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A singularity theory, in the form of path formulation, is developed to analyze and organize
the qualitative behavior of multiparameter Z2-equivariant bifurcation problems of corank 2 and
their deformations when the trivial solution is preserved as parameters vary. Path formulation
allows for an efficient discussion of different parameter structures with a minimal modification
of the algebra between cases. We give a partial classification of one-parameter problems. With a
couple of parameter hierarchies, we show that the generic bifurcation problems are 2-determined
and of topological codimension-0. We also show that the preservation of the trivial solutions is
an important hypotheses for multiparameter bifurcation problems. We apply our results to the
bifurcation of a cylindrical panel under axial compression.
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1. Introduction

The use of singularity theory to analyze bifurcation
problems has some history. Based on the approach
of [Golubitsky & Schaeffer, 1979], a comprehensive
classification of Z2-equivariant one-parameter bifur-
cation problems of corank 2 up to codimension-
5 was established in [Dangelmayer & Armbruster,
1983]. Here, we develop a singularity theory, in
the form of the path formulation, to analyze and
organize the qualitative behavior of multiparame-
ter Z2-equivariant bifurcation problems of corank 2,
and their perturbations, when the trivial solution
is preserved as parameters vary. Path formulation
allows for an efficient discussion of different param-
eter structures with a minimal modification of the
algebra between cases. In the remaining of Sec. 1
we discuss further the main points of our work,

namely: multiparameter bifurcation, origin preser-
vation and Z2-equivariance, singularity theory and
the path formulation point of view. In Sec. 2, we
present our main results and compare them with
existing results. Sections 3–5 are concerned with the
singularity theory necessary for our analysis. Clas-
sifications are in Sec. 6 and we discuss examples in
Sec. 7.

We first fix some terminology. We consider
bifurcation equations f(z, λ) = 0 where z ∈ R

2 is
the state space, λ ∈ R

l, l = 1, 2, are the bifurca-
tion parameter(s) and f is the bifurcation function
(or map). The zero-set f−1(0) of f is the bifurca-
tion diagram of f . The perturbations of the bifurca-
tion diagram of f are described from the zero-sets
F (z, λ, α) = 0 of any unfolding F (or “deforma-
tion”) with a parameter α ∈ R

a of f , satisfying
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F (z, λ, 0) = f(z, λ) for all z, λ. The “qualitative”
description of the bifurcation diagram of f , and of
its deformations, in any arbitrarily small neighbor-
hood of the bifurcation points, is obtained modulo
changes of coordinates respecting the fibers along
the bifurcation parameters. To fix the ideas, two
bifurcation functions f and g are bifurcation equiv-
alent if there exist changes of coordinates (T,X,L)
such that

g(z, λ) = T (z, λ)f(X(z, λ), L(λ)), (1)

where T is a (z, λ)-family of invertible matrices and
(z, λ) �→ (X,L) is a local diffeomorphism preserv-
ing the trivial branch and symmetry of the prob-
lems [see thereafter (2), and (10) for unfoldings, for
the details]. It is thus sensible to consider the bifur-
cation maps and their unfoldings as germs of map
to avoid making systematic references to neighbor-
hoods. In general, the germ of a map g : R

n → R
p

around x0 ∈ R
n, denoted by g : (Rn, x0) → R

p, is
the equivalence class of maps identified if they agree
on some neighborhood U ⊂ R

n of x0, U depend-
ing on the maps. There are similar definitions for
germs of varieties, or other objects. The notation
x ∈ (Rn, 0) means that we consider the variable x
in any neighborhood of the origin. The concept of
germ is useful to focus on the features of the bifur-
cation diagrams persisting in any neighborhood of
the origin. Germs are also useful because they form
sets with nice algebraic structures, making singu-
larity theory an efficient tool for their classifica-
tion. We do not always refer to germs but, unless
otherwise stated, by function, map, set, etc., we
mean their germ, often around the origin. Given
a germ g, we denote by go its value at the origin,
by go

x the value of its derivative with respect to x
at the origin, etc. As a consequence of the Implicit
Function Theorem [Chow & Hale, 1982], necessary
conditions to have a local bifurcation at the ori-
gin for f(z, λ) = 0 are f o = 0 and f o

z is singular.
When x ∈ (Rn, 0), we denote by Ex the ring of
smooth germs g : (Rn, 0) → R of maximal ideal
Mx = {g ∈ Ex : go = 0}. We denote by Ex,p the
Ex-module of smooth germs g : (Rn, 0) → R

p and
by Mx,p = {g ∈ Ex,p : go = 0}. When p is clear
from the context, we denote Ex,p, resp., Mx,p, by
Ex, resp., Mx.

1.1. Multiparameter bifurcation

Let f be a bifurcation map, singular at the origin.
The generators of the kernel of fo

z are called linear

modes. For multidimensional kernels, linear modes
are not uniquely defined but there is often in prac-
tice a sensible choice for them. Some bifurcation
problems have naturally multiple parameters, for
instance, when several linear modes interact. The
following cases are possible.

(1) Each bifurcation parameter controls the criti-
cal eigenvalue of each interacting mode. Those
parameters are thus of “equal status”.

(2) With two linear modes, one parameter λ2 could
represent the detuning and the other λ1 the
overall load on the system. This leads to a “hier-
archy of parameters”. For instance, λ2 could
then be considered fixed when λ1 varies.

To be concrete, in corank 2, a typical Jacobian
matrix fz(0, λ) of the bifurcation function could be(

λ1 0
0 λ2

)
in Case (1) and

(
λ1 0
0 λ1 + λ2

)
in Case (2). With

parameters of equal status, the qualitative anal-
ysis of the bifurcation diagram via diffeomorphic
changes of coordinates (1) only preserves the lay-
out of the regions in the λ-plane separating bifurca-
tions. We have a finer information with a hierarchy
like in Case (2). We can preserve the qualitative
information on the λ2-sequences of the λ1-slices of
the bifurcation diagrams.

As an explicit example, consider the following
one-dimensional model problem:

f(x, λ) = x(x2 + λ2
1 − λ2) = 0.

The main bifurcation sheet of f−1(0) has the shape
of a bowl. When both parameters are of equal sta-
tus, the local diffeomorphism L(λ) = (λ1, λ2 + λ2

1)
transforms f into g(x, λ) = x(x2 − λ2) whose bifur-
cation sheet has the shape of a cylinder. This occurs
because L does not control specifically the scale
in the λ1-direction, so the bowl can be stretched
without bound in the λ1-direction. On the other
hand, any diffeomorphism L(λ) = (L1(λ), L2(λ2))
in Case (2), respecting the hierarchy between λ1

and λ2, keeps the “bowl shape” of the main bifur-
cation sheets. Those are two types of situations we
shall be able to distinguish using our approach.

1.2. Origin preservation and
Z2-symmetry

Another element we take into account is the per-
sistence of the origin as a solution of the bifurca-
tion equation and of all its deformations. This has
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links with the Z2-symmetry of the equations. Sup-
pose Z2 acts on the state space via a reflection κ
(κ2 is the identity) acting trivially on the param-
eters. Moreover, suppose that the bifurcation map
and all its deformations have a sheet z(λ, α) of sym-
metric solutions: κz = z. Translating this sheet to
the origin, the bifurcation problem and its pertur-
bations become origin preserving. Explicitly, if f
is a bifurcation map, by preserving the origin we
mean that we have f(0, λ) = 0, for all λ ∈ (Rl, 0),
and, similarly, for any deformation F (z, λ, α) = 0,
with additional parameters α ∈ (Ra, 0), we have
F (0, λ, α) = 0 for all (λ, α) ∈ (Rl+a, 0). It then
makes sense to also impose this structure on the sin-
gularity theory used to systematically classify and
analyze such problems. The example (6) in Sec. 2.2
shows that such structure can be actually impor-
tant for the finite determinacy of multiparameter
bifurcation maps.

