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Abstract: Ultrasonic guided wave (UGW) systems are broadly utilised in several industry sectors
where the structural integrity is of concern, in particular, for pipeline inspection. In most cases,
the received signal is very noisy due to the presence of unwanted wave modes, which are mainly
dispersive. Hence, signal interpretation in this environment is often a challenging task, as it degrades
the spatial resolution and gives a poor signal-to-noise ratio (SNR). The multi-modal and dispersive
nature of such signals hampers the ability to detect defects in a given structure. Therefore, identifying
a small defect within the noise level is a challenging task. In this work, an advanced signal
processing technique called split-spectrum processing (SSP) is used firstly to address this issue
by reducing/removing the effect of dispersive wave modes, and secondly to find the limitation
of this technique. The method compared analytically and experimentally with the conventional
approaches, and showed that the proposed method substantially improves SNR by an average of
30 dB. The limitations of SSP in terms of sensitivity to small defects and distances are also investigated,
and a threshold has been defined which was comparable for both synthesised and experimental data.
The conclusions reached in this work paves the way to enhance the reliability of UGW inspection.
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1. Introduction

Long-range ultrasonic testing (LRUT), also known as guided wave testing (GWT) is an advanced
non-destructive testing (NDT) method that utilises ultrasonic guided wave (UGW) signals for the
inspection. This inspection could be applied to any large complex structures such as pipes, rails,
cables, etc. for defect detection. This method is widely utilised for the inspection of pipelines that
mainly contain oil and gas products, and it has the ability to screen long distances (up to 50 m in each
direction) from a single location to identify defects in the structure (e.g., corrosion, erosion) [1–3]. GWT
often operates at a low-frequency range (20–100 kHz) (compared to conventional ultrasonic testing
(UT), which operates at MHz range) to transmit the waves using one or more rings of dry-coupled
transducers around the circumference of the pipe, which are pneumatically forced against the surface.
These waves propagate within the pipe wall along the pipe’s main axis, and scattering occurs when the
waves encounter discontinuities in wall thickness. The transducers are used to record these changes to
obtain information about the presence and characteristics of the features within a pipe [4].

In order to reduce the effect of dispersion and to achieve a good resolution between features,
a tone burst signal is employed for the transmission of the signal, as shown in Figure 1a.
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in Figure 1b, which are generated in this work using MatLab software. A typical response is 

illustrated in Figure 1c, which consists of a number of peaks that correspond to reflections from 

structural features under investigation (e.g., defects and welds). In addition, its frequency response 

is displayed in Figure 1d, exhibiting the same frequency bandwidth as the input signal [5]. 

It is ideal to generate an axisymmetric wave mode to promote non-dispersive propagation; 
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compensation method using chirp-based narrowband excitation signals to compress the time 

duration of received wave packets during the extracting process. They employed the benefits of chirp 

excitation by utilising previous knowledge of the dispersion curve and the propagation distance. 

Other researchers such as Xu et al. [9–11] employed dispersion compensation (DC) to analyse the 

propagation behaviours of the signals. However, most of them required the knowledge of the 

propagation distance in advance. Toiyama and Hayashi [12] combined the DC method with a pulse 

compression (PuC) algorithm by employing a chirp signal. They considered a scenario of a single 

wave mode without introducing the quantitative SNR enhancement. The combination of DC with 

PuC is utilised by Yucel et al. [13,14] to enhance the SNR of UGW response employing a broadband 

maximal length sequence excitation signal. The result showed that the technique was successful for 

highly dispersive flexural wave modes, but it was not that effective for longitudinal wave modes that 

are not dispersive. Mallet et al. [5] considered cross-correlation and wavelet de-noising algorithms 

for reduction of the effect of dispersion in UGW. He claimed that neither of these methods was 

suitable for the reduction of coherent noise, as both methods removed the smaller amplitudes 

regardless of whether or not they were signal or noise. 
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Figure 1. guided wave testing (GWT) signals: an excitation (a) time domain and (b) frequency domain
signal, received (c) time domain and (d) frequency domain signal.

This is a 50 kHz 5-cycle Hann windowed excitation signal, with a frequency response as shown in
Figure 1b, which are generated in this work using MatLab software. A typical response is illustrated in
Figure 1c, which consists of a number of peaks that correspond to reflections from structural features
under investigation (e.g., defects and welds). In addition, its frequency response is displayed in
Figure 1d, exhibiting the same frequency bandwidth as the input signal [5].

It is ideal to generate an axisymmetric wave mode to promote non-dispersive propagation;
however, the interaction of the guided wave signal with non-axisymmetric features within the pipeline
can cause mode conversion. This results in the generation of dispersive wave modes (DWM) that
travel with different velocities according to the different frequency components in the signal [6]. Hence,
the energy spreads over space during propagation, and compromises the ability to distinguish echoes
from closely spaced reflectors. This lack of spatial resolution leads to coherent noise and reduces the
sensitivity of the inspection. In order to enhance the sensitivity and the SNR of such signals, it is vital
to minimise the presence of coherent noise. Dispersion is one of the main sources of coherent noise;
hence, the aim of this work is to reduce the effect of dispersive wave modes.

