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a b s t r a c t

This study develops a multivariate eco-hydrological risk-assessment framework based on the multivari-
ate copula method in order to evaluate the occurrence of extreme eco-hydrological events for the Xiangxi
River within the Three Gorges Reservoir (TGR) area in China. Parameter uncertainties in marginal distri-
butions and dependence structure are quantified by a Markov chain Monte Carlo (MCMC) algorithm.
Uncertainties in the joint return periods are evaluated based on the posterior distributions. The proba-
bilistic features of bivariate and multivariate hydrological risk are also characterized. The results show
that the obtained predictive intervals bracketed the observations well, especially for flood duration.
The uncertainty for the joint return period in ‘‘AND” case increases with an increase in the return period
for univariate flood variables. Furthermore, a low design discharge and high service time may lead to high
bivariate hydrological risk with great uncertainty.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to climate change and anthropogenic effects, extreme
hydrological events occur with increasing frequency and intensity,
resulting in great economic losses and posing intensified risks to
people and the environment [1–5]. The frequency of a specific
event (e.g., floods, droughts, or storms) is crucial for inferring mag-
nitudes of the event with different occurrence probabilities, which
are used for many eco-hydrological management practices [6–8].
For example, the design of hydraulic structures such as dam spill-
ways requires the frequency of flood in the drainage to be quanti-
fied [9]. However, many hydrological events cannot easily be
described by a univariate variable, and generally show multidi-
mensional features. Floods are a typical example, as they are gen-
erally characterized by peak flow, volume, and duration. Moreover,
these three attributes of a flood are correlated with each other.
However, a traditional univariate flood risk analysis mainly focuses
on the probabilistic feature of flood peak flow, which does not fully
describe the flood characteristics (e.g., dependence among flood
peak, volume, and duration). Therefore, flood frequency analysis
within a multivariate context is required in order to obtain an
insightful description of extreme hydrological events and generate
reliable risk inference [10,11].

The concept of the copula function has been widely used for
many eco-hydrological issues due to its powerful capability to
reflect complicated dependence structures among correlated
variables. A number of copula-based approaches have been pro-
posed for the multivariate risk analysis of floods [10–13], droughts
[14,15], and storms [16,17]. In addition, some studies have
reported the development of copula-based forecasting approaches
for probabilistic streamflow simulation [18–21] and for energy and
environmental systems analysis [22–25]. Compared with conven-
tional multivariate statistical approaches, the copula-based
approach allows separate quantification of the marginal distribu-
tions and the dependence modeling, thus making it possible to
use different types of marginal and joint probability functions
[2,13,26,27]. Thus, in flood risk analysis, the distributions of flood-
ing peak, volume, and duration can be quantified through various
parametric or non-parametric distribution formulations. For exam-
ple, Karmakar and Simonovic [2] investigated the impacts of the
selection of marginal distributions on the performance of copulas.

One major issue in hydrological risk analysis is the extensive
uncertainty resulting from data availability, model selection, and
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parameter estimation. There are two primary sources of uncer-
tainty: ① natural uncertainty stemming from the inherent vari-
ability of the underlying hydrological processes, and ② epistemic
uncertainty coming from an incomplete understanding of the stud-
ied system [28]. In particular, data availability is a major source of
uncertainty in flood frequency analysis. Several previous studies
have addressed uncertainties in flood risk analysis. For example,
Liang et al. [29] analyzed model and parameter uncertainties using
a Bayesian-based approach. However, most previous research pri-
marily focused on univariate hydrological risk. Few existing studies
examine the uncertainties of hydrological risk within a multivari-
ate context.

Therefore, the objective of this research is to propose a multi-
variate risk-assessment framework through an interactive analysis
of the multiple attributes of a flood. The uncertainty of the bivari-
ate hydrological risk is evaluated based on the Bayesian method,
and the posterior probabilities of the parameters in the marginal
and joint distribution are obtained based on the Markov chain
Monte Carlo (MCMC) method. Uncertainties in the primary bivari-
ate return periods are quantified.

