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ABSTRACT 

Simulations are now used more frequently to conduct experiments on real world or 

proposed systems, to understand the system behaviour, or for evaluating 

improvement strategies. Over time, the need has grown for big enterprise businesses 

to developed sophisticated and complex systems to compete with industry. Also, 

these businesses are now more connected with each other like a networked 

enterprise. This has further raised the requirement for developing more and more 

complex simulations that can interconnect with other businesses. Distributed 

simulation has been widely used in this context in military applications, but such 

popularity has not grown in other sectors. The reason behind this is the technical 

expertise required to establish communication protocols between distributed 

simulations. There have been efforts by research industry to bridge this gap and the 

most important work has been development of the High Level Architecture (HLA) 

standard for providing common communication protocols between distributed 

simulation models. 

The Modelling and Simulation (M&S) industry also provides a lot of literature for 

developers on modelling standalone simulation. The focus of conceptual modelling 

in this case has been on model accuracy and efficiency instead of interoperability. 

This is also discussed in detail in this research. Practitioners have also struggled to 

find support for underlying technologies until most recently. But with the 

introduction of standard Runtime Infrastructure (RTI) and simulation development 

platform support this gap has narrowed. 

The HLA standard promised to resolve interoperability issues between distributed 

simulation models, but only managed to provide standard guidelines up to syntactic 

level. Therefore, the Simulation Interoperability Standards Organisation (SISO) 

carried the research forward and identified the interoperability problems faced by 

practitioners at the semantic level and drew up a list of interoperability issues. 

However, the published standard SISO-STD-006-2010 only identified the problems 

but did not provide the semantic solution.  
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The main contribution of this research has been the Distributed Simulation 

Interoperability (DSI) Framework that identifies semantic solutions for the 

interoperability problems listed in the Commercial-off-the-shelf Simulation 

Package Interoperability Reference Models (SISO-STD-006-2010). This research 

recommends including these interoperability semantic solutions in HLA Object 

Modelling Template specifications. By doing so, this will help industry 

practitioners achieve the interoperability promise made by HLA and make 

distributed simulation models more re-usable and composable. 

 

 

 

 

  



Acknowledgements  iii 

Athar Nouman 

ACKNOWLEDGEMENTS 

In the name of Allah, the Most Gracious and the Most Merciful 

Alhamdulillah, all praise to almighty Allah for the strength and the blessing in 

completing my research and this thesis. Special credit and respect goes to my 

supervisor, Dr. Simon J E Taylor. I like to thank him for his profound guidance, 

continuous support, patience, encouragement and being a critical friend.  I would 

also like to show my gratitude and respect to my second supervisor, Dr. David Bell 

for his most valued advice and being there when needed.  

I would like to specially thank my friend, Dr. Anastasia Anagnostou, for her 

motivation and support for the work we did together and thereafter. She was always 

available for valuable advice. Also, I would like to extend my thanks to another 

friend, Dr. Nauman Riaz Chaudhry, for his motivation and support. 

Further, I would like to thank my family members for their patience and their belief 

in me. During my research they sacrificed their comfort and leisure to keep me 

focused. In my family, I first wish to thank my parents, especially my mother who 

prayed for my success day and night. Secondly, I would like to thank my wife, Mrs. 

Saba Athar, for her patience, understanding, and support. It would have been 

extremely difficult for me to collect the experiment run data without her support. 

And finally, I thank my sisters for their prayers and encouragement.  

Last, but not least, I would like to thank Mr. Syed Bakar Ali Zaidi, the director of 

my workplace for his support and understanding when I needed it most. And I 

would like to thank my other colleagues at work for their support, especially Mrs. 

Mehroo Humayun. She not only encouraged me, but she also shared some of my 

workload to facilitate my focus on research.  

I recognise this opportunity as a big milestone in my career and a dream come true. 

I hope for continued cooperation with all of you in the future. 

Thank you all...... 



Declaration  iv 

Athar Nouman 

DECLARATION 

I hereby declare that the research presented in this thesis is my own work except 

where otherwise stated, and has not been submitted for any other degree. 

