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Abstract

CONTEXT: There has been a rapid growth in the use of data analytics to underpin
evidence-based software engineering. However the combination of complex tech-
niques, diverse reporting standards and poorly understood underlying phenomena are
causing some concern as to the reliability of studies.
OBJECTIVE: Our goal is to provide guidance for producers and consumers of soft-
ware analytics studies (computational experiments and correlation studies).
METHOD: We propose using “bad smells", i.e., surface indications of deeper problems
and popular in the agile software community and consider how they may be manifest
in software analytics studies.
RESULTS: We list 12 “bad smells" in software analytics papers (and show their impact
by examples).
CONCLUSIONS: We believe the metaphor of bad smell is a useful device. There-
fore we encourage more debate on what contributes to the validty of software analytics
studies (so we expect our list will mature over time).

1. Introduction

The drive to establish software engineering as an evidence-based discipline has been
gaining momentum since the seminal article of Kitchenham et al. [56]. In parallel
there has been a massive growth in the amount of publicly available software data
and sophisticated data analytics methods. This has resulted in a sharp increase in the
number and reach of empirically based, data driven studies that are generally termed
software analytics.

Typically software analytics studies seek to distill large amounts of low-value data
into small chunks of very high-value information. Studies are more data-driven than
theory-driven. For example, after examining many software projects, certain coding
styles could be seen to be more bug prone. Follow up experimentation, by manipu-
lating the coding styles, could lead us to believe there is causality. Hence we might
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recommend some coding styles should be avoided (subject to various context-related
caveats). However, absence of theory can lead to challenges. In particular, the lack
of strong prior beliefs may make it difficult to choose between or evaluate potentially
millions of possibilities [24, 28].

Thus far, so good. Unfortunately, concerns are being expressed about the reliability
of many of these results both from within software engineering (SE) [93, 53] and more
widely from other experimental and data driven disciplines such as the bio-medical sci-
ences [50, 31]. This has reached the point that in experimental psychology researchers
now refer to the “replication crisis”. This in turn raises questions of study validity.

Arguably the situation is not dissimilar in software engineering. In a major system-
atic review of SE experiments (1993–2002) Kampenes et al. [54] found similar effect
sizes being reported to psychology. In 2012 we published an editorial for a Special
Issue in the journal Empirical Software Engineering on repeatable results in software
engineering prediction [77] where the principal focus was “conclusion instability". In
that editorial, we raised concerns about the numerous occasions where Study 1 con-
cluded X yet Study 2 concluded ¬X. The inability to resolve these seeming contradic-
tions leaves us at an impasse. Clearly, we need better ways to conduct and report our
work, as well as to examine the work of others.

In this article we consider what may be learned from other disciplines and what
specific lessons should be applied to improving the reporting of software analytics type
studies. “Bad smells” is a term that comes from the agile community. According to
Fowler [5], bad smells (a.k.a. code smells) are “a surface indication that usually corre-
sponds to a deeper problem”. See Table 1 for a summary of the bad smells identified
in this article.

As per Fowler, we say that the “smells” listed in this article do not necessarily
indicate that the conclusions from the underlying study must be rejected. However, we
believe they raise three areas of potential concern.

1. For the author(s) they reduce the likelihood of publication.

2. For the reader they raise red flags concerning the reliability of the results (i.e.,
their consistency) and the validity (i.e., the correctness of the analysis or how
well it captures those constructs we believe it represents) .

3. For science, they hinder the opportunities of pooling results via meta-analysis
and building bodies of knowledge.

So the goal of this article is to identify “smells” in order to (i) encourage a wide-
ranging community debate and (ii) assist in the identification of potential problems and
associated remedies.

The remainder of this article is organized as follows. The rest of this section ad-
dresses scope and then tackles two frequently asked questions about this work. Section
2 explores historical work on writing ‘good’ articles and methodological guidance,
coupled with how other data-driven disciplines have addressed experimental reliability
concerns. Next, in Section 3 we describe our approach to identifying “bad smells”.
This is followed by Section 4 that lists some key symptoms or ‘smells’ in approximate
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Table 1: Software Analytics Bad Smells Summary
“Bad
smell"

Core problem Impact Remedy

1 Not inter-
esting

The software analytics equiva-
lent of how “many angels can
dance on a pinhead”. This may
result from an absence of the-
ory.

Research that has negli-
gible software engineering
impact

Dialogue with practitioners [6, 70,
51]

2 Not using
related
work

Unawareness of related work
on (i) the research question
and/or (ii) state of the art in
relevant techniques.

(i) Unwitting duplication
(ii) Not using state of the art
methods (iii) Using unchal-
lenging / outdated bench-
marks

Read! Utilize systematic reviews
whenever possible. Search for rel-
evant theory or theory fragments.
Utilize technical guidance on data
analytics methods and statistical
analysis. Speak to experts.

3 Using dep-
recated or
suspect data
e.g., D has
been widely
used in the
past ...

Using data for convenience
rather than for relevance

Data driven analysis is un-
dermined [2]

Justify choice of data sets wrt the
research question.

4 Inadequate
reporting

Partial reporting of results e.g.,
only giving means without
measures of dispersion and/or
incomplete description of al-
gorithms

(i) Study is not repro-
ducible [72] (ii) meta-
analysis is difficult or
impossible.

Provide scripts / code as well as
data. Provide raw results [41, 79].

5 Under-
powered
studies

Small effect sizes and little or
no underlying theory

Under-powered studies
lead to over-estimation of
effect sizes and replication
problems

Analyse power in advance. Be wary
of searching for small effect sizes,
avoid Harking and p-hacking [15,
53, 79].

6 p < 0.05
and all that!

Over-reliance on, or abuse of,
null hypothesis significance
testing

A focus on statistical sig-
nificance rather than effect
sizes leading to vulnerabil-
ity to questionable research
practices and selective re-
porting [53]

Report effect sizes and confidence
limits [33, 65].

7 Assumptions
of normal-
ity and
equal vari-
ances in
statistical
analysis

Impact of heteroscedasticity
and outliers e.g., heavy tails
ignored. Assumptions of anal-
ysis ignored.

Under-powered studies
lead to over-estimation of
effect sizes and replication
problems.

Use robust statistics / involve statis-
tical experts [58, 110].

8 No data
visualisation

Simple summary statistics
e.g., means and medians may
mask underlying problems or
unusual patterns.

Data are misinterpreted and
anomalies missed.

Employ simple visualisations for
the benefit of the analyst and the
reader [80, 44].

9 Not ex-
ploring
stability.
Only re-
porting best
or averaged
results.

No sensitivity analysis. p-
hacking

The impact of small mea-
surement errors and small
changes to the input data
are unknown but poten-
tially substantial. This is
particularly acute for com-
plex models and analyses.

Undertake sensitivity analysis or
bootstraps/randomisation to under-
stand variability. Minimally report
all results and variances [73, 87].

10 Not tuning Biased comparisons e.g., some
models / learners tuned and
others not. Non-reporting of
the parameter settings, the tun-
ing effort / expertise required.

Under-estimation of the
performance of un-tuned
predictors. Inability to
reproduce results.

Read and use technical guidance on
data analytics methods and statisti-
cal analysis [99, 37]. Unless rele-
vant to the research question avoid
off-the shelf defaults for sophisti-
cated learners.

11 Not explor-
ing simplic-
ity

Excessively complex models,
particularly with respect to
sample size

Dangers of over-fitting Independent validation sets or un-
contaminated cross-validation [18].

