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Abstract 

A large number of telecommunication base stations operate on unreliable grid or no grid at all, and rely on batteries 

or diesel generators for primary or back-up energy. This paper proposes an autonomous renewable energy micro-grid, 

using Solar Photovoltaics and Wind Turbine to generate electricity, and a Regenerative Hydrogen Fuel Cell as back-

up power for up to 10 days. The system is validated using MATLAB/Simulink software and real-life weather data and 

optimized for a 25kW micro-grid near Dakar, Senegal. The simulations show a smart load-following system that 

instantaneously recognizes the cheapest source of electricity to power the load. Levelised Cost of Electricity based on 

the outcomes of the MATLAB/Simulink model show the economic potential of an RHFC as back-up for micro-grids, 

allowing cheap and reliable electricity to rural areas in developing countries, with a LCOE of 6.71 p/kWh, RHFC is 

by far the cheapest back-up for this application. 
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1. Introduction

According to almost 750 experts and decision-makers in the World Economic Forum’s multistakeholder 

communities, failure of climate change mitigation and adaption is now the single biggest global risk, ahead of weapons 

of mass destruction, and water crises [1]. In developing countries and remote areas, where there is no (reliable) grid 

connection, the challenges are even bigger. Worldwide, almost 1.2 billion people are living without electricity [2]. In 

addition to that, in developing countries, diesel generators are often used for electricity production and come with 

environmental, health and cost concerns. Electricity is fundamental for many essential services that increase income 

in rural areas such as; agriculture, clean drinking water, health care, education, communications, and quality of life 

[3]. It is critical for developing countries to have access to cheap, reliable electricity and give them the opportunity to 

leap-frog towards modern energy generating technologies in order to mitigate environmental issues. 

Mobile telephone penetration has a significant impact on growth in both the upper-low-income and the low-

income countries in Africa [4]. Deploying reliable communication infrastructure is key to allow developing countries 

to develop and can be achieved by sharing knowledge of technologies with these countries. The increase in cell phone 

penetration has led to an increase of energy consumption of cell phone towers. Nowadays, over 75% of cell phone 

towers in Nigeria rely on Diesel generators or batteries for reliable power supply. Concerns of costs, theft, and 

environmental issues have raised the attention of deploying renewable energy technologies [5]. GSMA has estimated 

that 10,890 sites in Nigeria and Ghana alone could convert to green power deployments [6] 

Combining the increase in mobile telephone penetration and the challenge to have access to cheap, reliable 

electricity, already deployed cell phone tower structures can be used to deploy renewable energy sources such as Solar 

Photovoltaics (PV) and Wind Turbines. As these renewable energy sources are highly intermittent, adequate back-up 

is required to provide reliable electricity supply to the cell phone tower all throughout the whole year. Diesel 

generators or battery packs are commonly used for this, but concerns of costs, theft, and environmental issues have 

raised the attention of deploying sustainable technologies.  

A Regenerative Hydrogen Fuel Cell (RHFC) is proposed to secure a reliable back-up power system. The RHFC 

system uses excess renewable electricity to generate hydrogen gas from liquid water in an electrolyser. The hydrogen 

is stored in a tank and dispatched to the PEMFC to generate electricity when desired [7] 

The electrolyser is a device that generates hydrogen and oxygen by splitting water using electricity. The water 

flows through a series of porous graphite plates, applying DC power to this plates enables water to break down into 

Hydrogen and Oxygen. The electrolyser has to fulfil requirements such as high efficiency, low cost, high flexibility, 

and large range of operation. 

The proposed hydrogen storage is a metal-hydride technology. Hereby, the hydrogen is stored in a solid-state at 

low pressure; a safer, more convenient method compared to high-pressure compression and liquefaction technologies 

[8]. In a metal-hydride storage tank, a porous nanostructured metal is used to absorb hydrogen. The hydrogen is stored 

in a solid form inside the crystal structure of the metal. The reaction happening during this hydriding process is 

exothermic which means heat is released. The amount of heat depends on the pressure of hydrogen. Hydrogen coming 

from the Electrolyser is pressurized up to 30 bar. The porous nanostructured materials commonly used for metal-

hydride storage are capable of absorbing hydrogen at pressures below 5 bar. To de-hydride the metal-hydride, heat 

should be applied to bring hydrogen back to a gaseous state to be supplied to the PEMFC. 

