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The Moderating Role of Master Production Scheduling Method
on Throughput in Job Shop Systems

Abstract

Accurately predicting throughput is a challenging task for managers of manufacturing companies

and analytical models for this purpose have been limited to small and simple production systems.

Motivated by a complex and real-world case from the automotive industry, this paper first ex-

amines how realistically the throughput of complex job shop systems can be predicted based on

problem characteristics and different master production scheduling (MPS) approaches. Next, it

investigates how different MPS approaches moderate the relationship between problem characteris-

tics and throughput. To achieve these aims, we develop a mixed-effects model based on operational

characteristics and the MPS development method to predict the system’s throughput. The analyses

are based on data from a real-world case in the automotive industry and two complex job shop sys-

tems in the literature. The experimental results indicate that the throughput of job shop systems

can be predicted with a high level of accuracy (R2 = 0.756) based on the problem’s characteristics

and that the predictive model cross-validates well on a holdout sample. Moreover, we observed

that the MPS method can moderate the impact of problem characteristics reflecting complexity,

capacity shortages, and setup requirements on throughput, with moderation especially pronounced

in the presence of capacity shortages.

Keywords: Production planning and scheduling; Throughput prediction; Mixed-effects models;

Complexity; Capacity shortage

1. Introduction

Predicting the throughput of manufacturing systems has been a challenge for researchers and prac-

titioners over the past few decades. This problem has been exacerbated by several factors, including

uncertainty about processing times, complex operation flows, machine breakdowns, and capacity

constraints among production resources. Increasing the accuracy of estimates regarding the through-

put of production lines can reduce operational costs and penalties that result from delays or lost

sales. Accurately predicting throughput can also contribute to customer satisfaction by improving

timely deliveries on realistic due dates during sales negotiations. Accurate estimation of throughput
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during the planning horizon can serve as a proxy for estimating realistic due dates for customer

orders. In addition to individual firms, throughput prediction has wider implications at the supply

network level. Any change in expected throughput by one member can trigger a domino effect

across the whole network.

Previous research in this field focused on the development of analytical models and approxima-

tions for throughput estimates of simple production systems with a limited number of work stations

and serial process flows under restrictive assumptions about the distribution of processing times.

The majority of these studies are validated using simple examples that may not be fair represen-

tatives of real-world operations in a job shop system (e.g., Baker et al., 1993; Baker and Powell,

1995; Duenyas and Hopp, 1993; Hopp and Simon, 1989; Liu and Yuan, 2001; Rao and Suri, 1994,

2000; Linhares, 2009). However, scheduling in a job shop system is generally complex (Kern and

Wei, 1996; Yang and Jacobs, 1999; Golmohammadi, 2015), especially in a dynamic system with the

possibility of shifting bottlenecks (Lawrence and Buss, 1994). To cope with the growing complexity

of throughput prediction in real-life applications, and in response to calls for further research to

deal with the complexities and uncertainties of actual environments (e.g., Kouvelis et al., 2005), a

strand of research has recently emerged that uses data-driven decision-making methods (e.g., Azizi

et al., 2015; Huang et al., 2016; Li et al., 2011). Our approach in the current research has been

inspired by this trend. We use a data-driven method in addressing our first research question (which

will be presented later in this section). In addition to excessive simplicity, another limitation of

previous research is the prediction horizon. The majority of the previous prediction models in the

literature focus on predicting throughput during the implementation stage (i.e., physical operation)

on the shop floor. These investigations ignored the influence of the master production schedul-

ing (MPS) approach and detailed scheduling decisions on throughput. Master production schedule

specifies how many of each product should be produced and when. It must be in accordance with

the aggregate production plan of the factory (Heizer and Render, 2008). After the production plan

has been implemented, the proposed master production schedule or detailed schedule may be very

different from the actual throughput. Figure 1 illustrates the scope of the prediction in this paper,

which covers three main stages: master production scheduling, detailed scheduling, and implemen-

tation on the shop floor. In this schematic flow diagram, rectangles represent ‘processes’ and arrows

represent ‘input/output’ to/from these processes. Previous research mainly focused on the imple-

mentation stage (i.e., stage 3) to predict the output of the shop floor based on detailed schedules.

The present research extends the scope of prediction to an earlier stage when demand is known. We

should clarify that the aim of this research is not to develop a throughput prediction model, but
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Figure 1: The Scope of Throughput Prediction

to investigate the predictability of throughput in complex job shop systems at an aggregate level

and before the MPS development stage to generate managerial insights for production planners

and marketing managers. More specifically, we study the factors in job shop systems that influence

the actual throughput and the factors that moderate the throughput. We develop a mixed-effects

model for our analysis. In other words, the intention here is to develop an analytical tool to explore

the dependencies among the variables that can affect throughput and to investigate the moderat-

ing role of MPS methods in the relationship between problem characteristics (e.g., operations with

setup or without set up) and throughput. In summary, motivated by a real case in the automotive

industry, this paper aims to address this gap and to provide managerial insights by addressing two

fundamental research questions:

RQ1. How accurate is the prediction of throughput of complex job shop systems based on problem

characteristics and before the development of an MPS?

RQ2. Can the MPS method moderate the impact of the influential factors on throughput, and if so,

how?

To address these questions, we use three complex job shop systems, including a real case from

the automotive industry and two of the most complex job shop cases in the literature. A set of

experiments is designed in a diverse set of problem instances (e.g., with or without setup operations)

based on the operations flows of these cases. In this way, several configurations of operations

flows are generated based on these cases to capture the dynamic nature of operations in job shop

systems in different situations, for instance, when a bottleneck feeds another bottleneck or when the

operations sequence is complicated. The complexity of the operations, capacity shortage, and setup

requirements are considered the three main factors for generating data sets. Simulation models

are developed to simulate the production environment and to calculate the throughput of a wide
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range of problem sets. Using the simulation results, we develop a mixed-effects model (Laird and

Ware, 1982) for predicting the throughput of job shop systems based on problem characteristics

and MPS methods. The mixed-effects model allows us to answer our research questions and address

the non-independence of observations within our simulation scenarios. The moderating role of MPS

methods is also investigated through this analysis.

2. Related Literature

The research on throughput prediction was initially focused on analytical models or approximations

of serial production systems. Hopp and Simon (1989) provide a review of earlier work in this field

up to the 1980s. They also derive bounds and an approximation for the throughput of a two-stage

production system, including two processing machines in the first stage and an assembly station

in the second stage assuming exponential service times and buffer constraints. Baker et al. (1993)

develop a Markov model of a similar production system and calculate the throughput of the system

over a range of average processing times using a spreadsheet for exponential processing times. For

non-exponential processing times, the authors use a simulation-based methodology for calculating

the throughput. They make two extensions to their work and analyzed unbuffered systems with up

to five and 20 work stations, respectively using a simulation to calculate the throughput. Duenyas

and Hopp (1993) and Duenyas (1994) develop approximations for the throughput of a system con-

sisting of several fabrication lines that feed an assembly line assuming exponential processing times

and constant work-in-process. Rao and Suri (1994, 2000) develop analytical models for evaluating

the performance of a production system that consists of an assembly station with input from mul-

tiple fabrication lines. The authors present approximation algorithms to estimate the throughput

and mean queue lengths of these systems with exponential processing times. The solution procedure

is a recursive algorithm based on an approximation that involves solving multiple interrelated sub-

networks using mean value analysis (MVA). Baker and Powell (1995) develop approximate methods

for predicting the throughput of unbalanced three-station assembly systems. The authors present

a distribution-free approach for the general case and an approximation that produces analytic re-

sults for particular distributions. Liu and Yuan (2001) model a simple two-stage assembly system

that includes three work centers as a Markov process and obtain the distribution function of the

production flow time. Subsequently, they use the distribution function to estimate the system’s

throughput.

