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Subject: Original manuscript submission for publication in Aquatic Toxicology.

Dear Editor,

With this letter, we are submitting the manuscript “Combined effects of environmental xeno-estrogens
within multi-component mixtures: comparison of in vitro human- and zebrafish-based estrogenicity
bioassays” by Héléne Serra, Martin Scholze, Rolf Altenburger, Wibke Busch, Héléne Budzinski,
Frangois Brion and Selim Ait-Aissa, for publication as a research article in Aquatic Toxicology.

In this study, we investigated differences between human and zebrafish cell-based assays in assessing
estrogenic activity of mixtures of aquatic contaminants. By using a stepwise experimental approach
based on the concentration addition model, we newly identify ER-response inhibiting chemicals in
zebrafish cells and demonstrate that they negatively influenced the zebrafish cell response to two 12-
compound mixtures. Our study confirms previously reported differences between human and zebrafish
bioassays in response to environmental pollutants and complex mixtures, and illustrates such differences
using model aquatic pollutants. Another major outcome is the assessment of the estrogenic effects of
mixtures including both ER activators and inhibitors, which has been rarely reported in such a
methodological way, and the demonstration that deviation of additivity is likely to occur when present
in environmental mixtures. These findings may have implication in environmental monitoring, i.e. need
to consider bioassays that are specific to aquatic vertebrates when assessing estrogenic potency of
samples issued from the aquatic environment, but also, more generally, in the assessment of mixture
estrogenic effect, which can vary depending on the examined tissue or species.

An assurance is given that the material has not been published or submitted elsewhere.

We hope our paper will reach the standards allowing it to be published in Aquatic Toxicology and are
looking forward to hearing from you.

Yours sincerely,

S. Alt-Alssa
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ABSTRACT

In vitro bioassays based on estrogen receptor (ER) activation are commonly used to monitor the
environmental contamination by xeno-estrogens. However, recent studies showed that fish- and
human-based bioassays may have distinct responses to environmental samples, highlighting not
only the need to better understand bioassay-specific ER response to environmentally more realistic
mixtures of individual chemicals, but also how well these mixture responses can be explained by
the default additivity model of concentration addition (CA). For this purpose, we investigated
experimentally a 12-compound mixture in two different mixture ratios (M1 and M2) by testing the
combination of (1) all 12 compounds, (2) only the ER activators present in this mixture, (3) only
the ER inhibitors, and (4) ER activators and inhibitors combined. The mixture included well-known
ER ligands such as bisphenol A (BPA) and genistein (GEN), but also non-estrogenic compounds
that were considered as representatives of a freshwater background contamination. Studies were
conducted on zebrafish (zf) liver cells stably expressing zfERa (ZELHa cells) or ZfERB2 (ZELHf32
cells) and human ER reporter gene (MELN) cells, with the main aim (1) to assess the robustness of
CA, and (2) to evaluate the potentially confounding influence of environmental chemicals on
additivity. The testing of individual chemicals revealed a higher prevalence of ER inhibiting
chemicals in zebrafish than human cells (e.g. propiconazole, benzo(b)fluoranthene). We also
identified chemicals that activated hER but inhibited zfER response (e.g. benzo(a)pyrene,
triphenylphosphate). In MELN cells, the estrogenic activity of both 12-compound mixtures M1 and
M2 was well predicted by CA. However, in ZELHf2 cells, the same mixtures induced significantly
lower estrogenic responses than expected by CA. In contrast, if only the two ER ligands BPA and
GEN were tested as binary mixture, their mixture effects were in good agreement with CA
expectations. The stepwise experimental approach of testing subgroups of only ER activators or/and
inhibitors indicate that the observed deviation from additivity is due to ZELH-specific inhibiting
chemicals. Thus, the very distinct responses of human- and zebrafish cell lines to M1 and M2 can

entirely be explained by the presence of ER inhibiting chemicals selectively active in zebrafish
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cells. Overall, this study provides novel information on the ability of environmental pollutants to
interfere positively or negatively with zfER-signalling and shows that the response to a complex
mixture of xeno-estrogens can be influenced by the presence of other (non- or anti-estrogenic)
chemicals in a bioassay-specific manner.

KEY WORDS: estrogenicity, anti-estrogen, mixture, in vitro reporter gene, human, zebrafish

HIGHLIGHTS (IF NEEDED):

- Human and zebrafish cells showed distinct estrogenic response to 12-component mixtures
containing bisphenol A and genistein

- Several ER inhibiting chemicals were identified only in zebrafish cells

- Using a stepwise experimental approach, we showed that these inhibiting chemicals influenced

negatively the zebrafish cells response to xeno-estrogens mixtures
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1. Introduction

The occurrence of numerous endocrine disrupting chemicals (EDC) in aquatic ecosystems
has raised concern over their potential adverse effects in aquatic organisms, such as fish (Sumpter,
2005). Many EDCs, such as natural and synthetic hormones, pesticides or industrial chemicals, are
xeno-estrogens, i.e. they bind the estrogen receptors (ERs) and subsequently alter the transcription
of target genes involved in key physiological functions (Sumpter, 2005). In vitro bioassays based
on ER transactivation have been used to assess the estrogenic activity of chemicals, but also of
environmental samples (Konemann et al., 2018; Zacharewski, 1997). In case of environmental
monitoring, they are expected to enable an integrative detection of various ER-active contaminants
within complex environmental mixtures considering both known and unknown xeno-estrogens.
They provide a unique quantitative response which may be summarized as estradiol-equivalent (E2-

Eq, Kase et al., 2018).

To date, a large majority of in vitro bioassays used in environmental bio-monitoring are
based on mammalian or yeast cell systems that stably express a reporter gene which expression is
controlled by the human ER subtype o (hERa) (Kénemann et al., 2018; Kunz et al., 2015). However,
the relevance of using human-based assay to assess hazard and risk for aquatic species is a question
of concern in environmental assessment (Hotchkiss et al., 2008). For instance, humans express two
ER subtypes, ERa and ERp, but most teleost fish express at least three ER subtypes, ERa, ERB1
and ERB2 (Menuet et al., 2002; Tohyama et al., 2015). Fish and human ER have relatively low
sequence homologies in their ligand binding domain (Menuet et al., 2002; Tohyama et al., 2015).
These structural differences are believed to contribute to the distinct sensitivity to certain xeno-
estrogens (Miyagawa et al., 2014), along with other factors linked to the cell specificities, such as
cell metabolic capacities (Le Fol et al., 2015), presence/absence of transcriptional cofactors or

cross-talks with other signalling pathways (Navas and Segner, 2000; Ohtake et al., 2003).
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In a recent study, we reported that some surface water samples were active on a zebrafish
liver cell line stably expressing zebrafish ERB2 (zfERB2), the ZELHP2 cells, but not on human
breast cancer MELN cells that endogenously express hERa (Sonavane et al., 2016). Similarly, some
effluent extracts from sewage treatment plants produced very different in vitro responses in cells
expressing human or medaka ERa (Ihara et al., 2014). These differences were further confirmed in
vivo by measuring vitellogenin induction in exposed male medaka (lhara et al., 2015). In the latter
study, the estrogenic chemicals identified were not sufficient to explain the distinct response of fish
bioassays. However, the authors showed that the anti-estrogenic activity measured in the samples

may contribute to the different responses of medaka and human ER.

Several studies have addressed the combined effect of ER ligands in reconstituted mixtures,
generally concluding on their additive effects based on concentration addition (CA) predictions
(Kortenkamp, 2007). However, xeno-estrogens occur in the aquatic ecosystem together with other
chemicals that have various and distinct modes of action (e.g. Escher et al., 2014; Neale et al., 2015,
Busch et al., 2016). To date, few studies have investigated additive effects of xeno-estrogens in
more diverse exposure scenarios, such as with non- or weak estrogenic chemicals (Evans et al.,
2012) or with anti-estrogenic chemicals (Yang et al., 2015). Recently, a mixture of 12 selected
environmental chemicals was tested in zebrafish and human-based bioassays as part of a larger
round-robin study. The aim was to investigate whether the estrogenic activity of the ER ligands in
this mixture (e.g. genistein and bisphenol A) was detectable against the background of the other
environmental pollutants (Altenburger et al., 2018). This study concluded that in human MELN
cells the overall estrogenic activity of the mixtures was accurately predicted by an assumed
additivity of the estrogenic chemicals. However, in zebrafish ZELHP2 cells the measured estrogenic
response of the mixture was lower than expected. The reasons of this discrepancy between human
and zebrafish-based ER-reporter gene assays were unknown, and therefore raised the question about

potential limitations of a presumed CA additivity.
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In this context, the present study was designed as a follow-up of Altenburger et al. (2018)
to investigate the different responses of zebrafish- and human-based in vitro reporter gene assays.
We hypothesized that estrogenic chemicals within environmental mixtures have additive effects
following default model of CA that are well detected by zebrafish and human-based bioassays. In
such way, we investigated (1) the additivity of xeno-estrogens in zebrafish and human-based
bioassays and (2) the influence of non-estrogenic chemicals of the mixtures. As in Altenburger et
al. (2018), we used the same 12-compound mixture in two different mixture ratios (M1 and M2),
which included xeno-estrogens (e.g. bisphenol A and genistein), and non-estrogenic chemicals
representatives of a freshwater contamination background. The general experimental set-up design
is outlined in Figure 1. Firstly, each chemical was tested for both estrogenic and anti-estrogenic
activities in zebrafish-and human-based bioassays. Secondly, combinations of chemicals that
proved to be active at M1 and M2 mixture ratios (either ER activating, ER inhibiting, or both) were
tested and then discussed in relation to the outcomes from the 12-component mixture response. The
concentration addition model was used to evaluate the additivity of active chemicals in each mixture

scenario.

