45 emphasisehe
importance of new rules and regulations on aerial platforms frequency identification by the International
Telecommunication Union (ITU) Radio Regulation (RR) and International Civil Aviation Organization
(ICAO), the two regulatory bodies responsible for fregey assignment and civil fligh@n the one handow
frequency bandsf sub 1 GHanayprovide extensive coveragdich is against RR, buhahe other hand, high
frequency bands provide high data sdiat experiencesnow/rain attenuation issulise satellites doln [56],
theauthorsconsider both LoS andléS from the perspective of antennas and propagation niuting their
experimentshey reporthat in contrast to the 2.4/5 GHz crowded frequency $dnigher frequency bandsay

be more gitable for commercial aerial platforms.



2.6 Antenna Types

Typical antennas, whether directional or ordimectional are large in size, consume more power, increase
interference, and offer small coverad#,[58]. In contrast, aerial platforms require srreiled antennas,
consuming less power, whilst maintaining a hgiformance level. The effect of MIMO and smart antennas

on near space sokapwered platform performance and capacity is discusse2bj(, 59, 60], where it is

being argued that the antergain need to be optimised, otherwise-eidrs may experience weak radio across
distances running into several miles. The advantages of deploying these antennas include maximizing capacity,
improving QoS, extending coverage range, reducing transmisswer @md relaxing battery requirements,
reducing radio signal fading as a result of diversity gain, and maximizing link budget as a result of smooth user
tracking with main lobes and interference nulls. Considering the use of either smart or MIMO antenna
technology to improve performance is suggestedéih 62]. The aithorsof [16] confirm that considering

MIMO functionality for aerial platformssuch as Diversitycould enhance the channel capacity and channel
performance. MIMCantenna is introduced i84, 63] to contribute effectively to a heterogeneous and massive
number of 10T devices leading tmprovedwireless connectivity via aerial platforms. 164], the authors
providea comprehensive survey of channel characterization from aerial platformeqtimegandargue on

open challenging issues such aasidering NLoS alongside LoS in propagation models to include shadowing
effects inchannel calculations andIMO diversity gain to enhancthe reliability of communication.[21]
arguedhat energy eftiency can be maintained by using beamforming via MIMO techniques.

Table 1reporsresearch gaps and current work on last mile connecthdtyevolve from theesearch review
It then uses this tustify our own motivatiorfor pursuing the researemderpinning this paper

Tablel: Related review windup

Open Issues
Areas ) . Approaches
Being Addressed Unresolved / Suggestions
9 Wider outdoors channel modelling § Shadowing effect partiallgonsidered ATG
9 Two ATG propagation types: LoS| 1 Full link budget considered across models
) and NLoS various environments
Propagation
Few outdoor LAP empirical mode . . .
Models 1 _ pirica’ 1 Limited LAP altitudes Empirical
9 Mathematical models empirically . .
. . 1 Additional empirical model$o be models
drawn across various environmer .
. ) considered
9 Wireless network planning
1 Optimum LAP altitude calculation || Tradeoff between LAP altitude, RSS
using RSS, MAPL and ITU statistic| and interference in urban environment|
on urban and atmospheric effects || Rise in interference as number of LAH
{ Enhancing RSS and coverage by || rise in an area
Coverage increasing LAP altitude, 9 Updating of urban ITU statistics
and g transmission power, utilization, or [[{ Interference management between RSS
LAP Altitude deploying multitethered platform m.ultll-LAPs . - Ny
topology 9 Limited LAP altitudes in empirical
1 Helical directional or models
omnidirectional antennas for RF | Large size of tlectional or
channel modelling to improve RSS| omnidirectional antennas, power
and LAP coverage consumption, and increased interferer
9 Widespread calculation of LAP 'Someelevation angles are unsuitable f
coverage footprint all environments .
Antenna _ g P - . . _ Elevation
I 1 Achieving better connectivity at lovflLack of consideration of elevation ang
Specifications _ o ) . Angle
elevation angles with directive in empirical models due to low
antennas transmission altitude




