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A new model is proposed for elastic waves induced by
a pulsating flow in a stenotic artery containing several
stents. Dispersion properties of the waves depend on
the stent structure—this feature is addressed in the
present paper. Several vascular stenting procedures
include overlapping stents; this configuration is
also included in the model. The dispersion and
transmission properties are analysed; the analytical
derivations are accompanied by illustrative numerical
examples.

1. Introduction
Biomedical acoustics is a well-developed research
area encompassing the investigation of acoustic and
ultrasonic wave interaction with biological systems
of soft tissue, bone and organs. There are numerous
established concepts and ideas used in medical diagnosis
techniques and for a range of technical applications. One
specific topic of interest is acoustic wave propagation
in biological materials such as arterial tissue. As is
often the case for the analysis of acoustic waveguides,
mathematical modelling is very important in biomech-
anics problems that include pulsating flow. Analytical
models and numerical simulations for pulsating blood
flow for an unstented artery can be found, for
example, in [1–9]. In particular, it is known that
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the junctions between blood vessels act as scatterers, and reflection of acoustic waves from
branched blood vessels is observed in routine measurements [10,11]. Accordingly reflection of
acoustic waves is expected whenever the properties of the arterial wall are altered. The Bloch–
Floquet waves technique has been recently employed in many applications in order to understand
the dynamic properties of periodic systems [12–16]. In particular, it has been shown that there
is a link between the dispersion properties of an infinite periodic system and the transmission
problem for the corresponding finite system [17–19].

The approach introduced in the recent paper [20] offers a new model and theoretical
concept, which considers blood vessels containing stents (alterations of the arterial properties
and geometry). In addition to acoustic waves, the dynamic response of elastic solids was also
considered, and thus the model was extended to include elastic waves propagating in the blood
vessels reinforced by stents.

We note that the wall of a healthy blood vessel is a highly adaptable nonlinear system, and if
one tries to introduce a universal mathematical approach, then the system would be described by
nonlinear partial differential equations whose coefficients depend on both spatial and temporal
variables. An unhealthy (clogged) or stented blood vessel loses its flexibility and linearized
approaches can be adopted.

In the present paper, we focus on combining two approaches: the first one uses the Bloch–
Floquet framework applied to an infinite periodic system, while the second method is based
on the transmission analysis of a finite-thickness structured interface. In particular, we explore
homogenization approximations, where a stented region is described by differential equations
with variable coefficients.

Our approach is new in the dynamic response analysis of blood vessels, and it uncovers
important phenomena attributed to transitional regimes where pulsating flow changes rapidly
and hence high-order harmonics occur. The analytical nature of our approach enables us to use it
effectively in conjunction with transient simulations to identify the values of parameters leading
to the transitional regimes, which may be linked to vascular blockages in multi-scale stented
systems. For convenience of the reader, we have also included an appendix A, which outlines
the numerical method and the algorithm of simulations discussed in the paper. Also, we refer to
the book [21] as the further reading material on the finite-element method.

The structure of the paper is as follows. Section 2 presents the one-dimensional model for
a stented artery. Section 3 includes the calibration procedure for the one-dimensional model
versus the three-dimensional blood vessel. Here are also presented the dispersion properties of
the waves in stented systems for the one-dimensional model. The transmission problems for
sparse stents are analysed in §4, with the comparison being made to the dispersion properties
discussed in §3. The proposed model is employed in §5 extending the analysis to the case of two
overlapping stents in an artery. Conclusions, together with the discussion of the analytical results
and illustrative numerical simulations, are presented in §6.

2. A one-dimensional model for waves in a stented artery
A one-dimensional approach to model wave propagation through a stented artery was developed
in [1]. The paper [1] presented an analytical model that takes into account the fluid–solid
interaction in the framework of a transmission problem for a pulsating flow through a stented
blood vessel. In the current paper, we present the new study which includes (i) calibration against
the three-dimensional results of [20], (ii) the modelling of stents with sparse structure and (iii) the
Bloch–Floquet analysis of waves in stented vascular systems.

