
Received February 12, 2019, accepted March 8, 2019, date of publication March 19, 2019, date of current version April 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2904910

Hierarchical Intermittent Motor Control With
Deterministic Policy Gradient
HAIBO SHI 1, YAORU SUN 1, GUANGYUAN LI1, FANG WANG 2,
DAMING WANG 1, AND JIE LI1
1Laboratory of Cognition and Intelligent Computation, Department of Computer Science, Tongji University, Shanghai 201800, China
2Department of Computer Science, Brunel University, Uxbridge UB8 3PH, U.K.

Corresponding author: Yaoru Sun (yaoru@tongji.edu.cn)

This work was supported in part by the Grants from the National Natural Science Foundation of China under Grant 91748122, in part by
the Shanghai Science and Technology Committee under Grant 17JC1400603, and in part by the Natural Science Foundation Program of
Shanghai under Grant 18ZR1442700.

ABSTRACT It has been evidenced that the neural motor control exploits the hierarchical and intermittent
representation. In this paper, we propose a hierarchical deep reinforcement learning (DRL) method to
learn the continuous control policy across multiple levels, by unifying the neuroscience principle of the
minimum transition hypothesis. The control policies in the two levels of the hierarchy operate at different
time scales. The high-level controller produces the intermittent actions to set a sequence of goals for the
low-level controller, which in turn conducts the basic skills with the modulation of goals. The goal planning
and the basic motor skills are trained jointly with the proposed algorithm: hierarchical intermittent deep
deterministic policy gradient (HI-DDPG). The performance of the method is validated in two continuous
control problems. The results show that the method successfully learns to temporally decompose compound
tasks into sequences of basic motions with sparse transitions and outperforms the previous DRL methods
that lack a hierarchical continuous representation.

INDEX TERMS Hierarchical reinforcement learning, intermittent control, deterministic policy gradient,
continuous action control, motor control.

I. INTRODUCTION
It has been long speculated that the motor control in ner-
vous system adopts a hierarchical representation. The motor
processing circuits in the brain operate the control command
in different time granularities [1]–[4]. That is, the high-level
structure elicits the action signal that varies in large time
scale, while the lower neural circuitries generate the basic
skills for the bottom motion actuators automatically [5], [6].

A. NEUROSCIENCE BACKGROUND
The high-level structures of motor cortices in the brain do not
need to directly actuate the limb, but produce control com-
mands that exhibit intermittency with sparse switches [7].
It has been suggested that the neural control adopts intermit-
tent control (IC) as IC allows an agent to produce actions
at occasional moments, and eliminate the influence of the
time delay elements, intermittent feedback in the sensori-
motor system [7]–[10]. The physiological evidences suggest

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Hugo Albuquerque.

that the hierarchical motor control can be unified into a
novel conceptual framework: minimum transition hypothesis
(MTH) [8]. The MTH gives an optimization principle of
generating intermittent control signal, and can be formulated
as µ∗= argminµ E[

∑K
k δ(k)], where µ is the control policy

of the high-level controller that generates intermittent com-
mands, or the low-level controller that transforms the inter-
mittent commands into the basic actions. The cost function
is the expectation of the number of transitions δ (k), and the
optimal µ∗ should be the control policy that minimize the
transition number of the intermittent commands. The human
motor system can be seen as an intermittent control servo,
specifically for the event-triggered intermittent control [11],
where the transition is triggered by a specific event, which is
often implemented by attaining a certain state [12], [13].

B. REINFORCEMENT LEARNING BACKGROUND
Deep reinforcement learning (DRL) has achieved remark-
able success as deep learning is incorporated to approximate
the value function, policy and model. The convergence is

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

41799

https://orcid.org/0000-0001-9976-6927
https://orcid.org/0000-0002-2179-0713
https://orcid.org/0000-0003-1987-9150
https://orcid.org/0000-0002-1897-2874


H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

not guaranteed when directly using the deep net approx-
imations, especially on models with bootstrapping (e.g.,
TD-learning methods). The techniques that enhance the sta-
bility like replay memory, target networks and value clipping
greatly improve the learning performance of DRL meth-
ods [14]–[17]. Performance of human level or above is
achieved on the artificial environments like Go [18], Atari
games [19], OpenAI Gym [20] and chemical syntheses [21],
with the algorithms such as deep Q-network (DQN) [22],
AlphaGo [18] and AlphaGo Zero [23].

The prevailing algorithms are adapted for the tasks with
discrete action space, and cannot be readily used for motor
control that takes continuous action with the benchmark
environments like MuJoCo [20], [24]–[26]. Various pol-
icy gradient methods such as TRPO and Q-Prop are pre-
sented to optimize the control policy with continuous action
space [2], [26]–[31]. A recent study has identified the feasi-
bility of deterministic policy gradient (DPG) [32], which can
be seen as the deterministic version of conventional stochastic
policy gradient (SPG). The algorithm of deep deterministic
policy gradient (DDPG) is developed by combining the DPG
and the stability techniques of target networks and replay
memory [24], [25]. Similar with SPG-based algorithms,
DDPG learns the policy in the actor-critic architecture, with
the actor and critic approximated by the deep networks. Nev-
ertheless it is not necessary to take a probabilistic represen-
tation for the state transition and action selection in DDGP,
therefore DDPG is suitable for the problems of motor control
with deterministic dynamics.

Hierarchy is one of the main strategies employed in classi-
cal reinforcement learning, to deal with the tasks that have
a long horizon or sparse rewards. Hierarchical reinforce-
ment learning (HRL) is conducted by redefining and solv-
ing the original problem in different spatial and temporal
scales [33]–[37]. The actions with larger granularity are
denoted options or skills [37], [38]. For example, Sutton et al.
present the concept of option over the raw actions and for-
malize the HRL problems into the framework of semi-MDP
(semi-Markov decision process) [37]. Feudal RL has the
high-level ‘‘manager’’ to set sub-tasks for low ‘‘managers’’
which learn to fulfill the assigned sub-tasks [34].

This trend is continued through the prevailing of
deep reinforcement learning. The hierarchical variants
of DRL (HDRL) are presented with the interactions of
the concepts of sub-goals [39], [40], intrinsic motiva-
tion [39], [41], [42], reusing skills [43], [44], the multi-task
learning [45]–[48] and knowledge transfer [43], [49], [50]
etc. Various algorithms taking these insights into account,
such as h-DQN, STRAW, h-DDPG and DeepLoco, are
justified to have more competent performance than their
non-hierarchical counterparts [17], [39], [41], [46] (detailed
in Section I-C).

However, hierarchical continuous control often requires a
continuous representation in multiple levels of the architec-
ture.Modulating the skills with continuously tuned high-level
actions would strengthen the scalability and flexibility of the

skills. But previous algorithms either focus on hierarchical
discrete policy (e.g., by stacking DQN) [39], [49], or only
have continuous representation in raw actions [46], leaving
the high-level action drawn from a discrete set of skills
according to the high-level value function. Also, basic skills
are commonly learned by multiple actors or even with multi-
ple agents in parallel [25], [45], [47]. And skills are extracted
from the trajectory data with clustering techniques [50],
or pre-trained options [43]. These settings limit the form
of skills to pre-defined patterns, or lack the capability to
discover the skills during the joint learning of the hierarchical
modules.

