Measurement of shear strength for marine clay

2

1

3 Abstract

4 In this study a series of fall cone tests were carried out to investigate the undrained 5 shear strength of soil involved in submarine landslides. Two different remoulded soils, 6 Kaolin Clay and a natural submarine soft clay collected from the Red Sea (WND), 7 were measured, using three different cones with masses of 80 g, 20 g, and 13.6 g. To 8 eliminate the buoyant effect, all the data has been converted into modified shear 9 strength. The relationship between the modified shear strength and the liquidity index 10 can be described by a unique power law function for a given soil. On the other hand, 11 when the liquidity index is above 1.5, the modified shear strength begins to deviate 12 from the original data. The maximum difference is about 20% for Kaolin Clay and 30% 13 for WND. Hence, the buoyant effect must be considered when using the fall cone test 14 to measure extremely soft clay. Furthermore, the effects of salt were well captured by 15 the control group experiment, and the result shows that adding 3.5% salt into water 16 increased the shear strength for both clay samples, but WND is more sensitive to 17 changes in salinity.

18

19 Keywords:

²⁰ Shear strength; Laboratory tests; Clay; Offshore engineering

22 Notation

- 23 a, b material constants, describing the variation of s_u as a function of LI
- 24 h penetration depth of fall cone
- 25 K fall cone factor
- 26 LI liquidity index
- 27 Q weight of the cone
- 28 R_{MW} material constant
- 29 R^2 coefficient of determination
- 30 S_u shear strength at the strain rate of $\dot{\gamma}$
- 31 $S_{u,l}$ undrained shear strength at the liquid limit;
- 32 $S_{u,ref}$ reference shear strength at the reference strain rate of $\dot{\gamma}_{ref}$
- 33 $\dot{\gamma}$ strain rate
- 34 $\dot{\gamma}_{ref}$ reference strain rate
- 35 μ parameter describing the variation of s_u as function of $\dot{\gamma}$
- δ inclination of the heave surface in degrees

37

38 1. Introduction

³⁹ Due to ever increasing human activity in offshore areas, submarine landslides have ⁴⁰ attracted increasing attention. The causes of submarine landslides vary according to ⁴¹ both the geomechanical attributes of landslide material, and transient environmental 42 changes affecting the submarine environment. Some submarine landslides occur due 43 to gas hydrate dissociation, which causes an increase in pore water pressure over a 44 short period of time, and meanwhile decreases the resisting shear strength. Some 45 other triggering events of submarine landslides include the rapid accumulation of 46 sedimentary deposits, submarine earthquakes, and loading from tsunamis, all of 47 which lead to a sharp increase of the downward driving stress. Common to all of 48 these cases is a change in the downslope driving stress so that it exceeds the resisting 49 strength of the marine clay which forms the seafloor slope material. Therefore, the 50 undrained shear strength of marine clay plays an essential role in submarine 51 landslides, and is of great concern for geotechnical and submarine engineering. The 52 shear strength of marine clay near the seabed is significantly small, probably due to 53 its high water content. This paper aims to estimate the undrained shear strength of 54 remoulded marine clays, based on shear strength measurements conducted on two 55 different types of clay, which varied the conditions relevant to soil with solid 56 behaviour to those relevant to soils with fluid-like behaviour, (especially for soils 57 with a liquidity limit greater than 1) which corresponds to the whole process of 58 submarine landslides.

59

Muir Wood (1990) provided a basis for the widely accepted and quoted framework ofthe undrained shear strength model:

62

$$S_{u} = S_{u,l} R_{MW}^{(1-LI)}$$
(1)

 63 where $S_{u,l}$ is the undrained shear strength at the liquid limit, R_{MW} is a material

⁶⁴ constant, and LI is the liquidity index, which can be defined as:

 $LI = \frac{w - w_p}{w_l - w_p} \tag{2}$

⁶⁶ where w is the water content, w_p is the plastic limit, and w_l is the liquid limit.

67

65

68 Much research has been conducted to estimate R_{MW} for different kinds of soils. Muir 69 Wood (1990) postulated that R_{MW} is a function of clay mineralogy, based on data 70 from Dumbleton & West (1970) in which R_{MW} is close to 100 for montmorillonitic 71 soils and 30 for kaolinitic soils. Whyte (1982) suggested that for particular Swedish 72 clays the ratio was about 70, while Karlsson (1977) indicated that this ratio is between 73 50 and 100. Using the fall cone test, Koumoto & Houlsby (2001) obtained a value of 74 approximately 44 based on data from only six clays. O'Kelly (2013) reported that 75 R_{MW} can vary widely between different types of soils. Based on vane shear strengths, 76 he presented R_{MW} =43–128 for 14 mineral soils, and R_{MW} =10–27 for four organic 77 sediments. Recently, based on a database of 641 fall cone tests on 101 soil samples, 78 Vardanega & Haigh (2014) found an average ratio of 35, instead of the 100-fold factor 79 that was considered to overestimate the measured data of the soil strength.