1.3. Singularity theory

Singularity theory is a powerful tool to classify
systematically and analyze qualitatively local bifur-
cation diagrams f−1(0). We already discussed
two modes interaction without any symmetries in
[Furter & Sitta, 2004]. Here we use singularity the-
ory to discuss the bifurcations of steady states near
the interaction of two linear modes, one symmet-
ric, the other anti-symmetric with respect to an
action of Z2, in nonlinear problems with a persistent
trivial branch. Work has been done on corank 2,
Z2-equivariant bifurcation maps. Good references
are the classical analysis in [Chow & Hale, 1982]
and [Golubitsky et al., 1988] for a singularity theory
approach for one-parameter maps. Our techniques
can be readily adapted to any number of parame-
ters, even with some special structure on them (like
hierarchy, symmetry etc.), and to problems with
other symmetries (see [Furter, 1997]). We apply our
results to the work of Wu [1999, 2000]. Our starting
point was the remark in [Wu, 2000] that the singu-
larity theory in [Golubitsky et al., 1988] did not
apply directly. Here, we show how it can be done
with an approach that can be extended to many
other cases.

We discuss Wu’s analysis in Sec. 2 and compare
with our results. In Sec. 3 we describe the theories
of bifurcation and path equivalences applied to the
classification of bifurcation maps and their defor-
mations. Bifurcation equivalence (or “parametrized
contact-equivalence”) provides the best approach to

classify the normal forms, solve their recognition
problem (a set of equations and inequalities that
any other germ g equivalent to f must satisfy) and
study their deformations [Golubitsky & Schaeffer,
1979, 1985; Golubitsky et al., 1988]. To compare two
bifurcation maps f and g, we use changes of coordi-
nates (T,X,L) (bifurcation equivalences) such that

g(z, λ) = T (z, λ)f(X(z, λ), L(λ)) (2)

where T is a (z, λ)-family of invertible matrices and
(z, λ) �→ (X,L) is a local diffeomorphism preserv-
ing the trivial branch. As stated in Sec. 3, because
f and g are Z2-equivariant germs, T and X will be
chosen to be Z2-equivariant. Moreover, as necessary,
L is compatible with the hierarchy of the bifurca-
tion parameters. Comparison between unfoldings of
f is achieved via the notion of mapping of unfold-
ing [see (10)]. When f is of finite codimension, dis-
tinguished unfoldings, called miniversal, describe
qualitatively all the allowed perturbations of the
diagram f−1(0). Note that two bifurcation equa-
tions obtained by exercising different choices dur-
ing a Lyapunov–Schmidt type reduction process are
bifurcation equivalent [Jepson & Spence, 1989].

1.4. Path formulation

In Sec. 3.4, we describe an alternative approach
when applying singularity theory: the path formu-
lation. A bifurcation map f is considered as a
deformation of their core f0, f0(z) = f(z, 0), with
parameters λ ∈ (Rl, 0). Using the unfolding theory
for f0, f is identified by a path λ �→ α(λ) in the
parameter space of a miniversal unfolding F0 of f0,
miniversal in the correct category (see (11) or [Mon-
taldi, 1994; Furter et al., 1998]). More precisely,
every f(z, λ) is bifurcation equivalent to F0(z, α(λ))
where α is a path associated with f [see (11)].
Equivalences between paths α, β with the same core
are given by changes of co-ordinates

α(λ) = H(λ, β(L(λ))), (3)

with H either lifting to diffeomorphisms preserv-
ing F−1

0 (0) [Furter, 1997] or, equivalently here, pre-
serving the discriminant of F0 [Damon, 1987] (see
Sec. 3.4 for more details). Both points of view give
the same result and, for finite codimension prob-
lems, both theories lead to the same classification
as bifurcation equivalence. There are advantages in
using path formulation for multiparameter bifurca-
tions, because it organizes the classification of bifur-
cation maps, distinguishing between the singular
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behavior attributable to the core and to the paths.
In Sec. 4, we get the Z2-equivariant cores of lowest
codimension and represent the zero-set structures
of their miniversal unfoldings in Figs. 1 and 2. To
recover the bifurcation diagrams we look at sections
of F0(z, α) = 0 over the paths. In Sec. 5, we give
the explicit description of the module Derlog∗(F0)
of vector fields liftable from the parameter space
of F0 onto F−1

0 (0). This module is the main alge-
braic ingredient we need for the path formulation.
The algebraic techniques for path equivalence are
easier to use because they involve modules over
shorter systems of rings (see [Damon, 1984]) than
for bifurcation equivalence. Moreover, Derlog∗(F0)
depends only on F0, not on the parameter structure
of the bifurcation germs. We discuss two-parameter
problems with a hierarchical structure in parameter
space. Finally, Sec. 6 is devoted to the new classifi-
cations of origin preserving bifurcation germs with
the generic core and one or two parameters and in
Sec. 7 we discuss some examples.

2. Abstract Reduced Bifurcation
Equations

Wu [1999, 2000] discussed the bifurcations of steady
states in Z2-equivariant nonlinear problems of
corank 2 with two parameters arising from the inter-
action of two linear modes. The Z2-action corre-
sponds to the equivariance of the original equation
with respect to a Z2-action of some linear opera-
tor S with S2 = I, such that the first linear mode
v1 is S-invariant, Sv1 = v1, and the second lin-
ear mode is S-anti-symmetric, Sv2 = −v2. Explic-
itly, S acts on the element of the kernel xv1 + yv2

as S(xv1 + yv2) = xv1 − yv2. After a Lyapunov–
Schmidt reduction, Wu’s reduced bifurcation equa-
tions are

Ax2 + Cy2 + (a1λ1 + b1λ2)x + h1(z, λ) = 0, (4)

2Cxy + (a2λ1 + b2λ2)y + h2(z, λ) = 0, (5)

where z = (x, y) ∈ R
2 represents the coordinates

on the kernel of the linearization, λ ∈ R
2 are the

two bifurcation parameters and h1, h2 represent
terms of order three or more in (z, λ). There are
two important assumptions for (4) and (5).

(1) (H0) The origin x = y = 0 is a solution for all
small λ, so h1 and h2 vanish when z = 0.

(2) The systems (4) and (5) is equivariant with
respect to the Z2-action (x, y) �→ (x,−y).

In [Wu, 1999, 2000], there is a third assumption,
that (4) and (5) is the gradient of some functional,
imposing the presence of the same coefficient C in
(4) and (5), but we shall see that this has no fun-
damental importance in our context.

2.1. Analysis of (4) and (5)

Under the nondegeneracy conditions

ND0 : A · C · (a1b2 − a2b1) �= 0

and

ND1a : a1 · a2 �= 0, ND1b : (2a1C − a2A) �= 0,

Wu [1999, 2000] calculated secondary and ter-
tiary bifurcation branches and their stability. His
results follow from a careful nonlinear analysis of
the branches of (4), and (5) and suggest that the
quadratic terms are enough to determine fully the
qualitative behavior of (4) and (5) and this behav-
ior will not be altered by perturbation. In singu-
larity theory terminology, (4) and (5) should be
2-determined and of zero (topological) codimension.

Our Theorem 8 shows that this is indeed the
case when λ ∈ (R2, 0), provided we work with the
set of germs satisfying (H0 ). More precisely, when
the two bifurcation parameters are of equal impor-
tance, that is, we mix them freely in the change of
coordinates (2)

L(λ) = (L1(λ), L2(λ)),

the bifurcation maps (4) and (5) satisfying (ND0)
are 2-determined in the space of maps preserving
the origin. If we want to privilege one bifurcation
parameter over the other, say λ2, using in (2)

L(λ) = (L1(λ), L2(λ2)),

then we need to add (ND1a) to (ND0). The con-
dition (ND1b) is not necessary for 2-determinacy.
The result is false without (H0) because we show in
Proposition 1 that (4) and (5) is of infinite codimen-
sion as a two-parameter bifurcation problem. That
is, if the higher order terms depend on λ so that
f(0, λ) is not always 0 for all λ, there is an infinite
number of possibilities of nonequivalent bifurcation
diagrams with the same terms of order two (jet of
order two) (Propositions 1 and 2).

Our approach gives also information on the
stability under perturbation of the bifurcation
diagrams. If the perturbations also satisfy (H0),
(4) and (5) is stable under (ND0): every unfolding of
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f maps into f itself, the codimension of f is zero. If
perturbations are allowed to destroy the trivial solu-
tion, it depends on the number of parameters:

(1) as a one-parameter problem, it is of codimen-
sion 2: we need two perturbation parameters to
describe qualitatively every possible perturba-
tion (Proposition 3).

(2) with two, or more, bifurcation parameters,
there is an infinite number of possible non-
equivalent perturbations (Proposition 1 and
Corollary 2.1).