(a) Governing equations for blood flow in arteries
Referring to the study presented in [1], a low Mach number is assumed and the elastic
displacements of the wall of the blood vessel are considered to be small. By referring to the
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cross-sectional averages, we consider the pressure p(x, t), and the velocity u(x, t) to be functions of
the longitudinal variable x and the time t.

In our approach, we refer to a flow with a relatively low speed and hence consider a fluid,
which is acting as an acoustic medium and interacting with an elastic cylindrical shell. This
fully complies with the dynamic response of a blood vessel reinforced by a stent. The linearized
one-dimensional wave propagation model incorporates the mass and momentum conservation
equations, as follows:

∂p
∂t

+ c2 ρ

A
∂q
∂x

= 0 (2.1a)

and
∂q
∂t

+ A
ρ

∂p
∂x

= 0. (2.1b)

Here x is the axial coordinate along the vessel, t is the time, A is the cross-sectional area, q = Au
is the volumetric flow, c is the speed of propagation of the pulse wave, and ρ is the fluid density,
approximately constant for a nearly incompressible fluid.

System (2.1a,b) is reduced to the wave equation

∂2q
∂t2 − ∂

∂x

(
c2 ∂q
∂x

)
= 0, (2.2)

where c is constant in the homogeneous unstented artery, and c = c(x) is variable in the stented
region. In particular, for a cylindrical homogeneous artery, the value c0 of the wave speed can be
approximated (e.g. [22,23]) as

c2
0 ≈ Eh

ψ2Rρ
, (2.3)

where E is Young’s modulus of the artery, h is the thickness of the arterial wall, R is the internal
radius of the artery and ψ is a constant depending on the artery constraint.

(b) Model for an artery with a stent
For the stented region, alternative material properties must be considered. An additional wall
stiffness due to the stent and the plaque is included in the model. Referring to (2.3), E, h and A are
subject to variation. Assuming a reference wave speed c0 for the healthy (unstented) artery, the
wave speed c(x) in the stented region is taken to be

c(x) = c0 + cA + cBf (x), (2.4)

as proposed in [1]. Here cA, cB are constants, and f (x) is a periodic function of period L:

f (x + L) = f (x), 0 ≤ f (x) ≤ 1. (2.5)

The constant cA is the minimum variation from the healthy region value due to the stent
and/or plaque, and cB is associated with the maximum deviation, measured from the state
c0 + cA, which occurs in the elementary cell.

Following the model proposed in [1], c(x) is assumed to be either (figure 1)

c(x) = c0 + cA + cB sin2s
(πx

L

)
(2.6)

or

c(x) = c0 + cA + cB cos2s
(πx

L

)
. (2.7)

The exponent s ∈ N characterizes the sparse structure of the stent.
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Figure 1. Examples of wave speed profiles for a stented artery where the exponent s in (2.6) and (2.7) assume different values:
(a) s= 1, (b) s= 20. (Online version in colour.)

The non-dimensional variables are introduced as follows:

ξ = x
L

, η= c0t
L

and Q = q
q0

, (2.8)

where L is the length of the periodic cell and q0 is the reference value of the volumetric flow.
Equation (2.2) becomes

∂2Q
∂η2 − ∂

∂ξ

((
c
c0

)2
∂Q
∂ξ

)
= 0. (2.9)

Using equations (2.6) and (2.7), in the stented area we have that

c(ξ )
c0

=

⎧⎪⎪⎨
⎪⎪⎩

1, ξ ∈ (−∞, 0)

1 + A2 + B2 sin2s(πξ ) or 1 + A2 + B2 cos2s(πξ ), ξ ∈ (0, n)

1, ξ ∈ (n, +∞),

(2.10)

where A2 = cA/c0, B2 = cB/c0, and n is the number of periodic cells constituting the stent.
The solution of equation (2.9) is sought in the form Q = y(ξ ) e−iωη, where the function y(ξ ) and

the angular frequency ω satisfy the equation

d
dξ

([
1 + A2 + B2f (ξ )