80

Some other researchers have proposed that the evolution of the undrained shear
strength can be written as a power function of the liquidity index:

83

 $S_{u} = aLI^{-b}$ (3)

where the parameters a and b are material constants. In addition to fall cone tests, the
viscometer test is often used to test the strength of high water content clay soils. The

86 viscosity of sensitive clays was first related to remoulded undrained shear strength by 87 Eden and Kubota (1962), who used a rotating coaxial viscometer to measure the 88 remoulded shear strength. By using the fall cone test and viscometer test, Locat & 89 Demers (1988) developed the shear strengths of soils with LI in the range 1.5-6 90 within this framework, using parameters a = 1.46 kPa and b = 2.44. Jeong et al. 91 (2009) studied the shear strengths of soils of different origins and characteristics, and 92 the results showed that the power law applies to all these soils, but the power law 93 index varies for different kinds of soil. For a clay sample from eastern Canada, Jeong 94 et al. (2009) proposed values of a = 0.90 kPa and b = 3.4. In order to measure the 95 strength of fine-grained soils at the solid-fluid transition, Boukpeti et al. (2012) 96 carried out a series of intrusive tests, including fall cone tests, vane shear tests, T-bar, 97 and ball penetrometer tests. The results showed that the power function fits the test 98 data quite well for Kaolin when a = 1.71 kPa and b = 2.64, and for Burswood (a 99 natural soft clay collected from the Burswood site) when a = 1.34 kPa and 100 b = 4.03. Another similar relationship was reported by Leroueil et al. (1983) from fall 101 cone measurements on a variety of clays from Canada and other places, which 102 showed a general equation for values of LI between 0.4 and 3 of

103

 $S_u = 1/(LI - 0.21)^2$ (4)

104

¹⁰⁵ To summarize the relationships between the undrained strength and the liquidity index, ¹⁰⁶ Table 1 shows the shear strength (S_u) models and the range of applications of ¹⁰⁷ liquidity index (LI) from the literature.

108

Table 1. Published strength-liquidity index correlations for remoulded soils

Table 1 clearly shows that most published relationships based on exponential functions apply to clays with a water content below or around the liquidity index $(LI \le 1.8)$, and other data with a high liquidity index can be fitted using power functions. Therefore, the water content is a critical criterion in choosing the shear strength model. Besides the water content, there are other factors that play important roles in the shear strength of marine clay, as discussed below.

116

• Buoyant effect

¹¹⁸ One of the important roles is probably the buoyant effect. It may account for only ¹¹⁹ about a 1.5% decrease in the fall cone factor K (Koumoto & Houlsby, 2001). K can be ¹²⁰ calculated by the cone angle β (K = $\frac{g}{\pi} \cos^2 \frac{\beta}{2} \cot \frac{\beta}{2}$), where g is acceleration due to ¹²¹ gravity. This conclusion applies in the standard fall cone test, in which the soil shear ¹²² strength is large enough to render the buoyant force negligible. However, the clay in ¹²³ this research is very soft, and hence the buoyant effect may be much larger than in the ¹²⁴ other traditional fall cone tests.

125

• Strain rate

It is a widely accepted view that the strain rate has a significant effect on the soil
strength (Berre & Bjerrum, 1973; Vaid & Campanella, 1977; Biscontin & Pestana,
2001; Einav & Randolph, 2005; Boukpeti, 2012). A commonly used relationship

between the shear strength and the shear strain rate is expressed as (Graham et al.,

131 1983; Biscontin & Pestana, 2001; Lunne & Andersen, 2007; Boukpeti, 2012):

132
$$S_{u} = S_{u,ref} \times (1.0 + \mu \log \frac{\dot{\gamma}}{\dot{\gamma}_{ref}})$$
(5)

where S_u is the shear strength at the strain rate of $\dot{\gamma}$, $S_{u,ref}$ is the reference shear strength at the reference strain rate of $\dot{\gamma}_{ref}$, and μ is a parameter ranging in value from 0.1 to 0.2, according to the results published by Graham et al. (1983), Lefebvre & Leboeuf (1987), and Lunne & Andersen (2007).