In [Furter & Sitta, 2004] we also show that those
results apply more widely to nondegenerate quad-
ratic bifurcation problems. There are two types of
normal forms depending on the sign ε1ε2. Positive,
it corresponds to the gradient form (4) and (5). If
the sign is negative, the problem cannot be a gradi-
ent but the same consequences still apply. The only
effect is that one group of diagrams (those support-
ing secondary Hopf bifurcation) are now possible
(see Fig. 2). Without symmetry, the second original
assumption, the perturbations of variational prob-
lems of corank 2 are much more constrained that
those of the nonvariational problem. They have less
codimension [Furter & Sitta, 2009].

2.2. Two-parameter origin
preserving problem and finite
determinacy

The following result illustrates that some bifur-
cation germs, whose 2-jet has a zero-set contain-
ing the trivial branch (0, λ), cannot be of finite
codimension.

Proposition 1. Let ε2
1 = ε2

2 = δ2
1 = δ2

2 = 1, m ∈
R. When ak �= 0, the following bifurcation germs
with two bifurcation parameters λ ∈ (R2, 0) are not
bifurcation equivalent for different integer k:

f(z, λ) =

(
x2 + ε1y

2 + δ1λ1x + akλ
k
2

2ε2xy + (mλ1 + δ2λ2)y

)
. (6)

Proof. The zero-set of the 2-jet of (6) has the triv-
ial branch (0, λ). From some simple algebra, the
branches of solutions of f−1(0) with y = 0 are given
by (

x2 +
1
2
δ1λ1

)2

=
1
4
λ2

1 − akλ
k
2 .

Hence, there are only solutions for λ = (λ1, λ2) in
the cuspidal wedge

λ2
1 > 4akλ

k
2 . (7)

These calculations show that the zero-set of (6)
depends on the term akλ

k
2 that cannot indeed be

ignored because the wedges (7) are not diffeomor-
phic for different k. �

Corollary 2.1. As a corollary, there are perturba-
tions of the 2-jet of (6) of arbitrary order that are
not bifurcation equivalent. Hence, the codimension
of the 2-jet of f is infinite.

Using a more powerful theory, the geometri-
cal characterization of finite codimension of path
in C, inspired from [Damon, 1984], we show that
the result is general.

Proposition 2 [Furter & Sitta, 2004]. With two (or
more) bifurcation parameters the quadratic nor-
mal forms such that f(0, λ) = 0 are of infinite
codimension.

This is a two-parameter phenomenon because
of the following result, that is proved using the usual
techniques of [Golubitsky et al., 1988] or [Furter &
Sitta, 2004].

Proposition 3. Let ε2
1 = ε22 = δ2 = 1 and m ∈ R.

With one bifurcation parameter λ ∈ (R, 0), the
following miniversal unfolding is of (topological)
codimension-2 :(

x2 + ε1y
2 + δλx + β1 + β2λ

2ε2xy + mλy

)
, (8)

when m(ε2m − 2δ1) �= 0, with unfolding parameters
(β1, β2) ∈ (R2, 0). The coefficient m is a moduli, an
invariant of the equivalence classes of (8).

3. Singularity Theory for
Bifurcation Germs

We present here the main definitions and abstract
results we need from singularity theory.

3.1. Structure of Z2-equivariant
problems

The group Z2 acts on R
2 by γ(x, y) = (x,−y). The

action of Z2 on any additional parameter is trivial.
We denote z = (x, y). A germ f : (R2+a, 0) → R

with a-parameters α ∈ (Ra, 0) is Z2-invariant if
f(γz, α) = f(z, α). A germ f : (R2+a, 0) → (R2, 0)
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with a-parameters α ∈ (Ra, 0) is Z2-equivariant if
f(γz, α) = γf(z, α). The ring EZ2

z of Z2-invariant
germs is generated by x and v = y2, that is, any
element of EZ2

z can be written as h(x, y2) for h :
(R2, 0) → R, and the module EZ2

z of Z2-equivariant
germs is freely generated over EZ2

z by X1 = (1, 0)
and Y1 = (0, y), that is, every f of EZ2

z is of the
form pX1 + qY1 with unique p, q ∈ EZ2

z . We iden-
tify f with [p, q]. For parametrized germs, EZ2

(z,α)

denotes the ring of Z2-invariant germs with param-
eters α ∈ (Ra, 0) and EZ2

(z,α) the EZ2

(z,α)-module of
Z2-equivariant germs with parameters α. A map
[P (x, v, α), Q(x, v, α)] is a gradient if and only if
2Pv ≡ Qx. When the ring is clear in the context,
we denote by Ia1...an the ideal generated by the ele-
ments a1, . . . , an. Let R be a ring, we denote by
〈m1, . . . ,mr〉R the R-module generated by the mi’s.

Origin preserving Z2-equivariant bifurcation
germs with λ ∈ (Rl, 0), l = 1, 2, form the EZ2

(z,λ)-

submodule FZ2

(z,λ) of EZ2

(z,λ) generated by [x, 0], [v, 0]

and Y1 = [0, 1] = (0, y), that is, f ∈ FZ2

(z,λ) can be
written as(

xp1(x, v, λ) + vp2(x, v, λ)

yq(x, v, λ)

)
.

Note that the generators [x, 0] and [v, 0] are not
free therefore we continue to denote elements of
FZ2

(z,λ) by [xp1 + vp2, q]. Their origin preserving
unfoldings with a-parameter, say α ∈ (Ra, 0),
form the EZ2

(z,λ,α)-module FZ2

(z,λ,α) also generated by
[x, 0], [v, 0] and Y1.

3.2. Bifurcation equivalence

Qualitative description means modulo changes of
coordinates that preserve the zero-sets and the spe-
cial role of the bifurcation parameters. We use a
form of parametrized contact-equivalence that pre-
serves the λ-slices of the diagram [Golubitsky &
Schaeffer, 1979, 1985; Golubitsky et al., 1988]. Two
bifurcation germs f, g are bifurcation equivalent if
there exist changes of coordinates (T,X,L) such
that

g(z, λ) = T (z, λ)f(X(z, λ), L(λ)), (9)

where T is a (z, λ)-family of Z2-equivariant invert-
ible matrices and (X,L) is a local Z2-equivariant
diffeomorphism of (R2+l, 0), fixing the origin,

X(0, λ) = 0 for λ ∈ (Rl, 0). We require that the
sets of X and L are path-connected to the iden-
tity to preserve the orientation of the diagrams.
Note that (9) means that f−1(0) and g−1(0) are
formed of diffeomorphic λ-slices. We consider dif-
ferent structures on L. When λ ∈ (R, 0), L :
(R, 0) → (R, 0). When λ ∈ (R2, 0) we distin-
guish between L(λ) = (L1(λ), L2(λ)) and L(λ) =
(L1(λ), L2(λ2)). In the first case, we cannot guaran-
tee that one-dimensional slices are preserved, only
two-dimensional regions in the λ-plane with diffeo-
morphic zero-set structure are preserved. In the sec-
ond case, bifurcation equivalence preserves the λ2-
sequences of diffeomorphic λ1-slices of the zero-set.
In that case it makes sense to draw sequences in
λ2 of slices in (z, λ1)-space as in [Wu, 1999]. The
bifurcation equivalences form groups by composi-
tion denoted by KZ2

o,λ, λ ∈ (Rl, 0), l = 1, 2, and
KZ2

o,λ1/λ2
, respectively, acting on FZ2

(z,λ). Perturba-
tions of f are germs F : (R2+l+a, 0) → (R2+l, 0)
such that F (z, λ, 0) = f(z, λ), called unfoldings of
f with a-parameters. To compare two unfoldings
F1, F2 of f with a1 (resp., a2), parameters, we say
that F2 maps into F1 if

F2(z, λ, α2) = T (z, λ, α2)F1(X(z, λ, α2),

L(λ, α2), A(α2)), (10)

where T,X,L are unfoldings of the identity in their
category. Here X will preserve the origin, and A :
(Ra2 , 0) → (Ra1 , 0) is in general not invertible. We
say that an unfolding F of f is versal if any other
unfolding G of f maps into F which means that one
gets all possible perturbations of f−1(0) via F−1(0).
A versal unfoldings of f with the minimum number
of parameters is called miniversal. They are actually
all equivalent.