]2 dy
dξ

)
+ ω2y = 0. (2.11)

Introducing Y such that

Y =
[
1 + A2 + B2f (ξ )

]2 dy
dξ

, (2.12)
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equation (2.11) can be rearranged as follows:

d2Y
dξ2 +

[
ω

1 + A2 + B2f (ξ )

]2
Y = 0. (2.13)

For the stented region, the mean non-dimensional speed C in the unit cell can be evaluated as

C =
∫ 1

0

c(ξ )
c0

dξ =
∫ 1

0

(
1 + A2 + B2f (ξ )

)
dξ = 1 + A2 +

Γ
(

1
2 + s

)
√
πΓ (1 + s)

B2, (2.14)

for both choices f (ξ ) = sin2s(πξ ) or f (ξ ) = cos2s(πξ ).

3. Dispersion curves and stop-bands
In this section, the dispersion properties of the Bloch–Floquet waves propagating along the walls
of the stented blood vessel are presented. Equation (2.11) is solved numerically using the Galerkin
method with finite-element discretization together with the following Bloch–Floquet conditions
applied at the ends of the unit cell ξ = 0 and ξ = 1:

y(1) = y(0) exp (iK) (3.1a)

and
djy

dξ j

∣∣∣∣∣
ξ=1

= djy

dξ j

∣∣∣∣∣
ξ=0

exp (iK), (3.1b)

where K is the one-dimensional Bloch–Floquet parameter (or the lattice wavenumber), and only
j = 1 is required in the derivations below. The K parameter characterizes the phase shift of the
solution across the elementary cell of the periodic structure.

For certain frequency intervals, waves become evanescent. Such frequency intervals are
referred to as the stop-bands.

The summary of the numerical method used here is given in appendix A.

(a) Effective wave speed
The dispersion curves are plotted in the first Brillouin zone, specifically in the interval [0,π ].
Figure 2 presents a comparison of the dispersion curves for an artery without stent (C = 1)
corresponding to the one-dimensional model and the three-dimensional model of [20]. The actual
frequency vd (in Hz) in the three-dimensional model is related to the non-dimensional frequency
ω according to

vd = ωc0

2πL
. (3.2)

The reference pulse wave speed c0 is obtained from the dispersion diagram of the three-
dimensional model of [20] for an unstented artery. Specifically, c0 is the group velocity c0 =ω/K
calculated near K = 0.

As shown in figure 2, the one-dimensional model provides an upper bound (see the region
in the neighbourhoods of K = π or K = 0) for the stop-band frequencies. This applies both to
the first and second stop-bands. The three-dimensional computational model of [20] includes
general vibration modes and the actual geometry of the stent. Here we use three-dimensional
computation for calibration of the semi-analytical one-dimensional model, which is highly
effective in the analysis of transmission–reflection of waves across the stented region. It is
also noted that the one-dimensional model reflects correctly important features, including, for
example, the growth in the magnitude of the group velocity along the acoustic band. The mean
value of the normalized wave speed in the stented artery is evaluated using equation (2.14). We
also note that the corresponding dimensional considerations for the actual blood vessels with the
actual stents were included in the earlier paper [20].
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Figure 2. Dispersion curves for the unit cell without stent. The dashed line represents the dispersion curves obtained using the
three-dimensional FEM model of [20], while the solid line represents the results of the one-dimensional model presented in
this paper. (Online version in colour.)

The parameters A2, B2 and s are calibrated such that the group velocity near the origin for
the one-dimensional model matches the group velocity of the axisymmetric mode in the three-
dimensional model of [20]. For the types of stents considered in [20], the mean non-dimensional
speed in each unit cell is C � 1.12. In figure 3a, we plot the surface (2.14) for this value of C for
A2 ∈ [0, 0.13], B2 ∈ [0, 1.3], s ∈ [0, 30]. Figure 3b–d describes the behaviour of the three parameters
used in the definition of the mean non-dimensional velocity. For fixed A2, it can be noted that B2

increases with s (figure 3b). For fixed s, if B2 increases then A2 decreases (figure 3c). Finally, for
fixed B2, s increases with A2 (figure 3d).