fTradeoff between low elevation angles
path loss, coverage
1 MIMO antennas for high elevation
angles may vyiel better LoS
connectivity, reduced path loss and
extended coverage
. . 9 Smart switched beam antennas neeg
1 Some consideration of smart/ . i
. be consideredilthough difficult to
MIMO antennas impact on Smart
improving link budget performance mount on small LAPS Antenna
P . -g L getp 9 Advanced MIMO antennas may
and minimizing interference .
improve performance
1 Resource allocation that use gamil|{ Tradeoff between throughput and
to minimize power consumption power consumption to guarantee
1 Dynamic techniques that calculate|| fairness amongst users Software
optimal LAP location, minimize patl{f Optimisation of path loss to minimize
loss, improve RSS, reduce power | transmitting pwer, and reduce power
consumption consumption
Power = = - r pr = r
Consumption 9 Direction .O antenna reduces powse|{ Ar.1tenna' irection reduces RSS as
consumption altitude rises
9 Antennas that serve various 91 MIMO antenna gain diversity may
frequency bands enhance accuracy and reduce power || Hardware
1 Hardware that may reduce power | consumption
consumption such as batteries, thin(f Some antennas are unsuitable for
solar panels, or propellers mounting on small LAPs
1 Vulnerability to interference in
unlicensed bands
9 Limited coverage
o _ 1 Increasen transmission power may WiEi
_ T WiFi, WIMAX, and LTE areIW|der increase coverage, but also increase
Operation congldered for LAPs in rglaﬂon to power consumption and interference
Frequency || application types, operational { Lack of consideration of WiFi HaLow
and environment and QUrgtlon and LAP due to immaturity
Interference | onboard communication payloads = ; -
1 Large installation and operational cos .
and power supply WIMAX
{l Less coverage and data rates than LT|
9 Emergency or security applications m
lead to network congestion and LTE
interference in comparison to WiMAX

3 PROPAGATION MODEL SE LECTION AND ADAPTATI ON

Fig. 3 shows 17 of the propagation models that we have reviewed in detail that are represéritagive
respective types along with their main parameters of maximum transmission distance, transmitter and receiver
antenna heights and high range of frequency bahdl¥, 15, 65-69]. Propagation models that feature an
antenna heightQ of less than 0.1km have not been selected, as the LAP altitude ranges between 0.2km and
5km above ground. Some propagation models offer an advantage & tughoffer short range of coverage,

e.g. ECG33, low frequency band (Ibrahifarsons), limitedrevironment types (e.g. ERVI3), or low perdition
accuracy (e.g. ITURP.1546).
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Fig. 3: Landscape of 17 propagation models

Four models that offer advantages of high LAP altitude, antenna h’gh a wide coverage r
terrain diversity have been selected: HRUP.5293, Okumura, Hat®avidson, and ATG. All four have the

merit of including correction factors that yield high prediction accuracy. Other models also have the same
advantagesu either yield low perdition accuracy or are not suitable for all terfainsl4, 15, 659].

3.1 Calculation of Path Loss

Calculation of path losg for ITU-R P.5293:
Case 1: urban area

0 o®duv c®ol ECpa@ad I E AE T8 ®dlE 118 (1)
AE ppdl E ™E PR @I E (2)
A p AEIA ¢imnin
A p ™T pRX pm £ pdixy pm E 1T e 8/ETc(frtrtin A

p Tthu Tt it (3)
E (4)

Case 2: suburban area
0O O ¢l 1 & vg (5)

Case 3: rural areas

0 O YT E pool ECT B w (6)

Calculation of path los8 for Okumura:
o , !'i1M "E 'E (7)
, oc@tc¢nli&k ¢nliAC (8)
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Calculation of path los8 for HataDavidson:

0 O(AOA EM 3 A 3 EMA 3 £ 3 A (12)
where:

O(AOh@duv c®ol ECpa@d T E AE T8 @@AdIE ITITA& (13)
Case 1: for urban area

AE o’ | I @& WE T8 (14)
Qqse 2: for s\th_x.rban,or ruyal areas

AE ppl 1 A& ™ E P ¢ | &£ T (15)
Calculation of path loss for ATG:

0, Mm 0, M 0, (16)
The probability of having LoS connections at an elevation gnggiven by:

M A — 7
M p O (18)
The path loss for LoS and NLoS are:

0, A" ¢ l-e— s (19)
0, A" ¢ l-e— s (20)

where0 : Path Loss (dB)/&Carrier Frequency (GHzE : Transmitter Antenna Height (m; : Receiver
Antenna Height (m)A: Distance (m)A E ¢, Antenna Correction FactoE correction factor forLAP height