The main goal of singularity theory is to classify
normal forms and their miniversal unfoldings mod-
ulo the allowed changes of coordinates. A normal
form is a particularly chosen “simple” representa-
tive of an equivalence class of germs. This allows for
an a priori discussion independent of the particu-
lar bifurcation problem we look at, only its struc-
ture is important. To achieve this goal we could
adapt the theory and algebraic calculations of [Gol-
ubitsky et al., 1988; Lari-Lavassami, 1990]. Because
we approach the question from a different angle
that organizes better the results and illustrates how
adaptable the calculations are, we are only going to
give the fundamental abstract results applicable to
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the groups KZ2
o,λ and KZ2

o,λ1/λ2
, without the details

we would need to apply the theory.

3.3. Fundamental theorems for
bifurcation equivalence

Both KZ2
o,λ and KZ2

o,λ1/λ2
are geometric subgroups

of contact equivalences (in the sense of [Damon,

1984]) acting on FZ2

(z,λ), so the general theory about

unfoldings and determinacy applies. Let G = KZ2
o,λ

or KZ2

o,λ1/λ2
. For f ∈ FZ2

(z,λ), we associate an extended
tangent space TeG(f), derived in the usual way
from the derivative of one-parameter unfoldings
(see [Damon, 1984], Proposition 4.1, and Sec. 4.1.1
here) and its extended normal space NeG(f) =
FZ2

(z,λ)
/TeG(f). Assume that c = dimR NeG(f) < ∞

(as a R-vector space), c is the G-codimension of f .
We summarize the results in the next theorems.

Theorem 1 [Unfolding Theory]. Let G = KZ2
o,λ or

KZ2

o,λ1/λ2
and f ∈ FZ2

(z,λ) of finite G-codimension. A
miniversal unfolding F of f is obtained from f +∑c

i=1 αifi where {fi}c
i=1 projects down onto a basis

of the extended normal space NeG(f).

The second theorem deals with how to deter-
mine a normal form. We need another tangent
space. A unipotent subgroup of UG is formed of
equivalences whose linearization form a unipotent
subgroup of matrices. We define then the unipotent
tangent space T UG(f) (see [Bruce et al., 1987]) of
f in the usual way.

Theorem 2 [Determinacy Theory]. Let G = KZ2
o,λ or

KZ2

o,λ1/λ2
and f ∈ FZ2

(z,λ) of finite G-codimension.

(1) f is finitely determined, that is, f is G-equi-
valent to a polynomial normal form.

(2) The set of higher order terms, terms that can
be removed in any element of the G-class of
f, is contained in the intrinsic part of T UG(f)
[Bruce et al., 1987].

Such theorems indicate how singularity the-
ory uses algebraic calculations of the tangent and
normal spaces to calculate the codimension of f ,
its miniversal unfoldings and solve its recognition
problem. The main issue in the explicit calcula-
tions is the structure of the tangent spaces as mod-
ules over systems of rings {EZ2

(z,λ), Eλ} for KZ2
o,λ, and

{EZ2

(z,λ), Eλ, Eλ2} for KZ2

o,λ1/λ2
. We are going to use a

different approach with simpler systems of rings, so
we do not need more details at present.

3.4. Path equivalence

The core f0 of f ∈ F at the origin is the germ
obtained by setting λ = 0, f0(z) = f(z, 0). It repre-
sents the singular behavior independently of the way
the bifurcation parameter(s) enter. We assume that
the core has a miniversal unfolding F0 in the rele-
vant category (Z2-equivariant, preserving the zero-
branch and gradient if needed), with a-parameters,
say (see Sec. 4.1). We consider f as a perturbation
of f0 with l-parameters. And so, from the theory
of miniversal unfoldings ([Damon, 1984] or (10)),
there exists α : (Rl, 0) → (Ra, 0) and local diffeo-
morphisms (T,X) such that

f(z, λ) = T (z, λ)F0(X(z, λ), α(λ)). (11)

The germ f and the pull-back α∗F0 are bifurca-
tion equivalent with equivalence (T,X, I). We call
α a path associated with f . The study of f−1(0) is
transformed into the study of the section of F−1

0 (0)
over α. More precisely, let πF0 : (F−1

0 (0), 0) →
(Ra, 0) be the restriction of the natural projection
π : (R2+a, 0) → (Ra, 0). Let ΣF0 be the local bifur-
cation set of F0, then ΔF0 = πF0(ΣF0) is the dis-
criminant variety of F0. The position of α with
respect to ΔF0 monitors when, and “how”, a path
α induces a crossing of ΣF0, that is, when there is
a local change in behavior of the zero-set of α∗F0.
We say that the paths α, β : (Rl, 0) → (Ra, 0) are
path equivalent if

α(λ) = H(λ, β(L(λ))) (12)

where L : (Rl, 0) → (Rl, 0) is an orientation preserv-
ing diffeomorphism, path connected to the identity,
and H : (Rl+a, 0) → (Ra, 0) is a λ-parametrized
family of local diffeomorphism on (Ra, 0), path con-
nected to the identity, that lifts to a λ-family of
diffeomorphism Φ : (Rl+2+a, 0) → (R2+a, 0) pre-
serving F−1

0 (0) such that πF0 ◦ Φ = H ◦ πF0. Note
that we cannot in general simplify H in (12) to a
λ-parametrized matrix like with the usual contact-
equivalence. An explicit description of the diffeo-
morphisms H is in general impossible, but the tan-
gent space of paths can be calculated using vector
fields liftable over πF0.

The idea of path formulation goes back at least
to Martinet and was the original starting point of
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the work in [Golubitsky & Schaeffer, 1979].
Eventually the fruitful approach using (9) has been
developed because the technicalities of path formu-
lation could not be easily overcome at the time.
Those ideas have been resurrected in [Mond &
Montaldi, 1994; Montaldi, 1994] for the usual
contact-equivalence and in [Bridges & Furter, 1993]
for (symmetric) gradient problems. It follows recent
progresses in singularity theory to handle vari-
ety preserving contact-equivalence [Damon, 1987].
Since then, the algebraic formulation derived in
[Furter et al., 1998] showed that the main features
of the path formulation occur naturally in the alge-
bra of Golubitsky–Schaeffer theory.

3.5. Abstract theory for path
equivalence

For a fixed core f0, the path equivalences (12) form
groups acting on the space of paths, the Eλ-module
Mλ,a = {α : (Rl, 0) → (Ra, 0)} ⊂ Eλ,a. Depending
on if there is, or not, a hierarchy of parameters, we
have groups K∗

λ and K∗
λ1/λ2

, respectively depending
on F0, that are also geometric subgroups of contact
equivalences (in the sense of [Damon, 1984]), so his
general theory about unfoldings and determinacy
applies.

Theorem 3. Let G = K∗
λ or K∗

λ1/λ2
. For α ∈ Mλ,a

we associate an extended tangent space TeG(α) and
its extended normal space NeG(α) = Eλ,a/TeG(α).
Assume that c = dimR NeG(α) < ∞, c is the G-
codimension of α.

(1) The path α has a universal unfolding that can
be obtained from α +

∑c
i=1 αiαi where {αi}c

i=1
projects down a basis of the extended normal
space NeG(α).

(2) The path α is finitely determined, that is, G-
equivalent to a polynomial normal form.

(3) (Recognition problem) If UG is a unipotent sub-
group of G, the set of higher order terms that
can be removed in any element of the G-class of
α is contained in the intrinsic part of T UG(α)
(see [Bruce et al., 1987]).