(b) Stop-bands for waves in structured arteries
Here we consider the case of A2 = 0, which corresponds to an artery without a plaque.

The choices s = 1, s = 2, s = 5, s = 10, s = 15, s = 20 and s = 30 are substituted into equation (2.11)
to obtain the position and width of the stop-bands for the dispersion curves at K = 0 and K = π

for the stented case. The results are illustrated in figure 4a.
The width of the stop-band is considered to be an important parameter when comparing the

one-dimensional approximation with the full three-dimensional model of [20].
A better approximation is to be expected for the first stop-band at K = π , since it is in the low-

frequency regime. It is noted that, in general, higher values of s produce better results, with the
best result in figure 4a being for s = 20, B2 = 0.97 (shown in figure 4b). There is extremely good
correspondence at K = π between the stop-band widths, with 0.36 for both the one-dimensional
(solid line) and three-dimensional (dashed line) models. For the higher value of s = 30, there again
appears to be a good correspondence between the stop-bands, with the one-dimensional model
predicting a somewhat smaller band-width compared to the three-dimensional model.

Interestingly, the extreme case of small parameter values (s = 1, A2 = 0, B2 = 0.24) in figure 4a
results in a narrower stop-band for the one-dimensional model. The overlapping of the second
stop-bands (illustrated by the cross-hatched areas in figure 4b) does not occur for s = 1. Results
for s = 1 were also discussed in [1].
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Figure 3. The effect of the parametersA2, B2, and s in (2.14) on themean non-dimensional speed for a stented unit cell. Herewe
take C = 1.12. (a) Implicit solution of equation (2.14) for A2 ∈ [0, 0.13], B2 ∈ [0, 1.3], s ∈ [0, 30]. (b) Contour plot for A2 = 0.
(c) Contour plot for s= 25. (d) contour plot for B2 = 0.5. (Online version in colour.)

The new model proposed here allows for higher values of s to be incorporated into the analysis
showing a significant improvement in agreement for sufficiently large s.

4. Transmission problem
In this section, the transmission problem for a stented blood vessel is considered. The volumetric
flow rates in the reflection region, stented region and transmission region are assumed to be of
the form

QR = qR(ξ ) exp (−iωη), −∞< ξ < 0, (4.1a)

Q = y(ξ ) exp (−iωη), 0< ξ < n (4.1b)

and QT = qT(ξ ) exp (−iωη), n< ξ <∞, (4.1c)

respectively, where ω is the angular frequency.
A diagram for the reflection–transmission problem is shown in figure 5b. The flow rate in the

reflection region consists of the original incoming wave, with unit amplitude and the reflected
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Figure 4. The first two stop-bands for the one-dimensional model discussed in §2 and the three-dimensional model of the
pulsating wave. Part (a) shows the boundaries of the first two stop-bands (for K = 0 and K = π ) as function of s for the
one-dimensional model. Here A2 = 0, and f (ξ )= sin2s(πξ ). B2 varies with s according to figure 3b (see also (2.11)). Part (b)
illustrates the dispersion curves for A2 = 0, B2 = 0.97, f (ξ )= sin40(πξ ). The dashed line represents the three-dimensional
model (as in [20]), while the solid line corresponds to the one-dimensional model. (Online version in colour.)

wave which has amplitude R,

qR(ξ ) = exp (iωξ ) + R exp (−iωξ ). (4.2)

In the transmission region, the outgoing wave is of amplitude T,

qT(ξ ) = T exp (iωξ ). (4.3)

The four interface conditions are

qR(0) = y(0) and
dqR

dξ

∣∣∣∣
ξ=0

= Y(0), (4.4a)

qT(n) = y(n) and
dqT

dξ

∣∣∣∣
ξ=n

= Y(n), (4.4b)

where y(ξ ) and Y(ξ ) are defined in (2.11) and (2.12). Equation (2.11) is solved numerically
using the Galerkin method with finite-element discretization together with the interface
conditions (4.4).
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Figure 5. (a) The axisymmetricmode obtained using the three-dimensionalmodel in [20]. (b) Reflected and transmittedwaves
in a stented artery. (Online version in colour.)