2. Material and methods

2.1 Chemical selection, mixtures design and experimental approach

Twelve environmentally relevant chemicals were selected following (1) a prioritization
exercise based on occurrence, hazard and available environmental quality standard (Busch et al.,
2016), and (2) a screening of prioritized contaminants through multiple bioassays (Neale et al.,
2017a). As a result, two fixed-ratio mixtures of 12 chemicals with dissimilar mode of actions were
designed (Table SI-1) and tested as part of a benchmarking exercise (Altenburger et al., 2018). The
first mixture ratio (M1) was composed in such way that the diverse bioactivities of the individual
chemicals had a chance to be detected experimentally by an array of 19 bioassays. The second

mixture ratio (M2) was chosen to mimic a realistic freshwater contamination scenario. In the current
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study, all 12 chemicals were tested individually for their capacity to induce or inhibit ER-mediated
luciferase response in different cellular assays. Based on the information on the activity of
individual chemicals in each bioassay, chemicals predicted to contribute to M1 and M2 responses
based on CA prediction were identified. Subgroup mixtures were then designed containing either
only ER activators or only ER inhibitors, or both ER activators and inhibitors (Figure 1, Table 1).
These mixtures were designed such that their relative concentration ratios agreed to that from the
original M1 and M2 mixtures (i.e. real sub-mixtures), to allow the best possible comparison to the

outcomes from the 12 compound mixtures.

2.2 Chemicals and reagents

17B-estradiol (E2, CAS#50-28-2, purity of >98%), triclosan (TCS, CAS#3380-34-5, purity
of 97% - 103%), bisphenol A (BPA, CAS#80-05-7, purity of 97%), genistein (GEN, CAS#446-72-
0, purity of > 98%), propiconazole (CAS#60207-90-1, purity of >98%), diclofenac (CAS#15307-
79-6), diazinon (CAS#333-41-5, purity of >98%), diuron (CAS#330-54-1, purity >98%), cyprodinil
(CAS#121552-61-2, purity of >98%), triphenylphosphate (TPP, CAS#115-86-6, purity >99%),
benzo(a)pyrene (BaP, CAS#50-32-8, purity >96%), benzo(b)fluoranthene (BbF, CAS#205-99-2,
purity of 98%), chlorophene (CAS#120-32-1, purity of 95%), hydroxy-tamoxifen (OH-TAM,
CAS#68392-35-8, purity of >98%) and dimethylsulfoxide (DMSQ) were purchased from Sigma-
Aldrich (France). The cell culture medium and reagents Leibovitz 15 culture medium (L-15), fetal
calf serum (FCS), 4-(2-hydroxy-ethyl)-1-piperazineethanesulfonic acid (HEPES), epidermal
growth factor (EGF), G418, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazoliumbromide (MTT)
and D-luciferin were purchased from Sigma Aldrich (St-Quentin Fallavier, France); Dulbecco's
Modified Eagle Medium (DMEM), DMEM High Glucose (DMEM HG) powder, F-12 nutrient
mixture (Ham's F12) powder, penicillin and streptomycin were purchased from Gibco (France);

insulin, hygromycin B and sodium bicarbonate were purchased from Dominique Dutscher (France).

2.3 In vitro bioassays: cell lines, luciferase and cell viability assays
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The zebrafish in vitro assays have been derived from the zebrafish liver (ZFL) cell line
(Cosnefroy et al., 2012). ZFL were stably transfected, first, with an ERE-driven firefly luciferase
gene, yielding the ZELH cell line, and then either with zfERa subtype, yielding the ZELHa cell
line, or with zfERB2 subtype yielding the ZELHP2 cell line (Cosnefroy et al., 2012). Establishment
of these cell models and their response to different classes of well-known xeno-estrogens have been
previously described (Cosnefroy et al., 2012; Sonavane et al., 2016). The human-derived MELN
cell line (Balaguer et al., 1999) was kindly provided by Dr Patrick Balaguer (INSERM Montpellier,
France). It is derived from the breast cancer MCF-7 cells, which endogenously express the hERa,
but no functional hERp (P. Balaguer, personal communication). MELN cells were stably

transfected with an ERE-driven firefly luciferase reporter gene.

Conditions for routine cell culture have been detailed previously (Balaguer et al., 1999;
Cosnefroy et al., 2012). The cells used were pathogen-free and controlled on a regular basis. For
exposure experiments, ZELH-derived cells were seeded in 96-well white opaque culture plates
(Greiner CellStar™, Dutscher, France) at 25,000 cells per well in phenol red-free LDF-DCC
medium (containing L-15 50%, DMEM HG 35%, Ham's F12 15%, HEPES 15 mM, 0.15 g/L
sodium bicarbonate, 0.01 mg/mL insulin, 50 ng/mL EGF, 50 U/mL penicillin and streptomycin
antibiotics, 5% v/v stripped serum). MELN were seeded at 80,000 cells per well in phenol red-free
DMEM medium containing 5% v/v stripped serum. Cells were left to adhere for 24h. Then, they
were exposed in triplicates to serial dilutions of test compound for either 72h at 28°C for zebrafish
cells or 16h at 37°C for MELN cells. Each plate included both solvent and positive controls (in two
triplicates each). E2 was used as a positive quality control for ER activation, and hydroxy-tamoxifen
(OH-TAM) for ER inhibition. In addition, a serial dilution of 7 to 8 concentrations of E2 was tested
in each experiment. At the end of exposure, the culture medium was removed and replaced by 50 uL
per well of medium containing 0.3 mM luciferin. The luminescence signal was measured in living

cells using a microtiter plate luminometer (Synergy H4, BioTek).
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The cell viability was assessed by using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5diphenyl
tetrazolium bromide (MTT) assay (Mosmann, 1983). After cell exposure, the culture medium was
removed and replaced by 100 uL of medium containing 0.5 mg/mL MTT. Cells were incubated for
3h. In metabolically active cells, MTT is reduced onto a blue formazan precipitate, which is
dissolved by adding 100 uL. of DMSO after removal of MTT-containing medium. Plates were read
at 570 nm against a 640 nm reference wavelength on a microplate reader (KC-4, BioTek

Instruments, France) and results are expressed as absorbance units relative to control cells.

2.4 Testing of multi-component mixtures

The mixture compositions are given in Table SI-1, SI-2 and SI-3. The two 12-component
mixtures were prepared in methanol (as part of a round robin study on bioassays, Altenburger et al.,
2018). Stocks solutions and serial dilutions of single chemicals and 2-, 3-, 4- and 5-component
mixtures were prepared in DMSO. The response of MELN cells to TPP and BPA using either
DMSO or methanol as vehicle were similar (data not shown), thus, no significant effect of the
solvent was to expect. To investigate the anti-estrogenic activity of the chemicals or mixtures, the
cells were exposed in the presence of E2 at a concentration leading to 80% of maximal response,
i.e. 0.1 nM in MELN and ZELHP2 and 1 nM in ZELHa assays. The ZELH cells, that correspond
to the parent cell line of ZELHa and ZELHP2 cells but lack functional ER, were used additionally
as a control for non-specific luciferase modulation. As for the other cell lines, cytotoxicity was
measured in parallel in the way previously described. Final solvent concentrations in culture
medium were 0.1% v/v (agonist assay) or 0.15% v/v (in case of co-exposure with E2), which do
not affect luciferase expression or cell viability. Stock solutions of chemicals in DMSO and

methanol were maintained at -20°C for up to three months.

2.5 Data analysis

2.5.1 Data treatment and analysis
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Luciferase activity (LUC) was normalized to a response range between 0 and 1 on an

experiment-to-experiment basis as follows:

LUCchemical—LUCcontrol (1)

Response =
LUCE2—~LUCcontrol

where LUCchemical IS the luminescent signal induced by the tested chemical, LUCcontrol IS the average
luminescent signal of the solvent controls and LUCE; is the average luminescent signal of the E2
positive controls. Concentration-effect data analysis was performed in the same way for individual
compounds and mixtures. In short, a nonlinear regression model best-fit approach was used to
describe pooled data sets in the best possible way (Scholze et al., 2001). If different regression
functions led to similar goodness-of-fits, the logit model (which is a re-parameterised form of the
Hill equation) was given preference. To account for inter-study variations we included experiments
as random factor in the best-fit data analysis (nonlinear mixed effect model). A detailed description

can be found in Altenburger et al. (2018).