12 Not justify-
ing choice
of learner

Permuting / recombining
learners to make ‘new’ learn-
ers in a quest for spurious
novelty

Under / non reporting of
“uninteresting results"
leading to over-estimates
of effect sizes.

Principled generation of research
questions and analysis techniques.
Full reporting.
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order of importance. Finally, in Section 5 we consider the implications for the fu-
ture and how we, the research community, might collectively take ownership of these
“smells”, re-prioritise, re-order, add and subtract “smells”.

1.1. Scope

Software analytics research is relatively new and growing fast, so much of our ad-
vice relates to articles discussing induction from software project data. We discuss
problems with empirical data analysis via experiments, quasi-experiments and corre-
lation studies [91] rather than issues relating to e.g., qualitative studies. Other articles
should be consulted for tips and traps relating to qualitative research and experimenta-
tion involving human participants, e.g., [102, 25, 60, 84].

Finally, in order to delineate the scope of this article we feel it helpful to add some
remarks concerning the role of theory in software analytics type research. Naturally
much analytics research will be data-driven or inductive in nature. In such circum-
stances the role of theory or deductive reasoning will be secondary. This of course
begs the question of what is a theory. Unfortunately there is limited agreement as to
what constitutes a theory [97, 52], other than it may comprise constructs, relationships
between constructs (possibly causal ones), scope and possibly propositions [101]. Most
commentators are of the view that theory use is low and might fruitfully be increased.
As a step towards this Stol and Fitzgerald [101] explore the notion of theory fragments
which might take the form of propositions. Those that are testable might form hypothe-
ses i.e., a mechanism from theory to the empirical world and putative propositions as a
means of navigating from empirical observations back to theory.

Having said this, we do not include a detailed treatment of software engineering
theory. Data analytics studies are almost always theory light because they’re inductive
in their approach. The use of theory, or not, will be highly context sensitive. There
is not presently consensus as to what theories (or for that models) should look like.
Finally, as indicated, there are a number of good treatments that already exist (see
[97, 52, 101]).

1.2. But is this article necessary?

Simply put: is this article necessary? Is not everything here just material that “ev-
erybody knows”?

In response, we first note that, over some decades, the authors have been members
of many conference and journal review panels. Based on that experience, we assert
that demonstrably everybody does not know (or at least apply) this material. Each
year, numerous research articles are rejected for violating the recommendations of this
article, or worse still, some slip through the net. In our view many of those rejections
are avoidable. We believe, many of the issues raised by this article can be repaired
before submission – some with very little effort.

These difficulties are compounded by the fact that good practice evolves. For exam-
ple, whilst the statistical education of many engaged in empirical software engineering
research is grounded in classical statistics there have been more recent developments
such as robust approaches [57], use of randomisation and bootstrap [16] and Bayesian
techniques [39]. Likewise, there are significant and recent developments in machine
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learning which, sometimes, authors overlook. For example, we have had on occasions
to review and reject papers that are some very small delta to an article one of us wrote
in 2007 [76]. Since that paper was written, much has changed1 so a mere increment on
that 2007 paper is unlikely to be a useful contribution or an acceptable publication.

We also observe that, on occasions, we find some reviewers who have the role
of gatekeepers to scientific publication, also seem unaware of some, or much of this
material. Thus there exists some research that should not be published, at least in its
present form, that is published [58, 53]. This harms the progress of science and our
ability to construct useful bodies of knowledge relevant to software engineering.

A particularly marginalized group are industrial practitioners trying to get their
voice heard in the research literature. Unless that group knows the established norms
of publication, their articles run the risk of rejection. We note that those norms of
publication are rarely recorded – a problem that this article is attempting to solve.
Hence, for all the above reasons, we argue that this article is necessary and useful.

1.3. Should papers be rejected if they have bad smells?

It is important to stress that this paper:

• is primarily intended as guidance for authors;

• is not intended to be used by reviewers as a mindless checklist of potential
reasons-to-reject a paper. Our bad smalls are indicative rather than definitive
proof of a potential issue. Hence we stress that their presence alone is not a
reason for reviewers to reject a paper. Context is extremely important.

One of the reviewers of this paper was kind enough to expand on this point. They com-
mented (and we agree) that reviewers tend to become overly strict — to the point where
they can reject papers with very interesting and important ideas — just because there
was one point that did not satisfy certain guidelines. This is most acute for conferences
where there is seldom a revision cycle. Reviewers should not just blindly enforce the
adoption of all the points raised by this paper, but also need to be sensitive to the con-
text of the study; certain bad smells may not be applicable (or may be less relevant).
Additionally, we wish to avoid adopting a perspective, such that the requirement of a
perfection prevents useful, pioneering or relevant — but slightly imperfect — research
from ever being published.

2. Related Work

Software engineering (SE) researchers have posed the question from time to time:
what makes a good article? Examples are the article by Shaw [92] back in 2003 and
recently revisited by Theisen et al. [107]. Shaw stated that one difficulty SE researchers

1For example, improved evaluation techniques and experimental design; new problem areas for SE and
machine learning (e.g. [88]); novel and insightful new evaluation measures (see Section 5 of [49] or the
multi-objective approaches discussed in [81]; and challenging new learners that are so slow that it becomes
impractical to reproduce prior results (see the discussion on deep learning in [35]).
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and authors face is that there are no well-developed or agreed guidelines as to how
research should be conducted and presented. Although in the intervening years there
has been increasing emphasis placed upon evidence, it is our view that the situation
has not greatly changed. She also remarked on the weakness of many articles in terms
of validation and Theisen et al. report that, if anything, reviewer expectations have
increased. Potentially, software analytics articles have an advantage here given their
empirical basis, however statistical analysis is not always undertaken well, as our article
will demonstrate.

There have also been various audits of statistical quality of empirical research [58]
and published guidelines and recommendations regarding analysis [58, 111]. The
guidelines are welcome since, by and large, software engineers have limited formal
training as statisticians. Note that when researchers do publish methodological guides,
those articles tend to have very high citation counts2, for instance:

• “Preliminary guidelines for empirical research in software engineering", in IEEE
Transactions on Software Engineering [58] (1430 citations since 2002).

• “Benchmarking Classification Models for Software Defect Prediction: A Pro-
posed Framework and Novel Findings” in IEEE TSE 2008 [67] (765 citations
since 2008).

• “Guidelines for conducting and reporting case study research in software en-
gineering”, in the Empirical Software Engineering journal [86] (2500 citations
since 2009).

• “A practical guide for using statistical tests to assess randomized algorithms in
software engineering” at ICSE’11 [4] (500 citations since 2011).

Of particular concern is our our ability to replicate results (or reliabiity), which
many argue is the cornerstone of science. This was investigated systematically in ex-
perimental psychology by Nosek et al. [83] who concluded from a major replication
project of 100 experiments in leading psychology journals that “replication effects were
half the magnitude of original effects” and that while 97% of the original studies had
statistically significant results, only 36% of replications did. Researchers began to talk
about the “replication crisis”. Note, however, that there has been little discussion as to
exactly what constitutes a confirmation of the original study [100] and that for under-
powered studies (as seems to be typical) results may well be dominated by sampling
error. Nevertheless, it seems that there is legitimate cause for concern and this has
triggered recent how-to type articles such as Munafò et al. [79].