2. Methodology

2.1. The concept of the copula

Based on the copula function, a multivariate probability distri-
bution can be constructed as follows:

F x1; x2; :::; xnð Þ ¼ C FX1 x1ð Þ; FX2 x2ð Þ; :::; FXn xnð Þ� � ð1Þ
where FX1 x1ð Þ; FX2 x2ð Þ; :::; FXn xnð Þ denote the marginal distributions
of the random vector ðX1; X2; :::; XnÞ. If these marginals are contin-
uous, a copula function C exists, such that [13]:

C u1; u2; :::; unð Þ ¼ F F�1
X1

u1ð Þ; F�1
X2

u2ð Þ; :::; F�1
Xn

unð Þ
h i

ð2Þ

where ui ¼ FXi
xð Þ and i ¼ 1; 2; :::; n. Nelsen [30] provides a detailed

description of copulas in terms of their theoretical background and
properties.

Many copula functions are available for practical multivariate
analysis; these are mainly classified as Archimedean, elliptical,
and extreme value copulas. This study uses Archimedean copulas
due to their ability to capture a wide range of dependence struc-
tures [31]. These copulas can take a great variety of forms. Further-
more, they can have distinct upper and lower tail dependence
coefficients. Thus, Archimedean copulas can capture dependence
in the upper and lower tail dependences. Table 1 lists the potential
copula functions used in this study and their inherent features.

2.2. Conditional distributions and joint return period

Based on the copula function expressed in Eq. (1), the condi-
tional distribution for each Xi can be derived. Taking a bivariate
case as an example, where U1 ¼ FX1 xð Þ and U2 ¼ FX2 xð Þ, the
Table 1
Basic properties of applied copulas.

Copula name Functions Ch u1; u2ð Þ h range

Ali–Mikhail–Haq u1u2= 1� h 1� u1ð Þ 1� u2ð Þ½ � �1; 1½ Þ

Cook–Johnson u�h
1 þ u�h

2 � 1
� ��1=h �1; 1½ Þn

Gumbel–Hougaard
exp � �lnu1ð Þh þ �lnu2ð Þh

h i1=h� �
1; 1½ Þ

Frank �ln 1þ e�hu � 1
� 	

e�hv � 1
� 	

= e�h � 1
� 	
 �

=h �1; 1ð Þ

D1 is the first-order Debye function, and for any positive integer k, Dk xð Þ ¼ k
xk
R k
0

tk
et�1 dt.
conditional distribution for U1 with U2 ¼ u2 can be derived as fol-
lows [12]:

CU1 jU2¼u2 u1ð Þ ¼ C U1 � u1jU2 ¼ u2ð Þ ¼ @

@u2
C u1; u2ð ÞjU2 ¼ u2 ð3Þ

Similarly, the conditional distribution function of U1 when
U2 � u2 can be expressed as follows:

CU1 jU2�u2 u1ð Þ ¼ C U1 � u1jU2 � u2ð Þ ¼ C u1; u2ð Þ
u2

ð4Þ

In addition, the probability density function (PDF) c u1;u2ð Þ of a
copula is derived by the following:

c u1; u2ð Þ ¼ @2C u1; u2ð Þ
@u1 @u2

ð5Þ

Next, the joint PDF of X1 and X2 can easily be derived by
c u1;u2ð Þ:

f x1; x2ð Þ ¼ @2C u1; u2ð Þ
@x1 @x2

¼ @2C u1; u2ð Þ
@u1 @u2

@u1

@x1

@u2

@x2
¼ f X1

x1ð Þ f X2
x2ð Þ c u1; u2ð Þ ð6Þ

Consequently, the conditional PDF of X1 for a given value of X2,
is expressed as follows:

f x1jx2ð Þ ¼ f x1; x2ð Þ
f X2

x2ð Þ ¼ f X1
x1ð Þ c u1; u2ð Þ ð7Þ

The conditional PDF of X2, with a given X1, is formulated as
follows:

f x2jx1ð Þ ¼ f x1; x2ð Þ
f X1

x1ð Þ ¼ f X2
x2ð Þ c u1; u2ð Þ ð8Þ

Based on the copula function, the concept of return period,
which is widely used in univariate hydrological frequency analysis,
can be extended to the multivariate context, leading to the concept
of a joint return period. To be specific, the joint (primary) return
periods can be further characterized by ‘‘OR” and ‘‘AND” cases
[13,32,33]:

TOR
u1 ;u2

¼ l
1� CU1U2 u1; u2ð Þ ð9Þ

TAND
u1 ;u2

¼ l
1� u1 � u2 þ CU1U2 u1; u2ð Þ ð10Þ

where l indicates the mean inter-arrival time of the two consecu-
tive extreme events.