2.5.2 Mixture prediction and uncertainty assessment
The combined response from individual substances was assumed to follow the concept of

concentration addition (CA). Here we used the standard form of non-interaction, i.e.:

L (Ge) =1 (2)

where Ci is the concentration of the i substance in the mixture expected to produce a mixture
response X, and ECxi the concentration of the i substance leading to the same response X as

expected for the mixture.

To account for the statistical uncertainty in the CA prediction, a combination of Monte-Carlo (MC)
simulations and bootstrapping nonlinear regression functions (Tibshirani and Efron, 1993) was
conducted to simulate approximate 95% confidence limits around the predicted mean response of

the mixture. Here the MC step is responsible for linking the data input from the single compounds
10
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(i.e. estimates about ECs or individual effects) to the mixture prediction, and the bootstrapping step
is responsible for generating data information relevant for input variables (i.e. uncertainty
distributions around the single substance EC’s or effects). We followed a parametric bootstrap with
resamples drawn from the fitted nonlinear mixed effect model. Differences between predicted and
observed mixture effects (concentration) were deemed statistically significant when the 95%
confidence belts of the prediction did not overlap with those of the experimentally observed mixture
effects (Altenburger et al., 2018). The comparative assessment was performed on mixture

concentrations leading to 20% ER activation (EC20) or inhibition (I1C20).

3. Results

3.1. Activation and inhibition of ER response by single chemicals

The results of ER activation and inhibition by all 12 chemicals and the reference compounds (E2
and OH-TAM) on MELN, ZELHa and ZELHP2 cells are presented in Table 2, and the
concentration-response data are provided in supplementary information (Figure SI-1 for ER

activation and SI-2 for ER inhibition).

As expected, genistein and BPA were active in all cell lines, but at different sensitivity and
efficacy levels. MELN cells responded to BPA with an EC20 of 0.12 uM and a maximal induction
of 86% of the positive E2 control response, while ZELHo and ZELHP2 cells showed a lower
sensitivity with an EC20 of 2.1 uM and 5.0 uM, respectively, and a maximum luciferase induction
around 30 % (Table 2). In case of genistein, MELN (EC20 of 0.0121 uM) and ZELH2 cells (EC20
of 0.015 pM) were more responsive than ZELHa cells (EC20 of 1.4 uM). BaP, TPP and diazinon
weakly induced luciferase activity in MELN cells with an EC20 of 0.57 uM, 4.1 uM and 15 uM,
respectively, whereas no activity was recorded at non-cytotoxic concentrations in zebrafish cells.

No other chemicals showed any estrogenic response up to 30 UM in any bioassays.
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The inhibition of ER response by the 12 chemicals revealed distinct response between the
bioassays (Table 2). Overall, several chemicals were identified as new ER inhibitors, mainly in
ZELH-zfERs cells. TPP and BaP decreased ER response in ZELHa and ZELHP2 cells at
concentrations where they did not affect cell viability or the luciferase activity in the ER-negative
ZELH cells. Conversely, benzo(b)fluoranthene and propiconazole decreased E2-induced luciferase
activity up to 90% in ZELHa and ZELHB2 and in ER-negative ZELH cells. Cyprodinil decreased
E2-induced luciferase activity across all the cell lines with similar sensitivity, suggesting a likely

non-specific effect of this chemical on luciferase activity (Table 2, Figure SI-3).

3.2. Combined effects of xeno-estrogens in multi-component mixtures

The concentration-response curves estimated for the single chemicals were used to predict
the ER activation and ER inhibition of M1 and M2 mixtures using the CA model. Since CA can
describe only ER activation or ER inhibition, but not their co-occurrence, the additive response of
a mixture containing both ER activators and inhibitors is predicted solely from the ER activators in
case of ER activation or from the ER inhibitors in case of ER inhibition. Therefore, the chemicals
expected to induce ER activation or ER inhibition in M1 and M2 mixtures were identified for each
cell line based on CA prediction. They were then tested as subgroup mixtures containing either ER
activating (M1_A, M2_A), ER inhibiting (M1_1, M2_l), or both ER activating and inhibiting
chemicals (M1_A+l, M2_A+Il) (Table 1). The relative concentration ratios were always kept in
accordance to the 12-compound mixtures M1 and M2. All subgroup mixture results are presented
in Figure 2 (mixture composition according to M1) and Figure 3 (mixture composition according
to M2), together with the outcomes for M1 and M2 (Altenburger et al., 2018). Details about the
mixture composition are given in Tables SI-1 (12-component mixtures) and in SI-2 and SI-3

(subgroup mixtures).

3.2.1 Additivity of ER activating or inhibiting chemicals

12
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Regarding subgroup mixtures of ER activating chemicals, there was overall a good
agreement between observed and predicted EC20 across all cell lines and for both mixtures M1 and
M2 compositions. In MELN cells, TPP, BPA and genistein at M1 mixture ratio had additive effects
very well predicted by CA model with a ratio between observed and predicted EC20 of 1.3
(M1_Awewn, Figure 2A, Table 3). In comparison, the measured estrogenic activity of BPA and
genistein in M2_AwmeLn Was below the predicted response, although not statistically significant
(M2_AwmeLn, Figure 3A, Table 4). BPA and genistein were the only two identified estrogenic
chemicals in ZELHa and ZELHP2 cells. Their binary mixture induced an estrogenic response in a
good agreement with CA prediction at M1 and M2 concentration ratios in ZELHa (Figure 2E and
3E) and ZELHp2 cells (Figure 21 and 31). The ratio of observed against predicted EC20 was of 0.40

and 0.55 in ZELHa cells, and 0.71 and 0.73 in ZELH2 cells for M1 and M2, respectively.

As observed for single chemicals, ER inhibiting chemicals were more prevalent in ZELHa
and ZELHP2 cells than in MELN cells. In MELN cells, cyprodinil was predicted to inhibit E2
response in M1, but only at high concentrations (M1_Iwven, Figure 2B), and no inhibiting chemical
was identified for M2. In contrast, TPP, chlorophene and propiconazole were identified as ER
inhibiting chemicals of M1 in ZELHa and ZELHP2 cells. In subgroup mixtures, they induced a
strong ER inhibition in ZELHa (M1_IzeLHe, Figure 2F) and ZELHPB2 cells (M1_lzeLHp2, Figure 2J),
well predicted by the CA model (EC20 ratio of 0.87 and 0.83, respectively). Similarly, the subgroup
mixtures of ER inhibitors based on M2 mixture ratio induced a strong inhibition, well predicted by
CA model (M2_IlzeLHq, figure 3F and M2_lzeLHp2, Figure 3J, respectively). Overall, the combined
effects of ER activating or ER inhibiting chemicals were in good agreement with CA predictions

for both M1 and M2 mixture ratios and across all cell lines.

3.2.2 Estrogenic response to the 12-component mixtures: influence of inhibiting

chemicals
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For each cell line, the combined effects of activator and inhibitor subgroup mixtures
(M1_A+land M2_A+I) were determined and compared to the results of the 12 component mixtures
M1 and M2 (Figures 2 and 3, right part). The observed and predicted EC20 or 1C20 of each mixture

are presented in Tables 3 (M1) and 4 (M2).

In MELN cells, the estrogenic activity of M1_A+Ivewn (Figure 2C) was well predicted by
CA, and this accuracy was not impacted negatively by the presence of 9 other environmental
substances (M1, Figure 2D). No active ER inhibitors were present at non-cytotoxic concentration
in the mixture M2, and therefore a mixture of activators and inhibitors was not tested. Nevertheless,
the mixture effect of all 12 substances was well explained by the additivity of the only two

estrogenic chemicals identified, BPA and genistein (M2, Figure 3D).

In zebrafish ZELHa cells, M1 was not expected to induce any estrogenic response in the
range of tested concentrations, and indeed no estrogenic response was observed neither with the 5-
component mixture (M1_A+lzeLHa, Figure 2G) nor with the 12-component mixture M1 (Figure
2H). Conversely, a strong ER inhibiting response was measured (up to 80% inhibition) for both the
5- and 12-component mixtures, which was well predicted by the CA model (IC20 ratio of 0.74 and
0.95, respectively). Thus, the ER inhibition measured remained unaffected by addition of estrogenic
and inactive chemicals. In case of M2, the estrogenic activity of ER activating and inhibiting
chemicals was correctly predicted by CA model (Figures 3G and 3H). However, the estrogenic
activity measured was lower than that of BPA and genistein binary mixture results (Figure 3E),

suggesting an influence of ER inhibiting compounds.