To address the above challenges, here we propose an algo-
rithm that learns the hierarchical continuous control policies,
with intermittent high-level actions that can modulate the
basic skills. The proposed method is called hierarchical inter-
mittent DDPG (HI-DDPG) as it embeds DDPG architecture
in two levels of its hierarchy. Two hierarchically arranged
control modules operate in two different time scales (Fig. 1).
The high-level actor outputs the continuous-valued goals and
each goal has a variable time horizon. The low-level actor
performs the raw actions of basic skills, to approach the
current goal within the time horizon. HI-DDPG learns control
policies of the two levels jointly to complete the composite
tasks by specifying and sequencing the basic skills. The
algorithm was justified in two experiments: the PuckWorld
control task and the arm control task, and was demonstrated
to have superior performance in comparisons to the previous
hierarchical DRL methods.

The main contributions of this paper include: First,
a HDRL algorithm is presented to learn a two-stage frame-
work with continuous control in both stages. Second,
we incorporate the model-based gradient into the learning
architecture, which helps to refine the policy gradient. Third,
the algorithm parsimoniously incorporates the neural mecha-
nism of temporal composition of basic motor skills under the
minimum transition principle.

The rest of the paper is organized as follows. Section II
describes the architecture and the learning algorithm of the
proposed model HI-DDPG. The learning performance of the
model is validated in Section III. A brief conclusion and
directions for future work are given in Section IV, followed
by the SectionAppendix that demonstrates the biomechanical
model of the arm plant and experimental settings.

C. RELATED WORK
Recently hierarchical deep reinforcement learning (HDRL)
has received extensive study. Here we describe some of the
most related to illustrate the position of our work with respect
to the previous studies.

One of the commonly incorporated insights in HDRL
works is the temporal abstraction ability by exploiting the
intrinsic motivation. H-DQN represents the intrinsic motiva-
tion with the sub-goals selected with the meta-controller [39].
Similarly [41] plans the step targets at time scale of gait
steps for low controller to learn bipedal walking. The method

41800 VOLUME 7, 2019



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

FIGURE 1. The architecture of the proposed method. (Top) The structure
of the two-stage hierarchy of HI-DDPG. (Bottom) Temporal decomposition
of a compound task into sequences of segments.

in [40] follows the feudal reinforcement learning in [34]
to facilitate very long timescale credit assignment through
the ‘‘manager’’-‘‘worker’’ interaction. Our method shares the
point of intrinsic motivation as it also represents the high-
level actions as the goals for low-level control.

The studies in [41], [42] map the spinal and cortical circuits
to the low-level pre-trained motion modules and high-level
controller respectively. The spinal net is modulated by the
cortical net to generate the raw commands. The same neu-
roscience principle is shared in our study, but differently we
also integrate an additional principle of MTH.

Several works concentrate on transferring the learned skills
in the novel tasks [47]–[49], [51]. Yang et al. present the
method of multi-DDPG to learn the continuous control for
multiple tasks simultaneously [45], and further develop the
algorithm of h-DDPG, with a two-level hierarchy consisting
of a meta-critic and multiple actors to perform the skills [46].
Spatio-temporal clustering techniques are exploited in [50] to
discover the options which could be efficiently reused across
different tasks when they are under the same model. A pre-
trained repertoire of domain-general skills in [43] is used to
acquire faster learning in downstream tasks. The method of
h-DDPG has the closest relationship with our HI-DDPG in
the motivations and the component structures. Both methods
learn the hierarchical continuous control by reusing the basic
skills, and the basic skills are learned with DDPG.

But our work has several essential differences from
h-DDPG. First, although the basic actions in h-DDPG are
continuous-valued, the high-level actions are drawn from a
limited set of skills, so it adopts a discrete action space for
the high level action. Contrarily, in our method both levels of
the hierarchy are performed in continuous action space. The
low actor thus can be set with the continuous-valued goals to
specify the basic skills. As a result, the low-level skills are
scalable to assigned goals. Second, h-DDPG uses multiple
actors to perform basic actions, whereas ourmethod only uses
a single low-level actor to generate the raw actions. In this
way the actor generates the basic actions according to the
top-down modulation. Third, our method learns the hierarchy
in two time scales to implement the temporal abstraction.
Whereas in h-DDPG both two levels are learned in the same
time scale, which means that the skill selection has to be
executed for every time step.

Works in [47], [52] optimize time interval to execute a spe-
cific option or skill by learning the corresponding termination
condition. Differently, we explicitly output the duration time.
This setting facilitates the model prediction for the ‘‘fore-
sight’’ after multiple steps, given the running steps known in
advance.

The method in this study is built upon a HDRL algo-
rithm in our previous work [53], based on which we intro-
duce the model-based gradient to accelerate convergence and
include the comparison experiments with related algorithms.
DPG provides the convenience to acquire the gradient of
the action-value function with respect to both the actions
and the state. The former directly gives the form of DPG
and the latter, combined with learned model, could offer
another pathway to generate the action gradient thus affords
additional information to refine the action gradient [54]. This
is different from the model-based acceleration in [26], which
directly mixes the optimal control solution with iLQG [55] in
the replay samples.

II. METHODS
A. THE BASIC DDPG
In aMarkov decision process (MDP) for an environment with
continuous action and deterministic dynamics, we have the
state st from state space S, the action at action space A, a tran-
sition T : (st, at)→st+1 to describe the transition dynamics
of the environment, and a reward function r ∈ S× A. Given
a certain state, the action is generated with the deterministic
policy µθ that is parameterized by θ ∈ Rn. At each time
step, the agent executes a deterministic action: at = µ(st, θ),
and is returned with a new state and a reward r(st, at). The
agent learns to improve the policy tomaximize the cumulative
rewards along the trajectory, upon the sequential samples
of state, action, and reward: s1, a1, r1, . . . ,sT, aT, rT. The
learning can be realized by optimizing the expected return
R, which is defined as the discounted reward: R (s, a) =∑T

k=t γ
k−tr(st, at), where γ is the discounted factor and

takes the value between 0 and 1. The action value function

VOLUME 7, 2019 41801



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

Qµ (s, a) can be defined on the basis of return function:
Qµ (st, at)=E[R (s, a) |st, at, µθ ]. The objective function is
the expectation of the return function of initial state under
the parameterized policy:

Jθ = Qµ (s1, a1) = E[R1|s1, a1, µθ ]. (1)

The deep deterministic policy gradient algorithm (DDPG)
exploits the actor-critic architecture: the actor generates the
control action and the critic estimates the value function of
the action-state pair. The actor and critic are approximated
with parameterized functions respectively: at= µ (st|θµ) and
Qt= Q

(
st, at|θQ

)
, where θµ and θQ are the weights param-

eters for the actor and critic networks. DDPG also uses the
target networks (parameterized with θµ

′

and θQ
′

) for both the
actor and critic to ensure the stability. The maximization over
a continuous action space is achieved by updating the actor
in the direction of the deterministic policy gradient, which is
obtained by combining the gradients from the critic:

∇θµJ (W) = E[∇aQ (s, a)∇θµµ (s, a)] (2)

The action value function is updated by the temporal dif-
ference (TD). The action-state value function is modified to
minimize the TD error δQ, which is the difference between
the predicted action value of current time step and the target
action value, which in turn is the sum of the current reward
and the predicted action value (with the target network of the
critic) for the next time step:

δQ
(
st, at|θQ

)
= rt+γQ′

(
st+1, µt+1 | θ

Q′
)
−Q

(
st, at|θQ

)
.

