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a b s t r a c t 

Urban consolidation centers provide the logistical infrastructure for cooperation among less-than- 

truckload carriers with contiguous destinations. The rising number of initiatives to establish and oper- 

ate urban consolidation centers and their low success rates signal the need for better mechanisms to 

manage cooperation in this context. We introduce and study cooperative situations comprising a set of 

carriers with time sensitive deliveries who can consolidate their cargo to obtain savings. We introduce 

the class of Dispatch Consolidation (DC) games and search for ways to fairly allocate the obtained sav- 

ings among the participating carriers. When delivery capacities are not restrictive, i.e. when waiting costs 

trigger truck dispatches, we show that stable allocations in the core always exist and can, in their en- 

tirety, be found by solving a compact linear program. With restrictive capacities, however, the core of a 

DC game may become empty. We introduce the notion of component-wise core for DC games to preserve 

stability first and foremost among the carriers whose deliveries are dispatched together in the chosen 

optimal solutions. The novelty of our approach is to link the stability requirements of an allocation rule 

with the structure of selected solutions for the underlying optimization problems. We characterize the 

component-wise cores of DC games, prove their non-emptiness, and suggest proportionally calculated 

allocations therein. Finally, we discuss a refinement of component-wise core allocations that minimizes 

envy among the carriers who are dispatched separately. 

© 2019 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

The outlook of logistics and transportation industry presents

one of the major paradoxes of our times. The ever increasing need

for better, cheaper, and more responsive products and services

drives the industry towards growth and efficiency on both local

and global scales. On the other hand, modern life has never

been so grappled with problems of pollution, congestion, and

a myriad of environmental issues that are negatively impacted

by the logistics and transportation sector. Road transportation

alone is responsible for more than 20% of total carbon emissions

in European Commission (2017) . At the same time, more than

20% for all truck movements in Europe is completely empty

( Eurostat, 2018 )—and the remainder is hardly ever full. Despite

the fruitfulness of research on optimizing routes, schedules, and

networks for individual organizations involved in transport and

logistics, the next level of efficiency obtained by increasing the
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conomies of scale can only be made possible via collaboration

mong individual operators. 

Although collaboration can positively affect almost all aspects of

he transportation and logistics sector ( Newing, 2008 ), an increas-

ngly promising context for collaborative logistics is consolidation

enters. A consolidation center is a logistical facility that is used to

ombine loads of various carriers and to construct delivery plans

hat are either more economical (e.g. via better utilized trucks)

r have higher service levels (e.g. via faster turnouts) ( Morana,

onzalez-Feliu, & Semet, 2014 ). A recent study commissioned by

ransport For London finds that the use of Construction Consol-

dation Centers can reduce freight traffic to construction sites by

ver 70% ( Mayor of London, 2016 ). By 2005, there has been over

0 documented cases of consolidation centers in Europe ( Browne,

weet, Woodburn, & Allen, 2005 )—though with various levels of

uccess. Allen, Browne, Woodburn, and Leonardi (2012) report 114

ocumented implementation cases of consolidation centers in 17

ountries by 2012. There are several pieces of evidence showing

hat consolidation centers are heavily supported by governments

nd urban authorities to remedy increasing logistical side-effects
under the CC BY-NC-ND license. 
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Fig. 1. Activities at a consolidation center. 
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f congestion and pollution ( Duin, Quak, & Muñuzuri, 2010; Hoyer,

likker, & Van Woensel, 2012; Paddeu, 2017 ). 

Given the potential benefits of consolidation centers and the

evel of support that they receive, one would expect to see their

uccessful and sustained operations all around the world. But this

s not the case. Quak and Tavasszy (2011) report that among more

han 100 initiatives in urban logistics collaborations, more than

alf of them fail during implementation. One of the main barriers

o success of consolidation centers is the deficiency of the mech-

nisms they use to share the obtained savings among, or cover

he incurred costs from, the participants. In fact, carriers may hes-

tate to collaborate as long as they do not have a clear understand-

ng of the mechanisms employed and whether or not they receive

 fair share out of collaborative operations. Nordtømme, Bjerkan,

nd Sund (2015) report, as one of the main success barriers for

slo’s consolidation center, that “there was no plan for how costs

ould be financed and who would benefit from saved costs”. The

ack of consensus on fair cost/gain sharing schemes as a barrier

o collaboration in wider logistics context is empirically confirmed

y Cruijssen, Cools, and Dullaert (2007) . As a result, consolidation

enters are often destined to disappear when governmental subsi-

ies are lost ( Verlinde, Macharis, & Witlox, 2012 ). 

In this paper, we construct a model to study collaboration

mong carriers via urban consolidation centers. The carriers have

eliveries that are destined for the same area (e.g. a city center or

 commercial/construction site). Instead of driving to their desti-

ations, the carriers’ trucks can arrive at the consolidation center,

nload their cargo, and move on to carry out their other fulfill-

ents. Their cargo would sit in the consolidation center in order to

e bundled into full-truck loads (see Fig. 1 ). The amounts of sav-

ngs that the carriers obtain are dependent on their dispatch times,

.e. the deliveries are time-sensitive. This is in line with previous

tudies emphasizing that the main costs of deliveries in the con-

olidation centers are time-related costs ( Janjevic & Ndiaye, 2017 ).

o materialize the full benefits of load consolidation, collaborating

arties delegate decision making authorities regarding bundling

nd dispatching of their cargo to a consolidation center operator. 1 

aving the delivery information of all carriers, the consolidation

enter operator in our model first determines the set of carriers
1 The execution of collaboration via a decision making entity is common and can 

e seen, for example, in cooperative logistics ( Özener & Ergun, 2008 ) and coopera- 

ive procurement ( Hezarkhani & Soši ́c, 2018 ). 

a  

i

(

hose deliveries are accepted to be handled by the consolidation

enter. Incorporating such selection option allows for the exclusion

f deliveries that cannot be profitably consolidated—for example,

hen a carrier’s delivery size is already close to a full-truckload.

he consolidation center operator then decides the dispatch times

f accepted deliveries. Finally, savings allocated to each carrier are

etermined. As we show, the problem of allocating the savings ob-

ained by collaboration in the consolidation center is equivalent to

etermining the players’ shares of dispatched trucks’ costs. Know-

ng the rules of the game, players decide whether or not to collab-

rate with others in consolidating their loads, and if so who they

re willing to collaborate with. 

Finding appropriate gain/cost-sharing methods is the main fo-

us of this paper. This problem is extensively studied within the

ramework of cooperative game theory (see for example Peleg &

udhölter, 2007 ). One of the most important gain-sharing rules

n cooperative game theory literature is the core ( Shapley, 1955 ). 2 

ased on the notion of stability, allocations in the core of a coop-

rative game distribute the total savings obtained by cooperation

n a way that sub-groups of players, also called coalitions, cannot

bject to their combined allocated savings being less than what

hey could achieve on their own. The latter requirement for allo-

ations have several other desirable properties as well (see for ex-

mple Peleg, 1992 ). One of the practically appealing properties of

ore allocations is their efficiency with regard to the set of play-

rs that positively contribute to realization of total savings. That is,

f a coalition of players together generates the entire savings, then

very allocation in the core distributes the total savings exclusively

mong those players. Thus, the players whose exclusion does not

educe the savings are allocated with no additional savings (the

o-called dummy property Peleg & Sudhölter, 2007 ). The example

elow illustrates this point. 

xample 1. Three carriers, each with half a tuck-load cargo, must

eliver to a city center. An urban consolidation center provides

pportunities for combining cargo and dispatching full truck-loads.

t would not make economical sense for a carrier to come to the

onsolidation center and be dispatched individually in a half-full

ruck. As the result, only two carriers would be selected to arrive

t the consolidation center and one has to transport his cargo
2 It is worth mentioning that although the literature often associates the def- 

nition of the core to Gillies (1959) , as shown by Zhao (2018) , it was Shapley 

1955) who first defined the core in its current form. 
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directly. Assume that carriers 1 and 2 as well as carriers 2 and 3

can combine their cargo together and obtain 60 units of savings.

Carriers 1 and 3, arriving too far from each other to the consoli-

dation center, cannot gain any savings from combining their cargo.

Suppose eventually carriers 1 and 2 are selected to consolidate

their cargo, and carrier 3, not being accepted to arrive at the

consolidation center, transports his delivery directly. The (unique)

stable allocation in the core gives 60 units of savings completely to

carrier 2 and leaves other two players with zero allocated saving. 

The stable allocation in example above does not allocate any

savings to the carrier who is not selected to arrive at the consoli-

dation center. If the latter condition is violated, carriers 1 and 2—

hose cargoes are eventually dispatched together via the consoli-

dation center—can object to the idea of giving away a positive part

of their jointly generated savings to carrier 3. 