2.3. Bivariate hydrological risk analysis

In practical hydraulic infrastructure design, it is essential to
know the random features of the floods that will flow through
the infrastructure. Moreover, a flooding event is usually character-
ized by multiple attributes such as peak, volume, and duration.
Therefore, flood risk in a multivariate context would provide more
Generating functions / tð Þ s ¼ 1þ 4
R 1
0 / tð Þ=/0 tð Þ½ �dt

ln 1� h 1� tð Þ½ �=tf g 3h� 2ð Þ=h� 2 1� h�1
� �2

ln 1� hð Þ=3
0f g t�h � 1 h= hþ 2ð Þ

�lntð Þh 1� h�1

n 0f g ln e�ht � 1
� 	

= e�h � 1
� 	� �

1� 4 D1 �hð Þ � 1½ �=h



Fig. 1. The location of the studied watershed. DEM: digital elevation model.
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insightful information than univariate flood risk in terms of the
flooding peak. For example, a flood associated with a large peak
value and a long duration (e.g., more than 7 d) may lead to great
economic losses, whereas a short-term high-peak flood may only
be a flash flood. Thus, we introduce a bivariate risk indicator based
on the joint return period in ‘‘AND,” which is used to reveal inter-
active effects among the multiple attributes of the flood. The
bivariate risk indicator can be expressed as follows:

Ru1 ;u2 ¼ 1� 1� 1
TAND
u1 ;u2

 !n

ð11Þ

The bivariate hydrological risk Ru1 ;u2 is introduced in this study
in order to investigate the significance of effects from persistent
high-risk levels due to impacts from multiple interactive flood
variables. It indicates the joint risk of u1 and u2 respectively occur-
ring above their thresholds. For example, for a specific hydraulic
facility with a design peak flow and service time standards, if u1

and u2 respectively denote the flood peak and volume, then the
value of Ru1 ;u2 indicates the risk of a flood with a peak that is larger
than the design peak flow and a volume that is greater than a
certain threshold. Therefore, in this study, we adopt a joint return
period in the ‘‘AND” case in order to express the bivariate hydro-
logical risk.

2.4. Parameter estimation through the Bayesian model

Extensive uncertainties may be involved in the parametric esti-
mation of a copula function due to: ① the inherent uncertainty in
the flooding process, ② uncertainty in the selection of appropriate
marginal functions and copulas, and ③ statistical uncertainty or
parameter uncertainty within the parameter estimation process
(e.g., the availability of samples). The Bayesian approach has been
widely applied for uncertainty quantification, since it can incorpo-
rate various sources of information into a single analysis using
Bayes’ theorem. Given the prior probability density and observa-
tions, the posterior distribution can be derived using Bayes’ theo-
rem, which is expressed as follows:

p hjXð Þ ¼ L hjXð Þ p0 hð ÞR
L hjXð Þ p0 hð Þ dh ð12Þ

where p0 hð Þ signifies the prior parameter distribution, L hjXð Þ
denotes the likelihood function,

R
L hjXð Þ p0 hð Þ dh is the normaliza-

tion constant, p hjXð Þ is the posterior probability density function,
and X ¼ x1; x2; :::; xnð Þ is the observation vector (i.e., X ¼ x1; x2ð Þ
in this study).

For a bivariate hydrologic risk analysis using the copula,
it is necessary to estimate the parameter of the copula, as
well as the parameters of the two marginal probability dis-
tributions. Let hc , h1, and h2 denote the parameters of the
copula and of the two marginal probability distributions,
respectively. The posterior distribution can then be derived
as follows:

p hc; h1; h2jXð Þ / L hc; h1; h2jXð Þ p0 hc; h1; h2ð Þ
¼ L hc; h1; h2jXð Þ p0 hcð Þ p0 h1ð Þ p0 h2ð Þ ð13Þ

The term of L hc; h1; h2jXð Þis the likelihood function of the obser-
vations. Based on the dependence structure between the copula
and its marginal distributions, as expressed by Eq. (6), the likeli-
hood function can be estimated as follows:

L hc; h1; h2jYð Þ ¼ cU1U2 FX1 x1ð Þ; FX2 x2ð Þjhc
� �

f X1
x1jh1ð Þ f X2

x2jh2ð Þ
ð14Þ

where cU1U2 is the density of the copula function, and f X1
and f X2

are
the two marginal probability density functions, respectively.
The procedures to derive the posterior distributions are pre-
sented below:

Step 1: Apply the maximum likelihood method to estimate the
initial values for the parameters in the marginal and copula
models.