Despite this “replication crisis” having sparked considerable soul searching when
it was reported, less progress is being made than we would hope e.g., in cognitive
neuro-science and experimental psychology study power remains low and essentially
unchanged over 50 years [104]. Smaldino and McElreath [98] make the case that given
the incentive structures for researchers — specifically that publication is the principal
factor for career advancement — it is unsurprising that low quality research studies

2The citation counts were extracted from Google Scholar, November 2018.
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are still being conducted, submitted and published. As they put it, although this oc-
curs without “deliberate cheating nor loafing" it helps explain why improvements in
scientific practice remain slow.

We believe that whilst incentive structures clearly matter and influence scientific
behavior, many of the problems we identify could be remedied with relatively little
effort. We also hope that the intrinsic motivation of “doing good science" will be
sufficient for the large majority of our research community.

3. Our Approach

Our goal is to assist researchers towards conducting better research and writing
better articles. As steps towards that goal, we have a two-part proposal:

1. A part of this proposal is to run workshops at major software engineering con-
ferences where best, and worst, practices in analysis and writing can be explored
and documented. Accordingly, this article aims to recruit colleagues to this goal
and thereby increase the number of researchers reflecting and commenting on
these issues.

2. The other part of this plan is this article itself. Whilst we hope that these ideas
will prove useful in their own right, we also hope that (a) this article inspires
more extensive discussions about best and worst paper writing practices; and
(b) subsequent articles extend and improve the guidance we offer below.

In order for this article to be effective we adopt a pragmatic approach. We present,
a hopefully useful but not exhaustive, list of problems with software analytics papers.
The level of detail is illustrative rather than in depth. In the spirit of brevity we re-
strict our focus to data driven research so, for example, case studies and experiments
involving human participants are excluded.

Some “smells" are more self-evident and consequently need relatively little ex-
planation. In contrast, others are more subtle and therefore we devote extra space to
illustrating them. We use examples to help illustrate the smells and their relationship
to actual problems. We do not intend examples as existence proofs, and in any case
consider it invidious to single out individual authors as examples of widespread errors.

The list of “smells" has been constructed by discussion and debate between the
two authors. We then cross-checked the list (see Table 2) with an empirical study
quality instrument, [29] that has been used when assessing article quality for inclusion
within software engineering systematic reviews [55, chapter 7]. Hence we see our list
addresses all four areas of quality identified by the quality instrument and have more
confidence in its coverage.

4. “Bad Smells” Unpacked

This section discusses the bad smells listed in Table 1. Before beginning, we note
that while some of the following “smells” are specific to software analytics, others are
general to many scientific endeavors. We include them altogether since they are all
important issues about good science and effective scientific communication.
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Table 2: Cross referencing research area to bad smell

Research area [55] Quality instrument question [29, Table 3] Bad smell
Reporting - quality Is the article based on research? Yes, defined by

our scope
Is there a clear statement of the research aims? 1
Is there an adequate description of the context? 4
Is there a clear statement of findings? 4, 11

Rigour - details of Was the research design appropriate? 5
the research design Was the recruitment strategy appropriate? No human par-

ticipants, but
more generally:
1, 3

Treatments compared to a control group? 2, 10
Data collected addressed research issue? 3
Was the data analysis sufficiently rigorous? 6, 7, 8, 9, 10

Credibility - are the
findings of the study are
valid and meaningful?

Has the relationship between researcher and
participants been adequately considered?

No human
participants

Relevance - of the study
to practice

Is the study of value for research or practice? 1, 11

4.1. Not Interesting

All science studies should strive to be valid and reliable. But it is important that
research is also interesting (to a wider audience than just the authors). This is not a clar-
ion call for quirky or quixotic research, however, recall that our discipline is software
engineering. Potentially somebody must be invested in the answers, or potential an-
swers. One rule-of-thumb for increasing the probability that an article will be selected
is validity plus engagement with some potential audience.

So what do we mean by “interesting”? The article needs a motivation or a message
that beyond mundane. More specifically, articles should have a point. Research articles
should contribute to a current debate. This could be via theory or with respect to the
results of other studies. If no such debate exists, research articles should motivate one.
For example, one could inspect the current literature and report a gap in the research
that requires investigation. But to be clear, this does not preclude incremental research
or even checking the reproducibility of results from other researchers, particularly if
those results may have strong practical significance.

Note that problem of not inspiring is particularly acute in this era of massive avail-
ability of data and new machine learning algorithms; not all possible research directions
are actually interesting. The risk can be particularly high when the work is data-driven
which can quickly resemble data-dredging. For more on this point, see our last two bad
smells (Not enough theoryand Not much theory).

An antidote and powerful way to consider practical significance is with effect size
[33] especially if this can be couched in terms that are meaningful to the target audi-
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ence. For instance, reducing unit test costs by x% or y$ is inherently more engaging
than the associated p value of some statistical test is below an arbitrary threshold. The
notion of smallest effect size of interest has also been proposed as a mechanism to
maintain focus on interesting empirical results [64] a point we shall return to.

4.2. Not Using Related Work
This issue should not exist. Nevertheless, we know of many articles that fail to

make adequate use of related work. Typically we see the following specific sub-classes
of “bad smell”.

The literature review contains no or almost no articles less than ten years old. Nat-
urally older papers can be very important– but the absence of any recent contribution
would generally be surprising. This strongly suggests the research is not state of the
art, or is not being compared with state of the art.

The review overlooks relevant, recent systematic literature review(s). This strongly
suggests that there will be gaps or misconceptions in the way the state of the art is
represented. It may also allow bias to creep in since the authors’ previous work may
become unduly influential.

The review is superficial, even perfunctory. Such an approach might be caricatured
along the lines of:

“Here is some related work [1, ..., 30]. Now to get on with the important
task of my describing own work."

This style of writing — where reviewing the work of others is merely a burden —
makes it less likely connections will be seen, that the article contributes to a body of
knowledge but conversely, increases vulnerability to confirmation biases [82]. It is also
unhelpful to the reader since there is little or no interpretation of other work. What is
useful? What has been superseded?

The review is thorough, relevant and fair, however, it is not used to motivate the
new study. In other words there is a disconnect between the review and new research.
New results are not related to the current state of the art. The consequence is the
reader cannot determine what new contributions have been made. It may also mean
appropriate benchmarks are missed.

Methodological aspects of the research are motivated by extremely simplistic or
outdated sources e.g., using traditional statistics texts. One of the many dangers from
using such sources is to buttress obsolete or inappropriate data analysis techniques or
learning algorithms that are no longer competitive.

Figure 1: Summary of Table 3.

One constructive suggestion, especially if no
relevant systematic literature review exists, is to
employ lightweight literature inspections. These
need not be as complex as a full systematic liter-
ature review (that can take months to complete).
However, with the growing number of published
systematic literature reviews it is increasingly prob-
able that other researchers will have already ad-
dressed at least some part of the literature relevant
to the research topic you are exploring.
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Table 3: 21 highly-cited software defect prediction studies, selected as follows: (a) from Google Scholar,
search for “software” and “defect prediction” and “OO” and “CK” in the last decade; (b) delete anything
with less than ten cites/year since publication; (c) search the resulting 21 articles for the three research
items explored by Agrawal et al., i.e., do they rank multiple classifiers; are the classifiers ranked by multiple
criteria; does the study consider class imbalance.

Reference Year Cites Ranked
Classifiers?

Evaluated
using

multiple
criteria?

