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Urban consolidation centers provide the logistical infrastructure for cooperation among less-than-
truckload carriers with contiguous destinations. The rising number of initiatives to establish and oper-
ate urban consolidation centers and their low success rates signal the need for better mechanisms to
manage cooperation in this context. We introduce and study cooperative situations comprising a set of
carriers with time sensitive deliveries who can consolidate their cargo to obtain savings. We introduce
the class of Dispatch Consolidation (DC) games and search for ways to fairly allocate the obtained sav-
ings among the participating carriers. When delivery capacities are not restrictive, i.e. when waiting costs
trigger truck dispatches, we show that stable allocations in the core always exist and can, in their en-
tirety, be found by solving a compact linear program. With restrictive capacities, however, the core of a
DC game may become empty. We introduce the notion of component-wise core for DC games to preserve
stability first and foremost among the carriers whose deliveries are dispatched together in the chosen
optimal solutions. The novelty of our approach is to link the stability requirements of an allocation rule
with the structure of selected solutions for the underlying optimization problems. We characterize the
component-wise cores of DC games, prove their non-emptiness, and suggest proportionally calculated
allocations therein. Finally, we discuss a refinement of component-wise core allocations that minimizes
envy among the carriers who are dispatched separately.
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1. Introduction economies of scale can only be made possible via collaboration

among individual operators.

The outlook of logistics and transportation industry presents
one of the major paradoxes of our times. The ever increasing need
for better, cheaper, and more responsive products and services
drives the industry towards growth and efficiency on both local
and global scales. On the other hand, modern life has never
been so grappled with problems of pollution, congestion, and
a myriad of environmental issues that are negatively impacted
by the logistics and transportation sector. Road transportation
alone is responsible for more than 20% of total carbon emissions
in European Commission (2017). At the same time, more than
20% for all truck movements in Europe is completely empty
(Eurostat, 2018)—and the remainder is hardly ever full. Despite
the fruitfulness of research on optimizing routes, schedules, and
networks for individual organizations involved in transport and
logistics, the next level of efficiency obtained by increasing the
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Although collaboration can positively affect almost all aspects of
the transportation and logistics sector (Newing, 2008), an increas-
ingly promising context for collaborative logistics is consolidation
centers. A consolidation center is a logistical facility that is used to
combine loads of various carriers and to construct delivery plans
that are either more economical (e.g. via better utilized trucks)
or have higher service levels (e.g. via faster turnouts) (Morana,
Gonzalez-Feliu, & Semet, 2014). A recent study commissioned by
Transport For London finds that the use of Construction Consol-
idation Centers can reduce freight traffic to construction sites by
over 70% (Mayor of London, 2016). By 2005, there has been over
60 documented cases of consolidation centers in Europe (Browne,
Sweet, Woodburn, & Allen, 2005)—though with various levels of
success. Allen, Browne, Woodburn, and Leonardi (2012) report 114
documented implementation cases of consolidation centers in 17
countries by 2012. There are several pieces of evidence showing
that consolidation centers are heavily supported by governments
and urban authorities to remedy increasing logistical side-effects
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Fig. 1. Activities at a consolidation center.

of congestion and pollution (Duin, Quak, & Mufiuzuri, 2010; Hoyer,
Slikker, & Van Woensel, 2012; Paddeu, 2017).

Given the potential benefits of consolidation centers and the
level of support that they receive, one would expect to see their
successful and sustained operations all around the world. But this
is not the case. Quak and Tavasszy (2011) report that among more
than 100 initiatives in urban logistics collaborations, more than
half of them fail during implementation. One of the main barriers
to success of consolidation centers is the deficiency of the mech-
anisms they use to share the obtained savings among, or cover
the incurred costs from, the participants. In fact, carriers may hes-
itate to collaborate as long as they do not have a clear understand-
ing of the mechanisms employed and whether or not they receive
a fair share out of collaborative operations. Nordtgmme, Bjerkan,
and Sund (2015) report, as one of the main success barriers for
Oslo’s consolidation center, that “there was no plan for how costs
would be financed and who would benefit from saved costs”. The
lack of consensus on fair cost/gain sharing schemes as a barrier
to collaboration in wider logistics context is empirically confirmed
by Cruijssen, Cools, and Dullaert (2007). As a result, consolidation
centers are often destined to disappear when governmental subsi-
dies are lost (Verlinde, Macharis, & Witlox, 2012).

In this paper, we construct a model to study collaboration
among carriers via urban consolidation centers. The carriers have
deliveries that are destined for the same area (e.g. a city center or
a commercial/construction site). Instead of driving to their desti-
nations, the carriers’ trucks can arrive at the consolidation center,
unload their cargo, and move on to carry out their other fulfill-
ments. Their cargo would sit in the consolidation center in order to
be bundled into full-truck loads (see Fig. 1). The amounts of sav-
ings that the carriers obtain are dependent on their dispatch times,
i.e. the deliveries are time-sensitive. This is in line with previous
studies emphasizing that the main costs of deliveries in the con-
solidation centers are time-related costs (Janjevic & Ndiaye, 2017).
To materialize the full benefits of load consolidation, collaborating
parties delegate decision making authorities regarding bundling
and dispatching of their cargo to a consolidation center operator.!
Having the delivery information of all carriers, the consolidation
center operator in our model first determines the set of carriers

T The execution of collaboration via a decision making entity is common and can
be seen, for example, in cooperative logistics (Ozener & Ergun, 2008) and coopera-
tive procurement (Hezarkhani & Sosic, 2018).

whose deliveries are accepted to be handled by the consolidation
center. Incorporating such selection option allows for the exclusion
of deliveries that cannot be profitably consolidated—for example,
when a carrier’s delivery size is already close to a full-truckload.
The consolidation center operator then decides the dispatch times
of accepted deliveries. Finally, savings allocated to each carrier are
determined. As we show, the problem of allocating the savings ob-
tained by collaboration in the consolidation center is equivalent to
determining the players’ shares of dispatched trucks’ costs. Know-
ing the rules of the game, players decide whether or not to collab-
orate with others in consolidating their loads, and if so who they
are willing to collaborate with.

Finding appropriate gain/cost-sharing methods is the main fo-
cus of this paper. This problem is extensively studied within the
framework of cooperative game theory (see for example Peleg &
Sudhélter, 2007). One of the most important gain-sharing rules
in cooperative game theory literature is the core (Shapley, 1955).2
Based on the notion of stability, allocations in the core of a coop-
erative game distribute the total savings obtained by cooperation
in a way that sub-groups of players, also called coalitions, cannot
object to their combined allocated savings being less than what
they could achieve on their own. The latter requirement for allo-
cations have several other desirable properties as well (see for ex-
ample Peleg, 1992). One of the practically appealing properties of
core allocations is their efficiency with regard to the set of play-
ers that positively contribute to realization of total savings. That is,
if a coalition of players together generates the entire savings, then
every allocation in the core distributes the total savings exclusively
among those players. Thus, the players whose exclusion does not
reduce the savings are allocated with no additional savings (the
so-called dummy property Peleg & Sudhélter, 2007). The example
below illustrates this point.

Example 1. Three carriers, each with half a tuck-load cargo, must
deliver to a city center. An urban consolidation center provides
opportunities for combining cargo and dispatching full truck-loads.
It would not make economical sense for a carrier to come to the
consolidation center and be dispatched individually in a half-full
truck. As the result, only two carriers would be selected to arrive
at the consolidation center and one has to transport his cargo

2 It is worth mentioning that although the literature often associates the def-
inition of the core to Gillies (1959), as shown by Zhao (2018), it was Shapley
(1955) who first defined the core in its current form.
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directly. Assume that carriers 1 and 2 as well as carriers 2 and 3
can combine their cargo together and obtain 60 units of savings.
Carriers 1 and 3, arriving too far from each other to the consoli-
dation center, cannot gain any savings from combining their cargo.
Suppose eventually carriers 1 and 2 are selected to consolidate
their cargo, and carrier 3, not being accepted to arrive at the
consolidation center, transports his delivery directly. The (unique)
stable allocation in the core gives 60 units of savings completely to
carrier 2 and leaves other two players with zero allocated saving.