To get explicitly TeG(α) we consider unfold-
ings with one-parameter t ∈ (R, 0) of the correct
path equivalence (12) (H(t, λ, α), L(t, λ)) such that
(H,L) is the identity when t = 0. The elements
of TeG(α) are the tangent vectors at t = 0 of
H(t, λ, α(L(t, λ))) for all possible (H,L). Explicit
examples are in [Damon, 1987] and Proposition 4

in Sec. 4.1.1. We find that the extended tangent
spaces of path α are as follows:

(1) TeK∗
λ(α) = 〈αλ〉Eλ

+ α∗(Derlog∗(F0))Eλ
,

(2) TeK∗
λ1/λ2

(α) = 〈αλ〉Eλ1/λ2
+ α∗(Derlog∗(F0))Eλ

,

where Derlog∗(F0) is the Eα-module of liftable vec-
tor fields, liftable over πF0 to F−1(0) (see Sec. 5).
The ring Eλ1/λ2

is the system of ring {Eλ, Eλ2}.
For the Z2-equivariant corank 2 generic core (17),
Derlog∗(F0) is a free module generated by two
vector fields ξ1, ξ2 in (22). Therefore TeK∗

λ(α) =
〈αλ, ξ1(α), ξ2(α)〉Eλ

, λ ∈ (Rl, 0), l = 1, 2, and, for
λ ∈ (R2, 0),

TeK∗
λ1/λ2

(α) = 〈αλ1, ξ1(α), ξ2(α)〉Eλ

+ 〈αλ2〉Eλ2
. (13)

The terms that can be ignored in the Taylor
series expansion of the path are in the intrin-
sic part of the unipotent tangent spaces equal to
〈αλ〉M2

λ
+ α∗(〈λξ1, ξ2〉), where ξ1, ξ2 are the gen-

erators of Derlog∗(F0). As in [Furter et al., 1998],
we call Derlog∗(F0) the algebraic or liftable Derlog.
By projecting down onto (Ra, 0), H in (12) pre-
serves ΔF0, H(λ,ΔF0) ⊂ ΔF0 for λ ∈ (Rl, 0). And
so Derlog∗(F0) is a submodule of Derlog(ΔF0), the
module of vector fields tangent to the discriminant
ΔF0 (the geometric Derlog). As for the nonequiv-
ariant case, those modules are here the same (see
Sec. 5, Theorem 5).

3.6. Comparison of bifurcation
and path equivalences

For finite codimension problem, bifurcation and
path equivalences lead to the same classification and
same miniversal unfoldings. More precisely we have
the following result.

Theorem 4 [Furter et al., 1998]. With finite
codimensions, α is path equivalent to β if and only
if α∗F0 is bifurcation equivalent to β∗F0. For the
unfoldings: A is a miniversal unfolding of α for path
equivalence if and only if A∗F0 is a mininiversal
unfolding of α∗F0 for bifurcation equivalence.

The theory for multidimensional λ ∈ (Rl, 0) is
easier because the contribution of Derlog∗(F0) in
the tangent spaces does not depend explicitly on l
and tangent spaces are Eλ- or Eλ1/λ2

-modules, not
always modules over a system of rings involving
z-dependent rings as for Kλ (see [Damon, 1984]).
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Moreover, Derlog∗(F0) can be calculated once for
all, independently of the parameter structure. But,
using the group action of bifurcation equivalence
via (9) is usually easier for explicit simplification of
germs to the normal forms (to solve the recognition
problem) because it is very difficult to have explicit
access to H.

4. Cores and Zero-Sets for
Z2-Equivariant Problems

Now we describe the cores we need, their miniver-
sal unfoldings and zero-sets. Origin preserving
Z2-equivariant germs are the EZ2

z -submodule FZ2
z

of EZ2
z generated by [x, 0], [v, 0] and Y1 = [0, 1] =

(0, y), that is, f0 ∈ FZ2
z can be written as(

xp1(x, v) + vp2(x, v)

yq(x, v)

)
.

Their origin preserving unfoldings with a-para-
meters α ∈ (Ra, 0), say, form the EZ2

(z,α)-module

FZ2

(z,α) also generated by [x, 0], [v, 0] and Y1.

4.1. Origin preserving contact
equivalence

Two germs f, g ∈ EZ2
z are contact equivalent if

there exist Z2-equivariant changes of coordinates,
X ∈ EZ2

z and a family of matrices T : (R2, 0) →
GL(2, R), such that

g(z) = T (z)f(X(z)), (14)

with Xo = 0, Xo
z is a matrix with positive diago-

nal, T (γz)γ = γT (z) and T o has a positive diagonal.
Details of this equivalence can be found in [Golubit-
sky et al., 1988, Chapter XIX], ignoring the depen-
dance of λ in their problem. It forms a group under
composition we denote by KZ2 . It acts similarly on
unfoldings via families of contact equivalences.

To work with origin preserving germs in FZ2
z ,

we consider the subgroup KZ2
o of KZ2 where X ∈

FZ2
z . Note that, on FZ2

z , we do not see any dif-
ference between KZ2

o and KZ2 . Indeed, the origin
is always preserved by the local diffeomorphisms
in KZ2 . The difference is on unfoldings. For the KZ2 -
theory, unfoldings vanish only at the origin (0, 0)
in (z, α)-space. For the origin preserving equiva-
lence, we require that unfoldings vanish at (0, α)
for α ∈ (Ra, 0). Therefore, the tangent spaces
with respect to the subgroups of the equivalence

acting on spaces of unfoldings will be different.
This fits with the point made in [Damon, 1984]
that a group of contact-equivalence is actually a
quadruple consisting of a space of germs, spaces
of unfoldings (indexed by the number of param-
eters) and groups acting on each space with spe-
cial relations between them that make the general
abstract theory work. Here, we already defined the
space of germs FZ2

z and the spaces of its deforma-
tions, unfoldings FZ2

(z,α). The element (T,X) ∈ KZ2
o

if T : (R2, 0) → GL(2, R),

T (z) =

(
a(z) b(z)

c(z) d(z)

)

satisfies a(x,−y) = a(z), b(x,−y) = −b(z),
c(x,−y) = −c(z) and d(x,−y) = d(z). This means
that a, b ∈ EZ2

z and b = yb1, c = yc1, with
b1, c1 ∈ EZ2

z . The local diffeomorphism X = [p, q] ∈
EZ2

z with po = 0 and po
x, q

o > 0. Again it is the
maps (T,X) between unfoldings that are different.
Because T preserves anyway the origin, we assume
that X = [P,Q] satisfy X(0, α) = 0, with the non-
degeneracy values P o

x, Qo > 0.
The group KZ2

o with its extension to unfoldings,
together with the spaces FZ2

z and FZ2

(z,α), forms a
geometric subgroup in the sense of [Damon, 1984]
because it satisfies the four properties needed. To
see it, remark that it is a subgroup of KZ2 that
itself satisfies those four properties. The only addi-
tional result to check is that the exponential maps
that map the vector fields to the diffeomorphisms in
KZ2

o give rise to origin preserving diffeomorphisms.
Because the vector fields are in FZ2

(z,α), they van-
ish at the origin for all α ∈ (Ra, 0). The origin is
thus a fixed point of the exponential map for all
α ∈ (Ra, 0).

4.1.1. Tangent spaces

The tangent spaces we need for the algebraic calcu-
lations for KZ2

o are as follows.

Proposition 4. Let f = [p, q] ∈ FZ2
z .

(1) The KZ2
o -unipotent tangent space for f is given

by

〈[vq, 0], [0, p]〉Ex,v + 〈[p, 0], [0, q], [vpv , vqv]〉M(x,v)

+ 〈[px, qx]〉M2
(x,v)

. (15)
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(2) The KZ2
o -extended tangent space for f is gener-

ated by [p, 0], [vq, 0], [0, p], [0, q], [vpv, vqv ] over
E(x,v) and [px, qx] over M(x,v).

Proof. To calculate the tangent spaces we consider
the one-parameter paths through the identity when
t = 0 in the appropriate subgroup of contact-
equivalence, and apply it to f and calculate their
initial tangent vectors when t = 0. Explicitly, we
get the following.

(1) The path t → (T (., t),X(., t)) is taken in the
subgroup of unipotent equivalence of KZ2

o (see
also [Golubitsky et al., 1988, Chapter XIX(2.3),
pp. 419–420]). It means that T (z, 0) = I +
tT1(z, t), where T1(0, 0) = 0, and X(z, 0) = z +
tX1(z, t), where X1(0, 0) and Xz(0, 0) vanish.
The t-derivative at t = 0 of t → (T,X) · f is

T1(z, 0)f + fzX1(z, 0)

where T1 and X1 are arbitrary, of order one,
respectively two. This means that the unipotent
tangent space is thus given by (15).

(2) We have a similar calculation for the extended
tangent space. It means that T (z, 0) = I +
tT1(z, t) and X(z, 0) = z + tX1(z, t), where T1

and X1 are Z2-equivariant, but arbitrary. The
t-derivatives at t = 0 of t → (T,X) · f is

T1(z, 0)f + fzX1(z, 0)

where T1 and X1 are arbitrary. We find that it is
generated by [p, 0], [vq, 0], [0, p], [0, q], [vpv, vqv ]
over E(x,v) and [px, qx] over M(x,v). �

4.2. Generic cores and their
miniversal unfoldings

We are only interested in cores with zero first jet
so as to have a bifurcation of corank 2. The generic
(i.e. of lowest codimension) core is as follows.