Athar Nouman 

The following papers have been published (or submitted for publication) as a direct 

result of the research discussed in this thesis: 

Nouman, A., Anagnostou, A. and Taylor, S.J.E. (2013) “Developing a Distributed 

Agent-Based and DES Simulation Using poRTIco and Repast.” In 

Proceedings of the 17 th IEEE/ACM International Symposium on Distributed 

Simulation and Real Time Applications (DS-RT 2013), pp. 97-104, Delft, NL, 

October 30-November 1. 

Anagnostou, A., Nouman, A. and Taylor, S.J.E. (2013) “Distributed Hybrid Agent-

Based Discrete Event Emergency Medical Services Simulation.” In 

Proceedings of the 45 th Winter Simulation Conference (WSC14), Edited by R. 

Pasupathy, S.-H. Kim, A. Tolk, R. Hill and M. E. Kuhl, pp. 1625-1636, 

Washington, DC, December 8-11. 

Taylor, S.J.E., Revagar, N., Chambers, J., Yero, M., Anagnostou, A., Nouman, A., 

Chaudhry, N.R. & Elfrey, P.R. 2014, "Simulation Exploration Experience: A 

Distributed Hybrid Simulation of a Lunar Mining Operation", Distributed 

Simulation and Real Time Applications (DS-RT), 2014 IEEE/ACM 18th 

International Symposium on, pp. 107-112. 

Nouman, A., Chaudhry, N.R., Anagnostou, A. & Taylor, S.J.E. 2015, "Investigating 

an Adaptive Protocol for Distributed Simulation with the SISO-STD-006-

2010 Type A.2 Interoperability Reference Model", Proceedings of the 3rd 

ACM SIGSIM Conference on Principles of Advanced Discrete Simulation , 

ACM, New York, NY, USA. 

 
 



