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 One of the most challenging predictive data analysis efforts is accurate prediction of depth of anesthesia (DOA) 

indicators which has attracted a growing attention since it provides patients a safe surgical environment in case of secondary 

damage caused by intraoperative awareness or brain injury. However, many researchers put heavily handcraft feature 

extraction or carefully tailored feature engineering to each patient to achieve very high sensitivity and low false prediction 

rate for a particular dataset. This limits the benefit of the proposed approaches if a different dataset is used. Recently, 

representations learned using deep convolutional neural network (CNN) for object recognition are becoming widely used 

model of the processing hierarchy in the human visual system. The correspondence between models and brain signals that 

holds the acquired activity at high temporal resolution has been explored less exhaustively. In this paper, deep learning CNN 

with a range of different architectures, is designed for identifying related activities from raw electroencephalography (EEG). 

Specifically, an improved short-time Fourier transform (STFT) is used to stand for the time-frequency information after 

extracting the spectral images of the original EEG as input to CNN. Then CNN models are designed and trained to predict 

the DOA levels from EEG spectrum without handcrafted features, which presents an intuitive mapping process with high 

efficiency and reliability. As a result, the best trained CNN model achieved an accuracy of 93.50%, interpreted as CNN's 

deep learning to approximate the DOA by senior anesthesiologists, which highlights the potential of deep CNN combined 

with advanced visualization techniques for EEG-based brain mapping. 

 Depth of anesthesia, Convolutional neural network, Electroencephalography, Short-time 

Fourier transform. 

 

Anesthesia is a crucial procedure for doctors in the 

surgical environment, which enables doctors to perform 

surgery on patients with unconsciousness and painlessness 

[1, 2]. The earliest depth of anesthesia (DOA) monitoring 

methods are mainly estimated by the experienced 

anesthesiologists through patient's physiological response, 

and these evaluation methods lack clear quantitative 

indicators and ability to avoid external interference. The 

results will lead to inaccurate anesthesia, which brings 

clinical safety hazards to patients during surgery [3]. Thus, 

scientists have been looking for parameters that 

characterize the DOA from medical signals, so that 

anesthetic drugs can be used more accurately for achieving 

anesthesia. However, from which the study of 

electroencephalogram (EEG) parameters is the most 

effective [4-6], it is still non-standard and no any best 

solution so far. 
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Recently, EEG-based DOA assessment method has been 

rapidly developed. With the reason that general anesthesia 

makes the brain's conscious activity disappear mainly 

through the inhibition of the central nervous system and EEG 

is the main physiological signal that reflects the activity of 

brain consciousness. Even then, there is no effective way that 

is approved by clinical anesthesiologists to define DOA.  

 Since the 1960s, some emerging EEG-based DOA 

monitoring technologies (including spectral peak frequency, 

median frequency, marginal frequency, etc.) [7-10] were 

based on the evaluation of EEG nonlinearity under anesthesia 

within a specific medical dataset, which helps to explore the 

potential dynamics of EEG signals in DOA according to the 

non-linear and random nature of EEG signals [11]. Zhang et 

al. [12] used Lempel–Ziv complexity analysis to quantify the 

relationship between the brain activity patterns and DOA, 

which achieved 93％ accuracy on discriminating awake and 

asleep states. Lalitha et al. [13] adopted correlation 

dimension (CD), Lyapunov exponent (LE) and Hurst 

exponent (HE) to extract DOA features and two neural 

network models, i.e., multi-layer perceptron network (feed 

forward model) and Elman network (feedback model) for 

classification. Which finally producing an overall accuracy of 

99% at the anesthesia levels (Low, Medium, and High). 

Moreover, Peker et al. [14] divided the anesthesia levels into 

six categories and achieves 99.05% classification accuracy 

by using effective feature extraction and classification 

algorithms in high-performance GPU computing systems. In 

general, these complex analysis methods on EEG-based 

DOA monitoring promote the progress of precision 

anesthesia within the local dataset. However, these research 

on EEG in anesthesia is within a small sample size or 

specific dataset, resulting in the inability to resolve patients’ 

individual differences due to the large sample size of patients 

in the actual application process. Besides, excellent feature 

extraction methods are time-consuming, computing-intensive 

and difficult to be promoted when used for commercial 

purpose. Therefore, considering a DOA monitoring 

technique based on large sample data or a small amount of 

work for feature extraction is of great significance for 

accurate anesthesia to various patients in clinical surgery. 

As a result of rapid development of machine vision and the 

graphics cards, deep learning, i.e., convolutional neural 

network (CNN) has gradually evolved into the mainstream in 

EEG. Some studies [16] have shown that deep learning 

technology is expected to surpass traditional machine-based 

classification and feature extraction algorithms. Of which the 

use of CNN model has made a good development in the state 

of brain falling asleep, but it has still not broken through the 

theory of "a fixed state" [17, 18]. Moreover, CNN has been 

further developed in the medical field including seizure, 

brain coma, imagination, etc. [19-21]. However, the 

application of deep learning is seldom studied on anesthesia. 

