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ABSTRACT 

 

Water-wave propagation in nearshore regions and hydroacoustic scattering problems, in 

the presence of structures, are fundamental to ocean and coastal engineering. Efficient 

modelling of these phenomena can be achieved using the Helmholtz equation with 

spatially varying coefficients to which mild-slope models are reducible. Despite the 

relatively simple forms of these models, geometric and medium inhomogeneities and 

inclusions, yield complex wavefield solutions that can only be numerically approximated. 

However, the numerical treatment of such problems in infinite domains requires the 

truncation of the computational region. In this work, an optimal, parameter-free Perfectly 

Matched Layer (PML) model is implemented in a Finite Element scheme. The 

fundamental similarities between the governing equations for steady-state water wave and 

hydroacoustic scattering problems allow for a joint analysis of the proposed PML-FEM 

solution strategy. Excellent convergence characteristics are verified through comparisons 

against benchmark solutions. Water-wave propagation solutions for an uneven seabed 

featuring an elliptic shoal are compared with available experimental data. Also, wave 

diffraction by vertical cylinders in regions of variable bathymetry, and scattering by an 

elliptically shaped body in the ocean-acoustic waveguide, are studied. The proposed 

numerical scheme is found to be an efficient means to tackle challenging wave-seabed-

body interaction problems in large spatial domains. 
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1 Introduction 

The accurate prediction of wave fields in nearshore and coastal areas is crucial for several 

applications, including the design and safe operation of marine structures and harbours, as 

well as the stability of the coastal zone. In many cases, ranging from the design of pile 

breakwaters to offshore wind farms, the interaction of free-surface gravity waves with 

uneven bottom topography and surface-piercing obstacles, like vertical cylinder arrays, is 

of great significance for engineering studies; see, e.g., Guo et al. (2017) and Ruiz et al. 

(2017). To facilitate the analysis in variable bathymetry regions the assumption of 

moderate bottom slopes is usually adopted, and hence the wave conditions are determined 

by means of reduced refraction-diffraction, mild-slope type models; see, e.g., Mei (1994) 

and Dingemans (1997). Such models, typically involving only the horizontal spatial 

variables, allow for the study of water wave diffraction in the presence of obstacles, while 

accounting for refraction effects due to a mildly sloping bottom. In the work of Booij 

(1983) it is shown that the applicability of the classical mild-slope model proposed by 

Berkhoff (1972, 1982) is limited to bottom slopes up to 1:3. Enhancements of the classical 

model, in order to  account for stronger bottom variations, led to modified versions 

presented by various authors, e.g., Radder and Dingemans (1985), Massel (1993), 

Chamberlain and Porter (1995). Additional effects concerning dissipation due to bottom 

friction and wave breaking, as well as wave-current interaction, have also been presented 

in the works of , Liu (1983) and Kirby (1984); see also Belibassakis et al. (2011, 2014). 

Notably, the elliptic mild-slope models are reduced to the Helmholtz equation with 

variable coefficients (see, e.g., Mei 1994). The above fact underlines the similarity 

between the combined refraction-diffraction problem for water-waves on the horizontal 

plane and hydroacoustic wave propagation and scattering in the inhomogeneous ocean and 

coastal waveguides that is also modelled by the Helmholtz equation (Brekhovskikh and 

Lysanov, 2003; Jensen et al., 2011). These similarities allow for the development of 

common methods and techniques regarding their numerical treatment; see also Chai et al. 

(2016).  

 

Apart from being governed by the same equation, the above problems also share the 

characteristic of being inherently formulated in unbounded or partially unbounded 

domains. This class of problems is further complicated by the fact that the physical 

properties of the medium (the propagation speed or the index of refraction) are variable at 

infinity, as approached from different directions. In this case, the far-field wave pattern is 

not known a priori, and a standard radiation condition (e.g., Sommerfeld condition) is not 

available. The truncation of the unbounded domain, in conjunction with efficient 

implementation of closure conditions at the truncated boundary, is hence required. To this 

purpose, a number of strategies have been developed in the literature, across disciplines. 

Absorbing Boundary Conditions (ABCs), approximate DtN operators, infinite elements 

and boundary element methods have been widely used to truncate problems that are 

naturally defined in infinite domains; see, e.g., Givoli (1991, 1992). ABC techniques are 

concerned with the development of radiation condition variants that are able to model the 

effects of the exterior domain on the open boundary. Since the artificial boundary 

conditions are constructed to approximately minimize spurious reflections, important 

issues concerning the order of accuracy and its computational cost rise. Moreover, 

knowledge of the solution characteristics in the far-field is frequently required for an 

effective implementation. Additionally, the efficiency of lower order ABCs increases as 

the open boundary is positioned further away from the scatterer, which makes accuracy a 

tradeoff for computational labour. On the other hand, the employment of the above models 
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involving higher-order derivatives can prove computationally tedious. Higher-order ABCs, 

able to achieve enhanced accuracy without excessive computational cost, are reviewed in 

Givoli (2004).  A commonly cited advantage of ABCs is the ease of their implementation 

in FE solvers, since the produced sparse matrices are preferable to the dense matrices 

produced by non-local DtN strategies.  

 

Opposed to ABCs and DtN methods, perfectly-matched layer (PML) models do not 

introduce approximate conditions at the external fictitious boundary but a layer with 

damping qualities, enclosing the computational domain. The complex medium is 

constructed in such a way that the solution at the interface between the absorber and the 

domain of interest are perfectly matched, thus suppressing spurious reflections. The 

classical PML model by Berenger (1994) imposed matching conditions between the 

incident wavefield and the attenuated solutions for the time-dependent Maxwell equations. 

The initial split field approach is equivalent to complex coordinate stretching as indicated 

in the works of Rappaport (1995) and others. The rate of solution attenuation within the 

layer is dictated by the use of a suitable absorbing function; see Abarbanel and Gottlieb 

(1997), Turkel and Yefet (1998). A unique and rather desirable quality of PML-based 

methods over most boundary termination techniques is that their effectiveness is 

independent of the angle of incidence to the fictitious boundary as well as of the wave 

frequency.  Since the original application by Berenger (1994) to the solution of the 

Maxwell equations, PML models have been successfully implemented in the treatment of 

several problems which are naturally defined in infinite domains, such as acoustic 

scattering (e.g., Qi and Geers 1998), elasticity (e.g., Harari and Albocher 2006) and water 

waves (e.g., Belibassakis et al., 2001; Navon et al., 2004; Modesto et al. 2015).   

 

The exponential convergence of the PML to the exact solution of the reduced wave 

equation as the layer thickness tends to infinity is shown by Lassas and Somersalo (1998). 

However, the numerical treatment requires a finite layer, thus introducing error due to 

reflection at the exterior, termination boundary. Even so, the dissipative properties of a 

finite PML are ensured by allowing for sufficient layer thickness or by the employment of 

an appropriate absorbing function. Such function should minimize the reflection at the 

outer boundary to eliminate contamination of the numerical solution. However, in 

computational applications numerical reflections do rise due to discretization. Collino and 

Monk (1998a) suggested that the numerical error is effectively contained by optimizing the 

absorbing function. In the same work, it was shown that the choice of the absorbing 

function and the discretization within the layer affects the reflection coefficient in a non-

trivial manner, raising the question of an optimal or parameter-dependent PML at the 

discretized level. The parameters for optimization are the employed mesh, the layer 

thickness and the functional form of the absorbing function.  Regarding the latter, constant 

and polynomial functions of a varying degree have been introduced (Berenger, 1994; 

Collino and Monk, 1998b; Singer and Turkel, 2004). Recently, a novel PML formulation 

was proposed by Bermudez et al. (2007) featuring an unbounded absorbing function; see 

also Bermudez et al. (2010) and references therein. It is shown that the latter singular PML 

model is able to recover the exact solution for the unbounded scalar Helmholtz equation. 