There are many researchers who study the effect of dispersion in GWT [7–14]. Wilcox [7]
developed a method for reversing the effect of dispersion by using the knowledge of wave mode
characteristics to map signals from the time to the distance domain, and then reversed the effect
of DWM and restored them to undispersed pulses. Zeng and Lin [8] investigated the dispersion
pre-compensation method using chirp-based narrowband excitation signals to compress the time
duration of received wave packets during the extracting process. They employed the benefits of chirp
excitation by utilising previous knowledge of the dispersion curve and the propagation distance. Other
researchers such as Xu et al. [9–11] employed dispersion compensation (DC) to analyse the propagation
behaviours of the signals. However, most of them required the knowledge of the propagation distance
in advance. Toiyama and Hayashi [12] combined the DC method with a pulse compression (PuC)
algorithm by employing a chirp signal. They considered a scenario of a single wave mode without
introducing the quantitative SNR enhancement. The combination of DC with PuC is utilised by
Yucel et al. [13,14] to enhance the SNR of UGW response employing a broadband maximal length
sequence excitation signal. The result showed that the technique was successful for highly dispersive
flexural wave modes, but it was not that effective for longitudinal wave modes that are not dispersive.
Mallet et al. [5] considered cross-correlation and wavelet de-noising algorithms for reduction of the
effect of dispersion in UGW. He claimed that neither of these methods was suitable for the reduction



Appl. Sci. 2018, 8, 1815 3 of 17

of coherent noise, as both methods removed the smaller amplitudes regardless of whether or not they
were signal or noise.

Newhouse et al. [15] considered split-spectrum processing (SSP) in the field of NDT to enhance
the SNR by splitting the signal’s response into a set of sub-band signals. A theoretical basis for the
selection of filter bank parameters was investigated by Karpur et al. [16]. They proposed an equation
to predict SNR enhancement by compounding a number of frequency diverse signals. The result
showed that some parameters achieved a larger value than expected, which could be the result of
using the Gaussian function for filtering (because of its simplicity) while the calculation was based
on the Sinc function. Shankar et al. [17] employed a polarity thresholding (PT) algorithm for the
detection of a single target. They showed how sensitive the SNR enhancement was to the selection of
filter bank parameters. Saniie et al. [18] investigated the performance of order statistic (OS) filters in
conjunction with SSP in the context of ultrasonic flaw detection, to improve the flaw-to-clutter ratio of
backscattered signals. It has been claimed that the OS filter performs well where the flaw and clutter
echoes have good statistical separation in a given quartile. However, its performance deteriorated
with the contamination from unwanted statistical information.

Gustafsson and Stepinski [19] adapted an SSP method using an artificial neural network (ANN)
to implement PT for UT signals. In order to allow the relative importance of the different sub-bands
to be taken into account, weighting factors were added to the input signal. The results showed
better performance than, PT but only for one particular sample. Gustafsson [20] then extended the
method by employing both the filter bank and the non-linear processing as an ANN for SSP. This
method was time-consuming, although the results indicated that the ANN could “eliminate most
of the noise”. Rubbers and Pritchard [21] developed a complex-plane SSP (CSSP) method, which
was a modified version of SSP for the ultrasonic inspection of castings, and improved the SNR for a
number of conventional UT techniques. It utilised an additional mathematical dimension to improve
the result, while maintaining linearity in both the amplitude and the energy content of a defect signal.
Moreover, they gave an overview of SSP methods [22] with a variety of SSP reconstruction algorithms
and parameters. However, they claimed that as the amplitude of the processed signal is non-linear, it
does not allow for the sizing of flaws, hence the use of this method is limited.

Rodriguez et al. [23,24] proposed a new filter bank design for SSP, based on the use of variable
bandwidth filters, where filters were equally spaced in frequency and their energy gain equalised.
They utilised stationary models for the grain noise in the presence of a single defect. They claimed
that a frequency multiplication (FM) algorithm gave the greatest SNR enhancement. They stated that
the number of filter bands compared to other algorithms is reduced; hence, it reduced the system
complexity. However, this technique was not evaluated for non-stationary models, highly dispersive
material, or a model with multiple defects. Syam and Sadanandan [25] employed a combination of
SSP and order statistic filters to reduce the effect of reverberation for flaw detection in conventional UT
using a wideband signal. He stated that by processing the multiple echoes corresponding to a set of
transmitted signals, the effect of microstructure reflections could be suppressed with respect to the
flaw echo. However, this method tested for a simulated signal only, without revealing the value of the
SSP parameters.