137

• Test methodology

139 Different test methodologies tend to produce differences in the measured soil shear 140 strength. Chandler (1988) used the vane and viscometer tests as an explanatory 141 example. A viscometer instrument is initially used to measure the viscosity of a fluid. 142 Viscometers only measure under a flow condition. The device is first pushed into the 143 soil, leading to local remoulding and changes in stress, after which a waiting period is 144 allowed before the vane is rotated at a given rate. The strength calculated from the 145 measured torque is influenced by the details of the test, including the waiting time and 146 the rotation rate. Boukpeti (2012) measured the shear strength of remoulded samples 147 of Kaolin and Burswood Clay by a series of fall cone, vane shear and viscometer, 148 T-bar and ball penetrometer tests. This paper highlighted the wide range of strain rates 149 involved in different test methodologies, and showed the reliability and consistency of 150 data after adopting a material model that captures rate dependence.

• Temperature Condition

Tests run at NGI (2009) showed that a lower temperature results in higher shear strengths. The results showed that, for three of the clays, the undrained shear strength was 23–31% higher when the tests were run at the in-situ temperature, +0.5°C, compared to tests run at room temperature (20°C).

157

• Salt concentration

The geotechnical behaviour of fine-grained soils depends on the chemistry of the pore fluid (Ajalloeian et al., 2013). According to laboratory tests performed by Warkentin & Yong (1962), differences in the inter-particle forces in the clay-water-ion system are reflected in differences in the shear strength. The shear strength parameters have a different meaning for different clays, but it is a commonly accepted concept that they can be related to inter-particle forces.

165

• Soil composition and structure

Soil composition refers to the mineralogy, grain size, grain size distribution, and the 167 shape of soil particles, as well as the pore fluid type and content, and ions present in 168 the grains and in the pore fluid. Soil structure refers to the arrangement of particles 169 within the soil mass, including the way in which the soil particles are packed or 170 distributed. Features such layers, joints, fissures, slickensides, voids. 171 as pockets, cementation, etc., are part of the soil structure. However, in the fall cone test, 172 most of these aspects of soil structure will be eliminated by the remoulding of the soil. 173

2. Soils tested and sample preparation

176 2.1 Fall cone tests

The shear strengths of two different types of clay sample, Kaolin Clay and WND, 177 were measured in the laboratory. Kaolin Clay was prepared by mixing kaolin powder 178 with fresh water to achieve a slurry with a water content of 64% (LI: 0.94). 179 Subsequent samples with higher water contents were obtained by successively adding 180 water to the base sample. Following this procedure, samples with higher water 181 contents were prepared by successively adding water to the base sample to obtain new 182 samples with water contents of up to 166% (LI: 2.54). All clay slurries were mixed by 183 hand until the mixture achieved a uniform consistency. The environmental 184 temperature was controlled at 21°C during the fall cone test, in accordance with BSI 185 (1990), to eliminate the effect of temperature. 186

187

In order to avoid errors introduced by using different test methodologies, only one intrusive test method (fall cone test) was used to investigate the undrained shear strength of all the soil samples. Index properties of the two types of soils, such as the liquid limit and plastic limit, were determined by the fall cone test and rolling test (Table 2).

193

Table 2. Soil index properties

9

In this research, a conventional 80 g cone with a cone angle $\alpha = 30^{\circ}$ was used. However, the lower strength limit of the fall cone was about 400 Pa, as at this strength the cone will penetrate to the base of the cup. This value is still too high for soft marine clays with a high water content. Accordingly, two light cones with the same cone angle $\alpha = 30^{\circ}$ were developed and made from aluminium, with masses of 20 g and 13.6 g, as shown in Figure 1. The constant geometric shape of the different cones avoided differences in the remoulding effects during the test.