(3)

B. THE HIERARCHICAL INTERMITTENT DDPG
The proposed HI-DDPG is constructed by embedding the
DDPG hierarchically, and the corresponding MDP is defined
in two time scales. The high-level policy plans the temporary
goals gti ∈ S and the corresponding time horizon Tti , where
ti is the time step of the i -th switch. The high-level actor
outputs the goal gti and duration Tti with the current state
sti . The low-level skills generate the raw action base on
instant state, in the context of the current goal gti for Tti
time steps, and receives the new state sti+1 and the high-level
reward that evaluates the goal within this interval (Fig. 1). The
high-level reward is the sum of the environment reward fti =∑t+T

k=t r
env(st, at) for the length of Tti , where the superscript

‘‘env’’ in renv implies that the reward is returned from the
environment. However the low-level reward rint

(
st, at|gti

)
is

not returned from the environment, but is instead determined
intrinsically to measure how accurately the current goal is
achieved. This intrinsic reward can be interpreted as the inter-
face of the two levels of policy, and is assigned by a function
dependent on both the low-level and high-level actions. The
presence of intrinsic reward has earned the evidence from
both cognitive and computational studies [56]–[59].

The high-level policy is learned to maximize the cumu-
lative reward Fti =

∑K
k γ

k−iftk along the goal sequence

gt1 , gt2 , . . . ,gtK from multiple transitions. The action-state
value estimated by the high-level critic for the current state
sti and the high-level action (gti,,Tti ) is the expectation of
the cumulative high-level reward: Q

(
sti , gti,,Tti |θ

QH
)
=

E[Fti |θµH ], where θQH and θQH are the parameters of the
high-level critic and actor respectively.

The learning is conducted on the high-level and low-
level controller simultaneously. The parameters θµH for the
high-level actor are modified following the below gradient,
which yields a similar form as in the plain DDPG:

∇θµH J (θ) = E[∇g,TQ
(
sti , g (ti) ,Ti | θ

QH
)
∇θµH (sti |θ

µH ).

(4)

The high-level critic for approximating the action value
function is optimized to minimize the loss defined by the
square of TD error δQH with respect to the critic parameters
θQH , which is the difference between the predicted action
value and the target action value of current switching point:

δQH =
∑t+T

k=t
renv (st , at)+QH

(
sti+1 , g (ti+1) ,Ti+1 | θ

Q′H
)

−QH (sti , g (ti) ,Ti), (5)

where
∑t+T

k=t r
env(st, at) is the sum of the environment reward

within Ti, and Q
(
sti+1 , g (ti+1) ,Ti+1 | θ

Q′H
)
is the predicted

value function for the state of the next switching point.
We omit the low-level learning algorithm due to its similarity
with the basic DDPG.

C. MODEL-BASED GRADIENT
An additional module is added for high-level and low-level
controllers respectively, to approximate the forward dynam-
ics of the controlled object, which is illustrated with the
box of ‘‘Model’’ in the Fig. 2. The dynamics is specified
by deep networks with the weight parameters θML (θMH ),
which takes the current state and action as the input and
predicts the state of the next step as the out put. Since the
network parameters are known, although they are changing
when the learning proceeds, the gradients of the output with
respect to the current action can be derived with an ordi-
nary backpropagation. To train the internal model network,
the input-output pairs of ([st, at] , st+1) for low-level internal
model and ([s (ti) , g (ti) ,Ti],s(ti+1)) for high-level model are
stored as the training samples. As the state is updated with
st+1 = st+1tṡt+1, the gradient of the next state to the current
action is equivalent to the gradient of ṡt+1 scaled by 1t .
Finally the model-based gradient can be acquired with the
chain rule, which is the product of the gradient of action-state
value and the state gradient to the current action:

∂Q|st+1
∂at

=
∂QL

∂st+1
1t
∂ ṡ|θML
∂at

(6)

Accordingly, the gradient of the high-level critic to the
goals and duration time could be calculated as:

∂Q|s(ti+1)
∂g (ti) ,Ti

=
∂QH

∂s(ti+1)
∂s(ti+1)|θMH
∂g (ti) ,Ti

(7)

41802 VOLUME 7, 2019



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

Algorithm 1 Learning Algorithm of HI-DDPG

1. Initialize the parameters θQH for the critic network
and θµH for the actor network of the high-level
controller, {θµL , θµL } for low-level controller,
and the target networks individually.

2. Initialize experience replay buffer {DH,DL},
3. for episode = 1, num_episodes do
4. Start a random process OU (α, σ )
5. Reset initial observation s0
6. While

∑
Ti < episode_lengthdo

7. Generate the gti ,T i = µH (sti |θ
µH ) add the

exploration OU noise
8. for t = 1,Ti do
9. Generate at = µL(st , gti |θ

µL )
10. Execute at , observe the new state st+1 and

receive the r intt with the current goal gti
11. Add the transition (st , at , gti , r

int
t , st+1) to DL

12. Draw random transitions from DL to train the
low-level controller and internal model

13. end for
14. receive the high-level reward

fti =
∑t+T

k=t r
env(st, at) through the duration for

the previous goal
15. Add the transition (sti , gti ,Ti, fti , sti+1 , ) to DH
16. Sample a mini-batch of transitions

(sti , g (ti) ,Ti, fti , sti+1 , ) from DH
17. Set the target Q′ti as

fti + γQ
(
sti+1 , g (ti+1) ,Ti+1 | θ

Q′
)

18. Learn the Critic parameters θQH by reducing the
error

∑
i

(Q′ti − Q
(
sti , g (ti) ,Ti | θ

QH
)
)
2

19. Update the high-level Actor:

gθµ =
∑
∇g,TQ

(
sti , g (ti) ,Ti | θ

Q
)
∇θµH (sti |θ

µ)

20. Update the high-level internal model
21. end for
22. end for

The gradient updates the action with regards to the upcom-
ing state and the corresponding value function, thus it could
be seen as a one-step model-predicted optimization [54].

D. NETWORK ARCHITECTURES OF THE CRITIC AND
THE ACTOR
Both the critic and the actor are implemented with a multi-
layer perceptron (MLP). The critic network takes the current
state sti , and action (g (ti) ,Ti) as inputs and approximats
the action-value function Q

(
sti , g (ti) ,Ti | θ

QH
)
as the output.

FIGURE 2. The incorporation of the model-based gradient. In addition to
the actor (box A) and critic (box C), the model approximator (box Model)
is included. The pathway from critic to actor mediates the deterministic
policy gradient ∂Q/∂a, while the pathway from the critic to model to actor
mediates the additional gradient from model:
∂Q/∂s(t C 1)/∂a • ∂s(t C 1)/∂a. Solid lines are the data flow and the
dashed lines are the updating gradients.

And the actor network takes the current state sti as input
and generates the action (g (ti) ,Ti) as output. Both the critic
and the actor networks have two hidden layers, each with
300 nodes, except the state and the action are fed to critic net-
work separately: the state sti is directly fed to the input layer,
while the action (g (ti) ,Ti) is fed to the first hidden layer.
Both hidden layers had a Rectified Linear Units (ReLU) acti-
vation, where ReLU activation is defined as f(x) = max(0, x),
and the output units have linear activation.