In zebrafish ZELHP2 cells, an estrogenic response was expected according to CA for the
mixture of activators and inhibitors, as supported by the additive outcomes from the binary mixture
of BPA and genistein (M1_Azeinp2, Figure 2I). However, M1_A+lzeng2 did not induce any
estrogenic response at test concentrations (Figure 2K). Instead, a strong inhibition of ER response

was measured, which was in line with the M1_lze ng2 results and CA prediction (Figure 2J). As
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observed for the subgroup mixture of ER activating and inhibiting chemicals (M1_A+lzeLug2), M1
mixture did not induce any estrogenic activity but inhibited E2-induced response (Figure 2H).
Hence, these results indicate that inhibiting chemicals in M1 indeed influenced ER response in
ZELHP2 cells. Compared with M1, the estrogenic activity measured for the subgroup mixture of
ER activators and inhibitors corresponding to M2 mixture ratio was well predicted by CA model
(M2_A+ lzeLug2, Figure 3K), although the maximal efficacy observed was well below the one of
the BPA and genistein binary mixture (M2_AzeLnp2, Figure 31). When ER activating and inhibiting
chemicals were grouped with inactive chemicals in M2, the estrogenic activity was well predicted
by CA up to 20% (Figure 3L), but the maximal estrogenic response remained lower than expected
based on the M2_AzeLnp2 mixture results (Figure 31). In comparison, the inhibition of ER response
was well predicted by CA for both M2_A+I1zeLng2 (Figure 3K) and M2 (figure 3L). The results of
the 4-component mixture M2_A+lzeL g2 on ZELHP2 cells are very similar to M2 results,

considering both ER activation and inhibition (Figure 3K and 3L).

4. DISCUSSION

The current study investigated the distinct responses of zebrafish ZELHa and ZELHB2 and human
MELN cells ER reporter gene bioassays to 12-component mixtures composed of xeno-estrogens
and other environmental relevant chemicals (Altenburger et al., 2018). By using a stepwise
experimental approach from individual chemicals to subgroup mixture testing, we were able to

explain the distinct response of human and zebrafish bioassays to the same 12-component mixtures.

4.1. Distinct responses of human and zebrafish cell lines to individual chemicals

BPA and genistein are well-known ER agonist ligands and were indeed active in all ER-
based bioassays, in agreement with previous studies using the same cellular models (Balaguer et

al., 1999; Cosnefroy et al., 2012; Le Fol et al., 2017; Sonavane et al., 2016). Apart from these two
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compounds, the screening of individual chemicals highlighted some marked differences between

cell assays for some of the 10 chemicals.

One major outcome relates to the higher prevalence of chemicals inhibiting E2-induced
luciferase activity in ZELH-zfERs cells than in MELN cells (Table 2). Some chemicals had opposite
responses in zebrafish and human cells. For instance, BaP -a known AhR-ligand- and TPP were
estrogenic in MELN cells but decreased E2-induced response in ZELHa and ZELH2 cells. The
mechanistic interaction between AhR and ER signalling pathways has been documented in human
(Matthews and Gustafsson, 2006; Ohtake et al., 2003) and in fish (e.g. Navas and Segner, 2000).
The prototypical AhR ligand TCDD was shown to induce a weak estrogenic response in MELN
cells (Balaguer et al., 1999) while it decreased E2 response in all ZELH-zfER cells (Sonavane,
2015). The distinct responses to BaP in ZELH-zfERs and MELN cells might thus be explained, at
least partially, by AhR-ER interactions. In comparison, less information is available on the ability
of TPP to interact with ER signalling. Previous studies have reported a weak agonist effect on hERa
transactivation (Kojima et al., 2013), as observed in the current study in MELN cells, while some
TPP metabolites are reported to have an anti-estrogenic activity on hERp transactivation (Kojima
etal., 2016). However, TPP was unable to induce the ER-regulated brain aromatase expression gene
in transgenic cypl9alb-GFP zebrafish embryos (Neale et al., 2017a). Considering the anti-
estrogenic activity of TPP evidenced in zebrafish liver cells, further research would be warranted
to assess whether TPP (or metabolites) either binds directly zfERs or alters zfER transactivation

through cross-talk(s) with other signaling pathways.

Other chemicals, such as propiconazole and cyprodinil, decreased E2-induced estrogenic
activity in an ER non-specific manner, i.e. they decreased firefly luciferase also in the parent cell
line ZELH that does not express functional zfER (Table 2, Figure SI-5). Such inhibition may reflect
either a direct effect on luciferase enzyme or an indirect effect on baseline transcriptional machinery

in the promoter region of the reporter gene, irrespectively of ER activity. Despite a weak estrogenic
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activity on hERa reported in vitro (Medjakovic et al., 2014; Schlotz et al., 2017), cyprodinil
decreased firefly luciferase activity in all cells, irrespectively of E2 addition. The structural
similarities of cyprodinil with known firefly luciferase inhibitor (Auld and Inglese, 2004) and its
capacity to interfere with ATP production (Coleman et al., 2012) suggest a possible effect on the
reporter gene system. In case of propiconazole, a weak hERa agonist activity was reported in the
high uM range in MVLN cells (Kjeldsen et al., 2013) and anti-proliferative effects measured in
MCF-7 cells (Kjaerstad et al., 2010). In fish, interference of propiconazole with estrogen signalling
pathway has been reported in vivo (Skolness et al., 2013) but no information on ER agonist or
antagonist activity is available. Thus, additional assays would be warranted to assess the specific

activity of propiconazole and cyprodinil on ER-signalling pathway in zebrafish.

4.2. Deciphering cell-specific response to xeno-estrogen mixtures

BPA and genistein were the main drivers for ER agonistic response in M1 and M2. When
combined as binary mixture, they induced in all zebrafish and human-based bioassays responses
that were in good agreement with CA predictions. This additivity is consistent with several previous
studies which reported additive effects of selected estrogens on different biological models such as
mammalian cells (Ghisari and Bonefeld-Jorgensen, 2009; Heneweer et al., 2005) or in vitro fish
cells (Le Page et al., 2006; Petersen and Tollefsen, 2011) and in vivo in fish (Brian et al., 2005;
Brion et al., 2012). Furthermore, our results demonstrate for the first time the suitability of the
ZELH-zfER cell line to investigate mixture effects of ER agonists at the receptor level in a zebrafish

cell context.

The screening for anti-estrogenic activity showed that some inhibiting chemicals active on
ZELH-zfER cells were present at effective concentrations in M1 and M2, e.g. TPP and
propiconazole. Although the underlying mechanism of ER inhibition remains unclear, the subgroup
mixtures of inhibiting chemicals had additive effects in ZELHa and ZELHpB2 cells, in all co-

exposure scenario, i.e. with inactive and/or estrogenic chemicals. In case of M1, a decreased
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luciferase activity was also observed in ZELH cells, well predicted by the additive effects of TPP
and propiconazole (Figure SI-4). These results indicate that the inhibition observed in ZELH-zfERs

cells for M1 may involve non-ER specific luciferase inhibition.

Interestingly, we observed in ZELHP2 cells that the addition of the inhibiting chemicals to
the binary mixture of BPA and genistein resulted in a decrease in the expected estrogenic response
to a similar level as observed in the 12-component mixtures M1 and M2. In case of M1, the presence
of inhibiting chemicals silenced entirely the estrogenic activity expected, whereas in M2, only the
efficacy of the response was decreased. To a lesser extent, a similar trend was observed for M2 in
ZELHa cells. The experimental approach consisting of testing ER activating and inhibiting
chemicals separately and then together allowed us to evidence the role of inhibiting chemicals in
the deviation from expected additivity of genistein and BPA in ZELHP2 cells. The experimental
results from the stepwise testing approach demonstrate that the response to the 12-chemical

mixtures in each bioassay can entirely be explained by the individual responses of the 12 chemicals.

4.3. Differences between zebrafish and human-based bioassay responses

Our results highlight marked differences between human and zebrafish cells responses. Each
cell line displays cell-specific features, such as co-activator recruitment or metabolic capacities. For
instance, ZELH cells originate from zebrafish liver cells and have retained some metabolic
capacities qualitatively similar to zebrafish hepatocytes but distinct from MELN cells (Le Fol et al.,
2015), which may have played a role in the specific response to inhibiting chemicals in our study.
Indeed, metabolism has been previously suggested to negatively influence the response to xeno-
estrogen mixtures in rainbow trout hepatocytes (Petersen and Tollefsen, 2011) and in the E-
SCREEN assay (Evans et al., 2012). The characterization of internal concentrations of chemicals
in MELN and ZELH-zfER cells would be needed to estimate the influence of metabolism on the

Xeno-estrogen response.
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To further investigate the relevance of the estrogenic mixture response in fish, both M1 and
M2 were tested on transgenic zebrafish embryos expressing GFP under control of cypl9alb
promoter in radial glial cells in the EASZY assay (Brion et al., 2012). Indeed, in previous studies,
we showed that ZELH-zfER response profile to individual chemicals or environmental samples was
better correlated than the MELN assay with in vivo estrogenic activity measured in the EASZY
assay (Neale et al., 2017b; Sonavane et al., 2016). As a result, no estrogenic activity was measured
for both M1 and M2 mixtures because of a high embryo mortality, especially for M1 (Altenburger

et al., 2018). Thus, we could not confirm in vitro combined effects in zebrafish in vivo.

