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ABSTRACT

In this paper, we propose a novel approach based on a sym-
metric fully convolutional network within pyramid pooling
(FCN-PP) for landslide mapping (LM). The proposed ap-
proach has three advantages. Firstly, this approach is auto-
matic and insensitive to noise because multivariate morpho-
logical reconstruction (MMR) is used for image preprocess-
ing. Secondly, it is able to take into account features from
multiple convolutional layers and explore efficiently the con-
text of images, which leads to a good tradeoff between wider
receptive field and the use of context. Finally, the selected
pyramid pooling module addresses the drawback of global
pooling employed by convolutional neural network (CNN),
fully convolutional network (FCN), U-Net, etc. Experimental
results show that the proposed FCN-PP is effective for LM,
and it outperforms state-of-the-art approaches in terms of
four metrics, Precision, Recall, F-score, and Accuracy.

Index Terms— Convolutional neural network (CNN),
change detection, landslide mapping (LM), Multivariate mor-
phological reconstruction (MMR).

1. INTRODUCTION

Landslides are important geomorphic agents that occur over a
wide variety of spatial and temporal scales in many moun-
tains, and thus reshape the landscape and change local to-
pography [1]. Landslide mapping (LM) focuses on outlin-
ing slide boundaries, neglecting the wealth of information re-
vealed by internal deformation features. Traditional LM ap-
proaches rely on visual interpretation of aerial photographs
and intensive field surveys, which are highly labor-intensive
and time-consuming for mapping of large areas. With the
rapid progress of machine learning and remote sensing tech-
nology, a large number of advanced approaches used for LM
have been proposed in recent years. Most of them depend
on change detection that aims to detect the changed informa-
tion of target at areas by analyzing the multi-temporal im-
ages acquired in different time of the same geographical area

[2]. The popular ones can be roughly divided into three cat-
egories: threshold-based approaches [3, 4], approaches based
on feature extraction and feature classification [5-7], and deep
learning approaches [8-10].

The approaches in the first category can generate landslide
areas by computing one or more thresholds used for the dif-
ference image of a pair of bi-temporal images. However, they
are sensitive to noise and have a low robustness for different
landslide images.

The second category of approaches is often composed of
two parts, feature extraction and the feature classification.
Most of them use unsupervised learning algorithms, such as
k-means, FCM, GMM, etc. [11] to achieve change detec-
tion for a difference image of bi-temporal images. Because
the difference image includes lots of noise caused by imaging
devices or illumination, some image pre-processing and post-
processing operations are necessary to improve LM results.
Li et al. [5] employed edge-based level set evolution (ELSE)
and region-based level set evolution (RLSE) to track initial
change detection profiles, leading to better landslide candi-
date areas and LM results. Furthermore, they also proposed
change detection based on Markov random field (CDMRF)
for LM [6]. However, the performance of ELSE, RLSE, and
CDMREF seriously depend on the quality of difference images
and parameter selection. To reduce much dependencies, Lei
et al. [7] employed morphological reconstruction and a fast
clustering approach to distinguish changed and unchanged
areas for LM. The method provides better LM results than
ELSE, RLSE, and CDFCM.

Based on deep learning technologies, Gong et al. [12]
proposed a change detection approach using a deep neural
network for synthetic aperture radar images. As the proposed
network architecture included only a few hidden layers, and
it adopted full connection without using convolutional opera-
tion, the context of images is utilized inefficiently. Moreover,
it is difficult to train the network due to the full connection. To
obtain better results, Liu et al. [13] proposed a new deep con-
volutional coupling network that is fully unsupervised with-



out using any labels. To apply deep learning technologies to
landslide recognition, Ding et al. [14] used convolutional neu-
ral network (CNN) and texture change detection to recognize
landslides. Because CNN employs multiple pooling layers
and a fully connectional layer to achieve classification tasks,
the final result is coarse and has a low recognition accuracy.