The formulation retains the desirable qualities of classical PML approaches without the 

need to further optimize the parameters of the absorbing function according to the 

employed mesh and problem data. Hence, by introducing an unbounded absorbing 
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function, PML thickness is the only parameter to be optimized as noted by Cimpeanu et al. 

(2015), who also studied the correlation between numerical error and employed layer 

thickness of the optimal PML (Bermudez et al., 2007). Most interestingly they note the 

existence of an optimal normalised thickness range where the numerical error remains 

insensitive to change, suggesting that within this range the model is rendered parameter-

free. Notably, the suggested thickness ranges are very small reducing the computational 

cost and making the method further appealing. Finally, in the work of Rabinovich et al. 

(2010) a comprehensive comparison between ABCs and PML models is carried out, 

showing that the effectiveness of the PML with an unbounded absorbing function is similar 

to that of higher-order ABC. While the former is insensitive to the employed discretization 

and requires no-tuning, higher-order ABCs remain considerably more complex in 

implementation than the singular PML, which is straightforward to incorporate in a FEM-

based solver. 

 

In the present work, a PML featuring an unbounded absorbing function (Bermudez et al., 

2007, Cimpeanu et al., 2015), for water-wave and hydroacoustic propagation and 

scattering problems is investigated. These problems are governed by the Modified Mild 

Slope and the Helmholtz equations, with variable coefficients respectively. The optimal, 

parameter-free PML model is implemented in a FE strategy for the numerical solution of 

the wave-seabed-body interaction problems. In Sec. 2, the mathematical formulation is 

presented for water wave propagation on the horizontal plane and for acoustic scattering in 

a vertical infinite strip modelling the ocean-coastal waveguide. Subsequently, the weak 

forms of the truncated problems are provided in Sec. 3 following a unified presentation. 

Next, in Sec. 4, the implementation issues of the PML-FEM are discussed. Moreover, the 

error of the present method against benchmark analytical solutions, which are reviewed in 

the Appendix, is calculated and results concerning the convergence characteristics are 

shown, demonstrating a very good performance. In Sec.5 the present method is validated 

against experimental data in the case of water-wave propagation over an uneven seabed 

featuring an elliptic shoal. Finally, additional numerical examples involving diffraction by 

vertical cylinders, which are assumed founded in variable bathymetry regions, and acoustic 

scattering by a generally shaped body in the ocean waveguide, are studied.   
 

2 Scattering problems in inhomogeneous regions 

2.1 Linear water wave propagation and scattering  

In the present section, a unified presentation is followed for problems of water-wave 

propagation in nearshore regions, including the case of wave interaction with bottom 

founded obstacles, and hydroacoustic propagation in the complex ocean waveguide in the 

presence of acoustic scatterers. Small amplitude, steady state water waves in coastal 

regions and hydroacoustic waves can be modelled using elliptic partial differential 

equations. In particular, both problems are governed by the Helmholtz equation with 

spatially varying coefficients, in conjunction with appropriate conditions simulating the 

effects of boundaries. The numerical solution of this type of problems is characterized by 

increased complexity due to variations of the parameters and the presence of scatterers. 

Additionally, as the frequency of the waves increases, accurate numerical solutions require 

significant computational effort.  

 

Initially, we consider the case of harmonic water-wave propagation in variable bathymetry 

regions. Assuming only a mildly sloping seabed, the Mild Slope Equation (MSE) is a 

classical model, obtained by integration over the water depth  leading to a dimensionality  
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Figure 1. Water wave propagation over a general, mildly sloped bathymetry featuring 

localised shoals and the presence of a bottom-founded structure (scatterer extending over 

the water column shown by the shaded area). 

 

reduction of the 3D water wave problem; see e.g., Dingemans (1997). An enhanced 

version of the above model is the Modified Mild Slope equation (MMS), presented by 

Massel (1993) and Chamberlain and Porter (1995). This model is able to account for 

higher-order effects involving the gradients of the depth function. The latter elliptic model, 

supplemented by appropriate conditions at fixed boundaries and the description of the 

incident wave field and/or radiation conditions at open boundaries, is commonly applied to 

study wave transformations in coastal regions and in harbour design. In this case, the 

considered marine environment is composed of a layer of inviscid and irrotational fluid 

bounded above by a free surface and below by a rigid, impermeable bottom. A Cartesian 

coordinate system  , ,x y zx   is introduced, with the origin placed on the mean water level, 

and the z axis pointing upwards; see Fig. 1. The examined domain 2   can be divided 

into three regions, the region of wavefield incidence 
(1) , characterized by a constant 

bathymetry 1h , the region of transmission 
(3)  with a constant bathymetry 3h and region 

(2)  located between the two and featuring a variable seabed. Region 
(2)  is further 
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decomposed into subregions (2)

t , (2)

b and (2)

c . Sub-regions  (2)

2t y  
 

and 

 (2)

1b y  
 
feature the parallel contour bathymetric profile denoted by ( )ih x , while the 

bathymetry in (2)

c
 
includes the depth inhomogeneity ( , )dh x y , resembling a shoaling 

region, acting as a localised scatterer formation superimposed over the parallel contour 

surface. In this work, depth functions ( )ih x  and ( , )dh x y  are assumed to be smooth 

functions, with continuous first and piecewise continuous second derivatives. The 

projection of the submerged, localized scatterer boundary on the plane of propagation is 

denoted as s .  It is understood that the depth inhomogeneity imposes a disturbance over 

the parallel contour morphology of the seabed and the total depth function in the present 

analysis is decomposed as, 2 ( , ) ( ) ( , )i dh h x y h x h x y   . Similarly, the total wavefield 

solution is decomposed into an unknown incident field, carrying the imposed wave 

transformations due to the presence of the parallel contour bathymetry ( )ih x  and an 

unknown, diffracted field attributed to the presence of the localized scatterer corresponding 

to the depth function perturbation ( , )dh x y .  Hence, the total wave potential solution on the 

horizontal plane is the sum  i d  . 

The MMS equation is employed for each of the reduced problems on i  and d . For an 

obliquely incident wave, the solution  ,i x y  is  periodic  along the y  direction, and can 

be expressed as    , yik y

i ix y e x  , with 
(1)

0 siny Ik k   , where (1)

0k  is the wavenumber 

at the region of incidence 
(1) , I  is the angle of wave incidence with respect to the 

parallel contours of the seabed, and 1i   . Thus, the propagating-refracted-diffracted 

wavefield  i x  over the parallel contour bathymetric profile  ih x  satisfies the following 

one-dimensional (x-dependent) MMS equation:
 
 

 
   2 2 (2)

0 0 0,    .           i

g g y i

x
cc cc k k x x

x x


 

 
          

                      (1) 

In Eq. (1)    0c x k x  is the phase velocity and  gc x k  
 
is the corresponding 

group velocity, where the angular frequency of the monochromatic incident wave is 

denoted by   and the local wavenumber by  0k x . The latter is obtained from the 

dispersion relation,      2

0 0tanh ik x g k x h x     , with g  being the acceleration of 

gravity. The function 0  involves terms of bottom slope and curvature of the depth 

function ( )ih x  and can be found in Massel (1993, Eq.34); see also Miles and Chamberlain 

(1998). Equation (1) is supplemented by appropriate incident and outgoing boundary 

conditions at 1x a  and 2x a , respectively.  