Step 2: Calculate the root-mean-square error (RMSE) and
Akaike information criterion (AIC) values for the marginal and joint
probabilities in order to choose the most appropriate marginal and
joint distribution forms.

Step 3: Set the prior distributions based on the parameter val-
ues obtained in Step 1.

Step 4: Use the MCMC with the Metropolis–Hastings algorithm
to derive the posterior probabilities for the parameters in the mar-
ginal and joint distributions.

Step 5: Evaluate the uncertainties in the primary and joint
return periods.

Step 6: Reveal the probabilistic features of the bivariate hydro-
logical risk.
3. Application

3.1. Catchment characterization and data collection

The proposed approach is applied to determine the hydrological
risk for the Xiangxi River within the Three Gorges Reservoir (TGR)
area in China. The Xiangxi River is located in Hubei Province. As
shown in Fig. 1, the Xiangxi River is one of the main tributaries
of the Yangtze River, and originates from the Shennongjia Nature
Reserve area. It has a main stream length of 94 km and a catchment
area of 3099 km2 [34]. This area has a northern subtropical climate
with a mean annual precipitation of 1100 mm and a fluctuation
range of 670–1700 mm [35]. The flooding season in the Xiangxi
River Basin is from July to August, and the main rainfall season is
from May to September. In this study, the daily discharge data
(1961–2010) observed at the Xingshan Hydrologic Station
(110�450000 E, 31�130000 N) is used for the probabilistic assessment
of flood risks for the Xiangxi River.
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3.2. Flooding characteristics in the Xiangxi River

In this study, the flood characteristics are identified as the
peak, volume, and duration; the flood peak is the maximum
peak discharge, while the volume and duration are obtained
from the hydrograph of the maximum discharge. According to
Yue [36,37], the flood duration (Di) of a single peaked hydro-
graph in year i (Fig. 2 [31]) can be obtained by characterizing
the time moment of the rise (Dsi in Fig. 2) and fall (Dei in
Fig. 2) of the hydrograph. As shown in Fig. 2, the starting time
of a flood is marked as a sharp rise on the hydrograph, and
the end of the flood runoff is identified by an inflection point
on the receding limb of the hydrograph [10]. If the rise moment
of a flood is denoted by Ds (d) and the end time is denoted by
De (d), then the flood volume (denoted as Vi, for this flood event)
can be obtained as follows:
Fig. 2. Typical flood hydrograph showing flood flow characteristics (adapted from
Ref. [31]).

Table 3
Parameters of marginal distribution functions of flood variables.

Name Probability density function

Gamma xa�1e�x=b= baC að Þ� 	
, C að Þ ¼ R10 ua�1e�udu

GEV 1
r
exp � 1þ k x� lð Þ=r½ ��1=k 1þ k x� lð Þ=r½ ��1�1=k

n o

Lognormal exp � y� ly

� �
=ð2r2

y Þ
h i

= x
ffiffiffiffiffiffiffiffiffiffiffiffi
2pry

p� 	
y ¼ log xð Þ; x > 0; �1 < ly < 1; ry > 0

Table 2
Statistical characteristics of flood variables.