Despite the desirable features of core allocations, it is not al-

ways possible to find allocations in the core. The following exam-

ple exhibits this. 

Example 2. In Example 1 , assume that carriers 1 and 3 can also

gain 60 units of saving by combining their cargo into a full truck-

load. The consolidation center operator has to choose between the

three possible pairs of carriers to arrive at the facility. Suppose,

again, that eventually carriers 1 and 2 are selected to consolidate

their cargo. No matter how the 60 units of savings are distributed

among the three carriers in this case, two of them will receive

less than what they can potentially gain together. Thus, the core

is empty. 

How should the savings be allocated among the carriers in the

above example? One might argue, as heard in our discussions with

industry practitioners, that in the above situation the entire sav-

ings must (similar to the outcome of core allocations in Example 1 )

be completely distributed among carriers 1 and 2 simply because,

as part of the selected decision for the cooperative situation, they

are responsible for realization of total savings. Although the carri-

ers seem to be symmetric before a particular solution is chosen for

the system (every pair has the same potential in creating the sav-

ings), once a decision to include 1 and 2 and exclude 3 is made,

the carriers may no longer be treated in a similar way. But there

seems to be no solution in cooperative game theory literature that

can accomplish the latter requirement. 

In situations where the core of a game can be empty, coop-

erative game theory literature suggests alternative allocation rules

that adopt a weaker notion of stability in order to suggest ways

to share the gains. The least core ( Maschler, Peleg, & Shapley,

1979 ), for instance, yields allocations wherein the maximum objec-

tion (instability) over all coalitions are minimized. The nucleolus

( Schmeidler, 1969 ), as another instance, further refines the least-

core by singling out a unique allocation wherein the objections of

all coalitions are lexicographically minimal. Although both of these

allocation rules incorporate the notion of stability to some extent

and resolve the problem of existence, they do not necessarily dis-

tribute the savings among the players who are eventually responsi-

ble for creating the total savings. In Example 2 , both the least core

and the nucleolus suggest equal allocations for the three players,

that is, 20 units of savings to each carrier. Subsequently, although

cooperation among carriers 1 and 2 eventually brings about all the

savings, carrier 3 also receives an equal share. The reason for this

is that the available allocation rules in cooperative game theory

are not necessarily linked with the final course of action in a sit-

uation and base their recommendations for allocated savings on

the players’ potential , not what they eventually do in a cooperative

situation. In other words, with the classical allocation rules there

is a disconnection between the allocation of gains and the chosen

optimal solutions. 
An important and well-studied allocation rule in cooperative

ame theory literature is the Shapley value ( Shapley, 1953 ). The

hapley value distributes the savings by averaging what each

layer can contribute to the savings obtained in all coalitions (in all

ifferent permutations of arrivals). Unlike allocations in the core,

he Shapley value may assign savings to players that might be in-

onsequentially removed from the situation. In Example 1 above,

he Shapley value allocates 10 units of savings to both carriers 1

nd 3, and 40 units to player 2. Thus, even though player 3 is not

elected to arrive at the consolidation center, he receives as much

rofit as player 1. In Example 2 , the Shapley value also prescribes

he equal allocations: each carrier is allocated with 20. Again, this

s because the Shapley value considers the potential contributions

f the players and disregard the selected decision for a cooperative

ituation. 

In light of the discussions above, there seems to be a gap in

he literature regarding the existence of allocation rules that ex-

licitly consider the selected decisions in cooperative situations.

n this paper, when encountered with situations whose associated

ames have empty cores, we propose an alternative approach to

ncorporate the notion of stability in an ex post sense while taking

nto account the selected optimal decisions. In this way, we prior-

tize the stability of different coalitions based on the selected so-

ution for the underlying optimization problem. To the best of our

nowledge, this approach has never been considered for operations

esearch games. 

.1. Contributions of this paper 

In this paper, we introduce and study Dispatch Consolidation

DC) games as a new class of cooperative games associated with

ogistics and operations research situations. The main results of the

aper are fourfold: 

1. For DC games with non-restrictive capacities, i.e., when

truck capacities do not impose any restriction on dispatch-

ing decisions and waiting costs trigger truck dispatches, we

prove non-emptiness of their cores. We provide a complete

characterization of the core by means of a linear program

which has up to n (n + 1) / 2 constraints ( n being the num-

ber of players in the system). This is significant because the

generic linear program for obtaining core has up to 2 n − 1

constraints. 

2. We show that the capacity restricted version of the game

can easily have an empty core. In this case, we introduce

the component-wise core as a weaker notion of stability for

DC games which imposes the no-objection requirement only

for subsets of players in the same dispatched truck in the

selected solution for the underlying optimization problem. 

3. We prove the non-emptiness of component-wise cores of DC

games in general. We provide a complete characterization of

the component-wise cores of DC games—drawing upon a key

property of component-wise stable allocations in DC games,

which requires later arriving players to compensate the de-

lay they cause for the earlier players in the same dispatch.

To calculate an allocation in the component-wise core, we

introduce an algorithm which uses a sequential procedure

to distribute the cost of a dispatched truck among the car-

riers involved based on adjusted proportions of the benefits

they receive. 

4. We introduce the notion of envy-freeness for the alloca-

tions, pertaining to any player’s willingness to swap places

with some other player, and show that although core allo-

cations are always envy-free, in DC games with restrictive

capacities envy-free allocations cannot always be found. We

formulate a linear program, in a similar vein as the least
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3 The assumption of common geographical destination holds in several real-life 

case studies, e.g. the consolidation center to service Regent Street in central London 

( ARUP, 2019 ). 
4 This is in line with real-life case studies where arrival times are pre-booked in 

advance and suppliers deliver their cargo to the consolidation center and leave im- 

mediately. For example, see the case study of Wilson James’s London Construction 

Consolidation Centre (LCCC) ( James, 2019 ). 
core ( Maschler et al., 1979 ), that finds allocations within

the component-wise cores of DC games which minimize the

maximum envy of players that are dispatched in separate

trucks. 

The rest of this paper is organized as follows. In Section 2 , we

riefly overview the relevant literature. In Section 3 , we formally

ntroduce the model for dispatch consolidation situations, discuss

he underlying optimization problems, and formulate their associ-

ted cooperative games, i.e. DC games. The gain sharing problem in

his context is presented in Section 4 . Games with non-restrictive

apacities are analyzed in Section 5 where we provide the main

esult regarding the non-emptiness of their cores. In Section 6 ,

he notion of component-wise core is introduced to address sta-

ility in games with restrictive capacities. We provide a com-

lete characterization of the component-wise cores of DC games in

ection 7 and present a proportional allocation rule therein sub-

equently in Section 8 . The notion of envy-freeness is introduced

n Section 9 along with a procedure to obtain allocations in the

omponent-wise core with minimum envy. Finally, Section 10 con-

ludes the paper. All proofs are given in the Supplementary

aterials. 

. Literature review 

In the centralized setting, optimization problems at consoli-

ation centers have been subject to several studies with various

evels of details. In a deterministic system, Daganzo (1988) studies

onsolidation strategies of shipments from several departures with

 common single destination. When arrivals at consolidation cen-

ers are stochastic, Çetinkaya and Bookbinder (2003) find optimal

ispatch policies at a consolidation center while incorporating

he time sensitive nature of cargo. Çetinkaya (2005) provides an

verview of literature in this area. More recently, van Heeswijk,

es, and Schutten (2017) propose an approximate dynamic pro-

ram to plan dispatches at an urban consolidation center with

andom arrivals, heterogeneous fleet, multiple destinations, and

ptions for spot market transport. Savelsbergh and Van Woensel

2016) review the literature on routing problems in the context of

ity logistics. 

Given the nature of consolidation centers as a point of aggre-

ating the cargo for different parties, the decentralized view of the

roblem is an indispensable part of the analysis. Zhou, Hui, and

iang (2011) study collaboration through a consolidation center be-

ween two players with a common destination and examine how

ifferent alliance settings could affect the performance of the sys-

em. Using a mechanism design approach, Zhang, Uhan, Dessouky,

nd Toriello (2016) study the application of Moulin cost-sharing

echanism ( Moulin & Shenker, 2001 ) in a consolidation center

sed by carriers with small-sized and time-insensitive cargo. In an

uction setting, Handoko, Nguyen, and Lau (2014) address the win-

er determination problem for the consolidation center’s operator

o decide how to accept bids from the carriers who are willing to

se the service. van Heeswijk, Larsen, and Larsen (2019) present

n agent-based simulation framework to evaluate the impact of

rban logistics choices on the individual stakeholders in a case

tudy of an urban consolidation center in the city of Copenhagen.

long the same lines, van Heeswijk, Mes, and Schutten (2016) look

nto urban logistics problems exploring coordination and collab-

ration among five types of autonomous agents (receivers, ship-

ers, carriers, urban consolidation center and administrator) all

ith diverging interests and stakes. Nguyen, Dessouky, and Toriello

2014) propose a heuristic for consolidation of perishable agricul-

ural products with stochastic demands and suggest a simple pro-

ortional rule to share the costs among participating suppliers.

owever, there is little research on the requirements for fairness
mong carriers which motivates the applications of cooperative

ame theory in the context of consolidation centers. 