The stable allocation in example above does not allocate any
savings to the carrier who is not selected to arrive at the consoli-
dation center. If the latter condition is violated, carriers 1 and 2—
whose cargoes are eventually dispatched together via the consoli-
dation center—can object to the idea of giving away a positive part
of their jointly generated savings to carrier 3.

Despite the desirable features of core allocations, it is not al-
ways possible to find allocations in the core. The following exam-
ple exhibits this.

Example 2. In Example 1, assume that carriers 1 and 3 can also
gain 60 units of saving by combining their cargo into a full truck-
load. The consolidation center operator has to choose between the
three possible pairs of carriers to arrive at the facility. Suppose,
again, that eventually carriers 1 and 2 are selected to consolidate
their cargo. No matter how the 60 units of savings are distributed
among the three carriers in this case, two of them will receive
less than what they can potentially gain together. Thus, the core
is empty.

How should the savings be allocated among the carriers in the
above example? One might argue, as heard in our discussions with
industry practitioners, that in the above situation the entire sav-
ings must (similar to the outcome of core allocations in Example 1)
be completely distributed among carriers 1 and 2 simply because,
as part of the selected decision for the cooperative situation, they
are responsible for realization of total savings. Although the carri-
ers seem to be symmetric before a particular solution is chosen for
the system (every pair has the same potential in creating the sav-
ings), once a decision to include 1 and 2 and exclude 3 is made,
the carriers may no longer be treated in a similar way. But there
seems to be no solution in cooperative game theory literature that
can accomplish the latter requirement.

In situations where the core of a game can be empty, coop-
erative game theory literature suggests alternative allocation rules
that adopt a weaker notion of stability in order to suggest ways
to share the gains. The least core (Maschler, Peleg, & Shapley,
1979), for instance, yields allocations wherein the maximum objec-
tion (instability) over all coalitions are minimized. The nucleolus
(Schmeidler, 1969), as another instance, further refines the least-
core by singling out a unique allocation wherein the objections of
all coalitions are lexicographically minimal. Although both of these
allocation rules incorporate the notion of stability to some extent
and resolve the problem of existence, they do not necessarily dis-
tribute the savings among the players who are eventually responsi-
ble for creating the total savings. In Example 2, both the least core
and the nucleolus suggest equal allocations for the three players,
that is, 20 units of savings to each carrier. Subsequently, although
cooperation among carriers 1 and 2 eventually brings about all the
savings, carrier 3 also receives an equal share. The reason for this
is that the available allocation rules in cooperative game theory
are not necessarily linked with the final course of action in a sit-
uation and base their recommendations for allocated savings on
the players’ potential, not what they eventually do in a cooperative
situation. In other words, with the classical allocation rules there
is a disconnection between the allocation of gains and the chosen
optimal solutions.

An important and well-studied allocation rule in cooperative
game theory literature is the Shapley value (Shapley, 1953). The
Shapley value distributes the savings by averaging what each
player can contribute to the savings obtained in all coalitions (in all
different permutations of arrivals). Unlike allocations in the core,
the Shapley value may assign savings to players that might be in-
consequentially removed from the situation. In Example 1 above,
the Shapley value allocates 10 units of savings to both carriers 1
and 3, and 40 units to player 2. Thus, even though player 3 is not
selected to arrive at the consolidation center, he receives as much
profit as player 1. In Example 2, the Shapley value also prescribes
the equal allocations: each carrier is allocated with 20. Again, this
is because the Shapley value considers the potential contributions
of the players and disregard the selected decision for a cooperative
situation.

In light of the discussions above, there seems to be a gap in
the literature regarding the existence of allocation rules that ex-
plicitly consider the selected decisions in cooperative situations.
In this paper, when encountered with situations whose associated
games have empty cores, we propose an alternative approach to
incorporate the notion of stability in an ex post sense while taking
into account the selected optimal decisions. In this way, we prior-
itize the stability of different coalitions based on the selected so-
lution for the underlying optimization problem. To the best of our
knowledge, this approach has never been considered for operations
research games.

1.1. Contributions of this paper

In this paper, we introduce and study Dispatch Consolidation
(DC) games as a new class of cooperative games associated with
logistics and operations research situations. The main results of the
paper are fourfold:

1. For DC games with non-restrictive capacities, i.e., when
truck capacities do not impose any restriction on dispatch-
ing decisions and waiting costs trigger truck dispatches, we
prove non-emptiness of their cores. We provide a complete
characterization of the core by means of a linear program
which has up to n(n+1)/2 constraints (n being the num-
ber of players in the system). This is significant because the
generic linear program for obtaining core has up to 2" —1
constraints.

2. We show that the capacity restricted version of the game
can easily have an empty core. In this case, we introduce
the component-wise core as a weaker notion of stability for
DC games which imposes the no-objection requirement only
for subsets of players in the same dispatched truck in the
selected solution for the underlying optimization problem.

3. We prove the non-emptiness of component-wise cores of DC
games in general. We provide a complete characterization of
the component-wise cores of DC games—drawing upon a key
property of component-wise stable allocations in DC games,
which requires later arriving players to compensate the de-
lay they cause for the earlier players in the same dispatch.
To calculate an allocation in the component-wise core, we
introduce an algorithm which uses a sequential procedure
to distribute the cost of a dispatched truck among the car-
riers involved based on adjusted proportions of the benefits
they receive.

4. We introduce the notion of envy-freeness for the alloca-
tions, pertaining to any player’s willingness to swap places
with some other player, and show that although core allo-
cations are always envy-free, in DC games with restrictive
capacities envy-free allocations cannot always be found. We
formulate a linear program, in a similar vein as the least
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core (Maschler et al, 1979), that finds allocations within
the component-wise cores of DC games which minimize the
maximum envy of players that are dispatched in separate
trucks.

The rest of this paper is organized as follows. In Section 2, we
briefly overview the relevant literature. In Section 3, we formally
introduce the model for dispatch consolidation situations, discuss
the underlying optimization problems, and formulate their associ-
ated cooperative games, i.e. DC games. The gain sharing problem in
this context is presented in Section 4. Games with non-restrictive
capacities are analyzed in Section 5 where we provide the main
result regarding the non-emptiness of their cores. In Section 6,
the notion of component-wise core is introduced to address sta-
bility in games with restrictive capacities. We provide a com-
plete characterization of the component-wise cores of DC games in
Section 7 and present a proportional allocation rule therein sub-
sequently in Section 8. The notion of envy-freeness is introduced
in Section 9 along with a procedure to obtain allocations in the
component-wise core with minimum envy. Finally, Section 10 con-
cludes the paper. All proofs are given in the Supplementary
Materials.

2. Literature review

In the centralized setting, optimization problems at consoli-
dation centers have been subject to several studies with various
levels of details. In a deterministic system, Daganzo (1988) studies
consolidation strategies of shipments from several departures with
a common single destination. When arrivals at consolidation cen-
ters are stochastic, Cetinkaya and Bookbinder (2003) find optimal
dispatch policies at a consolidation center while incorporating
the time sensitive nature of cargo. Cetinkaya (2005) provides an
overview of literature in this area. More recently, van Heeswijk,
Mes, and Schutten (2017) propose an approximate dynamic pro-
gram to plan dispatches at an urban consolidation center with
random arrivals, heterogeneous fleet, multiple destinations, and
options for spot market transport. Savelsbergh and Van Woensel
(2016) review the literature on routing problems in the context of
city logistics.