Overall, it is clearly shown by some of the cited literature [7–14] that their techniques required
prior knowledge of the dispersion curve and/or propagation distance in order to perform well. Other
cited literature [15–25] indicated that the successful implementation of the SSP technique was highly
sensitive to the selection of filter bank parameters. Although most of these papers claimed that they
enhanced the SNR of the signal’s response, the enhancement was mainly achieved for conventional
UT. However, those parametric values are not suitable for use in GWT that contain a combination
of axisymmetric and non-axisymmetric wave modes with different phase velocities. Hence, a full
study is required to find the optimum filter bank parameters for SSP in terms of its capacity to provide
such improvements in GWT. To the best of the authors’ knowledge, prior to this study, apart from
Mallet et al. [5], no one else has investigated the use of SSP in guided wave testing.
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An analysis of SSP with application to GWT was conducted in our previous paper [26] for
reducing the effects of DWMs in the signal response, and the optimum parameters have been proposed
to enhance the SNR and spatial resolution of such signals. However, the limitations of SSP for use
in GWT are still unclear, and they need further investigation. Hence, in this paper, the optimum
parameters that were identified in the previous work are utilised for deeper investigation to improve
the SNR, and to enhance the spatial resolution further by investigating the limitations of SSP mainly in
two areas: (i) in terms of defect sensitivity and (ii) in terms of minimum distance between two features
(e.g., weld and defect). Thus, the core concept explored in this work is to address these issues. Such a
parametric study has not been undertaken in the field of GWT prior to this work.

In order to do this, a synthesised signal has been created to identify the limitations of SSP.
The limitations have been tested, evaluated, and identified synthetically in a controlled environment.
Then, in order to validate the effectiveness of the technique, laboratory experiments have been carried
out on an eight-inch pipe utilising the Teletest-guided wave system [27]. It is shown that the proposed
method reduces the presence of coherent noise and improves the SNR by up to 30 dB. In addition,
the limitations of SSP have been identified and a threshold has been defined, below which the temporal
resolution will be reduced.

The paper is organised as follows: Section 2 describes the theory and concept of SSP, including
the implementation and selection of filter bank parameters for guided wave testing. Sections 3 and 4
provide details and discussion of SSP for synthesised and experimental testing, and finally Section 5
concludes the paper.

2. Split-Spectrum Processing (SSP)

2.1. Theory of SSP

SSP is an advanced signal processing technique that was initially developed from the frequency
agility techniques used in radar [28]. This method was then considered for SNR enhancement in NDT
applications such as conventional UT, to reduce grain scatter in the received signal. A significant
amount of research has been undertaken over the last few decades in this area with respect to the
reduction of non-random noise (coherent noise) in NDT applications, due to ultrasonic scattering.
The application of SSP in GWT is relatively new and, to the best of the authors’ knowledge, this
technique and its limitations have not been previously investigated in this field.

SSP splits the spectrum of a received signal in the frequency domain using a bank of bandpass
filters to generate a set of sub-band signals at incremental centre frequencies. These sub-band signals
are normalised and then subjected to a number of possible non-linear processing algorithms to generate
an output signal. Figure 2 illustrates a block diagram for SSP with its step-by-step implementation. It
shows that the input time domain signal, x(t), is transformed into the frequency domain, X(f), using
a fast Fourier Transform (FFT), and is then filtered by a bank of band-pass filters. Subsequently, the
outputs from the filter banks, Xk(f) (k = 1, 2, . . . , n), are converted back into the time domain using
the inverse FFT (IFFT) and normalised by a weighting factor, wk. Then one of the recombination
algorithms will be employed to combine these non-linear signals to produce the output signal y(t). In
general, SSP application shows a great potential to reduce those signal components that vary across a
frequency range, in particular dispersive wave modes, and to suppress the regions of the signal of
interest that are constant in that frequency range [29].
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2.2. SSP Filter Bank Parameters

The SSP filter-bank parameters were first investigated by trial-and-error for NDT applications as
they were processed. However, this was not very practical for field inspection as there are typically
large amounts of data to analyse; therefore, researchers sought to find the optimum values for NDT
methods. Hence, the optimum values have been proposed, developed and examined for UT techniques.
However, these values are not suitable for GWT due to the long duration and narrow bandwidth of the
signal that operates in the kHz range, whereas traditional UT operates in the MHz range. Therefore,
further investigation was required to find an optimum value suitable for GWT. As a result, the rules
and key factors of parameter selection for conventional UT have been reviewed and then modified for
use in GWT. Figure 3 illustrates the scheme of SSP filtering. The parameters that need to be quantified
are listed below with a brief description:

1. The total bandwidth for processing (B); this needs to be large enough such that the reflections of
the signal from features in the specimen are constant across this range, and the reflections from
coherent noise vary. If the bandwidth is too large, then it may cause the features to be lost, as
at least one of the filter outputs will not contain the feature signal. Hence it reduces the spatial
resolution in the processing. In general, narrowband waveforms were used as the excitation
signals to reduce the effect of unwanted wave modes, and to suppress the dispersion effect in the
GWT response. Hence, the bandwidth of the transmitted signal could be employed as the total
bandwidth of processing.