The diffraction problem on  ,d x y , over the real bathymetry  ,h x y  behaves like a 

radiating solution  as  2 2x y  ,  and satisfies the MMSE on the horizontal plane as 

   2 (2),   , ,g d g d ccc cc k f x y                                                                           (2)
  

where   is the 2D horizontal gradient operator. Again  ,k k x y  is the local 

wavenumber obtained as the root of the dispersion relation formulated at the local depth 

     2 , tanh , ,k x y g k x y h x y     , and   is similarly defined in terms of bottom slope 
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and curvature of the depth function  ,h x y . The forcing term  ,f x y  in the right-hand 

side of Eq. (2) is obtained from the solution of the propagating wavefield i , as follows 

   2

g i g if cc cc k        
 

, and has support on the projection  s  of the depth 

inhomogeneity ( , ).dh x y  It can be easily seen that by the substitutions i g icc     and 

d g dcc   , both Eqs. (1) and (2) reduce to the Helmholtz equation with a horizontally 

varying coefficient   corresponding to an effective wavenumber; see, e.g., Radder, (1979) 

Mei (1994). Focusing on the diffraction problem, Eq. (2) takes the form, 

   
 2 2 (2),

, , ,  , , withd d c

g

f x y
x y x y x y

cc
       

2

2 2 g

g

cc
k

cc
 


   .            (3) 

As mentioned above the total solution for the refracted-diffracted wavefield in the 

presented formulation is derived by the superposition of the incident-refracted wavefield 

i and the diffracted wavefield d . 

Next, the case of wavefield diffraction over a single or multiple scatterers, which are 

assumed to be vertical cylinder(s) of general cross section, extending over the whole length 

of the water column (from the seabed to the free surface) is considered. These localized 

scatterers, denoted as iS  , lay in the interior of the computational domain \ S   , 

where  iS S  is the union of  the disjoint inclusions iS  with smooth boundaries si , so 

that the solid boundary is given as and    s si sS S . More specifically, following 

the same domain decomposition, the inclusions are assumed to be contained in (2)

c . The 

harmonic water wave diffraction problem over the parallel contour bathymetry 

 2 ,ih h x y  in the presence of the scatterers iS , is again governed by the MMS model in 

the horizontal plane which is now given by,
 

   2 2 (2), , 0,   , \d d cx y x y x y S     
                                                                     

(4) 
 

supplemented by a suitable boundary condition on the body surfaces, 

d i
d i

n n
   
  

      
  

 on s                                                                             (5)
 

where   and   are constants in general, depending on the  body properties. In the case of 

rigid structures the selection 1,  0    reduces to the standard Neumann condition. The 

known Cauchy incident data on s  (in the right-hand side of Eq. 5) are provided again by 

the solution of the incident-refracted wavefield problem i , over the parallel contour 

bathymetry  ih x  in the absence of the inclusions as in the previous case. The key 

difference between the above two problems, defined by Eq. (3) and  Eqs (4), (5), is that in 

the former case, wave diffraction is caused by the assumed depth inhomogeneity ( , )dh x y , 

superimposed over the variable bathymetry, while in the latter case wave scattering takes 

place because of the presence of the surface piercing bodies in the region of interest.  

Obviously, the present method is capable to treat the combined effects. 
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2.2 Hydroacoustic wave propagation and scattering in the ocean waveguide 

In the sequel, the problem of hydroacoustic wave propagation in the inhomogeneous ocean 

waveguide is considered. Propagation and scattering problems in underwater acoustics, 

and more specifically in range-dependent domains relevant to coastal applications, are 

frequently formulated by using a point source (see e.g. Jensen et al., 2011) for field 

excitation.  

However, as frequency increases, the problem becomes computationally demanding, and 

thus, for many practical problems, as well as for inter-model comparisons, it is useful to 

work with a line source in plane geometry; see Fig. 2. Assuming constant medium  

 

 
Figure 2.  Hydroacoustic waves emitted from a line source at depth, 0z  propagating in the 

vertical plane in a range dependent environment and scattered by a submerged body 

(localized scatterer) with boundary s . 

properties along the transverse y   direction, the line source can be visualised as a 

distribution of monopole sources along the y  axis. In this case, underwater acoustic wave 

propagation is governed by the Helmholtz equation on the vertical plane, while the 

acoustic waveguide is formed by the free upper surface and seabed boundaries. The 

domain of interest is thus an inhomogeneous strip, denoted as 
(1) (2) (3)     , 

which is again decomposed into three parts, the near and far field subdomains 
(1)  and 

(3)  respectively, and the middle subregion (2) . The strip is terminated at the free 

surface at 0z  , and at the seabed at  z h x  , which for simplicity is assumed to be 

acoustically hard in this work, where ( )h x  is  again the depth function.  

The body(ies) iS , with smooth boundary si , are representing acoustic scatterers similar to 

the previous sub-section formulation and are contained in 
(2) . Again it holds that 

iS S , ands si sS S     . In the lateral subregions, the seabed is considered to 

be flat with the depth function assuming the constant values 1h and 3h  in 
(1) and 

(3) respectively. Additionally, these areas are considered to be range independent, hence 

the acoustic medium properties are assumed to exhibit only vertical variation. In the 

considered case, the mathematical problem of hydroacoustic propagation in a range-

dependent waveguide, excited by a line source, is described as, 

     
2 2

2

0 02 2
, ,  , \k x z x x z z x z S

x z
 

   
       

 
  ,                                          (6) 
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where    denotes the acoustic wavefield in the waveguide. The acoustic wavenumber is 

denoted as    , ,k x z c x z , where  ,c x z  is the speed of sound propagation in the 

medium characterised by a variable index of refraction. 

The problem is supplemented at the upper and bottom boundaries by the following 

conditions, respectively, 

0  , on 0z        and           / 0n    on  z h x  .                                            (7a,b) 

In the present work, the seabed is modelled as an acoustically hard boundary, however, 

extension to treat a multilayered bottom is possible; see, e.g., Jensen et al. (2011). The total 

wavefield can be once again split into a solution that carries the field transformations due 

to the variable index of refraction of the medium, in the absence of the finite body(ies), and 

a scattered solution due to the presence of the body(ies) in the waveguide. The total 

wavefield is decomposed to the incident and scattered acoustic wavefields as, 

t i s    . The former can be  calculated by several methods, as e.g., the coupled-mode 

method (see, e.g., Belibassakis et al., 2014 and references cited therein) where the solution 

is represented by 

     
0

, ; ,i n n

n

x z x Z z x




                                                                                           (8a)

 

 

while  n x  are the modal amplitudes and    ; /n n nZ z Z z x Z  are the  normalised 

local vertical eigenmodes satisfying the boundary conditions (7). In the case of a range 

independent environment over a flat rigid bottom with constant depth h, the above 

expansion reduces to the corresponding normal-mode series (see also Jensen et al., 2011) 

     
 0

0

0

exp
, 2 ,

xn

i n n

n xn

ik x x
x z Z z Z z

k






  

        

                                                       (8b) 

where    sinn znZ z k z ,   0.5 /znk n h  , and 
2 2

xn znk k k   are the horizontal 

wavenumbers. Additional details are provided in the Appendix. The location of the line 

source is denoted by  0 0,x z . Consequently, the scattering problem in the waveguide 

containing the localised scatterer(s) iS  is formulated as,  

 
2 2

2

2 2
, 0s s

sk x z
x z

   
   

 
 ,  , \x z S                                                                      (9) 

where  ,k x z  is spatially varying acoustic wavenumber. Eq. (9) is supplemented by the 

following boundary condition  

s i
s i

n n
   
  

      
  

  , on s .                                                                      (10) 

Again, coefficients   and   are in general dependent on the frequency, and are 

determined by the scatterer properties, with 1   and 0   corresponding to an 

acoustically hard surface, and 0  and 1   to an acoustically soft body. The Cauchy 

data on s are derived by the representation of the incident wavefield i (as in Eqs. 8). 
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Similarities between the examined refraction-diffraction problems for water-wave 

propagation on the horizontal plane, Eqs. (3) and (4-5), and hydroacoustic scattering on the 

vertical plane, Eqs. (9-10), are profound. In both cases the resulting Helmholtz-type 

problems with varying coefficients, defined in unbounded domains and supplemented with 

appropriate conditions on the enclosed scatterer boundaries, allow for the development and 

implementation of similar computational methods. Standard methods for the numerical 

treatment of the Helmholtz equation with spatially variable coefficients are Finite 

Difference and Finite Element schemes (see Oliveira and Anastasiou, 1998; Panchang et 

al, 1991; Belibassakis et al., 2001). A major challenge in devising a numerical scheme for 

problems in (partially of totally) unbounded domains, governed by PDEs with variable 

coefficients, is to ensure energy absorption at the open boundaries with minimum 

backscattering. An extended discussion of appropriate conditions for the elliptic mild-slope 

equation can be found in the work of Oliveira (2004). In this direction, Collino and Monk 

(1998) studied the PML model by Berenger (1994) as a closure condition for the 

Helmholtz equation in acoustic and electromagnetic propagation problems, while Modesto 

et al. (2015, 2016) employed the same model in conjunction with the MSE  for the study of 

harbour agitation. The effectiveness of the above PML is strongly dependent on the layer 

parameters (thickness, absorbing function form). In the next section the parameter-free 

PML model by Bermudez et al. (2007) is applied, in conjunction with the FE method, for 

the optimal solution of the presented diffraction/scattering problems in the coastal 

environment. 