4.4. Implication for quantifying the estrogenic activity of samples

A consistent body of literature exist regarding the assessment of additivity of xeno-estrogens
according to CA. However, very few studies investigated the robustness and validity of CA model
in more complex and realistic mixture scenarios. In the current study, the main factors
differentiating zebrafish and human ER response to M1 and M2 was the presence of inhibiting
chemicals that had higher influence on zfER activation in zebrafish cells. This agrees well with the
findings of Ihara et al. (2014) that evidenced that anti-estrogenic activity in wastewater treatment
plant extracts was a key factor to explain the different estrogenic activity measured in human and

medaka ERa transactivation in vitro.

The 12-component mixtures were designed to mimic a simplified scenario of environmental
surface water contamination. To assess whether the mixture context would have influenced the
quantification of estrogenic activity mediated by xeno-estrogens, the mixture results were used to
quantify estradiol-equivalents (E2-Eq) in each bioassay (Table SI-4). Overall, M2 was predicted to
be more estrogenic (mean E2-Eq > 10 uM) than M1 (mean E2-Eq < 1 uM). In MELN cells, the
estrogenicity of M1 and M2 was almost not affected by the mixture context: the ratio of observed
to predicted E2-Eq was close to 1 for both mixtures. In contrast, ZELHao and ZELHP2 responses to

xeno-estrogens in this specific mixture scenario were more susceptible to co-occurrence of
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inhibiting chemicals: the estrogenic activity was underestimated in M1 and M2, whenever
quantified. In case of ZELHP2 cells, similar IC20 were derived for both M1 and M2, however, the
inhibiting chemicals abolished the estrogenic response in case of M1, while they only partially
decreased the maximal efficacy level in case of M2, without altering significantly the EC20
measured. These results suggest the presence of a balance between estrogenic and ER inhibiting
chemicals which can influence the detection, and thus the quantification, of xeno-estrogens in

ZELHP2 cells.

5. CONCLUSION

In summary, this study demonstrates that BPA and genistein had additive effects in vitro in
zebrafish bioassays, comforting their use to assess combined effects of xeno-estrogens. In addition,
we show that the distinct responses of zebrafish and human-based bioassays to a 12-component
mixture were due to newly identified ER inhibiting chemicals selectively active in ZELHa and
ZELHP2 cells (e.g. TPP, propiconazole) and altering zfER response to xeno-estrogens. In the
context of water bio-monitoring, this study illustrates the need for a mindful consideration of the
bioassay specificities (e.g. fish vs human ER, cell context) to ensure a proper interpretation of
results, as environmental chemicals may interfere with ER response, positively or negatively, in a

cell-specific manner.
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Table 2: ER activation (EC20) and inhibition (IC20) of 12 test substances in MELN, ZELHo, ZELHB2 and ZELH cells. Results are expressed in
EC20 (activation) or 1C20 (inhibition) are expressed in M concentration. E2 and OH-TAM were the positive control substances for ER activation
and inhibition, respectively. Data originate from at least 2 independent experiments done in triplicates. Chemicals were tested in the 0.01 — 30x10° M
range, except for genistein (from 10° M). All concentration-response data are presented in SI-1 and SI-2.

ER activation (EC20)

ER inhibition (1C20)

MELN ZELHa ZELHp2 MELN ZELHa ZELHp2 ZELH
mean (95% CI) mean (95% CI) mean (95% CI) mean (95% CI) mean (95% CI) mean (95% CI) mean (95% CI)
e 3.4 x102 1.3 x1070 6.0 x1022
(2.6x1012-43x101) (1.1 x10%0-1.6 x10%0) (4.74x10712-7.7 x10'13) ) i i i
5.2 x10°® 1.8 x10° 1.9 x10° "
OH-TAM - - - (4.5x10°-6.0x10%) (9.4 x10%0-34x10%) (L4 x10° - 2.8 x10°7) >3x10
. 1.2 x107 2.1 x10° 5.0 x10°® . 2.02 x10° 8.8 x10°® B
Bisphenol A (8.2 10 -1.7 x107) (1.3 x106-3.6 x10%) (2.4 x10° - 6.1 x10°) >3x10 (1.1 x105-3.6 x10%) (8.7 x107 - 1.3 x10°5) >3x10
o 1.21 x10°8 1.4 x10°% 1.5 x10° . . 5 .
(Genistein (60x10°-29x10%)  (95x107-1.9x10€) (6.9 x107- 3.1 x10%) >3x10 >3x10 >3x10 >3x10
-5
Diazinon 12 x116-55>>j1109 10 >3 x10° >3 x10° >3 x10° >3 x10° >3 x10° >3 x10°
. 4.1 x10° . . . 8.0 x10°® 1.7 x10° 1.1 x10°%
Triphenylphosphate (2.9 x10° - 5.7 x10°) >3x10 >3x10 >3 x10 (32x107-1.3x10%) (8.3 %107 -3.5x10%) (3.0 x107 - 1.3 x10%)
5.7 x107 . . . 4.2 x10° 1.4 x10° .
Benzo(a)pyrene (4.6 x107 - 7.2 x107) >3x10 >3x10 >3x10 (2.5x100-7.3%x100 (7.7 x107 - 2.4 x10°) >3x10
1.95 x10°6 1.5 x10°® 1.8 x10°
-5 -5 -5 -5
Benzo(b)fluorantene >3 x10 >3 x10 >3 x10 >3 x10 (11x10°-34 x10°) (5.4 x107- 4.1 x10%) (7.2 x107 - 4.4 x10)
1.0 x10° 6.2 x10°®
-5 5 -5 -5 5
Chlorophene >3 x10 >3 x10 >3 x10 >3 x10 (2.6 x10°-1.7x10%) (3.4 x10° - 9.8 x10°) >1 x10
. 8.1 x10°® 4.4 x10° 2.4 x10°6
5 -5 -5 -5
Propiconazole >3x10 >3x10 >3x10 >3x10 @BLx100-19x10%) (2.6 x10°- 7.7 x10%) (3.7 x107 - 1.4 x10%)
- 4.9 x10° 2.0 x10° 4.2 x10° 4.1 x10°
-5 -5 -5
Cyprodinil >3 x10 >3 x10 >3 x10 (3.0x106-8.1x10%) (1.2 x10F-3.4x10%) (L4 x100-1.3x10%) (2.6 x10 - 1.6 x10%)
Triclosan >3 x10% >3 x10% >3 x10% >3 x10% >3 x10% >3 x10% >3 x10%
Diuron >3 x10°% >3 x10° >3 x10°% >3 x10° >3 x10% >3 x10°% >3 x10°
Diclofenac >3 x10°% >3 x10° >3 x10°% >3 x10° >3 x10% >3 x10°% >3 x10°
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1577
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1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
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1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616

Table 3: Observed and predicted ER activation and inhibition for mixture M1 and its subgroups in MELN, ZELHa and ZELHB2 cells. All
concentrations are in M. (-) not tested as none of the individual compounds showed activity below its cytotoxic concentration range. (n.a.): the
calculation is not applicable. Star indicates statistical significance (p<0.05). @ re-calculated from Altenburger et al., 2018; ® corresponds to
cyprodinil which was the only ER inhibitor; © above cytotoxic concentration range.

ER activation (EC20) ER inhibition (1C20)
Observed Predicted Ratio Observed Predicted Ratio
Cell line  Mixture (name) Mean (95% CI) Mean (95% CI) obs/pred Mean (95% CI) Mean (95% CI) obs/pred
1.2 x10° 8.9 x107
MELN ML Aweln (9.3 x107 - 1.6 x10%) (5.9 x107 - 1.3 x10%) 13 - - -
ML 1 4.9 x106® 4.9 x106®) L
—MELN i i . (3.0 X106 - 8.2 x10°6) (3.0 106 - 8.2 x109)
2.1 x10° 2.6 x10° 5@ 8.3 x10S
MI_AtImeLn (L5 x10% - 2.9 x10°9) (1.7 x10% - 3.8 x10°9) 0.81 >2x10 (5.0 X105 - 1.4 x10%) n.a.
M1 6.1 x10@ 6.7 x10 @ 0.91 3.4 x10° 5.9 x104© 0.058*
(3.9 x10°6 - 9.2 x10%9) (4.4 x10°6 - 9.5 x10°9) ' (1.1 x10°5 - 1.0 x10) (3.6 104 - 9.8 x10) :
8.2 x107 2.0 x10°
ZELHa M1_AzeLHa (6.5 x107 - 1.6 x10°) (1.0 x10° - 3.0 x10°) 0.41 - - -
2.7 x10° 3.1 x10%
M1_lzeLha i i i (1.9 x10°6 - 3.6 x10°6) (1.2 X106 - 1.2 x10°5) 0.87
2.1 x10* 4.2 x10 5.7 x10
-5 (c)
M1_AtlzeLhe >4 x10 (1.3 x10 - 3.2 x10%) n-a. (1.9 x10°© - 9.5 x10°%) (2.4 x10 - 2.3 x10°%) 0.74
3.0 x10* 4.2 x10 4.4 x10
5()
M1 > 10 (L8 x10 - 4.6 x10%) na (2.0 x10°6 - 8.7 x109) (L7 x10° - 1.7 x10%) 0.95
8.6 x10°8 1.2 x107
ZELHP2 M1_AzeLHp2 (3.7 x10°® - 1.8 x107) (5.5 x© - 2.4 x10°) 0.71 - - -
2.9 x10° 3.5 x106
MI_lzeLhpz i i i (2.0 x10°6 - 4.0 x10°6) (2.1 x10%-5.1 x10°%) 0.83
1.3 x10° 4.4 x10 6.4 x10
-5 (c)
ML_AtlzeLip >2x10 (5.8 x10° - 2.5 x10%) na (3.0 x10° - 6.3 x10°%) (4.0 x10° - 9.0 x10°) 0.69
1.8 x10° 3.7 x10° 5.0 x10°
5 ()
M1 >3 x10 (8.1 x10° - 3.5 x10%) na (2.1 x10° - 6.3 x10°%) (3.0 x10° - 7.1 x10°) 0.74
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Table 4: Observed and predicted ER activation and inhibition for mixture M2 and its subgroups. All concentrations are in M. (-) not tested as