Considered
Data

Imbalance?

(a) 2007 855 3 2 7
(b) 2008 607 3 1 7
(c) 2008 298 3 2 7
(d) 2010 178 3 3 7
(e) 2008 159 3 1 7
(f) 2011 153 3 2 7
(g) 2013 150 3 1 7
(h) 2008 133 3 1 7
(i) 2013 115 3 1 3
(j) 2009 92 3 1 7
(k) 2012 79 3 2 7
(l) 2007 73 7 2 3
(m) 2007 66 7 1 3
(n) 2009 62 3 3 7
(o) 2010 60 3 1 3
(p) 2015 53 3 1 7
(q) 2008 41 3 1 7
(r) 2016 31 3 1 7
(s) 2015 27 7 2 3
(t) 2012 23 7 1 3
(u) 2016 15 3 1 7

For examples of lightweight literature inspec-
tions, see Figure 1 and Table 3 from Agrawal and Menzies [2]. Here, the researchers
found a research gap in two dozen articles of the top-most cited software defect pre-
diction studies that have at least 10 citations per year over the last decade. Specifically,
as seen in Figure 1, most articles avoid issues of data imbalance and scoring via mul-
tiple criteria. Of course, research gaps need to be interesting (see Bad Smell #1). This
finding led Agrawal and Menzies to perform a unique set of experiments that resulted
in an ICSE’18 article.

4.3. Using Deprecated or Suspect Data

Researchers adopting a heavily data-driven approach, as is the case for software an-
alytics, need to be vigilant regarding data quality. De Veaux and Hand point out “[e]ven
when the statistical procedure and motives are correct, bad data can produce results
that have no validity at all” [26]. A series of systematic reviews and mapping studies
[68, 13, 85, 69] all point to problems of data quality not being taken very seriously and
problems with how we definitively establish the validity of data sets, particularly when
the gap in time and perhaps geography, between the collection and analysis is wide.

In terms of “smells" or warning signs we suggest researchers be concerned by the
following:

• Very old data; e.g., the old PROMISE data from last-century NASA project
(JM1, CM1, KC1, KC2, ...) or the original COCOMO data sets containing size
and effort data from the 1970s.
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• Problematic data; e.g., data sets with known quality issues (which, again, in-
cludes the old PROMISE data from last-century NASA project [94]).

• Data from trivial problems. For example, in the history of software test research,
the Siemens test suite was an important early landmark in creating reproducible
research problems. Inspired by that early work, other researchers have take to
document other, more complex problems3. Hence, a new paper basing all its
conclusions on the triangle inequality problem from the Siemens suite is dep-
recated. Nevertheless tiny problems occasionally offer certain benefits, e.g., for
the purposes of explaining and debugging algorithms, prior to attempting scale
up.

That said, our focus is empirical studies in the field of software engineering where
scale is generally the issue. In our experience, readers are increasingly interested in
results from more realistic sources, rather than results from synthetic or toy problems.
Given there now exist many on-line repositories where researchers can access a wide
range of data from many projects (e.g. GitHub, GitTorrent4; and others 5) this should
not be problematic. Consequently, it is now normal to publish using data extracted
from dozens to hundreds of projects e.g., [61, 3].

Finally, we acknowledge there are occasions when one must compromise, other-
wise important and interesting software engineering questions may never be tackled.
Not all areas have large, well-curated, high quality data sets. In such circumstances
research might be seen as more exploratory or to serve some motivational role in the
collection of better data. As long as these issues are transparent we see no harm.

4.4. Inadequate Reporting

Here there are two dimensions: completeness and clarity. Problems may be indi-
cated by the following “smells".

1. The work cannot be reproduced because the descriptions are too incomplete or
high level. In addition, not all materials ( data and code) are available [41, 79].

2. The work cannot be exactly reproduced because some of the algorithms are
stochastic and seeds are not provided. Typical examples are the generation of
folds for cross-validation in machine learning and heuristic search algorithms.

3. Non-significant and post hoc “uninteresting" results are not reported. This seem-
ingly innocuous behavior, known as reporting bias, can lead to serious over-
estimation of effect sizes and harm our ability to build bodies of knowledge via
meta-analysis or similar means [41, 104].

4. The experimental details are full of “magic" numbers or arbitrary values for pa-
rameters and the experimental design. It is important to justify choices otherwise

3e.g. See the Software-artifact Infrastructure Repository at sir.unl.edu/portal.
4github.com/cjb/GitTorrent
5tiny.cc/seacraft
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there are real dangers of researcher bias and over-fitting, i.e., choosing values that
favor their pet algorithms. Standard justifications include “k was selected via the
standard Gap statistic procedure” or perform some sensitivity analysis to explore
the impact of choosing different values [87].

5. It’s impossible for the reader to get a sense of what the article is about without
reading it in its entirety. Structured abstracts (as per this article) can greatly assist
both human readers [14, 59, 11] and text mining algorithms which are beginning
to be deployed to assist meta-analysis, e.g., [104].

6. Using highly idiosyncratic section headings or article organization. Typically the
following should suffice: introduction, motivation, related work, methods (which
divides into data, algorithms, experimental method, and statistical procedures)
followed by threats to discussion, threats to validity, conclusion, future work and
references. Simple tables summarising algorithm details, hyper-parameters etc
can be invaluable.

7. The article uses too many acronyms. Define terms when they are first used. If
there are many, then consider using a glossary.

We conclude this sub-section with some simple and hopefully constructive suggestions.
Strive towards reproducible results: Table 4 defines a continuum of research arti-

facts and results. Reporting reproducible results (on the right-hand-side of that con-
tinuum) is the ideal case – but that can take a great deal of effort. For an excellent
pragmatic discussion on how to structure your research artifacts in order to enhance re-
producibility, see “Good Enough Practices for Scientific Computing” goo.gl/TD7Cax.

(Aside: Demands for increased reproducibility must be assessed on pragmatic
grounds. If a prior study uses tools that are not open source, or tools that are very
complex to use, then it is not appropriate to demand that subsequent work exactly re-
produces the old work. )

Consider adding summary text to each table or figure caption, e.g., “Figure X:
Statistical results showing that only a few learners succeed at this task”: Quite often,
reviewers will first skim a article, glancing only at the figures. For such a reader, the
locality of these annotations may prove extremely helpful.

Considering using research questions: Frequently software analytics research ar-
ticles naturally sub-divide themselves into exploring a small set of research questions.
Determining these research questions can require some creativity but is a powerful
structuring device. Preferably there should be some progression so for example, here
are the research questions from [37] (which discussed the merits of tuning the hyper-
parameters of data mining algorithms):

• RQ1: Does tuning improve the performance scores of a predictor?

• RQ2: Does tuning change conclusions on what learners are better than others?

• RQ3: Does tuning change conclusions about what factors are most important in
software engineering?

• RQ4: Is tuning impractically slow?
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Table 4: The artifact continuum flows from left to right. More articles will classified on the right once authors
apply more of the methods on the left. This table presents the badges and definitions defined by the ACM
(see goo.gl/wVEZGx). These definitions can be applied by the broader community as (1) aspirational goals,
or (2) ways to audit past research, or (3) as guidance for organizing an “artifacts track” at a conference or
journal.

No Artifacts Results
badge Functional Resuable Available Replicated Reproduced

Artifacts
documented,
consistent,
complete,

executable, and
include

appropriate
evidence of
verification

and validation.