Given the nature of consolidation centers as a point of aggre-
gating the cargo for different parties, the decentralized view of the
problem is an indispensable part of the analysis. Zhou, Hui, and
Liang (2011) study collaboration through a consolidation center be-
tween two players with a common destination and examine how
different alliance settings could affect the performance of the sys-
tem. Using a mechanism design approach, Zhang, Uhan, Dessouky,
and Toriello (2016) study the application of Moulin cost-sharing
mechanism (Moulin & Shenker, 2001) in a consolidation center
used by carriers with small-sized and time-insensitive cargo. In an
auction setting, Handoko, Nguyen, and Lau (2014) address the win-
ner determination problem for the consolidation center’s operator
to decide how to accept bids from the carriers who are willing to
use the service. van Heeswijk, Larsen, and Larsen (2019) present
an agent-based simulation framework to evaluate the impact of
urban logistics choices on the individual stakeholders in a case
study of an urban consolidation center in the city of Copenhagen.
Along the same lines, van Heeswijk, Mes, and Schutten (2016) look
into urban logistics problems exploring coordination and collab-
oration among five types of autonomous agents (receivers, ship-
pers, carriers, urban consolidation center and administrator) all
with diverging interests and stakes. Nguyen, Dessouky, and Toriello
(2014) propose a heuristic for consolidation of perishable agricul-
tural products with stochastic demands and suggest a simple pro-
portional rule to share the costs among participating suppliers.
However, there is little research on the requirements for fairness

among carriers which motivates the applications of cooperative
game theory in the context of consolidation centers.

In order to deal with the gain/cost allocation problems in
logistics and transportation context, many authors have proposed
the adoption of well-known allocation rules of cooperative game
theory. The most investigated solution so far is the core. Ozener
and Ergun (2008) study a class of cooperative truckload delivery
situations and show that the cores of their associated games
are always non-empty and dual solutions provide allocations in
their core. Hezarkhani, Slikker, and Van Woensel (2014) further
delineate the possibilities and impossibilities for a complete
characterization of the core of these games via dual solutions.
Hezarkhani (2016) discusses a cooperative logistics game with
punctual delivery times and proves the non-emptiness of the
core. Skorin-Kapov (1998) examines several cooperative games
associated with hub network games and highlights special cases
where the core is non-empty. Still, in several key decentralized
logistics problems—e.g. traveling salesman, vehicle routing, facility
location, etc.—it is known that the cores of the associated games
can be empty. In cooperative vehicle routing situations, where the
cores could be empty, Gothe-Lundgren, Jornsten, and Vdrbrand
(1996) and Engevall, Gothe-Lundgren, and Vdrbrand (2004) elabo-
rate on the implementation of the nucleolus as the allocation rule
of choice. Hezarkhani, Slikker, and Van Woensel (2016) propose
a cost-sharing rule for collaborative routing of full-truckloads to
incorporate the competitive position of players while addressing
the stability of the solution. Krajewska, Kopfer, Laporte, Ropke, and
Zaccour (2007) discuss the implementation of the Shapley value
as the solution in cooperative organizations of logistics providers.
Computational complexities of finding Shapley values in large
games have given rise to novel approximation techniques and
heuristics (Bremer & Sonnenschein, 2013; Castro, G6mez, & Tejada,
2009). Several reviews of cost sharing problems in operations
management and logistics are available in the literature (see for
example Curiel, 2008 and Deng & Fang, 2008 among others). For
a recent review on applications of cooperative game theory in
gain/cost-sharing problems specific to collaborative logistics and
transportation see Guajardo and Rénnqvist (2016).

3. Dispatch consolidation (DC) situations and games

A non-empty set of carriers, hereafter players, N={1,...,n}
have deliveries destined for the same geographical area.®> The size
(volume) of player i’s delivery is c¢; > 0. Player i arrives at the con-
solidation center at time r; >0 and, without loss of generality, un-
load his cargo at the same time. The truck carrying a player’s cargo
leaves the consolidation center immediately after unloading.* We
use the terms player and delivery interchangeably. We call r; the
arrival time of delivery i. For ease of exposition we assume that
deliveries have non-identical arrival times and that N is arranged
by increasing order of arrival times, i.e., r; <15 <--- < 1. All re-
sults hold if the latter condition is relaxed.

Without using the consolidation center, each player could indi-
vidually fulfill his delivery. The status quo cost of delivery for each
player is known. The cost of inbound transportation to consolida-
tion center for all players is also known. Thus, the potential benefit
that a player can obtain by fulfilling his delivery via the consoli-
dation center is subsequently assumed to be known. For delivery

3 The assumption of common geographical destination holds in several real-life
case studies, e.g. the consolidation center to service Regent Street in central London
(ARUP, 2019).

4 This is in line with real-life case studies where arrival times are pre-booked in
advance and suppliers deliver their cargo to the consolidation center and leave im-
mediately. For example, see the case study of Wilson James’s London Construction
Consolidation Centre (LCCC) (James, 2019).
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ieN, we denote that latter value with K; and refer to it by player
i’'s potential.’

A player would achieve his potential if upon arrival at the con-
solidation center, his cargo is immediately dispatched and he pays
no additional costs. Note that actual savings achieved by a player
as the result of using the consolidation center depends on his wait-
ing time at the consolidation center as well as his payment toward
the cost of dispatch from the consolidation center to his destina-
tion. In our model we consider the latter costs separately. We as-
sume K; >0 for all ieN. That is, all players have the potential to
achieve savings from using the consolidation center. This does not
mean that all player will necessarily benefit from using the consol-
idation center—a player with positive potential may be worse off if
he is dispatched without being bundled with other deliveries or if
he (more specifically, his cargo) waits too long at the consolidation
center.

As deliveries arrive over time, to be able to consolidate deliv-
eries in the consolidation center some deliveries must wait for the
arrival of the others. But deliveries are time-sensitive so waiting
is costly.5 We let p;>0 be the waiting penalty rate for player i,
that is the cost that he incurs when his cargo sits in the consol-
idation center for a unit of time. Thus, the benefit obtained by
player i if dispatched from the consolidation center at time d;>r;
is Ki — pi(d; —17).”

The consolidation center operates a homogeneous fleet with
sufficient number of trucks. Each truck has the capacity C> 0. The
cost of dispatching a truck from the consolidation center to the
common destination is W>0. We assume, without loss of gen-
erality, that the preparation time at the consolidation center for
dispatching arrived deliveries is normalized to zero. Accordingly, a
Dispatch Consolidation (DC) situation can be defined by the tuple
I'=(N,c,r,K, p,C,W) with bold notation representing n-element
vectors. In the remainder of this paper, unless mentioned explicitly,
we assume that the situation is arbitrary but fixed.

3.1. Dispatch decisions

The consolidation center is responsible for making decisions,
on behalf of the participating players, regarding the dispatching of
their deliveries. Acting as a coordinator in the system, the objec-
tive of the consolidation center is to maximize the overall profit
of all players. In doing so, however, the consolidation center can
choose not to accept some deliveries for handling at the facility.
Allowing a consolidation center to reject players enables the ex-
clusion of non-profitable deliveries. Thus, having the information
about the deliveries of all players, the consolidation center decides
(a) the set of deliveries which are accepted to be handled by the
consolidation center, and (b) dispatch times of accepted deliveries.3

5 There are several case studies that publish potential savings due to use of con-
solidation centers. For example, UK’s Waste & Resources Action Programme (WRAP)
provides comprehensive data on potential savings in the case study of London Con-
struction Consolidation Center (WRAP, Waste & Resources Action Programme, 2019).
The potential savings in this case comprise reduction in overall trips as well as
avoiding congestion charges due to traveling into central London.

6 Waiting times and associated costs are measured and controlled in several case
studies. Janjevic and Ndiaye (2017) report numerical values of average dwelling
times in some real-life consolidation centers.

7 The waiting penalties can also reflect dispatch deadlines: let d; such that
K; — pi(di —r;) = 0. Then d; can be interpreted as the deadline of delivery i to be
dispatched from the consolidation center as missing this deadline makes direct de-
liveries more profitable.

8 The decision on dispatching times essentially determines the duration that each
accepted player needs to wait at the consolidation center. An alternative modeling
approach, yet mathematically equivalent, is to consider ready times of players at
their origins, explicitly considering the time distance of each player from the con-
solidation center, and to require the consolidation center to advise players on their
postponed departure times so that all players in a dispatch arrive together at the
consolidation center.