This is because it is not easy for researchers to have the 

patient's total anesthetic state, apart from the extremely strict 

requirements of CNN on the operating environment. There 

are only few research teams that can meet the above 

conditions. However, our research team has had decades of 

experience in DOA research with published achievements 

[22-25] and our lab also satisfies the hardware conditions for 

CNN operation. Hence, if a breakthrough can be made on the 

DOA, it will be a great attempt at success. 

As for CNN, one of its attractive property is to learn from 

large sample data without any priori feature selection, which 

happened to hit our conjecture. However, raw EEG is not 

suitable for deep learning training directly in anesthesia since 

the EEG time domain data has no intuitive anesthesia 

information. The reason is that when the DOA changes from 

shallow to moderate, the main changes including β-wave 

(13-30 Hz) and α-wave (8-13 Hz) are all manifested in the 

frequency domain characteristics [15]. In addition, the EEG 

signal has a relatively low signal-to-noise ratio, that is to say 

sources without task-related information typically reflect 

EEG signals more strongly than task-related sources. These 

characteristics may make the input-to-output learning 

function more difficult for EEG signals than for images. 

Therefore, looking at the existing CNN architecture from the 

field of computer vision, the form of the EEG input requires 

being changed to its spectrogram. EEG research applying to 

the medical field in the time-frequency domain has 

constantly brought surprises to people [26]. The simplest 

time-frequency domain analysis method, short-time Fourier 

transforms (STFT) [27] can be used to explain the time-

varying law of EEG signal spectrum in different states. 

Särkelä et al. [28] used the STFT method for spectral 

analysis to effectively detect the burst suppression caused by 

different anesthetics. Yuan [20] and Truong et al. [29] 

adopted the STFT analysis method to perform spectrogram 

conversion on the EEG signal and obtained good disease 

prediction results after training. This indicates that it is an 

effective measure to applying STFT to EEG analysis, which 

also well explain the real-time changes of anesthetic features 

in the frequency domain. Therefore, in this study, application 

of STFT to DOA is being attempted which result in the 

classification accuracy requiring more rigorous evaluation 

than traditional feature extraction methods. For this reason, a 

clear classification criterion is crucial. As a medical DOA 

indicator, BIS has been widely used to detect patients’ 

conscious awareness although it is still not perfect [30, 31]. 

In this study, the average value of “the state of anesthetic 

depth” called expert assessment of conscious level (EACL) 

which is decided by five senior anesthesiologists based on 

detailed records during surgery is used as the classification 

standard to train CNN [22]. 

In general, the aim of this research is to form a set of 

CNN-based DOA assessment index theories and methods as 

clinical application demonstration for anesthesia patients via 

applying CNN model to EEG-based DOA monitoring. 

Therefore, this article started from the EEG signal acquisition 

and proposed corresponding pre-processing methods for 
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various artifacts [32-34] in raw EEG signal. Then, a series of 

different CNN models were created and adjusted to an 

optimal and specific CNN structure for DOA assessment 

system, so as to assist the anesthesiologist in fully 

understanding the patient's physiological state at different 

stages of surgery and giving the patient better care. 

 

 
This work collects two types of data sets: one is the dataset 

for the complete surgery of general anesthesia raw EEG 

signals and anesthesia record sheets collected from the 

National Taiwan University Hospital (NTUH) 

anesthesiology department; the other is the DOA dataset of 

the patient's surgical procedure drawn by experienced senior 

anesthesiologists, which is called expert assessment of 

conscious level (EACL) dataset. These datasets contain 50 

patient data (their ages range from 23 to 72 years old who 

received ENT surgery at NTUH) as a database for this study 

[23]. In these data, the average EEG signal collected from 

each patient is about 2.5 hours. The data is processed every 

30s (i.e., window size). Thus, it gives an approximately 

14100 sample data, contributing enough data for this study. 

Since medical datasets are often “biased”, in that the 

number of conventional samples is much larger than the 

number of unconventional instances, or that the numbers of 

images per class are uneven. Thus, the structure of anesthesia 

sample from each patient differs in different DOA levels with 

the same contribution, which is shown in Table I [35]. 

Similarly, the average EACL value between 40 and 60 is 

defined as anesthetic OK (AO) named "suitable for surgery", 

a value below 40 is anesthetic deep (AD) indicating that the 

DOA value is low, and a value between 60 and 100 is 

anesthetic light (AL) indicating that the DOA value is light 

and may only be suitable for certain types of surgery. Of 

course, some external interference may exist in the EEG 

signals collected from a complex environment (i.e., patch off, 

external frequency interference, etc.), which called signal 

polluted (SP). 