2. The filter separation (F); is the distance between the sub-band filters. Karpur et al. [16] claimed
that the optimum spectral splitting could be attained by using the frequency-sampling theorem,
whereby the spectrum of a time-limited signal can be reconstructed from sample points in the
frequency domain separated by 1/T Hz, where T is the total duration of the signal. Note that
the Gaussian filter is employed for calculating the filter bank in practice, due to its simplicity,
whereas the Sinc function was utilised for actual calculation. Thus, the filter separation could be
calculated as F = 1/T.

3. The sub-band filter bandwidth (Bfilt) is the width to be used for each filter in the filter bank. It was
recommended [15–17] that the value of the sub-band filter bandwidth needs to be set at three to
four times the filter separation. It should be noted that a bandpass filter could reduce the temporal
resolution of the signal. This is because reducing the bandwidth of a time-limited signal will
increase its duration. This means that the SSP filter bank needs to be selected precisely, otherwise
it could lead to a reduction in temporal resolution, as the pulses that correspond to reflections
from features spread out in time and mask one another. Moreover, the correlation between
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adjacent sub-bands could be affected by the overlap of the filters. This means the correlation
increases with an increase in overlaps. On the other hand, little or no overlap could lead to loss
of information. It is notable that the noise in adjacent filters needs to be uncorrelated and the
features should be correlated. Hence, the overlap needs to be selected somehow to minimise the
correlation between coherent noise regions in adjacent sub-bands without losing information.

4. The filter crossover point (δ); or a cutoff frequency at the edges, is a boundary in the frequency
response at which the energy flowing through the structure starts to decrease rather than
passing through.

5. The number of filters (N); is the number of sub-band filters that is required to be selected in order
to enhance the SNR and spatial resolution by correlating the signal of interest and minimising
the correlation between the coherent noise region in the adjacent sub-bands signal. Overall, these
parameters are dependent on each other, which means that their values have a direct effect on
other parameter values. Therefore, it is necessary to search for the optimum parameters and to
select them appropriately. As an example, increasing the number of filters (N) would be required
to increase the total bandwidth (B), or to reduce the filter separation (F), or a combination of both.
Thus, as is shown in Figure 3 the number of filters (N) could be calculated as below:

N =
B
F
+ 1 (1)
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2.3. Recombination Algorithms of SSP

There are numerous SSP recombination algorithms that could be employed for use in GWT to
reduce the effect of coherent noise which have been described in the literature [16,22]. In this paper,
the two most common ones that obtained the highest SNR and spatial resolution in the previous work
are explained in more detail:

The polarity thresholding (PT) that is expressed as:

yPT[m] =


x[m] if all xi[m] > 0, i = 1, . . . , n
x[m] if all xi[m] < 0, i = 1, . . . , n

0 Othrewise
(2)

where yPT is the output result of the signal that is obtained after processing at m, n is the number of
filter band signals, x[m] is the unprocessed signal, and xi[m] care the sub-band signals. This method
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looks at the signal sub-bands at each sample time, and if the samples are all negative or all positive,
then the output is the unchanged input signal. Otherwise, the output is zero. This has the effect of
only passing the time samples where the polarity is not affected by the frequency. Thus, those sections
of the signal that are highly frequency-dependent must be removed. However, the amplitude of the
signal of interest needs to be larger than the amplitude of the coherent noise response, whereas if the
noise signal has greater amplitude, then it will change the signal’s sign.

Polarity thresholding with minimisation (PTM), which is defined as:

yPTM[m] =


min(x[m]) if all xi[m] > 0, i = 1, . . . , n
min(x[m]) if all xi[m] < 0, i = 1, . . . , n

0 Othrewise
(3)

PTM is the combination of the minimisation and the PT algorithm where the output is the
minimum amplitude of PT when there is no change in polarity. This method takes the minimum
points that the PT algorithm has passed in order to suppress the noise even further than is obtained by
the PT algorithm. Since the variance of the points containing noise is generally larger than those that
are containing the signal of interest, the use of the minimisation algorithm reduces those that are the
result of noise. However, this method is less effective when the noise level is larger than the actual
signal’s amplitude; thus, reducing the noise level will significantly reduce the signal amplitude in
certain sub-bands, and gives minimum values for the PTM’s output in that region.

2.4. Implementation of the Filter Bank

A MatLab program has been written that takes an unprocessed signal in the time domain and
converts it to the frequency domain. It then filters the signal using a Gaussian bandpass filter to
generate a set of sub-band signals, and applies the recombination algorithms into these sub-bands.
The input is the signal to be filtered, with the upper and lower 3 dB cut-off frequencies. Therefore, the
lower cut-off frequency fl, and the higher cut-off frequency fh, for each sub-band filter, are calculated as:

fln =

{
fmin − Bfilt

4 n = 1
fln−1 + F n = 2, 3, . . . N

(4)

fhn = fln + Bfilt n = 1, 2, . . . N (5)

where F is the filter separation, N is the number of filters, fmin is the lower cut-off frequency of B,
and Bfilt are the sub-band filters. The lower cut-off frequency for the first sub-band fl1 , needs to cover
the start point of the signal. The selections of these values are inspired by the values that have been
employed in UT, and then adjusted for the use in GWT using the brute force search algorithm. Table 1
shows the optimum values of SSP that were proposed in the previous paper [26]. These values are
employed in this paper to find the limitations of SSP. The performance of the proposed technique is
quantified by measuring the SNR, the spatial resolution, and the defect sensitivity of the output signal.