In order to deal with the gain/cost allocation problems in

ogistics and transportation context, many authors have proposed

he adoption of well-known allocation rules of cooperative game

heory. The most investigated solution so far is the core. Özener

nd Ergun (2008) study a class of cooperative truckload delivery

ituations and show that the cores of their associated games

re always non-empty and dual solutions provide allocations in

heir core. Hezarkhani, Slikker, and Van Woensel (2014) further

elineate the possibilities and impossibilities for a complete

haracterization of the core of these games via dual solutions.

ezarkhani (2016) discusses a cooperative logistics game with

unctual delivery times and proves the non-emptiness of the

ore. Skorin-Kapov (1998) examines several cooperative games

ssociated with hub network games and highlights special cases

here the core is non-empty. Still, in several key decentralized

ogistics problems—e.g. traveling salesman, vehicle routing, facility

ocation, etc.—it is known that the cores of the associated games

an be empty. In cooperative vehicle routing situations, where the

ores could be empty, Göthe-Lundgren, Jörnsten, and Värbrand

1996) and Engevall, Göthe-Lundgren, and Värbrand (2004) elabo-

ate on the implementation of the nucleolus as the allocation rule

f choice. Hezarkhani, Slikker, and Van Woensel (2016) propose

 cost-sharing rule for collaborative routing of full-truckloads to

ncorporate the competitive position of players while addressing

he stability of the solution. Krajewska, Kopfer, Laporte, Ropke, and

accour (2007) discuss the implementation of the Shapley value

s the solution in cooperative organizations of logistics providers.

omputational complexities of finding Shapley values in large

ames have given rise to novel approximation techniques and

euristics ( Bremer & Sonnenschein, 2013; Castro, Gómez, & Tejada,

009 ). Several reviews of cost sharing problems in operations

anagement and logistics are available in the literature (see for

xample Curiel, 2008 and Deng & Fang, 2008 among others). For

 recent review on applications of cooperative game theory in

ain/cost-sharing problems specific to collaborative logistics and

ransportation see Guajardo and Rönnqvist (2016) . 

. Dispatch consolidation (DC) situations and games 

A non-empty set of carriers, hereafter players, N = { 1 , . . . , n }
ave deliveries destined for the same geographical area. 3 The size

volume) of player i ’s delivery is c i > 0. Player i arrives at the con-

olidation center at time r i ≥ 0 and, without loss of generality, un-

oad his cargo at the same time. The truck carrying a player’s cargo

eaves the consolidation center immediately after unloading. 4 We

se the terms player and delivery interchangeably. We call r i the

rrival time of delivery i . For ease of exposition we assume that

eliveries have non-identical arrival times and that N is arranged

y increasing order of arrival times, i.e., r 1 < r 2 < · · · < r n . All re-

ults hold if the latter condition is relaxed. 

Without using the consolidation center, each player could indi-

idually fulfill his delivery. The status quo cost of delivery for each

layer is known. The cost of inbound transportation to consolida-

ion center for all players is also known. Thus, the potential benefit

hat a player can obtain by fulfilling his delivery via the consoli-

ation center is subsequently assumed to be known. For delivery
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i ∈ N , we denote that latter value with K i and refer to it by player

i ’s potential. 5 

A player would achieve his potential if upon arrival at the con-

solidation center, his cargo is immediately dispatched and he pays

no additional costs. Note that actual savings achieved by a player

as the result of using the consolidation center depends on his wait-

ing time at the consolidation center as well as his payment toward

the cost of dispatch from the consolidation center to his destina-

tion. In our model we consider the latter costs separately. We as-

sume K i > 0 for all i ∈ N . That is, all players have the potential to

achieve savings from using the consolidation center. This does not

mean that all player will necessarily benefit from using the consol-

idation center—a player with positive potential may be worse off if

he is dispatched without being bundled with other deliveries or if

he (more specifically, his cargo) waits too long at the consolidation

center. 

As deliveries arrive over time, to be able to consolidate deliv-

eries in the consolidation center some deliveries must wait for the

arrival of the others. But deliveries are time-sensitive so waiting

is costly. 6 We let p i ≥ 0 be the waiting penalty rate for player i ,

that is the cost that he incurs when his cargo sits in the consol-

idation center for a unit of time. Thus, the benefit obtained by

player i if dispatched from the consolidation center at time d i ≥ r i 
is K i − p i (d i − r i ) . 

7 

The consolidation center operates a homogeneous fleet with

sufficient number of trucks. Each truck has the capacity C > 0. The

cost of dispatching a truck from the consolidation center to the

common destination is W ≥ 0. We assume, without loss of gen-

erality, that the preparation time at the consolidation center for

dispatching arrived deliveries is normalized to zero. Accordingly, a

Dispatch Consolidation (DC) situation can be defined by the tuple

� = (N, c , r , K , p , C, W ) with bold notation representing n -element

vectors. In the remainder of this paper, unless mentioned explicitly,

we assume that the situation is arbitrary but fixed. 

3.1. Dispatch decisions 

The consolidation center is responsible for making decisions,

on behalf of the participating players, regarding the dispatching of

their deliveries. Acting as a coordinator in the system, the objec-

tive of the consolidation center is to maximize the overall profit

of all players. In doing so, however, the consolidation center can

choose not to accept some deliveries for handling at the facility.

Allowing a consolidation center to reject players enables the ex-

clusion of non-profitable deliveries. Thus, having the information

about the deliveries of all players, the consolidation center decides

(a) the set of deliveries which are accepted to be handled by the

consolidation center, and (b) dispatch times of accepted deliveries. 8 
5 There are several case studies that publish potential savings due to use of con- 

solidation centers. For example, UK’s Waste & Resources Action Programme (WRAP) 

provides comprehensive data on potential savings in the case study of London Con- 

struction Consolidation Center ( WRAP, Waste & Resources Action Programme, 2019 ). 

The potential savings in this case comprise reduction in overall trips as well as 

avoiding congestion charges due to traveling into central London. 
6 Waiting times and associated costs are measured and controlled in several case 

studies. Janjevic and Ndiaye (2017) report numerical values of average dwelling 

times in some real-life consolidation centers. 
7 The waiting penalties can also reflect dispatch deadlines: let d i such that 

K i − p i (d i − r i ) = 0 . Then d i can be interpreted as the deadline of delivery i to be 

dispatched from the consolidation center as missing this deadline makes direct de- 

liveries more profitable. 
8 The decision on dispatching times essentially determines the duration that each 

accepted player needs to wait at the consolidation center. An alternative modeling 

approach, yet mathematically equivalent, is to consider ready times of players at 

their origins, explicitly considering the time distance of each player from the con- 

solidation center, and to require the consolidation center to advise players on their 

postponed departure times so that all players in a dispatch arrive together at the 

consolidation center. 
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Suppose, for example, that the consolidation center accepts the

eliveries T ⊆N and consolidates them within a single truck dis-

atched at time d T ≥ 0, hereafter a dispatch . To ensure feasibility,

wo conditions must be met: (1) the dispatch time must be no

arlier than the arrival times of all included deliveries, i.e., d T ≥ r i 
or all i ∈ T , and (2) the total size of the consolidated deliveries in

 dispatch must be less than or equal to the truck capacity, i.e.

i ∈ T c i ≤ C . If these two conditions are maintained, the saving ob-

ained by the dispatch is 
∑ 

i ∈ T [ K i − p i (d T − r i ) ] − W. The saving as-

ociated with a dispatch is thus the sum of potentials of the in-

luded deliveries, minus their waiting costs as well as the cost of

 dispatched truck. 

The consolidation center’s decision structure comprises a col-

ection of dispatches, representing consolidated subsets of players,

nd their associated dispatch times. Let N be the set of all non-

mpty subsets of N and define N 

f = { T | T ∈ N , 
∑ 

i ∈ T c i ≤ C} to be

he set of capacity-feasible subsets of players. The combined cargo

ize of players in each subset T ∈ N 

f is less than or equal to the

ruck capacity. The objective of the consolidation center operator is

o maximize the sum of savings of all players. The observation be-

ow limits the choices for the optimal dispatch times of a dispatch.

emark 1. The optimal time for the dispatch of players in T ∈ N ,

oincides with the arrival time of the last player in T . 