(a) Reduction to the Mathieu equation for the case s= 1
When s is chosen to be 1, the mean non-dimensional speed in each cell is given by

C = 1 + A2 + B2

2
, (4.5)

for both functions f (ξ ) = sin2(πξ ) and f (ξ ) = cos2(πξ ). Furthermore, using the formulae 2 sin2(ξ ) =
1 − cos(2ξ ) and 2 cos2(ξ ) = 1 + cos(2ξ ), and calling

ε = B2

2C
= B2

2 + 2A2 + B2 < 1, (4.6)

leads to the equation
d2Y
dξ2 + ω2

C2 (1 ∓ ε cos (2πξ ))2
Y = 0, (4.7)

where the minus sign corresponds to the choice f (ξ ) = sin2 (πξ ) and the plus sign to f (ξ ) =
cos2 (πξ ). Assuming now ε	 1 and noticing that | cos(2πξ )| ≤ 1, the expansion

(1 ∓ ε cos(2πξ ))−2 = 1 ± 2ε cos(2πξ ) + O(ε2) ≈ 1 ± 2ε cos(2πξ ), (4.8)

can be used. Substituting (4.8) into (4.7) and using the change of variable πξ = z we obtain the
following standard Mathieu equation

d2Y
dz2 + [

a ± 2q cos(2z)
]

Y = 0, (4.9)

with
a =

( ω
πC

)2
(4.10a)

and
q = ε

( ω
πC

)2 = εa. (4.10b)

The general solution for the Mathieu equation [24] is given by

Y(ξ ) = C1MS
(
a, −q,πξ

)+ C2MC
(
a, −q,πξ

)
, (4.11)
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Figure 6. (a) The dispersion curves for the Mathieu equation. (b) The corresponding transmission problem for the Mathieu
equation with n= 24 cells. The parameters defining the velocity are chosen to be A2 = 0, B2 = 0.24, f (ξ )= sin2(πξ ), so
that C = 1.12. (Online version in colour.)

for f (ξ ) = sin2(πξ ), and

Y(ξ ) = C1MS
(
a, q,πξ

)+ C2MC
(
a, q,πξ

)
, (4.12)

for f (ξ ) = cos2(πξ ), where MS and MC are the Mathieu functions, linearly independent solutions
of (4.9) with the property that MS(a, q, 0) = 0 and M′

C(a, q, 0) = 0. In what follows we consider
the case f (ξ ) = sin2(πξ ) that corresponds to a periodic cell which is more compliant at its edges.
Applying the Bloch–Floquet conditions (3.1) to the Mathieu equation the following dispersion
relation is obtained[

MC
(
a, −q,π

)
M′

S
(
a, −q, 0

)+ MC
(
a, −q, 0

)
M′

S
(
a, −q,π

)]
exp (iK)

+ MS
(
a, −q,π

)
M′

C
(
a, −q,π

)= M′
S
(
a, −q,π

)
MC

(
a, −q,π

)
+ MC

(
a, −q, 0

)
M′

S
(
a, −q, 0

)
exp (2iK). (4.13)

The choice of parameters A2 and B2 is determined by the effective wave speed, as explained
in §3a.

As expected, the reflection at frequencies corresponding to the stop band is high, as illustrated
in figure 6b, which shows the reflection and transmission coefficients |R|2 and |T|2 versus the
frequency of the incident wave. We also note a relatively high reflection within the first pass-band
region, especially in the neighbourhood of the stop-band boundary. Such reflection can be altered
by changing the rate of localization within the structured stent. It can be noted that in figure 6b
the second stop-band is not visible as it requires more cells to be considered.

(b) Transmission for the higher-order sparse stent structure
At higher values of the exponent s characterizing the sparse stent structure, the transmission
diagrams are shown in figure 7b,d. The choice of parameters is the same as in the dispersion
diagrams of figure 7a,c.