Table 1. Recommended values for SSP parameters.

SSP Parameters Symbols Recommended Values

Total bandwidth B 99% of total energy
Sub-band filter bandwidth Bfilt B/11

Filter crossover point δ Bfilt/3.5
Filter separation F 1 dB
Number of filters N B/F + 1
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3. Signal Analysis

This section shows how this methodology has been evaluated. Initially, signals have been
simulated using the technique that was presented by Wilcox [7] to represent the guided wave reflections
in a pipe with known dispersion characteristics. This allows the SSP limitation to be found under
controlled conditions. Secondly, experimental data was collected from an eight inch pipe that was
equivalent to the simulated pipe. This gives two benefits: (i) it allows the approach to be tested
under more realistic conditions; and (ii) the reusable SSP parameters across equivalent pipes could
be evaluated.

Signal Synthesis

The signal synthesis was utilised to generate the propagation of the dispersive wave modes in
time/space, based on applying a frequency-dependent phase shift to the wave packet of interest via
DISPERSE software (developed by Imperial College, London, UK) [30]. The core concept of this section
was to identify the limitation of SSP in terms of finding the smallest defect size that could be detected,
and to find the distance limitation when the location of the defect is close to a dominant feature with a
high amplitude, such as a weld. In order to achieve that, the axisymmetric T(0,1) wave mode is excited
with a 10-cycle pulse and a centre frequency of 44 kHz, using the synthesised model. It is assumed that
there are only two reflection echoes (i) from the defect, and (ii) from the pipe’s end. Since the proposed
method has already proved its capability to remove the DWM [26], here, it is assumed that only the
T(0,1) wave mode is reflected from the features on the pipe. According to Böttger et al. [31], there is a
linear relationship between the amplitude of the reflected signal of T(0,1) and the cross-section area
(CSA) of its defect. Hence, the attenuation of T(0,1) is linear, which means that if 10% of the excited
signal reflects from the defect, then the rest of the energy (90%) will reflect from the pipe end.

The set-up of this experiment is shown in Figure 4. The distances of the defect and pipe end are
X = 3 m and X = 4.5 m from the excitation point, respectively. It is assumed that the defect reflects 6%
of the total energy and rest of the energy (94%) is reflected by the pipe end, as displayed in Figure 5a.
The reflections from the defect were reduced gradually in order to find the smallest defect size that can
be recognised by the proposed method. These are illustrated in Figure 5, where the defect sizes are
gradually reduced from 6% CSA to 1% CSA. The results demonstrate that the proposed method has
the potential to detect defects down to 1% CSA when the distance between two features is 1.5 m. Then,
in order to find the distance limitation, it is assumed that a 10% CSA defect is 1 m from the pipe end
and it is moved towards the pipe end in steps of 0.1 m as illustrated in Figure 4. Results in Figure 6a–d
clearly demonstrate that the defect was recognisable until the distance from the pipe end was around
0.7 m. After that, as shown in Figure 6f, the resolution was gradually reduced until it reaches 0.5 m.
Afterwards, the defect reflection started to superimpose on the pipe end reflection, and it travelled
below the limit of the resolution. Therefore, according to this result, SSP with the proposed parameters
can detect small amplitudes that are close to the dominant amplitude only when the distance between
them is greater than 0.5 m. Note that this is the result for 10 cycles of excitation signal with a defect
size of 10% CSA and a centre frequency of 50 kHz.
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Figure 5. Results for the synthesised signal before and after applying SSP ((polarity thresholding & 

Polarity thresholding with minimisation)PT & PTM). The defect and the pipe end are located at X = 3 

m and X = 4.5 m from the excitation signal. The defect sizes are (a) 6% cross-section area (CSA); (b) 

4% CSA; (c) 2% CSA; and (d) 1% CSA. 
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Figure 5. Results for the synthesised signal before and after applying SSP ((polarity thresholding &
Polarity thresholding with minimisation)PT & PTM). The defect and the pipe end are located at X = 3 m
and X = 4.5 m from the excitation signal. The defect sizes are (a) 6% cross-section area (CSA); (b) 4%
CSA; (c) 2% CSA; and (d) 1% CSA.
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Figure 7c. In order to reduce incoherent noise, the collection was repeated 512 times, and the received 

signals were averaged. The sampling frequency of the received signal was set to 1MHz. Since PT 

Figure 6. Results for the synthesised signal before and after applying SSP (PT & PTM). The defect
(X = 3.5 m) is moved towards the pipe end (X = 4.5 m) in steps of 0.1 m. The defect distances are X= (a)
3.5 m; (b) 3.6 m; (c) 3.7 m; (d) 3.8 m; (e) 3.9 m; (f) 4 m; (g) 4.1 m; (h) 4.2 m.