It is straightforward to verify the above remark. Reducing the

ispatch time also reduces the waiting times and this can never

ecrease the associated savings. Thus, at optimality the dispatch

ime can be reduced until the feasibility condition d T ≥ r i for all

 ∈ T , or equivalently for the last arriving player, becomes binding.

ubsequently, in the rest of the paper we limit our attention to the

ptimal dispatch times as prescribed in Remark 1 . In conjunction

ith the assumption of non-identical arrival times, Remark 1 im-

lies that the optimal number of dispatched trucks at any point of

ime is at most one. 

Given T ∈ N , we denote the first and last arriving delivery in

 with b ( T ) and e ( T ), respectively. Since the players are ordered

y their arrival times, b ( T ) and e ( T ) also represent respectively the

mallest and largest elements in T . Define the saving function u for

 group of players T ∈ N as 

 T = 

∑ 

i ∈ T 

[
K i − p i 

(
r e (T ) − r i 

)]
− W. (1)

n this manner, u T determines the total benefit obtained by deliv-

ries in T when dispatched at r e ( T ) , which is the earliest feasible

ispatch time for them, minus the cost of the truck. 

To find the best choice of selected players for handling at the

onsolidation center and, simultaneously, obtaining the best dis-

atching schemes, we can construct the optimization problem as a

et packing formulation: 

 (N) = max 
∑ 

T ∈N f 
z T u T (2)

.t. 
∑ 

T ∈N f : T � i 
z T ≤ 1 ∀ i ∈ N (3)

z T ∈ { 0 , 1 } ∀ T ∈ N 

f (4)

he optimization problem above chooses the best combination of

ispatches to maximize total savings. Let z N = (z N T ) T ∈N f be an op-

imal solution to the problem above. We denote the optimal dis-

atching scheme for N associated with z N with 

 

N = { T | T ∈ N 

f , z N T = 1 } , (5)

nd call every T ∈ Z N a component of Z N . With this notation in place,

he maximum saving of all players can be obtained via the sum of
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Fig. 2. Optimal dispatching scheme in Example 3 . 
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9 Note that a DC game is a saving game. One can define a dual cost game by 

incorporating the players status quo costs and introducing additional variables for 

the selection problem. This, however, renders the formulation of the problem more 

cumbersome. 
avings over all components in an optimal dispatching scheme: 

 (N) = 

∑ 

T ∈ Z N 
u T . (6)

t is straightforward to see that for every T ∈ Z N we have v (T ) =
 T ≥ 0 . 

xample 3. Assume that the DC situation is as follows. There are

 players, N = { 1 , 2 , 3 , 4 , 5 } . The size of all deliveries are equal to

ne unit. Suppose r i = i for all i ∈ N , K i = 10 for all i ∈ N �{4} and

 4 = 5 . The waiting penalty rates are p 1 = p 3 = 2 , p 2 = 0 . 5 and

p 4 = p 5 = 5 . The cost and capacity of trucks are W = 15 and C = 2 .

n the optimal dispatching scheme for the grand coalition in this

xample—illustrated in Fig. 2 —players 1 and 3 are dispatched to-

ether at r 3 , while players 2 and 5 are dispatched together at r 5 .

layer 4 in this example is not accepted for dispatching through

he consolidation center. 

For simplicity, hereafter we use the notation λi, j = K i − p i (r j −
 i ) . The value λi , j is the benefit obtained by delivery i when dis-

atched at the arrival time of delivery j . Note that λi , i coincides

ith the potential of delivery i , i.e. K i . We provide some observa-

ions in connection with optimal dispatching schemes. 

emma 1. Let Z N be an optimal dispatching scheme for N. Suppose

 ∈ Z N . For all i ∈ T the followings hold: 

(a) λi , e ( T ) ≥ 0, 

(b) (r e (T ) − r i ) 
∑ 

k ∈ T : k ≤i p k ≤ W. 

(c) (r e (T ) − r i ) 
∑ 

k ∈ T : k ≤i p k ≤
∑ 

k ∈ T : k>i λk,e (T ) 

The first part in the above lemma estates that the benefit of

ach player included in a component of an optimal dispatching

cheme must be non-negative. This is an intuitive feature because

therwise the exclusion of delivery i from the dispatch increases

otal savings. To interpret part (b), note that the term (r e (T ) − r i ) p k 
s the improvement in player k ’s waiting cost if he is dispatched

t r i instead of his current dispatch time which is r e ( T ) . In other

ords, this term is the saving in waiting cost that k can get if he

s dispatched at r i . Consequently, the inequality in part (b) means

hat if T is an optimal component, then the sum of savings in

aiting costs that players before i , including i himself, obtain by

rganizing an alternative dispatch at r i should be small enough so

hat it would not outweigh the cost of an additional dispatched

ruck. An optimal dispatching scheme must satisfy this condition

therwise dispatching those deliveries independently (or rejecting

hem in case their associated savings are negative) improves the

otal savings. For example, suppose an optimal component includes

wo deliveries—thus dispatching these two deliveries together are

t least as profitable as two individual dispatches. The cost differ-

nce between the latter dispatch scheme and the optimal is the

ifference between the cost of an additional truck and the waiting

ost of the first delivery. In this example the condition in part

b) states that the waiting cost of the first delivery must be less

han W . Finally, the condition in part (c), requires that the sum of

enefits obtained by including the deliveries after i in an optimal
ispatching scheme, �k ∈ T : k > i λk , e ( T ) , must always outweigh the

um of extra waiting costs of earlier deliveries. In the two-delivery

omponent example mentioned earlier, this observation requires

he benefit of the second delivery to be at least as large as the

aiting cost of the first in order to justify the wait. 

.2. DC games 

A cooperative game is a pair (N, v ) comprising a player set N ,

nd a characteristic function v that assigns a real value to every

ubset, i.e. coalition, of N with v (∅ ) = 0 . A dispatch consolidation

DC) game is a cooperative game defined in association with a DC

ituation. For every S ⊆N , let S be the set of all non-empty subsets

f S and S f = S ∩ N 

f be the restriction of capacity-feasible subsets

mong players in S . The DC game associated with the given situa-

ion � is obtained by defining v (S) for every S ⊆N via 9 

 (S) = max 
∑ 

T ∈S f 
z T u T (7) 

.t. 
∑ 

T ∈S f : T � i 
z T ≤ 1 ∀ i ∈ S (8) 

z T ∈ { 0 , 1 } ∀ T ∈ S f (9) 

ccordingly, we can define an optimal dispatching scheme for S

ith Z S . Natural analogs for Eq. (6) and Lemma 1 also hold for ev-

ry Z S , i.e., optimal dispatching schemes for coalitions. 

A cooperative game is called superadditive if for every pair of

isjoint subsets S, T ∈ N , S ∩ T = ∅ , we have v (S) + v (T ) ≤ v (S ∪ T ) .

t is straightforward to verify that DC games are indeed super-

dditive. The superaditivity of DC games implies that the sum of

avings obtained by (optimally) consolidating players’ deliveries in

ub-coalitions never exceeds the savings obtained from consolidat-

ng deliveries in the grand coalition. Thus economies of scale are

resent in consolidation centers. 

. Gain sharing problem 

An important problem in every cooperative game is the division

f the grand coalition’s savings among the players. Let a = (a i ) i ∈ N 
e an allocation where a i ∈ R is the allocated saving to player i ∈ N .

e introduce some desirable properties that an allocation may

atisfy. 

The first property requires that savings of the grand coalition

e fully distributed among the players. 

roperty 1. An allocation a is efficient for (N, v ) if 
∑ 

i ∈ N a i = v (N) . 

In order for the players to participate in the game, their allo-

ated savings must be at least as much as they can obtain indi-

idually. Otherwise they would be better off not participating. The

ext property formalizes this requirement. 

roperty 2. An allocation a is individually rational for (N, v ) if a i ≥
 ({ i } ) for all i ∈ N. 

As an extension to the individual rationality property, it is de-

irable to distribute savings in such a way that all groups of players

eceive at least as much as they would if collaborate only among

hemselves. The notion of stability is accordingly defined. 

roperty 3. An allocation a is stable for (N, v ) if for every S ⊆N we

ave 
∑ 

a i ≥ v (S) . 
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10 We use the notation (·) + instead of max { · , 0}. 
With a stable allocation, no coalition of players can object that

they would have been better off outside the grand coalition and

on their own. Stability implies individual rationality, that is, every

stable allocation is also individually rational. The core of a game in-

corporates the properties defined above, that is, the core of a game

is the set of all efficient and stable allocations. 

Definition 1. An allocation a is in the core of (N, v ) whenever∑ 

i ∈ N a i = v (N) , and 

∑ 

i ∈ S a i ≥ v (S) for all S ⊂ N . 

Given the desirable features of core allocations, one would be

interested in examining their existence and subsequently finding

them. 