III. RESULTS
To verify the learning capability of the proposed HI-DDPG
method, we performed two experiments that required com-
pound continuous control. In the first experiment, the model
was required to learn to control an object with simple lin-
ear dynamics (the PuckWorld problem), to move along the
pre-defined target trajectories, thus it was called as the tra-
jectory following task. In the second experiment, the task
was to control a simulated arm that had a complex non-linear
dynamics to reach a target while avoiding arbitrarily located
obstacle, whichwas referred to as the obstacle avoidance task.
Finally, the proposed method was compared with the existing
similar algorithms and the plain DDPG.

A. TRAJECTORY FOLLOWING TASK
In the first experiment, the state of the controlled object, or the
puck in the PuckWorld problem, st was a four-dimensional
vector: st= [sx, sy, vx, vy]. The first two elements were the
position in Cartesian coordinates and the last two were the
Cartesian velocities. The action contains the forces conducted
on the puck: at= [ax, ay], which followed a simple linear
dynamics: ṡt+1= Ast+Bat, where A and B were constant
matrices reflecting the physical mechanics. The algorithm

VOLUME 7, 2019 41803



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

learned the control policies to force the puck to follow target
state trajectories.

Each target trajectory was formed by a concatenation of the
puck states of 30 time steps, but with different profiles speci-
fied by different number of inflections (shown in Fig. 4 left).
The target trajectories were defined by forward simulating
the system with arbitrary goals. The resulting trajectory was
then used as the target trajectory. The temporary goals are
unknown and optimized during the training. As a result,
the comparison between goals assigned for the target tra-
jectories and the learned goals can be made, to validate the
learning ability of the algorithm. The reference goals were
set to {[1.5,0.35,0,0]}, {[1.2,-0.9,0,0], [2.3,1.5,0,0]} and
{[1.5,-1.5,0,0], [1.5,1.5,0,0], [2,-1.8,0,0]} for trajectories
with one, two and three inflections separately. The initial state
of all trajectories was set to [0,0,0.5,0.5].

The input to the high-level controller was the
4-dimensional puck state sti , and the output consisted of a
4-dimensional goal gti= [gx, gy, 0, 0] and a scalar Ti. The
input to the low-level controller was the concatenation of
state sti and the gti , which was 8-dimensional, and the output
was a 2-dimensional action at for each moment within the
duration of Ti. Both high-level and low-level state transitions
were stored into the experience replay memory DH and DL,
whose capacities were set to be 1E5 and 1E4 respectively. The
learning rates were set to be 2E−5 and 2E−4 with the Adam
optimizer, and discount rates for high-level and low-level
controller were set to be 0.99 and 0.95 respectively. The
parameters for Ornstein-Uhlenbeck process were α = 0.05
and σ = 0.1.
The algorithm successfully learned to track the target tra-

jectories. Shown in Fig. 3 was the average episodic reward
curve for the task of 2-inflection trajectory over 15 trials. The
reward was the sum of the penalty for number of switches and
the fitting accuracy of the generated trajectory. The reward
was subtracted by 10 for each transition in the high-level com-
mand. The penalty term related to switches discouraged the
control policies from too frequent goal transition to minimize
E
[∑K

k δ(k)
]
. During training, the number of goal transitions

in the optimized policy (high-level) automatically converged
to the number of transitions close to that in the reference
trajectory.

The trajectories were generated by concatenating a series
of strokes (Fig. 4). Each of the strokes was specified by
the corresponding goal and was conducted by the low-level
controllers. The strokes were not necessarily executed to the
end, and most of the segment strokes were interrupted in the
middle of the path to the goal position. In this sense, the goals
can be interpreted as the virtual goals, i.e., they were set
as the targets but were switched before being reached. The
overall trajectory was formed in a way that the strokes were
sequentially switched at the proper time.

Since the model achieved the complex movements by
concatenating multiple constituent reaching motions, it was
expected that the accuracy of trajectory following would

FIGURE 3. The average high-level reward curve for target trajectory with
2 inflections. The red line is the average reward across episodes over
15 different runs.

FIGURE 4. The performance of HI-DDPG for the trajectory following task.
(left) The blue lines in each penal were the reference trajectories, and the
red lines were the trajectories generated by the model during learning.
(right) Blue disks in the right column are the reference goal points and
the red disks are the learned goals. Note that the method reproduced the
original goal points through learning.

increase as the high-level controller discovered accurate goals
for each reach, possibly, the original goals used for generating
the reference trajectories. The training performance for the
control of trajectory following was demonstrated in Fig. 4.
The errors between generated trajectories and the reference
trajectories were small (Fig.4 left) and the goals generated
by the high-level controller reproduced the reference goals
(Fig. 4 right). The method was capable of fitting the reference
trajectories by finding the original goal position that were
used to create the reference trajectories. It can be observed
that the reproduced goal positions (red disks) centered at
the original goal positions (blue disks). Trajectories with
different number of goal positions (with different number of
switches in the control command) were shown in different
rows of Fig. 4. The reference trajectories were plotted with
blue line, and the trajectories generated with the method

41804 VOLUME 7, 2019



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

FIGURE 5. The high-level and low-level control commands. The action
components in X-axis and Y-axis were displayed in separate boxes (left
for X-axis and right for Y-axis). Dashed lines were the goals. The low-level
actions were plotted as solid lines. The actions of the standard controller
were shown in dotted solid lines.

through training were plotted with red lines. The history
performance at different phase of training was also plotted in
red lines, with increasing opacity as the training proceeded.

Fig. 5 showed the switches of both the high-level com-
mands and the low-level commands. The actions of the
low-level controller were also compared with the control
policy generated with the standard controller, in this study
the method of gradient-based trajectory optimization [60].
A number of sequential goals were set and fed to a standard
optimal control-based controller iLQR, to yield the optimal
commands to generate a movement of the puck. It can be
shown that the concatenation of the low-level control com-
mand was fitting the optimal command generated by the
standard controller.

B. OBSTACLE AVOIDANCE TASK
In the second experiment, the model was examined in the
obstacle avoidance task of a simulated arm control environ-
ment. Compared to the PuckWorld environment, two diffi-
culties were involved with the arm plant. First, the biological
movement control is featured with non-linear dynamics and
kinematic redundancy [55] due to the nature of the biome-
chanical system. In this experiment a musculo-skeletal arm
model was used, which had two joints and was driven by
6 muscles. Accordingly the plant had a 4-dimesional state
and a 6-dimensional action. The detailed description of the
arm model was provided in the Appendix section. Second,
any part of the arm, not just the end point as the disconnected
mass point in the case of thePuckWorld, was required to avoid
the obstacle. This involved a penalty that was defined by the
shortest distance of the obstacle center from the arm, which
was in turn defined by the distance between the obstacle
center and the closest point on the arm.

As shown in Fig. 6A, the closest point was found as the
perpendicular projection of the obstacle center onto the vector
−−−−→
V1 − V0 and

−−−−→
V2 − V1, corresponding to the two segments of

the arm, where V0, V1 and V2 were the coordinates of the

FIGURE 6. The obstacle avoidance task of arm environment. (A) The
definition of the distance of the obstacle from the arm. (B) An obstacle
avoidance result generated by concatenating two sequential reaches. The
arm trajectory was shown in blue-green color map, and the goal states
were shown in red.

shoulder, elbow and wrist joints respectively, and O was the
coordinate of the obstacle center. The distance was restricted
to be larger than the diameter of the obstacle, otherwise a
penalty of fixed value would be returned and the episode
was stopped. The target action-state value for the final step
in each episode was assigned with the reward of the final
step: QH(ti) =

∑t+T
k=t r

env(sti , ati ), rather than the sum of the
current reward and the discounted action value of next step:
QH(ti) =

∑t+T
k=t r

env
(
sti , ati

)
+ γQH(ti+1).