E, Lf Free Space Path Loss (dB)] T(f d): Median Attenuation Relae to Free Space (dB), E :
Transmitter Antenna Height Gain Factor (dB)E : ReceiverAntenna Height Gain Factor (dB), : Gain
due to Type of Environment (dB) ( A OPath Loss of Hata Model (dB)E : Correction Factor for mobile
antenna height, /8 : factors that extend distance to 300,008mcorrection factor for heigtii of base station
antenna extending the valueBbfto 2500m.3 , 3 : correction factors that extend frequency to 1.5 G,

¢, d and e are ITHR parameters for the three types of environméntS|evation Angle in degrees depends on
environment types , s : average additional loss to free space depending on environmens type.
ranges between 3 to 5dB, whergas ranges between 8 to 12dB

3.2 Calculation of Link Budget Parameters

Prediction of RSS, coverage, SNIR, and optimum altitude are reporteB, 71, 72]. RSSdepends on
transmitter powerQ hpath loss@ , transmitter antenna gairis (, receiver antenngains [  as well as ()
connector and cable loss. RSS for cellular network is expressed in dBm as:

2330 ' o (21)

The footprint from a LAP aliude can be derived from the path loss and RSS results. SNIR is RSS (dBjlover
Noise figure (dB) plu3: Interference (dB):

3.)R" — (22

There is no formula with which to calculate the exact throughput basedaon SINR. However, a prediction

can be made using Shannon's formula. Thus, predicted throughput (C) in bits per second (b/s) is predicted as:
# " 11 3.)2 (23)

where BW: bandwidth (MHz), SINR: linear power ratio not dB.

When providing coverage of a large area, it becomes increasingly necessary to considertieh 6 s cur v
and radius. An adaptation that has been considered in our work takes into account the elevation angle to the



L AP 6 s -stgtiorery condition, at various LAP altitudes. This adaptation yields improved LoS service
connectivity, coverageange, and RSS arg@@bS service to receivers thabuld normally experience outage or

|l ow connectivity as a result of thei rFigddshowsthec e , t
trigonometric geometry for a LAP, whereby distaiizef the selected propagation models is computed.

Fig. 4: Trigonometricgeometryfor a LAP

Given a LAP®iss atthe tmoaret Hfs -—+radithe atl evZIm?t 8 oknm,a nagn de

using | TU&ds envi r osumeban a furaltemains or s f or ur ban,
Al-6 — (24)
— Al 6— (25)
0 -8 (26)
0O ¢cO Al O AT S & (27)

The literature offers various considerasoand assumptions with regards to selecting an appropriate elevation
angle that suits an environment. The assumptions drawn from literature is to set the elevation angles of 15°, 10°,
5° as thresholds in urban, suburban, and rural environments resgeetivele the LAP is in a quasiationary
position.

3.3 Adapted model implementation
Each of the four selected models estimates values for path loss, RSS, SINR, throughput, and coverage or
footprint which correlate respectively to the five output performance factors, i.e. path loss, power consumption,
interference, capacity and coveragathHoss is the reception performance indicator. RSS is the power strength
indicator and is used to estimate the coverage range when the signal weakens as the receiver moves away fron
the transmitter. RSS depends on path loss, transmitter and receivgrameiggain and environment factors.
The SINR is the interference performance indicator and is used to measure the quality of a wireless link and bit
error ratio. Throughput is the capacity performance indicator, and decreases with path loss, distance, and
shadowing7, 71, 72). The four propagatiomodels are simulated under the same conditions using MATLAB.
Whilst the transmitter antenna heidfatwill vary, the receiver antenna heigf¥ is set at 5m, as this has been
widely adapted in the reviewed literature as well as in the data provided by Airspan Will#e2shows the
simul ation parameters that relate to MI MO a6Bt enna

73.



Equations (1) through to (27) are simulated in MATLAB under the same conditions using the link budget
specification offable2. The simulation has considered two types of receivers based on antenna gains for Base
station (BS), and Handset (HS). Simulated jotézhs are shown first as line graphs on Eighrough toFig.