3 Implementation of the PML-FE strategy 

3.1 Domain truncation with a PML  

The diffraction problems presented in Sec. 2, in the framework of linear water wave and 

hydroacoustic wave propagation, are examined in the 2D horizontal space and the 2D 

vertical strip, respectively. In this section, a unified approach in the truncation of the 

physical domains and the application of a PML is pursued first. Subsequently, the weak 

forms of the truncated problems will be examined from the convergence and accuracy 

point of view.   

The water-wave diffraction problem, governed by the Helmholtz equation with variable 

coefficients (see Eqs. 3, 4 and 5) is reformulated in a truncated domain by means of a PML 

of finite thickness  . The introduced 2D layer is confined in the region 

       pml 1 1 2 2 1 1 2 2, , \ , ,                    extending in both 

horizontal directions, denoted here as  1 2,x xx  for ease in presentation. The inner 

rectangle,    r 1 1 2 2, ,        enclosing the scatterer(s), constitutes the region of 

computational interest (see Fig. 3a). The fictitious outer termination boundary is denoted 

by   while the interface between the computational region and the PML is I . The 

outward normal vector on the interface is denoted by  1 2,v vν . The surface of the 

scatterer is again denoted by S  and  1 2,n nn  is the outward normal vector on the 

inclusion(s) boundary. 

The Cartesian PML for the hydroacoustic scattering problem, governed by the Helmholtz 

equation in the infinite strip is similarly defined. The computational waveguide is confined 

in the bounded strip    1 1: , 2, 2s h h      enclosing the scatterer with the PML 

   
pml

(1)

1 1: , 2, 2 ,h h     
 

   
pml

(2)

1 1: , 2, 2h h     
 
and positioned at each 

side of the strip (see Fig. 3b). The lateral interface boundaries between the PML 
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subregions and the truncated strip are denoted as (1) (2)

I I I     while the external 

termination boundaries are given as (1) (2)

      . Similarly, the upper and lower 

boundaries of the strip are denoted as (1) (2)

B B B    . 

As already mentioned, in PML-based methods the solution matching in the absorber 

interface can be achieved by its complex coordinate stretching in the layer region (Collino 

and Monk, 1998a; Bermudez et al., 2007). The notion behind the latter approach is the 

analytic continuation of a real function into the complex plane. In the physical, unbounded 

domain, the analytically continuous, wave-like solutions are stretched in a complex 

contour which allows for oscillating solutions to be turned into decaying waves outside the 

region of computational interest. 

 
Figure 3. Configuration of the computational domain including the PML regions for the 

cases of (a) the MMS on the horizontal plane (left). (b) the Helmholtz equation in the 

acoustic waveguide on the vertical  plane (right). 

The following complex coordinate transformation is introduced, supported in both vertical 

and horizontal PML regions, 

 

pml( ) ,  
i

i

x

i i i

X

x X s ds   x  for 1, 2i     ,                                                                      (11) 

with  i ix  being appropriate complex functions defined along the directions 1x  and 2x  

accordingly, while the tilde denotes the complex contour coordinate. 

The absorbing functions  ( )i x  are of the general form, 
 

 
pml

1
,  

( )
   ,   1

i i i i
x x

i
k

 





 
 



x

x
,                                                                                  (12) 

                                           

 

where   refers to either r  or s . Furthermore it is denoted that pml    . 

By reducing the transformation functions to unity, the solution remains unchanged in the 

domain of interest, while the general complex form assumed inside the layer is associated 

with the desirable attenuation characteristics in the PML region. The rate of wave damping 
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is determined by the form of the employed functions  i ix , 1, 2i   acting on the vertical 

and horizontal layers. The choice of  i ix profiles
 
is independent of the present analysis 

and will be addressed in a following subsection. It is evident however that in order to 

ensure decaying solutions within the PML, non-negative functions must be considered. 

After performing the following change of variables in the layer,  

1

( )i i i ix x x

 


 
   

for   1, 2i     ,                                                                                  (13) 

the governing equation  is  written in compact form as  

  2 0k    γ γ   for  x ,                                                                                (14) 

by means of the matrix 

2 1 2 1

1 2 1 2

0 0 0

0 0 0

   

   

   

   

 

   

     
       

     
γ γ γ ,                                                 (15) 

where, 

1, 1   , for the 2D horizontal space, 

1, 0   , for the infinite strip spanning along the 1x  axis and 

0, 1   , for an infinite strip spanning along  the 2x  axis. 

Equation (15) is derived by imposing the coordinate transformation described in Eq. (13) 

in the field equation. Outside the layer, γ  reduces to the unit matrix, thus leaving the 

Helmholtz operator unchanged in  . The constants ,   are used for the compact 

presentation of both problems of interest. When defined in the infinite strip, Eq. (14) needs 

to be supplemented by appropriate conditions at the upper and lower boundaries. As seen 

in Sec. 2, in hydroacoustics these conditions are described by Eqs. (7) 

The mixed-type condition on the scatterer surface, contained in the computational region, 

is again valid, 

i
i

n n


   
  

     
  

 on S                                                                           (16) 

where i  denotes the incident wavefield and the right-hand side of the above equation is 

linear combination of the known incident data on the surface of the scatterer(s). On the 

internal boundary between the PML and the computational domain, the continuity 

requirement poses the following conditions on the function   and its normal derivative on 

the boundary, 

     
  

 
, and                                                                                                               (17a) 

    1 2 1 1 2 2

1 1

v v v v

   

 
      
  

   
  

on I  .                                                                       (17b) 

These conditions are satisfied by the introduced complex coordinate transformation . 

Finally, on the PML external boundary a homogeneous Dirichlet condition is enforced, 

   
0   on   .                                                                                                                (18) 

As the present work focuses on problems that are governed by the Helmholtz equation 

with spatially varying coefficients, the analytic continuation of the solution on the interface 

boundary between the computational region and the PML must be ensured in order for the 

latter to maintain its reflectionless properties. Hence, arbitrary variation of the effective 
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wavenumber is not technically allowed within the layer region. However, the PML is 

shown to be reflectionless for inhomogeneous media as long as they remain range 

independent within the layer along the direction perpendicular to the interface boundary 

(Oskooi et al., 2008).  In the present contribution the above restrictions are easily met 

without any loss of generality, as it will be shown in Section 5 of the present work 

considering problems of water wave and hydroacoustic propagation. 