The hyper-parameters for the critic and actor networks
were the same as in the experiment of the PuckWorld envi-
ronment, but an additional ReLU layer was added to improve
the capability of the non-linearity representation for the arm
control environment. Four strategies were employed to ensure
the robustness of the learning. First, the capacity of the replay
memory was expanded in this experiment. The capacities
for high-level controller and low-level controller DH and
DL were set to be 1E6 and 1E5 respectively. Therefore the
historic trajectories of state and action were more likely to
be drawn from the replay buffer, together with the recent
trajectories. Second, the parameters of Ornstein-Uhlenbeck
random process were set to α = 0.05 and σ = 0.15 to
enhance the exploration, which would lead to a stronger
random bias to the action generated by the actors. Third, sim-
ilarly, a decaying factor was introduced to the learning rate.
The learning rates of the high-level and low-level controller

VOLUME 7, 2019 41805



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

were initialized to 5E-5 and 5E-4 respectively, and decayed
exponentially by multiplying a discount factor of 0.99 for
every 50 episodes. Forth, the lower controller was trained
separately in advance to improve the stability during the hier-
archical learning for first 1000 episodes. During this phase,
the parameters of the low-level controller were trained and
the high-level controller was by-passed with random goals.
The reward to the low level controller was only the intrinsic
rewardmeasured by the random goals, and was defined by the
accuracy of one single reaching movement. Fig. 6B showed a
result of arm reaching trajectory for obstacle avoidance. Two
temporary goals were generated as the high-level command,
which were represented in the joint space. The first goal
distracted the arm from the obstacle and the second goal fell
to the vicinity of the final target.

C. COMPARISON WITH RELATED ALGORITHMS
We compared the proposed method with a hierarchal contin-
uous control algorithm h-DDPG [46], and the plain DDPG.
Our previous work which can be seen as HI-DDPG with-
out the model-based gradient (indicated as HI-DDPG-wo-
model) [54] was also included for comparison. Both our
method and h-DDPG have the DDPG embedded in the hier-
archical architecture, therefore h-DDPG is an appropriate
baseline comparator.

We made some adaptations of the architecture parameters
of h-DDPG for the tasks in this study. First, a pair of basic
critic and actor is set for each of the multiple basic skills
in h-DDPG. We set the number of skills to four, according
to the experiment setting in [46], where the basic skills for
all three scenarios are the same four motions: Going for-
ward/backward and Turning left/right. In PuckWorld task,
the basic skills for h-DDPG assigned velocity directly to the
puck (kinematics problem), in contrast to that of our method
which applied the forces on the puck (dynamics problem).
Second, in the arm task, each of the basic skills was a com-
bination of the flexion-extension motion of the two joints.
We used the abbreviation S and Eb for the joint shoulder
and elbow, and F and Ex for the joint motion of flexion and
extension. The basic skills accordingly should be S-F/Eb-
F, S-F/Eb-Ex, S-Ex/Eb-F and S-Ex/Eb-Ex. Third, h-DDPG
selected a basic skill by applying ε-greedy on the meta-
critic, and thus did not need any actor, so we removed the
high-level actor module. Fourth, the basic reward in h-DDPG
directly came from the environment, because it did not have
the intrinsic reward as in our method. Fifth, h-DDPG method
could extract the state information from raw image input.
Since the environments in this study were not equipped with
the visual simulation, sowe bypassed the convolutional layers
in the h-DDPG structure.

The statistic results of the compared methods and the t-test
among them were conducted on 15 runs of each method in
each environment. The mean and standard deviation of the
reward were shown in Fig.7 top and Fig. 8 top. A tiling graph
(Fig.7 bottom and Fig. 8 bottom) presented the t-test results
between the methods, in which the color of each tile was

FIGURE 7. The comparison of HI-DDPG, h-DDPG, HI-DDPG-wo-model and
flat DDPG for obstacle avoidance task in PuckWorld environment. (top)
The mean and std of episodic rewards. (bottom) t-tests between
methods. The numbers in each tile was the p-value for a pair of methods.

FIGURE 8. The comparison of HI-DDPG, h-DDPG, HI-DDPG-wo-model and
flat DDPG for obstacle avoidance task in arm environment. (top) The
mean and std of episodic rewards. (bottom) t-tests between methods.
The numbers in each tile was the p-value for a pair of methods.

coded by the minus log likelihood of the p-value of t-test with
the sign of t-value: −log(p) · sign(t). Thus a red tone color
indicated a high significance.

We found that the h-DDPG achieved similar performance
with HI-DDPG in the PuckWorld task, but HI-DDPG gained
better performance in the arm task (p<0.05 for most of the
late stage of learning). The advantages could be attributed to
the two causes. First, the selection of the actors in h-DDPG
was made for every time step. This led to frequent switching
between the basic skills. Although all the basic actors adjust
the speed value smoothly within a specific skill, switching
between different skills would lead to abrupt changes through
the compound trajectory. This was different from that of our

41806 VOLUME 7, 2019



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

method, where each sub-goal was maintained for a time inter-
val and the raw control would be executed smoothly. Second,
h-DDPG is originally proposed for kinematic control tasks,
so the joint torque control for a highly non-linear dynamics
would be too difficult. In contrast, our method deployed the
temporary goal states for the low-level controller, which was
capable of the simple target reaching given a goal with proper
distance. It should also be noted that because the form of the
skills or the ‘‘speed patterns’’ inherently served as the prior
knowledge, h-DDPG had a faster convergence in both tasks.

HI-DDPG outperformed our previous workHI-DDPG-wo-
model in both accuracy and stability (p<0.05 for most of
the learning course). This implied that model-based gradients
transmitted from the state value function complemented the
action gradients. Also, the sample exploration was influ-
enced by the model-guided information, in a way that locally
discriminative state trajectories were collected in the replay
buffer during training.

Compared to HI-DDPG, plain DDPG presented neither
competent accuracy nor rapid convergence. It was prone to
find a trade-off state, where the attraction to the final target
was negated by the repulsion from the obstacle. Instead,
the HI-DDPG policy improved the probability of exploring
the states that were far from both the obstacle and the final
state, before turning back to the final target, leading to a more
globally optimal solution. Also, the sequence required for the
final target was too long and implicit for the plain DDPG.

IV. DISCUSSION
A. CONCLUSION AND DISCUSSION
The proposed algorithm successfully learns to generate hier-
archical intermittent control for the composite movement
control. Compared to the previous related studies the method
achieved superior performance in the compound tasks with
highly nonlinear dynamics. Meanwhile, the algorithm takes
the neuroscience principles of MTH and the internal model
mechanism into account, therefore the algorithm can be inter-
preted both as a hierarchical deep reinforcement learning
algorithm for continuous control and as a computational
model for neural mechanism of motor control.