Analytical tools for predicting throughput have been applied only to simple production systems

that include serial (flowshop) operations and restrictive assumptions regarding processing times.
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Many production systems are organized as job shops, which are characterized by complex production

flows and multiple and changing bottlenecks (Lawrence and Buss, 1994; Yang and Jacobs, 1999;

Tsubone et al., 2000; Golmohammadi and Mansouri, 2015). This organization has further limited

the applicability of analytical models for throughput prediction in job shop systems. To address

these shortcomings, researchers have recently shifted to using data-driven decision making, which

is shown to be a powerful approach for prediction in complex environments (e.g., Scala et al., 2014;

Cao et al., 2015; Kontar et al., 2017; Batur et al., 2018; De Caigny et al., 2018; Jeong et al., 2018; Li

et al., 2018). In this line, Li et al. (2011) develop an autoregressive moving average (ARMA) model

to predict the bottleneck of a manufacturing system that defines its throughput. Using historical

data, Azizi et al. (2015) construct a Bayesian interface to predict the throughput of a tile production

line. The production line studied in their research is a flowshop system with fixed operations

flows for all products. Golmohammadi (2013) develops a neural network model, which is focused

on detailed scheduling for analysis of job shop scheduling. The proposed model’s output helps

managers estimate the throughput based on historical data with a trained neural network model

instead of a simulation model, which is a costly and complex approach for analysis of scheduling.

The main shortcoming of the research is that the training data set may not comprise new problem

characteristics, therefore, the prediction results may not be accurate. Huang et al. (2016) develop

a simulation assisted neural network to predict the throughput of a production system for thin film

transistor liquid crystal display color filter fabs. The forecasting system enables planners to conduct

what-if analysis for production control policies without disrupting manufacturing operations. The

authors show that the hybrid forecasting system can estimate the throughput of production more

quickly. Hadidi and Moawad (2017) employ integer linear programming to formulate the product-

mix problem for multiple production lines in sequenced stages in steel industry. Their goals are to

provide the maximum throughput for all production stages and avoid production interruptions.

Predicting throughput in job shop systems is more challenging due to the complex operations

flows. To the best of our knowledge, prediction of throughput for complex job shop systems and

real-world operations have been overlooked in the literature. This paper seeks to close this gap

by providing managerial insights into the factors that can influence the throughput of job shop

systems and the moderating role of the MPS method in realizing the throughput. For the research

community, this paper contributes to the literature on throughput prediction by providing a better

understanding of the factors that affect throughput of job shop systems. In this way, this paper paves

the way for the advancement of analytical and approximation models for predicting throughput in

complex production environments.
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3. Methodology

We use a combination of mixed-effects modeling, simulation, and experiment design to answer our

research questions. We develop a mixed-effects model based on demand and problem characteristics

to predict the throughput of job shop systems before the MPS development stage. Mixed-effects

modeling provides a flexible and robust platform for the development of prediction models for

complex systems, including multi-stage production systems. An alternative approach to mixed-

effects modeling is simulation. However, this approach becomes impractical and a computational

chore when the number of alternatives to examine is large (Baker and Powell, 1995). Moreover,

simulation modeling needs expert assistance to change the scheduling model (Golmohammadi and

Shimshak, 2011; Pegden et al., 1995; Schelasin and Mauer, 1995). Another reason for the use

of mixed-effects modeling to generate predictions of throughput vis-à-vis simulation is that they

isolate the most important predictors of throughput, thus facilitating managerial decision making

by identifying a parsimonious number of system characteristics that are the most influential in

throughput. Simulation modeling has been widely used for ‘evaluation’ purposes, for instance, to

evaluate the performance of different production plans and priority rules (e.g., Ardalan and Diaz,

2012; Golmohammadi, 2013). Another benefit of using mixed-effects modeling in this context is

that this technique allows us to account for the clustered nature of our data (i.e., the MPS solutions

nested within a given experimental scenario). To develop the prediction model, we use simulation

modeling and a range of problem instances that cover the key features of the real-world situations

in job shop systems. The main features of the research steps are summarized as follows:

• Our prediction model covers three stages: master production scheduling, detailed scheduling,

and manufacturing operations (or implementation) on the shop floor (see Figure 1). We use

integer linear programming (ILP) and three methods from the literature to develop an MPS

in the first stage.

• We then use three job shop production systems to develop the prediction model, including a

complex case from the automotive industry and two of the most complex job shop systems

from the literature. Several configurations of operations flows are generated based on these

cases.

• Based on common recommendations in the literature (Atwater and Chakravorty, 2002; Baker

and Trietsch, 2013; Fredendall and Lea, 1997; Goldratt et al., 1986; Golmohammadi and

Mansouri, 2015; Kouvelis and Tian, 2014; Pinedo, 2012; Shafer and Charnes, 1993; Sobreiro

and Nagano, 2012; de Souza et al., 2013; Sobreiro et al., 2014), we primarily consider six
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predictors in three categories: the complexity of the operations, capacity shortage, and setup

requirements for the prediction of throughput. These predictors will be defined in details later

in Section 3.2.

• Considering two levels for complexity and capacity shortage (high and low) and setup re-

quirements (with and without), we generate 256 data sets based on the three cases for the

experiment.

• For detailed scheduling (stage 2), we use the drum-buffer-rope technique (Schragenheim and

Ronen, 1990). Flexible rules are defined to prioritize operations on machines in order to

maximize throughput. Simulation models in ARENA 13 are developed to simulate the gen-

erated operation configurations based on the three cases and to calculate the throughput of

the production system (stage 3).

• For the implementation of each MPS, Opt Quest in Arena Software is used to determine the

input variables for detailed scheduling, such as batch size or time to release materials.

• The observed throughputs of the four MPS methods for each problem instance are normalized

in the interval [0,100] and considered as the dependent variable.

• We use 256 simulation observations for the development and testing of the mixed-effects model.

We use a 75% random sample (N = 192 cases) for calibration and the remaining 25% (N =

64 cases) for validation in the current analysis.

In this section, we first explain the methods, which we choose for the master production schedul-

ing, as one of the factors that affects the system’s throughput. Subsequently, we provide details

of problem generation for the simulation modeling and detailed scheduling. Finally, we discuss

the development of the mixed-effects model. To enhance readability, a list of the acronyms used

throughout the paper is provided in Table A1 in Appendix A.

3.1. Methods for Master Production Scheduling

We select four MPS methods including an ILP model and three algorithms from the literature: al-

gorithms by Fredendall and Lea (1997) (referred to as FL97), Sobreiro and Nagano (2012) (denoted

by SN12), and Golmohammadi and Mansouri (2015) (called GM15). These methods provide rea-

sonable coverage of common MPS development methods as fair representatives of existing methods

that consider capacity constraints at an aggregate level. The ILP model is a standard approach

and is used by many researchers as a benchmark method in previous research (e.g. Luebbe and

Finch, 1992; Plenert, 1993; Aryanezhad and Komijan, 2004). The FL97 algorithm is one of the

first heuristic methods in the literature whose focus is on the effective utilization of system con-
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straints. This method is a well-known benchmark in the literature and used by many scholars (e.g.

Aryanezhad and Komijan, 2004; Sobreiro and Nagano, 2012; Golmohammadi and Mansouri, 2015).

There have been several extensions to FL97 in the literature, and we chose the SN12 algorithm as

one of the most recent developments that covers all prior developments in this line. Finally, the

GM15 method is one of the most recent algorithms and the only, to the best of our knowledge,

method that considers the complexity of operations as an explicit factor in the development of an

MPS. A brief outline of these methods is presented in the following subsections.

3.1.1. The ILP Model.

For a problem with n products and m machines, in which aij represents the processing time of a

unit of product i, on machine j, CMi denotes the contribution margin of product i and CPj denotes

the available capacity of machine j; the following ILP model optimizes the production quantities

(Qi’s) subject to demand Di for product i; i = 1, . . . , n:

Maximize

n∑
i=1

QiCMi , s.t. : (1)

n∑
i=1

Qiaij ≤ CPj ; j = 1, . . . ,m (2)

Qi ≤ Di ; i = 1, . . . , n (3)

Qi ≥ 0 ; Qi ∈ Z ; i = 1, . . . , n (4)

Under capacity constraint, this formulation represents a special case of the Knapsack problem,

which is known to be NP-hard (Garey and Johnson, 1979).