Furthermore, as shown in Figure 6, the results of PT and PTM algorithms are almost identical
while the distance between the two peaks is greater than 0.8 m. However, the PT algorithm gives
a better temporal resolution when the distance is around 0.5 m (Figure 5f). In these regions, the PT
identify defects partially, whereas the PTM loses the information completely, and finally, when the
distance is less than 0.4 m, both algorithms miss the defect. The result of the synthesised signal showed
that SSP application has the potential to reduce the level of coherent noise significantly, due to the
presence of DWM, hence enhancing the SNR and the spatial resolution of signals.

In addition, a threshold (0.4 m distance between two features) was defined as a distance limitation,
below which threshold the temporal resolution will be reduced. However, further work is required for
the different scenarios. Furthermore, in order to validate the outcome of these synthesised results, SSP
was applied to the experimental data that was gathered in the lab. These validations are described next.

4. Experimental Validation

In this section, two experiments were carried out in the laboratory to validate the proposed
method for the reduction of DWM, and to enhance the spatial resolution in GWT.

4.1. Experiment #1: One Saw Cut Defect

The first experiments were conducted in the lab using a nominal eight-inch steel pipe, 6 m long,
with a wall thickness of 8.28 mm and an outer diameter of 219.08 mm. The setup for the experiment is
illustrated in Figure 7. The signal was excited/received (Tx/Rx) using a Teletest system to transmit
a 10-cycle Hann window modulated tone burst of T(0,1) wave mode. The ring spacing between the
transducers was 30 mm.
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Figure 7. Experimental setup up for an eight inch steel pipe with a wall thickness of 8.179 mm and an
OD of 219.08 mm (a,b), and (c) its flaw size plan.

The frequencies that give the best results for this particular pipe size according to the dispersion
curve are 27 kHz, 36 kHz, 44 kHz, 64 kHz, and 72 kHz. Therefore, the data was collected at these
frequencies for analysis. The Teletest Collar was placed at 1.5 m away from the near pipe-end, and a saw
cut defect was introduced 1.5 m away from the far pipe-end. The size of the defect was incrementally
increased from 0.5% CSA to 8% CSA in nine steps. The flaw size plan is displayed in Figure 7c. In
order to reduce incoherent noise, the collection was repeated 512 times, and the received signals were
averaged. The sampling frequency of the received signal was set to 1MHz. Since PT algorithm gave the
best result for synthesised signal, it was used in this experiment with the same filter bank parameters
that were employed for the synthesised signal as illustrated in Table 1.

As mentioned earlier, the experiment was run for different frequencies, and the result of each
frequency was compared with the conventional model that is currently employed in the Teletest
system. However, the comparison for 44 kHz is presented in greater detail in this paper. The results
indicated that defects that are smaller than 2% CSA are almost impossible to identify before and/or
after applying the proposed technique. Therefore, the investigation and comparison were confined
to when the defect size was greater than 2% CSA. It is notable that the current sensitivity for reliable
detection of the Teletest system was 9% CSA, which is equivalent to 5% amplitude reflection.

Figure 8 shows the zoom-in plot around the defects area from 0.5% CSA to 8% CSA using MatLab
software for both the unprocessed (blue trace) signal and the SSP (red trace) signal. The figure confirms
that the SSP technique using optimum parameters enhances the defect sensitivity down to 2% CSA,
which was hidden below the noise level. As shown in Figure 8, it was still difficult to identify a
3% CSA defect with the conventional techniques, whereas the proposed method removed all of the
surrounding noise, and only the defect’s reflection remained. Hence, the defect was easily noticeable
and it could be identified with confidence. This size flaw was typical of that which can be challenging
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to reliably detect with GWT systems. Therefore, as a result of this experiment, SSP demonstrates great
potential to enhance the SNR, and to increase the sensitivity and spatial resolution of signal response,
and it is able to identify defects down to 2% CSA.

SNR Calculation

In order to quantify the improvements shown by the proposed technique, the SNR enhancement
was calculated as:

SNR = 20 × log10

(
S
N

)
(6)

where S is the maximum amplitude of the defect’s reflection, and N is the root mean square (RMS)
value of the noise region around the defect. The SNR of the unprocessed signal was 7.8 dB when
the defect size was 2% CSA, and 13.25 dB when the defect size was 3% CSA. The results presented
in Table 2 show that the SSP algorithms enhanced the SNR by 34.9 dB and 42.9 dB for these cases
respectively. Furthermore, a comparison of the amplitude of the pipe-end reflection and the defect
reflection was undertaken in order to evaluate how well the SSP maintains the amplitude of the signal
of interest. The results indicate that when the size of the defect was 3% CSA or greater, there were no
significant amplitude changes that occurred for the proposed method.
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Figure 8. Zoom in around the defect area from 0.5% CSA up to 8% CSA.

Table 2. Signal-to-noise ratio (SNR) enhancement of experimental signal.