The advantage of HI-DDPG over the h-DDPG could be
attributed to several aspects (Fig. 7 and Fig. 8). First, the
top-level action of h-DDPG is drawn from discrete options,
and the low-resolution options did not offer much flexibility
for the continuous motion task. Second, the meta-critic and
the basic actors in h-DDPG operate in the same time scales,
without the temporal embedding of different time scales.
Therefore, the meta-critic has to estimate the action value of
each action pattern and thus select one at every time step. The
frequent switching of action skills reduce the consistency and
smoothness, and further harm the performance.

The proposed method is not only more effective in perfor-
mance comparing to that of non-hierarchical DDPG, but also
computationally efficient. On the one hand, since the small
changes to the goals and their duration time lead to great

changes over time to the resulting state trajectory, adapting
the high-level command provides more exploration in the
state space. The large exploration helps collect diverse and
informative samples in the memory buffer for training thus
contributes to a rapider convergence. On the other hand, a typ-
ical high-level control has a small number of switches, so the
action-value function is approximated over future states of
small number of time steps. The short trajectory remarkably
decreases the computing need in learning process.

The model-based promotion of our method is different
from that of [26]. The model-based gradient in our study is
derived from the compatibility with DPG. Given the state
and action of current time step, the estimation the future
rewards is related to the concept of cost-to-go in the studies
of optimal control [61]. The policy in optimal control can be
obtained by finding the optimal cost-to-go with respect to the
state. Similarly, the action-state value in DPG could also be
optimized by both adjusting the state (through modifying the
previous actions) and adjusting the action.

B. FUTURE WORKS
Recent neuroscience studies have revived the dynamical sys-
tem view of neural coding in the motor processing of cortex
circuitry, which regards the neural activity as the network
dynamics driven by the interaction among neurons in a spe-
cific neuron aggregate [5], [62]. Following this hypothesis,
the motor command can be extracted from the temporal
patterns which are governed by the internal dynamics of
the neural population. Furthermore, the temporal trajectory
of network state is specified by the initial state of the motor
network, i.e., once the initial state is appropriately set, the
network state and thus the desired output command are
deterministically specified. Therefore, sequencing the motor
segments, which forms the compound movements, can be
achieved by intermittently switching the initial state of the
modules for basic skills. This notion is applicable to the
method proposed here, where the temporary goal determines
the control command and the resulting state trajectory within
each segments.

In HI-DDPG the action gradient from internal model is
only applied for one time step, and only the influence of the
action to the next state is considered. However, the action
at a certain time step can influence all the states after this
time step. So an accurate estimation of the gradient to an
action of a certain time step should combine the gradi-
ents back propagated from states of all future steps. Fur-
thermore, noise, non-smoothness (stiction-friction models),
high-dimensionality of the plant dynamics all could impact
the accuracy and lead to bias, thus restrict the applicability of
the model approximation. Solving the issues with more elab-
orated methods would be the one of the research directions.

APPENDIX
The arm model is adapted from the model in [55]. As shown
in Fig. 9, the arm model has two joints and is driven by three
pairs of muscles. The arm state is described by its skeletal

VOLUME 7, 2019 41807



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

FIGURE 9. The musculo-skeletal model of the arm.

state: s = [θ1, θ2, θ̇1, θ̇2] and the action is the activation level
for each muscle: a = [a1, a2, a3, a4, a5, a6].
The elements of the arm state [θ1, θ2, θ̇1, θ̇2] represent the

joint angles and angular velocities, where θi is the i-th joint
angle, θ̇i was the angular velocity of the i-th joint. The torques
τi on each joint could be calculated by nonlinear function of
themuscle activation and themuscle state (see below). Driven
by the joint torque τ , the angular acceleration in the joint
space was subject to the following equation:

M (θ) θ̈+C
(
θ, θ̇

)
+Bθ̇= τ (8)

where M(θ ) is the inertia matrix and depends on the joint
angles. θ̈ is the angular acceleration, and C

(
θ, θ̇

)
is a vector

defining the centripetal and Coriolis forces depending both
on the joint angles and the joint angular velocities, B is the
joint friction matrix with respect to the angular velocities,
and τ is the joint torque. The force field could be applied
by manipulating the matrix B: B = [0.05, 0; 0, 0.05] for no
force field, [0, 0.05;−0.05, 0] for clockwise force field and
[0,−0.05; 0.05, 0] for anti-clockwise force field.

Themuscles can be grouped as pairs of flexor and extensor,
specifically one pair of biarticulate muscles (from shoulder to
fore-arm) and two pairs of monoarticulate muscles that only
move the shoulder or elbow joint respectively. The activa-
tion is provided by the actor output a(t). Given the muscle
activation, the force exerted is also nonlinearly dependent on
muscle length l and contraction speed İ:

Force(t) = a(t)·fl(l(t))·fl̇(l (t) , l̇(t)) (9)

With the muscle tension and the anatomical configuration,
which is reflected by the moment arm matrix L, the joint
torque τ can be calculated by:

τ (t) = L · Force(t) (10)

Themoment armmatrix describes the relationship between
joint torques and muscle forces under certain gesture. The
trivial variations of the moment arms due to the change of
joint angle are ignored for simplification. The moment arm
matrix is given as:

L =
[
2 −2 0 0 1.5 −2
0 0 2 −2 2 −1.5

]
.

The columns of L correspond to six muscles. The muscle
length is fitted using the function of current deviance from the

optimal joint angle θ0 and the optimal length L0. The matrix
θ0 of size 2× 6 indicates the optimal angle of the two joints
for each of the six muscle groups. Similarly, six columns in
L0 indicate the optimal length for each of six muscles. Same
as in the matrix L, zero-value elements in θ0 and L0 represent
the anatomical absence of the corresponding muscles. For the
i-th muscle group, the dependences of current length on the
deviance are given as:

li = 1+
T1,i·(θ01,i − θ1)

L0
i

+
T2,i·(θ02,i − θ2)

L0
i

θ0 =
2π
360

[
15.0 5.02 0
0 0 80.86

0 3.9 2.12
109.32 92.96 91.52

]
L0
=
[
7.32 3.26 6.4 3.26 5.95 4.06

]
(11)

The derivative of muscle length l̇i, i.e., the muscle contrac-
tion velocity can be achieved using a weighted summation
of the joint angle velocity θ̇i, which is also parameterized by
moment arm matrix L and the optimal length L0:

l̇i =
T1,i·θ̇1

L0
i

+
T2,i·θ̇2

L0
i

(12)

The muscle length and velocity are normalized by divid-
ing L0 and thus they can be seen as relative length and
velocity. The nonlinearity terms fl(l) and fv(l (t) , l̇(t)) imple-
ment the scaling effect of the fascicle force-length relation-
ship and force-velocity relationship. Thefl(l) function and
thefv(l (t) , l̇(t)) function are approximated as:

fl (l) = exp

{
−

(∣∣∣∣∣ l
ϕ
i − 1

ω

∣∣∣∣∣
)ρ}

(13)

fv
(
li, l̇i

)
=


Vmax − l̇i

Vmax+(cV0 + cV1li)l̇i
l̇i ≤ 0

bV−(aV0 + aV1li + aV2l2i )l̇i
bV + l̇i

l̇i > 0
(14)

where, ϕ = −1.55, ω = 0.81, ρ = 2.12,Vmax= −7.39,
cV0= −3.21,cV1= 4.17,bV= 0.62,aV0= −3.12,aV1= 4.21,
aV2= −2.67.