We showed earlier that the characteristic function of every DC

game is defined via a set packing formulation. As a result, DC

games are special instances of the class of set packing games

( Deng, Ibaraki, & Nagamochi, 1999 ). The following result regarding

the non-emptiness of the cores of set packing games in general

holds for DC games as well. Consider the dual program associated

with the integer relaxation of the program (2) –(4) : 

v D (N) = min 

∑ 

i ∈ N 
a i (10)

s.t. 
∑ 

i ∈ T 
a i ≥ u T ∀ T ∈ N 

f (11)

a i ≥ 0 ∀ i ∈ N (12)

Theorem 1. The core of the DC game (N, v ) is non-empty if and only

if v D (N) = v (N) , that is, the integer relaxation of the program does

not affect optimality. In this case the core coincides with the set of

solutions to (10) –(12) . 

The proof of Theorem 1 , expressed in terms of set packing

games, can be found in Deng et al. (1999) . The core of a set packing

game can in general be empty, and (as seen in Example 2 above)

so does the core of a DC game. But whenever the integrality con-

straint of the optimization problem in a given situation turns out

to be superfluous, the core of the associated game would also be

non-empty. 

5. DC games with non-restrictive capacities 

Consider the special case where truck capacities would not im-

pose any restriction on optimality. This can happen when either

the capacity is ample and/or the waiting penalties are substantial

enough that dispatches are executed before trucks exceed their ca-

pacity limits. Note that non-restrictive capacities do not mean that

all deliveries are dispatched in one truck. For example, suppose

that a series of deliveries all with a third of truck-load size ar-

rive every half an hour to the consolidation center but, in order

to make the use of consolidation center economically feasible, each

delivery cannot wait more than forty five minutes in the facility. In

this case, a truck would be dispatched every hour with only two-

third of its capacity filled. 

Definition 2. The DC game (N, v ) has non-restrictive capacities if

replacing N 

f with N in formulation of v (N) in (7) –(9) would not

affect its optimal value. The game has totally non-restrictive capac-

ities if for every S ⊆N replacing S f with S in formulation of v (S)

would not affect its optimal value. 

With non-restrictive capacities, the value of optimal dispatch-

ing schemes would not change if one relaxes the capacity-feasible

requirement for the grand coalition. If the same holds for all

coalitions as well, the game would be said to have totally non-

restrictive capacities. DC games with non-restrictive capacities ex-

hibit special structures that we exploit in this section to prove that

their cores are non-empty. 
For games with non-restrictive capacities, we first provide an

lternative formulation of the corresponding optimization prob-

em. Given S ⊆N , we call T ⊆S , a connected subset of S if for ev-

ry k ∈ S such that b ( T ) < k < e ( T ), it holds that k ∈ T . Recall that

 ( T ) and e ( T ) are the first and last arriving deliveries in T respec-

ively. Denote the set of connected subsets of S with S̄ . Let 10 λ+ 
i, j 

=
K i − p i (r j − r i ) 

)+ 
, and for every T ∈ N define ū T = 

∑ 

i ∈ T λ
+ 
i,e (T ) 

−
. For every set of deliveries T , ū (T ) gives the sum of benefits of

hose deliveries in T whose dispatch generates non-negative ben-

fits. Consider the modified characteristic function v̄ , defined for

 ⊆N as 

¯
 (S) = max 

∑ 

T ∈ ̄S 
z T ū T (13)

.t. 
∑ 

T ∈ ̄S : T � i 
z T ≤ 1 ∀ i ∈ S (14)

z T ∈ { 0 , 1 } ∀ T ∈ S̄ (15)

ompared to the original formulation in (7) –(9) , the above formu-

ation replaces u T with ū T and S f with S̄ so the packing is done

ver the set of connected subsets. Our first observation in this sec-

ion states conditions under which such transformation is inconse-

uential in terms of the optimal value. 

emma 2. If the DC game (N, v ) has non-restrictive capacities, then

e have v̄ (N) = v (N) and v̄ (S) ≥ v (S) for every S ⊂ N. If the game has

otally non-restrictive capacities then v̄ = v . 

We are now ready to provide the main result of this section

egarding the non-emptiness of the core of every DC game with

on-restrictive capacities. 

heorem 2. The core of every DC game with non-restrictive capaci-

ies is non-empty. 

The proof of Theorem 2 draws upon the results of Barany,

dmonds, and Wolsey (1986) regarding zero duality gap of set

acking problems on trees via their sub-trees and incorporates the

ecessary and sufficient condition for the core non-emptiness of a

et packing game as described in Theorem 1 . Therefore, one can al-

ays find allocations in the core of a DC game with non-restrictive

apacities. In order to do so, one can solve the dual program in

10) –(12) . The latter program can have up to 2 n − 1 constraints.

nfortunately, one cannot use the dual problem associated with

13) –(15) for N —which contains only n (n + 1) / 2 constraints—to

btain allocations in the core. This is shown in the next example. 

xample 4. Assume that the situation involves three players

 = { 1 , 2 , 3 } . Let c i = 1 , r i = i, K i = 10 , p i = 1 for all i ∈ N , and

urthermore W = 4 . We have v ({ i } ) = 6 for i ∈ N , v ({ 1 , 2 } ) =
 ({ 2 , 3 } ) = 15 , v ({ 1 , 3 } ) = 14 , and v (N) = 23 . The dual solution as-

ociated with relaxation of (13) –(15) for N —which is equivalent to

10) –(12) with N 

f replaced with N̄ —requires that a i ≥ v ({ i } ) = 6

or all i ∈ N , a 1 + a 2 ≥ v ({ 1 , 2 } ) = 15 , a 2 + a 3 ≥ v ({ 2 , 3 } ) = 15 , and

 1 + a 2 + a 3 = v (N) = 23 . The allocation a = (6 , 11 , 6) satisfies the

bove requirements, but it is not in the core since a 1 + a 3 = 12 <

 ({ 1 , 3 } ) = 14 . 

As our next result indicates, in case of non-restrictive capacities,

here exists an alternative program, drawing upon at most n (n +
) / 2 inequalities, that obtains allocations in the core. 

heorem 3. Suppose that the DC game (N, v ) has non-restrictive ca-

acities. Let a be an efficient allocation such that for a collection of
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on-negative pairwise weights (w i, j ) i, j∈ N: i< j it satisfies: 

 i + w i, j ≥ λ+ 
i, j 

∀ i, j ∈ N : i < j (16) 

 j −
∑ 

i< j 

w i, j ≥ λ j, j − W ∀ j ∈ N (17) 

hen such an a exists and any such a is an allocation in the core.

urthermore, if the game has totally non-restrictive capacities, all al-

ocations in the core can be obtained in this way. 

The conditions in (16) and (17) balance the players’ allocations

hrough a set of non-negative pairwise weights. Once these condi-

ions, along with the efficiency requirement, are satisfied the out-

ome is an allocation in the core. In case of totally non-restrictive

apacities, if an allocation is in the core of the game, it always

atisfies this set of conditions. Therefore, Theorem 3 gives a com-

lete characterization of the core for DC games with totally non-

estrictive capacities. 

xample 5. In Example 4 , the conditions in (16) and (17) can be

ritten as: a 1 + w 1 , 2 ≥ 9 , a 1 + w 1 , 3 ≥ 8 , a 2 + w 2 , 3 ≥ 9 , a 1 ≥ 6 , a 2 −
 1 , 2 ≥ 6 , a 3 − w 1 , 3 − w 2 , 3 ≥ 6 . The efficiency also requires that a 1 +
 2 + a 3 = 23 . Feasible solutions for these constraints, i.e. alloca-

ions in the core, include a = (7 , 9 , 7) , with corresponding pairwise

eights w 1 , 2 = 2 , w 1 , 3 = 1 , w 2 , 3 = 0 , and a = (8 , 9 , 6) , with cor-

esponding pairwise weights w 1 , 2 = 1 , w 1 , 3 = 0 , w 2 , 3 = 0 , among

thers. Observe that one cannot find a set of weights which,

ogether with the non-core allocation a = (6 , 11 , 6) discussed in

xample 4 , comprise a feasible solution to these set of constraints.

. DC games with restrictive capacities and component-wise 

ore 

In the previous section we showed that in every DC game with

on-restrictive capacities one can always find allocations in the

ore. When the delivery capacities impose restrictions, however,

he core can be empty—as shown in the simple example below. 

xample 6. Consider the situation in Example 4 with additional

equirement that C = 2 . We get v ({ i } ) = 6 for i ∈ N , v ({ 1 , 2 } ) =
 ({ 2 , 3 } ) = 15 , v ({ 1 , 3 } ) = 14 , and v (N) = 21 . One can verify that

he core of this game is empty. 