Suppose, for example, that the consolidation center accepts the
deliveries TCN and consolidates them within a single truck dis-
patched at time dy >0, hereafter a dispatch. To ensure feasibility,
two conditions must be met: (1) the dispatch time must be no
earlier than the arrival times of all included deliveries, i.e., dr>r;
for all ieT, and (2) the total size of the consolidated deliveries in
a dispatch must be less than or equal to the truck capacity, i.e.
;76 <C. If these two conditions are maintained, the saving ob-
tained by the dispatch is }";.r [K; — p;(dr — r;)] — W. The saving as-
sociated with a dispatch is thus the sum of potentials of the in-
cluded deliveries, minus their waiting costs as well as the cost of
a dispatched truck.

The consolidation center’s decision structure comprises a col-
lection of dispatches, representing consolidated subsets of players,
and their associated dispatch times. Let N be the set of all non-
empty subsets of N and define Nf = {T|T e NV, ¥;.r¢; < C} to be
the set of capacity-feasible subsets of players. The combined cargo
size of players in each subset T € A’/ is less than or equal to the
truck capacity. The objective of the consolidation center operator is
to maximize the sum of savings of all players. The observation be-
low limits the choices for the optimal dispatch times of a dispatch.

Remark 1. The optimal time for the dispatch of players in T € A,
coincides with the arrival time of the last player in T.

It is straightforward to verify the above remark. Reducing the
dispatch time also reduces the waiting times and this can never
decrease the associated savings. Thus, at optimality the dispatch
time can be reduced until the feasibility condition dr>r; for all
ieT, or equivalently for the last arriving player, becomes binding.
Subsequently, in the rest of the paper we limit our attention to the
optimal dispatch times as prescribed in Remark 1. In conjunction
with the assumption of non-identical arrival times, Remark 1 im-
plies that the optimal number of dispatched trucks at any point of
time is at most one.

Given T € N, we denote the first and last arriving delivery in
T with b(T) and e(T), respectively. Since the players are ordered
by their arrival times, b(T) and e(T) also represent respectively the
smallest and largest elements in T. Define the saving function u for
a group of players T € N as

ur =Y [Ki— pi(rear) —1i) ] - W. )]
ieT

In this manner, ur determines the total benefit obtained by deliv-

eries in T when dispatched at ryr), which is the earliest feasible

dispatch time for them, minus the cost of the truck.

To find the best choice of selected players for handling at the
consolidation center and, simultaneously, obtaining the best dis-
patching schemes, we can construct the optimization problem as a
set packing formulation:

v(N) =max Y zrur (2)
TeN S
s.t. Z zr <1 VieN (3)
TeNT:Tai
zr €{0,1} VT e Nf (4)

The optimization problem above chooses the best combination of
dispatches to maximize total savings. Let zN = (z¥ )renf be an op-
timal solution to the problem above. We denote the optimal dis-
patching scheme for N associated with zV with

ZN = {T|T e N1, 2N =1}, (5)

and call every Te ZN a component of ZN. With this notation in place,
the maximum saving of all players can be obtained via the sum of
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p(s=1)

Py =13)

Fig. 2. Optimal dispatching scheme in Example 3.

savings over all components in an optimal dispatching scheme:

v(N) =) ur. (6)

TezN

It is straightforward to see that for every TeZN we have v(T) =
ur > 0.

Example 3. Assume that the DC situation is as follows. There are
5 players, N = {1, 2, 3,4, 5}. The size of all deliveries are equal to
one unit. Suppose r; =i for all ieN, K; =10 for all ie N\{4} and
K4 = 5. The waiting penalty rates are p; = p3 =2, p, =0.5 and
Ps = ps = 5. The cost and capacity of trucks are W = 15 and C = 2.
In the optimal dispatching scheme for the grand coalition in this
example—illustrated in Fig. 2—players 1 and 3 are dispatched to-
gether at r3, while players 2 and 5 are dispatched together at rs.
Player 4 in this example is not accepted for dispatching through
the consolidation center.

For simplicity, hereafter we use the notation A; ; = K; — p;(r; —
r;). The value A;; is the benefit obtained by delivery i when dis-
patched at the arrival time of delivery j. Note that A;; coincides
with the potential of delivery i, i.e. K;. We provide some observa-
tions in connection with optimal dispatching schemes.

Lemma 1. Let ZN be an optimal dispatching scheme for N. Suppose
TeZN. For all i T the followings hold:

(@) Ajen =0,
(b) (Feery = Ti) DkeTsk<i Pk <W.
(©) (e(ry = 1) XkeT:k=i Pk < XokeT:ksi Me.e(T)

The first part in the above lemma estates that the benefit of
each player included in a component of an optimal dispatching
scheme must be non-negative. This is an intuitive feature because
otherwise the exclusion of delivery i from the dispatch increases
total savings. To interpret part (b), note that the term (r,(r) — ;) pi
is the improvement in player k’'s waiting cost if he is dispatched
at r; instead of his current dispatch time which is ryq). In other
words, this term is the saving in waiting cost that k can get if he
is dispatched at r;. Consequently, the inequality in part (b) means
that if T is an optimal component, then the sum of savings in
waiting costs that players before i, including i himself, obtain by
organizing an alternative dispatch at r; should be small enough so
that it would not outweigh the cost of an additional dispatched
truck. An optimal dispatching scheme must satisfy this condition
otherwise dispatching those deliveries independently (or rejecting
them in case their associated savings are negative) improves the
total savings. For example, suppose an optimal component includes
two deliveries—thus dispatching these two deliveries together are
at least as profitable as two individual dispatches. The cost differ-
ence between the latter dispatch scheme and the optimal is the
difference between the cost of an additional truck and the waiting
cost of the first delivery. In this example the condition in part
(b) states that the waiting cost of the first delivery must be less
than W. Finally, the condition in part (c), requires that the sum of
benefits obtained by including the deliveries after i in an optimal

dispatching scheme, Xycr: k- itker), must always outweigh the
sum of extra waiting costs of earlier deliveries. In the two-delivery
component example mentioned earlier, this observation requires
the benefit of the second delivery to be at least as large as the
waiting cost of the first in order to justify the wait.

3.2. DC games

A cooperative game is a pair (N, v) comprising a player set N,
and a characteristic function v that assigns a real value to every
subset, i.e. coalition, of N with v(#) = 0. A dispatch consolidation
(DC) game is a cooperative game defined in association with a DC
situation. For every SCN, let S be the set of all non-empty subsets
of S and 8/ = 8 N A/ be the restriction of capacity-feasible subsets
among players in S. The DC game associated with the given situa-
tion I is obtained by defining v(S) for every SCN via®

v(S) =max »_ zrur (7
Tes!
st. Y zr=1 VieSs (8)
TeSl:Tai
zr € {0,1} VT e 8f (9)

Accordingly, we can define an optimal dispatching scheme for S
with Z°. Natural analogs for Eq. (6) and Lemma 1 also hold for ev-
ery 75, i.e., optimal dispatching schemes for coalitions.

A cooperative game is called superadditive if for every pair of
disjoint subsets S, T ¢ N, SNT = @, we have v(S) + v(T) <v(SUT).
It is straightforward to verify that DC games are indeed super-
additive. The superaditivity of DC games implies that the sum of
savings obtained by (optimally) consolidating players’ deliveries in
sub-coalitions never exceeds the savings obtained from consolidat-
ing deliveries in the grand coalition. Thus economies of scale are
present in consolidation centers.

4. Gain sharing problem

An important problem in every cooperative game is the division
of the grand coalition’s savings among the players. Let a = (a;);cn
be an allocation where g; € R is the allocated saving to player i e N.
We introduce some desirable properties that an allocation may
satisfy.

The first property requires that savings of the grand coalition
be fully distributed among the players.

Property 1. An allocation a is efficient for (N,v) if > ;.na; = V(N).