Functional + very
carefully

documented and
well-structured to

the extent that reuse
and re-purposing is

facilitated. In
particular, norms

and standards of the
research community
for artifacts of this

type are strictly
adhered to.

Functional + placed on
a publicly accessible
archival repository.

A DOI (Digital Object
Identifier) or link to
this repository along

with a unique identifier
for the object is

provided. It is easy to
obtain such DOIs: just

host your artifact at
repositories like

SEACRAFT
tiny.cc/seacraft.

Available +
main results of
the article have
been obtained

in a subsequent
study by a

person or team
other than the
authors, using,

in part,
artifacts

provided by
the author.

Available + the
main results of
the article have

been
independently
obtained in a
subsequent
study by a

person or team
other than the

authors,
without the use

of author-
supplied
artifacts.

• RQ5: Is tuning easy?

• RQ6: Should data miners be used “off-the-shelf” with their default tunings?

A useful typographical device sometimes associated with research questions is the
use of results boxes to stress the answers to the questions. Here is an early example
from Zimmermann et al. [114], 2004. Although potentially powerful such summaries
need to be carefully constructed to avoid trivial over-simplification.

4.5. Under-powered Studies
The power of an analysis is the probability that a test will reject a false null hypoth-

esis i.e., correctly report a non-zero effect. More generally, it is the ability to find an
effect were one to exist. Power is the complement of β or the probability of making
a Type II (failing to detect a true effect in favour of the null hypothesis, i.e., a false
negative) error, hence power = 1 − β. However, there is a tradeoff with the proba-
bility of making a Type I error (i.e., a false positive). At an extreme we could guard
against false positives by setting an extremely high threshold of acceptance but the
consequence would be an elevated false negative rate. And of course vice versa.

So what should β be set to? Traditionally, it has been argued that power should
be 0.8 [21] indicating that researchers might consider Type I errors (wrongly rejecting
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the null hypothesis when in reality there is no effect) as being four times more prob-
lematic than Type II errors and therefore needing proportionately more checks. Thus,
if significance levels are set at α = 0.05 then it follows that β = 4α = 0.2 hence, as
required, our power is 1−β = 0.8. To repeat, the important point is that we must trade
off between Type I and Type II errors and our preferences are somewhat arbitrary.

However, what we want the power of a study to be, and what it actually is are
two different things. Four factors influence power, namely: (i) sample size, (ii) the
unknown, true size of the effect being investigated, (iii) the chosen α and (iv) the
chosen β [22, 33]. In addition, experimental design can improve power, for example
by measuring within experimental unit (e.g., via a repeated measures design) rather
than between unit variation [75].

Many commentators recommend, the power of a proposed experiment or investiga-
tion should be determined a priori [30]. The purpose is to check if an experiment has
a reasonable chance of detecting an effect were one to actually exist. One obvious and
immediate difficulty is estimating the effect size that is to be investigated [74]. This is
compounded by the problem that there is compelling evidence that we are systemati-
cally over-estimating effect sizes due to reporting and publication bias [15, 53]. How-
ever, the problems of power go beyond merely wasting scientific resources in failing
to detect effects that actually exist. There are two other serious negative consequences.
First is the tendency of over-estimation of the measured effect sizes and second, is
the elevated probability of false statistically significant findings [50, 23]. Indeed, it is
no exaggeration to state that low and under-powered studies are the greatest threat to
meta-analysis and constructing meaningful bodies of software engineering knowledge
[15, 104].

It is ironic that the success of software analytics research in being able to uncover
patterns and effects in large, complex and noisy data sets is also its undoing. This,
coupled with the lack of guiding theory (which makes it difficult to differentiate be-
tween “winner’s curse" and some substantive effect6), agreed methods of analysis and
excessive researcher degrees of freedom [95, 71] results in low-powered studies and
a high probability of over-estimating effect sizes that are hard for other researchers to
replicate [50, 93, 53]. As an antidote, we strongly recommend:

1. Determining in advance the smallest effect size of interest (SESOI) [64]. This
may entail debate with the problem owners, typically practitioners. It also helps
address our “Bad Smell #1" by reducing the likelihood of conducting research
that nobody cares about.

2. Also, undertake power calculations in advance to determine the likelihood of
the study finding an effect of the expected size. Where possible, when there
are relevant previous studies, use a bias-corrected pooled estimate [90] to help
address likely exaggerated estimates.

3. If the power is low either modify the study design [75], use a larger sample or

6Huang et al. [48] describe a parallel situation in genomics where millions of associations can be poten-
tially discovered but the lack of theory means there is little guidance for researchers.
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investigate a different question.

The “smell" associated with this kind of problem can be surprisingly subtle. However,
one clue can be an argument along the lines of:

Despite a small sample size we were able to detect a highly significant
effect with a very low p. Thus it is concluded that the effect must be even
stronger than it first appears given the inherent difficulties in detecting it.

Unfortunately, nothing can be further from the truth. If the study is under-powered,
possibly due to a small sample, then it is extremely probable that the effect is a false
positive or a Type I error [71]. If the study has low power then that is a problem and one
that cannot be fixed by hunting for small p values. The problem that arises from small
samples is that the variability will be high and only the studies that by chance obtain
a sufficiently low p-value — and therefore satisfy the acceptance criterion typically
α = 0.05 — and these will of necessity have exaggerated estimates of the effect. This
is sometimes known as the “winner’s curse”. The probability that an observed effect
that reaches statistical significance actually reflects the true effect can be computed as
([1−β]×R)/([1−β]×R+α) where (1−β) is the power, β is the Type II error, α is
the Type I error and R is the pre-study odds that an investigated effect is truly non-null
among all the effects being investigated) [71, 104]. Note that this issue leads to the
next “bad smell”.

4.6. p < 0.05 and all that!
Though widely deprecated [17, 96, 23], null hypothesis significance testing (NHST)

persists as the dominant approach to statistical analysis. Hence, the following ficti-
tious7 examples “smell bad”:

Our analysis yields a statistically significant correlation (r = 0.01;n =
18000; p = 0.049;α = 0.05).

and

Table X summarizes the 500 results of applying the ABC inferential test
and reveals that 40 are statistically significant at the customary threshold
of α = 0.05.

In the first instance the low (and under the α = 0.05 acceptance threshold for Type I
errors) p-value should not be conflated with a practical, real world effect. A correlation
of r = 0.01 is trivial and to all practical purposes indistinguishable from no correlation.
It is simply the artifact of the very large sample size (n = 18000) and the logic of
NHST which demands that empirical results be dichotomised into true (there is a non-
zero effect) and false (the effect size is precisely zero).

Hence, methodologists encourage the notion of the smallest effect size of interest
(SESOI). This should be specified before the research is conducted. It also has the merit

7Since problems with the use of p-values are widely agreed to be endemic [96, 53] we consider it invidious
to single out individuals.

15



of re-engaging the researchers with the software engineering problems they are trying
to solve. So for, say software effort prediction, after consultation with the problem
owners we may conclude that the SESOI is to be able to reduce the mean inaccuracy
by 25%. Generally, although not necessarily, effect sizes are expressed as standard-
ized measures to enable comparisons between settings so the above SESOI could be
normalized by the variability (standard deviation) of the observations. For accessible
overviews see [33, 22]. It is useful for practitioners if the article report the effect size
with confidence limits. After all, we experience effects not p values!