none of the individual compounds showed activity below its cytotoxic concentration range. (n.a.): the calculation is not applicable. Star indicates
statistical significance (p<0.05). @ re-calculated from Altenburger et al., 2018; ® maximal induction measured below 20%.

ER activation (EC20) ER inhibition (1C20)
Observed Predicted Ratio Observed Predicted Ratio
Cell line Mixture (name) Mean (95% CI) Mean (95% CI) obs/pred Mean (95% CI) Mean (95% CI) obs/pred
1.6 x107 6.4 x10°8
MELN M2_AmeLn (8.2 x10° - 2.9 x107) (4.0 x10° - 9.5 x10°) 25 - - -
1.5 x107@ 2.08 x107 @
M2 (6.8 x10° - 2.8 x107) (13 x107 - 3.3 x107) 0.72 - - -
1.1 x10® 2.0 x10
ZELHa M2_AzeLHa (7.4 X107 - 1.7 x10°) (1.2 x10° - 3.1 x10°) 0.55 - - -
6.7 x10 6.1 x10°®
M2_IzeLte i i i (2.9 x106 - 1.3 x105) (2.2 x106 - 1.1 x10°5) 11
1.5 x106 4.9 x10 N 7.6 x10°6 1.0 x10°5
M2_At izt (7.8 x107 - 2.8 x10°6) (3.0 X106 - 7.5 x10°6) 0.31 (5.3 x10¢ - 1.0 x10°5) (3.7 x106 - 1.7 x10°5) 0.76
6.6 x10° 8.3 x10°6 1.4 x10°5
7 (b)
M2 >15x10 (4.0 x106 - 1.0 x10°5) n-a (6.0 x106 - 1.1 x10°5) (5.3 x10°6 - 2.4 x10°5) 0-59
1.1 x107 1.5 x107
ZELHp2 M2_AgzeLpz (3.3 x108- 3.2 x107) (7.0 x10°8 - 3.0 x107) 0.73 i i i
M2 | ] ] ) 7.5 x10°6 6.6 x10° 11
—2ELAR2 (5.3 x10¢ - 1.0 x10°5) (1.7 x106 - 8.2 x10°6) :
1.2 x10°6 3.7 x107 7.7 x10°6 6.8 x10°6
M2_AdlzeLp (2.9 x107 - 4.5 x10°6) (1.7 x107 - 7.3 x107) 3.2 (2.1 x10¢ - 1.8 x10°5) (1.8 x10 - 8.6 x10°6) 11
M2 1.8 x10°6 5.0 x107 36 4.1 %106 9.2 x10°6 0.44
(3.2 x107 - 6.6 x10°F) (2.3 x107 - 9.8 x107) : (3.2 x10°6 - 5.1 x10°6) (2.4 x10°6 - 1.2 x10°5) '
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Figure 1: Experimental approach selected to study the combined effects of ER activating and

inhibiting chemicals within the 12-component mixtures.

Screening of individual chemicals for ER activation and
inhibitionin human and zebrafish cell lines

T

ER activators ER inhibitors Inactive
Subgroup Subgroup of
of activators inhibitors

| [

Pooled activators and inhibitors

| |

12-component mixtures
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Figure 2: Predicted and measured effects of multi-component mixtures based on M1
concentration ratios. Data represent the mean (+/- SD) of a minimum of 3 independent
experiments done in triplicates and pooled together. The green line represents CA prediction for
ER activation and the orange line ER inhibition, and their respective dotted line represent the

95% CI belt. Cytotoxic concentrations (measured by MTT) were removed.
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Figure 3: Predicted and measured effects of multi-component mixtures based on M2

concentration ratios. Data represent the mean (+/- SD) of a minimum of 3 independent

experiments done in triplicates and pooled together. The green line represents CA prediction for

ER activation and the orange line ER inhibition, inhibition, and their respective dotted line

represent the 95% CI belt. Cytotoxic concentrations (measured by MTT) were removed.
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Table SI 1: Composition of the 12 compound mixtures M1 and M2 and the highest substance
concentration tested in vitro.

Table SI 2: Composition of mixtures of ER activator (M1_A), ER inhibitors (M1_I) or combined
ER activators and inhibitors (M1_A+I) tested in MELN, ZELHa, ZELHP2 and ZELH cells.

Table SI 3: Composition of mixtures of ER activator (M2_A), ER inhibitors (M2_I) or combined
ER activators and inhibitors (M2_A+I) tested in MELN, ZELHa, ZELHB2 and ZELH cells.

Table SI 4: Estrogenic activity of the M1 and M2 expressed in estradiol equivalent.
Figure SI 1: Response of the 12 chemicals on ER activation in MELN, ZELHa and ZELHPB2 cells.

Figure Sl 2: Response of the 12 chemicals on E2-induced ER inhibition in MELN, ZELHa,
ZELHP2 and ZELH cells.

Figure SI 3: Cyprodinil response in MELN, ZELHa, ZELHB2 and ZELH cells.

Figure SlI 4: Predicted and observed effects of inhibiting chemicals on ZELH cells.
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Table SI 1: Composition of the 12 compound mixtures M1 and M2 and the highest substance

concentration tested in vitro.

M1 M2
Concentration .1y Concentration )
(M) proportion (M) proportion
Benzo(a)pyrene 6,00E-08 0,05% 9,47E-09 0,06%
Benzo(b)fluorantene 1,00E-07 0,08% 9,51E-09 0,06%
Bisphenol A 7,00E-07 0,58% 4,17E-06 27,70%
Chlorophene 9,00E-06 7,50% 6,40E-06 42,51%
Cyprodinil 1,00E-06 0,83% 1,87E-07 1,24%
Diazinon 6,00E-09 0,00% 1,96E-08 0,13%
Diclofenac 3,00E-05 24,99% 2,90E-06 19,26%
Diuron 6,00E-07 0,50% 2,08E-07 1,38%
Genistein 1,00E-07 0,08% 4,47E-07 2,97%
Propiconazole 6,00E-05 49,97% 8,48E-08 0,56%
Triphenylphosphate 1,50E-05 12,49% 2,32E-07 1,54%
Triclosan 3,50E-06 2,92% 3,89E-07 2,58%
Mixture 1.2E-4 100% 1.51E-5 100%
Y mixture composition according to Altenburger et al., (2018)
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Table SI 2: Composition of mixtures of ER activator (M1_A), ER inhibitors (M1_I) or

combined ER activators and inhibitors (M1_A+I) tested in MELN, ZELHa, ZELHB2 and

ZELH cells. The mixture composition is based on their relative proportion in the 12-compound

mixture M1 (Table SI 1).

MELN ZELHa / ZELHp2 ZELH
Type of mixture Activators Inhibitors Inh'lbltors * Activators  Inhibitors Inh.lbltors * Inhibitors
activators activators
- M1_Azetha, MI1_lzetne, MI1_1+AzeiHo,
Mixture name M1 _Amein M1_lvern' M1_A+lven ML Azecipz M1 loerupz M1 1+Azeiip M1 IzeLnH
Genistein 1% - 1% 13% - 0.2% -
Bisphenol A 4% - 1% 87% - 0.8% -
Triphenylphosphate 95% - 89% - 18% 17.7% 20%
Cyprodinil - 100% 6% - - - 1%
Diclofenac - - - - - - -
Chlorophene - - - - 11% 10.6% -
Propiconazole - - - - 71% 70.8% 79%
Total 100% 100% 100% 100% 100% 100% 100%
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Table SI 3: Composition of mixtures of ER activator (M2_A), ER inhibitors (M2_I) or

combined ER activators and inhibitors (M2 _A+I) tested in MELN, ZELHa, ZELHB2 and

ZELH cells. The mixture composition is based on their relative proportion in the 12-compound

mixture M2 (Table SI 1).