Proposition 5

(1) Let f0 ≡ [p, q] such that po
x = qo = 0, po

xx > 0
and po

v · qo
x �= 0. Then f0 can be cast into the

following normal form:

f0(z) = (x2 + ε1y
2, 2ε2xy). (16)

When po
xx < 0, by multiplying through by −1

we get the previous case but with the stability
assignments reversed. Therefore, ε1 = sign(po

xx ·
po

v) and ε2 = sign(po
xx · qo

x). If f0 is a gradient
we can use changes of coordinates preserving
the gradient structure.

(2) For KZ2
o , f0 has the following miniversal

unfolding, that is also a gradient map,

F0(z, α1, α2)

= (x2 + ε1y
2 + α1x, 2ε2xy + α2y). (17)

Proof. We use the usual techniques of [Golubitsky
et al., 1988].

(1) A simple rescaling casts the quadratic coeffi-
cients to (16). We can then remove the higher
order terms using the intrinsic part of the
unipotent tangent space. Here p = x2 + ε1v
and q = 2ε2x. From (15), after straightforward
simplifications, the unipotent tangent space
is 〈[x3, 0], [vx, 0], [v2 , 0], [0, x2], [0, v]〉E(x,v)

, equal
to

[I3
(x,v) + IvI(x,v),I2

(x,v) + Iv]. (18)

From Lemma XIX 2.1 in [Golubitsky et al.,
1988, p. 419], [ζ1, ζ2] is intrinsic if ζ1, ζ2 are
intrinsic ideals such that 〈v〉ζ2 ⊂ ζ1 ⊂ ζ2. The
ideals I(x,v) and Iv are intrinsic and so (18) is
intrinsic and so we can eliminate all the terms
ignored in (16). In the gradient case the rescal-
ing must preserve the gradient structure, so we
choose T =

(
α 0
0 β

)
and X(z) = (αx, βy). The

higher order terms are eliminated as before (see
[Bridges & Furter, 1993]).

(2) The extended tangent space of f0 for KZ2
o is gen-

erated by [x2 + ε1v, 0], [2ε2xv, 0], [0, x2 + ε1v],
[0, 2ε2x], [ε1v, 0] over E(x,v) and [2x, 2ε2] over
M(x,v). Following similar calculations as before,
the extended normal space is generated by [x, 0]
and [0, 1]. �

4.3. Zero-set structure of
Z2-equivariant unfoldings

Let F = [P,Q] ∈ EZ2

(z,α), α ∈ (Ra, 0). The zero-set
of F is given by the roots of

P (x, v, α) = yQ(x, v, α) = 0.

The Jacobian matrix of F is

Fz(z, α) =

(
Px(x, v, α) 2yPv(x, v, α)

yQx(x, v, α) (Q + 2vQv)(x, v, α)

)
.

The zero-set of F consists of three pieces corre-
sponding to solutions with different internal sym-
metries. We have the following.

2050140-10
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(1) The trivial branch ZZ2
0 = {(0, 0, α)} always

belong to the zero-set of F because of the ori-
gin preserving property. Note that it is a subset
of Fix(Z2). The linearization Fz(0, 0, α) on ZZ2

0
is a diagonal matrix with eigenvalues Px(0, 0, α)
and Q(0, 0, α).

(2) The set of Z2-symmetric solutions not on the
trivial branch are

ZZ2 = {(x, 0, α) : x �= 0, P (x, 0, α) = 0}.

The eigenvalues of Fz(x, 0, α) on ZZ2 are
Px(x, 0, α) and Q(x, 0, α).

(3) The set of solutions without symmetry

Z1 = {(x, v, α) : v �= 0,

P (x, v, α) = Q(x, v, α) = 0}.

The eigenvalues of Fz on Z1 satisfy

det(Fz) = 2v(PxQv − QxPv) and

tr(Fz) = Px + 2vQv .

Explicitly, the zero-set of (17) is the following
with α = (α1, α2).

(1) The trivial branch ZZ2
0 with eigenvalues Px(0,

0, α) = α1 and Q(0, 0, α) = α2.
(2) The set ZZ2 = {(x, 0, α) : x = −α1} with eigen-

values Px(x, 0, α) = −α1 and Q(x, 0, α) = α2 −
2ε2α1.

(3) The set

Z1 =
{

(x, v, α) : x = −1
2
ε2α2,

v =
1
4
ε1α2(2ε2α1 − α2)

}

with det((F0)z) = 2v(PxQv −QxPv) = −2ε1ε2v
and tr((F0)z) = −ε2α2 on Z1.

4.4. Discriminants

From the Implicit Function Theorem (IFT), as long
as Fz remains nonsingular on the zero-set of F ,
the zero-set remains qualitatively similar. To under-
stand and describe how the zero-set of F varies as
α changes we need to determine the values of α
where the IFT does not apply. They belong to the
discriminant Δ of F , of equation

{α ∈ (R2, 0) : ∃ z ∈ (R2, 0),

F (z, α) = det(Fz)(z, α) = 0}. (19)

We have seen that the zero-set of F has three pieces.
This means that there will be three pieces of the
discriminant coming from the bifurcation between
each pair of the three zero sets. The bifurcations
from ZZ2

0 or ZZ2 (subsets of Fix(Z2)) to Z1 (sub-
set of Fix(1)) are of “spontaneous symmetry break-
ing” type, and so they are typically of pitchfork
type (see [Golubitsky et al., 1988]). The third case
from ZZ2

0 to ZZ2 does not involve any change of
symmetry, both sets are in Fix(Z2), but the exis-
tence of the trivial branch implies that the typical
bifurcation is transcritical (see [Golubitsky & Scha-
effer, 1985]). Moreover, the zero-sets ZZ2

0 , Z1 can
have internal bifurcation points without symmetry
breaking (obviously, there is no bifurcation inside
the trivial branch). From [Golubitsky et al., 1988]
we know that the typical bifurcation without sym-
metry breaking are fold points.

Hence, for general F ∈ EZ2

(z,α), the discriminant
is a priori formed of five pieces, we call (local) bifur-
cation varieties. Explicitly, we have the following
sets,

(1) Bo
x = {α : Px(0, 0, α) = 0} is formed of the

bifurcation points from the trivial branch ZZ2
0

to ZZ2,
(2) Po

κ = {α : Q(0, 0, α) = 0} for the symmetry
breaking bifurcation points from ZZ2

0 to Z1,
(3) Pκ = {α : ∃x �= 0, P (x, 0, α) = Q(x, 0, α) = 0}

for the symmetry breaking bifurcation points
from ZZ2 to Z1,

(4) Bx = {α : ∃x �= 0, P (x, 0, α) = Px(x, 0, α) = 0}
for the bifurcation points inside ZZ2 and

(5) B1 = {(x, v, α) : ∃v �= 0, P (x, v, α) = Q(. . .) =
(PxQv −QxPv)(. . .) = 0} for bifurcation points
inside Z1.

The discriminant of (17) is formed of only three
local bifurcation varieties, namely Po

κ, Pκ and Bo
x,

because the bifurcation varieties Bx and B1 are
empty. Their equations are α1 = 0 for Bo

x, α2 = 0
for Po

κ and 2α1 − ε2α2 = 0 for Pκ. Together, ΔF0 is
given by

hZ2
0 (α) = α1α2(2α1 − ε2α2) = 0. (20)

Hopf bifurcation points are possible on Z1, although
they are not invariant of the KZ2

o -equivalence. They
occur near the set H of points (x, v, α) ∈ Z1

with zero trace and positive determinant: (Px +
2vQv)(x, v, α) = 0 and (PxQv −QxPv)(x, v, α) > 0.
We can ascertain their existence using continuity
arguments along branches of solutions where the

2050140-11
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Fig. 1. Solution set of F0(z, α) = 0 as a function of α when
ε1ε2 = 1. The two paths, path1 and path2, correspond to our
example in Sec. 7

determinant does not change sign but the trace does
[Golubitsky & Schaeffer, 1985].