REFERENCES
[1] K. A. Thoroughman and R. Shadmehr, ‘‘Learning of action through

adaptive combination of motor primitives,’’ Nature, vol. 407, no. 6805,
pp. 742–747, 2000.

[2] J. Peters and S. Schaal, ‘‘Reinforcement learning ofmotor skills with policy
gradients,’’ Neural Netw., vol. 21, no. 4, pp. 682–697, May 2008.

[3] S. Schaal and A. A. Ijspeert Billard, ‘‘Computational approaches to motor
learning by imitation,’’ Philos. Trans. Roy. Soc. B-Biol. Sci., vol. 358,
no. 1431, pp. 537–547, 2003.

[4] F. A. Mussa-Ivaldi and E. Bizzi, ‘‘Motor learning through the combination
of primitives,’’ Philos. Trans. Roy. Soc. B-Biol. Sci., vol. 355, no. 1404,
pp. 1755–1769, 2000.

[5] K. V. Shenoy, M. Sahani, and M. M. Churchland, ‘‘Cortical control of
arm movements: A dynamical systems perspective,’’ Annu. Rev. Neurosci.,
vol. 36, no. 1, pp. 337–359, 2013.

[6] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, and D. Sil-
ver. (2016). ‘‘Learning and transfer of modulated locomotor controllers.’’
[Online]. Available: https://arxiv.org/abs/1610.05182

[7] J. G. Milton, ‘‘Intermittent motor control: The ‘drift-and-act’ hypothe-
sis,’’ Progress in Motor Control. New York, NY, USA: Springer, 2013,
pp. 169–193.

41808 VOLUME 7, 2019



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

[8] A. Karniel, ‘‘Theminimum transition hypothesis for intermittent hierarchi-
cal motor control,’’Frontiers Comput. Neurosci., vol. 7, pp. 1–8, Feb. 2013.

[9] Y. Sakaguchi, M. Tanaka, and Y. Inoue, ‘‘Adaptive intermittent control:
A computational model explaining motor intermittency observed in human
behavior,’’ Neural Netw., vol. 67, pp. 92–109, Jul. 2015.

[10] E. Ronco, T. Arsan, and P. J. Gawthrop, ‘‘Open-loop intermittent feedback
control: Practical continuous-time GPC,’’ IEE Proc.-Control Theory Appl.,
vol. 146, no. 5, pp. 426–434, Sep. 1999.

[11] P. Gawthrop, I. Loram, M. Lakie, and H. Gollee, ‘‘Intermittent control:
A computational theory of human control,’’ Biol. Cybern., vol. 104,
nos. 1–2, pp. 31–51, Feb. 2011.

[12] P. Kowalczyk, P. Glendinning, M. Brown, G. Medrano-Cerda, H. Dallali
and J. Shapiro, ‘‘Modelling human balance using switched systems with
linear feedback control,’’ J. Roy. Soc. Interface, vol. 9, no. 67, pp. 234–245,
2012.

[13] I. D. Loram, H. Gollee, M. Lakie, and P. J. Gawthrop, ‘‘Human control of
an inverted pendulum: Is continuous control necessary? Is intermittent con-
trol effective? Is intermittent control physiological?’’ J. Physiol.-London,
vol. 589, no. 2, pp. 307–324, 2011.

[14] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-Learning,’’ in Proc. Conf. Artif. Intell., 2016, pp. 2094–2100.

[15] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, N. de Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[16] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–21.

[17] Y. Li. (2017). ‘‘Deep reinforcement learning: An overview.’’ [Online].
Available: https://arxiv.org/abs/1701.07274

[18] D. Silver et al., ‘‘Mastering the game of Go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[19] V. Mnih et al. (2013). ‘‘Playing atari with deep reinforcement learning.’’
[Online]. Available: https://arxiv.org/abs/1312.5602

[20] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, ‘‘Bench-
marking deep reinforcement learning for continuous control,’’ in Proc. Int.
Conf. Mach. Learn., 2016, pp. 1–10.

[21] M.H. S. Segler,M. Preuss, andM. P.Waller, ‘‘Planning chemical syntheses
with deep neural networks and symbolic AI,’’ Nature, vol. 555, no. 7698,
p. 604, 2018.

[22] V. Mnih et al., ‘‘Human-level control through deep reinforcement learn-
ing,’’ Nature, vol. 518, no. 7540, p. 529, 2015.

[23] D. Silver et al., ‘‘Mastering the game of go without human knowledge,’’
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[24] T. P. Lillicrap et al., ‘‘Continuous control with deep reinforcement learn-
ing,’’ in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[25] V. Mnih et al., ‘‘Asynchronous methods for deep reinforcement learning,’’
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[26] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, ‘‘Continuous deep Q-
learning with model-based acceleration,’’ in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2829–2838.

[27] J. Peters and S. Schaal, ‘‘Policy gradient methods for robotics,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2006, pp. 2219–2225.

[28] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa, ‘‘Learn-
ing continuous control policies by stochastic value gradients,’’ in Proc.
Neural Inf. Process. Syst., 2015, pp. 2944–2952.

[29] M. Chen, F. Herrera, and K. Hwang, ‘‘Cognitive computing: Architec-
ture, technologies and intelligent applications,’’ IEEE Access, vol. 6,
pp. 19774–19783, 2018.

[30] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, ‘‘Trust
region policy optimization.’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[31] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine, ‘‘Q-prop:
Sample-efficient policy gradient with an off-policy critic,’’ in Proc. Int.
Conf. Learn. Represent., 2017, pp. 1–13.

[32] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. Int. Conf. Mach.
Learn., 2014, pp. 1–9.

[33] G. Neumann, W. Maass, and J. Peters, ‘‘Learning complex motions by
sequencing simpler motion templates,’’ in Proc. Int. Conf. Mach. Learn.,
2009, pp. 1–9.

[34] P. Dayan and G. E. Hinton, ‘‘Feudal reinforcement learning,’’ in Proc.
Neural Inf. Process. Syst., 1992, pp. 1–8.

[35] A. G. Barto and S.Mahadevan, ‘‘Recent advances in hierarchical reinforce-
ment learning,’’ Discrete Event Dyn. Syst., vol. 13, nos. 1–2, pp. 41–77,
2003.

[36] T. G. Dietterich, ‘‘Hierarchical reinforcement learning with the MAXQ
value function decomposition,’’ J. Artif. Intell. Res., vol. 13, pp. 227–303,
Nov. 2000.

[37] R. S. Sutton, D. Precup, and S. Singh, ‘‘Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,’’ Artif.
Intell., vol. 112, nos. 1–2, pp. 181–211, 1999.

[38] S. Goel and M. Huber, ‘‘Subgoal discovery for hierarchical reinforcement
learning using learned policies,’’ in Proc. FLAIRS Conf., 2003, pp. 1–5.

[39] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, ‘‘Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,’’ in Proc. Neural Inf. Process. Syst., 2016,
pp. 3675–3683.

[40] A. S. Vezhnevets et al., ‘‘FeUdal networks for hierarchical reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 3540–3549.

[41] X. B. Peng, G. Berseth, K. Yin, and M. V. D. Panne, ‘‘Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning,’’ ACM
Trans. Graph., vol. 36, no. 4, p. 41, Jun. 2017.