3.1.2. The FL97 Algorithm

Fredendall and Lea (1997) develop a heuristic method (called FL97 hereafter) to overcome the short-

coming of earlier methods in the presence of multiple constraints in the system. Using numerical

examples, the authors first show that traditional methods for product mix decisions (e.g., Goldratt,

1990; Plenert, 1993) face difficulty finding an optimal solution when there is more than one bottle-

neck (constraint) in the production system. The algorithm is carried out in two main steps. The

first step identifies the system’s constraints based on the difference between the resources’ capacity

and the demand on them. The second step determines how to use the system’s constraints by

considering all candidate bottlenecks. Fredendall and Lea (1997) compare the performance of the

FL97 algorithm with Goldratt (1990)’s method and ILP. The authors show that the FL97 algorithm
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outperforms Goldratt (1990)’s method in terms of throughput. In comparison with ILP, they show

that the FL97 method is able to find the same results as ILP but with less computational effort.

3.1.3. The SN12 Algorithm

Sobreiro and Nagano (2012) seek to improve the performance of prior methods for product mix

decisions, including the FL97 algorithm, in large instances. The authors propose a constructive

heuristic (called SN12 hereafter) based on some components of the FL97 algorithm and a greedy al-

gorithm for the Knapsack problem, which is proposed by Kellerer et al. (2004). The SN12 algorithm

first identifies an initial product mix using greedy algorithms for the Knapsack problem (Kellerer

et al., 2004). Subsequently, the algorithm improves the initial solution using a neighbourhood

search method. Sobreiro and Nagano (2012) compared the performance of their algorithm with two

heuristic methods, including the FL97 algorithm and one of its variations developed by Aryanezhad

and Komijan (2004), and ILP on small and large data sets. The results indicate that the SN12

algorithm performs better than the two benchmark heuristic methods in terms of throughput and

that the performance gap widens as the number of constraints increases. The authors also show

that the SN12 algorithm finds the best solution quicker than the benchmark methods.

3.1.4. The GM15 Algorithm

To overcome the limitations of previous methods in the presence of complex operations and ca-

pacity shortages, Golmohammadi and Mansouri (2015) develop a heuristic method (called GM15

hereafter). They argue that the calculated throughputs by earlier methods in the literature are

not realized during the implementation of the MPS on the shop floor when the production flows

are complex and the capacity shortages of the bottlenecks are significant. To address these short-

comings, the GM15 algorithm first identifies bottlenecks using a novel procedure that takes into

account the complexity of the operations and the level of capacity shortage in the identification

of the system’s bottleneck. Next, an initial MPS is developed based on the identified bottleneck.

Finally, the initial MPS is improved through a local search. Golmohammadi and Mansouri (2015)

design an experiment that included a range of problem instances and compared the performance

of the GM15 algorithm with FL97, SN12, and ILP based on static (before the implementation of

the MPS on the shop floor) and dynamic (after the implementation of the MPS) throughput using

simulation. The results indicate that the GM15 algorithm significantly outperforms the benchmark

methods in problems with setup times in terms of dynamic throughput.

For further clarification of the concepts of static and dynamic throughputs, we explain it with

an example here. Consider an instance where ILP is employed to determine the optimal production
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quantities to maximize the throughput (i.e. static throughput). After the implementation of the

production plan, the actual throughput (i.e. dynamic throughput) of the operations is most likely

different from the results of the ILP method. Such deviation could be due to a number of fac-

tors that affect the actual operations such as work-in process, changeover operations and sequence

of operations. These factors are not considered during the development of the production plan.

Deviations between dynamic and static throughput are expected to be more when operations are

complex. These situations happen, for instance, when different parts of one product need to use a

constraint machine, or when there are many changeover operations for different products.

3.2. Problem Characteristics

Based on a review of the literature on master production scheduling for job shop systems, we consider

six characteristics that are claimed to influence throughput in three categories: the complexity of

the operations, capacity shortage, and setup requirements. Below, we introduce the variables in

each category.

• Complexity of operations. Goldratt et al. (1986) argue that two factors affect the complex-

ity of operations. These factors include the complexity of flow and the number of products that

need the same machine. Golmohammadi and Mansouri (2015) demonstrate that the complex-

ity of the operations can significantly affect the realized throughput and define a complexity

index as a function of the number of products that need a machine and the total number of

times a machine is required to process all parts. This index reflects not only the dependence

between products and machines but also the total number of visits to the machine capturing

the loops and cyclic operations. The level of complexity (denoted by ComplexityLevel) in a

problem is specified according to the number of complex machines. We use Golmohammadi

and Mansouri (2015)’s classification for categorizing problems that have high and low Com-

plexityLevel. To distinguish between problems at the same level of complexity, we consider the

Ratio of Complex Machines (RCM), the number of complex machines to the total number of

machines, as another indicator of complexity. Moreover, we consider the dependence between

machines and products as another indicator of complexity (Shafer and Charnes, 1993). For

this, we use the Density of Part-Machine Incidence Matrix (DPMIM) metric, which is the ra-

tio of the non-zero elements of the part-machine incidence matrix (i.e., elements with aij > 0)

to total number of elements of the matrix (i.e., n×m). In sum, the three characteristics that

reflect the complexity of the operations include ComplexityLevel (categorical variable at two

10
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levels, low and high), RCM (scale variable between 0 and 1), and the DPMIM (scale variable

between 0 and 1).

• Capacity shortage. Many scholars argue that capacity shortage is one of the main factors

that influence the realization of anticipated throughput (e.g., Atwater and Chakravorty, 2002;

Fredendall and Lea, 1997; Kouvelis and Tian, 2014; Sobreiro and Nagano, 2012). Accordingly,

we consider CapacityShortage at two levels, low and high to categorize problems in this respect.

Capacity Shortage is considered high if more than half of the machines are under capacity

to meet the demand and is considered low otherwise. To account for the variations among

the problems with the same level of CapacityShortage, we define the Ratio of Under-Capacity

Machines (RUCM) as another indicator of shortage in capacity. RUCM simply measures the

ratio of under-capacity machines (with reference to demand) to the total number of machines.

In short, the two problem characteristics regarding the capacity factor are CapacityShortage

(categorical variable at two levels low and high) and RUCM (scale variable between 0 and 1).

• Setup requirements. We consider setup requirements (denoted by Setup) in a problem

as another characteristic that can affect the realized throughput. Problems with Setup are

subject to more uncertainty in utilizing the available time on machines (Baker and Trietsch,

2013; Pinedo, 2012). Setup refers to the preparations that can be made only when the machine

is not in use. Off-line and negligible setups (such as tool changes in a Computer Numerical

Controlled (CNC) machine) are not considered here as Setup. Finally, Setup is represented

by a binary variable in the mixed-effects model.

3.3. Problem Generation

Three job shop production systems are used to develop the prediction model: a complex production

system from the automotive industry and two of the most complex job shop systems from Hsu and

Chung (1998) and Atwater and Chakravorty (2002). The automotive case problem (denoted by

AutoCase hereafter) is adapted from a manufacturer of exhaust parts that uses a job shop system.

For this research, we select five products: A, B, C, D, and E. Product B requires two raw materials,

B1 and B2. In total, there are 16 different machines in the production system (M1 to M16) with only

one of each type available for operations. The operations routes of the products are summarized in

Table 1. Additional details of the AutoCase are presented in Appendix B. They include processing

and setup times for products A and C (Table B1), products B1 and B2 (Table B2), and products D

and E (Table B3). Finally, Table B4 summarizes the aggregate processing times, demands during
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the planning horizon (one month), contribution (profit) margins of the products and the machines’

available capacities.