- 202
- 203

Figure 1. Three different cones used in the research

205

204

Hansbo (1957) expressed the shear strength function of fall cone dynamic penetrationdepth h in mm, as:

208

$$S_{u} = \frac{KQ}{h^{2}}$$
(6)

where Q is the weight of the cone. Through data from Skempton & Northey (1952), Wroth & Wood (1978) proposed the following assumption: (a) the shear strength of soil at the liquid limit is about 1.7 kPa; (b) the shear strength at the plastic limit is 100 times larger, at 170 kPa. In the British Standard (BS1377-2, 1990), the liquid limit tested by the fall cone is determined by an 80 g cone with a 30 ° cone angle that penetrates 20 mm into a soil sample. These assumptions, combined with the critical state relations, yield the idealized relationship:

$$S_{\rm u} = \left(\frac{20}{\rm h}\right)^2 \times 1.7 \rm kPa \tag{7}$$

As mentioned above, it can be seen that the K value is constant for cones with the 219 same apex angle. Therefore, combining Equation (6) into Equation (7) gives the 220 undrained shear strength equation for cones of 20 g and 13.6 g, respectively:

221 for 20 g cone:
$$S_u = \left(\frac{10}{h}\right)^2 \times 1.7 \text{kPa}$$
 (8)

222 for 13.6 g cone:
$$S_u = \left(\frac{8.25}{h}\right)^2 \times 1.7 \text{kPa}$$
 (9)

223

2.2 Buoyant effect 224

A simplified schematic diagram of the fall cone test is shown in Figure 2. The 225 geometry of the cone test is described by two variables: the cone angle β , and the 226 penetration depth h. 227

228

Figure 2. Buoyant effect in the fall cone test: (a) simplified schematic diagram of 229

the fall cone test; (b) ratio of buoyant force to friction 230

The buoyant force exerted by the pore water on the cone can be written as: 231

232
$$F_{b} = \frac{1}{3}\pi \cdot \tan^{2}(\beta/2) \cdot h^{3} \cdot g \cdot \rho_{water}$$
(10)

233 where g is the gravity acceleration, and ρ_{water} is the water density.

234

235 On the other hand, the component of friction in the vertical direction is simplified as 236 the product of the penetration surface and the undrained shear strain:

237
$$F_s = \pi \cdot \tan(\beta/2) \cdot h^2 \cdot S_u$$
(11)

In order to evaluate the buoyant effect, the ratio of buoyant force to friction is 238 239 calculated as shown in Figure 2(b). It is shown that the ratio of buoyant force to friction has a linear relationship with the penetration depth and undrained shear 240

strength. When the penetration depth reaches 30 mm and the undrained shear strength
is 0.1 kPa, the magnitude of the buoyant force exerted on the cone accounts for 26%
of the friction. Hence, it is necessary to consider the buoyant effect in this research.
The modified shear strength can be written as:

245
$$S'_{u} = S_{u} - \frac{1}{3} \tan(\beta/2) \cdot h \cdot g \cdot \rho_{water}$$
(12)

246

247 2.3 Effects of strain rate

Although having the same geometric shape, the three different cones would still cause different shear strain rates when measuring the same soil sample, and hence it is worth quantitatively analysing the effect of strain rate on the shear strength. Houlsby (1982), Koumoto & Houlsby (2001) estimated the strain rate in the fall cone test, $\dot{\gamma}$, as:

253
$$\dot{\gamma} = \frac{2\delta}{2.44} \sqrt{\frac{g\sqrt{3}}{h}}$$
(13)

where g is the gravitational acceleration (unit: m/s^2), δ is the inclination of the 254 heave surface in degrees where the calculated value of δ for the 30⁰ cone is taken 255 as 7.87, and h is the penetration depth of the cone in mm. The reference strain rate 256 was taken to be 1.0×10^6 %/h, corresponding to a penetration rate of the 30^o apex 257 of the fall cone (Koumoto & Houlsby, 2001). The strain rate of this series of fall cone 258 tests is calculated using Equation 13 and is shown in Figure 3. It can be seen that 259 using different cones can lead to a difference in the shear strain rate. When using an 260 80g cone, the strain rate is about $3.0 \times 10^5 \%/h - 4.0 \times 10^5 \%/h$ lower than other 261 tests. On the other hand, this difference only leads to a small change in the shear 262

268	Figure 3. Strain rate in the fall cone test: (a) Kaolin; (b) WND
267	
266	the reference strain rate of $1.0 \times 10^6 $ %/ h .
265	effect, all the shear strength data was transformed according to Equation 5, based on
264	different cones on measuring shear strength is very limited. To eliminate this limited
263	strength according to Equation 5, ranging from 0% to 2%. Hence, the effect of using

```
270 2.4 Effects of salinity
```

Considering that in reality marine clay incorporates salt water, control experiments
were also conducted to test the effect of salinity on the undrained shear strength.
Another group of soil samples were mixed using salt water. The salt water was
prepared at a salt (sodium chloride) concentration of 3.5%, which is the average
salinity of seawater.