Recall that the stability property imposes the no-objection re-

uirement for all coalitions of players. As seen in Example 6 , this

an be too demanding and, accordingly, the core of a DC game

ith restrictive capacities can be empty. In this case, cooperative

ame theory literature suggests allocation rules such as least-core

nd nucleolus that minimize maximum objections over the set of

ll coalitions. These allocation rules treat all coalitions in the same

ay—i.e. all having the same chance of being formed. However,

n some situations, e.g. DC games, one can argue that some coali-

ions are more likely to form and some objections are more likely

o be raised. In DC games per se, players who are eventually dis-

atched together in a single truck are directly involved in working

ith each other, so if there are chances that players form coali-

ions and orchestrate their objections, players in the same dispatch

re first to spot such opportunities. The novelty of our approach

s to restrict the stability requirements of an allocation rule with

he structure of the selected solution for the underlying optimiza-

ion problem. Next, we introduce the concept of component-wise

tability. In the following definitions we assume that the optimal

ispatching scheme for the situation, Z N , is arbitrary but fixed. 

roperty 4. An allocation a for the DC game (N, v ) is component-

ise stable with regard to Z N if for all T ∈ Z N and all S ⊆T we have
 

i ∈ S a i ≥ v (S) . 
Component-wise stability requires the no-objection condition 

nly for coalitions of players within the components of an optimal

ispatching scheme. In this manner, it disregards the objections

hat can be raised by the collections of players from different com-

onents. Note that it is necessary for this property to be given with

n optimal dispatching scheme as there can be multiple choices in

ne situation. Subsequently, we define the component-wise core

f a DC game with regard to an optimal dispatching scheme as the

et of all efficient and component-wise stable allocations. 

efinition 3. An allocation a is in the component-wise core of

he DC game (N, v ) with regard to Z N whenever 
∑ 

i ∈ N a i = v (N) ,
 

i ∈ S a i ≥ v (S) for all S ⊆T and all T ∈ Z N , and a i = 0 for every i ∈ T

nd all T ∈ Z N . 

Let Z 

N = { S| S ⊆ T , T ∈ Z N } be the set of subsets of components

f Z N . In comparison with the core, the component-wise core

elaxes the no-objection requirement for coalitions in N 

f \ Z 

N .

learly, the component-wise core is a weakening of the core. That

s, every allocation in the core is also in the component-wise core.

he reverse, however, is not necessarily true. That is, an allocation

n the component-wise core may not lie in the core. 

Our main result in this section shows that despite the possibil-

ty of encountering an empty core in a DC game with restrictive

apacities, once an optimal dispatching scheme is fixed, the asso-

iated component-wise core is always non-empty. 

heorem 4. The component-wise core of every DC game with regard

o every corresponding optimal dispatching scheme is non-empty. 

In light of Theorem 4 , the notion of component-wise stability

n DC games with restrictive capacities offers an alternative way

o partially incorporate stability with regard to a selected optimal

ispatch scheme while resolving the issue of existence. Therefore,

ith an allocation in the component-wise core in this case, carriers

hose deliveries are dispatched within the same truck can never

bject to their allocations when considering possible cooperation

mong themselves. 

. A Characterization of component-wise cores of DC games 

In DC games, the component-wise cores can be characterized

y a collection of properties defined for DC situations. The first

roperty requires that the savings generated by players within

ach component of the selected optimal dispatching scheme be

ompletely distributed among themselves and any player who is

ot part of a dispatch gets zero. 

roperty 5. An allocation a for the DC game (N, v ) satisfies

omponent-wise Efficiency (CE) property with regard to Z N if we have
 

i ∈ T a i = u T for every T ∈ Z N , and a i = 0 for every i ∈ N such that i ∈ T

or all T ∈ Z N . 

So far we have considered the problem of allocating gains ob-

ained via cooperation among the players. At this point we offer

 complementary interpretation of allocations in terms of players’

ost shares. Let Z N be an optimal dispatch scheme, T ∈ Z N a compo-

ent, and i ∈ T a player in T . Given a i as the allocated saving to a

layer i define 

 i = λi,e (T ) − a i . (18) 

he value y i is the difference between the benefit that player i ob-

ains when dispatched along with the other players in T , and his

llocated saving. In this case, y i can be regarded as i ’s share of dis-

atch cost. The properties introduced in this section have intuitive

nterpretations in terms of a players’ shares of dispatch costs. For

xample, the CE property above can be expressed alternatively in

erms of the corresponding cost shares. 
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11 Given k ∈ T ⊂ N , for simplicity of notation hereafter we use k − 1 to refer to the 

player in T which arrives immediately before k . 
Property 6. An allocation a for the DC game (N, v ) satisfies CE prop-

erty with regard to Z N if for every T ∈ Z N we have 
∑ 

i ∈ T y i = W . 

Whenever an allocation satisfies the CE property, the cost of

each dispatched truck is distributed completely among players in

a component of the optimal dispatching scheme. 

The next property formalizes the requirement for the players’

shares of dispatch costs to be non-negative. 

Property 7. An allocation a for the DC game (N, v ) satisfies Non-

negative Contribution to dispatch cost (NC) property with regard to

Z N if y i ≥ 0 for all i ∈ T , T ∈ Z N . 

The NC property caps the amount of savings that each player

can obtain as the result of collaboration given the choice of optimal

dispatching scheme. This implies that if an allocation satisfies the

NC property then no player is subsidized for his waiting cost in the

selected optimal dispatching scheme. 

Next, we introduce a property with regard to the sum of allo-

cated costs to the players in an optimal dispatch. 

Property 8. An allocation a for the DC game (N, v ) satisfies Com-

pensation for Delay-caused (CD) property with regard to Z N , if for ev-

ery T ∈ Z N , | T | ≥ 2, and every i ∈ T �{ e ( T )} it holds that 
∑ 

k ∈ T : k>i y k ≥
(r e (T ) − r i ) 

∑ 

k ∈ T : k ≤i p k . 

The above property states that the sum of the shares of dis-

patch costs of late arriving players in a component of the selected

optimal dispatch is always large enough to compensate for the

waiting cost of the early arriving players in that component. Thus,

this property requires that later players collectively compensate for

the delay that they cause for earlier players. 

Our final property introduces a weaker version of individual ra-

tionality for the players in components of the optimal dispatching

scheme. 

Property 9. An allocation a for the DC game (N, v ) satisfies

Component-wise Individual Rationality (CIR) property with regard to

Z N if for every T ∈ Z N , and i ∈ T it holds that y i ≤λi , e ( T ) . 

The CIR property requires non-negative allocations of savings

to players who are dispatched in the selected optimal dispatching

scheme for the grand coalition. 

Before presenting the main result of this section, we provide

an observation regarding the savings of sub-coalitions of players

within components of optimal dispatching schemes. 

Lemma 3. Let T ∈ Z N . For every S ⊆T we have v (S) =(
max i ∈ S u { k ∈ S: k ≤i } 

)+ 
. 

Our main result in this section characterizes the component-

wise core in terms of four properties defined earlier. 

Theorem 5. With regard to Z N , an allocation is in the component-

wise core of the DC game (N, v ) if and only if it satisfies the CE, NC,

CD, and CIR properties. 

The above theorem reveals the necessary and sufficient con-

ditions for an allocation to be in the component-wise core with

regard to an optimal dispatching scheme. With regard to Z N , every

allocation in the component-wise core of the DC game (N, v )
satisfies the CE, NC, CD, and CIR property. Also, any allocation that

satisfies these four properties simultaneously is an allocation in

the component-wise core. In light of this characterization, one can

obtain allocations in the component-wise core of a DC game with

regard to Z N by finding the feasible solutions for the following set
f constraints: 11 ∑ 

i ∈ T 
y i = W ∀ T ∈ Z N (19)

∑ 

i ∈ T : k ≤i 

y i ≥ (r e (T ) − r k −1 ) 
∑ 

i ∈ T : i<k 

p i ∀ T ∈ Z N , k ∈ T (20)

 i ≤ λi,e (T ) ∀ T ∈ Z N , i ∈ T (21)

 i ≥ 0 ∀ i ∈ T ∈ Z N (22)

onstraint (19) , corresponding to CE property, requires that the

um of allocated costs to all players i within a component T of

 

N exactly covers the cost of a dispatched truck. Constraint (20) ,

orresponding to CD, maintains that within a component T of

 

N , the total allocated costs to players that arrive after a player

 ∈ T including k himself, i.e. i ∈ T such that i ≥ k , be at least as

arge as the extra waiting costs that preceding players in T , i.e.

 ≤ k − 1 , incur when being dispatched at e ( T ) instead of r k −1

which would be the earliest time that they can together dispatch

 truck). Constraint (21) , corresponding to CIR property, requires

he allocated cost to each player to be at most as large as the

enefit that the player gains in his designated component. Finally,

onstraint (22) , corresponding to NC, sets the lower bound of zero

or all allocated costs. Theorem 4 implies that there always exists

 feasible solution to the above program. Once a feasible solution

s found, it can be turned into a gain-sharing allocation using (18) .