Table 1: Operations Routes of the Products in the AutoCase Problem

Products Operations routes

A M8-M7-M7-M3-M5-M3-M5-M4-M4-M5-M2-M2-M7-M7
B1 M1-M5-M6-M5-M5-M4-M6-M5-M4-M3-M1-M10-M11
B2 M9-M12-M4-M11
C M9-M12-M4-M6-M6-M12-M16-M6-M12-M13-M13-M14-M15-M16
D M1-M2-M4-M5-M4-M5-M7-M8-M13
E M1-M4-M5-M4-M5-M4-M6-M7

We choose the AutoCase problem because it represents a highly complex situation and is sim-

ilar to most real-world job shop systems. In addition, we select two of the most commonly used

benchmark problems from the literature. They include the problem by Hsu and Chung (1998)

(denoted by HC98) that contains four products and seven machines and the problem by Atwater

and Chakravorty (2002) (coded as AC02) that include 10 products and 13 machines. These cases

represent the most complex problems that we are able to find in the literature. Consequently, 32

scenarios are generated based on these three case problems. For this, we consider the complexity of

the operations at two levels (low and high) and the capacity shortage at two levels (low and high)

as the two main factors for the generation of data sets. Table 2 shows the spread of the problem

instances across the two dimensions: the complexity of the operations and capacity shortage. Fi-

nally, each problem is considered in two variants: with and without setup resulting in 32× 2 = 64

test problems. Each problem is solved using the four MPS solution methods described in Section

3.1, i.e., ILP, FL97, SN12, and GM15. This resulted in 64 × 4 = 256 observations, which are used

to develop the prediction model.

Table 2: Distribution of 32 Problem Instances Generated from the Three Base Problems

Level of operations’ complexity

Base problem Low High

Level of capacity shortage

Low
HC98 2 3
AC02 3 2
AutoCase 3 3

High
HC98 3 2
AC02 3 3
AutoCase 2 3

3.4. Simulation Setup and Detailed Scheduling

Three of the MPS solution methods, namely, the FL97, SN12 and GM15 algorithms, are coded in

C++. Excel Solver is used to solve the ILP models. The MPS that is found by the four solution

methods is then inputted in simulation models of the respective production systems as defined by
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the test problems. ARENA 13 is used to simulate the production environment and to calculate the

throughput of the production system. The simulation models are run for a period of 14,400 minutes

for the instances derived from the AutoCase, 2,400 minutes for HC98 and 2,040 minutes for AC02,

respectively, based on the original described case information. The ARENAs animation capability

and verication techniques ensure that the assumptions and parameters are correctly considered in

the simulation models. One of the assumptions is that there are no defective parts or machine

failure. Demands are satisfied as much as possible during the operation periods and based on the

available capacities of the machines. The simulation models are run for defined operation periods

for each problem instance and then stopped. Following Kelton et al. (2009)’s guidelines, we do not

consider warm-up periods to reach steady states. The designed models start out empty of parts,

and all resources are considered to be ideal. This is a terminating system situation, and therefore,

no warm-up is required to ignore the initial conditions.

For detailed scheduling the same scheduling techniques for all MPS methods have been imple-

mented. We use the drum-buffer-rope technique (Schragenheim and Ronen, 1990) in all the models.

Flexible rules are defined to prioritize operations on machines in order to maximize throughput. In

this way, products with higher marginal contributions are given priority unless there is a product in

the final stage of operations. In this situation, the original priority rule is overridden to reduce the

WIP and to increase throughput. These rules are assessed through simulation modeling tests and

verified accordingly. Opt Quest optimization software is used to determine the detailed schedules

by searching for optimal solutions within the ARENA simulation models. For each MPS imple-

mentation, input variables for detailed scheduling, such as inter-arrival times between batches, and

arrival batch sizes, are determined by Opt Quest to increase throughput. The models are simulated

for 1,000 runs with 30 iterations in each run. It should be noted that detailed scheduling method

cannot affect NT in our experiments because we utilize drum-buffer-rope technique for all MPS

methods. Thus, this factor is constant and cannot consequently affect the results of the scenarios.

4. Prediction Model

In this section, we develop a mixed-effects model to study the throughput of job shop systems

based on problem characteristics and the four MPS methods introduced in Section 3.1. The in-

tention here is to develop an analytical tool to explore the dependencies among the variables that

can affect throughput and to investigate the moderating role of MPS methods in the relationship

between problem characteristics and throughput. Table 3 provides the list of notations used for the

development of the mixed-effects model.
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Table 3: List of Notations used in the Mixed-Effects Model

Item Definition

n : Number of products
m : Number of machines
i : Index for products; i = 1, . . . , n
j : Index for machines; j = 1, . . . ,m
k : Index for MPS methods; k = 1, . . . , 4
` : Index for problem sets; ` = 1, . . . , 64

aij : Processing time of a unit of product i on machine j
CMi : Contribution margin of product i
CPj : Available capacity of machine j
Qi : Production quantity of product i
Di : Demand for product i

NTk` : Normalized throughput of problem set ` obtained by MPS method k
AutoCase` : Binary variable, which takes ‘1’ if problem set ` belongs to the AutoCase

and ‘0’ otherwise
HC98` : Binary variable, which takes ’‘1’ if problem set ` belongs to the HC98

and ‘0’ otherwise
AC02` : Binary variable, which takes ’‘1’ if problem set ` belongs to the AC02

and ‘0’ otherwise
ComplexityLevel` : Complexity level of problem set ` (‘low’ or ‘high’)

RCM` : Ratio of complex machines in problem set ` (∈ [0, 1])
DPMIM` : Density of part-machine incidence matrix in problem set ` (∈ [0, 1])

CapacityShortage` : Capacity shortage level of problem set ` (‘low’ or ‘high’)
RUCM` : Ratio of under-capacity machines in problem set ` (∈ [0, 1])
Setup` : Binary variable, which takes ‘1’ if problem set ` has setup requirements and ‘0’ otherwise
FL97k` : Categorical variable, which takes ‘-1’ if the MPS method used to solve problem set `

is ILP,‘1’ if it is FL97 and ‘0’ otherwise
SN12k` : Categorical variable, which takes ‘-1’ if the MPS method used to solve problem set `

is ILP, ‘1’ if the MPS method is SN12 and ‘0’ otherwise
GM15k` : Categorical variable, which takes ‘-1’ if the MPS method used to solve problem set `

is ILP, ‘1’ if the MPS method is GM15 and ‘0’ otherwise
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4.1. Dependent Variable

In line with earlier research (e.g., Fredendall and Lea, 1997; Golmohammadi and Mansouri, 2015;

Sobreiro and Nagano, 2012), we consider the monetary value of the actual produced items of a job

shop system as its throughput (T). Using the notation in Section 3.1.1, the system’s throughput

can be calculated as follows:

T =
n∑

i=1

QiCMi , (5)

in which Qi and CMi represent the production quantity and the contribution margin of product i,

respectively. Recall that we have 64 test problems, 20 for HC98, 22 for AC02, and 22 for AutoCase.

Within each test problem, we have the throughput for each of the four MPS methods (ILP, FL97,

SN12, and GM15), resulting in a total of N = 256 data points. To make the throughput comparable

across the three cases, we normalize throughput within each case by dividing the throughput for a

given test problem-MPS method combination by the maximum throughput obtained within a given

case. Normalizing the data by the highest throughput in each scenario neutralizes differences that

arise due to differences in product value and overall units produced in each scenario. This results

in a measure that falls within the range [0, 1], which we then scale by 100 to create our dependent

variable that we term Normalized Throughput (NT). As shown in Figure 2, NT is approximately

normally distributed, with a one-sample Kolmogorov-Smirnov test for whether NT is normally

distributed being non-significant (D = 0.0526, p = 0.084).