A PEM fuel cell is used to generate electricity from hydrogen, with only water and heat as by-products. The 

electricity can be used on-site or distributed into a (micro-) grid. If necessary, the heat can be used for district heating. 

RHFC systems have several characteristics that are well-suited to energy storage. The energy capacity and power 

capacity of a RHFC can be configured independently. Using hydrogen as an energy carrier provides flexibility and a 

dramatically higher energy density than any other energy storage medium [9]. Furthermore, fuel cells have been 

proven to work in harsh weather environments [10] and provide power when electricity is either not enough or 

unavailable from the renewable sources [11] , causing the RHFC to be cost and maintenance effective in the long term 

and applicable in various climatic conditions [12] 

First, the renewable energy hybrid wind/photovoltaic/RHFC is modelled in MATLAB/Simulink to validate its 

reliability in energy supply throughout the year. The model will be used to optimize installed capacity of each of the 

components used. After that, outputs of the MATLAB/Simulink model are used to calculate the expected Levelised 

Cost of Electricity (LCOE) when using an RHFC as back-up in a fictional micro-grid near Dakar, Senegal. As a 

comparison, the LCOE of the RHFC is compared to that of Lithium-Ion battery pack and diesel generator as a back-

up for renewable energy sources, and a stand-alone diesel generator powering the complete load. 
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2. Theoretical study

To validate the characteristics of the system, such as ability to follow the load and storage capacity, a Simulink 

model is made. In this model, the RHFC unit is coupled to a Solar PV array and Wind Turbine. This model helps 

selecting the operation characteristics of the control system and helps size the system based on the local climate and 

requirements. The Simulink model is set up respecting the technologies’ characteristics. 

2.1. Solar Photovoltaics 

The Solar PV model uses input from ambient temperature and solar irradiance to calculate the generated current 

and voltage of the module. Modules are connected in series or parallel to form an array to achieve the desired current 

and voltage for the application. The current generated by the Solar PV array is calculated from equation 1. 

𝐼𝑃𝑉 = 𝑁𝑃𝐼𝑃𝐻 − 𝑁𝑃𝐼0 [𝑒𝑥𝑝 (

𝑉
𝑁𝑆

+
𝐼𝑅𝑆

𝑁𝑃

𝑛𝑉𝑇
) − 1] − 𝐼𝑆𝐻 (1) 

Where, 𝑁𝑃 is the number of modules in parallel, 𝐼𝑃𝐻is the module photo-current (A), 𝐼0is the dark saturation

current (A), 𝑉 is the module operating Voltage (V), 𝑁𝑆 is the number of modules in series, 𝐼 is the module operating

current (A), 𝑅𝑆 is the series resistance (Ω), 𝑛 is the ideality factor of the diode (1.2), 𝑉𝑇 is the thermal voltage (V), and

𝐼𝑆𝐻 is the shunt current (A). The shunt current is found by equation 2:

𝐼𝑆𝐻 =
𝑉 ∙

𝑁𝑃

𝑁𝑆
+ 𝐼𝑅𝑆

𝑅𝑆𝐻

(2) 

The dark saturation current varies with the cell temperature and is found by equation 3: 

𝐼0 = 𝐼𝑅𝑆 [
𝑇

𝑇𝑟𝑒𝑓
]

3
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1
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)] (3) 

Where, 𝐼𝑅𝑆is the module reverse saturation current (A), 𝑇 is the operating temperature (K), 𝑇𝑟𝑒𝑓is the reference

temperature (298.15 K), 𝐸𝑔0 is the band gap energy of silicon semiconductor (1.1 eV), 𝑞 is the electron charge (1.6 ∙