. A proportional allocation rule in the component-wise core 

The intuitive interpretation—and often simplicity—of propor-

ional allocation rules make them appealing in real-life applica-

ions. In DC games, the benefits obtained by the players in an

ptimal dispatching scheme appear to be a logical yardstick for

llocating the savings proportionally among them. Accordingly,

ne can choose to distribute the savings obtained in each compo-

ent of an optimal dispatching scheme among the players in the

omponent based on their individual benefits. 

In the most simplistic approach to incorporate proportionality,

he savings of a component can be distributed among the play-

rs involved directly in proportion to their individual benefits. Re-

all that, given an optimal dispatching scheme Z N , the benefit of

 player i dispatched in component T ∈ Z N is λi , e ( T ) . Subsequently,

iven T ∈ Z N , for every i ∈ T define the naive proportional alloca-

ion as a 
p 
i 

= u T λi,e (T ) / 
∑ 

j∈ T λ j,e (T ) . Also, for any carrier i ∈ N that is

ot part of any component of Z N let a 
p 
i 

= 0 . The allocation a 

p ob-

ained in this way satisfies some of the properties we introduced

o far. Clearly, a 

p satisfies CE since the sum of the allocated sav-

ngs to the players in a component is exactly the savings obtained

n that component. It also satisfies the CIR property because by

emma 1 we have u T ≥ 0 and also λi , e ( T ) ≥ 0 for every i ∈ T . However,

he allocation a 

p does not necessarily obtain allocations within the

omponent-wise core. The following example illustrates this. 

xample 7. Assume that the situation involves three players, N =
 1 , 2 , 3 } . Also, suppose c i = 1 and K i = 50 for i ∈ N , r 1 = 0 , r 2 = 10 ,

nd r 3 = 20 . In addition, p 1 = 1 , p 2 = 2 , p 3 = 1 , C = 3 and W = 50 .

he optimal dispatching scheme is Z N = { 1 , 2 , 3 } so all players will

e dispatched together at r 3 = 20 which results in total savings of

 (N) = 60 . The naive proportional allocation rule in this case ob-

ains a 

p = (16 . 36 , 16 . 36 , 27 . 27) thus players 1 and 2 together ob-

ain 32.72. However, if these players do not wait for player 3 and
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Table 1 

Situation in Example 8. 

i 1 2 3 4 5 6 7 8 9 10 

r i 1 2 3 4 5 6 7 8 9 10 

p i 5 5 2 2 10 50 10 50 10 10 

K i 50 50 20 20 100 100 100 100 100 100 

c  

p  
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Table 2 

Proportional allocation ˙ a 
p 

in Example 8. 

i 1 2 3 4 5 6 7 8 9 10 

d ∗
i 

6 6 8 8 6 6 8 8 10 10 

˙ y i 9.76 11.71 5.31 6.37 41.58 56.96 48.23 60.09 55 65 

˙ a p 
i 

15.24 18.29 4.69 5.63 48.42 43.04 41.77 39.91 35 35 
ispatch a truck at r 2 = 10 , their saving would be v ({ 1 , 2 } ) = 40

hich implies that a 

p is not within the component-wise core. 

It also follows from the characterization of allocations in the

omponent-wise core in Theorem 5 that the naive proportional al-

ocation rule defined above may fail to satisfy some of the charac-

erizing properties. 

In the remainder of this section we introduce an allocation

ule that draws upon proportionality to obtain allocations in the

omponent-wise core. Given an optimal dispatching scheme Z N 

nd a component T ∈ Z N , for every l ∈ T define R l recursively as: 

 

l = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(r e (T ) − r l−1 ) 
∑ 

k ∈ T : k<l 

p k l = e (T ) ( 

(r e (T ) − r l−1 ) 
∑ 

k ∈ T : k<l 

p k −
∑ 

k ∈ T : k>l 

R k 

) + 

l / ∈ { b(T ) , e (T ) } 
W −

∑ 

k ∈ T : k>l 

R k l = b(T ) 

(23) 

n components containing at least two players, R e ( T ) is the total

aiting cost that the last player causes all other players. For all

ther players in the component, except the first one, R l is the out-

tanding waiting cost caused by the players that come after l , in-

luding l himself, in T once the corresponding values for subse-

uent players are all subtracted. The value R b ( T ) is the difference

etween the cost of dispatching a truck and the sum of all other

layers’ allocated waiting costs. We present a technical lemma

ith regard to the sum of outstanding caused waiting costs of

layers in a component. 

emma 4. Let Z N be an optimal dispatching scheme and T ∈ Z N . For

 ∈ T , l  = b ( T ) we have: 

∑ 

 ∈ T,k ≥l 

R 

k = max 
q ∈ T : l≤q ≤e (T ) 

{ 

(r e (T ) − r q −1 ) 
∑ 

k ∈ T : k<q 

p k 

} 

. 

Simply put, the above observation states that the sum of out-

tanding caused waiting costs for the players in T that come af-

er l ∈ T , including l himself, is the largest amount of delay caused

y any group of last m players in that dispatch with 1 ≤ m ≤
 (T ) − l + 1 . In conjunction with Lemma 1 part (b), the last ob-

ervation implies that R b ( T ) ≥ 0. 

Given a dispatch T ∈ Z N , our proportional rule works recursively

nd in stages. It starts from l = e (T ) , goes backwards, and divides

he values of R l among l and the players in T that comes after l .

et i , l ∈ T , l ≤ i , and define: 

 

l 
i = 

a l 
i ∑ 

k ∈ T : k ≥l a 
l 
k 

R 

l , (24) 

here 

 

l 
i = 

{ 

λi,e (T ) if l = i 

λi,e (T ) −
∑ 

h ∈ T : l<h ≤i 

y h i if l < i (25) 

t stage l , the cost share of player i ≥ l , i.e. y l 
i 
, is a portion of R l that

s calculated based on the players adjusted benefits at each stage

fter accounting for the shares allocated to them so far. Let 

˙ 
 i = 

∑ 

l ∈ T : l ≤i 

y l i ∀ i ∈ T (26)

nd finally 

˙ 
 

p 
i 

= λi,e (T ) − ˙ y i ∀ i ∈ T . (27)

or any player i ∈ N that is not part of any component of Z N let

˙  
p 
i 

= 0 . The allocation rule ˙ a 

p 
thus is obtained from a recursive

rocedure for calculating allocations in components of an optimal

ispatching scheme for a DC game in such a way that the delay
aused by later deliveries are divided among those deliveries in

roportion to their benefits that are adjusted to reflect their al-

eady allocated costs. Note that a player can only be responsible

or waiting costs of those who arrive before him in a dispatch. In

he last step, the procedure divides the remainder of costs in ad-

usted proportions of benefits as well. 

We are now ready to prove the main result of this section re-

arding the component-wise stability of ˙ a 

p 
. 

heorem 6. The allocation ˙ a 

p 
is in the component-wise core with

egard to Z N . 

The following example exhibits the results of applying this al-

ocation rule. 

xample 8. The main data for the situation in this exam-

le is given in Table 1 . In addition, assume W = 120 and C =
 . The optimal dispatching scheme in this example is Z N =
{ 1 , 2 , 5 , 6 } , { 3 , 4 , 7 , 8 } , { 9 , 10 }} which is illustrated in Fig. 3 . We

ave u { 1 , 2 , 5 , 6 } = 125 , u { 3 , 4 , 7 , 8 } = 92 , u { 9 , 10 } = 70 , so v (N) = 287 .

he calculations for this example are given in Supplementary Ma-

erial and the summary of the results are presented in Table 2 . 

Given an optimal dispatching scheme, although the allocation

˙ 
 

p 
is always in the component-wise core, it may not necessarily

e in the core. In the above example the aggregated allocation for

oalition of players 5, 7, and 8, is 130 but these players together

an generate 140. 

. Envy-free allocations 

The notion of component-wise stability focuses on eliminating

he objections that can be raised by collections of players within

he same component of an optimal dispatching scheme. As we ar-

ued, once an optimal dispatching scheme for the system has been

xed, the orchestration of objections by coalitions of players from

ifferent dispatches may render to be more difficult. Nevertheless,

bjections by individual players when comparing themselves with

ther players in different dispatches may still be easily raised. Such

ndividual objections can be of the following form: “I would rather

e dispatched in place of another player in a different dispatch and

eceive that players’ allocation”. The latter type of objection cor-

esponds to the notion of envy . In this section we introduce the

nvy-free property to formalize the aforementioned category of ob-

ections in DC games. 

roperty 10. An allocation a for the DC game (N, v ) satisfies the

nvy-Free (EF) property with regard to Z N , if for every non-identical

 , U ∈ Z N , every i ∈ T such that r i ≤ r e ( U ) , and every j ∈ U such that

(U \ { j} ) ∪ { i } ∈ N 

f , it holds that y i ≤ y j + p i (r e (U) − r e (T ) ) . 
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Fig. 3. The optimal dispatching scheme in Example 8 . 
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The envy free property requires that the cost-share (payment)

of each dispatched player be less than that of another player in

an alternative dispatch which is feasible for the former plus the

difference in waiting costs. In this context, the envy-free property

is satisfied if no player would prefer to be dispatched in place of

another and pays the latter player’s cost share. Our result below

shows that allocations in the core are always envy-free. 