In figure 7b, the shaded areas match the hatched areas in figure 7a, as expected. Accordingly,
the stop-bands correspond to the high reflection of the incident wave.

The reflection at frequencies corresponding to the first pass-band appears to be smaller for
highly localized structured stents compared with the case of s = 1. Also, the secondary stop-
band in diagrams (a) and (c) of figure 7 corresponds to a higher reflection, if the frequency of
the incident wave includes higher-order harmonics; this is likely to be the case in the transition
regimes or abnormalities leading to an irregular heart beat.

Transmission diagrams for the case of s = 20 are shown in figure 7b,d for the value of C =
1.12; they correspond to different values of A2 and B2 evaluated using (2.14), which represent an
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Figure 7. Dispersion curves (a,c) and corresponding reflection–transmission diagrams (b,d) for a stented artery, with f (ξ )=
sin40(πξ ) andA2,B2 defined from(2.14) for C = 1.12. (a) Dispersion curves forA2 = 0,B2 = 0.97. (c) Dispersion curves forA2 =
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A2 = 0.05, B2 = 0.58, n= 12. (Online version in colour.)

alteration in the stiffness of the artery and of the stent. This is shown to have an effect on reflection
in the second pass-band, while the reflection in the first pass-band remains low.

5. Dispersion curves and transmission problem for overlapping stents
Stent overlapping is a common procedure in vascular surgery, especially in the femoral artery
where two or three overlapping stents may be needed to cover the whole area affected by stenosis
[25–29]. However, this procedure is often associated with increased risk in the clinical outcome.

In this section, the Bloch–Floquet analysis and the transmission problem for a stented
artery with overlapping stents will be discussed. The problem is represented in figure 8. The
non-dimensional velocity in the artery is assumed to be

c(ξ )
c0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, ξ ∈ (−∞, 0)

1 + A2 + B2 sin2s(πξ ) or 1 + A2 + B2 cos2s(πξ ), ξ ∈ (0, n)√
2(1 + A2 + B2 sin2s(πξ )) or

√
2(1 + A2 + B2 cos2s(πξ )), ξ ∈ (n, m)

1 + A2 + B2 sin2s(πξ ) or 1 + A2 + B2 cos2s(πξ ), ξ ∈ (m, d)

1, ξ ∈ (d, +∞),

(5.1)

where n is the number of stent coils constituting the first stent excluding the overlapping region,
m is the number of stent coils in the overlapping region, and d is the number of stent coils
constituting the second stent excluding the overlapping region.
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reflected wave

incoming wave

stented region

stent 1

stent 2

transmitted wave

Figure 8. Scheme representing the case of an artery with two stents that overlap. (Online version in colour.)

Assuming that the solution of equation (2.9) is of the form Qi = yi(ξ ) e−iωη, where ω is the
angular frequency and i = 1, 2, 3, the functions yi(ξ ) then satisfy the equation

d
dξ

([
λ(ξ )(1 + A2 + B2f (ξ ))

]2 dyi

dξ

)
+ ω2yi = 0, (5.2)

λ(ξ ) is the piecewise constant function, which is equal to 1 in the stented region without
overlapping, and it is equal to

√
2 in the overlapping region. We also introduce the following

notation:

Y1 =
[
1 + A2 + B2f (ξ )

]2 dy1

dξ
, (5.3a)

Y2 =
√

2
[
1 + A2 + B2f (ξ )

]2 dy2

dξ
(5.3b)

and Y3 =
[
1 + A2 + B2f (ξ )

]2 dy3

dξ
. (5.3c)

(a) Stop-bands and reflected energy
The Bloch–Floquet analysis and the transmission problem for a stented artery with an
overlapping region is discussed in this section. The total length of the unit periodic cell for the
stented artery with an overlapping region is given by N = n + m + d. Equation (5.2) is solved
numerically using the Galerkin method together with the following Bloch–Floquet conditions
applied at the end parts of the unit cell ξ = 0 and ξ = N:

y(N) = y(0) exp (iKN) (5.4a)

and

yξ (N) = yξ (0) exp (iKN), (5.4b)

where K, as before, is the one-dimensional Bloch–Floquet parameter. Continuity of the solution
between the different regions of the stented artery is also imposed.