In the second example of a “bad smell”, the problem relates to the practice of
performing excessive numbers of statistical tests and only attending to the ones that
are “significant". Given that 500 tests are performed and we accept the likelihood
of wrongly rejecting the null hypothesis at 1 in 20 we would expect to observe 40
“positive" results just with random data! A range of corrections have been proposed
[7]. Controlling for the false discovery rate using the Benjamini-Hochberg approach [8]
can be appropriate as it corrects the acceptance threshold without being as severe as the
traditional Bonferroni correction (α/twhere t is the number of tests being undertaken).

One way to avoid excessive statistical tests is to cluster results before performing
a statistical analysis. In this approach, instead of saying “what distributions are differ-
ent?” some grouping operator is applied prior to the application of statistics. For exam-
ple, consider the Scott-Knott procedure recommended by Mittas and Angelis [78]. This
method sorts a list of l treatments with ls measurements by their median score. It then
splits l into sub-lists m,n in order to maximize the expected value of differences in the
observed performances before and after divisions. The Scott-Knott procedure identifies
one of these divisions to be ‘best’ as follows. For lists l,m, n of size ls,ms,ns where
l = m ∪ n, the ‘best’ division maximizes E(∆); i.e., the difference in the expected
mean value before and after the split:

E(∆) =
ms

ls
abs(m.µ− l.µ)2 +

ns

ls
abs(n.µ− l.µ)2

Scott-Knott then checks if the ‘best’ division is actually useful. To determine this the
procedure applies some statistical hypothesis test H to check if m,n are significantly
different. If so, Scott-Knott then recurses on each half of the ‘best’ division.

For a specific example, consider the results from l = 5 treatments:

rx1 = [0.34, 0.49, 0.51, 0.6]
rx2 = [0.6, 0.7, 0.8, 0.9]
rx3 = [0.15, 0.25, 0.4, 0.35]
rx4= [0.6, 0.7, 0.8, 0.9]
rx5= [0.1, 0.2, 0.3, 0.4]

After sorting and division, Scott-Knott determines:

• Ranked #1 is rx5 with median= 0.25

• Ranked #1 is rx3 with median= 0.3

• Ranked #2 is rx1 with median= 0.5
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treatment Results from multiple runs
no-SWReg 174 38 0 32 50 141 34 317 114
no-SLReg 127 73 45 35 47 159 37 272 103

no-CART-On 119 257 425 294 181 98 409 520 16
no-CART-Off 119 257 425 294 181 98 409 520 16

no-PLSR 63 213 338 358 163 44 14 520 44
no-PCR 55 240 392 418 176 45 12 648 65
no-1NN 119 66 81 82 70 110 118 122 92

log-SWReg 109 23 9 7 52 100 12 164 132
log-SLReg 108 61 49 53 55 156 28 183 101

log-CART-On 119 257 425 294 181 98 409 520 16
log-CART-Off 119 257 425 294 181 98 409 520 16

log-PLSR 163 7 60 70 2 152 31 310 175
log-PCR 212 180 145 155 70 68 1 553 293
log-1NN 46 231 246 154 46 23 200 197 158

NOTE: treatments have a pre-processor (‘no’ = no pre-processor; ‘log’ = use a log transform) and
a learner (e.g., ‘SWReg’ = stepwise regression; CART = decision tree learner that post-prunes
its leaves after building the tree).

Figure 2: How not to present data (in this case, percent error estimations where the treatment in column one
was applied to multiple randomly selected stratifications of the data). Note that there is (a) no sort order
of the treatments from most to least interesting; (b) no summary of the distributions; (c) no indication to
indicate what values are best; and (d) no clustering together of results that are statistically indistinguishable.
For a better way to present this data, see Figure 3.

• Ranked #3 is rx2 with median= 0.75

• Ranked #3 is rx4 with median= 0.75

Note that Scott-Knott finds little meaningful difference between rx5 and rx3. Hence,
they have the same rank, even though their medians differ. For a larger example of this
kind of analysis, see Figures 2 & 3.

The Scott-Knott procedure can ameliorate the excessive statistical tests problem. To
see this, consider an all-pairs hypothesis test of 10 treatments. These can be compared
statistically (102 − 10)/2 = 45 ways. To substantially reduce the number of pairwise
comparisons, Scott-Knott only calls on hypothesis tests after it has found splits that
maximize the performance differences. Hence, assuming binary splits of the whole
data and all splits proving to be different, Scott-Knott would be called log2(10) ≈ 3
times. A 95% confidence test run for these splits using Scott-Knott would have a
confidence threshold of: 0.953 = 86 % assuming no corrections are made for multiple
tests..

Implementations that use bootstrapping and a non-parametric effect size test (Cliff’s
Delta) to control its recursive bi-clustering are available as open source package, see
goo.gl/uoj3FL. That package converts data such as Figure 2 into reports like Figure 3.

4.7. Assumptions of normality and equal variances in statistical analysis
A potential warning sign or “bad smell” is when choosing statistical methods, to

overlook the distribution of data and variances and focus on the “important" matters of
description e.g., using measures of location such as the mean, and the application of
inferential statistics such as t-tests.

It is now widely appreciated that applying traditional parametric statistics to data
that violates the assumptions of normality, i.e., they deviate strongly from a Gaussian
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RANK TREATMENT MEDIAN (75-25)TH
1 no-SWReg 50 107 - o --------
1 log-SWReg 52 97 o --
1 log-SLReg 61 55 -o ----
1 log-PLSR 70 132 - o -------
1 no-SLReg 73 82 - o -------
1 no-1NN 92 37 o
2 log-PCR 155 142 --- o ----------------
2 log-1NN 158 154 - o --
2 no-PLSR 163 294 -- o --------
2 no-PCR 176 337 -- o -----------
3 log-CART-Off 257 290 ----- o ------
3 log-CART-On 257 290 ----- o ------
3 no-CART-On 257 290 ----- o ------
3 no-CART-Off 257 290 ----- o ------

Figure 3: Using Scott-Knott, there is a better way to representation the error results see in Figure 2 (and lower
error values are better). Note that, here, it is clear that the “SWReg”,“CART” treatments are performing best
and worst (respectively). Results from each treatment sorted by their median (and the first rows with less
error are better than the last rows with most error). Results presented numerically and visually (right-hand
column marks the 10th, 30th, 50th, 70th, 90th percentile range; and ‘o’ denotes the median value). Results
are clustered in column one using a Scott-Knott analysis. Rows have different ranks if Cliff’s Delta reports
more than a small effect difference and a bootstrap test reports significant differences. A background gray
share is used to make different ranks stand out.

distribution can lead to highly misleading results [58]. However, four points may be
less appreciated within the software engineering community.

1. Even minor deviations can have major impacts, particularly for small samples
[110]. These problems are not always easily detected with traditional tests such
as Kolmogorov-Smirnov so visualization via qq-plots should be considered.

2. Differences between variances of the samples or heteroscedasticity, may be a
good deal more problematic than non-normality [34]. Thus the widespread be-
lief that t-tests are robust to departures from normality when sample sizes are
approximately equal and > 25 is unsafe [34, 113].

3. Although different transformations, e.g., log and square root can reduce prob-
lems of asymmetry and outliers they may well be insufficient to deal with other
assumption violations.

4. Lastly, there have been major developments in the area of robust statistics over
the past 30 years that are generally more powerful and preferable to non-parametric
statistics. This includes trimming and winsorizing [46, 57].