16. The altitude chosen (0.2, 1, 2.5, 5) km above the ground are representative altitudes across the full range for
transmitter antenna altitud®@. Coverage footprint in all four models limsed on an elevation angle from a

userds location which is a significant departure
Table2: WIMAX MIMO antennas
Parameters Value
Frequency band [GHZ] 3.5
Bandwidth [MHZz] 10
Modulation type QPSK
Noise figure [dBm] 6
Transmitter side
Transmitter Power [dBm] 40
Transmitter Antenna Gain [dBi] 17
Diversity gain [dBi] 6
Transmitter Rx Sensitivity [dBm] -88.9
Interference margin loss [dB] 3
Connector loss [dB] 0.3
Receiver side
Receiver Power [dBm] 27
ReceiverAntenna Gain [dBi] (stations 15
Receiver Antenna Gain [dBi] (handse 2
Diversity gain [dBi] 3
Receiver Rx Sensitivity [dBm] -90.9
Interference margin loss [dB] 3
Connector loss [dB] 0.1
Body loss [dB] 0

Fig. 5: Prediction plots of ITLR P.5293 model, at 0.2km LAP altitude, in an Urban environnieBiS and HS
receivers
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Seli-Organizing Map (SOMalongside its NNs Feedback Forward fitting tool, aslFigelow illustrates.
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The first step in optimization deploys a minimax technique at several LAP altitudes acrossulmudrars and

rural environments to optimize the PL, RSS, SINR, Throughput, and Radius. The second step in optimization
deploys the Levenbeifglarquardt backpropagation algorithm using the NNs Feedback Forward fitting tool to
evaluate the performance of thtimized set of parameters with the four simulated models.

The application of NNs commences with its training with sample input data that produces a 2D discrete
representation of the input space, t hengamafhereby hr ou
enabling it to predict optimal output values based on three basic components of a neuron: synaptic weights,
summing function, and activation function. Usually, the SOM has a 2D lattice of neurons and each neuron is
considered aa cluster 74-77]. The SOMalgorithm runs over two phases: Learning and Adaptive.

4.1 Learning Phase
The |l earning phase commences with i nilt,withlarazdoomg, a
value between 0 and 1, the learning rate , to 1, and thenaximum number of iterations,& @ ¢to 1000.
— & is atraining parameter that controls the size of the weight vector in learning of SOM.
0 0 880 T (28)
-¢& =1, &£4& ®»®1000
We adopt an unsupervised NN aN-pOM farevhich moHabetidd trainsg t y p i
data is required during the learning process. Instead it learns frondimauf6]. Following initialization, a
stimulus, i.e. a random representative input sample from the dabaisgtresented to the netwduk training,
as per equation 29.
W w88w T (29)
All inputs (0) used for training the network are sourcexhfra training data set. PL varies from the lowest value
to the MAPL threshold 0f146.5dB and133.5dB for BS and HS respectively. RSS varies from the lowest
value to WiMAX threshold 0f91dBm, SINR ranges between 4dBi and 19dBi, Throughput ranges between
and 10, and Radius ranges between 1 and 100km. The learning phase then proceeds with the definition of the
topological map, , using a lattice of neurong, as per equation 30.
o D(_boan ON WO i wNO
o DOO QN 0O 0 NW®
The map, o h o , defines concurrently two mappings, fram input vectotoN ¢ to a neurore
0, and an inverse mapping from neuif® 0 to a weight vectov N @. Finally, with each input pattern alll
neurons attempt to compute the Best Matching Unit (BMU) by calculating the Euclidean distance between the
input vector and the weights of each neuron. The shortest distance between a matching winning neuron and the
input datax is declared as the BMU as per equation 31, whedenotes the dimension of the input patt€Xp,
denotes the distance between two neukarsi Eand’(;, denotes a function of topological neighbourhood to
measure how close the neuréasdE are.

(30)

Qy B & 0 (31)

4.2 Adaptive Phase

The adaptive phase involves updating of synaptic weight vectors of winning neuron and neighbours as per
equations 32 and 33, whefds the effective width of the neighborhood which decreases with each iteration,

» IS the initial value of, andWis the time constant defining the slope of the graph. The winner neuron updates
itself and its neighbour neurons with the patterns ofrthet dataset using synaptic weight adjustments as per
equation 34, where ¢ stops the weight from going to infinity. Topological ordering of clusters to detect
rapidly both different and similar clusters gets underway and over the course of thas thiaalgorithm
converges to the most suitable clusters. The neighbourhood function is a Gaussian.