To address the aforementioned issues, we propose a sym-
metric fully convolutional network within pyramid pooling
(FCN-PP) that is able to learn better image features to im-
prove LM results. Before applying the FCN-PP, a multivariate
morphological reconstruction (MMR) [15] is performed on
training or testing images. Our main contributions are sum-
marized as follows:

1. We design a powerful deep convolutional network that
is able to tradeoff the use of context and the localization
accuracy, and the network has an elegant architecture.

2. We propose an end-to-end change detection approach
that requires only a small number of training samples
but provides high recognition accuracy for LM.

2. METHODOLOGY

The proposed approach is composed of two parts. The first
part is image preprocessing using MMR [15]. Because a
pair of bi-temporal high-resolution remote sensing images are
captured at different time, different imagery environmental
factors lead to a poor difference image that usually includes
many falsely changed areas or misses truly changed areas.
Therefore, it is necessary to implement image filtering for
preprocessing. The second part is to construct a deep convo-
lutional network that is able to utilize the context efficiently
and provides high localization accuracy for LM.

2.1. The network structure of FCN-PP

In fact, change detection-based LM can be considered as an
image segmentation task. Because the final output only in-
cludes changed and unchanged areas, the task is a pixel-level
binary classification, i.e., a binary segmentation task. The
typical use of deep convolutional networks is on classifica-
tion tasks. However, pixel-level classification task (semantic
segmentation) is more complex due to the requirement of lo-
calization.

Although CNN is able to achieve effective image clas-
sifications, it provides a poor result on image segmentation
since it employs global pooling and misses the spatial infor-
mation of images. Fully connectional networks (FCN) [16]
overcomes the problem by taking into account the features
from multiple convolutional layers, which results in a better
localization and the use of context. Consequently, FCN pro-
vides better image segmentation results than CNN. Inspired
by the idea of FCN, we presented a fully convolutional net-
work within pyramid pooling (FCN-PP) to obtain better LM

results. The proposed FCN-PP is able to capture wider re-
ceptive field, it eventually overcomes the drawback of global
pooling. Fig. 1 shows the proposed network structure.
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Fig. 1: Structure of FCN-PP. It is a symmetric fully convolu-
tional network, includes four pooling layers and four decon-
volutional layers.

In Fig. 1, the FCN-PP similarly yields a U-shape archi-
tecture that includes four pooling layers and corresponding
four deconvolutional (upsampling) layers. It also has a ele-
gant architecture structuring because pooling layers on the left
and upsampling layers on the right are symmetric. Further-
more, the pyramid pooling module is integrated into FCN-PP
to overcome the global pooling problem.

We choose a three-level pyramid pooling module that in-
cludes three different scales (convolutional kernels: 10 x 10,
20 x 20, and 30 x 30; strides: 10, 20, and 30), where the first
scale (10 x 10) is marked by cyan color, the second and the
third scale (20 x 20, 30 x 30) marked by purple and yellow,
respectively. Then, we use 1 x 1 convolution to reduce the
dimension of the three different-size feature maps to achieve
upsampling. Here, bilinear interpolation is used for upsam-
pling to obtain feature maps with same size as the original
feature map. The final output of pyramid module is a fu-
sion result of multi-level feature maps. The average pooling
is chosen in the pyramid module as it provides better global
information than the max-pooling.

2.2. The analysis of FCN-PP

To verify the validity of the pyramid pooling module for land-
slide feature learning, we extract the outputs from convolu-
tional layer at different scales. Fig. 2 shows that a large con-
volutional kernel means a wider received field that is helpful
for global feature representation, while, a small convolutional
kernel means a narrower received field that is helpful for local
feature representation. We combine different scaled features
to achieve a stronger feature representation than single-scale
feature learning. As landslide areas have a serious spatial un-
certainty, it is difficult to learn effective landslide features.



The pyramid pooling module is able to address this difficulty
and it is suitable for feature learning of landslide areas.
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Fig. 2: Pyramid pooling module.

In Fig. 2, the input is the same as feature maps of FCN,
which are pooled by different-size convolutional kernels.
Then these results are upsampled and fused with the input
feature maps, leading to a final output with more accurate
localization and better semantic information than the input
feature maps of FCN. Consequently, the proposed FCN-
PP achieves a tradeoff between the use of context and the
localization accuracy, making an improvement over CNN
approaches in LM. Moreover, the elegant architecture leads
to the requirement of a small number of training samples.