TABLE I 
RANGE OF AVERAGE EACL VALUE FOR DIFFERENT LEVELS OF DOA 

Consciousness Level Data structure Range 

Anesthetic Light (AL) 2187 (19%) average EACL (60-100) 

Anesthetic OK (AO) 4940 (43%) average EACL (40-60) 

Anesthetic Deep (AD) 1394 (12%) average EACL (0-40) 

Signal Polluted (SP) 2991 (26%) -- 

 
Since two-dimensional CNN will be applied to our work, 

it is necessary to convert raw EEG signal into a matrix (i.e., 

image-like format) and its corresponding DOA level (i.e., tag 

data). After understanding the purpose of preprocessing, the 

first work is to divide the sample data into four categories 

including AL, AO, AD, and SP. Secondly, the first three 

categories (AL, AO, AD) of data are filtered: the raw EEG 

signal collected by each patient contains all message, as 

shown in Figure 1 (a). Then it is channel filtered from 0.5 to 

30 Hz, with the reason that most of the EEG features occur at 

these frequencies during anesthesia [36]. Figure 1 (b) is the 

EEG signal filtered by 0.5 to 30 Hz of Figure 1 (a). For SP 

data, it is contaminated signal fragments through the manual 

selection. Figure 1 (c) is a form of SP data, which shows that 

the signal is lost during the collection phase. It can be due to 
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many reasons, such as the loss of wires and poor contact of 

connectors. Figure 1 (d) is another form of SP data, which 

demonstrates that the signal is interfered by environmental 

noise other than physiological interference, such as 

equipment and instrument frequency interference, machine 

self-interference and so on. Accordingly, EEG data during 

pre-operation and operation stages are filtered and picked up 

as mentioned above. All 50 patients’ data are used to obtain a 

new DOA index reflecting four consciousness level 

(including AL, AO, AD and SP) through CNN method. 

 Generally speaking, wavelet transforms and Fourier 

transforms are often used to convert time series EEG signals 

into image formats. Considering the integrity of the original 

information, the conversion of EEG should be purely 

reflected in the time-frequency domain. Thus, STFT is the 

best way to preserve the most complete anesthetic feature of 

the EEG signal. However, it has the problem of blindness 

selection in window type and window length, which will 

seriously distort the time-frequency spectrum due to the 

frequency aliasing caused by the strong time-variable signal 

[37]. Therefore, time-variable window based STFT method 

is designed for the characteristics of EEG signals in 

anesthesia. As shown in Figure 2, for the original EEG signal, 

by setting a varying window function R(t), multiplying the 

EEG signal in the window and then performing Fourier 

Transforms with the sliding window along the time axis. The 

improved STFT was implemented in the following steps: 

Step 1) The raw EEG sequence can be treated as a 

collection of sequence segments at 5s intervals. Which can 

be defined as 

 1 2( ) [ , ,..., ]px t X X X , (1) 

where p represents the number of the 5s EEG envelope. 

Step 2) In order to solve inconsistent EEG length in every 

envelope due to burst suppression in anesthesia, a cubic 

spline interpolation method is applied for its re-sampling 

advantage. The windowed Fourier transform of improved 

STFT is calculated as 

 '( ) ( ) exp( ( ))R t r t jS t  , (2) 

where S(t) is the cubic spline interpolation function. In 

addition, the size of window function is 1s EEG envelope as 

shown in Figure 2. 

Step 3) The improved STFT is computed by 

 
1

2( ) '( ) j f
k kmSTFT X R t e d   

 


    , (3) 

where k1-km represents the interval of consecutive 5s EEG 

envelope, that is, m consecutive envelopes.  

Eventually, a series of Fourier Transforms results are 

arranged into a two-dimensional matrix, whose horizontal 

quantity represents the time sample point and its vertical 

quantity represents the frequency of the corresponding 

sample point of the segment signal. Furthermore, it is 

important to note that the size of the computing window (i.e., 

m value) really influences the STFT transform, which will 

cause interleaving effects between signals when it is too large 

or cause the EEG frequency to be more dispersed when it is 

too small. Therefore, the best setting for m is 24 (per m is 5s 

EEG envelope) through multiple trials, that is to say, the 

computing window of STFT is 120s. Moreover, 75% 

overlapped computing window is set to enrich medical data 

[20]. Thus, a well anesthetic spectrum is generated. As 

shown in Figure 3, four categories of anesthesia spectrogram 

are generated by modified STFT. These results are from the 

corresponding classification samples in Table I. Furthermore, 

it is worth noting in this study, that the anesthetic map (i.e., 

EACL) drawn by clinical experienced senior 

anesthesiologists was digitized, averaged and used to train 

the neural networks as training targets, with the reason that it 

was used as a gold standard for determining DOA. 

Since the target is anesthesia spectrum classification, a 

generic CNN model framework has been designed to 

recognize the DOA levels in the EEG spectrogram. However, 

the work of selecting the right model is not as simple as the 

classification of cats and dogs diagram, which needs to be 

continuously improved from the results of multiple training. 
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In particular, judging from the ImageNet Large Scale Visual 

Recognition Competition (ILSVRC) in recent years, it seems 

that well performance mostly depends on the complexity of 

CNNs. However, it is not worth completing the identification 

of small sample characteristics at great cost, i.e., overall 

latency caused by insufficient memory capacity. In other 

words, based on the GPU capacity and small sample data in 

this paper, the most basic CNN model architectures need to 

be considered on DOA levels classification. As for 

identification of the earliest RGB image, CifarNet effectively 

promoted the advancement of machine vision with a simple 

structure [38], while LeNet is only excellent in the 

handwriting dataset [39] that is different from ours. As 

shown in Figure 4 (a), it has the characteristics of simple 

structure and low operating environment requirements. So, 

CifarNet-based model is preferred to promote our work. 