No. Characteristics Flood characteristics

Peak (m3�s�1) Volume (m3�s�1) Duration (d)

1 Percentile 0 91 72 3
25% 324 530.8 5
50% 451.5 713.3 6
75% 684 1189.5 8
100% 1050 2430.8 13

2 Range 959 2358.8 10
3 Mean 510 920.5 6.56
4 Std 243.8 531.9 2.31
5 Skewness 0.74 0.959 2.72
6 Kurtosis 2.61 3.20 0.68
Vi ¼ V total
i � Vbaseflow

i

� �
¼
XDei

j¼Dsi

qij �
1
2

qsi þ qeið Þ 1þ Dið Þ ð15Þ

where qij is the observed stream flow on the jth day of the ith year,
qsi is the streamflow on the start day of the flood in the ith year, and
qei is the streamflow value on the end day of the flood. Dsi and Dei

respectively denote the start and end day for a flood occurring in
the ith year. Di denotes the flood duration, which is obtained by
the following:

Di ¼ Dei � Dsi; i ¼ 1; 2; :::; n ð16Þ
The annual peak of the flood is obtained by the following:

qi ¼ max qij; j ¼ Dsi; Dsiþ1; :::; Dei

 �

; i ¼ 1; 2; :::; n ð17Þ
Based on Eqs. (15)–(17), the flood characteristics can be identi-

fied as the peak, volume, and duration. Table 2 provides descriptive
statistics values for the flood peak, volume, and duration at
Xingshan Hydrologic Station. The positive values of kurtosis and
skewness suggest that the flood variables can be modeled by sharp
and right tailed distributions.

4. Initial parameter values for marginal and joint distributions

For a single flood variable such as flood peak, many parametric
distributions are available to quantify its probabilistic feature, such
as the general extreme value (GEV), log-Pearson Type III (LP3), and
Pearson Type III (P3) distributions [38,39]. In this study, the
gamma, GEV, and lognormal distributions are employed to quan-
tify the probabilistic features for flood peak, volume, and duration,
and the maximum likelihood estimation (MLE) method is used to
estimate the unknown parameters in these distributions. Table 3
provides detailed expressions of the potential distributions and
the parameter values obtained by MLE. A comparison of the theo-
retical distributions and the observed values is plotted in Fig. 3. The
RMSE and AIC indices are applied to evaluate the performance of
each marginal distribution, as shown in Table 4. The results show
that the lognormal distribution performs best for all three flood
variables in the Xiangxi River.

Table 5 provides the values for the linear correlation coeffi-
cient and Kendall’s tau (s) among the three flood variables
(i.e., peak, volume, and duration). The results indicate that the
highest correlation is between flood peak and volume, followed
by the correlation of volume–duration and peak–duration. To
quantify the dependence structures of flood peak–volume, volume–
duration, and peak–duration, four Archimedean copulas—that
is, the Ali–Mikhail–Haq (AMH), Cook–Johnson (Clayton),
Gumbel–Hougaard, and Frank copulas—are employed, and their
unknown parameters are estimated by a method-of-moments
(MOM)-like estimator based on the inversion of Kendall’s s. The
performances of the copulas in quantifying dependence
Variables Parameter values

Peak Volume Duration

a 4.50 3.06 8.62
b 113.26 301.24 0.76

k 0.032 0.099 0.073
l 185.00 373.16 1.73
r 396.15 664.96 5.43

ly 6.12 6.65 1.82
ry 0.50 0.63 0.34



Fig. 3. Comparison of different probability density estimates with observed frequency.

Table 4
Comparison of RMSE and AIC values of flood variables for different statistical distributions.

Flooding variables Marginal distribution K–S test RMSE AIC

T P-value

Peak Gamma 0.0745 0.5471 0.0378 �323.5512
GEV 0.0741 0.5510 0.0340 �332.2144
Lognormal 0.0548 0.7146 0.0265 �358.8192
P 3 0.0824 0.8868 0.0361 �326.0848
LP 3 0.0915 0.7967 0.0324 �336.9444

Volume Gamma 0.1126 0.2615 0.0445 �307.1904
GEV 0.1026 0.3268 0.0428 �309.1165
Lognormal 0.0749 0.5435 0.0361 �328.2335
P 3 0.1226 0.4077 0.0436 �307.3700
LP 3 0.1556 0.1594 0.0706 �259.0655

Duration Gamma 0.0745 0.5471 0.0378 �323.5512
GEV 0.0724 0.9151 0.0275 �389.3956
Lognormal 0.0805 0.8403 0.0283 �388.3297
P 3 0.0893 0.7386 0.0395 �349.3274
LP 3 0.0795 0.8508 0.0324 �371.3614
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among flood variables are evaluated by RMSE and AIC. Table 6
provides the results of the RMSE and AIC for different copulas for
modeling the joint distribution of flood peak–volume, peak–
duration, and volume–duration. The results suggest that joint
distributions of flood peak–volume and volume–duration can be
quantified best by the Frank copula, whereas the joint distribution
of the flood peak–duration can be quantified best by the
Ali–Mikhail–Haq copula.
Table 5
Values of correlation coefficients for flooding characteristics.