In order for the players to participate in the game, their allo-
cated savings must be at least as much as they can obtain indi-
vidually. Otherwise they would be better off not participating. The
next property formalizes this requirement.

Property 2. An allocation a is individually rational for (N,v) if a; >
v({i}) for all ieN.

As an extension to the individual rationality property, it is de-
sirable to distribute savings in such a way that all groups of players
receive at least as much as they would if collaborate only among
themselves. The notion of stability is accordingly defined.

Property 3. An allocation a is stable for (N, v) if for every SCN we
have ;s a; > v(S).

9 Note that a DC game is a saving game. One can define a dual cost game by
incorporating the players status quo costs and introducing additional variables for
the selection problem. This, however, renders the formulation of the problem more
cumbersome.
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With a stable allocation, no coalition of players can object that
they would have been better off outside the grand coalition and
on their own. Stability implies individual rationality, that is, every
stable allocation is also individually rational. The core of a game in-
corporates the properties defined above, that is, the core of a game
is the set of all efficient and stable allocations.

Definition 1. An allocation a is in the core of (N,v) whenever
Yien@i =V(N), and >;_sa; > v(S) for all SCN.

Given the desirable features of core allocations, one would be
interested in examining their existence and subsequently finding
them.

We showed earlier that the characteristic function of every DC
game is defined via a set packing formulation. As a result, DC
games are special instances of the class of set packing games
(Deng, Ibaraki, & Nagamochi, 1999). The following result regarding
the non-emptiness of the cores of set packing games in general
holds for DC games as well. Consider the dual program associated
with the integer relaxation of the program (2)-(4):

1P(N) =min ) g (10)
ieN
st. Y a>ur VT e N (11)
ieT
>0 VieN (12)

Theorem 1. The core of the DC game (N, v) is non-empty if and only
if YP(N) = v(N), that is, the integer relaxation of the program does
not affect optimality. In this case the core coincides with the set of
solutions to (10)-(12).

The proof of Theorem 1, expressed in terms of set packing
games, can be found in Deng et al. (1999). The core of a set packing
game can in general be empty, and (as seen in Example 2 above)
so does the core of a DC game. But whenever the integrality con-
straint of the optimization problem in a given situation turns out
to be superfluous, the core of the associated game would also be
non-empty.

5. DC games with non-restrictive capacities

Consider the special case where truck capacities would not im-
pose any restriction on optimality. This can happen when either
the capacity is ample and/or the waiting penalties are substantial
enough that dispatches are executed before trucks exceed their ca-
pacity limits. Note that non-restrictive capacities do not mean that
all deliveries are dispatched in one truck. For example, suppose
that a series of deliveries all with a third of truck-load size ar-
rive every half an hour to the consolidation center but, in order
to make the use of consolidation center economically feasible, each
delivery cannot wait more than forty five minutes in the facility. In
this case, a truck would be dispatched every hour with only two-
third of its capacity filled.

Definition 2. The DC game (N, v) has non-restrictive capacities if
replacing Af with A in formulation of v(N) in (7)-(9) would not
affect its optimal value. The game has totally non-restrictive capac-
ities if for every SCN replacing S/ with S in formulation of v(S)
would not affect its optimal value.

With non-restrictive capacities, the value of optimal dispatch-
ing schemes would not change if one relaxes the capacity-feasible
requirement for the grand coalition. If the same holds for all
coalitions as well, the game would be said to have totally non-
restrictive capacities. DC games with non-restrictive capacities ex-
hibit special structures that we exploit in this section to prove that
their cores are non-empty.

For games with non-restrictive capacities, we first provide an
alternative formulation of the corresponding optimization prob-
lem. Given SCN, we call TCS, a connected subset of S if for ev-
ery keS such that b(T)<k<e(T), it holds that keT. Recall that
b(T) and e(T) are the first and last arriving deliveries in T respec-
tively. Denote the set of connected subsets of S with S. Let!® Ai*j =

(K — pi(rj — ri))+, and for every T e N define iy = Yicr Al p) —
W. For every set of deliveries T, ti(T) gives the sum of benefits of
those deliveries in T whose dispatch generates non-negative ben-
efits. Consider the modified characteristic function v, defined for

SCN as

(S) = max y_ zriiy (13)
TeS
st. > zr=1 Vie$§ (14)
TeS:Tai
zr € {0, 1} VT eS (15)

Compared to the original formulation in (7)-(9), the above formu-
lation replaces ur with iy and S/ with § so the packing is done
over the set of connected subsets. Our first observation in this sec-
tion states conditions under which such transformation is inconse-
quential in terms of the optimal value.

Lemma 2. If the DC game (N, v) has non-restrictive capacities, then
we have v(N) = v(N) and ¥(S) > v(S) for every S N. If the game has
totally non-restrictive capacities then v = v.

We are now ready to provide the main result of this section
regarding the non-emptiness of the core of every DC game with
non-restrictive capacities.

Theorem 2. The core of every DC game with non-restrictive capaci-
ties is non-empty.

The proof of Theorem 2 draws upon the results of Barany,
Edmonds, and Wolsey (1986) regarding zero duality gap of set
packing problems on trees via their sub-trees and incorporates the
necessary and sufficient condition for the core non-emptiness of a
set packing game as described in Theorem 1. Therefore, one can al-
ways find allocations in the core of a DC game with non-restrictive
capacities. In order to do so, one can solve the dual program in
(10)-(12). The latter program can have up to 2" —1 constraints.
Unfortunately, one cannot use the dual problem associated with
(13)-(15) for N—which contains only n(n+ 1)/2 constraints—to
obtain allocations in the core. This is shown in the next example.

Example 4. Assume that the situation involves three players
N={1,2,3}. Let ¢;=1, r; =i, K;j=10, p;=1 for all ieN, and
furthermore W =4. We have v({i}) =6 for ieN, v({1,2}) =
v({2,3}) =15, v({1,3}) = 14, and v(N) = 23. The dual solution as-
sociated with relaxation of (13)-(15) for N—which is equivalent to
(10)-(12) with Af replaced with A/—requires that a; > v({i}) =6
for all ieN, ay +ap >v({1,2}) =15, a; + a3 > v({2,3}) =15, and
ay + ay + az = v(N) = 23. The allocation a = (6, 11, 6) satisfies the
above requirements, but it is not in the core since a; +a3z =12 <
v({1,3}) = 14.

As our next result indicates, in case of non-restrictive capacities,
there exists an alternative program, drawing upon at most n(n +
1)/2 inequalities, that obtains allocations in the core.

Theorem 3. Suppose that the DC game (N, v) has non-restrictive ca-
pacities. Let a be an efficient allocation such that for a collection of

10 We use the notation (-)* instead of max{-, 0}.
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non-negative pairwise weights (w; j); jen:i<;j it satisfies:

0+ wij = A, Vi,jeN:i<j (16)

ajszl]Z)n]]fW V]EN (17)
i<j

Then such an a exists and any such a is an allocation in the core.

Furthermore, if the game has totally non-restrictive capacities, all al-

locations in the core can be obtained in this way.

The conditions in (16) and (17) balance the players’ allocations
through a set of non-negative pairwise weights. Once these condi-
tions, along with the efficiency requirement, are satisfied the out-
come is an allocation in the core. In case of totally non-restrictive
capacities, if an allocation is in the core of the game, it always
satisfies this set of conditions. Therefore, Theorem 3 gives a com-
plete characterization of the core for DC games with totally non-
restrictive capacities.

Example 5. In Example 4, the conditions in (16) and (17) can be
written as: a;+wy2>9,a1+wy3>=8,a,+wy3>9,a; >6,a; —
wi > 6,a3 —wy 3 —wy 3 > 6. The efficiency also requires that a; +
a, + az = 23. Feasible solutions for these constraints, i.e. alloca-
tions in the core, include a = (7,9, 7), with corresponding pairwise
weights wy, =2, wy3=1, wy3=0, and a=(8,9,6), with cor-
responding pairwise weights wy, =1, w3 =0, wy3 =0, among
others. Observe that one cannot find a set of weights which,
together with the non-core allocation a = (6, 11,6) discussed in
Example 4, comprise a feasible solution to these set of constraints.