MELN ZELHa ZELHp2 ZELH
Type Activators Activators Inhibitors Inh_lbltors T Activators  Inhibitors Inh_lbltors * Inhibitors
activators activators
Name M2_Amein M2_Azetve M2_lzetne MZ2_1+AzetHe M2_Azetnpr M2_lzetnpr M2_I1+Azetnpz M2 1zeLH
Genistein 10% 10% 4,0% 10% 4,0%
Bisphenol A 90% 90% 37,2% 90% 38,6% 37,2%
Triphenylphosphate 3,5% 2,0% 2,1% 2,1% T7%
Chlorophene 96,4% 56,6% 59,3% 57,1%
Propiconazole 23%
Benzo(a)pyrene 0,14% 0,08%
Total  100% 100% 100% 100% 100% 100% 100% 100%
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Table SI 4: Estrogenic activity of the M1 and M2 expressed in estradiol equivalent.
Estradiol-equivalents (E2-Eq, in uM) were calculated for the 12-component mixtures on the
bases of their predicted and observed EC20s in relation to the EC20 of E2 (derived from all
pooled control data). The E2-Eq(observed) is the ratio between the EC20(E2) and the
regression-estimated EC20(mixture), and E2-Eq(predicted) is the ratio between the EC20(E2)

and the CA predicted EC20(mixture). n.a.: not applicable (not estrogenic activity measured).

M1 E2-Equivalent (UM) M2 E2-Equivalent (uM)

Observed Predicted Ratio Observed Predicted Ratio

Mean Mean Observed/Predicted Mean Mean Observed/Predicted
MELN 0.56 0.51 11 22.7 16.3 1.39
ZELHa n.a. 0.43 n.a. n.a. 19.7 n.a.
ZELHB2 na. 0.33 n.a. 3.33 12 0.278
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2131
2132 . . T . .
5 12 3 Figure SI 1: Response of the 12 chemicals on ER activation in MELN, ZELHo and ZELHP2 cells. Data represent each replicate and their mean
2134 (red dash) of at least 2 independent experiments done in triplicates. Chemicals were tested in the 10 nM - 30 uM range, except for genistein (from 1
2135 nM). 17B-estradiol (E2) was used as positive control. The horizontal dotted line at 20% figures the threshold of effect.
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Figure SI 2: Response of the 12 chemicals on E2-induced ER inhibition in MELN, ZELHa, ZELHpB2 and ZELH cells. Data represent each replicate

and the mean (red dash) of at least 2 independent experiments done in triplicates. Chemicals were tested in the 10 nM - 30 uM range. MELN and ZELH[32

cells were co-exposed with 0.1 nM E2, and ZELHa and ZELH cells with 1 nM E2. Cell viability (MTT) was measured for at least one experiment and is

represented in green full circles (mean +/- SD). The horizontal dotted line at 80% figures the threshold of effect. Hydroxy-tamoxifen (OH-TAM) was

used as positive control.

1.54

1.09
0.81

0.54

LUC activity

0.0

MELN - OH-TAM

(relative to E2 0.1nM)

101

Concentration (M)

10°1° 10°° 10°® 107 10°°

LUC activity
(relative to E2 1nM)

159

1.04
0.81

0.54

0.0:

ZELHa - OH-TAM

go
Elﬁﬂjgbiﬁﬂﬁﬂﬁﬁﬁli
8o o
ig .
o 8

-0.5 T T r . T ™
10** 10*° 10° 10® 107 10°° 10°°

Concentration (M)

LUC activity
(relative to E2 0.1nM)

157

1.04

0.8+

0.5

0.0

ZELHB2 - OH-TAM

10°11

Concentration (M)

10t 10° 10°® 107 10°¢

43



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2308
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416

LUC activity
(relative to E2 0.1nM)

LUC activity LUC activity
(relative to E2 0.1nM)

(relative to E2 0.1nM)

LUC activity
(relative to E2 0.1nM)

MELN - Benzo(b)fluoranthene

15 v
¥
v
° -
g 228 frit}
104 8. $8.%.. 3 AL AA. o Expl
¥3's
0.8+ S PR v Exp2
A Exp3
05 = Mean all
e MTT
0.0 Frrrrmep e ——rr—
10''* 10'1° 10° 10°® 107 10°¢ 10°° 10°*
Concentration (M)
MELN - Benzo(a)pyrene
15
104 Expl
08 Exp2
: Exp3
05 Mean all
MTT
0.0+ r o o T m
10° 10° 107  10° 105 104
Concentration (M)
MELN - Bisphenol A
15
o Expl
A Exp2
= Mean all
0.5 e MTT
0.0+ v v T "
108 107 10°¢ 108 10
Concentration (M)
MELN - chlorophene
15
1.04-
08 o Expl
v Exp2
05 = Mean all
o MTT
0.0+ v v "
107 106 10 104

Concentration (M)

ZELHa - Benzo(b)fluoranthene

15
s
(=4
29 o Bxpl
S o K
£l H v ew2
c 2
it 3 A Exp3
v
5.2 05 3 = Mean all
-5 e MTT
° )
=
0.0+ v v v "
10°® 107 10 10 104
Concentration (M)
ZELHa - Benzo(a)pyrene
15 o
s o
< 8 % I o Bxpl
2 104 B * B2
S N a Xp
‘3"” 084 i Bl 8 ...... i 2 2 Ex3
8 s o Bpt
O o 05 °
S 2 g ® MIT
3 Mean all
8 ood g ......
A i s s e
10°1% 1020 10 10® 107 10 10 10
Concentration (M)
ZELHa - Bisphenol A
20
s 2
v
j=
2o 18 x i
=0 g 2 g o Expl
=
S o 10§ Bologog B g 44444 A Exp2
8 g 084 QN O..... e 444444444 v Exp3
1§ os g = Meanall
g o MTT
0.0+ T T T n
10-¢ 1077 106 105 10-4
Concentration (M)
ZELHa. - chlorophene
s
>5 o BExpl
§ N A Bxp2
,gqu ¢ Exp3
Qo = Meanal
52 . MTT
-8
S

10 107 10 10% 10
Concentration (M)

ZELHB2 - Benzo(b)fluoranthene
15

=
=
s o Bxpl 2
o £
£9 101 v Exp2 2
S W os & Exp3 &
5 2 o Expd Q
S o os i >
22 " e MTT -
% = Mean all
=
100 100 107 10¢  10° 104
Concentration (M)
ZELHPB2 - Benzo(a)pyrene
1 =
g 8
= P o BExpl 2s
25 10fe 2o “ 444444 B o Exp2 é [a)
2 B 0B B .................. A Exp3 5] °
@ o ° MTT 09
0= 05 52
=) g § = Meanall 0 ‘(B‘
= _
k] 8 g
D 004 e B
=
109 10% 107 10 10 10
Concentration (M)
ZELHB2 - Bisphenol A
=
z 3
—
2o 2=
2N ° Bpl =20
g w A BExp2 Q2
O % = Meanal QO &
22 oM 3%
[4]
% =
=
0.0+ T T T T d
10° 10® 107 10  10° 10
Concentration (M)
ZELHPB2 - chlorophene
15 s
s )
c o BExpl >
> 104 2=
£9 o8] 4 Exp2 >0
g g s B3 G2
g o W
o= Mean all @) °>"
] 52
22 oo M oS
g | ' g
=~ 054

10 107 10® 10 10+
Concentration (M)

(relative to DMSO)

ZELH -Benzo(b)fluoranthene
15

[
o

o

o

=)

o
104 A
0sd- a
05 °
0.0+ r v T T m

10° 10 107 10°  10° 104
Concentration (M)
ZELH - Benzo(a)pyrene
[
o4 M
8- -
L]

5

0+ T v T T "
0° 10 107 10 105 10°*

Concentration (M)
ZELH-Bisphenol A
15
v 9
v ¢ v
= X 3 Qv o
8 Y.8
104 8. o @...9 ............ v
08e 08V .
s b4
. -

05 8

0.0+ v v v v "
10° 10® 107 10°  10° 10

Concentration (M)
ZELH - chlorophene
15
Q [

1.04- i v

08 g a

05

0.0+

10  10® 107 10° 105 10
Concentration (M)

Expl
Exp2
Exp3
Mean all
MTT

Expl
Exp2
Mean all
MTT

BExpl
Exp2
Mean all
MTT

Expl
Exp2
Exp3
Mean all
MTT



2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457

LUC activity
(relative to E2 0.1nM)

LUC activity
(relative to E2 0.1nM)

LUC activity
(relative to E2 0.1nM)

LUC activity
(relative to E2 0.1nM)

MELN - cyprodinil

MELN - diazinon

107 106 10- 104
Concentration (M)

15
TSR T N R
08l...... e & ¥ L= S v
-
0.5 .
0.0+ v v g
10°7 10 105 104
Concentration (M)
MELN -diclofenac
15
(<]
o
a
L]
-
0.0+ T T T n
10¢ 107 106 105 104
Concentration (M)
MELN - diuron
15
A
104 g g ....... § ...... i 4444444
0o BB & R a
o
0.5 -
-
0.0+ v v ]
107 106 10°% 104

Concentration (M)