For the transmission problem, the volumetric flow rate in the reflected region, stented regions,
overlapping region and transmission region are of the form

QR = qR(ξ ) exp (−iωη), −∞< ξ < 0, (5.5a)

Q1 = y1(ξ ) exp (−iωη), 0< ξ < n, (5.5b)

Q2 = y2(ξ ) exp (−iωη), n< ξ < n + m, (5.5c)

Q3 = y3(ξ ) exp (−iωη), n + m< ξ < n + m + d (5.5d)

and QT = qT(ξ ) exp (−iωη), n + m + d< ξ <∞. (5.5e)

The flow rate qR in the reflected region and qT in the transmitted region are defined in the same
way as the case of a stented artery without overlapping (see (4.2) and (4.3)). Recalling (5.2), in the
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Figure 9. Dispersion curves (a) and reflection–transmission diagrams (b–d) for the problem of overlapping stents. The
parameters for the mean non-dimensional speed are chosen to be A2 = 0, B2 = 0.97, f (ξ )= sin40(πξ ), m= n= d = 4.
(a) Dispersion curves. Thedashedarea represents the stop-band regions. (b) Reflection–transmissiondiagramwith twoperiodic
cells. (c) Reflection–transmission diagramwith four periodic cells. (d) Reflection–transmission diagramwith five periodic cells.
(b–d) The shaded areas correspond to the stop-band regions. (Online version in colour.)

stented region the following equations are valid:

yi = − 1
ω2

dYi

dξ
, i = 1, 2, 3. (5.6)

Consequently, the eight interface conditions are

qR(0) = y1(0) and
dqR

dξ

∣∣∣∣
ξ=0

= Y1(0), (5.7a)
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Figure 10. Reflection–transmission diagrams for (a) long stent composed of 24 periodic cells with no overlapping region (n=
24,m= d = 0); (b) two stents composed of 16 periodic cells eachwith an overlapping region of 8 cells (n= m= d = 8). The
parameters for the mean non-dimensional speed used in the calculations are A2 = 0, B2 = 0.97, f (ξ )= sin40(πξ ). (Online
version in colour.)

y2(n) = y1(n) and
dy2

dξ

∣∣∣∣
ξ=n

= Y1(n), (5.7b)

y2(n + m) = y3(n + m) and
dy2

dξ

∣∣∣∣
ξ=n+m

= Y3(n + m), (5.7c)

qT(n + m + d) = y3(n + m + d) and
dqT

dξ

∣∣∣∣
ξ=n+m+d

= Y3(n + m + d). (5.7d)

The dispersion curves resulting from the Bloch–Floquet analysis are plotted in figure 9a.
The analysis is representative for the case of two stents composed of eight coils each, and an
overlapping area composed of four coils. Observing the dispersion curves in figure 9a, it is
possible to note that the range of frequencies in the low-frequency regime corresponding to the
pass-band in figure 4b (that is where the wave propagates), now contains a number of stop-
bands (where the wave does not propagate). Figure 9b,d represents the reflection–transmission
diagrams for a different number of periodic cells. It can be noted that as more periodic cells
are considered (that is stents with multiple overlapping regions), the reflection in the range of
frequencies corresponding to the stop-bands becomes higher. Figure 10 shows the comparison
between a long stent composed of 24 periodic cells and two stents composed of 16 periodic cells
each with an overlapping region composed of eight periodic cells. It can be observed that in the
low-frequency regime, the energy reflected is higher in the case when the stents do overlap, which
may increase the risk of restenosis if overlapping stents are used.