3. Results and discussions

The shear strength data collected from all three different cones is combined in Figure 4, for Kaolin Clay and WND sediment. The modified shear strength is calculated based on the original data, using Equation 12. The data extends over a water content range between 64.47% and 142.55% for Kaolin (LI between 0.94 and 3.47), and between 93.79% and 165.92% for WND (LI between 1.02 and 2.54). For Kaolin Clay, the data collected using the 80 g cone covered a range of liquidity indexes between 0.94 and 2, the 20 g cone covered a range of liquidity indexes between 1.1 and 2.64, and the 13.6 g cone covered a range of liquidity indexes between 2.22 and 3.47. For WND the data collected using the 80 g cone covered a range of liquidity indexes between 1.02 and 1.71, the 20 g cone covered a range of liquidity indexes between 1.24 and 2.03, and the 13.6 g cone covered a range of liquidity indexes between 1.77 and 2.54.

289

Figure 4. Relationship between the undrained shear strength and liquidity index

It has been shown that both original and modified shear strength decrease as the water 292 293 content for each soil increases. Using the liquidity index, LI, the relationship can be represented by a power function similar to Equation 3. The parameters a and b for 294 each soil are given in Table 3. The coefficient of determination, R², is also listed, 295 296 which indicates a very small scatter in the data obtained with the fall cone tests. As shown in Figure 4, the original and modified trend lines of the two kinds of clay 297 almost overlap each other when the liquidity index is under 1.5, which indicates that 298 299 the buoyant effect is very limited in this range. However, when liquidity index is above 1.5, the modified shear strength begins to deviate from the original data due to 300 the ratio of buoyant force to friction increasing as the shear strength of soil decreases. 301 The maximum difference can be about 20% for Kaolin Clay and 30% for WND. 302 Hence, the buoyant effect must be considered when using the fall cone test to measure 303 extremely soft clay. 304

305

306

Table 3. Parameter describing S_u as a function of LI

308	Figure 5 compares the undrained shear strength at the overlap regions of the liquidity
309	index with different cones, in order to demonstrate the consistency of the shear
310	strength data collected using cones of different weights.
311	
312	
313	(a) Original shear strength of Kaolin Clay
314	
315	(b) Modified shear strength of WND
316	Figure 5. Comparison of shear strengths measured using different cones
317	
318	The modified shear strengths collected using different cones agreed with each other
319	quite well at the overlap regions of the liquidity index. Assuming that the shear
320	strength can be approximated using a power function, as previously discussed, the
321	correlation coefficient could be calculated to quantify the amount of scattering in the
322	data obtained using different cones. All of these values were close to 1.0, as given in
323	Table 3, which indicates that from a quantitative point of view there is a good match
324	between data measured using different fall cones.
325	
326	By plotting the relationships proposed by Wroth & Muir Wood, (1978) for the LI
327	range below 1, Leroueil et al. (1983) for the LI range 0.4-3 and Locat & Demers
328	(1988) for LI range 1.5-6, as shown in Figure 6, it was found that the original shear
329	strength of the Kaolin Clay fits well with the relationship proposed by Leroueil et al.