However, considering the versatility and reliability of the 

framework in this paper on the classification of DOA levels, 

a single CNN model framework is far from enough. AlexNet 

scaled the insights of LeNet into a much larger neural 

network that could be used to learn much more complex 

inputs and complicate problems like deciding the depth of 

anesthesia. Also, AlexNet has won by a large margin the 

difficult ImageNet competition in 2012 championship in 

ILSVRC [40]. Although the VGG networks won runner-up 

in ILSVRC competition in 2014 [40], this networks from 

Oxford were the first to use much smaller 3×3 filters in each

convolutional layers and also combined them as a sequence 

of convolutions. It makes the improvement over AlexNet by 

replacing large kernel-sized filters with multiple 3X3 kernel-

sized filters one after another. Because, multiple stacked 

smaller size kernel is better than the one with a larger size 

kernel. With a given smaller receptive field of the effective 

area size of input image where output depends, this multiple 

non-linear layers can increase the depth of the network which 

enables it to learn more complex features with a lower cost. 

Therefore, AlexNet-based model and VGGNet-based model,

as shown in Figures 4 (b), (c), are also applied to this work 

for the comparison. 

The number of convolution layers and MaxPolling layers 

of the three CNNs are from 5 deep CNN (CifarNet) to 8 

layers deep CNN (AlexNet) and to 15 layers deep CNN 

(VGGNet), whose structures distribute from shallow to deep 

for training the EEG spectrograms. Also, a corresponding 

modifications have been made based on the existing CNN 

model instead of directly using the CNNs package in Theano 

which is a Python library that allows you to define, optimize, 

and evaluate mathematical expressions involving multi-

dimensional arrays. Taking VGGNet for example, the input 

and output size were set to 224×224, delete the three-layer 

convolutional network layer, and change some function of 

active layer (i.e., Relu to tanh), etc. The purpose of our work 

on these CNNs is to testify the versatility, reliability and 

difference of their architectures on performance in DOA. 

Therefore, statistical comparison of their decoding accuracy 

in the same dataset is performed. On this basis, the same size 

of the input image is set to 224×224×3, and output is four 

classes. In all cases, minimal preprocessing is used in order 

to perform fair CNN input-to-output comparisons. 

 
In this section, for purpose of verifying the performance of 

the modified STFT presented in Figure 2, 10 patients’ data 

are randomly selected from Table II. Obviously, each patient 

has different anesthesia interval time while the same 

TABLE II 

CLASSIFICATION ON DOA RESULT THROUGH USING ORIGINAL STFT AND 

MODIFIED STFT PRIOR TO CNN. 

Patient 
Interval 

hours 

 Original STFT  Modified STFT 

Acc (%) SEN (%)  Acc (%) SEN (%) 

Pat A 2.53 84.13 82.43 91.76 88.95 

Pat B 2.67 84.74 81.63 92.11 87.57 

Pat C 1.65 83.17 80.88 92.02 87.70 

Pat D 2.08 84.04 81.80 92.80 88.51 

Pat E 3.80 83.61 81.48 92.28 87.98 

Pat F 2.77 85.43 83.13 92.63 87.51 

Pat G 2.70 84.48 81.45 92.28 87.98 

Pat H 1.47 85.86 83.02 91.76 87.52 

Pat I 1.48 84.91 81.83 91.93 86.98 

Pat J 2.08 86.91 84.30 93.06 89.04 

mean 2..32 84.73 82.20 92.26 87.97 

std 0.72 1.11 1.02 0.44 0.67 
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contribution to sample categories (i.e., data structure in Table 

I). Then a well-trained CNN (here is VGGNet, see Figure 4 

(c)) is used to test the performance of modified STFT method 

compared with the original STFT with a fixed window 

function. As a result, Table II summarizes the performance of 

the classification on DOA for CNN with original and 

modified STFT analyses. By applying signal interruption 

noise removal and classifying the signal into one category, 

prediction accuracy is 84.73% 0.011 and sensitivity is 

82.20% 0.010. When improving the STFT prior to CNN 

greatly improves prediction performance with accuracy 

increased to 92.26% 0.004 and sensitivity increased to 

87.97% 0.007. It is worth noting that in this study, the 

proposed approach works without any de-noising processing 

except signal interruption noise removal.  

As for the CNNs, limited to dependence on efficient 

computing environment, Nvidia Tesla k40 GPU from 

Lenovo Technology B.V. Taiwan Branch is used to our work, 

which reduces the process of CNN training to nearly its one-

tenth (i.e., 36h to 3.4h). Under such conditions, three 

different depth CNN models mentioned in section II(C) are 

prepared to train EEG spectrogram image datasets which has 

been set to the same CNN input and output. These depth of 

CNNs have many convolutional layers and has large-scale 

input that can receive data from high-pixel images, with the 

advantage that universal feature can be obtained from big 

data through different CNN structures. Fortunately, this 

characteristic is just being used to reduce the differences 

between the datasets and the obtained universal feature is just 

called DOA feature. 

At the beginning of the training step, small amount of data 

is selected to test the initial performance of these networks, 

and then the parameters need to be constantly changed 

according to the effects of multiple tests. These parameters 

include learning rate, batch size, epoch size, convolution 

kernel size, step size, sub-sampling layer size, step size, etc. 