Theorem 7. Every allocation in the core of every DC game satisfies

the EF property with regard to every corresponding optimal dispatch-

ing scheme. 

Thus, whenever an allocation in the core is considered, envi-

ous objections of the above sort can never be raised. When an al-

location not in the core is considered, however, players may be

able to object to their allocated savings when comparing them-

selves to what other players in alternative dispatches attain. It

should be noted that if the core is empty, as it can be in DC

games with restrictive capacities, there may not exists allocations

in the component-wise core with regard to any optimal dispatch-

ing scheme that satisfy the EF property. In fact, EF property cannot

always be enforced in conjunction with the CE property, as shown

in the next impossibility result. 

Lemma 5. In a DC game with restrictive capacities, there may exist

no allocation that satisfies simultaneously the CE and EF properties

with regard to an optimal dispatching scheme. 

The following counterexample proves the above statement. 

Example 9. Consider the following situation: N = { 1 , 2 , 3 } , c i =
1 , r i = i, K i = 10 , and p i = 1 for all i ∈ N . Furthermore, let W =
5 and C = 2 . We have v ({ i } ) = 5 for i ∈ N , v ({ 1 , 2 } ) = v ({ 2 , 3 } ) =
14 , v ({ 1 , 3 } ) = 13 , and v (N) = 19 . Also consider the optimal dis-

patching scheme Z N = {{ 1 } , { 2 , 3 }} . By CE property for component

{1} we must have y 1 = 5 . By EF we also must have y 1 ≤ y 2 + 2

and y 1 ≤ y 3 + 2 . Together, these conditions require that y 2 + y 3 ≥ 6

which violates the CE for component {2, 3}, i.e. y 2 + y 3 = 5 . 

In situations when envy cannot be completely eliminated, we

propose a procedure to obtain allocations in the component-wise

core with regard to an optimal dispatching scheme that reduces

envy as much as possible. The program below obtains cost shares y

corresponding to allocations in the component-wise core of the DC

game (N, v ) with regard to Z N that minimize the maximum envy

among the players dispatched in separate components: 

min ε (28)

s.t. y i ≤ y j + p i (r e (U) − r e (T ) ) + ε ∀ T , U ∈ Z N , i ∈ T , j ∈ U : 

r i ≤ e (U) , U \ { j} ∪ { i } ∈ N 

f 

(29)

∑ 

i ∈ T 
y i = W ∀ T ∈ Z N (30)

∑ 

i ∈ T : k ≤i 

y i ≥ (r e (T ) − r k −1 ) 
∑ 

i ∈ T : i<k 

p i ∀ T ∈ Z N , k ∈ T (31)

y i ≤ λi,e (T ) ∀ T ∈ Z N , i ∈ T (32)

y i ≥ 0 ∀ i ∈ T ∈ Z N (33)
In the program above, decision variables are allocated costs to

he players ( y i ) i ∈ N as well as an auxiliary variable ε related to the

layers’ envy. Constraints (30) –(33) in this program are identical

o (19) –(22) and correspond to the CE, CD, CIR, and NC properties

hich together obtain allocations in the component-wise core of

he DC game (N, v ) with regard to Z N . Taking into account the

efinition of EF Property, if a given ( y i ) i ∈ N satisfies the family

f constraints in (29) with an arbitrary ε ≤ 0, then ( y i ) i ∈ N would

atisfy envy-freeness as well. However, if EF property cannot

e satisfied, the formulation of (29) allows allocated costs to

iolate envy-freeness by a maximum degree of ε > 0. The auxiliary

arameter ε in this formulation is thus the maximum envy that

layers experience with regard to ( y i ) i ∈ N . The objective function

n (28) then distributes costs among players to obtain allocations

n the component-wise core which minimize the maximum envy

hat players experience. Our approach in formulating this program

esembles that of the least core ( Maschler et al., 1979 ). When

nvy-free allocations within the component-wise core do exist,

he procedure above obtains such allocations. But if envy-freeness

annot be enforced in conjunction with component-wise stability,

he program above yields component-wise allocations that are

east prone to envious objections. As an example, one can verify

hat the allocation 

˙ a 

p 
in Example 8 is indeed envy-free. 

0. Final remarks and conclusions 

In this paper, we proposed a stylized model for collaboration in

rban consolidation centers. The carriers have time sensitive cargo

nd the consolidation center operator solves a selection and dis-

atch problem to maximize the total savings that can be obtained

y the players in the system. We addressed the requirements for

aving fair allocations of gains/costs among the players in or-

er to attain stability, or reducing instability, in the cooperative

ystem. 

With non-restrictive capacities, we characterized the cores of

ssociated cooperative games and proof their non-emptiness. How-

ver, when the capacity constraints hamper the existence of core

llocations, we proposed an alternative way to incorporate stabil-

ty into an allocation rule. The rationale behind the definition of

omponent-wise core proposed in the paper is that once a decision

or the system is made and implemented, not all players have the

ame chance of forming coalitions and object to their combined al-

ocations. In DC situations in particular, we argue that the players

ho are dispatched together within a single truck in the final solu-

ion are directly in contact with each other and hence can organize

heir objections more easily while players in separate dispatches

re less capable to do so. In this manner we explicitly linked the

rocedure for obtaining appropriate allocations with the selected

ptimal solution for the system. This is a distinctive feature which

s not considered in existing solutions in the literature, as shown

n our last example. 

xample 10. Consider the following situation: N = { 1 , 2 , 3 } , c i = 1 ,

 i = i, K i = 10 for all i ∈ N . Let p 1 = p 2 = 1 and p 2 = 2 . Furthermore,

et W = 8 and C = 2 . We have v ({ i } ) = 2 for i ∈ N , v ({ 1 , 2 } ) = 11 ,

 ({ 2 , 3 } ) = v ({ 1 , 3 } ) = 10 , and v (N) = 13 . The unique optimal dis-

atching scheme is Z N = {{ 1 , 2 } , { 3 }} . Table 3 shows the results of

pplying different gain-sharing solutions in this example. The core
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Table 3 

Comparing different solutions in Example 10. 

Allocation rule a 1 a 2 a 3 

Shapley value 4 1 
2 

4 1 
2 

4 

Nucleolus 4 2 
3 

4 2 
3 

3 2 
3 
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n this example is empty. The Shapley value and nucleolus give

art of savings obtained by players 1 and 2 to player 3. With our

roportional allocation rule, however, the savings obtained from

he dispatch of players 1 and 2 are completely distributed among

hose two players. 

To the best of our knowledge, the proposed allocation rule in

his paper is the first to determine players’ allocations with regard

o the selected course of action for the situation and not just their

otential in the cooperative situation. As discussed earlier, in sit-

ations whose associate games have empty-cores, other allocation

ules such as the least-core, nucleolus, and the Shapley value fail

o distribute the savings solely among the players who are respon-

ible for creating the entire savings in the system. This means such

llocation rules distribute a part of savings gained in the consoli-

ation center to carriers who are not using the facility. The latter

an be a serious flaw in some real-life situations. To strengthen the

verall stability of our allocations, we incorporated individual ob-

ections to the allocated gains through the notion of envy-freeness.

ur results imply that in DC games, the existence of envious ob-

ections to an allocation renders it unstable and thus outside the

ore. We provided a linear program to minimize the maximum

nvy caused by the allocations in the component-wise core. Our

pproach can be extended to other situations whose optimal solu-

ions partition the players into distinct groups. 

There are several possible extensions to our model to account

or additional practical requirements in real world. Examples in-

lude, but are not limited to, incorporating time windows for deliv-

ries, the need for heterogeneous fleet to cater for various delivery

onditions such as temperature, and multiplicity of delivery des-

inations. Another challenging direction for future research is the

nline version of this problem. Note that in calculating our alloca-

ions, we have worked backwards from the last dispatched truck

o the first and sequentially compensated the earlier deliveries for

heir waiting costs. In the online version of this problem where the

nformation about future arrivals are not available at the time of

ccepting a delivery, the latter cannot be done any longer. There-

ore, the dynamic gain/cost sharing problem in this context would

equire a different approach which remains an intriguing open

roblem. Finally, testing our results in conjunction with real data

an bring insights about implementation challenges and shed light

n ways to make the approach taken in the paper more practical. 
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