3. EXPERIMENTS

The proposed FCN-PP is compared with two groups of popu-
lar approaches, i.e., traditional approaches (ELSE [5], RLSE
[5], CDMREF [6], and CDFFCM [7]) and deep learning ap-
proaches (CNN [14], FCN [16], and U-Net [17]), for LM. The
first group of comparative approaches is implemented with
MATLAB 2017b and the second group is implemented with
PyTorch on a workstaion with Intel Xeon CPU E5-1620v4,
3.5GHz, 4 cores, 64GB RAM, double NVIDIA GTX 1080
GPU. In our experiments, the parameter values of the first
group of comparative approaches follow the original papers.
In the proposed FCN-PP, the stochastic gradient descent with
a constant learning rate of 1x 10, weight decay of 5x 1074,
momentum of 0.99, mini-batch size of 4, and epochs of 30
were used to train the proposed network. In addition, the
structure element in MMR is a disk of size 1 x 1.

3.1. Data description

Five pairs of bi-temporal images on A-E areas in Hong Kong,
were captured by the Zeiss RMK TOP 15 Aerial Survey Cam-
era System at a flying height of approximately 2.4km on De-
cember 2007 and on November 2014, respectively [3]. Due
to the geometrical resolution of bi-temporal images is 0.5m,
the captured images have a large size. We cropped A-E ar-
eas to obtain five interesting areas. The size of A-E areas are

750 x 950, 1252 x 2199, 923 x 593, 1107 x 743, 826 x 725,
respectively. Because it is impossible to build a large dataset
of bitemporal landslide images, we built a small dataset that
is considered as training set in this paper. To distinguish the
training data and testing data, we first cropped three typi-
cal areas from A-C areas, where different kinds of landslide
occur. The rest of A-C areas and D-E areas are then used

for training data. We got 139 training images that are over-
lapped. To increase the training data, each image is rotated by
£30°, horizontally and vertically flipped, sheared by +30°,
and scaled to 80% and 125% of its original size but the final
image size is the original size. Finally, we get 1,112 training
image pairs of size 473 x 473 and 3 testing image pairs.

Fig. 3: Comparison of results on the A-area using different
approaches, where the red areas are true-detected landslides,
the cyan areas are false-detected landslides, and the blue areas
are true-missed landslides. (a) The pre-event image. (b) The
post-event image. (c) The difference image. (d) The ground-
truth. (e) ELSE. (f) RLSE. (g) CDMRE. (h) CDFFCM. (i)
CNN. (j) FCN. (k) U-Net. (1) FCN-PP.

3.2. Results and analysis

Due to the limitation of length of the paper, we only present
the comparative results of A-area and B-area. Figs. 3 (a-
b) and Figs. 4 (a-b) show two pairs of bi-temporal images.
We can see that the landslide areas are simple and contin-
uous in Fig. 3d but they are complex and discontinuous in
Fig. 4d. Therefore, it is more difficult to extract the land-
slide areas in Fig. 4b than in Fig. 3b using traditional ap-
proaches. Fig. 3c and Fig. 4c show the difference images
of pre-event and post-event images. It is clear that each dif-
ference image includes lots of noises that influence the de-
tection of the true landslides areas. Figs. 3 (e-h) and Figs.
4 (e-h) show landslide areas detected by four conventional
approaches, ELSE, RLSE, CDMREF, and CDFFCM. Because



Fig. 4: Comparison of results on the B-area using different
approaches, where the red areas are true-detected landslides,
the cyan areas are false-detected landslides, and the blue areas
are true-missed landslides. (a) The pre-event image. (b) The
post-event image. (c) The difference image. (d) The ground-
truth. (e) ELSE. (f) RLSE. (g) CDMREF. (h) CDFFCM. (i)
CNN. (j) FCN. (k) U-Net. (1) FCN-PP.