The advantage of doing so is that it can improve the 

efficiency of CNN model building, which provides the 

possibility to adjust parameters of CNN model so as to 

achieve the optimal execution of the training model. As for 

the dataset, 70% of them was used as a training sample, 20% 

as a validation sample, and 10% as a test sample. The 

maximum epoch is based on the training of all images at least 

once (as determined by the model's training results 

eventually reaching steady state). Once the parameters of the 

model are adjusted, it will begin normal training. To clearly 

understand the changes in the performance of the CNN 

model during the training process, ModelCheckpoint 

instruction is used from the callback function. Its main task is 

to save the CNN model and all the weight values after each 

epoch, so that the model framework and weights can be 

saved when the model is in optimal performance. 

After completing the training process of the CNN model, 

the testing stage of each model is started for the test dataset. 

The results are shown in Figure 5, which can be clearly seen 

that for the shallow to deep CNN model architecture, the 

classification effect for the DOA is better. In detail, 

CifarNet's best classification accuracy is approximately 

87.50%, AlexNet's best accuracy is approximately 92.35%, 

and VGGNet's best accuracy is approximately 93.30%. In 

these three models (Figure 4), the result is getting better and 

better as the network gets deeper and deeper on the whole. 

Of course, special circumstances are not excluded, such as 

between 20-40 epochs and approximately 44 epochs, and so 

on. This performance also proves that CifarNet, AlexNet, and 

VGGNet are the benefits of the classic models of the era. 

Moreover, as the training process progresses, each CNN 

model presents a shift toward better performance, and the 

final model performance tends to be stable. Which explains 

that the model has achieved optimal performance at this stage 

and is consistent with CNN's own characteristics. 

CNN training is implemented through the Tensorflow 

deep learning framework, using the NVidia K40 GPU 

utilizing the Ubuntu 14.04 Linux operating system. All 

models have undergone the training of the early stop criteria, 

with a high validation accuracy model for the final model. In 

addition to VGG-13, other batch-size sizes are set to 128, 

which is the maximum batch size of the NVidia K40 GPU 

with 12 GB of memory capacity. Table III shows the training 

time and memory requirements of the three CNN 

architectures for DOA classification based on the EEG 

spectrum images, normalized up to a maximum of 100 

periods. 

This paper uses 10-fold cross-validation method [41] to 

evaluate the performance of the three trained CNN models. 

First, the time-frequency maps taken from each category of 

the EEG (AL, AO, AD, and SP) are individually and 

randomly divided into ten equal parts. Nine of these parts are 

used to train the CNN while the remaining one part is used to 

test the performance of the system. After each training of the 

CNN model is completed, the model is evaluated using data 

not used to train the CNN model. This strategy is repeated 

ten times by disrupting and rearranging test and training data 

sets. The accuracy, sensitivity, and specificity values reported 
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in this paper are averages obtained from these 10 assessments. 

Table IV shows the accuracy of the cross-validation results 

for each experiment. From the results, the ten groups are 

almost all close to a constant, the std values are all below 

0.0079, indicating that the experiment is successful and 

reliable. Therefore, it’s reasonable to consider that the 

classification results obtained by the EEG spectrum after the 

CNN coding model can establish the degree of similarity 

with the DOA assessment. 

 

The datasets in this paper are maintained similar 

distributions in the training and testing procedure to avoid 

over- and under-representation of classes due to dataset 

imbalance. Moreover, it is expected that our method will 

provide reliable reference for anesthetists in the classification 

of DOA levels. The errors in each prediction phase can be 

displayed by analyzing the confusion matrix, as shown in 

Figure 6. In general, there is an agreement among the 

proposed CNNs. All deeper CNNs perform better in different 

structures of CNN. Most of the errors are due to 

distinguishing AD / AO and AL / AO. The confusion matrix 

based on EEG spectrum images datasets for classification of 

DOA shows much variability in its category distribution, thus 

exhibiting a pattern that the sensitivity and precision of each 

category are less consistent, possibly because of the beauty of 

each CNN model, or its individualism. 

In detail, the most striking finding from Figure 6 is that the 

samples with the highest classification error rate are AO and 

AD samples. For CifarNet (seen from Figure 6 (a)), 21.66% 

of the model’s AO samples were predicted to be AL, AD and 

SP class (with distributions of 5.67%, 8.70% and 7.29%), 

while 23.28% of AlexNet’s AO samples (seen from Figure 6 

(b)) were predicted to be AD and SP class (with distributions 

of 10.93% and 12.35%) and 7.09% of VGGNet’s AO 

samples (i.e., Figure 6 (c)) were predicted to be AL and AD 

class (with distributions of 3.64% and 3.44%). This counter-

intuitive error becomes more reasonable when viewing the 

corresponding EEG spectrum information. Thus, when the 

classification error of the AO sample was expanded, it was 

found that the DOA corresponding to the category predicted 

to be AD class was mostly AO, whose standard category 

values are 0-40 and 40-60, respectively. In other words, these 

categories are too close in the distribution of some certain 

values, which leads to a more ambiguous classification. 