3.2 Weak formulation  

We consider the weight function  1 2,v x x
 
defined in the complex valued Sobolev space 

 1
0 ;v H  . Multiplying the field equation, Eq. (14) by the weight function v  and 

integrating over the domain   results in, 

 2 2

1 2 1 2 0.       v k v dx dx    


   γ                                  (19) 

The overbar is used here to denote complex conjugation. Next, Eq. (19) is expanded and 

integration by parts is performed, 

 

  

2

1 2

2

1 2 1 2

S

pml
E

   

    0    

I

I

v k v dx dx v ds v ds

v k v dx dx v ds v ds 

   

     


 


 


       

        

  

  

n ν

γ γ ν γ ν
  .                (20) 

At the PML interface I  , the boundary terms cancel out due to the matching condition 

(17b). The external boundary term on E  in Eq. (20) will vanish completely due to the 

imposed homogeneous Dirichlet condition on the external fictitious boundary. The 

boundary integral on the scatterer is computed using the corresponding incident wavefield 

data, and hence the weak formulation of the considered problems is obtained in the 

following form  

       2

1 2 1 2 1 2

S

 ,  v k v dx dx G x x v ds     




       γ n  .                                      (21) 

3.3 PML models  

The classical choices for the functional form of the non-negative functions i  are 

polynomials of a varying degree with respect to a normalized coordinate within the layer, 

  ,   1,2

n

i i
i i

X x
x i 



 
  

 
                                                                      (22) 

with coefficient 0   and 0n   .  

Increasing the value of   and/or the degree n  in Eq. (22) ensures a faster absorption 

within a given layer thickness   . The above is merely translated to a larger imaginary part 

in the absorbing function (12) and larger but bounded integral in the transformation (11).  

However, increasing   and/or n  excessively results in an abrupt solution decay rate 

increasing artificial numerical reflections in the discretised form of the PML medium. 
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Moreover, enhancing the layer thickness is a means to achieve attenuation while keeping a 

slower decay rate, but would also result in an excessively enlarged computational domain 

and therefore enhanced computational cost. Collino and Monk (1998a) note the 

dependency of the optimal absorbing parameters on the employed mesh and the problem 

data. Hence, the application of effective PML-based techniques for truncating the 

computational domain, requires a priori tuning of those parameters. The criteria for 

establishing optimal PML parameters are not trivial and even then, the optimisation 

problem needs to be solved again after re-meshing (Bermudez et al., 2007). 

In the present work, the optimal PML model for the scalar, reduced wave equation 

proposed by Bermudez et al. (2007) is adopted. The given model employs non-integrable 

profile functions of the form, 

 
1

i i

i i

x
X x




 
  

  

  for pmlix   and 1, 2.i                                     (23) 

Instead of a bounded imaginary part, the absorbing function employing the profile of Eq. 

(23) results to an infinite integral in the complex coordinate stretching as seen in the 

comparative sketch of Fig.4 

 

 
 

Figure 4. Sketch of the complex coordinate transformation Eq. (11). 

 

The above has been proved to be optimal for the attenuation of plane wave solutions for 

the Helmholtz equation in infinite resolution (Bermudez et al., 2007), and also compares 

favorably against widely used polynomial forms; see Bermudez et al. (2007). Naturally, 

the absence of tunable parameters in Eq. (23) overcomes a major drawback of other PML 

methods. Cimpeanu et al. (2015) in their thorough investigation of the above singular PML 

model studied the effect of layer thickness, as the only remaining parameter controlling the 

performance of the layer. A rather interesting finding of their work is the existence of an 

optimal range of layer thickness values, within which the solution error becomes 

independent of the chosen thickness, thus rendering the singular PML model parameter-

free for the scalar Helmholtz equation. In the present work the parameter-free, unbounded 

PML model will be implemented in a FEM strategy for the solution of the two linear 

elliptic problems with variable coefficients, rising in the fields of water-wave propagation 

and hydroacoustics, as presented above.   
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4  Numerical method 

4.1 PML-FEM implementation 

In this section we investigate the performance of the singular PML-FEM for the Helmholtz 

equation governing the problems under consideration. A series of numerical tests are 

conducted to determine the effectiveness of the method in simple configurations where 

analytical solutions are available. The analysis aims at establishing the robustness and 

limitations of the given methodology before its employment in the following applications 

of coastal engineering interest, (a) linear water wave refraction over mildly sloping 

bathymetries and in the presence of cylindrical bodies extending over the water column, 

and (b) acoustic wave propagation in the inhomogeneous ocean waveguide. 

Standard conforming linear triangular elements  1p   are used in all examined cases. 

The method is clearly not restrictive of p-refinement, however the latter is outside the 

scope of the present study. We define the family of triangular partitions  hT  in domain 

  and h  denotes the finite element solution in  1
0 ;hV H  . 

The approximate solution, restricted in the 3-node triangular element K, is 

K
,h j

K  Nφ                                                           (24) 

where j
K  denotes the nodal unknowns and  1 2 3N N NN  is a vector containing the 

linear Lagrange shape functions for the K element.  The discretised weak formulation of 

problem (21) is thus written in matrix form as, 

  2 T

1 2 1 2

K

   
T j h

K Kk dx dx      N γ N N N φ G                               (25) 

where h

KG  assumes non-zero values, as defined in Eq. 16, when a K element edge lays on 

the scatterer boundary. 

A Delaunay mesh is used for the discretisation of the computational region while a regular 

triangular grid is employed within the layer. The discretisation of the computational region 

is assessed by the number of employed elements per wavelength, in order to associate 

maximum element size with examined frequency. For the regular triangular mesh, the 

number of discrete segments employed along the transverse direction of the layer 

boundary, is used to denote the refinement inside the PML. A single segment, as seen in 

Fig. 5, results in two triangle faces with a common edge, corresponding to a diagonally 

divided quadrilateral element. The element matrices, in both the PML and the 

computational region, are computed numerically. The former in the PML region, contain 

the absorbing functions i  that become unbounded at the outer boundary, and the 

corresponding integrals involving the elements with an edge or a vertex at the outer 

boundary become singular. However, as shown by Bermudez et al. (2007) these integrals 

are either rendered finite due to the qualities of the Langragian shape functions which 

diminish at the outer boundary or become zero due to the imposed homogeneous Dirichlet 

condition at the external boundary E , which is proven necessary for the well-posedness 

of the discrete problem.  Since the singularity is reached at the outer PML boundary the 
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Gauss-Legendre quadrature rule within the edge elements is applicable. A minimum of 

three integration points per element is employed to ensure that the presented analysis will 

not be polluted by numerical integration error.  

In order to assess the performance of the FEM/optimal PML, the relative 2L  error norm of 

the approximation with respect to an available analytic solution, is defined as 

                     

1 2

1 2Error= , where  

h

dx dx
 

 




 
 
 
 
 .                                 (26) 

 
Figure 5. Mesh configuration with the PML regions  1 2, 1x x  discretized by two line 

segments along the transverse direction of the interface. A single line segment resulting in 

two triangles with a common edge is shown.  

4.2 Numerical performance of the parameter-free PML-FEM 

In order to establish the robustness of the presented method, a series of numerical 

experiments is carried out. First, the exterior scalar Helmholtz problem in 2 , featuring a 

circular inclusion is considered.  The investigation is carried out in the truncated 

domain    5,5 5,5r     , featuring a unit circular scatterer centered at the axes origin. 

Two cases of incident wavefields on the circular scatterer with radius a are considered.  

 
Figure 6. Calculated error of the scattered field by a circular body, 1ka  , in the case of 

incident plane waves. Results for various normalised PML thickness values and increasing 

PML discretisation: (a) soft scatterer, (b) hard scatterer. A total number of elements 

88N    is employed for the discretization of the computational region. 
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Figure 7. Calculated error of the scattered field by a circular body, 3ka  , in the case of 

waves emitted from point source. Results for various normalised PML thickness values 

and increasing PML discretisation: (a) soft scatterer, (b) hard scatterer. A total number of 

elements 53N    is employed for the discretization of the computational region. 

The first is the case of parallel plane wave incidence, i.e. exp( )i ik  x , for which the 

singular PML is shown to be optimal, and the second is the incidence of a wavefield 

generated by a monopole, i.e.  (1)

0I sH k  x x  positioned at / ( 3,0)a  sx . Assuming 

a uniformmedium, i.e. k const , the solutions for the two incident wave cases are 

calculated analytically and used for validation of the employed PML-FEM. Analytical 

solutions are documented in the Appendix; see Figs A.1 and A.2.  