Figure 2: Histogram of Normalized Throughput
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4.2. Predictors

Based on the 13 items discussed in Sections 3.1 to 3.3, including four MPS methods, six problem

characteristics, and three cases, we consider 11 predictors that may affect NT and thus, we include

in our analysis model. Although there are 13 predictors, we only include 11 variables in the model

because two sets of predictors are categorical vectors whereby we must remove one of the predictors

from each vector to avoid creating a linear combination that would cause an estimation failure in

the mixed-effects model. As we examine three cases, we include two dummy variables for AutoCase

(AutoCase) and HC98 (HC98)–treating AC02 as the omitted category–to control for stable between-

case differences that may affect NT. We include a dummy variable denoted as ComplexityLevel

that equals 0 for low and 1 for high complexity test problems (as defined in Section 3.2). We

include the RCM (Section 3.2) as the second measure of complexity. We mean-center this predictor

before conducting the analysis to improve parameter interpretability. We include a third measure

of complexity that is denoted as DPMIM, which is defined in Section 3.2. We mean-center this

predictor before we conduct the analysis to improve parameter interpretability.

We include two measures that capture capacity issues. The first, denoted as CapacityShortage,

is a binary variable that equals 0 for low and 1 for high capacity shortage scenarios. The second,

is RUCM (Section 3.2) that we mean-center before we conduct the analysis to improve parameter

interpretability. We also include a measure that indicates whether setup requirements are necessary.

This measure, denoted as Setup, is a binary variable that equals 0 for problem sets with no setup

requirements and 1 for problem sets with setup requirements. Last, we include predictors that

represent the MPS methods described in Section 3.1. We do this using unweighted effect coding

(Cohen et al., 2003) where we treat ILP as the omitted category. The three binary predictors,

denoted as FL97, SN12, and GM15, thus represent the difference in NT for each MPS method vis-

à-vis the unweighted average across all four MPS methods (Hand and Crowder, 1996). As will be

elaborated upon, this coding scheme is particularly well-suited to examine the research questions.

4.3. Detailed Research Questions

According to the independent variables (i.e., predictors), we can now provide a more detailed level

of the two research questions set out in Section 1 as follows:

RQ1. How realistic is it to predict the throughput of job shop systems based on problem character-

istics and the MPS method?

RQ2. Given that the problem characteristics can be categorized in three groups, (1) complexity

(ComplexityLevel, RCM, DPMIM), (2) capacity shortage (CapacityShortage, RUCP), and
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(3) setup requirements (Setup), how can the MPS method moderate the impact of these

categories on throughput? More specifically:

RQ2.1. How can the MPS method moderate the impact of complexity on NT?

RQ2.2. How can the MPS method moderate the impact of capacity shortage on NT?

RQ2.3. How can the MPS method moderate the impact of setup requirements on NT?

4.4. Statistical Methodology

Given that the N = 256 cases are nested within 64 test problems, it is likely that the residuals

within a test problem are correlated. As the resulting 4× 4 residual covariance matrix for each test

problem represents the residual variances and covariances across the four MPS methods, it would

be inappropriate to assume that the residual variances are equal and the residual covariances are

constant. Thus, we model the residual covariance matrix using an unstructured pattern with the

mixed-effects modeling framework (Fitzmaurice et al., 2011; Hand and Crowder, 1996; Hoffman,

2015). Letting k index the MPS methods such that k = 1, 2, 3, 4 represent ILP, FL97, SN12, and

GM15, respectively, and letting ` index problem sets, the regression component of the model can

be written as follows:

NTk` =β0 + β1AutoCase` + β2HC98` + β3ComplexityLevel` + β4RCM`+

β5DPMIM` + β6CapacityShortage` + β7RUCM` + β8Setup`+

β9FL97k` + β10SN12k` + β11GM15k` + εk`

(6)

The covariance matrix for the residuals within each problem set, denoted as R, can be written

as shown in Equation (7). In Equation (7), σ21 represents the estimated residual variance of NT

for the ILP across the 64 problem sets, σ22 represents the estimated residual variance of NT for the

FL97 across the 64 problem sets, etc. Similarly, σ21 represents the covariance for the residuals for

ILP and FL97 within a problem set across the 64 problem sets, σ31 represents the covariance for

the residuals for ILP and SN12 within a problem set across the 64 problem sets, etc. We estimate

all mixed-effects models using full information maximum likelihood as implemented in the PROC

MIXED routine in SAS 9.4.

R =


σ21

σ21 σ22

σ31 σ32 σ23

σ41 σ42 σ43 σ24

 (7)

17



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

To answer the first research question, we randomly select 75% of our cases to form a calibration

sample (Nc = 192) and then fit the model captured in Equations (6) and (7) to this sample. We

then utilize the parameter estimates from Equation (6) to conduct a cross-validation analysis by

using these parameter estimates to generate the predicted NT for the remaining 25% of the cases

in the validation sample (Nv = 64). We then correlate the predicted and observed NT scores for

each case in the validation sample and square this correlation to obtain the R2 (Browne, 2000).

To answer the second research question, we expand upon our prior model and include interaction

terms between each MPS method and the characteristics of each individual problem set. We analyze

each set of interactions separately for each characteristic to improve interpretability. Given the use

of unweighted effect coding for the MPS methods, the resulting interaction terms can be interpreted

as the extent the use of an MPS method results in a characteristic having a more positive (negative)

effect on NT vis-à-vis the average effect of the characteristic across the MPS methods (Hand and

Crowder, 1996).

5. Results and Discussion

In this section, we provide answers to the detailed research questions set out in Section 4.3. Results

from fitting the mixed effects model represented in Equations (6) and (7) to the calibration sample

can be found in Table 4.

An examination of model diagnostics suggests the residuals are approximately normal, and

no influential observations unduly affect results. Overall, the model performs very well regarding

predictive accuracy, with an R2 of 0.756. Inspection of the results in Table 4 indicates that the three

sets of predictors have ceteris paribus effects on NT. First, the two dummy variables for AutoCase

and HC98 are statistically significant as a set (∆χ2 = 8.6 with 2 DF [p < 0.05]), and indicate that

on average NT is higher for the AutoCase and HC98 problem sets vis-à-vis AC02. Second, Setup is

significant and negative, indicating that NT is approximately 21.87 lower when setup requirements

exist. Third, the three effect coded variables for FL97, SN12, and GM15 are significant as a set

(∆χ2 = 34.7 with 3 DF [p < 0.01]). Looking at the estimated parameters, the results indicate that

the FL97 algorithm has a predicted NT that does not differ from the unweighted mean across the

MPS methods. The significant negative estimate for SN12 indicates that this algorithm predicts

an NT that is less than the unweighted mean across the MPS methods. The significant positive

estimate for GM15 indicates that this algorithm predicts an NT that is higher than the unweighted

mean across the MPS methods.
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Table 4: Results from Mixed-Effects Model Fit to the Calibration Sample

Model 1

Fixed Effects
Intercept 80.47∗∗

(28.29)
AutoCase 9.07∗∗

(3.13)
HC98 14.97∗∗

(2.90)
ComplexityLevel -3.60

(-1.06)
RCM 9.56

(0.72)
DPMIM -24.49

(-1.34)
CapacityShortage -2.78

(-0.86)
RUCM 0.34

(0.04)
Setup -21.87∗∗

(-15.53)
FL97 0.05

(0.15)
SN12 -2.83∗∗

(-5.47)
GM15 2.24∗∗

(7.28)
Variance Components

Var. ILP 41.41∗∗

Var. FL97 35.15∗∗

Var. SN12 44.40∗∗

Var. GM15 51.44∗∗

Cov. ILP, FL97 32.95∗∗

Cov. ILP, SN12 25.14∗∗

Cov. FL97, SN12 27.15∗∗

Cov. ILP, GM15 40.94∗∗

Cov. FL97, GM15 36.76∗∗

Cov. SN12, GM15 36.56∗∗

Measures of Fit
-2 Log Likelihood 1102.1
R2 Fixed Effects 0.756

† = p < 0.01,∗= p < 0.05,∗∗= p < 0.01 (two-tailed)
R2 calculated by squaring the correlation between the predicted NT for
the fixed effects and the observed NT per Hoffman (2015).
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To conduct the cross-validation analysis, we utilize the parameter estimates for the mixed-effects

coefficients in Table 4 to generate the prediction of NT for the 64 observations in the validation

sample. We then calculate the correlation between the predicted NT and the observed NT and

square this correlation (i.e., an R2 for the validation sample) to evaluate the model’s predictive

accuracy (Browne, 1975). Ideally, one hopes to see the predictive accuracy in the validation sample

not deteriorate drastically from the predictive accuracy in the calibration sample because this would

indicate the model is capturing idiosyncratic sample characteristics, as opposed to capturing facets

of the underlying process that gives rise to the data (Browne, 2000). The R2 for the validation

sample is found to be 0.733, suggesting the model captures the fundamental factors that affect

NT. The cross-validation analysis is also completed by refitting the model to the calibration sample

using only the significant predictors from the full model and then using the estimated mixed-effects

coefficients from this reduced model to generate predicted values for the calibration sample. The R2

in the calibration sample for the reduced model is 0.688. Thus, while the models perform similarly,

the full model exhibits higher predictive accuracy and is retained (Browne, 1975).