4.4.1. Zero-set diagrams of the cores

The zero-set of F0 is in (R4, 0). We represent the
solution set of (17) as its projections on the (α1, α2)-
plane. The pattern of solutions is the same in each
connected component of R

2−Δ where Δ is the rele-
vant discriminant, namely (20). It is only composed
of the local bifurcation varieties Bo

x, Po
κ and Pκ. The

squares represent Z2-symmetric solutions (y = 0).
There are always two of them. We take the conven-
tion that the one on the left represents the trivial
solution in ZZ2

0 and the second on the right is in ZZ2 .
The other solutions in Z1 (without any symmetry)
are represented by circles. When they exist, they
appear as Z2-symmetric pairs because the symme-
try forces them to do so. This explains why they
appear across the transition varieties Po

κ and Pκ as
pitchfork bifurcations. A black square � or circle
• represent solutions with eigenvalues of negative
real parts (−,−), crossed squares � or circles ⊗
represent solutions with eigenvalues of positive real

Fig. 2. Solution set of F0(z, α) = 0 as a function of α when
ε1ε2 = −1.

parts (+,+) as white squares � or circles ◦ are sad-
dle points (real eigenvalues of opposite sign).

In the following figures we represent the solu-
tion set of (17). The discriminant is composed of
three lines: Pκ, Po

κ and Bo
x [see (20)]. In Fix(Z2) the

square on the left represents the trivial solution. In
Fig. 1, we represent the solutions when ε1ε2 = 1
(containing the cases when F0 is a gradient). The
paths are linked to the example in [Wu, 1999]. When
ε1ε2 = −1 we have possibilities for Hopf bifurcation
points when crossing H.

5. Derlogs and Liftable Vector
Fields

For the equivalence of the theories for finite codi-
mension bifurcation germs and their associated
paths, as well as explicit calculations, we need the
generators of the module Derlog∗(F0) of vector
fields liftable via the projections πF0. To establish
the results we use complexifying the situation
[Furter & Sitta, 2004]. Nothing will be lost in finite
codimension because we can work with germs equiv-
alent to polynomials and we take care to preserve
the real and complex algebras. The situation is even
simpler here because the discriminants are actually
the same for the generic core, with F0 in (17). To
help with the geometry, we complexify our situa-
tion using the map (x, y) → (z1, z2) to preserve
the algebra between the real and complex con-
text and work with analytic germs. The results can
be readily moved between the two contexts. We
denote by O, instead of E , the corresponding sets of
complex germs. In coordinates, a vector field germ
ξ : (Ca, 0) → C

a is liftable if there exists a vector
field germ η : (C2+a, 0) → C

2 and a matrix map
germ T : (C2+a, 0) → M(2, C) such that

(F0)z(z, α)η(z, α) + (F0)α(z, α)ξ(α)

= T (z, α)F0(z, α). (21)

This definition is also geometric in the sense that
ξ lifts to the vector field (η, ξ) tangent to F−1

0 (0)
at its smooth points. It can also be defined as the
kernel of an epimorphism of coherent modules (see
[Furter et al., 1998]). Let

F0(z, α) = f0(z) +
a∑

i=1

αihi(z).

From the Malgrange Preparation Theorem,
NeKZ2

o (F0) = OZ2

(z,a)/TeKZ2
o (F0) is freely generated
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as an Oα-module by {hi}a
i=1. The following formula

ϕ(p) =
a∑

i=1

pi(α)hi(z)

defines a linear epimorphism [Mond & Montaldi,
1994; Furter & Sitta, 2004]:

Oa
α

ϕ→ NeG(F0) → 0.

The kernel of ϕ is clearly Derlog∗(F0).

Theorem 5. Let F0 given in (17), Derlog∗(F0) is
freely generated over Oα by the vector fields

ξ1 = (α1, α2),

ξ2 = (2ε2α1α2 − 2α2
1, 4α1α2 − ε2α

2
2).

(22)

Proof. Noting that

(F0)zY1 = [2vPv , Q + 2vQv],

we can calculate explicitly the lifts using (21). We
find that ξi, i = 1, 2, lift to (ηi, ξi), i = 1, 2, where
η(z) = (z1, z2) and η2 = (6x2 + 4α1x + 2ε2α2x,
6xy + (α1 + 2ε2α2)). Multiplying (ηi, ξi), i = 1, 2,
by α1 and α2 we see that the resulting liftable vec-
tor fields can be decomposed in terms of ξ1 and ξ2

that are independent, and so Derlog∗(F0) is freely
generated over Oα by ξ1 and ξ2. �

As mentioned in Sec. 3.5, liftable vector fields
must be tangent to ΔF0 by projecting down along
πF0. Note that the definition (19) of the discrimi-
nant for real F0 should be amended. Actually, we
should choose ΔF0 as the real slice of the discrim-
inant of the complexification of F0 (see [Furter &
Sitta, 2004]) but it is not important here because
both are equal. In our problems, the liftable vector
fields are exactly the vector fields tangent to the
discriminant (see Proposition 6). Let I(ΔF0) denote
the ideal of germs vanishing on ΔF0. Define

Derlog(ΔF0) = {ξ ∈ Oa | ξ(I(ΔF0)) ⊂ I(ΔF0)}.

The discriminant ΔF0 is a free (or Saito) divi-
sor if Derlog(ΔF0) is a locally free Oa-module (of
rank a).

Theorem 6 [Saito, 1980]. If the vector fields {ξi}a
i=1

are in Derlog(ΔF0) and the determinant |ξ1 . . . ξa| is
a reduced defining equation for ΔF0 then they gen-
erate freely Derlog(ΔF0).

We therefore obtain the following result. For
F0 in (17), ΔF0 is given by hZ2

0 (α) = 0 where hZ2
0

is (20). A nilpotent basis consists of an Euler field
(like ξ1 where ξ1(hZ2

0 ) = 4hZ2
0 ) and a basis of the

annihilator of hZ2
0 (ξ2(hZ2

0 ) = 0).

Proposition 6. The module

Derlog(ΔF0) = Derlog∗(F0)

is freely generated over Oα by the nilpotent basis
{ξ1, ξ2}.

Proof. We conclude because ξ1, ξ2 ∈ Derlog(ΔF0)
and |ξ1ξ2| = 3hZ2

0 . �

Note that ξ2 can be simplified to a non-
nilpotent vector field (0, 2α1α2 − ε2α

2
2).

6. Classification of Bifurcation Maps

In this section, we classify bifurcation maps with
one or two bifurcation parameters based on the
generic core f0(z) = (x2 + ε1y

2, 2ε2xy). Recall
that the paths for (17) with l parameters are α :
(Rl, 0) → (R2, 0). In the following, the coefficients
δ, δi are normalized to ±1 and the βi’s are the
unfolding parameters of the paths.

6.1. One bifurcation parameter

First we establish a classification of one-dimensional
paths of low codimension. The difference with [Dan-
gelmayer & Armbruster, 1983] is in the origin
preserving property.

Theorem 7. The one-dimensional paths based on
the core F0 in (17) of topological codimension up to
three and their miniversal unfolding are in Table 1.

Proof. Using explicit changes of coordinates, we
cast the bifurcation germs into the path formula-
tion structure α∗F0 and use the unipotent tangent
space to eliminate the higher order terms. Then,
to determine the universal unfolding, we get an R-
basis for the normal space NeK∗

λ(α). From Sec. 3.5,
the unipotent tangent space for α is equal to

〈λ2αλ, λξ1(α), ξ2(α)〉Eλ
, (23)

where ξ1 and ξ2 are given in (22), and the normal
tangent space

NeK∗
λ(α) =

Eλ,2

〈αλ, ξ1(α), ξ2(α)〉Eλ

. (24)

2050140-13

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
6.

18
5.

80
.4

0 
on

 0
3/

14
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2020 9:25 WSPC/S0218-1274 2050140

J.-E. Furter

Table 1. One-dimensional paths of topological codimension up to three.

Normal Form Top. Codim. Smooth Codim. Miniversal Unfolding

(δλ, mλ) m �= 0, 2ε2δ 1 2 (δλ, β + mλ)

(δ1λ, δ2λ2) 2 2 (δ1λ, δ2λ2 + β1 + β2λ)

(δ1λ, δ2λ3) 3 3 (δ1λ, δ2λ3 + β1 + β2λ + β3λ2)

(δ1λ2, δ2λ2) 3 3 (δλ
1 + β1 + β2λ, mλ + β3)

(δ1λ2, mλ2 + δ2λ3) 3 4 (δ1λ2 + β3, mλ2 + δ2λ3 + β1 + β2λ)

(δ1λ2, mλ2) 3 5 (δ1λ2 + β3, mλ2 + nλ3 + β1 + β2λ)

To check our results on the paths (δ1λ
2,

mλ2 + nλ3), (23) is generated by

(2δ1λ
3, 2mλ3 + 3nλ4), (δ1λ

2,mλ3 + nλ4),

(0, 2δ1λ
2(mλ2 + nλ3) − ε2(mλ2 + M3

λ)2)

using the simpler generator (0, 2α1α2 − ε2α
2
2) for

ξ2. Simplifying, we see that the unipotent tangent
space is generated by

(δ1λ
3, 0), (0, nλ4), (0,m(2δ − ε2m)λ4 + M5

λ).