10-19C), and 𝑘 is the Boltzmann’s constant (1.3805 ∙ 10-23 J/K). The thermal voltage is found by equation 4 and the

module photo-current is found by equation 5:

𝑉𝑇 =
𝑘𝑇

𝑞
(4) 

𝐼𝑃𝐻 = 𝐼𝑆𝐶 + 𝐾𝑖(𝑇 − 𝑇𝑟𝑒𝑓) ∙
𝐺

1000
(5) 

Where, 𝐼𝑆𝐶is the short-circuit current of the module at operating conditions (6.48 A), 𝐾𝑖is the short-circuit

current at Standard Testing Conditions, and 𝐺 is the solar irradiance (W/m2). The module reverse saturation current 

is found by: 

𝐼𝑅𝑆 =
𝐼𝑆𝐶

[𝑒𝑥𝑝 (
𝑞𝑉𝑂𝐶

𝑁𝑆𝑛𝑘𝑇
) − 1]

(6) 

Where, 𝑉𝑂𝐶is the module open circuit voltage (69.5 V).
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2.2. Wind Turbine 

The wind model uses wind speed data adjusted to the hub height of the wind turbine to calculate the power 

generated from the wind. The wind speed is adjusted by using equations 7: 

𝑉𝑊 = 𝑉𝑟𝑒𝑓 (
𝐻

𝐻𝑟𝑒𝑓
)

𝛼

(7) 

Where, 𝑉𝑊 is the wind speed at hub height (m/s), 𝑉𝑟𝑒𝑓 is the reference wind speed (m/s), 𝐻 is the hub height (40m),

𝐻𝑟𝑒𝑓 is the height at which 𝑉𝑟𝑒𝑓 is measured (10m), and 𝛼 is an empirically derived coefficient that varies dependent

upon the stability of the atmosphere conditions (0.14). 

The power captured from the wind is then calculated using equation 8: 

𝑃 =
1

2
𝜌𝐴𝑉𝑊

3 (8) 

Where, 𝜌  is the density of air (1.223 kg/m3) and 𝐴 is the area of the rotor (50.26m2). The wind turbine is couplet 

to a permanent magnet generator and AC/DC inverter to convert the power in the wind into useful electrical energy.  

2.3. Regenerative Hydrogen Fuel Cell 

Theoretically, the electrolyser works as a reversed fuel cell. In the fuel cell, the voltage drops when current 

increases, where in the electrolyser the voltage rises when current increases as per equation 9 and 10. 

𝑉𝐹𝐶 = 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 − 𝐸𝑎𝑐𝑡 − 𝐸𝑜ℎ𝑚 − 𝐸𝑐𝑜𝑛𝑐 (9) 

𝑉𝑒𝑙𝑒 = 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 + 𝐸𝑎𝑐𝑡 + 𝐸𝑜ℎ𝑚 + 𝐸𝑐𝑜𝑛𝑐 (10) 

Where, 𝑉𝐹𝐶 is the fuel cell voltage (V), 𝑉𝑒𝑙𝑒 is the electrolyser voltage (V), 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 is the Nernst voltage (1.229V),

𝐸𝑎𝑐𝑡  is the activation overpotential (V), 𝐸𝑜ℎ𝑚  is the ohmic overpotential (V), and 𝐸𝑐𝑜𝑛𝑐  is the concentration

overpotential. The activation overpotential is found by: 

𝐸𝑎𝑐𝑡 = −2.3
𝑅𝑇

𝛼𝐹
log(𝑖0) +

𝑅𝑇

𝛼𝐹
log(𝑖) (11) 

Where, 𝑅 is the universal gas constant (8,314 J kmol-1 K-1), 𝑇 is the operating temperature (K), 𝛼 is the charge 

transfer coefficient, 𝐹 is the Faraday’s constant (96,485 A s mol-1), 𝑖0 is the exchange current density (A cm-2), and 𝑖
is the operating current density (A cm-2). The ohmic overpotential is found by: 