6. DC games with restrictive capacities and component-wise
core

In the previous section we showed that in every DC game with
non-restrictive capacities one can always find allocations in the
core. When the delivery capacities impose restrictions, however,
the core can be empty—as shown in the simple example below.

Example 6. Consider the situation in Example 4 with additional
requirement that C=2. We get v({i}) =6 for ieN, v({1,2}) =
v({2,3}) =15, v({1,3}) = 14, and v(N) = 21. One can verify that
the core of this game is empty.

Recall that the stability property imposes the no-objection re-
quirement for all coalitions of players. As seen in Example 6, this
can be too demanding and, accordingly, the core of a DC game
with restrictive capacities can be empty. In this case, cooperative
game theory literature suggests allocation rules such as least-core
and nucleolus that minimize maximum objections over the set of
all coalitions. These allocation rules treat all coalitions in the same
way—i.e. all having the same chance of being formed. However,
in some situations, e.g. DC games, one can argue that some coali-
tions are more likely to form and some objections are more likely
to be raised. In DC games per se, players who are eventually dis-
patched together in a single truck are directly involved in working
with each other, so if there are chances that players form coali-
tions and orchestrate their objections, players in the same dispatch
are first to spot such opportunities. The novelty of our approach
is to restrict the stability requirements of an allocation rule with
the structure of the selected solution for the underlying optimiza-
tion problem. Next, we introduce the concept of component-wise
stability. In the following definitions we assume that the optimal
dispatching scheme for the situation, ZV, is arbitrary but fixed.

Property 4. An allocation a for the DC game (N,v) is component-
wise stable with regard to ZN if for all TeZN and all SCT we have

Yies @i = V(S).

Component-wise stability requires the no-objection condition
only for coalitions of players within the components of an optimal
dispatching scheme. In this manner, it disregards the objections
that can be raised by the collections of players from different com-
ponents. Note that it is necessary for this property to be given with
an optimal dispatching scheme as there can be multiple choices in
one situation. Subsequently, we define the component-wise core
of a DC game with regard to an optimal dispatching scheme as the
set of all efficient and component-wise stable allocations.

Definition 3. An allocation a is in the component-wise core of
the DC game (N,v) with regard to ZN whenever Y,y a; = v(N),
Yics @i > v(S) for all SCT and all TeZN, and g; =0 for every i¢T
and all TeZN,

Let ZN = {S|S< T, T € ZN} be the set of subsets of components
of ZN. In comparison with the core, the component-wise core
relaxes the no-objection requirement for coalitions in A\ ZVN.
Clearly, the component-wise core is a weakening of the core. That
is, every allocation in the core is also in the component-wise core.
The reverse, however, is not necessarily true. That is, an allocation
in the component-wise core may not lie in the core.

Our main result in this section shows that despite the possibil-
ity of encountering an empty core in a DC game with restrictive
capacities, once an optimal dispatching scheme is fixed, the asso-
ciated component-wise core is always non-empty.

Theorem 4. The component-wise core of every DC game with regard
to every corresponding optimal dispatching scheme is non-empty.

In light of Theorem 4, the notion of component-wise stability
in DC games with restrictive capacities offers an alternative way
to partially incorporate stability with regard to a selected optimal
dispatch scheme while resolving the issue of existence. Therefore,
with an allocation in the component-wise core in this case, carriers
whose deliveries are dispatched within the same truck can never
object to their allocations when considering possible cooperation
among themselves.

7. A Characterization of component-wise cores of DC games

In DC games, the component-wise cores can be characterized
by a collection of properties defined for DC situations. The first
property requires that the savings generated by players within
each component of the selected optimal dispatching scheme be
completely distributed among themselves and any player who is
not part of a dispatch gets zero.

Property 5. An allocation a for the DC game (N,v) satisfies
Component-wise Efficiency (CE) property with regard to ZN if we have
Yicr i = ur for every TeZN, and a; = 0 for every ie N such that igT
for all TeZN.

So far we have considered the problem of allocating gains ob-
tained via cooperation among the players. At this point we offer
a complementary interpretation of allocations in terms of players’
cost shares. Let ZN be an optimal dispatch scheme, TeZ" a compo-
nent, and ieT a player in T. Given a; as the allocated saving to a
player i define

Yi=Aier — G (18)

The value y; is the difference between the benefit that player i ob-
tains when dispatched along with the other players in T, and his
allocated saving. In this case, y; can be regarded as i's share of dis-
patch cost. The properties introduced in this section have intuitive
interpretations in terms of a players’ shares of dispatch costs. For
example, the CE property above can be expressed alternatively in
terms of the corresponding cost shares.
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Property 6. An allocation a for the DC game (N, v) satisfies CE prop-
erty with regard to ZV if for every TeZN we have Y ;ry; = W.

Whenever an allocation satisfies the CE property, the cost of
each dispatched truck is distributed completely among players in
a component of the optimal dispatching scheme.

The next property formalizes the requirement for the players’
shares of dispatch costs to be non-negative.

Property 7. An allocation a for the DC game (N,v) satisfies Non-
negative Contribution to dispatch cost (NC) property with regard to
ZNify;=0foralieT, TeZN.

The NC property caps the amount of savings that each player
can obtain as the result of collaboration given the choice of optimal
dispatching scheme. This implies that if an allocation satisfies the
NC property then no player is subsidized for his waiting cost in the
selected optimal dispatching scheme.

Next, we introduce a property with regard to the sum of allo-
cated costs to the players in an optimal dispatch.

Property 8. An allocation a for the DC game (N, v) satisfies Com-
pensation for Delay-caused (CD) property with regard to ZV, if for ev-
ery TeZN, |T|>2, and every ieT\{e(T)} it holds that Y r.eiVi =
(Te(ry = 11) LkeT:kzi Pk-

The above property states that the sum of the shares of dis-
patch costs of late arriving players in a component of the selected
optimal dispatch is always large enough to compensate for the
waiting cost of the early arriving players in that component. Thus,
this property requires that later players collectively compensate for
the delay that they cause for earlier players.

Our final property introduces a weaker version of individual ra-
tionality for the players in components of the optimal dispatching
scheme.

Property 9. An allocation a for the DC game (N,v) satisfies
Component-wise Individual Rationality (CIR) property with regard to
ZN if for every TeZN, and ieT it holds that y; < A; (7).

The CIR property requires non-negative allocations of savings
to players who are dispatched in the selected optimal dispatching
scheme for the grand coalition.

Before presenting the main result of this section, we provide
an observation regarding the savings of sub-coalitions of players
within components of optimal dispatching schemes.

Lemma 3.let TeZN. For
+
(maxiesu{kes:kgi}) .

every SCT we have v(S)=

Our main result in this section characterizes the component-
wise core in terms of four properties defined earlier.

Theorem 5. With regard to ZN, an allocation is in the component-
wise core of the DC game (N, v) if and only if it satisfies the CE, NC,
CD, and CIR properties.

The above theorem reveals the necessary and sufficient con-
ditions for an allocation to be in the component-wise core with
regard to an optimal dispatching scheme. With regard to ZN, every
allocation in the component-wise core of the DC game (N,v)
satisfies the CE, NC, CD, and CIR property. Also, any allocation that
satisfies these four properties simultaneously is an allocation in
the component-wise core. In light of this characterization, one can
obtain allocations in the component-wise core of a DC game with
regard to ZV by finding the feasible solutions for the following set

of constraints:!!