330	This is higher than Locat & Demers's prediction, especially in soils with a high water
331	content. However, the modified shear strength of Kaolin Clay is closer to the data
332	from Locat & Demers (1988). This is partly because Locat & Demers' results are
333	from viscometric tests, on which the buoyant force has a very limited effect. Hence, it
334	is concluded that, when considering the buoyant effect, the fall cone test results can be
335	very close to the viscometric tests when testing the undrained shear strength of soft
336	clay. On the other hand, the modified shear strength of WND was much lower than
337	the Kaolin Clay with the same liquidity index, which verifies the common sense
338	understanding that the low shear strength of marine clay is due to not only to the high
339	water content, but also to the soil composition.
340	
341	(a)
341 342	(a)
341 342 343	(a) (b)
341 342 343 344	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a)
341 342 343 344 345	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a) original data; (b) modified data
341 342 343 344 345 346	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a) original data; (b) modified data
 341 342 343 344 345 346 347 	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a) original data; (b) modified data A comparison of the salinity effect on shear strength is shown in Figure 7 and Table 4.
 341 342 343 344 345 346 347 348 	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a) original data; (b) modified data A comparison of the salinity effect on shear strength is shown in Figure 7 and Table 4. The two data series seem to follow a similar tendency as the water content increases.
 341 342 343 344 345 346 347 348 349 	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a) original data; (b) modified data A comparison of the salinity effect on shear strength is shown in Figure 7 and Table 4. The two data series seem to follow a similar tendency as the water content increases. However, the strength data from all the salinity samples was slightly higher than the
 341 342 343 344 345 346 347 348 349 350 	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a) original data; (b) modified data A comparison of the salinity effect on shear strength is shown in Figure 7 and Table 4. The two data series seem to follow a similar tendency as the water content increases. However, the strength data from all the salinity samples was slightly higher than the data from the samples mixed using fresh water. A quantitative comparison is listed in
 341 342 343 344 345 346 347 348 349 350 351 	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a) original data; (b) modified data A comparison of the salinity effect on shear strength is shown in Figure 7 and Table 4. The two data series seem to follow a similar tendency as the water content increases. However, the strength data from all the salinity samples was slightly higher than the data from the samples mixed using fresh water. A quantitative comparison is listed in Table 4. We might expect to see a 9.2%–13.4% greater enhancement for Kaolin and a
 341 342 343 344 345 346 347 348 349 350 351 352 	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a) original data; (b) modified data A comparison of the salinity effect on shear strength is shown in Figure 7 and Table 4. The two data series seem to follow a similar tendency as the water content increases. However, the strength data from all the salinity samples was slightly higher than the data from the samples mixed using fresh water. A quantitative comparison is listed in Table 4. We might expect to see a 9.2%–13.4% greater enhancement for Kaolin and a 8.6%–39.1% greater enhancement for WND. In this study, it has been shown that the
 341 342 343 344 345 346 347 348 349 350 351 352 353 	(a) (b) Figure 6. Comparison between different strength-liquidity index correlations: (a) original data; (b) modified data A comparison of the salinity effect on shear strength is shown in Figure 7 and Table 4. The two data series seem to follow a similar tendency as the water content increases. However, the strength data from all the salinity samples was slightly higher than the data from the samples mixed using fresh water. A quantitative comparison is listed in Table 4. We might expect to see a 9.2%–13.4% greater enhancement for Kaolin and a 8.6%–39.1% greater enhancement for WND. In this study, it has been shown that the impact of saline water on the undrained shear strength of Kaolin Clay and WND is

material dependent. WND is more sensitive to the change of salinity. On the other 355 hand, the coefficient of determination, R^2 , is also listed in Figure 7. It is shown that 356 R^2 decreases to 0.93 and 0.96 for Kaolin and WND with saline water, respectively, 357 which indicates that saline water clay is a little more scattered than fresh water clay. 358 This decrease in \mathbb{R}^2 may be due to the smaller number of saline water clay tests. 359 When the liquidity index is close 1, the relationship between shear strength and 360 liquidity index seems to capture the effects related to soil type (Boukpeti, 2012). The 361 shear strength is dominated by the friction between soil particles, and hence the 362 363 salinity effect is very limited. This is why the difference in the shear strength between fresh water clay and saline water clay is very small. However as the water content 364 increases, marine clay evolves from a soil to a viscous fluid. Accordingly, the shear 365 366 strength follows the fluid mechanics framework. In this range the contact between the soil particles may have less effect on the shear strength, and instead the internal forces 367 existing between the soil particles may have a stronger influence on the resistance. 368 Ingles (1962) referred to this kind of force as Van der Waal's Electromagnetic 369 Bonding. According to the test results, salinity may have no significant effect on soil 370 strength at conventional water contents, but, as friction strength declines, it may play 371 an important role in the internal forces between soil particles. 372

- 373
- 374
- 375

(a) Kaolin Clay

376

377	(b) WND
378	Figure 7. Comparison of results for the liquidity index and the shear strength of
379	soil mixed with saline water and fresh water
380	
381	Table 4. Shear strength increment due to increased salinity
382	

383 **4.** Conclusion

- This paper studies the undrained shear strength of marine clay using fall cone tests. Due to the effect of the strain rate on the shear strength caused by using different cones, all the data collected from the tests first had to be unified under a consistent strain rate. The main conclusions are summarized as follows:
- (1) The penetration mechanism of a fall cone into clay is simple and clear, and
 hence the fall cone test is a useful method for determining the undrained shear
 strength by interpreting the penetration depth of the cone.
- (2) The modified shear strength collected using different cones matched well with
 each other at the overlap regions of the liquidity index, which indicates that
 the impact of using different fall cones can be neglected.
- 394 (3) A relationship between the undrained shear strength of clay and the liquidity
 395 index is proposed in the form of a power function. The results showed that the
 396 strength degradation produced by increasing the water content is material
 397 dependent.
- (4) Compared to Kaolin Clay, the marine clay (WND) is weaker, especially for
 soils with a higher water content. This indicates that the low shear strength of

400 marine clay is due not only to the high water content, but also to the soil 401 composition.