6. Conclusion
The paper brings a new insight into the analysis of a dynamic response of multi-scale stented
vascular systems, which are often neglected. It is a common knowledge in medical acoustics that
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branching blood vessels reflect waves, and surgeons also observe that vascular blockages and
aneurysms often occur near vascular junctions.

Not surprisingly, stents themselves may act as wave scatterers and reflect waves, especially in
the transitional regimes when the rate of pulsation changes rapidly. The practical consequences
are in secondary vascular blockages and formation of standing waves in the blood vessels.

In particular, the connection between dispersion properties and transmission–reflection of
waves for different values of the stenting parameters has been analysed in detail here, which
has provided a valuable material for assessment of performance of stents in different transitional
regimes. This also includes overlapping stents, where elastic stiffness increases in the regions of
overlap; it has been demonstrated that such configurations may lead to additional wave reflection
and formation of stop-bands in the dispersion diagram.

The simplicity of the model, presented in this paper, makes it appealing to both researchers and
medical practitioners, as it enables one to obtain ballpark ranges for values of stenting parameters
that may lead to formation of high wave reflection in the transitional regimes.
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Appendix A. Summary of the numerical approach
The variational form of the governing equation (2.11) for the stented region is to find y ∈ V ⊂
H1(0, n) and R, T ∈ C (reflection–transmission problem) or K ∈ R (Bloch–Floquet analysis) such
that [(

1 + A2 + B2f (ξ )
)2

wyξ

]n

0
−

∫n

0

(
1 + A2 + B2f (ξ )

)2
wyξ dξ + ω2

∫n

0
wy dξ , (A 1)

for all suitable weight functions w ⊂ H1(0, n) and ω ∈ R, where the standard notation H1(0, n) ≡
W1,2(0, n) for Sobolev (Hilbert) spaces is adopted.

In particular, for the reflection–transmission problem it is

V = VRT = {u ∈ H1(0, n) : u(0) = 1 + R, u(n) = T eiωn}, (A 2)

with the value for yξ at ξ = 0 and ξ = n defined in (4.4a) and (4.4b), respectively.
For the Bloch–Floquet analysis, it is

V = VBF = {u ∈ H1(0, n) : n = 1, u(n) = u(0) eiK}, (A 3)

with yξ (1) = yξ (0) eiK.
Piecewise Lagrange interpolation of order k ≥ 1 is introduced for the finite-element

discretization of the above variational problem with a total of N elements. The discrete solution
space is

Vh = {uh ∈ V : uh|Ii ∈ Pk(Ii), 1 ≤ i ≤ N}, (A 4)

where uh|Ii denotes the restriction of ui in element Ii and Pk denotes the set of polynomials of
degree at most k. For piecewise linear interpolation, it is uh|Ii ∈ P1(Ii) and the standard Bubnov–
Galerkin method with a uniform mesh size h = n/N can be employed using the linear shape
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functions N(i), i = 1, 2 and Gauss quadrature for the ‘stiffness’ integrals∫
Ii

(
1 + A2 + B2f (ξ )

)2
N(i)
ξ N(j)

ξ dξ , 1 ≤ i, j ≤ 2. (A 5)

The following stiffness and mass type finite-element matrices can be used effectively for h → 0

−
(
1 + A2 + B2f (mi)

)2
h

[
1 −1

−1 1

]
,

ω2h
6

[
2 1
1 2

]
, (A 6)

where mi is the midpoint of Ii. For higher frequencies, increase of the polynomial degree along
with increasing the number of elements can be used.

Both the reflection–transmission and Bloch–Floquet problems can be numerically solved by
using the finite-element matrices in (A 6), the definitions of the solution spaces (A 2) and (A 3)
and the boundary data for dy/dξ , for different values of the frequency. Standard connectivity
arrays and FEM assembly procedures apply ([21]). The connectivity array in this problem is the
same as that for a one-dimensional bar/rod element. We note that as the frequency increases
the discretization needs to become finer. In our examples, very fine meshes were used in all cases,
with further mesh size reduction for validation of convergence. The standard method of Lagrange
multipliers is used to enforce Dirichlet or Periodic data at the boundary.
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