> yi=w VYT e ZV (19)
ieT

> Viz ey —Te) D, pi VTeZV keT (20)
ieT:k<i ieT:i<k
Vi < Mieen VT eZVieT (21)
yi>0 VieTeZV (22)

Constraint (19), corresponding to CE property, requires that the
sum of allocated costs to all players i within a component T of
ZN exactly covers the cost of a dispatched truck. Constraint (20),
corresponding to CD, maintains that within a component T of
ZN, the total allocated costs to players that arrive after a player
keT including k himself, i.e. ieT such that i>k, be at least as
large as the extra waiting costs that preceding players in T, i.e.
i<k—1, incur when being dispatched at e(T) instead of r,_;
(which would be the earliest time that they can together dispatch
a truck). Constraint (21), corresponding to CIR property, requires
the allocated cost to each player to be at most as large as the
benefit that the player gains in his designated component. Finally,
constraint (22), corresponding to NC, sets the lower bound of zero
for all allocated costs. Theorem 4 implies that there always exists
a feasible solution to the above program. Once a feasible solution
is found, it can be turned into a gain-sharing allocation using (18).

8. A proportional allocation rule in the component-wise core

The intuitive interpretation—and often simplicity—of propor-
tional allocation rules make them appealing in real-life applica-
tions. In DC games, the benefits obtained by the players in an
optimal dispatching scheme appear to be a logical yardstick for
allocating the savings proportionally among them. Accordingly,
one can choose to distribute the savings obtained in each compo-
nent of an optimal dispatching scheme among the players in the
component based on their individual benefits.

In the most simplistic approach to incorporate proportionality,
the savings of a component can be distributed among the play-
ers involved directly in proportion to their individual benefits. Re-
call that, given an optimal dispatching scheme ZV, the benefit of
a player i dispatched in component TeZVN is Aie(r)- Subsequently,
given TeZN, for every ieT define the naive proportional alloca-
tion as af’ = UrAjer)/ 2Ljer Mje(r)- Also, for any carrier ie N that is
not part of any component of ZN let af’ = 0. The allocation a? ob-
tained in this way satisfies some of the properties we introduced
so far. Clearly, aP satisfies CE since the sum of the allocated sav-
ings to the players in a component is exactly the savings obtained
in that component. It also satisfies the CIR property because by
Lemma 1 we have ur>0 and also )Li‘e(T) >0 for every i e T. However,
the allocation aP does not necessarily obtain allocations within the
component-wise core. The following example illustrates this.

Example 7. Assume that the situation involves three players, N =
{1,2,3}. Also, suppose ¢; =1 and K; =50 for ieN, ry =0, rp = 10,
and r3 = 20. In addition, p; =1, pp =2, p3=1,C=3 and W = 50.
The optimal dispatching scheme is ZN = {1, 2, 3} so all players will
be dispatched together at r3 = 20 which results in total savings of
v(N) = 60. The naive proportional allocation rule in this case ob-
tains aP = (16.36, 16.36, 27.27) thus players 1 and 2 together ob-
tain 32.72. However, if these players do not wait for player 3 and

1 Given ke Tc N, for simplicity of notation hereafter we use k — 1 to refer to the
player in T which arrives immediately before k.
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dispatch a truck at r, = 10, their saving would be v({1,2}) =40
which implies that aP is not within the component-wise core.

It also follows from the characterization of allocations in the
component-wise core in Theorem 5 that the naive proportional al-
location rule defined above may fail to satisfy some of the charac-
terizing properties.

In the remainder of this section we introduce an allocation
rule that draws upon proportionality to obtain allocations in the
component-wise core. Given an optimal dispatching scheme ZN
and a component TeZV, for every [T define R! recursively as:

(rery —=Ti21) Y Dr I=e(T)
keT:k<l 4
R = ((re(T) —T_1) Z Pk — Z Rk) L¢ {b(T),e(T)} (23)
keT:k<l keT:k>1
w- > R I =b(T)

keT:k>1

In components containing at least two players, R&T) is the total
waiting cost that the last player causes all other players. For all
other players in the component, except the first one, R! is the out-
standing waiting cost caused by the players that come after I, in-
cluding | himself, in T once the corresponding values for subse-
quent players are all subtracted. The value R is the difference
between the cost of dispatching a truck and the sum of all other
players’ allocated waiting costs. We present a technical lemma
with regard to the sum of outstanding caused waiting costs of
players in a component.

Lemma 4. Let ZN be an optimal dispatching scheme and TeZN. For
leT, 1#b(T) we have:

> R=

keT k=1

(Tecry =Tg=1) >, DPx

max
T: T
qeT:1=q=e(T) keT:k<q

Simply put, the above observation states that the sum of out-
standing caused waiting costs for the players in T that come af-
ter leT, including [ himself, is the largest amount of delay caused
by any group of last m players in that dispatch with 1 <m <
e(T) — 1+ 1. In conjunction with Lemma 1 part (b), the last ob-
servation implies that R/T >0,

Given a dispatch TeZN, our proportional rule works recursively
and in stages. It starts from | = e(T), goes backwards, and divides
the values of R! among I and the players in T that comes after I.
Let i, [eT, I<i, and define:

IR (24)
' ZkeT:kzla;< ?
where
Mie(r) ifl=i
G = hiey— Y. Y ifl<i (25)
heT:l<h<i

At stage I, the cost share of player i>1, i.e. yﬁ, is a portion of R! that
is calculated based on the players adjusted benefits at each stage
after accounting for the shares allocated to them so far. Let

Yi= Y.y VieT (26)
leT:l<i

and finally

@ =Aieqy—yi  VieT. (27)

For any player ieN that is not part of any component of ZN let
df =0. The allocation rule @’ thus is obtained from a recursive
procedure for calculating allocations in components of an optimal
dispatching scheme for a DC game in such a way that the delay

Table 1
Situation in Example 8.

i 1 2 3 4 5 6 7 8 9 10

Ti 1 2 3 4 5 6 7 8 9 10
Di 5 5 2 2 10 50 10 50 10 10
K; 50 50 20 20 100 100 100 100 100 100

caused by later deliveries are divided among those deliveries in
proportion to their benefits that are adjusted to reflect their al-
ready allocated costs. Note that a player can only be responsible
for waiting costs of those who arrive before him in a dispatch. In
the last step, the procedure divides the remainder of costs in ad-
justed proportions of benefits as well.

We are now ready to prove the main result of this section re-
garding the component-wise stability of a”.

Theorem 6. The allocation aP is in the component-wise core with
regard to ZV.

The following example exhibits the results of applying this al-
location rule.

Example 8. The main data for the situation in this exam-
ple is given in Table 1. In addition, assume W =120 and C =
4. The optimal dispatching scheme in this example is ZN =
{{1,2,5,6},{3.4,7,8},{9,10}} which is illustrated in Fig. 3. We
have U{1.2.5_6} =125, U{3’4,718} =92, U{g_lo} =70, so U(N) = 287.
The calculations for this example are given in Supplementary Ma-
terial and the summary of the results are presented in Table 2.

Given an optimal dispatching scheme, although the allocation
a® is always in the component-wise core, it may not necessarily
be in the core. In the above example the aggregated allocation for
coalition of players 5, 7, and 8, is 130 but these players together
can generate 140.

9. Envy-free allocations

The notion of component-wise stability focuses on eliminating
the objections that can be raised by collections of players within
the same component of an optimal dispatching scheme. As we ar-
gued, once an optimal dispatching scheme for the system has been
fixed, the orchestration of objections by coalitions of players from
different dispatches may render to be more difficult. Nevertheless,
objections by individual players when comparing themselves with
other players in different dispatches may still be easily raised. Such
individual objections can be of the following form: “I would rather
be dispatched in place of another player in a different dispatch and
receive that players’ allocation”. The latter type of objection cor-
responds to the notion of envy. In this section we introduce the
envy-free property to formalize the aforementioned category of ob-
jections in DC games.