Moreover, there is no absolute anesthetic boundary in 

medicine. In addition, anesthesiologists who personally 

assess the DOA will have different opinions in assessing the 

DOA, which also increase the rationality of this result. While 

most spectrum images corresponding to categories predicted 

to be SP class have noisy interferences (i.e., Figure 1 (c) and 

(d)), for the reason that 80% of patients' anesthesia time are 

in AO class during surgery, during this period, environmental 

factors are more or less recorded together with EEG signals. 

At this time, it is difficult to accomplish the goal of correct 

classification even if manual selection is joined for selection. 

Similarly, 26.43%, 17.14% and 21.43% of AD samples in 

these CNNs were predicted to AO class. Obviously, this is a 

terrible error rate on a small test data. However, since AO 

data is much larger than AD data in anesthesia medicine, the 

data imbalance problem leads to the unconventional result. 

Furthermore, most of the misclassified samples also 

correspond to a DOA value of approximately 40 (i.e., the 

boundary between AD and AO), where it is difficult for the 

patient to reach anesthetic deep state during anesthesia 

according to the condition of the patient. In addition, during 

AD state, burst suppression in EEG is recognized as light 

anesthesia which is a serious problem in EEG based 

indicators when other methods are used such as median 

frequency and spectral edge frequency [42]. Therefore, the 

frequent confusion of the system is due to the fact that the 

EEG-based spectrum images is non-standardized (long span 

time, noisy existing). The AL category and the SP category 

had the best prediction effect (83.20% and 84.57% in 

CifarNet, 94.98% and 82.22% in AlexNet, 85.89% and 

100.0% in VGGNet). In all the classifications, the AO 

sample is the most likely object to be predicted with 90.21%, 

92.31% and 91.62% probability. Also, it has 78.34%, 

75.30% and 92.91% sensitivity, which proves that AO class 

is frequently confused with other classes. This seems 

plausible because the AO state is located in the center of the 

DOA space, what makes the discrimination from other 

classes difficult. However, the SP class with shallower CNN 

(CifarNet and AlexNet), there is a higher false negative in the 

AO class reaching 10.29% and 16.94% respectively. When 

TABLE III 
TRAINING TIME AND MEMORY REQUIREMENTS OF THE THREE CNN 

ARCHITECTURES ON DOA-BASED CLASSIFICATION UP TO 100 EPOCHS. 

 CifarNet AlexNet VGGNet 

Time 4.47h 4.29h 7.84h 

Memory 2.25 GB 3.45 GB 4.22 GB 

TABLE IV 
CROSS VALIDATION OF THREE CNN FRAMEWORK. 

Dataset 
Testing Accuracy 

CifarNet AlexNet VGGNet 

S1 0.8613 0.9190 0.9267 

S2 0.8778 0.9297 0.9311 

S3 0.8746 0.9115 0.9224 

S4 0.8798 0.9306 0.9421 

S5 0.8679 0.9210 0.9356 

S6 0.8753 0.9278 0.9361 

S7 0.8834 0.9337 0.9427 

S8 0.8823 0.9395 0.9478 

S9 0.8745 0.9239 0.9326 

S10 0.8756 0.9268 0.9324 

mean 0.8753 0.9264 0.9350 

std 0.0066 0.0079 0.0077 
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combined with the data structure in Table I, the AO class and 

SP classes account for 43% and 26% of the total sample. 

Hence, it is reasonable to believe that a high percentage of 

data will always result in a slightly higher percentage of false 

negatives when it comes to the non-equilibrium medical data. 

Of course, it also shows that the performance of these two 

CNN models needs to be further strengthened. 

Finally, each category in these CNNs show different 

classification accuracy and sensitivity, but they are still 

statistically significant. For the same input sample, the three 

CNN models perform different preferences in each category 

respectively. From Table IV, it can be seen that the 

prediction accuracy of CNN increases with the increase of its 

layers. And for the confusion matrices of three CNN models 

its performance is analogous as for overall accuracy. From 

the perspective of CNN structure, the reason for this type of 

result may be that the more complex the model structure, the 

more features it can store, and thus it is very attractive for 

regional-block classification of DOA. In general, almost all 

categories have reasonable errors and corresponding external 

factors and the overall classification accuracy can be 

considered as successful DOA prediction. 

In view of the creativity of the proposed method, its 

performance was compared with the recent DOA level 

assessment in the literature listed in Table V to highlight this 

article. It's difficult to judge which method is better with the 

reason that one method is usually adapted to one dataset that 

is limited in another dataset. In other words, one method can 

perform well with this dataset but probably poorly on other 

dataset. Therefore, the efficiency of the method is analyzed 

while ensuring high DOA level assessment accuracy. Thus, 

these methods listed in Table V are qualitatively analyzed for 

DOA assessment. Research reported in [12] has only used 

some traditional feature extraction projects and statistical 

methods to classify two DOA levels and achieved 93% 

accuracy, which got lower performance compared to the 

literatures [13, 14] and similar to our proposed methods. The 

authors in literatures [13, 14] were clever in corresponding 

feature extraction for patients. However, this leads to the 

need for sufficient expertise and time to run the feature 

extraction projects for new dataset. Finally, it gave a 99% 

accuracy rate via ANN or Forward Neural Network on three 

more DOA levels. Nevertheless, these methods are limited to 

feature acquisition or certain datasets. When applied to other 

datasets, they are not certain to perform well. Therefore, it’s 

reasonable to believe that even if the accuracy performance 

of proposed method in this article not as good as the methods 

from literatures [13, 14], it cannot denies the progress of our 

method.  