The effect of normalized absorbing layer thickness is initially considered. The relative 

errors for solutions with a fixed discretization in the computational region are plotted 

against a range of layer thickness values, 
12 110 10k   in Figs. 6 and 7.  

Different curves correspond to an increasing number of triangular elements in the PML 

region.  Two different wave numbers are examined for 1 and 3.ka   In both cases the 

discretization of the computational region is kept constant. It is observed that for all 

examined cases and a given discretization in the computational region and in the PML, 

there exists an optimal range of thickness values for which the error is independent of 

further increase of layer thickness. 

 

The above result, which is in agreement with similar findings by Cimpeanu et al. (2015), 

suggests that the singular PML is highly effective for rather small thicknesses that are 

orders of magnitude smaller than the excited wavelength in this monochromatic case. The 

significance of the above result lays in its immediate translation in reduced degrees of 

freedom for a given level of accuracy. The presented results in Figs 6 and 7 show optimal 

thickness values within the range 
4 110 10k   , depending on the discretization 

employed in the layer, i.e. pmlN  . The error increases dramatically as k  becomes large 

(becomes of order 1 or higher) in the given examples. This is attributed to the crude 

discretization in the layer, indicating that the restriction on the upper boundary of accepted 

PML thickness values for a given k  is posed by the number of employed elements in the 

layer. In fact, increasing the number of elements in the layer resulted in enhanced optimal 

value ranges as seen in Figs. 6 and 7. Additionally, the rapidly increasing error after the  
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Figure 8. Calculated error of the scattered field by circular body, 1ka  , against the 

number of elements per wavelength for increasing number of elements employed in the 

PML subregion. Soft scatterer boundary for (a) incident plane and (b) a source generated 

wavefield. (c) and (d) Similar as before for hard scatterer. 

 

lower limit of the optimal value range of k  is attributed to the error associated with 

numerical integration. Furthermore, increasing the discretization within the layer appears 

to improve the calculated error plateau as clearly shown in both Figs. 6 and 7. However, in 

finer meshes within the layer, employing pml 16N   and  pml 32N  , the consistent 

reduction in the calculated error plateau reaches to a halt, suggesting that the error 

introduced by the discretization in the computational region becomes increasingly 

dominant. The above observation is verified by the convergence of the method. For the 

previous cases, log-log plots of the relative error  2L  norm, against an increasing number 

of elements per wavelength are shown in Figs. 8 and 9 for 1ka   and 3ka  , respectively, 

for PML thickness 
410k   within the established optimal range.  Notably, the chosen 

value of normalised thickness corresponds to an extremely thin layer compared to 

wavelength as it holds 62800  . It is seen that, by refining the mesh in the 

computational region, the error introduced by the PML discretisation becomes dominant. 

However, increasing the number of elements within the layer further reduces the error and  
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Figure 9. Calculated error of the scattered field by a circular body, 3ka  , against the 

number of elements per wavelength for increasing number of elements employed in the 

PML subregion. Soft scatterer boundary for (a) incident plane and (b) a source generated 

wavefield. (c) and (d) Similar as before for hard scatterer. 

 

recovers the theoretically expected convergence rate, which for linear elements is 

 
2

/h C N  


  . The theoretical convergence slope 2:1 is shown the Figs. 8 and 9 

for comparison. 

The convergence rate depends on both the computational region discretisation and the 

refinement within the layer. The fact that the effectiveness of the singular PML is 

independent of the employed mesh structure and requires no a priori tuning, as opposed to 

polynomial choices for the absorbing function, in conjunction with the above results, 

suggests that a required level of accuracy can be achieved with little effort. Additionally, 

the calculated optimal range allows for a layer thickness value that is orders of magnitude 

smaller than the examined wavelength, and thus, the present method does not result in an 

excessive augmentation of global FEM matrices. 
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4.3 Numerical performance for scattering problems in a waveguide 

Next, the radiating field from a point source in a waveguide is considered. In absence of 

analytical solutions for the scattering problem in simple waveguides featuring an inclusion, 

we employ a radiating solution produced by a line source to compute the Dirichlet data on 

the boundary of a fictitious scatterer enclosing the source. We consider the unbounded 

homogeneous waveguide in    , 2, 2S h h       with imposed Neumann conditions 

on the top and bottom planar boundaries B : 

 

   1 1

2 2

, 2 , 2
0.

x h x h

x x

   
 

 
                                                                                  (27) 

 

The analytical solution of the incident wavefield is expressed by normal mode series, and 

the vertical structure of the modes corresponding to the eigenvalues 
2x nk  is chosen as 

    
22 2cos / 2n x nZ x k x h  in order to satisfy the Neumann conditions (27) on the planar 

boundaries. Details are provided in the Appendix; see Eq.(A.10) and Figs.A3 and A.4. The 

series (A.10) can be truncated, keeping the propagating and a number of evanescent modes 

sufficient for rapid convergence in the whole region outside a small ball in the vicinity of 

the line source, i.e.    
2 2

0 0kr x x y y       . Assuming the presence of a circular 

scatterer with center  0 0,x y  enclosing the line source, boundary data are calculated at 

r a , where a  is the radius of the  scatterer. The PML-FEM radiating field in the 

waveguide generated by the imposed Dirichlet condition is compared to the analytical 

solution (A.10) outside the circular scatterer. Results are obtained in the domain 

   : 16 ,16 5 ,5s          for 1k  , and the effect of normalized PML thickness is 

initially examined in Fig. 10.  

 

 
Figure 10. Radiating field outside a circular scatterer in a planar waveguide, for ka=1. (a) 

Parametric study of the calculated error for a range of normalised PML thickness values 

and increasing PML discretisation in the waveguide environment. (b) Calculated error of 

the scattered field by circular body, against the number of elements per wavelength, and 

for increasing number of elements employed in the PML.   
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Again, a range of optimal layer thickness values is observed, which is now 
10 110 10k   . Similar to the previous example, the theoretical rate of convergence is 

revealed by increasing the number of elements in the PML region. 

 

5 Water-wave diffraction and acoustic scattering applications 

5.1 Water-wave propagation over sloping seabed with an elliptic shoal  

The presented PML-FEM strategy will be initially implemented in the study of linear water 

wave propagation phenomena in a mildly sloping ocean environment. The MMS equation, 

as presented in Section 2, will be employed for the formulation of the combined refraction-

diffraction problem. The numerical solution will be compared against a test case of 

diffraction by an elliptic shoal superimposed over a sloping bottom bathymetry. Next, the 

capabilities of the computational tool will be demonstrated for the case of a single and 

multiple bottom founded cylinders. Subsequently, the numerical solution of the acoustic 

scattering problem by an elliptic obstacle in the complex ocean waveguide will be 

considered. 

The MMS model featuring the unbounded PML will be tested against the laboratory data 

concerning monochromatic wave propagation over a submerged elliptic shoal 

superimposed over a sloping seabed, presented in Berkhoff et al. (1982); see also 

Dingemans (1997). The elliptic shoal presents a standard benchmark problem for the 

validation of numerical schemes aiming at the accurate prediction of combined refraction-

diffraction phenomena. The analysis presented in Section 2.1 for the case of a mildly 

sloping bathymetry supporting a localised, submerged scatterer is followed. A 

monochromatic wave with period 1 T s  and initial wave amplitude 0 2.32 cmA  is 

allowed to propagate parallel to the x-axis in angle 20I   with respect to the minor axis 

of the elliptic shoal. It is stressed here that, results obtained by the present linear model are 

not dependent on the wave amplitude. However, as a next step in our analysis, a nonlinear 

correction in the dispersion relation will be applied accounting for amplitude effects.  The 

underlying plane slope is given by, 

   

0.45 ,  5.85

0.45 0.02 5.85 ,      5.85 14.15          

0.05 ,    14.15

i

m x m

h x x m m x m

m x m

 


     
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                                     (28) 

The localised elliptic shoal, seen as a disturbance on the background bathymetry ih  is 

described as, 

 
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 

    

                       (29) 

The diffracted potential d  is obtained by the numerical solution of the reduced MMS 

Eq.(3) over the superimposed bathymetric profiles (28) and (29). Finally, a PML enclosing 
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the region of computational interest, defined in Eqs. (14) and (15), will model the 

absorption of wave energy reaching the exterior termination boundary. 