Property 10. An allocation a for the DC game (N,v) satisfies the
Envy-Free (EF) property with regard to ZV, if for every non-identical
T, UeZN, every ieT such that Ij <Tey and every jeU such that

(U \ {]}) U {l} € Nf, it holds that Yi = yj + pi(re(u) — e(T))~

Table 2

Proportional allocation @” in Example 8.
i 1 2 3 4 5 6 7 8 9 10
d: 6 6 8 8 6 6 8 8 10 10

yi 976 11,71 531 637 4158 56.96 4823 60.09 55 65
a? 1524 1829 469 563 4842 43.04 4177 3991 35 35
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Fig. 3. The optimal dispatching scheme in Example 8.

The envy free property requires that the cost-share (payment)
of each dispatched player be less than that of another player in
an alternative dispatch which is feasible for the former plus the
difference in waiting costs. In this context, the envy-free property
is satisfied if no player would prefer to be dispatched in place of
another and pays the latter player’s cost share. Our result below
shows that allocations in the core are always envy-free.

Theorem 7. Every allocation in the core of every DC game satisfies
the EF property with regard to every corresponding optimal dispatch-
ing scheme.

Thus, whenever an allocation in the core is considered, envi-
ous objections of the above sort can never be raised. When an al-
location not in the core is considered, however, players may be
able to object to their allocated savings when comparing them-
selves to what other players in alternative dispatches attain. It
should be noted that if the core is empty, as it can be in DC
games with restrictive capacities, there may not exists allocations
in the component-wise core with regard to any optimal dispatch-
ing scheme that satisfy the EF property. In fact, EF property cannot
always be enforced in conjunction with the CE property, as shown
in the next impossibility result.

Lemma 5. In a DC game with restrictive capacities, there may exist
no allocation that satisfies simultaneously the CE and EF properties
with regard to an optimal dispatching scheme.

The following counterexample proves the above statement.

Example 9. Consider the following situation: N={1,2,3}, ¢;=
1, rj=1i, K;=10, and p; =1 for all ieN. Furthermore, let W =
5 and C=2. We have v({i}) =5 for ieN, v({1,2}) =v({2,3}) =
14, v({1,3}) =13, and v(N) = 19. Also consider the optimal dis-
patching scheme zZN = {{1}, {2, 3}}. By CE property for component
{1} we must have y; =5. By EF we also must have y; <y, +2
and y; <y3 + 2. Together, these conditions require that y, +y3 > 6
which violates the CE for component {2, 3}, i.e. y, +y3 = 5.

In situations when envy cannot be completely eliminated, we
propose a procedure to obtain allocations in the component-wise
core with regard to an optimal dispatching scheme that reduces
envy as much as possible. The program below obtains cost shares y
corresponding to allocations in the component-wise core of the DC
game (N, v) with regard to ZV that minimize the maximum envy
among the players dispatched in separate components:

min € (28)

VT,UeZN,ieT,jeU:
ri<eU). U\ {jlu{i} e
(29)

St Yi <Y+ PilTeuy — Ter)) + €

> yi=w VT e ZN (30)
ieT

D yiz ey —Tc) Y. bi VT eZV keT (31)
ieT:k<i ieT:i<k
Vi < Aie(r) VT eZV)ieT (32)

yi=0 VieTezN (33)

In the program above, decision variables are allocated costs to
the players (y;);cn as well as an auxiliary variable € related to the
players’ envy. Constraints (30)—(33) in this program are identical
to (19)-(22) and correspond to the CE, CD, CIR, and NC properties
which together obtain allocations in the component-wise core of
the DC game (N,v) with regard to ZV. Taking into account the
definition of EF Property, if a given (y;);cy satisfies the family
of constraints in (29) with an arbitrary € <0, then (y;);cy would
satisfy envy-freeness as well. However, if EF property cannot
be satisfied, the formulation of (29) allows allocated costs to
violate envy-freeness by a maximum degree of € > 0. The auxiliary
parameter € in this formulation is thus the maximum envy that
players experience with regard to (y;);cn- The objective function
in (28) then distributes costs among players to obtain allocations
in the component-wise core which minimize the maximum envy
that players experience. Our approach in formulating this program
resembles that of the least core (Maschler et al., 1979). When
envy-free allocations within the component-wise core do exist,
the procedure above obtains such allocations. But if envy-freeness
cannot be enforced in conjunction with component-wise stability,
the program above yields component-wise allocations that are
least prone to envious objections. As an example, one can verify
that the allocation @” in Example 8 is indeed envy-free.

10. Final remarks and conclusions

In this paper, we proposed a stylized model for collaboration in
urban consolidation centers. The carriers have time sensitive cargo
and the consolidation center operator solves a selection and dis-
patch problem to maximize the total savings that can be obtained
by the players in the system. We addressed the requirements for
having fair allocations of gains/costs among the players in or-
der to attain stability, or reducing instability, in the cooperative
system.

With non-restrictive capacities, we characterized the cores of
associated cooperative games and proof their non-emptiness. How-
ever, when the capacity constraints hamper the existence of core
allocations, we proposed an alternative way to incorporate stabil-
ity into an allocation rule. The rationale behind the definition of
component-wise core proposed in the paper is that once a decision
for the system is made and implemented, not all players have the
same chance of forming coalitions and object to their combined al-
locations. In DC situations in particular, we argue that the players
who are dispatched together within a single truck in the final solu-
tion are directly in contact with each other and hence can organize
their objections more easily while players in separate dispatches
are less capable to do so. In this manner we explicitly linked the
procedure for obtaining appropriate allocations with the selected
optimal solution for the system. This is a distinctive feature which
is not considered in existing solutions in the literature, as shown
in our last example.

Example 10. Consider the following situation: N = {1,2,3}, ¢; =1,
r; =1, K; =10 for all ie N. Let p; = p» = 1 and p, = 2. Furthermore,
let W =28 and C=2. We have v({i}) =2 for ieN, v({1,2}) =11,
v({2,3}) =v({1,3}) =10, and v(N) = 13. The unique optimal dis-
patching scheme is ZV = {{1, 2}, {3}}. Table 3 shows the results of
applying different gain-sharing solutions in this example. The core
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Table 3

Comparing different solutions in Example 10.
Allocation rule a a, as
Shapley value 41 41 4
Nucleolus 42 42 32
a? 5.5 5.5 2

in this example is empty. The Shapley value and nucleolus give
part of savings obtained by players 1 and 2 to player 3. With our
proportional allocation rule, however, the savings obtained from
the dispatch of players 1 and 2 are completely distributed among
those two players.

To the best of our knowledge, the proposed allocation rule in
this paper is the first to determine players’ allocations with regard
to the selected course of action for the situation and not just their
potential in the cooperative situation. As discussed earlier, in sit-
uations whose associate games have empty-cores, other allocation
rules such as the least-core, nucleolus, and the Shapley value fail
to distribute the savings solely among the players who are respon-
sible for creating the entire savings in the system. This means such
allocation rules distribute a part of savings gained in the consoli-
dation center to carriers who are not using the facility. The latter
can be a serious flaw in some real-life situations. To strengthen the
overall stability of our allocations, we incorporated individual ob-
jections to the allocated gains through the notion of envy-freeness.
Our results imply that in DC games, the existence of envious ob-
jections to an allocation renders it unstable and thus outside the
core. We provided a linear program to minimize the maximum
envy caused by the allocations in the component-wise core. Our
approach can be extended to other situations whose optimal solu-
tions partition the players into distinct groups.

There are several possible extensions to our model to account
for additional practical requirements in real world. Examples in-
clude, but are not limited to, incorporating time windows for deliv-
eries, the need for heterogeneous fleet to cater for various delivery
conditions such as temperature, and multiplicity of delivery des-
tinations. Another challenging direction for future research is the
online version of this problem. Note that in calculating our alloca-
tions, we have worked backwards from the last dispatched truck
to the first and sequentially compensated the earlier deliveries for
their waiting costs. In the online version of this problem where the
information about future arrivals are not available at the time of
accepting a delivery, the latter cannot be done any longer. There-
fore, the dynamic gain/cost sharing problem in this context would
require a different approach which remains an intriguing open
problem. Finally, testing our results in conjunction with real data
can bring insights about implementation challenges and shed light
on ways to make the approach taken in the paper more practical.
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