Signal 2% Defect 3% Defect

SSP 34.9 dB 42.9 dB
Unprocessed 7.8 dB 13.3 dB

Figure 9 illustrates the result of the unprocessed signal (blue trace) and the SSP algorithm (red
trace) for the above experiment when there was no defect (baseline), up to when the defect size was
8% CSA. The results clearly illustrated that the performance of the proposed technique massively
improved the SNR of the GWT response compared to the unprocessed data, achieving around 30 dB
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improvement for 44 kHz. However, as mentioned earlier, the comparison commenced when the defect
size was at least 2% CSA. Hence, in order to clarify it, a dotted line was added at 2% CSA.
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Figure 9. SNR calculation–peak amplitude of the defect (S) to the root mean square (RMS) value of the
noise region (N) for 44 kHz.

4.2. Experiment #2: Two Saw Cut Defects

The aim of this test was to investigate the distance limitation of SSP where a small feature (i.e.,
defect) is close to a dominant feature (e.g., weld). The initial investigation started with the optimum
parameters utilised for a single saw cut defect to evaluate the outcome of SSP distance limitation.

An experiment was carried out on the same eight-inch pipe that was utilised for the previous
experiment. In this experiment, another saw cut defect was added to the pipe at a location that was
48 cm from the far pipe end, as shown in Figure 10. The size of the defect was incrementally increased
from 1% CSA to 8% CSA. Note that another 8% CSA saw cut defect already existed 1.5 m from the
far pipe end. All of the setups, the tool location, and the frequency test region were exactly the same
as the previous exercise. However, only the results relating to 44 kHz were presented here because,
according to the previous experiment, this frequency gave the best SNR enhancement.

Appl. Sci. 2018, 8, 815 13 of 16 

 

Figure 9. SNR calculation–peak amplitude of the defect (S) to the root mean square (RMS) value of 

the noise region (N) for 44 kHz. 

4.2. Experiment #2: Two Saw Cut Defects 

The aim of this test was to investigate the distance limitation of SSP where a small feature (i.e., 

defect) is close to a dominant feature (e.g., weld). The initial investigation started with the optimum 

parameters utilised for a single saw cut defect to evaluate the outcome of SSP distance limitation. 

An experiment was carried out on the same eight-inch pipe that was utilised for the previous 

experiment. In this experiment, another saw cut defect was added to the pipe at a location that was 

48 cm from the far pipe end, as shown in Figure 10. The size of the defect was incrementally increased 

from 1% CSA to 8% CSA. Note that another 8% CSA saw cut defect already existed 1.5 m from the 

far pipe end. All of the setups, the tool location, and the frequency test region were exactly the same 

as the previous exercise. However, only the results relating to 44 kHz were presented here because, 

according to the previous experiment, this frequency gave the best SNR enhancement. 

 

Figure 10. Experimental setup for the same eight inch pipe (Figure 7) with two saw cut defects. 

The proposed method was applied to the collected data gathered from this experiment. It was 

observed that the initial result obtained with these parameters was not as successful, and it was only 

able to identify defects down to 4% CSA. Hence, the brute force search algorithm was applied to find 

the optimum parameter values for this scenario, again in order to improve the performance of the 

defects, and the capability to find smaller defects. As a result, optimum values were discovered that 

gave the chance to detect defects down to 2% CSA for a second defect. The unprocessed signal, and 

the signal after applying SSP with the new optimum parameters are presented in Figure 11. This 

figure clearly demonstrates that the data after applying SSP are tidier in general, and in terms of 

defect detection, down to 2% CSA is noticeable. However, it can be seen that the coherent noise is 

hardly reduced by the new parameters, and SNR is slightly improved. Therefore, it is confirmed that 

there is a trade-off between detecting small features next to a dominant signal and improving the 

SNR. In addition, this result confirms the result of the synthesised analysis where it was stated that 

the distance limitation of SSP to identify adjacent features is around 50 cm when using a 10-cycle 

Hann windowed at 44 kHz. 

-6

4

14

24

34

44

54

64

0 1 2 3 4 5 6 7 8

d
B

CSA (%)

44 kHz

~ 30 dB 

improvement

1.5 m 1.5 m 3 m 

First Saw Cut (8% CSA) Teletest Collar 

219.08 mm 

Second Saw Cut (1% to 8% CSA) 

Figure 10. Experimental setup for the same eight inch pipe (Figure 7) with two saw cut defects.