ELSE, RLSE, and CDMRF employ general image segmenta-
tion models to achieve LM, they are sensitive to noise. The
detected landslide areas include lots of discontinuous areas
that are continuous in ground truths. Although CDFFCM ad-
dresses the problem by using image filtering and improved
FCM algorithm that incorporates spatial information of im-
ages into its objective function, some false landslide areas are
detected as shown in Fig. 3h and Fig. 4h. Compared with
unsupervised learning approaches, CNN is able to capture the
semantic information of landslide areas, but the detected ar-
eas are coarse as shown in Fig. 3i and Fig. 4i. FCN provides
better results than CNN and four unsupervised learning ap-
proaches, for FCN can capture the semantic information of
landslide areas and obtain more accurate localization infor-
mation. However, the detail of landslide areas are smoothed
in Fig. 3i and Fig. 4i, since the global pooling is adopted by
FCN. The proposed FCN-PP provides the best results that are
similar to ground truths.

For quantitative evaluation of the proposed FCN-PP, we
compare experimental results with ground truths according
to four performance indices: Precision, Recall, F-score,
Accuracy [18, 19]. The experimental results are shown in
Tables 1-2. It can be seen that Precision and Recall are
inconsistent for the evaluation of results. The ELSE, RLSE,
and CDMREF obtain high Precision but low Recall values,
while the CDFFCM obtains low Precision but high Recall
values. Considering that F-score, and Accuracy evaluate
the overall performance of an approach, amongst the unsu-
pervised approaches, CDFFCM is superior to ELSE, RLSE,

Table 1. QUANTITATIVE RESULTS FOR A-AREA. LARGER
VALUES ARE BETTER FOR Precision, Recall, F'-score, AND
Accuracy. THE BEST VALUES ARE IN BOLD.

Methods Precision Recall F-score Accuracy
ELSE 86.79 74.02 79.90 66.53
RLSE 86.61 75.87 80.89 67.91
CDMRF 84.89 79.15 81.92 69.38
CDFFCM 79.30 91.01 84.75 73.54
CNN 75.47 62.16 68.17 51.71
FCN 79.10 88.45 83.51 71.69
U-Net 85.65 83.92 84.78 73.58
FCN-PP 89.84 90.32 90.08 81.95

Table 2. QUANTITATIVE RESULTS FOR B-AREA. LARGER
VALUES ARE BETTER FOR Precision, Recall, F'-score, AND
Accuracy. THE BEST VALUES ARE IN BOLD.

Methods Precision Recall F-score Accuracy
ELSE 91.24 51.29 65.67 48.89
RLSE 91.14 56.00 69.37 53.10
CDMRF 87.42 60.01 71.17 55.24
CDFFCM 73.52 88.42 80.28 67.06
CNN 71.44 51.44 59.82 42.67
FCN 83.94 84.39 84.17 72.66
U-Net 87.88 87.93 87.91 78.42
FCN-PP 96.03 95.62 95.82 91.99

and CDMREF according to Tables 1-2. Amongst the existing
approaches based on deep learning, CNN provides low per-
formance indices, FCN is superior to CNN but worse than
FCN, according to Tables 1-2. What is abundantly clear that
the proposed FCN-PP obtains the best experimental data in
Tables 1-2, for each performance index. From Figs. 3-4 and
Tables 1-2, we can see that FCN-PP can provide excellent
LM results, since the deep convolutional features overcomes
the spatial uncertainty of landslides and the pyramid pooling
addresses the difficulty of accurate localization of landslides.

4. CONCLUSION

In this work, we have proposed a fully convolutional net-
work within pyramid pooling (FCN-PP) for LM. The FCN-
PP adopts multiple layer connection to incorporate the low-
and high-dimensional features into the final feature map. The
pyramid pooling module is integrated into the FCN-PP and
is able to efficiently exploit the spatial multiscale features of
landslide areas, which addresses the drawback of global pool-
ing and thus outputs a better feature map with stronger feature
representation capability than CNN, FCN, and U-Net. Ex-
perimental results show that the proposed FCN-PP generates
satisfactory LM results without hard-tuning parameters, the
FCN-PP clearly outperforms state-of-the-art approaches for
LM.
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