 

 
 

 
 

Figure 11 (a) Modulus of the diffracted wavefield, calculated by the present PML-FEM 

method.  (b) Modulus of total wavefield. The sections corresponding to the experimental 

setup in Berkhoff et al. (1982) are indicated by solid lines. 
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It is reminded that Eq.(3) is a quasi linear elliptic equation with the effective wavenumber 

dependent on the depth function through the dispersion relation 

     2 , tanh , ,k x y g k x y h x y     . The bathymetric profile, defined as the superposition 

of Eqs. (28) and (29), satisfies the restrictions imposed on the coefficients of the MMS in 

order to preserve the PML analytic continuation (Sec. 3.1). The layer is used to truncate 

the computational region at 1 6x m   and 1 16x m   hence the depth function is kept 

constant in the vertical PML regions. In the horizontal PML regions the depth function 

exhibits variation only along the x  coordinate, thus remaining constant in the direction 

perpendicular to the horizontal boundaries, as imposed by Eq (28). The latter ensures the  

reflectionless characteristic of the PML  (Oskooi et al., 2008).   

The use of the MMS equation for modelling combined refraction-diffraction phenomena 

subscribes to the limitations of small amplitude water wave theory, which fails to capture 

the complex diffraction pattern behind the elliptic shoal. For the numerical experiment a 

PML thickness 44.2 10k  , corresponding to the established optimal range is used. A 

quasi-uniform Delaunay mesh is employed in the region of computational interest while a 

uniform triangular mesh is used for the PML (see Fig. 5). A total of 16 line segments were 

employed for the discretisation of the absorbing layer and a total of 1.2 10
6
 nodes (discrete 

unknowns) were used to ensure the convergence of the numerical solution in the present 

example. The diffracted and total wave potential moduli, calculated using the linear 

dispersion relation, are plotted in Fig 11. In particular, in Fig. 10(a), the diffracted 

wavefield solution is illustrated which compares well with similar solutions from the 

literature (e.g., Panchang et al., 1991; Belibassakis et al., 2001), exhibiting smooth equal 

amplitude lines for the modulus, suggesting that outgoing solutions are properly attenuated 

by the present PML model. As expected, due to its inability to account for nonlinear 

processes, such as energy dissipative mechanisms, the MMS model overestimates the wave 

amplitude behind the shoal (sections 2, 3 and 4) while it attenuates the solution faster 

moving away from the shoal. 

 Next, the computed wave amplitude for various sections is compared against the 

experimental data in Fig. 12, for sections 2-4 and 6. Although present results 

corresponding to the linear solution shown by dashed lines reproduce fairly well the 

experimental measurements, an updated prediction is also shown in Fig.12 based on the 

work by Kirby and Darlymple (1986).  

 

The latter proposed a correction of the wavenumber-parameter of the mild-slope equation 

in order to take into account amplitude effects at first-order, as follows 
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The above amplitude-dependent dispersion relation generates results that compare more 

favourably with measured data as shown in Fig.12 by the use of solid lines. 

 

 
Figure 12.   Normalised amplitude on selected sections over the elliptic shoal. Comparison 

of the present PML-FEM solution, shown by dashed line, against the experimental data of 

Berkhoff et al.(1982) denoted by dots. In the same plots the solution featuring the 

amplitude corrected dispersion relation are shown by using a solid line 

In particular, a number of 5 consecutive iterations were performed updating the predicted 

wave amplitude and the wavenumber parameter; see also Panchang et al., 1991). The 

nonlinear correction provides better matching of numerical results with the experimental 

data, particularly concerning the peak amplitude values for sections 2, 3 and 4 and a 

marked improvement on the solution at section 6. 

5.2 Diffraction by vertical cylinders in variable bathymetry region 

The accurate prediction of wave transformations and induced loads in the presence of 

manmade structures or physical formations finds several engineering applications. In this 

subsection the multiple scattering of an array of bottom-founded cylinders over a mildly 

sloping seabed is considered. The bodies extend along the water column. For the following 

analysis, the same bathymetric profile, defined by Eq. (28), i.e. a seabed with constant 

slope 2% is used. An oblique incident wavefield with nondimensional 

frequency
2 1 1.8hg   , propagating from the deep water region is refracted over the 

sloping seabed topography and interacts with a single bottom founded cylinder with 

circular cross section. As in the previous subsection, the numerical solution for the 

diffracted wavefield d  is derived by means of the reduced MMSE, defined in Eq.(4). Use 

is made of condition (5) on the scatterer surface boundary and the propagating wavefield 
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i  over (28). Again, a PML enclosing the region of interest, defined in Eqs.(14) and (15), 

models the absorption of wave energy reaching the exterior termination boundary. 

 

 
Figure 13. A single vertical cylinder with rigid walls (Neumann boundary condition) over 

a linear bottom slope for the case of an incoming, incident wave of nondimensional 

frequency 2 1 1.81hg     and angle of incidence 20  . 

 

Figure 13, depicts the real part of the total wave potential field for the cases of imposed (a) 

Dirichlet and (b) Neumann conditions on the scatterer boundary. Similar to the above case, 

a Delaunay-uniform triangular hybrid mesh is employed and as before, the thickness of the 

employed PML is set to 44.2  10k  , with 16 line segments in the direction normal to 

the layer boundary. In this case a total of  90163 nodes were employed for convergence. 

The drawn axes are normalized with respect to the cylindrical scatterer (pillar) radius. The 

plotted solutions show no contamination from spurious numerical reflections, suggesting 

once again the effectiveness of the employed singular PML. The total wavefield is 

refracted as it propagates towards shallower regions, with the wavelength decreasing up to 

the constant shallow depth limit. Next, the robustness of the present model in multiple 

scattering problems within variable bathymetry regions is demonstrated. Figure 14 depicts 

the complex total wavefield, resulting from the interaction of the same oblique, incident 

wave as in the previous example with the same sloping bathymetry and an array of nine 

bottom founded cylindrical scatterers with circular cross section. The layer thickness 

remains the same as in the previous example. The entire domain is shown in Fig. 14a, 

excluding the attenuating layer. 

Figure 14b focuses on the complex, amplified wavefield patterns that appear close to the 

array, while Fig. 14c illustrates the satisfaction of the imposed zero Neumann conditions 

for the total wavefield at the boundary of the central scatterer.   
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Figure 14. An array of nine vertical rigid cylinders over a linear slope for incident wave of 

non-dimensional frequency 2 1 1.8hg    and obliquely incident waves 20I
 . (a) total 

domain, (b) focus on the array scale, (c) plot around a central cylinder. 

5.3 Acoustic scattering by an elliptic body in a planar waveguide    

Here, a homogeneous waveguide with planar boundaries    : 0,400 100 ,0s m m   is 

considered excited by a line source located at  0, 10m . The acoustic medium in this 

example is water and the phase speed is c =1500m/s.  The scattering field from an elliptic 

body with major and minor axis 16A m  and 4B m , respectively, in the middle of 

waveguide is considered; see Figs.15,16. The elliptic geometry of the acoustic scatterer 

was chosen to both illustrate the capability of the finite element mesh to capture curved 

boundaries and to simulate common ocean underwater vehicle shapes. 
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Figure 15. Real part of the scattered field and total wavefield solution in the case of an 

acoustically soft body (Dirichlet boundary condition) with elliptic boundary, for kA =1.7. 