Furthermore, in this study, data reconstruction method was 

used instead of excellent feature extraction engineering, 

which greatly simplifies the complex process of manual 

features and mathematical calculation. It is believed that this 

study offers a motivational contribution to the anesthesia 

field, since it gave a 93. 50 % accuracy on three DOA levels. 

In terms of overall classification accuracy, the application of 
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our method in anesthesiology is desirable and also provides 

some reference for the subsequent linear classification of 

DOA. Moreover, there is no work being reported on 

successfully using similar methods on DOA assessment. 

From the performance of our work, it is creative to convert 

the time domain signal into a time-frequency signal in a 

DOA evaluation when the modified STFT is applied for this 

study. For the reason that it needn’t complex manual feature 

design processes in promoting the performance of CNN in 

DOA assessment, the performance of our study was with the 

recent studies included in Table V. This table shows that this 

paper uses data reconstruction method, which greatly 

simplifies the complex process of manual features and 

mathematical calculations, to achieve an accuracy of 93.50% 

when compared with the methods in [12-14], whose high 

accuracy is based on complex feature extraction. 

Furthermore, different layers of CNNs are used to explore 

the effectiveness of the proposed method. Considering the 

GPU environment for avoiding the overall delay caused by 

insufficient storage capacity and the non-specificity of a 

single CNN model, three infrastructures of CNNs are chosen 

to state the versatility and reliability of the DOA level 

classification rather than uniqueness. Of course, the purpose 

of this paper is not to design the CNN application, some 

modifications have been introduced based on the existing 

CNN model to adapt to the research in this paper. From the 

performance of CNNs in Figure 5 at DOA levels, as shown 

in Table IV, it is believed that CNN applied to our work 

provides novel ideas to the anesthesia field, since it gave a 

93.50% accuracy rate on three DOA levels. In general, the 

advantage of our work is as follows: from the perspective of 

method complexity, the proposed method does not need 

complicated manual feature design process compared to the 

methods listed in Table V.  

In this paper, a modified STFT method is proposed 

combined with enhanced CNN model with satisfactory result, 

but there are still some challenges that should be solved. First, 

as an alternative to the conversion of EEG time domain to 

time-frequency domain, STFT is an optional but perhaps not 

the best information conversion method. In addition, the 

selection of the window function in the STFT may influence 

on the performance of the learning method [27]. Second, in 

the case of traditional CNN structure functions and simple 

design, it does not always produce good performance, 

especially when it comes to unbalanced datasets that are 

common problems in health informatics [43]. Finally, the 

EEG signal of patients on anesthesia changes significantly 

depending on the different anesthetic drugs, making it 

difficult to have a categorized quantitative standard. When 

infiltrated into the study in detail, for example, a well-trained 

CNN model does not perform well in the transition phase of 

DOA (i.e., from AL state to AO state or from AO state to AL 

state). The reason is that, in the transitional phase, the 

patient's consciousness state during the operation is 

manifesting as a conscious state to a coma or a coma to a 

conscious state, whose state transition becomes extremely 

TABLE V 

COMPARISON OF THE CURRENT STUDY WITH THE PROPOSED METHODS. 

Literatures Anesthetic levels Method Accuracy rate 

[12] Awake, Asleep Lempel-Ziv Complexity (LZC) 

Approximate Entropy (ApEN) 

Spectral Entropy (SE) 

Median Frequency (MF) 

LZC: 93% 

ApEN: 89% 

SE: 76% 

MF: 64% 

[13] Low, Medium, High Feature extraction: 

 Correlation dimension (CD) 

 Lyapunov Exponent (LE) 

Classification Algorithms: 

 Artificial neural network 

 

CD+ANN: 97.8 % 

CD+LE+ANN: 97.5 % 

LE+ANN: 99 % 

[14] Deep anesthesia (0–25) 

Deep anesthesia (25–50) 

Moderate anesthesia (40–50) 

Moderate anesthesia (50–60) 

Light anesthesia (60–80) 

Awake (80–100) 

Feature extraction: 

 time, non-linear, frequency-based and entropy 

based features 

Classification Algorithms: 

 Feed Forward Neural Network 

99.05 % 

Current study Anesthetic Light (AL)(60-100) 

Anesthetic OK (AO) (40-60) 

Anesthetic Deep (AD) (0-40) 

Signal Polluted (SP) 

Data reconstruction method: 

 Short-time Fourier transform 

Classification Algorithms: 

Convolutional Neural Network 

93.50 % 
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unstable. Thus, the corresponding discrete spectrum images 

will lose certain characteristics and behave confusingly, 

leaving it more difficult to do classification. Therefore, the 

data in this part will show slightly higher misjudgment rate 

when tested, seen Section III (B) in detail. 