In equation 35 each minimax parameter is optimized through its updated synapticowaightp , whereby

it attempts to optimize the values of the vectamimizing PL, maintaining SINR, and maximizing RSS,
Throughput, and Radiu$hroughputwhich refers tdhe average rate afatathat be transmitteduccessfully



over a set periodf timethrougha communication channé& one of performance indicatdtstdecreases with

path loss, distance, and shadowing. refers to each of the four propagation models and refers to
optimized model at each altitude at a specific environment. After each cycle, the parameters are recomputed,
and new vectors arput on the converged ma@in <> Max denoteshe lower and upper bound values
respectivelyof a floating parameterAn example of this is maintaining SINfetweerddBi and20dBi. The

process is repeated throughuations 285 up to the maximum number ibérations € , or no significant

change in the map has occurred.

o Qoi- (32)
” é ” 'Qd)_h_ i) ” 5 (33)
O &€ p v ¢ - &€ w U ¢ (34)
06 =0¢%¢ pz-E O,h0 & pz-E 2380 ¢ pz-E 3) . ¢ pz-E 4EOI OCedmd0Op z- E 2AAEBY

The NN fitting tool in MATLAB supports data selection, network creation @adhing, and network
performance evaluation using Mean Square Error (MSE) and regression analysis. The NN desigitegea two
feedforward network consists of one hidden layer using -aitanoid transfer function, and a linear neuron
output layer. Thienables the network to learn of nonlinear and linear relations between input and output
vectors. The linear transfer function, however, to thestgmoid function, allows the network to produce values
outside thel to + 1 range. NN suits mulimensionaplotting problems well, given reliable data and adequate
neurons in its hidden layeAdjusting weights and biases during training of a network are considered to
minimize a network performance function that uses the MSE, the correlation and averagptesgjaabetween

the network outputs and target outputs. Another design decision is the choice of the training function. The
LevenbergMarquardt algorithm uses the Hessian matrix approximation of Newton's method, which is regarded
as faster and more acctgaear an error minimum. Thus, the schldecreases after each diiogperformance
function, which means the performance function is continuously reduced at each iteration of the alggrithm |
78-79].

The Hessian matrix can be approximated as:

O Uy (36)
The gradient is calculated as:

Q UY (37)
The Hessian matrix approximation of Newton's method is as:

©Qp ®Q 0°YO 0 pUY (38)

whereis a Jacobian matrix which consists of first values of the network errors in consideration of the assigned
weights and biasesnd Qis a vector of network errors. The Jacobian matrix can be computed via a
backpropagation technique that is less complex than the Hessian matrix. The available input vectors and target
vectors will be randomly divided into three séisaining makes &ferings to the network while training, and

the network is tuned in response to its error, hence, calculating the gradient and updating the weights and biases,
Validationwhich measures network generalization and stops training when generalization praltérignand
Testingwhich delivers an autonomous measure of performance during and after training, thus with no effect on
training.

Equations (28) through to (35) are simulated in MATLAB under the same conditions. PL is kept as low as
possible to achieva certain level of reception with the smallest attenuated signal not exceeding the MAPL, i.e.
between-146.5dB and133.5dB for BS and HS respectively. SINR is maintained between 4dBi and 19dBi.
RSS is kept as high as possible to achieve a wider wirglessdivity, and to avoid service degradation and/or
interruption. A threshold for RSS and SINR for both BS and HS antennas depends on modulationaméthods
receiver sensitivity as in the WiMAX link budget specificationTable 2 The maximum RSS valus kept
between85dBm and91dBm B9, 80]. Throughput and coverage radius are kept as high as possible for higher
data rates and wider connectivity. Fig. 18 throughign23 show an optimal set of parameters obtained across



three terrains (U, S, R) for both BS and HS antenffasX and Y axe®n Fig. 18 throughto Fig. 23 represent

respectively theumber of rowsand column®f the SOM.
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Fig. 18: Parameter optimization in an Urban TerfaBS

Fig. 19: Paameter optimiz&on in an Urban Terrainh HS