We now turn our attention to the second research question concerning how MPS methods

moderate the effects of problem characteristics on NT. We report these results in Tables 5 to 7 where

we refit Equation (6) and (7) to the full sample and then include the appropriate interaction terms

between the MPS methods. We evaluate whether the addition of the three interaction terms results

in a significant improvement in model fit using ∆χ2 tests (Hoffman, 2015). Beginning with Model 1

in Table 5, we see nearly identical conclusions as those that are reached when the calibration sample

is used, with the only change the parameter for DPMIM being marginally significant (p < 0.10) and

negative. Given the strong performance in the cross-validation analysis, the similarity of results is

to be expected.

Examining the sets of interaction terms, we see that four of the six problem set characteristics

have significant sets of interactions. Turning first to Model 3 in Table 5, we see that RCM displays

a statistically significant positive interaction with SN12. Given the use of unweighted effect coding,

we can interpret this finding to mean that relative to the unweighted mean across the MPS methods

(Hand and Crowder, 1996), use of SN12 results in RCM having a less negative (more positive) effect

of NT. To better understand this interaction, in Figure 3 we plot the interaction according to Aiken

et al. (1991). As can be seen in Figure 3, the likely reason the RCM has a more positive coefficient

for SN12 vis-à-vis the unweighted mean across the MPS methods is that, on average, SN12 results

in a lower NT across the range of RCM. Moreover, Figure 3 indicates that across the range of RCM,

GM15 displays the highest NT. Thus, while SN12’s performance improves more rapidly relative to
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Table 5: Results from Mixed-Effects Model Fit to the Full Model and Interactions of the MPS Methods
with ComplexityLevel and the RCM

Model 1 Model 2 Model 3

Fixed Effects
Intercept 79.11∗∗ 78.80∗∗ 79.11∗∗

(27.75) (27.53) (27.76)
AutoCase 10.29∗∗ 10.29∗∗ 10.29∗∗

(3.51) (3.51) (3.51)
HC98 16.37∗∗ 16.37∗∗ 16.37∗∗

(3.18) (3.18) (3.18)
ComplexityLevel -2.68 -2.05 -2.68

(-0.79) (-0.60) (-0.79)
RCM 13.06 13.06 14.59

(0.99) (0.99) (1.10)
DPMIM -34.83† -34.83† -34.83†

(-1.93) (-1.93) (-1.93)
CapacityShortage -2.65 -2.65 -2.65

(-0.82) (-0.82) (-0.82)
RUCM -0.79 -0.79 -0.79

(-0.09) (-0.09) (-0.09)
Setup -22.17∗∗ -22.17∗∗ -22.17∗∗

(-15.69) (-15.69) (-15.69)
FL97 -0.05 0.21 -0.05

(-0.20) (0.55) (-0.20)
SN12 -2.88∗∗ -3.52∗∗ -2.88∗∗

(-7.31) (-6.44) (-7.77)
GM15 2.38∗∗ 2.18∗∗ 2.38∗∗

(8.22) (5.34) (8.23)
ComplexityLevel × FL97 (0.53)

(-0.98)
ComplexityLevel × SN12 1.27

(1.64)
ComplexityLevel × GM15 0.40

(0.69)
RCM × FL97 (1.07)

(-0.97)
RCM × SN12 4.36∗∗

(2.87)
RCM × GM15 0.58

(0.49)
Variance Components

Var. ILP 37.88∗∗ 37.83∗∗ 37.56∗∗

Var. FL97 39.65∗∗ 39.65∗∗ 39.63∗∗

Var. SN12 44.09∗∗ 43.19∗∗ 42.02∗∗

Var. GM15 50.56∗∗ 50.29∗∗ 50.29∗∗

Cov. ILP, FL97 31.26∗∗ 31.28∗∗ 31.33∗∗

Cov. ILP, SN12 27.65∗∗ 27.89∗∗ 28.47∗∗

Cov. FL97, SN12 32.41∗∗ 32.35∗∗ 32.25∗∗

Cov. ILP, GM15 36.72∗∗ 36.85∗∗ 37.02∗∗

Cov. FL97, GM15 38.90∗∗ 38.87∗∗ 38.84∗∗

Cov. SN12, GM15 36.63∗∗ 36.14∗∗ 35.89∗∗

Measures of Fit
-2 Log Likelihood 1448.6 1443.5 1436.5

∆χ2 5.1 12.1∗∗

R2 Fixed Effects 0.755 0.756 0.758

† = p < 0.01,∗= p < 0.05,∗∗= p < 0.01 (two-tailed)
R2 calculated by squaring the correlation between the predicted NT for the fixed effects and the observed
NT per Hoffman (2015).
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Table 6: Results from Mixed-Effects Model Fit to the Full Model and Interactions of the MPS Methods
with the DPMIM and CapacityShortage

Model 4 Model 5 Model 6

Fixed Effects
Intercept 79.11∗∗ 79.11∗∗ 78.52∗∗

(27.75) (27.76) (27.45)
AutoCase 10.29∗∗ 10.29∗∗ 10.29∗∗

(3.51) (3.51) (3.51)
HC98 16.37∗∗ 16.37∗∗ 16.37∗∗

(3.18) (3.18) (3.18)
Complexity Level -2.68 -2.68 -2.68

(-0.79) (-0.79) (-0.79)
RCM 13.06 13.06 13.06

(0.99) (0.99) (0.99)
DPMIM -34.83† -32.05† -34.83†

(-1.93) (-1.77) (-1.93)
CapacityShortage -2.65 -2.65 -1.47

(-0.82) (-0.82) (-0.45)
RUCM -0.79 -0.79 -0.79

(-0.09) (-0.09) (-0.09)
Setup -22.17∗∗ -22.17∗∗ -22.17∗∗

(-15.69) (-15.69) (-15.69)
FL97 -0.05 -0.05 -0.42

(-0.20) (-0.20) (-1.13)
SN12 -2.88∗∗ -2.88∗∗ -1.73∗∗

(-7.31) (-7.35) (-3.34)
GM15 2.38∗∗ 2.38∗∗ 1.60∗∗

(8.22) (8.33) (4.15)
DPMIM × FL97 0.37

(0.24)
DPMIM × SN12 1.74

(0.80)
DPMIM × GM15 2.14

(1.35)
CapacityShortage × FL97 0.75

(1.39)
CapacityShortage × SN12 -2.29∗∗

(-3.12)
CapacityShortage × GM15 1.56∗∗

(2.85)
Variance Components

Var. ILP 37.88∗∗ 37.82∗∗ 37.55∗∗

Var. FL97 39.65∗∗ 39.33∗∗ 38.72∗∗

Var. SN12 44.09∗∗ 43.43∗∗ 43.79∗∗

Var. GM15 50.56∗∗ 49.78∗∗ 48.69∗∗

Cov. ILP, FL97 31.26∗∗ 31.41∗∗ 30.70∗∗

Cov. ILP, SN12 27.65∗∗ 27.87∗∗ 27.98∗∗

Cov. FL97, SN12 32.41∗∗ 31.95∗∗ 32.94∗∗

Cov. ILP, GM15 36.72∗∗ 36.96∗∗ 35.93∗∗

Cov. FL97, GM15 38.90∗∗ 38.40∗∗ 37.58∗∗

Cov. SN12, GM15 36.63∗∗ 35.91∗∗ 37.39∗∗

Measures of Fit
-2 Log Likelihood 1448.6 1442.3 1434.4

∆χ2 6.3 14.2∗∗

R2 Fixed Effects 0.755 0.757 0.759

† = p < 0.01,∗= p < 0.05,∗∗= p < 0.01 (two-tailed)
R2 calculated by squaring the correlation between the predicted NT for the fixed effects and the observed
NT per Hoffman (2015).
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Table 7: Results from Mixed-Effects Model Fit to the Full Model and Interactions of the MPS Methods
with the RUCM and Setup