In fact, the used datasets are from our research team [23], 

and it lacked certain standards. To some extent, it affects the 

accuracy of our method when comparing the recent research 

(see Table V). Moreover, the traditional deep learning [44-46] 

is based on the specific objects in the image. For this paper, 

the characteristic of DOA level is uncertain, so it is difficult 

to design a specific CNN structure suitable for our work. As 

a result, three different CNN model structures are tested its 

performance in DOA. As described in [47], these 

architectures exhibit high-precision classical CNN models 

from existing image classifications, but it is unpredictable 

whether they exhibit high efficiency in the characteristic 

spectrum of physiological data. Therefore, the decoding 

performance of the three models was analyzed in the EEG 

spectrogram image set (see Section III (A) for details). In 

these cases, input-to-output comparisons of CNN was 

performed with minimal preprocessing. In addition to the 

whole CNN architecture, the designs were systematically 

evaluated of a series of important choices. Based on recent 

advances in learning and research on deep learning, the 

focused is on various network layer parameters, optimization 

algorithms, regularization strategies, batch normalization, 

and exponential linear unit activation parameters of the CNN 

training process to evaluate CNN's potential performance 

improvement in anesthesia assessments. From the training 

results in Table IV, it shows that the deep CNN can 

accurately identify the DOA features in the EEG signals of 

the entire anesthesia patient, and the wrong classification 

results are within acceptable error. It proves that the designed 

CNN framework can be used for the DOA classification, 

which may enrich commercial research on DOA. 

In addition, the three architectural models all showed good 

performance with the accuracy above 85%, and the best 

accuracy is reaching 93% or more (Figure 5). This is an 

excellent phenomenon. It shows that deep CNN is used to 

perform DOA classification through EEG spectrum images 

and it is obvious that CNN displayed superior performance at 

the field of DOA. At the same time, once the CNN weight 

parameters are extracted and reshaped into CNN framework 

models by EEG data export equipment, patient's DOA state 

will be immediately displayed without complicated 

computational processes. Thus, the performance of CNN 

could achieve universal and highly-efficient levels when 

compared with other conventional feature extraction methods 

showed in Table V, as well as in robustness. Moreover, there 

were three key factors being used and extensively evaluated 

in the process of no-regular coding of EEG to DOA: dataset 

characteristics, CNN’s architecture, and CNN’s parameters. 

As described in section II.C, three different depths of CNN 

frameworks were evaluated in training to identify the 

performance of the DOA features in the spectrum images 

from EEG, all of which were constantly updated CNN 

network parameters for achieving rapid and accurate patient's 

conscious status coding of anesthesia. The most exciting 

thing is that CNN can automatically complete the learning 

process of the target after the model learning parameters 

were adjusted. And filter weights in CNN are automatically 

adjusted during the training phase, making CNN like an 

automatic method of feature extraction. However, this paper 

still needs to further study CNN's performance features, such 

as experimental evaluation, CNN performance analysis, so 

that the classification process of CNNs on DOA can be 

explained in more detail, which perhaps enhance the 

accuracy and stability in DOA classification. 

In the future work, high accuracy, more classification 

levels and efficient performance requires further research, i.e., 

the DOA level is divided into 6 units or more. The grouping 

of classes is critical to the CNN supporting scalability with 

multiple classes. In general, high-level organizations can be 

easily identified in the visualization of the hierarchy because 

their labels can be described more precisely. Therefore, in the 

next step, deeper CNN will be attempted (such as GoogleNet 

and ResetNet) to build and test a deep CNN for DOA 

assessment in a high-speed GPU environment. In addition, in 

the case of processing large amounts of data, a method of 

automatically classifying spectrum images should be 

proposed instead of manually selecting and classifying EEG 

spectrum images. Moreover, more kinds of patient samples 

should be tested using trained CNNs to improve the 

reliability of the method. Alternatively, the transfer learning 

approach can be considered for a pre-trained CNN to be fine-

tuned with the pre-processed dataset in order to reduce the 

patient samples. 

 

The ability to assess the DOA has been studied and 

improved in the past few years. From their development, it 

can be seen that a large number of them are extracted from 

the EEG using the manual feature extraction method, and a 

few are directly evaluated through the feature from the EEG 

time-frequency map. It rarely encountered that CNNs with 

very strong learning abilities were applying to assessment of 

DOA. Although only a qualitative analysis of DOA 

assessment is currently performed, that is, the three 

anesthesia levels classified as AL, AO, and AD have not yet 

reached the quantitative analysis requirements, but for the 

current CNN performance in DOA prediction. It is useful to 

provide physicians with reference information, which 

qualified with a senior anesthesiologist assessment. In this 

way, they can take some preparatory measures to prevent the 

influence brought by drug differences and individual patient 

differences to the dose of anesthetic drugs on the unique 

guidance from the anesthesia apparatus, in purpose to ensure 

the safety of the patient's surgery. This paper presents a new 

approach using CNN and minimal feature engineering. This 
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proposal shows that it has a good relationship with the DOA 

characteristics in the EEG signals which opens up 

opportunities to have a safer intraoperative environment via 

building a simple DOA prediction device. 
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