𝐸𝑜ℎ𝑚 = 𝑖𝑅𝑖 (12) 

Where, 𝑅𝑖 is the cell internal resistance (Ω cm-2). The concentration overpotential is found by:

𝐸𝑐𝑜𝑛𝑐 =
𝑅𝑇

𝑛𝐹
ln (

𝑖𝐿

𝑖𝐿 − 𝑖
) (13) 

Where, 𝑛 is the number of electrons exchanged, and 𝑖𝐿 is the limiting current density (A cm-2). Table 1 shows the

additional parameters used for simulation of the Fuel Cell and Electrolyser model.  
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Table 1: Additional input variables for Fuel Cell and Electrolyser model 

Parameter Value Fuel Cell Value Electrolyser 

𝜶 1 0.23 

𝒊𝟎 3*10-6 A cm-2 4.5*10-2  A cm-2 

𝑹𝒊 0.15 Ω cm-2 0.21 Ω cm-2 

𝒊𝑳 1.6 A cm-2 2.2 A cm-2 

A variable load is implemented in the control system in order to calculate excess or shortage of renewable energy 

supply and determine the cheapest source of electricity to power the load.  

2.4. Levelised Cost of Electricity 

The Levelised Cost of Electricity (LCOE) is an important financial parameter to measure cost-effectiveness of 

energy generating technologies. Although LCOE calculations are highly sensitive to the underlying data, it offers a 

comparison between projects and technologies. LCOE aims to provide comparisons of different technologies with 

different project size, life time, different capital cost, return, risk, and capacities. It is an economic assessment of the 

total cost to build and operate a power-generating asset over its lifetime divided by the total energy output of the asset 

over that lifetime [93]. The LCOE is calculated by: 

𝐿𝐶𝑂𝐸 (
£

𝑘𝑊ℎ
) =

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒 𝑐𝑜𝑠𝑡 (£)

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝑊ℎ)
(14) 

The system is sized to provide year-round electricity to the inhabitants without power outages due to the 
intermittence of the Solar PV and Wind energy sources. Three cases are studied for storage and back-up power for 
the micro-grid are analysed: RHFC, Battery and Diesel generator (Genset). Additionally, LCOE for a micro-grid 
entirely powered by a Genset is studied. Information about the system sizing is shown in Table 2. Table 3 on page 6 
shows the capital costs for the technologies used for calculation of the systems lifecycle cost. 

Table 2: System sizing data 

System lifetime 20 yrs [13] 

Inflation rate 2.3 % [14] 

Installed capacity PV 70 kWDC,peak 

Installed capacity wind 91 kWrated 

Installed capacity FC 25 kWrated 

Installed capacity Storage 240.02 Kg H2 

Installed capacity EL 35 kWrated 

Installed capacity Genset 25 kWrated 
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Table 3: Initial capital cost for selected technologies 

Solar PV  £  1,241.11 per kWDC,peak [15] 

Wind Turbine  £  1,000.00 per kWrated [16] [17]

Fuel Cell  £  1,180.00 per kWrated [18] 

Electrolyser  £     940.00 per kWrated [19] 

Hydrogen storage  £     333.00 per Kg H2 stored [20]

Diesel Generator  £     650.00 per kWrated [21] 

Diesel  £         1.02 per Litre [21] 

Battery  £     180.00 per kWh [22] 

Besides capital costs, costs for shipping, local taxes and import charges apply to deploy an energy system in 

Senegal as shown in Table 4. During operation, technologies efficiency drops due to wear of materials, contamination 

etc. With a long system lifetime, these degradations should be taken into account as they influence the system energy 

generation or capacity over time. The annual degradation rates for the used technologies are shown in Table 5. 

Operation and maintenance (O&M) costs are essential for LCOE calculations as they will increase costs over the 

lifetime and are effected by inflation rates. O&M costs of the selected technologies are shown in Table 6. For 

comparison with lithium-ion battery and diesel generator, assumed constant efficiencies of 92.5% round-trip and 43% 

energy conversion for the Genset are used. 