Expl
Exp2
Exp3
MTT
Mean all

LUC activity
(relative to E2 1nM)

BExpl
Exp2
Mean all
MTT

LUC activity
(relative to E2 1nM)

Expl
Exp2
Exp3
MTT
Mean all

LUC activity
(relative to E2 1nM)

BExpl
Exp2
MTT
Mean all

LUC activity
(relative to E2 1nM)

ZELHa - cyprodinil

15
o Expl
203 ﬁ! O STRE v BExp2
084 s ‘g 44444444444444 e A Bp3
o 8 * ° & Exp4
0.5 Q - = Mean all
e MTT
0.0+ evereeeeeiie e XL a 44444
10 107 10 10% 10
Concentration (M)
ZELHa -diazinon
15 Y o x
8 o A g
A 5 3 8 g U o Bxpl
L0 EETRTIPRTPPPRPI 890 444444444 ’ 44444 v B2
0.8+ vieireeiiii e O PR B A B3
v
05 = Mean all
e MTT
0.0+ v v v "
108 107 10 105 10-4
Concentration (M)
ZELHa - diclofenac
15
1.04- o Bl
0.8 A Exp2
= Mean all
05 o MTT
0.0+ T T T N
10-¢ 107 10 10 104
Concentration (M)
ZELHa - diuron
15:
148
v
L A S-SR
1.04--eenn Fooeeeon PRI ; ....... ! ...............
PP AT 8. v Bol
ﬁ A BExp2
05 v e MTT
= Mean all
0.0+ v v "
107 106 105 104

Concentration (M)

ZELHB2 - cyprodinil

159
=
=4
br! 1.04----
sa o8f
=
S'S os
Qo
22 oo
g o
[
= 5
-0. T T T "
10¢ 107 106 10° 104
Concentration (M)
ZELHB2 - diazinon
15
s v
z o v v
5 g ¢
25 10l b .88 e e
2o ¥ Py
S W 084 P YTTTRPPPTPR TR - SN
3o °
Q [}
D 05
32 8
k]
5
=~ 0.0+ v v r "
10-¢ 1077 106 105 104
Concentration (M)
ZELHP2 - diclofenac
__ 15
=
=
23
£2 1o
oW osq:
© o
Qo
3 > 0.5 A
K
[
=
0.0+ T T T ]
10-¢ 1077 10°6 105 104
Concentration (M)
ZELHB2 - diuron
__ 15
= ®
z 6 8
23 10fun 1. 8.8 L I N
2N o
ALY ROY: T R AR 0.8 .
KGE a g
0% 9
D 05
22 s
K
S
=~ 0.0+ v v v "
10¢ 10°7 106 105 104

Concentration (M)

¢ 0 O b

15 v
o BExpl 6 ° v 3
v Expzz‘%) N g ¢
A EXD:*’,EQ 1.0 ceeanann ngé 444444444444444444
- EX‘M% o 08 vq 444444444444444444
= Meanal® v v
52 05 P4
* MITSE 3
o ®
0.0+ ; : . ,
10-¢ 107 10°6 105 104
Concentration (M)
ZELH - diazinon
15
— vy V
(o] v v
e BExpl n o Y y
>
v Bz £Z 10 u'o; ..... 9.8 .
o Exp3 '§9 LY U §w! 44444444444 . 8.
Mg 2 0.5
= MeanalD g
e
0.0+ v v v n
108 107 10 105 104
Concentration (M)
ZELH - diclofenac
15
Expl .
Exp2 3
Exp3 ~§'§ 104
M 20 g
Mean all %g ’
8 Z 05
-
S
0.0+ v . . .
10¢ 107 10 105 104
Concentration (M)
ZELH -diuron
15
9 M f ¥ 5
Bol 25 1. - TR 1.5 .
Exp2 Z20 ~ o v o8 g
B %‘E 0.8 venenenn !éig 44444 8 ...........
MT 82 os
08
Mean all E
0.0+ v v v n
108 107 10 105 104

ZELH - cyprodinil

Concentration (M)

< 0

e 4«0

e 4«0

Expl
Exp2
Mean all
MTT

Expl
Exp2
MTT
Mean all

Expl
Exp2
MTT
Mean all

Expl
Exp2
MTT
Mean all

45



2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498

LLUC activity
(relative to E2 0.1nM)

LUC activity

(relative to E2 0.1nM)

LUC activity
(relative to E2 0.1nM)

LUC activity
(relative to E2 0.1nM)

MELN - genisteine

15

a
08 o
0.5: -
0.0+ T T T ]
10°° 108 107 10°© 10°®
Concentration (M)
MELN - propiconazole
15
v
o
.
0.0+ v v "
107 10°° 105 104
Concentration (M)
MELN - Triphenylphosphate
15
. Y
o
100 . § ..... g ‘‘‘‘‘ 8 ....... °
[oX: EETERATREEAIE Y ETRTTE T PP PP PP A
0.5: -
0.0+ T T g
107 10°° 105 104
Concentration (M)
MELN - Triclosan
154
o
10 s 2
084 @ B 4
0.59 g -
0.0: g
05 v v v "
10 107 10°© 10°° 104

Concentration (M)

Expl
Exp2
Mean all

Expl
Exp2
Mean all
MTT

Expl
Exp2
Exp3
Mean all
MTT

Expl
Exp2
Exp3
Mean all
MTT

LUC activity
(relative to E2 1nM)

LUC activity LUC activity
(relative to E2 1nM)

(relative to E2 1nM)

LUC activity
(relative to E2 1nM)

ZELHa - genisteine

20
15
104
08
v
05
0.04 v v v "
10 10°¢ 107 10 10
Concentration (M)
ZELHa - propiconazole
15
3 e
104 g
084 b1
s ¢
o5 i
v
¥
0.0+ v v v "
10°® 107 10 10 104

Concentration (M)

ZELHa - Triphenylphosphate

154

104
081

0.54 a
v 8 8
¥
0.0 v 8
v 3
v
05 T T T n
10 107 10 10 10+
Concentration (M)
ZELHa - Triclosan
1.5
104
084+
059 °
0.0
¥
108 107 10°° 10°® 104

Concentration (M)

* 10 «

e 1 O & «

e 1 > « O

¢ 1 » 0

Expl
Exp2
Mean all

Expl
Exp2
Exp3
Mean all
MTT

Expl
Exp2
Exp3
Mean all
MTT

Expl
Exp2
Exp3
Mean all
MTT

LUC activity
(relative to E2 0.1nM)

LUC activity

(relative to E2 0.1nM)

LUC activity
(relative to E2 0.1nM)

LUC activity
(relative to E2 0.1nM)

ZELHB2 - genisteine

Concentration (M)

15
1.04-
08
05
0.0+ T T T ]
10 108 107 10°© 105
Concentration (M)
ZELHB2 - propiconazole
15
0.0+ v v v o perem
10° 10® 107 10¢ 10°  10°*
Concentration (M)
ZELHB2 - Triphenylphosphate
05 T T T ]
108 107 10°¢ 10°® 104
Concentration (M)
ZELHB2 -triclosan
154
104
084
057
e
0.0:
05 v v —
108 107 10°° 10 104

¢ 1 O «
e 10D 40

e 1 DO O

L » OO0

Expl
Exp2
Mean all
MTT

Expl
Exp2
Exp3
Exp4
Mean all
MTT

Expl
Exp2
Exp3
Mean all
MTT

Expl
Exp2
Exp3
Mean all
MTT

LUC activity
(relative to DMSO)

LUC activity
(relative to DMSO)

LUC activity
(relative to DMSO)

ZELH - genisteine

107 10°® 10°®

Concentration (M)

ZELH - propiconazole
15

0.0+ v v v "
10°® 107 10 10 104
Concentration (M)
ZELH - Triphenylphosphate
15
v o g
sofod g
084w B B B
&
0.5 §
0.0+ T T T ]
108 107 10°© 10° 104

Concentration (M)

" e «O

e D>«

D> «O0

Expl
Exp2
MTT
Mean all

Expl
Exp2
Exp3
Mean all
MTT

Expl
Exp2
Exp3

Mean all

46



2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557

Figure SI 3: Cyprodinil response in MELN, ZELHo, ZELHB2 and ZELH cells. The

response was measured with cyprodinil alone (ER, luciferase induction relative to DMSO

control) or in presence of E2 (antiER, luciferase induction relative to E2 positive control). Data

represent the mean (+/- SD) of a minimum of 2 independent experiments done in triplicates and

pooled together.
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Figure Sl 4: Predicted and observed effects of inhibiting chemicals on ZELH cells. Results
of subgroup mixtures M1_lzetn (A), M2_lzewn (B), and 12-component mixtures M1 (B) and
M2 (D). Mixture effects were predicted according to CA model (orange line, 95% CI belt).
Luciferase (LUC) activity was measured in absence (black circles) or in presence of E2 (co-
exposure with E2 at 1 nM, grey open circles). The data (mean +/- SD) originate from at least 2
independent experiments done in triplicates and pooled together. Cytotoxic concentrations

(measured by MTT) were removed.
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