The proposed method was applied to the collected data gathered from this experiment. It was
observed that the initial result obtained with these parameters was not as successful, and it was only
able to identify defects down to 4% CSA. Hence, the brute force search algorithm was applied to find
the optimum parameter values for this scenario, again in order to improve the performance of the
defects, and the capability to find smaller defects. As a result, optimum values were discovered that
gave the chance to detect defects down to 2% CSA for a second defect. The unprocessed signal, and
the signal after applying SSP with the new optimum parameters are presented in Figure 11. This
figure clearly demonstrates that the data after applying SSP are tidier in general, and in terms of defect
detection, down to 2% CSA is noticeable. However, it can be seen that the coherent noise is hardly
reduced by the new parameters, and SNR is slightly improved. Therefore, it is confirmed that there
is a trade-off between detecting small features next to a dominant signal and improving the SNR. In
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addition, this result confirms the result of the synthesised analysis where it was stated that the distance
limitation of SSP to identify adjacent features is around 50 cm when using a 10-cycle Hann windowed
at 44 kHz.Appl. Sci. 2018, 8, 815 14 of 16 
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4.3. Discussion

The limitations of SSP were first investigated for synthesised signals using the two most common
SSP recombination algorithms, polarity thresholding (PT) and PT with minimisation (PTM). The
synthesised signals were utilised to find the limitations of SSP by measuring the SNR and spatial
resolution of the received signal. Results showed that the SSP with PT algorithm was able to identify
defects down to 1% CSA, and stated that 50 cm is the minimum distance for the SSP to identify a defect
next to the pipe end. Then, in order to validate the synthesised results, two experimental tests have
been carried out in the lab on the same sized pipe.

Two experiments were carried out on an eight inch pipe, 6 m long, with a wall thickness of
8.28 mm and an outer diameter of 219.08 mm, using a pulse-echo technique. The Teletest system was
utilised to transmit a 10-cycle Hann window-modulated tone burst of T(0,1) with a centre frequency
of 44 kHz. In the first experiment, a saw cut defect was created 1.5 m from the far pipe-end. Nine
saw cut defects were created, the sizes of which gradually increased from 0.5% CSA to 8% CSA. The
results demonstrate that the SNR was improved by approximately 30 dB compared to the unprocessed
signal. The results indicated that defects smaller than 2% CSA cannot be identified both before and
after SSP. This is due to the sensitivity of the system. Therefore, the investigation and comparison were
conducted only when the defect size was greater than 2% CSA. It was shown that the 2% CSA defect’s
reflection was almost masked by the coherent noise level, and that the identification of responses
using conventional signal interpretations was not feasible. However, SSP removed all the surrounding
coherent noise but the defect’s reflection. Therefore, this provided a good evidence that SSP has the
potential to identify defects down to 2% CSA, and to enhance the spatial resolution.

In the second experiment, a new saw cut defect was created, which varied in size from 1% CSA to
8% CSA in each test, in addition to the already existing 8% CSA defect. The aim was to validate the
distance limitation that was observed for the synthesised exercise. Therefore, the defects were created
48 cm from the far pipe-end. The results illustrated that defects up to 4% CSA were detectable with the
same filter bank parameters as those used for the previous scenarios. However, in terms of identifying
smaller defects, the parameters needed to be modified, and this was undertaken using a brute force
search algorithm. As a result, new filter bank parameters were introduced to identify defects down to
2% CSA. However, this was achieved at the cost of reducing the SNR enhancement.
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The above algorithm and methodology explain a means of identifying potentially reusable
parameters of SPP for the application of suppressing dispersive wave modes in GWT. It should be
noted that pipes of the similar geometry and material share the same guided wave characteristics.
The relative rates of dispersion between the desired/undesired wave modes will be the same for
equivalent pipes. Regulation in the oil and gas sectors means that pipelines are manufactured from a
limited set of standard geometries and materials. Hence, equivalent pipes are commonplace. Therefore,
it is anticipated that once the set of parameters have been identified for a specific pipe, they can be
reused effectively for similar or slightly different pipes. This would mean it would not be required
to run the brute force search algorithm for every inspection. However, the proposed technique was
tested in a limited trial, and in order to build a signal processing toolbox (automated), more field data
analysis is required to be investigated.

5. Conclusions

A novel solution based on signal processing is proposed in this work to address the problem of
coherent noise in guided wave testing using the SSP technique. The main concern was to identify the
limitations of SSP in terms of sensitivity and resolution when two features are close to each other.

Therefore, a synthesised signal has been created to identify the limitations of SSP in terms of
establishing the smallest defect that can be detected, and to establish the resolution limitation when
the location of a defect is close to a dominant feature. It was demonstrated that the SSP technique with
optimum parameters successfully identified defects down to 2% CSA, and enhanced the SNR of the
received signal. In addition, a threshold of 50 cm has been defined, below which the temporal resolution
will be significantly reduced. The outcome was then experimentally validated for an eight-inch pipe
containing two saw cut defects using the Teletest system, where it achieved a comparable result. To sum
up, it is demonstrated throughout this work that the proposed method using a polarity thresholding
algorithm has the potential to improve the sensitivity and spatial resolution of GWT in terms of SNR
(by up to 30 dB), by detecting smaller defects (down to 2% CSA) with a resolution threshold of 50 cm
between the two features. Thus, this work shows that SSP, as implemented here, could be applied for
pipeline inspection using the GWT technique.

Further work on this subject should focus on validation of this technique with field data, which
are usually more complex and contain different types of defects. Furthermore, the sensitivity of this
algorithm could be investigated for coated and buried pipelines, where the attenuation rates are
sufficiently high that they cause a major reduction in guided wave test capability.
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