No. Flood characteristics Kendall’s s Pearson’s r

1 Peak–volume 0.63 0.75
2 Volume–duration 0.52 0.46
3 Peak–duration 0.15 �0.06

Table 6
Comparison of RMSE and AIC values for joint distributions through different copulas.

Copula RSME

Peak–volume Peak–duration Volume–du

Ali-Mikhail-Haq 0.0610 0.0514 0.0707
Cook-Johnson 0.0665 0.2907 0.0873
Gumbel-Hougaard 0.0312 0.0550 0.0589
Frank 0.0304 0.0541 0.0559
5. Uncertainty evaluation for bivariate hydrological risk

The prior distributions are specified for all parameters using
the normal distributions, with the mean values being set as the
initial values obtained through the MLE and MOM methods,
and with relatively large variance values, as shown in Table 7.
There are a total of 5000 iterations in the MCMC process, with
the last 500 iterations being set as the posterior parameters of
the parameters in the copula models. Fig. 4 presents the evolu-
tion of unknown parameters in the marginal distributions and
copulas during the MCMC process. It can be seen that the param-
eters estimated using the Bayesian method are stationary and
concentrated to stable values. The posterior distributions of the
unknown parameters in the marginal distribution and copula
functions are presented in Fig. 5. Based on the sampling sets
of the parameters obtained through MCMC, the sampling
AIC

ration Peak–volume Peak–duration Volume–duration

�277.6384 �294.7895 �262.9122
�269.0263 �121.5381 �241.8286
�344.8576 �288.0178 �281.1828
�347.4879 �289.7032 �286.3915



Fig. 4. Evolution of unknown parameters (a) during

Table 7
Prior distribution for each parameter of Bayesian model.

Flood variables Prior distributions

Peak (lognormal) Norm (6, 4) Norm (0.5, 0.1)
Volume (lognormal) Norm (6, 4) Norm (0.6, 0.1)
Duration (lognormal) Norm (2, 1) Norm (0.4, 0.1)
Peak–volume (Frank) Norm (8, 4)
Peak–duration (AMH) Norm (1, 0.4)
Volume–duration (Frank) Norm (6, 4)
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distributions of the design values can be obtained; these cannot
only provide the point estimation, but also give its predictive
interval (PI).

The parameters in the marginal distributions and copulas, as
obtained by the Bayesian method, are presented as probabilistic
distributions, which lead to uncertainty in the marginal and joint
distributions of the flood variables. Fig. 6 shows a comparison of
the mean probabilities and the observed values. In addition, 95%
predictive intervals are provided in Fig. 6, which are bracketed
the MCMC process and (b) after burn-in period.



Fig. 5. Posterior distributions of the unknown parameters in marginal distributions and copulas. LN: lognormal.
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by the 2.5% and 97.5% quantile values of the predictions. This figure
indicates that the obtained predictive intervals can bracket the
observed probabilities well. In particular, Fig. 3 shows that the esti-
mated distributions through MLE produce an obvious discrepancy
to the observed values for flood durations. Such deviation may
result from data limitation regarding flood duration. Only daily
streamflow records were available for this study, so the flood dura-
tion could only be calculated in days, leading to extensive uncer-
tainty in the distribution of flood duration. In comparison, the
results in Fig. 6 show that most of the observed data are bracketed
within the 95% predictive intervals, which implies a good perfor-
mance of the Bayesian method in parameter estimation for flood
duration.