- 402 (5) When the liquidity index is above 1.5, the modified shear strength begins to
 403 deviate from the original data. The maximum difference is about 20% for
 404 Kaolin Clay and 30% for WND. Hence, the buoyant effect must be considered
 405 when using the fall cone test to measure extremely soft clay.
- (6) This paper demonstrates the influence of salinity on the undrained shear
 strength. A series of control tests were conducted with samples mixed using
 3.5% salt water. It was found that salt water produces a slight increase of about
 9.2%-13.4% in the undrained shear strength for Kaolin Clay but a large
 increase of 8.6%-39.1% in undrained shear strength for WND, which
 indicates that the impact sensitivity is material dependent.

412

413 Acknowledgement

This research work is part of the activities of the Schofield Centre at the University of
Cambridge. The work presented in the paper is part of the Modelling of Mudslide
Runout Project which was a collaborative project between the University of
Cambridge and BP.

418

We thank Professor Kenichi Soga, (UC Berkeley) for comments that greatly improved
the research results, and Mr Takaaki Kobayashi for assistance with the whole project.
We would also like to show our gratitude to Dr. Paul Dimmock (BP) for fully

supporting this project and sharing his pearls of wisdom with us during thecollaboration.

424

425 **Reference**

426	Ajalloeian, R., Mansouri, H., and Sadeghpour, A. H. 2013. Effect of saline water on
427	geotechnical properties of fine-grained soil. Electron J Geotech Eng, 18, 1419-1435.
428	

Berre, T. 1973. Shear strength of normally consolidated clays. In Proc. of 8th Int.
Conf. on SMFE (Vol. 1, pp. 39-49).

431

Biscontin, G., and Pestana, J. M. 2001. Influence of peripheral velocity on vane shear
strength of an artificial clay. *Geotechnical Testing Journal*, 24(4), 423-429.

- Boukpeti, N., White, D. J., Randolph, M. F., & Low, H. E. (2012). Strength of
 fine-grained soils at the solid–fluid transition. *G éotechnique*, 62(3), 213-226.
- 437
- British Standard 1377-2. 1990. Methods of Test for Soils for Civil Engineering
 Purposes. Classification tests. British Standards Institution, London.
- 440
- Chandler, R. J. 1988. The in-situ measurement of the undrained shear strength of
 clays using the field vane. In Vane shear strength testing in soils: field and laboratory

443 studies. ASTM International.

444

445	Dumbelton, M. J. and West, G. 1970. The suction and strength of remoulded soils as
446	affected by composition. Road Research Laboratory Report LR306, Road Research
447	Laboratory, United Kingdom.
448	
449	Einav, I., and Randolph, M. F. 2005. Combining upper bound and strain path methods
450	for evaluating penetration resistance. International Journal for Numerical Methods in
451	Engineering, 63(14), 1991-2016.
452	
453	Graham, J., Crooks, J. H., and Bell, A. L. 1983. Time effects on the stress-strain
454	behaviour of natural soft clays. G éotechnique, 33(3), 327-340.
455	
456	Houlsby, G. T. 1982. Theoretical analysis of the fall cone test. Geotechnique, 32(2):
457	111-118.
458	
459	Hirata, S., Yao, S., and Nishida, K.1990. Multiple Regression Analysis between the
460	Mechanical and Physical Properties of Cohesive Soils. Soils and Foundations., Vol.
461	30(3): 91–108.
462	
463	Ingles, O. G. (1962). Bonding forces in soils, Part III: A theory of tensile strength for

⁴⁶⁴ stabilized and naturally coherent soils. Proc., 1st Conf. of the Australian Road

465	Research	Board.	Vol.	1.	1025-1047.
	Research	Duaru.	v 01.	г,	1023-1047

468	Jeong, S. W., Leroueil, S., and Locat, J. 2009. Applicability of power law for
469	describing the rheology of soils of different origins and characteristics. Canadian
470	Geotechnical Journal, 46(9), 1011-1023.
471	
472	Karlsson, R. 1977. Consistency limits. In A manual for the performance and
473	interpretation of laboratory investigations. Part 6. Swedish Council for Building
474	Research, Stockholm: 131-136.
475	
476	Koumoto, T. and Houlsby, G. T. 2001. Theory and practice of the fall cone test.
477	G éotechnique, 51(8): 701-712.
478	
479	Hansbo, S. 1957. A new approach to the determination of the shear strength of clay by
480	the fall-cone test. Royal Swedish Geotechnical Institute.
481	
482	Lefebvre, G., and Leboeuf, D. 1987. Rate effects and cyclic loading of sensitive
483	clays. Journal of Geotechnical Engineering, 113(5): 476-489.
484	
485	Leroueil, S., Tavenas, F. and Le Bihan, JP. 1983. Proprie te s caract éristiques des
486	argiles de l'est du Canada. Can. Geotech. J. 20, No. 4: 681–705.