If n �= 0, or if m �= 0, 2ε2δ1 when n = 0, (M3
λ,M4

λ)
contains the higher order terms and can be elim-
inated on the path. To calculate the codimension,
TeK∗

λ(α) is generated by

(2δ1λ, 2mλ + 3nλ2), (δ1λ,mλ2 + nλ3),

(0, 2δ1λ
2(mλ2 + nλ3) − ε2(mλ2 + M3

λ)2).

Simplifying we get

(δ1λ, 0), (0, nλ3), (0,M4
λ).

And the conclusion, (1, 0), (0, λj), j = 0, 1, 2, are
always in the extended normal space and (0, λ3

1)
when n = 0. �

6.2. Two bifurcation parameters

Recall the nondegeneracy conditions

ND0 : po
xx · po

v · qo
x · (po

xλ1
qo
λ2

− qo
λ1

po
xλ2

) �= 0,

ND1a : po
xλ1

· qo
λ1

�= 0.

Actually, ND0 is enough if we do not distinguish
between the two parameters (λ1, λ2) using the bifur-
cation equivalence group KZ2

o,λ (see Sec. 3.2). With
ND0 and ND1a we can preserve (z, λ1)-slices using
the group KZ2

o,λ1/λ2
(see Sec. 3.2). In the next result,

we assume that po
xx > 0, otherwise we can simply

multiply f by −1 and then the stability assignments
will be reversed.

Theorem 8

(1) Under ND0 only, the KZ2
o,λ-normal form of f ∈

FZ2

(z,λ) is (
x2 + ε1y

2 + λ1x

2ε2xy + δλ2y

)
, (25)

of codimension-0 (note that po · po
x · qo = 0),

δ = sign(po
xλ1

qo
λ2

− qo
λ1

po
xλ2

).
(2) Under ND0 and ND1a, the KZ2

o,λ1/λ2
-normal

form of f ∈ FZ2

(z,λ) is(
x2 + ε1y

2 + λ1x

2ε2xy + (mλ1 + λ2)y

)
, (26)

of topological codimension-0 (m is a modal
parameter).

Proof. Rescale (4) and (5) and if A < 0 multi-
ply both equations by −1. This has the effect of
interchanging the stability assignments between the
eigenvalues pairs of the linearization ++ and −−,
the saddle points +− remain unchanged. Thus we
cast ∈ FZ2

(z,λ) into(
x2 + εy2 + α1(λ)x + h1(z, λ)

2εxy + α2(λ)y + h2(z, λ)

)
(27)

where ε = sign(AC), α1(λ1, λ2) = a1λ1 + b1λ2

and α2(λ1, λ2) = a2λ1 + b2λ2.

(1) Using (11), f is strongly KZ2
o,λ-equivalent to

α̃∗F0 with a path with 1-jet (α1, α2). In this
case we do not really need to use all the alge-
bra of path formulation because we can use the
inverse function theorem to determine L from
the system

λ1 = α̃1(L(λ1, λ2)),

δλ2 = α̃2(L(λ1, λ2)),
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with |Lo
λ| > 0. This last condition allows

us to determine δ. The path (λ1, δλ2) is of
codimension-0 using its extended tangent space.

(2) Let δ1 = sign(po
xλ1

), δ2 = sign(po
xλ1

(po
xλ1

qo
λ2

−
qo
λ1

po
xλ2

)) and m =
2qo

λ1
·po

xx

|po
xλ1

|·|qo
x| . Similarly, f is

KZ2

o,λ1/λ2
-equivalent to α̃∗F0 with 1-jet equal to

(δ1λ1,mλ1 + δ2λ2). We use path equivalence
to eliminate the higher order terms. We pro-
ceed as before, the only difference is that now
we have a structure of system of rings on the
paths {Eλ, Eλ2}. The unipotent tangent space is
〈α̃λ〉M2

λ
+ α̃∗(〈λξ1, ξ2〉). Straightforward calcu-

lations give it equal to (M2
λ,M2

λ) under ND0
and ND1a. The extended tangent space is given
by (13). Then we can conclude using similar
techniques as before that (26) is of topological
codimension 0 when ND0 and ND1a hold true.

�

7. Cylindrical Panel

The abstract results of [Wu, 1999] were applied to
the bifurcation of a cylindrical panel subjected to
axial compression near mode interaction. The com-
pression load λ and the aspect ratio of the panel
μ are two main bifurcation parameters. Next we
recall some of the details of the calculation of the
coefficients of (4) and (5) in [Wu, 1999]. The config-
uration domain is Ω = [0, μ] × [0, 1] where μ repre-
sents the aspect ratio of the rectangle. We represent
the coordinates in Ω by (s, t). The functions u and
f represent the nondimensional values of the ver-
tical displacement and the Airy tension. From the
von Kármán–Donnell’s shell theory, u and f satisfy

Δ2u = −λuss + [u, f ] + dfss, (28)

Δ2f = −1
2
[u, u] − duss, (29)

where partial derivatives are us = ∂u
∂s . The opera-

tor Δ represents the usual Laplacian in the plane
and [u, v] = ussvtt + uttvss − 2ustvst is the Monge–
Ampère’s operator. The parameter d is proportional
to the inverse of the radius of curvature of the panel
and λ to the external force exercised on the t-side.
There are many boundary conditions for u and f in
the literature. In [Wu, 1999] the simply supported
panel is used: u = Δu = f = Δf = 0. The choice of
the best boundary conditions for a particular exper-
iment is a subject of much discussion, practically,

deciding the mixture of boundary conditions to put
on u and f .

The following results can be found in [Wu,
1999]. The first bifurcation values from the
unstressed plate are λc = 9

2π2 + d2(9
2π2)−1 and

μc =
√

2. The kernel of the linearization is two-
dimensional, generated by φ1(s, t) = sin πs√

2
sin πt

and φ2(s, t) = sin
√

2πs sin πt. We can solve
uniquely (29) for f as a function of any given u
with our boundary conditions. Replacing in (28) we
find a fourth-order PDE in u:

Δ2u = −λuss + [u, f(u)] + d(f(u))ss. (30)

The equation is invariant with respect to the rever-
sor S : (s, t) �→ (μ − s, 1 − t) and that φ1 is S-
invariant and φ2 is S-equivariant. Following a classi-
cal Lyapunov–Schmidt process [Golubitsky & Scha-
effer, 1985] we find the following.

Proposition 7 [Wu, 1999]. The bifurcation function
for (30) is (4) and (5) where xφ1 + yφ2 is the
component of u in the kernel of the linearization,

A = −162
3
4

9 d, C = −3642
3
4

45 d, a1 = −π2

2 , a2 = 4a1,
b1 = 3

√
2

4 π4 −
√

2
27 d2 and b2 = −3

√
2π4 + 4

√
2

27 d2.

As a consequence, the coefficients for the nor-
mal forms of Theorem 8 are ε = δ1 = δ2 = 1 and
μ = 80

91 . In the normal forms, the bifurcation param-
eters are the difference to the critical values (λc, μc),
so we define the initial bifurcation parameters as
λ1 = λ − λc, λ2 = μ − μc. The (λ1, λ2)-diagrams
are found above the lines α2 = 80

91 α1 + λ2 in Fig. 1
(path1 is for λ2 > 0, path2 for λ2 < 0) where the
stable solutions (local minima of the energy) are
represented by � (A < 0). Because of the change
of coordinates for the normal form, (λ1, λ2) in (26)
represents some combination of the compression
load and the aspect ratio (but μ is an invariant
of the change of coordinates). From the modeling
point of view, if the parameters we consider do not
all preserve the trivial branch, like the presence of
dead loads, we either need to take one of those
parameters as one of the bifurcation parameters or
consider only one bifurcation parameter problem.
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