Table 4: Assumed additional costs for deployment 

Cost per container  £ 1,700.00 

Import charges 10% 

VAT 18% 

Table 5: Degradation rates for selected technologies 

Solar PV degradation 0.50% [23]

Wind Turbine degradation 1.60% [24]

Fuel cell degradation 0.90% [25]

Electrolyser degradation 0.90% [25]

Battery degradation 1% [26]

Diesel generator 1% [27]

Table 6: O&M costs for selected technologies 

Solar PV 1.50% of Capital cost [28] 

Wind Turbine  £  50.00 per kW installed [29] 

Fuel Cell  £    0.03 per operating hour [30]

Electrolyser  £    0.03 per operating hour [30]

Battery 1% of Capital cost [31] 

Storage tank 0.50% of Capital cost 

Genset £   0.78 per operating hour [32]
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The first case analysed is for a system with an RHFC back-up system. In this system, excess energy is sent to an 

electrolyser to convert water into hydrogen. The hydrogen is then stored in an AB5-based metal-hydride for safe 

storage at low pressure and ambient temperature. Using an iterative process, the optimum storage capacity was found 

to be 8,000 kWh of hydrogen stored. As shown in Figure 2, this gives sufficient amount of storage to have hydrogen 

available at all time during the year. Based on the lower heating value of hydrogen (120 MJ/kg = 33.33 kWh/kg), the 

amount of hydrogen stored is then 240.02 kg.  

The second case analysed is for using a battery pack as back-up system. The battery size in ampere-hours (Ah) 

is calculated by:  

𝐶𝑛 =
𝐸𝐿 ∙ 𝐹

𝑀𝐷𝑂𝐷 ∙ 𝑇𝐶𝐹 ∙ 𝑉𝑛
(15) 

Where 𝐶𝑛 is the battery capacity in Ah, 𝐸𝐿 the average daily load, 𝐹 the days of storage required, 𝑀𝐷𝑂𝐷 the

maximum depth of discharge for the battery without damaging, 𝑇𝐶𝐹 the temperature correction factor (vary with 

battery type, lower temperatures limit the maximum allowable depth of discharge), and 𝑉𝑛  is the battery voltage

output. Chosen is a Lithium-Ion battery because of its stability at higher temperatures in Senegal [34]. Table 7 shows 

the values used for battery sizing calculation parameters in equation 15. 

Table 7: Battery size calculation values 

Parameter Value 

𝑬𝑳 360 kWh/day 

𝑭 10 days 

𝑴𝑫𝑶𝑫 80% 

𝑻𝑪𝑭 1.056 

𝑽𝒏 48 V 

The third case analysed is this of a diesel generator back-up system. A diesel generator is common to use in Sub-

Saharan Africa, despite the high fuel costs, noise and emissions.  

A fourth case is added to see how the renewable energy micro-grid compares to a micro-grid based on fossil fuel 

energy generation using only a diesel generator. Even though it is common to have a small diesel generator per 

household in Sub-Saharan Africa, it is becoming more popular to buy a bigger diesel generator with a small 

community to share costs and profits and hence lower LCOE compared to the reported 33 pence per kWh for 

household diesel generators [21].  

3. Results and discussion

Figure 1 shows the MATLAB/Simulink schematic. Solar Photovoltaics and a Wind Turbine are used to generate 

electricity to power the load of the 25kW micro-grid. Excess electricity is send to an Electrolyser to generate Hydrogen 

(H2). The H2 is stored as a solid in a Metal Hydride hydrogen tank at low pressure to avoid parasitic losses from 

compression. Whenever the load requirements are higher than the Solar PV/Wind generated, the Polymer Electrolyte 

Membrane (PEM) fuel cell supplies back-up power.  
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Figure 1: Schematic illustration of the MATLAB/Simulink model 

Figure shows the hydrogen state-of-charge throughout the year. It can be seen that during fall, when generation 

from Solar PV and Wind are low, the hydrogen storage gives sufficient storage to back-up the renewables and power 

the fuel cell. The electrolyser receives enough excess energy from the renewables to recharge the hydrogen storage 

reservoir.  