Since SE data sets can be highly skewed, heavy tailed or both, we recommend
performing robust tests for statistical inference. Note that we believe they should be
preferred (wherever possible), to non-parametric statistics that are based on ranks. The
latter, for example the Wilcoxon signed rank procedure can lack power and are prob-
lematic in face of many ties [10]. Kitchenham et al. [57] provide useful advice in the
context of software engineering and Erceg-Hurn and Mirosevich an accessible general
overview [34]. For an extensive and detailed treatment see [110].

Another approach is to use non-parametric bootstrapping (see Efron and Tibshi-
rani [32, p220-223]). Note that Figure 3 was generated with such a bootstrap test. With
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the advent of powerful computers, Monte Carlo and randomization techniques can be
very practical alternatives to parametric methods [73].

4.8. No Data Visualisation
Whilst its customary to describe the data with a few summary statistics such as

means, medians and quartiles this does not necessarily provide a check against unusual
patterns and anomalies. Hence, we strongly advise visualizing the data first before
applying statistical tests. For example:

• The horizontal box plots of Figure 3 can present results from a very large number
of samples in a single row. A visual inspection of that data lets an analyst check
if their conclusions are refutable due to, for instance extreme outliers or high
variance.

• For another example, consider Figure 4 that shows results from a 5*5-cross val-
idation experiment exploring the value of SMOTE:

– SMOTE is a data rebalancing technique that adjusts training data such no
class is a small minority [2].

– A 5*5 cross-val experiment is an evaluation technique where M = times,
we randomize order of data. Each time divide the project data into N bins,
train on N − 1 bins, test on the hold out (this is repeated for all bins).
This procedure produces 25 results which in Figure 4 are reported as the
medians and inter-quartile ranges (IQR).

From this visual inspection, before doing any statistics, we can observe that in
no case is using SMOTE is worse that not using SMOTE. Also, as seen in the
right-hand-side results of Figure 4, sometimes there are very large improvements
from applying SMOTE.

4.9. Not Exploring Stability
For many reasons, software engineering data sets often exhibit large variances [77].

So it is important to check if the effect you want to report actually exists, or is just due
to noise. Hence:

• When multiple data sets are available, try many data sets.

• Report measures of central tendency (e.g., median) and dispersion (e.g., standard
deviation or interquartile range (IQR) (75th-25th percentile).

• Do not just average results across N data sets. Instead, summarize the spread
of results across your data sets which might include the creative use of graphics
e.g. see Figure 4 above . Recall in that figure that the dashed lines at bottom
report the variability in the 25 results shown for each data set in that figure. The
key point here is that this variability is very small; i.e. differences between the
median results is often much larger than the variability introduced by a stochastic
selection of the train set (but, of course, that visual impressions requires a sanity
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Figure 4: Effects of SMOTEing while text mining 25 SE data sets. In this figure, the data sets on the x-axis
are sorted by the size of the different between using and not using SMOTE. Medians and IQRs shown as
solid and dashed lines, respectively (recall that the medians are the 50th percentile result and the IQRs are
the (75-25)th percentile). From [63].

check– which is the role of statistical tests). Meta-analysis is extremely diffi-
cult without dispersion statistics for the results needed to construct confidence
intervals [12, 90].

• If exploring only one data set, then repeat the analysis perhaps 20 to 30 times
(and then explore the distributions generated this way with a bootstrap procedure
i.e., sampling with replacement).

• Temporal validation: given data divided into some time series (e.g., different
versions of the same project) then train on past data and test on future data.
Our recommendation here is to keep the size of the future test set constant; e.g.,
train on software versions K−2,−1, then test on version K. Such validation
enhances realism and is likely to be far more interesting to the intended users of
the research.

• Cross-project validation: train on another project data, then test on the project.
Note that such cross-project transfer learning can get somewhat complex when
the projects use data with different attribute names or features.

• Within-project validation (also called “cross-validation”): divide the project data
into N bins, train on N − 1 bins, test on the hold out. Repeat for all bins.

Note that, temporal validation (and leave-one-out cross-validation LOOCV) do not
produce a range of results since the target is always fixed. However, cross- and within-
validations produce distributions of results and so must be analyzed with appropriately
so that both measures of central tendency (e.g., mean or median) and dispersion (e.g.
variance or IQR) are reported. As a generally accepted rule, in order to obtain, say, 25
samples of cross-project learning, select 90% of the data, at random, 25 times. And to
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obtain, say, 25 samples of within-project learning, M = 5 times shuffle the order of
the data and for each shuffle, and run N = 5 cross-validation. Caveat: for small data
sets under, say, 60 items, use M,N = 8, 3 (since 8× 3 ≈ 25).

4.10. Not Tuning
Many machine learners, including data miners, have poorly chosen defaults [108,

45, 37, 105, 1, 2]. Numerous recent results show that the default control settings for
data miners are far from optimal. For example, when performing defect prediction,
various groups report that tuning can find new settings that dramatically improve the
performance of the learned mode [37, 105, 106]. As a specific of that tuning, consider
the standard method for computing the distance between rows x and y (where each row
contains i variables):

d(x, y) =

(∑
i

(
(xi − yi)2

))1/2

When using SMOTE to re-balance data classes, tuning found it useful to alter the “2”
value in the above equation to some other value (often, some number as high as “3”).

One particularly egregious “smell" is to compare a heavily tuned new or pet ap-
proach with other benchmarks that are untuned. Although, superficially the new ap-
proach may appear far superior what we really learn is using the new technique well
can outperform using another technique badly. This kind of finding is not particularly
useful.

As to how to tune, we strongly recommend against the “grid search” i.e., a set of
nested for-loops that try a wide range of settings for all tuneable parameters. This
is a slow approach; an exploration of grid search for defect prediction and found it
took days to terminate [37]. Not only that, it has been reported that grid search can
miss important optimizations [38]. Every grid has “gaps” between each grid division
which means that a supposedly rigorous grid search can still miss important configu-
rations [9]. Bergstra and Bengio [9] comment that for most data sets only a few of the
tuning parameters really matter – which means that much of the run-time associated
with grid search is actually wasted. Worse still, Bergstra and Bengio observed that the
important tunings are different for different data sets, a phenomenon that makes grid
search a poor choice for configuring software analytics algorithms for new data sets.

Rather than using “grid search”, we recommend very simple optimizers (such as
differential evolution [103]) can suffice for finding better tunings. Such optimizers are
very easy to code from scratch. They are also readily available in open-source toolkits
such as jMETAL8 or DEAP9.

4.11. Not Exploring Simplicity
One interesting, and humbling, aspect of using Scott-Knott tests is that, often,

dozens of treatments can be grouped together into just a few ranks. For example, in the
Scott-Knott results of [40], 32 learners were divided into only four groups.

8jmetal.sourceforge.net
9github.com/DEAP/deap
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While not all problems succumb to simple approaches, it is wise to compare a
seemingly sophisticated method against some simpler alternative. Often when we code
and test the seemingly naïve method, we find it has some redeeming feature that makes
us abandon the more complex methods [19, 36, 62]. Moreover, the more parsimonious
our models, the less prone to overfitting [43].

This plea, to explore simplicity, is particularly important in the current research
climate that is often focused on Deep Learning that can be a very slow method in-
deed [35]. Deep Learning is inherently better for problems that have highly intricate
internal structure [66]. Nevertheless, many SE data sets have very simpler regular
structures, so very simple techniques can execute much faster and perform just as well,
or better, than Deep Learning. Such faster executions are very useful since they enable
easier replication of prior results.