- 488 Locat, Jacques, and Denis Demers. 1988. Viscosity, yield stress, remolded strength, 489 and liquidity index relationships for sensitive clays. Canadian Geotechnical Journal 490 25(4): 799-806. 491 492 Lunne, T., and Andersen, K. H. 2007. Soft clay shear strength parameters for 493 deepwater geotechnical design. In offshore site investigation and geotechnics, 494 Confronting New Challenges and Sharing Knowledge. Society of Underwater 495 Technology. 496 497 NGI. 2009. Annual Available from report. 498 https://www.ngi.no/en/About-NGI/VP09/RnD-activity/Shear-strength-increase-at-low 499 -temperature/Post.aspx [accessed September 2015] 500 501 O'Kelly, B. C. 2013. Atterberg limits and remolded shear strength - water content 502 relationships. ASTM Geotechnical Testing Journal, Vol. 36, No.6: 939-947. 503 504 Terzaghi, K., Peck, R. B., and Mesri, G. 1996. Soil mechanics in engineering practice. 505 John Wiley & Sons. 506 507 Vaid, Y. P., and Campanella, R. G. 1977. Time-dependent behaviour of undisturbed
- ⁵⁰⁸ clay. Journal of Geotechnical and Geoenvironmental Engineering: 103(ASCE 13065).

510	Vardanega, P. J., and Haigh, S. K. 2014. The undrained strength-liquidity index
511	relationship. Canadian Geotechnical Journal, 51(9): 1073-1086.
512	
513	Vinod, P., Sridharan, A., and Deepa, K. A. 2013. Remoulded shear strength at plastic
514	and semi-solid states. Proceedings of the Institution of Civil Engineers-Geotechnical
515	Engineering, 166(4): 415-424.
516	
517	Warkentin, B. P., and Yong, R. N. 1962. Shear strength of montmorillonite and
518	kaolinite related to interparticle forces. Clays and Clay Minerals, 9: 210-218.
519	
520	Whyte, I.L.1982. Soil plasticity and strength-a new approach using extrusion. Ground
521	Engineering, 15 (1): 16-24.
522	
523	Wood, D. M. 1990. Soil behaviour and critical state soil mechanics. Cambridge
524	University Press: United Kingdom.
525	
526	Wroth, C. P. and Wood, D. M. 1978. The correlation of index properties with some
527	basic engineering properties of soils. Can. Geotech. J. 15, No. 2: 137–145.
528	
529	Yang, S. L., Medina-Cetina, Z., and Nadim, F. 2010. Uncertainty analysis on
530	remoulded undrained shear strength of marine clay. Georisk, 4(1): 43-50.
	24

532	Yang, S. L., Kvalstad, T., Solheim, A., and Forsberg, C. F. 2006. Parameter studies of
533	sediments in the Storegga Slide region. Geo-Marine Letters, 26(4): 213-224.
534	
535	Yılmaz, I. 2000. Evaluation of shear strength of clayey soils by using their liquidity
536	index. Bulletin of engineering Geology and the Environment, 59(3): 227-229.
537	
538	
539	

List of Tables

Table 1 Published strength-liquidity index correlations for remoulded soil	ls6
Table 2 Soil index properties	9
Table 3 Parameter describing s_u as a function of <i>L1</i>	14
Table 4 Shear strength increment due to increased salinity	18

List of figures

Figure 1 Three different cones used in the research10
Figure 2 Buoyant effect in the fall cone test: (a) simplified schematic diagram of
the fall cone test; (b) ratio of buoyant force to friction11
Figure 3. Strain rate in the fall cone test: (a) Kaolin; (b) WND13
Figure 4. Relationship between the undrained shear strength and the liquidity
index14
Figure 5. Comparison of shear strengths measured using different cones15
Figure 6. Comparison between different strength-liquidity index correlations: (a)
original data; (b) modified data16
Figure 7. Comparison of results for the liquidity index and the shear strength of
soil mixed with saline water and fresh water