Figure 2 shows two simulation weeks. During week A, from 26 April to 2 May, Wind and Solar PV generate 

plenty excess energy to recharge the hydrogen reservoirs. During this week, the load is mainly powered by renewables 

and the fuel cell is barely required as a back-up. Therefore, the reservoir will be recharged for periods with less 

renewable energy available such as in week B. Week B, from 27 October to 2 November, is a period with low 

renewable energy generation. During the day, some Solar PV is available to power the load, but Wind energy is 

lacking. Therefore, the fuel cell is required to power the load. This can be seen in a depletion of the hydrogen storage 

reservoir, whose state-of-charge drops significantly during this week.  

Zooming in on a single day, it can be seen in Figure 3 that the fuel cell successfully follows the load when there 

is no energy available from renewable sources. The smart control system recognizes when electricity is generated by 

the renewables. In this case, the fuel cell will be tuned down so that the renewables have priority in powering the load. 

This is done for two reasons. First, this allows to keep hydrogen storage charged in case of emergencies and second, 

the electricity from renewables is cheaper per unit (p/kWh) and therefore the load is always powered by the cheapest 

source of electricity available. From the output of the simulations, LCOE is calculated. Including import charges and 

transport costs, the LCOE for the different scenarios are presented in Figure  and  

Table 8. 

As a back-up system for this configuration, the RHFC provides the lowest LCOE in combination with the 

PV/Wind system. Despite the high capital cost of the RHFC, the long lifetime provides a lower LCOE due to the 

amount of energy delivered over its lifetime Also its operation and maintenance cost are low, and because of its low 

maintenance requirements, logistics and reduced site-visits further simplify the autonomous system. 

Figure 2: Hydrogen State-of-Charge throughout the year
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Figure 2: MATLAB/Simulink simulation results for the weeks of A) 26 April – 2 May and B) 27 October – 2 November. When renewable energy 

is available, this is send to power the load. When there is an excess of renewable energy generated, this is send to the electrolyser to produce 

hydrogen (H2), as is visible when the hydrogen charge is represented by a ‘negative discharge’ of the Solid-Hydrogen Energy Storage modules. 

When renewable energy generation is not sufficient to power the load, the PEM Fuel Cell covers the load requirements. 

A) 

B) 

See Figure 3 for close-up 

Figure 3: Zoom-in on load-following Fuel Cell



10 G. Jansen et al. / Materials Today: Proceedings XX (2019) XXX–XXX

Table 8: Levelised Cost of Electricity (p/kWh) for 25kW small micro-grid near Dakar, Senegal 

PV/Wind/ 

RHFC 

PV/Wind/ 

Battery 

PV/Wind/ 

Genset 
Genset 

Capital cost       3.72  8.17     2.65  0.29  

O&M 1.76       3.38     2.99  3.14  

Fuel cost -   -            2.81     12.63  

Import 0.37  0.82  0.27  0.03  

VAT 0.67  1.47  0.48  0.05  

Shipping 0.19  0.27  0.23  0.34  

Total 6.71  14.11  9.42  16.18  

Figure 5: Levelised Cost of Electricity (p/kWh) for 25kW small micro-grid near Dakar, Senegal 

4. Conclusion

An autonomous renewable energy generating and back-up system is proposed and successfully validated using 

MATLAB/Simulink and experimental testing of individual components and the integrated system. The system 

provides the full load requirements of the cell phone tower throughout the year and can be scaled accordingly to 

provide electricity for small communities near the cell phone tower.  

LCOE calculations based on the outcomes of the MATLAB/Simulink model show the economic potential of an 

RHFC as back-up for micro-grids, allowing cheap and reliable electricity to rural areas in developing countries, with 

a LCOE of 6.71 p/kWh, RHFC is by far the cheapest back-up for this application. 
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