In the Bayesian method, the unknown parameters are consid-
ered as random with specific prior distributions; the posterior dis-
tributions of these parameters are then derived by the MCMC
method. The randomness in the parameters of the marginal and
joint probabilities lead to uncertainties in the associated condi-
tional cumulative distribution functions (CDFs) and PDFs gener-
ated by the obtained copulas. Fig. 7 presents the conditional
CDFs of flood volume and duration, with the flood peak flow spec-
ified as the 95% quantile value. Based on the posterior distribution
of the parameters, the obtained CDFs and their associated 95% pre-
dictive intervals can be obtained. In addition, the conditional PDF
of flood volume and duration, under a flood peak with different
return periods, can be derived through Eqs. (7) and (8). Fig. 8 shows
the conditional PDF of flood volume and duration. Two flood peak
scenarios (10- and 100-year return periods) are assumed; the con-
ditional PDFs of flood volume and duration indicate that as the
flood peak increases, the flood volume is expected to increase as
well, while the flood duration may not change significantly. More-
over, based on the posterior distributions of the parameters, the
predictive intervals can also be obtained.

The joint return periods calculated by Eqs. (9) and (10) can
reflect the concurrence probabilities of flood peak–volume, peak–
duration, and volume–duration well. Furthermore, the random fea-
tures of the model parameters leads to uncertainty in the joint
return periods. Table 8 presents the 95% predictive intervals for
the univariate variable and joint return periods for the flood vari-
ables. It can be seen that the uncertainty of the flood peak, volume,
and duration values increases with an increase in the return per-
iod. For example, the flood peak with a 5-year return period may
vary within a 95% predictive interval [594.1, 813.9] m3�s�1, while
such an interval would be [1156.3, 2007.1] m3�s�1 for the flood
peak with a 100-year return period. For the joint return period,
Table 8 shows a remarkable feature: The uncertainty of the joint
return period in ‘‘OR” will not change significantly. The joint return
period in ‘‘AND” has similar uncertainty characteristics as the uni-
variate flood variables, as presented in Table 8. For example, the
95% predictive interval of TAND

PV with a 100-year primary return per-
iod would be [1229.4, 1593.8] years, while the 95% predictive
interval of TOR

PV would be [51.62, 52.12].
In this study, a bivariate flood risk indicator, expressed as

Eq. (12), is introduced to reflect the interactive effect among flood
variables and their implications on the detailed hydrological risk.
For a flooding event, the failure of hydraulic structures is mainly
due to high peak flow, and the flooding peak flow is the essential
factor to be considered when analyzing hydrological risks.
Therefore, the bivariate flood risks for flood peak–volume and
peak–duration are analyzed. Fig. 9 also shows the changing trends
of the flooding risk with respect to flooding volume under different
design flows and service times. The bivariate risk of flooding peak
flow and volume remains constant for some time and then
decreases with an increase in flooding duration for all design flows
and service times. Furthermore, for a specific combination of flood
peak–volume, the detailed risk may be uncertain, as a result of the
parameter uncertainties in the marginal and joint distributions.
Based on the posterior distributions of these parameters, the mean
value and the 95% predictive interval of the bivariate risk can be
derived, as presented in Fig. 9. The results in Fig. 9 suggest that a
lower design discharge and longer service time may lead to greater
uncertainty in hydrological risk. Fig. 10 presents the failure risk
inference of the river levee around Xingshan Hydrologic Station
for different flooding peak–duration extremes. It shows that for
the same service time, the inferred risk decreases with an increase



Fig. 6. Comparison of fitted and observed probabilities for flood variables: (a) flood
peak, (b) flood volume, and (c) flood duration.

Fig. 8. Conditional PDFs of (a) volume and (b) duration under different peak flow
return periods.

Fig. 7. Conditional CDFs of (a) flood volume and (b) duration under 95% flood peak
flow.
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in the designed flow. Similarly, for the same designed flow, an
increase in service time leads to an increased failure risk of the
river levee. Furthermore, the uncertainty of the bivariate hydrolog-
ical risk for flood peak–duration appears to be similar to that for
flood peak–volume.
6. Conclusions and remarks

The copula approach is one of the most-used approaches in
hydrology and water resources. Many studies have analyzed the
risk of water hazards (e.g., flood and drought) using copula
approaches to reflect probabilistic features in a multivariate con-
text. However, the uncertainties that exist in both the marginal
distributions and the dependence structures of the copula frame-
work are somewhat overlooked. This study aimed to characterize
the inherent uncertainties in multivariate hydrological risk analy-
sis. The major innovation of this study is to introduce Bayesian
inference into the copula framework in order to quantify uncer-
tainties in both the marginal distributions and dependence struc-
tures; the interactions among uncertainties in marginal and joint
distributions are also characterized. The approach developed in
this study was applied to eco-hydrological risk analysis for the
Xiangxi River in order to demonstrate the applicability of this
method.