Solving the Helmholtz equation, Eq. (9), defined on the vertical plane, and forced by a 

monochromatic point source yields the scattered field solution s .  Moreover, the free 

surface boundary condition Eq.(7a), the rigid bottom boundary condition Eq.(7b) and the 

PML Eq.(14) modelling absorption of wave energy reaching the termination boundaries at 

the lateral edges of the domain, x=0 and x=400m are employed. The boundary conditions, 

supplementing the hydroacoustic problem in the waveguide correspond to a free upper 

surface boundary and an acoustically hard, impermeable sea bottom. The real parts of the 

diffracted and total acoustic wavefields for the cases of an acoustically hard and soft 

scatterer boundary are shown in Figs. 15 and 16, for kA =1.7. PML regions with thickness 
610k   are positioned at the lateral domain boundaries, while 16 line segments along 

each region are employed.  A total of 133856 nodes are employed for this example.  It is 

clear that the present PML-FEM strategy is able to handle arbitrary scatterer shapes, with 

the tradeoff being the required h-refinement to handle complex geometries. Moreover, it is 

clearly observed with the aid of the contour plots of the diffracted wavefield in Figs. 15 

and 16 that the boundary conditions on the surface of the body are very well satisfied, and 

although this test case is a rather simplified example, the present method is directly 

applicable to more realistic cases in general stratified environments and mixed –type 

boundary conditions on the surface of the scatterer(s). 
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Figure 16. Scattered and total wavefield, as in Fig.15, for an acoustically hard scatterer 

(Neumann boundary condition). 

6 Conclusions and future work  

The scattering problem governed by the Helmholtz equation with spatially variable 

coefficients is studied in the context of refraction-diffraction and scattering phenomena in 

the ocean environment. After establishing the mathematical similarities between the 

problems of water wave propagation in mildly-sloped variable bathymetry regions and 

hydroacoustic propagation in the inhomogeneous infinite strip resembling the sea-coastal 

waveguide, a unified PML-FEM strategy is developed for numerical simulation. The 

effectiveness of the parameter-free PML model, featuring a singular absorbing function 

was examined against known analytical solutions. The singular PML for a hybrid regular-

Delaunay triangular, finite element mesh was studied for a range of thickness values in 

both problem cases, with very good results, indicating the effectiveness of the present 

method for problems involving the Helmholtz equation with variable coefficients. The 

advantages of the employed absorbing function lay on the fact that it requires no a priori 

tuning, as is the case for classical, polynomial function forms. Additionally, a layer of 

thickness several orders of magnitude smaller than the characteristic wavelength, is highly 

effective, resulting in minimal computational cost compared to standard PML adaptations. 

Finally, the present results are compared against experimental data in the case of water-

wave propagation over an uneven seabed with the presence of an elliptic shoal, and 

numerical examples are illustrated in applications involving diffraction by vertical 

cylinders in variable bathymetry regions and scattering by an elliptically shaped body in 

the sea-acoustic waveguide. Based on the preceded analysis and demonstrative examples, 

the presented singular PML is a very promising alternative due to its low computational 

cost, simplicity in FEM implementations and achieved efficiency. 
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Appendix.  Benchmark solutions 

First, specific analytical solutions of scattering problems by cylindrical bodies in 2IR  are 

reviewed, then simple outgoing solutions in the planar waveguide are presented, in order to 

be used for error calculation and the evaluation of the present PML-FEM. In particular the 

scattered wavefields on the circular inclusion surface are calculated for the case of an 

incident plane wave, as well as for an incident wavefield generated by a point source. For 

the scattering problem in the infinite strip, with homogeneous Neumann conditions on the 

planar boundaries, an analytical solution can be devised by means of a rapidly convergent 

normal mode expansion series. 

(a) Scattering fields by a cylindrical obstacle 

The scattered wavefield by a cylinder with surface S  and radius a, is obtained as the 

solution to the exterior Helmholtz problem with constant parameter k   in the open two-

dimensional domain   
1 2

2 2

1 2 :ix r x x a      .  

                   
2 2 0s sk     ,  in       ,                                                                           (A1) 

                 

i
i

n n


   

  
     

  
 on S                                                              (A2) 

                   
lim  0
r

r ik
r






 
  

 
.                                                                                 (A3)                                     

which ensures that waves are outgoing at infinity (Sommerfeld condition for r  ). The 

known data f  on the scatterer surface are defined from the incident wavefield I . The 

representation of the solution is given by (see, e.g., Mei 1994)  

                  
     (1)

0

, cosm m
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   ,                                                             (A4) 

where (1)

mH  are the Hankel functions of the first kind and m order. The coefficients mA   are 

dependent on the imposed boundary condition on the scatterer surface S  and the incident 

wavefield.  In the case of plane incident wave (see Fig.A1a) the analytical solution of the 

scattering field, for a acoustically soft and hard boundary, respectively, is given by 
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where me
 
denotes the Neumann symbol,        /m mJ dJ d      and

       1 1
  /m md d     . 
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Figure A1. The exterior Helmholtz problem with a circular inclusion in 2 . (a) Plane 

wave incidence, (b) Wavefield generated by a point source. 

 

 
Figure A2  (a) Real part of the scattered velocity potential   with exp( )I ik  x  and (b) 

 (1)

0 ,I sH k  x x for ka=3 and Dirichlet conditions on the scatterer boundary. 

 

In the case of an incident wavefield generated by an acoustic source located at a distance s  

from the center of the circular scatterer (see Fig.A.1b) the corresponding coefficients are, 
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See e.g., Martin (2005). Indicative solutions are shown in Fig. A2.  

(b) Analytical solution in a planar waveguide 

Next, a scattering field in a waveguide with planar boundaries is generated to be used as 

reference data outside a cylindrical inclusion. The domain is composed of an infinite strip 

confined in   1 2,  ,0s x x h     , featuring no energy radiation conditions at the 

lateral boundaries. The Helmholtz equation is again valid in ' \s D    , while the same 

boundary conditions are applied on the surface of the scatterer. Homogeneous Neumann 

boundary conditions are applied on both upper and bottom strip surfaces. Hence it holds, 

2 2 0k     in  '                                                  (A6) 
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Finally outgoing solutions are assumed at the vertical end boundaries. 

 

Analytical solutions corresponding to radiating field in homogeneous waveguides with 

planar boundaries, in the absence of inclusions, can be easily constructed by the method of 

multiple images (see Jensen et al., 2011, Brekhovskikh and Lysanov 2003).  For 

simplicity, we consider the field emitted by an infinite series of 2m  mirror sources 

positioned along the 2x  axis at h  intervals, defined as follows 
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See Fig. A.3(a). The produced radiating wavefield satisfies the imposed homogeneous 

Neumann conditions on the waveguide planar boundaries.  However, it is known that the 

series (A9) is slowly convergent, hence an alternative representation can be obtained by 

separation of variables in the form of a normal mode series (see Jensen et al., 2011) where 

the wavefield potential is given as a sum of eigenfunctions for the infinite strip s  , 
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with the horizontal  and vertical wavenumbers given as
1 2

2 2

x n x nk k k  and 
2

/x nk n h . 

The functions     /n n nY y Y y Y  ,  represent the normalized vertical structure of the 

modes. The vertical modes corresponding to eigenvalues 
2x nk  are chosen as 

    cos / 2n ynY y k y h  in order to satisfy the planar boundary conditions. 

The latter series (A10) can be truncated, keeping the propagating and a number of 

evanescent modes sufficient for rapid convergence in the whole region outside a ball in the 

vicinity of the fictitious source, i.e.   0kr   . Indicative plots of the waveguide solution 

are shown in Fig.A.4 with imposed Neumann Conditions on the planar boundaries, for ka 

=1 and kh =12. 
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Figure A3 (a) Scattering in a simple waveguide in the absence of inclusions with the 

method of images (b) Scattering field in a simple waveguide with the method of images 

 
Figure A4. Solution in the examined simple waveguide with imposed Neumann Conditions 

on the planar boundaries, for ka=1 and kh=12 . (a) Real part, (b) Imaginary part. 
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