This is not to say that Deep Learning is irrelevant for SE. Rather, it means that
any Deep Learning (or for that matter any other complex technique) result should also
be compared against some simpler baseline (e.g., [36]) to justify the additional com-
plexity. As an example, Whigham et al. [109] propose a simple benchmark based on
automated data transformation and OLS regression as a comparator, the idea being
that if the sophisticated method cannot beat the simple method one has to question its
practical value.

Three simple methods for exploring simpler options are scouts, stochastic search
and feature selection. Holte [47] reports that a very simple learner called 1R can be
scout ahead in a data set and report back if more complex learning will be required.
More generally, by first running a very simple algorithm, it is easy to quickly obtain
baseline results to glean the overall structure of the problem.

As to stochastic search, for optimization, we have often found that stochastic searches
(e.g., using differential evolution [103]) performs very well for a wide range of prob-
lems [37, 1, 2]. Note that Holte might say that an initial stochastic search of a problem
is a scout of that problem.

Also, for classification, we have found that feature selection will often find most of
the attributes are redundant and can be discarded. For example, the feature selection
experiments of [76] show that up to 39 of 41 static code attributes can be discarded
while preserving the predictive prowess. A similar result with effort estimation, where
most of the features can be safely ignored is reported in [20]. This is important since
models learned from fewer features are easier to read, understand, critique, and ex-
plain to business users. Also, by removing spurious features, there is less chance of
researchers reporting a spurious conclusion. Further, after reducing the dimensionality
of the data, then any subsequent processing is faster and easier.

Note that many articles perform a very simple linear-time feature selection such
as (i) sort by correlation, variance, or entropy; (ii) then remove the worst remaining
feature; (iii) build a model from the surviving features; (iv) stop if the new model is
worse than the model learned before; (v) otherwise, go back to step (ii). Hall and
Holmes report that such greedy searchers can stop prematurely and that better results
are obtained by growing in parallel sets of useful features (see their correlation-based
feature subset selection algorithm, described in [42]).

Before moving on, we note one paradoxical aspect of simplicity research—it can
be very hard to do. Before certifying that some simpler method is better than the most
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Table 5: The Ghotra et al. [40] article from ICSE’15 ranked 32 different learners often used in defect predic-
tion using a Scott-Knott procedure. Those ranks fell into four groups. The following table shows a sample
of those groups.

RANK LEARNER NOTES
1 ‘best’ RF=

random forest
Random forest of entropy-based decision trees.

LR= Logistic regression A generalized linear regression model.
2 KNN kth-nearest Classify a new instance by finding k examples of similar

instances. Ghortra et al. suggest K = 8.
NB= Naïve Bayes Classify a new instance by (a) collecting mean and stan-

dard deviations of attributes in old instances of different
classes; (b) return the class whose attributes are statisti-
cally most similar to the new instance.

3 DT= decision trees Recursively divide data by selecting attribute splits that
reduce the entropy of the class distribution.

4 ‘worst’ SVM=
support vector machines

Map the raw data into a higher-dimensional space where
it is easier to distinguish the examples.

complex state-of-the-art alternative, it may be required to test the simpler against the
complex. This can lead to the peculiar situation where weeks of CPU are required to
evaluate the value of (say) some very simple stochastic method that takes just a few
minutes to terminate.

4.12. Not Justifying Choice of Learner

The risk, and “bad smell", derives from the rapid growth in machine learning tech-
niques and the ability to construct sophisticated ensembles of different learners means
that the number of permutations are rapidly becoming vast. It is trivially easy to per-
mute an old learner L into L′ and each new learner results in a new article. The “bad
smell" then is to do this with no motivation, with no justification a priori as to why we
might expect L′ to be interesting and worth exploring.

When assessing some new method, researchers need to compare their methods
across a range of interesting algorithms. Comparing all new methods to all prior meth-
ods is a daunting task (since the space of all prior methods is so very large). Instead,
we suggest that most researchers maintain a watching brief on the analytics literature
looking for prominent papers that cluster together learners that appear to have similar
performance, then draw their comparison set from at least one item of each cluster.

For learners that predict for discrete class learning, one such clustering can be seen
in Table 9 of [40]. This is a clustering of 32 learners commonly used for defect predic-
tion. The results clusters into four groups, best, next, next, worst (shown in Table 5).
We would recommend:

• Selecting your range of comparison algorithms as one (selected at random) for
each group;

• Or selecting your comparison algorithms all from the top group.

For learners that predict for continuous classes, it is not clear what is the canonical
set, however, Random Forest regression trees and logistic regression are widely used.
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For search-based SE problems, we recommend an experimentation technique called
(you+two+next+dumb), defined as

• ‘You’ is your new method;

• ‘Two’ are well-established widely-used methods (often NSGA-II and SPEA2 [89]);

• A ‘next’ generation method e.g. MOEA/D [112], NSGA-III [27];

• and one ‘dumb’ baseline method (random search or SWAY [19]).

5. Discussion

Methodological debates are evidence of a community of researchers rechecking
each other’s work, testing each other’s assumptions, and refining each other’s methods.
In SE we think there are too few articles that step back from specific issues and explore
the more general question of “what is a valid article?”.

To encourage that debate, this article has proposed the idea of a “bad smell” as a
means to use surface symptoms to highlight potential underlying problems. To that
end, we have identified over a dozen “smells”.

This article has argued that, each year, numerous research articles are rejected for
violating the recommendations of this article. Many of those rejections are avoidable
— some with very little effort — just by attending to the bad smells listed in this article.
This point is particularly important for software practitioners. That group will struggle
to get their voice heard in the research literature unless they follow the established
norms of SE articles. To our shame, we note that those norms are rarely recorded — a
problem that this article is attempting to solve.

We make no claim that our list of bad smells is exhaustive – and this is inevitable.
For example, one issue we have not considered here is assessing the implication of
using different evaluation criteria; or studying the generality of methods for software
analytics. Recent studies [62] have shown that seemingly state-of-the-art techniques for
tasks such as transfer learning that were designed for one domain (defect prediction) in
fact translate very poorly when applied to other domains (such as code-smell detection,
etc.). Nevertheless, the overall the aim of this article is to encourage more debate on
what constitutes a “valid” article, recognizing that validity is not a black and white
concept (hence the quotation marks). We hope that further debate, across the broader
research community, significantly matures this list.

We think that such a debate could be enabled as follows:

1. Read more, reflect more. Study the methods deployed in software analytics and
beyond.When reading a article, consider not just the content of the argument, but
also its form.

2. Promote and share “bad smells" and anti-patterns as a means of sharing poor
practice but with the goal of promoting and good practice.

3. Pre-register studies and identify the smallest effect size of (practical) interest.
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4. Analyze the likely power of a study in advance. If too low revise the study design
(e.g., collect more data or perform a within-type analysis) or change the research.

5. Strive toward reproducible studies results.

6. Develop, agree and use community standards for software analytics studies.

Further to the last point, as we mentioned above, this paper is part of a strategic plan to
develop community standards in software analytics. To that end, we hope it inspires:

• More extensive discussions about best and worst paper writing practices;

• A workshop series where researchers meet to debate and publicise our commu-
nity’s views on what constitutes a “good” paper;

• Subsequent articles that extend and improve the guidance offered above.
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