The results indicate that the lognormal distributions may be
appropriate for quantifying the marginal distributions of flood
variables in the Xiangxi River. The Frank copula performed better
than the other copulas when quantifying the dependence of
peak–volume and volume–duration, whereas the Ali–Mikhail–Haq
copula performed best when quantifying the joint distribution of
peak–duration. The MCMC approach was adopted to quantify the
uncertainty in the marginal and joint distributions. The results
showed that the obtained predictive intervals could bracket the
observations well, especially for flood duration. Moreover, the
95% predictive intervals of the joint return period in ‘‘AND” and



Fig. 9. Bivariate flooding risk under different flooding peak–volume scenarios.
(a) 20-year service time; (b) 50-year service time.

Fig. 10. Bivariate flooding risk under different flooding peak–duration scenarios.
(a) 20-year service time; (b) 50-year service time.

Table 8
95% predictive intervals for the univariate and primary return periods for flood characteristics.

T (year) Peak (m3�s�1) Volume (m3�s�1�d�1) Duration (d) TAND
PV TAND

PD TAND
DV TOR

PD TOR
DV TOR

PV

5 [594.1, 813.9] [1087.6, 1596.3] [7.6, 9.5] [7.6, 8.5] [14.1, 16.1] [11.0, 12.4] [2.96, 3.04] [3.13, 3.23] [3.54, 3.77]
10 [734.3, 1059.3] [1413.4, 2210.7] [8.7, 11.3] [20.9, 24.6] [51.6, 59.4] [34.9, 40.7] [5.46, 5.54] [5.70, 5.84] [6.28, 6.57]
20 [859.7, 1336.6] [1734.8, 2905.5] [9.8, 13.3] [64.7, 79.3] [196.6, 227.8] [120.9, 144.6] [10.46, 10.54] [10.74, 10.90] [11.44, 11.83]
50 [1029.1, 1707.4] [2187.9, 3975.0] [11.1, 15.7] [331.9, 423.0] [1191.1, 1386.9] [683.7, 834.0] [25.46, 25.54] [25.77, 25.95] [26.57, 27.04]
100 [1156.3, 2007.1] [2552.6, 4946.1] [12.0, 17.8] [1229.4, 1593.8] [4714.8, 5497.9] [2638.1, 3241.7] [50.46, 50.54] [50.78, 50.97] [51.62, 52.12]

T: return period; PV: peak-volume; PD: peak-duration; DV: duration-volume.
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‘‘OR” cases could be derived based on the posterior probabilities of
the model parameters. The results showed that the uncertainty of
the joint return period in the ‘‘AND” case increases as the return
period of the univariate flood variable increases. However, the
uncertainty of the return period in the ‘‘OR” case does not change
significantly. In addition, the uncertainty of bivariate risks for flood
peak–volume and flood peak–duration was characterized to reflect
the interactive effects among flood variables on the actual failure
risk of hydraulic facilities.

Since the introduction of the copula to hydrological analysis by
De Michele and Salvadori [40], these kinds of multivariate analysis
approaches have been widely used for hydrological risk inference
within amultivariate context. This study introduced Bayesian infer-
ence into the copula framework in order to characterize the inher-
ent uncertainties in multivariate flood risk analysis, and to further
reveal the impacts of interactive uncertainties among flood attri-
butes (i.e., peak, volume, and duration) on the resulting risk infer-
ences. The approach developed in this study was demonstrated
on a case study in the Xiangxi River Basin. However, this approach
is transferable and can easily be applied to other risk-assessment
problems (e.g., drought, storm, etc.) in different locations.

This study attempts to evaluate the uncertainty of copula-based
multivariate hydrological risk. The initial idea of the research is to
deal with the uncertainty in hydrological risk analysis that stems
from data limitation. However, further studies are still required
to characterize the uncertainty of hydrological risks that results
from model uncertainty and other sources of uncertainty.
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