Model 7 Model 8 Model 9

Fixed Effects
Intercept 79.11∗∗ 79.11∗∗ 78.21∗∗

(27.75) (27.76) (27.37)
AutoCase 10.29∗∗ 10.29∗∗ 10.29∗∗

(3.51) (3.51) (3.51)
HC98 16.37∗∗ 16.37∗∗ 16.37∗∗

(3.18) (3.18) (3.18)
Complexity Level -2.68 -2.68 -2.68

(-0.79) (-0.79) (-0.79)
RCM 13.06 13.06 13.06

(0.99) (0.99) (0.99)
DPMIM -34.83† -34.83† -34.83†

(-1.93) (-1.93) (-1.93)
CapacityShortage -2.65 -2.65 -2.65

(-0.82) (-0.82) (-0.82)
RUCM -0.79 1.92 -0.79

(-0.09) (0.21) (-0.09)
Setup -22.17∗∗ -22.17∗∗ -20.37∗∗

(-15.69) (-15.69) (-13.69)
FL97 -0.05 -0.05 0.80∗∗

(-0.20) (-0.20) (2.25)
SN12 -2.88∗∗ -2.88∗∗ -2.79∗∗

(-7.31) (-7.47) (-5.01)
GM15 2.38∗∗ 2.38∗∗ 1.30∗∗

(8.22) (8.50) (3.58)
RUCM × FL97 1.44

(1.00)
RUCM × SN12 -3.39

(-1.65)
RUCM × GM15 3.15*

(2.11)
Setup × FL97 -1.70∗∗

(-3.40)
Setup × SN12 -0.18

(-0.23)
Setup × GM15 2.17∗∗

(4.23)
Variance Components

Var. ILP 37.88∗∗ 37.81∗∗ 37.31∗∗

Var. FL97 39.65∗∗ 39.04∗∗ 39.65∗∗

Var. SN12 44.09∗∗ 44.08∗∗ 43.43∗∗

Var. GM15 50.56∗∗ 49.35∗∗ 46.61∗∗

Cov. ILP, FL97 31.26∗∗ 31.04∗∗ 31.22∗∗

Cov. ILP, SN12 27.65∗∗ 27.69∗∗ 27.03∗∗

Cov. FL97, SN12 32.41∗∗ 32.51∗∗ 32.37∗∗

Cov. ILP, GM15 36.72∗∗ 36.41∗∗ 35.21∗∗

Cov. FL97, GM15 38.90∗∗ 38.05∗∗ 38.80∗∗

Cov. SN12, GM15 36.63∗∗ 36.77∗∗ 35.01∗∗

Measures of Fit
-2 Log Likelihood 1448.6 1441.8 1425.1

∆χ2 6.8† 23.5∗∗

R2 Fixed Effects 0.755 0.756 0.757

† = p < 0.01,∗= p < 0.05,∗∗= p < 0.01 (two-tailed)
R2 calculated by squaring the correlation between the predicted NT for the fixed effects and the observed
NT per Hoffman (2015).
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the unweighted mean across the MPS methods as RCM increases, this more rapid improvement

does not allow the technique to outperform GM15. With this being said, it is important to recall

that the three measures of complexity have a limited relationship with NT, and thus, the limited

evidence of moderation should not be viewed as problematic.

Figure 3: Plot of the Predicted NT for the Interaction between the RCM and the MPS Methods

We now examine the significant set of interactions between CapacityShortage and the MPS

methods. The statistically significant negative interaction with SN12 indicates SN12 performs more

poorly than the unweighted average across the MPS methods when there is a capacity shortage.

In contrast, the significant positive interaction with GM15 indicates it performs better than the

unweighted average across the MPS methods when there is a capacity shortage. This is illustrated

clearly in Figure 4. Importantly, GM15 again outperforms all the remaining MPS methods and has

the ability to mitigate the negative consequences of capacity shortages on NT. Thus, the takeaway

from Figure 4 is that in scenarios with capacity shortages GM15 is the preferred algorithm and

SN12 should be avoided.

The third significant set of interaction terms involves the RUCM, with the interaction between

the RUCM and GM15 statistically significant and positive, indicating that the positive effect of the

RUCM on NT is more pronounced when GM15 is utilized vis-à-vis the unweighted mean across the

MPS methods. As shown in Figure 5, the striking feature of this finding is that GM15 displays a

higher NT across the range of the RUCM. This illustrates that not only is GM15 preferred when

there is a capacity shortage, but also the algorithm can further enhance NT when more machines

are operating under capacity.
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Figure 4: Plot of the Predicted NT for the Interaction between CapacityShortage and the MPS Methods

Figure 5: Plot of the Predicted NT for the Interaction between the RUCM and the MPS Methods
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The final significant set of interactions terms involves Setup, which has a statistically significant

negative interaction with FL97 and a statistically significant positive interaction with GM15. This

result indicates that FL97 exacerbates the negative effect a setup has on NT vis-à-vis the unweighted

average across the MPS methods, whereas GM15 diminishes the negative effect a setup has on NT

vis-à-vis the unweighted average across the MPS methods. This result can be seen in Figure 6.

However, the steep negative slopes in all instances indicate the severe detrimental impact Setup

has on NT. From a practical perspective, setup operations can make the planning process complex

and we expect further throughput deviation from the initial MPS. Among MPS models in the

literature, GM15 method considered the role of setup operations as part of MPS development. From

a statistical standpoint, it is straightforward to have the MPS method can moderate the impact of

setup requirements on NT. We can conceptualize setup as a “between-scenario” measure in that it is

fixed in the 64 scenarios (which we also term test problems), whereas the MPS method is a “within-

scenario” measure in that it varies within each scenario. Thus, this is conceptually equivalent to

testing a cross-level interaction (Singer and Willett, 2003) between a “level-2” predictor (setup) and

a “level-1” predictor (the vector of categorical variables capturing the different MPS methods).

Figure 6: Plot of the Predicted NT for the Interaction between Setup and the MPS Methods

6. Concluding Remarks and Managerial Implications

In this paper, we investigated the predictability of throughput in complex job shop systems at an

aggregate level and before the MPS development stage. More specifically, we addressed two research

questions regarding the practicality of accurately predicting throughput in job shop systems, the

factors that influence the actual throughput and the factors that moderate the throughput. The

results indicated that accurately predicting throughput based on problem characteristics is feasible.

The mixed-effects model performed very well, with an R2 of 0.756 based on a sample of 192 observed
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cases. Our validation using an independent sample of 64 cases confirmed the accuracy of the

prediction model with R2 = 0.733, suggesting the model captures the fundamental factors that affect

NT. The results indicate that the AutoCase and HC98 problems had higher NT in comparison with

AC02. We also identified that Setup is a major factor that negatively affects realized throughput.

The problems with setup had, on average, 21.87% less NT compared to their counterparts without

setup. The MPS methods are found to influence the NT. The GM15 algorithm resulted, on average,

in higher NT compared to the other MPS methods examined in this research.