[42] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, and D. Silver.
(2016). ‘‘Learning and transfer of modulated locomotor controllers.’’
[Online]. Available: https://arxiv.org/abs/1610.05182

[43] C. Florensa, Y. Duan, and P. Abbeel, ‘‘Stochastic neural networks for
hierarchical reinforcement learning,’’ in Proc. Int. Conf. Learn. Represent.,
2017, pp. 1–17.

[44] A. Vezhnevets, V. Mnih, S. Osindero, A. Graves, O. Vinyals, and
J. Agapiou, ‘‘Strategic attentive writer for learning macro-actions,’’ in
Proc. Neural Inf. Process. Syst., 2016, pp. 1–9.

[45] Z. Yang, K. E. Merrick, H. A. Abbass, and L. Jin, ‘‘Multi-task deep
reinforcement learning for continuous action control,’’ in Proc. Int. Joint
Conf. Artif. Intell., 2017, pp. 1–7.

[46] Z. Yang, K. Merrick, L. Jin, and H. A. Abbass, ‘‘Hierarchical deep rein-
forcement learning for continuous action control,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 11, pp. 5174–5184, Nov. 2018.

[47] P. Bacon, J. Harb, and D. Precup, ‘‘The option-critic architecture,’’ in Proc.
National Conf. Artif. Intell., 2017, pp. 1–9.

[48] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade, ‘‘Towards
generalization and simplicity in continuous control,’’ in Proc. Neural Inf.
Process. Syst., 2017, pp. 6550–6561.

[49] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor, ‘‘A deep
hierarchical approach to lifelong learning inminecraft,’’ inProc. Nat. Conf.
Artif. Intell., 2016, pp. 1553–1561.

[50] A. S. Lakshminarayanan, R. Krishnamurthy, P. Kumar, and
B. Ravindran. (2016). ‘‘Option discovery in hierarchical
reinforcement learning using spatio-temporal clustering.’’ [Online].
Available: https://arxiv.org/abs/1605.05359

[51] T. Shu, C. Xiong, and R. Socher, ‘‘Hierarchical and interpretable skill
acquisition inmulti-task reinforcement learning,’’ inProc. Int. Conf. Learn.
Represent., 2018, pp. 1–14.

[52] T. Li, J. Pan, D. Zhu, M. Q.-H. Meng. (2018). ‘‘Learning to interrupt:
A hierarchical deep reinforcement learning framework for efficient explo-
ration.’’ [Online]. Available: https://arxiv.org/abs/1807.11150

[53] H. Shi, Y. Sun, and G. Li, ‘‘Intemittent control with reinforcement
learning,’’ in Proc. Int. Conf. Prog. Inform. Comput. (PIC), Dec. 2017,
pp. 56–60.

[54] H. Shi, Y. Sun, and G. Li, ‘‘Model-based DDPG for motor control,’’ in
Proc. Int. Conf. Prog. Inform. Comput. (PIC), Dec. 2017, pp. 284–288.

[55] W. Li and E. Todorov, ‘‘Iterative linear quadratic regulator design for non-
linear biological movement systems.’’ in Proc. 1st Int. Conf. Inform. Con-
trol, Automat. Robot. (ICINCO), Setúbal, Portugal, Aug. 2004, pp. 1–9.

[56] M. M. Botvinick, Y. Niv, and A. C. Barto, ‘‘Hierarchically organized
behavior and its neural foundations: A reinforcement learning perspec-
tive,’’ Cognition, vol. 113, no. 3, pp. 262–280, 2009.

[57] S. J. Gershman, C. D. Moore, M. T. Todd, K. A. Norman, and
P. B. Sederberg, ‘‘The successor representation and temporal context,’’
Neural Comput., vol. 24, no. 6, pp. 1553–1568, 2012.

[58] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, ‘‘Intrinsically motivated
reinforcement learning: An evolutionary perspective,’’ IEEE Trans. Auton.
Mental Develop., vol. 2, no. 2, pp. 70–82, Jun. 2010.

[59] K. L. Stachenfeld, M. Botvinick, and S. J. Gershman, ‘‘Design principles
of the hippocampal cognitive map,’’ in Proc. Neural Inf. Process. Syst.,
2014, pp. 1–9.

[60] S. Stroeve, ‘‘Neuromuscular control model of the arm including feedback
and feedforward components,’’ Acta Psychologica, vol. 100, nos. 1–2,
pp. 117–131, 1998.

VOLUME 7, 2019 41809



H. Shi et al.: Hierarchical Intermittent Motor Control With DPG

[61] E. Todorov and M. I. Jordan, ‘‘Optimal feedback control as a theory of
motor coordination,’’ Nature Neurosci., vol. 5, no. 11, pp. 1226–1235,
2002.

[62] M. M. Churchland et al., ‘‘Neural population dynamics during reaching,’’
Nature, vol. 487, no. 7405, pp. 51–56, 2012.

HAIBO SHI received the Ph.D. degree in pat-
tern recognition and intelligent system fromTongji
University, Shanghai, China, in 2018. He currently
focuses on the cognitive and neural mechanism of
sensorimotor coordination and its application to
intelligent systems. His research interests include
bio-inspired algorithms in machine learning and
computational neuroscience.

YAORU SUN received the Ph.D. degree in arti-
ficial intelligence from The University of Edin-
burgh. He is currently a Full Professor with the
Department of Computer Science and Technology,
Tongji University, China. His research interests
include brain-like computation, machine intelli-
gence, and cognitive neuroscience.

GUANGYUAN LI is currently pursuing the mas-
ter’s degree with the Department of Computer
Science, Tongji University, Shanghai, China. His
research interests include deep learning applica-
tion in computer vision, learning methods to over-
come the problem of catastrophic forgetting, and
reinforcement learning in robotics.

FANG WANG is currently a Senior Lecturer with
the Department of Computer Science, Brunel Uni-
versity, U.K. She has published many papers. She
holds a number of filed patents. Her research
interests include software agents, cognitive neu-
roscience, and distributed computing. She was a
recipient of several technical awards.

DAMING WANG received the M.S. degree
in software engineering from Tongji University,
Shanghai, China, in 2010, where he is currently
pursuing the Ph.D. degree with the Department
of Computer Science and Technology. His cur-
rent research interests include computational neu-
roscience, brain rhythm, visual attention, and
machine learning.

JIE LI is currently a Senior Lecturer with the
Department of Computer Science and Technology,
Tongji University, Shanghai, China. Her research
interests include brain signal processing, machine
learning, and brain–computer interface (specifi-
cally based on the motor imagery EEG pattern
classification).

41810 VOLUME 7, 2019


	INTRODUCTION
	NEUROSCIENCE BACKGROUND
	REINFORCEMENT LEARNING BACKGROUND
	RELATED WORK

	METHODS
	THE BASIC DDPG
	THE HIERARCHICAL INTERMITTENT DDPG
	MODEL-BASED GRADIENT
	NETWORK ARCHITECTURES OF THE CRITIC AND THE ACTOR

	RESULTS
	TRAJECTORY FOLLOWING TASK
	OBSTACLE AVOIDANCE TASK
	COMPARISON WITH RELATED ALGORITHMS

	DISCUSSION
	CONCLUSION AND DISCUSSION
	FUTURE WORKS

	REFERENCES
	Biographies
	HAIBO SHI
	YAORU SUN
	GUANGYUAN LI
	FANG WANG
	DAMING WANG
	JIE LI