In response to the second research question, we find that the impact of four out of six prob-

lem characteristics (identified in Section 3.2) on NT are moderated by the MPS methods. The

characteristics include the RCM, CapacityShortage, RUCM, and Setup. Furthermore, we observed

that SN12’s performance relative to the unweighted average across the four MPS methods declines

when there is a capacity shortage. In contrast, GM15 performs better than the unweighted average

across the MPS methods when there is a capacity shortage. The interaction between the RUCM

and GM15 being statistically significant and positive indicates that the positive effect of RUCM

on NT is more pronounced when GM15 is utilized. The final significant set of interactions terms

involves Setup, which indicates that FL97 exacerbates the negative effect setup requirements has

on NT, whereas GM15 diminishes the negative effect setup requirements has on NT.

The results of this research have practical implications for production planners and marketing

managers of manufacturing companies. They can increase accuracy of their predicted throughput

by choosing the most appropriate MPS method based on problem characteristics. Managers should

pay attention to the sensitivity level and capabilities of scheduling tools. If demands require complex

operations or processes, the tools with a proven record of performance evaluation in a static situation

can be very misleading. In a static situation, the role of factors in scheduling, such as WIP, queues,

setup time, and sequence of operations, is usually ignored. Therefore, tools such as ILP for complex

operations may not be enticing. However, it can be suitable for simple operations flow. In sum,

checking the type of required input variables (e.g., setup times) for managers can be helpful for

selecting scheduling tools or the level of confidence in the throughput estimate.

The findings of this research should be interpreted considering its limitations. Our results are

based on a real case from the auto industry and two of the most complex scheduling problems

from the literature. Although these could represent a wide range of scheduling problems, care

should be taken in generalizing the findings to problems with significantly different characteristics.

Moreover, we used simulation to estimate the dynamic throughput after the implementation of

detailed schedules at shop floor. As such, the general limitations of simulation modeling would be
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applicable to our research. This research can be extended in a number of ways. First, inclusion of

more problem characteristics could be examined to enhance the accuracy of throughput predictions

for different industries. Next, the role of bill-of-material (BOM) and dependence on suppliers could

be considered influential factors for companies with very large BOMs and numerous suppliers.

Moreover, understanding the impact of unbalanced levels of complexity would be an interesting

research subject. For instance, if complexity occurs mainly because several setup operations are

involved instead of because of the sequence of operations or the level of capacity shortage, what

would be the best options to make accurate predictions? Finally, the effect of the detailed scheduling

method on NT could be verified in future research.
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Electronic Supplement

Appendix A. List of Acronyms

Table A1: List of Acronyms

Acronym Definition

MPS : Master Production Scheduling
CNC : Computer Numerical Controlled
BOM : Bill-of-Material
WIP : Work-in-Process
MVA : Mean Value Analysis

ARMA : Autoregressive Moving Average
T : Throughput

NT : Normalized Throughput
AutoCase : The Auto Case

HC98 : The case problem introduced by Hsu and Chung (1998)
AC02 : The case problem introduced by Atwater and Chakravorty (2002)

ComplexityLevel : Complexity Level
RCM : Ratio of Complex Machines

DPMIM : Density of Part-Machine Incidence Matrix
CapacityShortage : Capacity Shortage

RUCM : Ratio of Under-Capacituy Machines
Setup : Setup requirement

ILP : Integer Lindear Programming
FL97 : The MPS method proposed by Fredendall and Lea (1997)
SN12 : The MPS method proposed by Sobreiro and Nagano (2012)

GM15 : The MPS method proposed by Golmohammadi and Mansouri (2015)

Appendix B. Additional Data for the AutoCase Problem

Table B1: Processing and Setup Times of Operations for Products A and C (minutes)

Product A Product C

Machine
Processing time
(Mean, Std. Dev.)

Setup time
(Mean,Std. Dev.) Machine

Processing time
(Mean, Std. Dev.)

Setup time
(Mean,Std. Dev.)

M8 Normal (0.5, 0.14) Gamma (20,5) M9 Normal (0.5, 0.13) Gamma (16,7)
M7 Normal (0.5, 0.19) Gamma (122,24) M12 Normal (1.35, 0.28) Gamma (22,9)
M7 Normal (1.5, 0.23) Gamma (115,36) M4 Normal (0.5, 0.19) Gamma (30,11)
M3 Normal (1, 0.25) Gamma (27,5) M6 Normal (0.85, 0.23) Gamma (47,22)
M5 Normal (0.5, 0.11) Gamma (32,8) M6 Normal (0.75, 0.31) Gamma (42,19)
M3 Normal (0.5, 0.21) Gamma (37,15) M12 Normal (2, 0.71) Gamma (48,24)
M5 Normal (0.5, 0.12) Gamma (26,11) M16 Normal (0.3, 0.1) Gamma (28,12)
M4 Normal (0.5, 0.21) Gamma (33,14) M6 Normal (1, 0.39) Gamma (46,18)
M4 Normal (0.5, 0.17) Gamma (20,5) M12 Normal (1.4, 0.17) Gamma (22,9)
M5 Normal (0.5, 0.22) Gamma (20,5) M13 Normal (4, 1.6) Gamma (32,15)
M2 Normal (0.4, 0.11) Gamma (20,5) M13 Normal (5,1.9) Gamma (29,13)
M2 Normal (0.5, 0.15) Gamma (20,5) M14 Normal (2, 0.8) Gamma (126,46)
M7 Normal (1, 0.27) Gamma (132,29) M15 Normal (1, 0.37) Gamma (64,34)
M7 Normal (1, 0.32) Gamma (112,44) M16 Normal (0.3, 0.12) Gamma (35,10)
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Table B2: Processing and Setup Times of Operations for Products B1 and B2 (minutes)

Product B1 Product B2

Machine
Processing time
(Mean, Std. Dev.)

Setup time
(Mean,Std. Dev.) Machine

Processing time
(Mean, Std. Dev.)

Setup time
(Mean,Std. Dev.)

M1 Normal (0.25, 0.11) Gamma (22,6) M9 Normal (0.5, 0.12) Gamma (17,5)
M5 Normal (0.3, 0.16) Gamma (33,10) M12 Normal (1.25, 0.26) Gamma (22,8)
M6 Normal (0.5, 0.15) Gamma (51,19) M4 Normal (0.4, 0.15) Gamma (35,7)
M5 Normal (1, 0.21) Gamma (30,8)
M5 Normal (0.45, 0.19) Gamma (30,14)
M4 Normal (0.3, 0.14) Gamma (45,17)
M6 Normal (0.5, 0.15) Gamma (80,13)
M5 Normal (0.55, 0.13) Gamma (30,5)
M4 Normal (0.3, 0.11) Gamma (32,9)
M3 Normal (1, 0.27) Gamma (28,11)
M1 Normal (1.05, 0.31) Gamma (33,14)
M10 Normal (0.5, 0.17) Gamma (55,16)
M11 Normal (3, 0.51) Gamma (31,10)

Table B3: Processing and Setup Times of Operations for Products D and E (minutes)

Product D Product E

Machine
Processing time
(Mean, Std. Dev.)

Setup time
(Mean,Std. Dev.) Machine

Processing time
(Mean, Std. Dev.)

Setup time
(Mean,Std. Dev.)

M1 Normal (1, 0.11) Gamma (14,3) M1 Normal (0.5, 0.1) Gamma (13,3)
M2 Normal (2, 0.13) Gamma (15,6) M4 Normal (0.5, 0.1) Gamma (20,5)
M4 Normal (0.3, 0.09) Gamma (20,10) M5 Normal (0.5, 0.06) Gamma (35,10)
M5 Normal (1, 0.23) Gamma (30,12) M4 Normal (1, 0.08) Gamma (37,20)
M4 Normal (0.2, 0.11) Gamma (22,5) M5 Normal (0.5, 0.1) Gamma (32,10)
M5 Normal (1, 0.21) Gamma (28,4) M4 Normal (0.5, 0.1) Gamma (20,9)
M7 Normal (0.75, 0.12) Gamma (31,8) M6 Normal (1, 0.12) Gamma (30,8)
M8 Normal (2, 0.29) Gamma (15,3) M7 Normal (1, 0.09) Gamma (15,5)
M13 Normal (1, 0.18) Gamma (21,6)
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