Abbreviations  v 

Athar Nouman 

ABBREVIATIONS  

ABS Agent-Based Simulation 

ADSO Australian Defence Simulation Office 

ALSP Aggregate Level Simulation Protocol 

AMG Architecture Management Group 

API Application Programme Interface 

BOM Base Object Model 

BPR Business Process Re-engineering 

CBT Composable Behavioural Technologies 

CDDL Common Development and Distributed License 

CH CSP Handler 

COTS Commercial Off-The-Shelf 

CRC Central RTI Component 

CSP Commercial-off-the-shelf Simulation Package 

CSPIF COTS Simulation Package Interoperability Forum 

CPU Central Processing Unit 

DARPA Defence Advanced Research Project Agency 

DDM Data Distributed Management 

DES Discrete-Event Simulation 

DEVS Discrete-Event System Specification 

DIS Distributed Interactive Simulation 

DM Data Manager 

DMSO Defence Modeling and Simulation Office 

DoD Department of Defence 

DSEEP Distributed Simulation Engineering and Execution Process 

DSI Distributed Simulation Interoperability 

DSM Distributed shared memory 

DSS Distributed Simulation Standards 

DVE Distributed Virtual Environment 

EMS Emergency Medical Services  

ETS Entity Transfer Specification 

EXCIMS Executive Council for Modelling and Simulation 

FEL Future Event List 

FDD FOM Document Data 

FIFO First In-First Out 

FMI Functional Mock-up Interface 

FOM Federation Object Model 

GPSS General Purpose Simulations System 

GUI Graphical User Interface 



Abbreviations  vi 

Athar Nouman 

HLA High Level Architecture 

IEEE Institute of Electrical and Electronic Engineers 

IRM Interoperability Reference Model 

JSIMS Joint Simulation System 

LAN Local Area Network 

LCIM Level of Conceptual Interoperability Model 

LIFO Last in First Out 

LRC Local RTI Component 

LRM Local Resource Manager 

M&S Modelling and Simulation 

M&SCO Modelling & Simulation Coordination Office 

MOM Management Object Model 

NRT Next Release Time 

OMT Object Model Template 

OSA Open Simulation Architecture 

PC Personal computer 

PDF Probability Density Function 

PDG Product Development Group 

RAM Random Access Memory 

RTI Run-time Infrastructure 

SD Sequence Diagram 

SDEM Simulation Data Exchange Model 

SEE Simulation Exploration Experience 

SCT Semantic Composability Theory 

SIMNET Simulation Network program 

SOM Simulation Object Model 

SISO Simulation Interoperability Standards Organization 

SIW Simulation Interoperability Workshop 

TENA Test and Training Enabling Architecture 

TSO Timestamp Order 

V&V Verification and Validation 

VIMS Visually Interactive Modelling Simulation Model 

VIS Visual Interactive Simulation 

WSC Winter Simulation Conference 

XMSF Extensible M&S Framework 

  



Table of Contents  vii 

Athar Nouman 

TABLE OF CONTENTS 

Chapter 1: Introduction .................................................................................. 1 

1.1 Overview ................................................................................................ 1 

1.2 Background and Rationale  .................................................................... 1 

1.3 Research Motivations ............................................................................ 3 

1.4 Research Aim and Objectives ................................................................ 5 

1.5 Research Approach................................................................................ 6 

1.6 Thesis Structure ..................................................................................... 9 

1.7 Contribution of the thesis .................................................................... 12 

1.8 Summary.............................................................................................. 12 

Chapter 2: Distributed Simulation and Modelling Review ........................... 13 

2.1 Overview .............................................................................................. 13 

2.2 Simulation ............................................................................................ 13 

2.2.1 SIMULATION MODELS........................................................................... 17 

2.2.2 DISCRETE-EVENT SIMULATION ............................................................. 18 

2.2.2.1 DES Approaches........................................................................... 21 

2.2.3 SIMULATION SOFTWARE ....................................................................... 26 

2.3 Modelling and Simulation.................................................................... 29 

2.3.1 SIMULATION STUDIES ........................................................................... 29 

2.3.2 CONCEPTUAL MODELLING .................................................................... 36 

2.3.3 CONCEPTUAL MODELLING .................................................................... 39 

2.3.4 ARTEFACTS OF CONCEPTUAL MODELLING ............................................. 41 

2.4 Distributed Simulation......................................................................... 43 



Table of Contents  viii 

Athar Nouman 

2.4.1 INTEROPERABILITY............................................................................... 47 

2.4.2 REUSABILITY ....................................................................................... 49 

2.4.2.1 Reusability and Interoperability .................................................... 52 

2.4.3 COMPOSABILITY................................................................................... 52 

2.4.3.1 Composability and Reusability ...................................................... 55 

2.4.3.2 Composability and Interoperability ............................................... 55 

2.4.4 MULTI-FORMALISM .............................................................................. 56 

2.5 High Level Architecture ...................................................................... 58 

2.5.1 INTRODUCTION .................................................................................... 58 

2.5.2 HLA SPECIFICATION ............................................................................ 59 

2.5.2.1 HLA Framework and Rules ........................................................... 61 

2.5.2.2 HLA Object Model Template (OMT).............................................. 62 

2.5.2.3 HLA Federate Interface Specification ............................................ 63 

2.5.3 RUNTIME INFRASTRUCTURE (RTI)......................................................... 64 

2.6 Distributed Simulation Interoperability Models ................................. 72 

2.6.1 INTEROPERABILITY REFERENCE MODELS (IRMS) ................................... 75 

2.6.2 SUMMARY OF THE RELATED WORK ........................................................ 77 

2.7 Summary.............................................................................................. 81 

Chapter 3: Design of Interoperability issues to address IRMs ...................... 83 

3.1 Overview .............................................................................................. 83 

3.2 Issues in Modelling Interoperability .................................................... 83 

3.2.1 DATA EXCHANGE, COMMUNICATION AND REPRESENTATION .................... 84 



Table of Contents  ix 

Athar Nouman 

3.2.1.1 Data Values.................................................................................. 85 

3.2.1.2 Data Models ................................................................................. 86 

3.2.1.3 Schema......................................................................................... 86 

3.2.1.4 Semantic and Syntactic ................................................................. 86 

3.2.2 TIME SYNCHRONISATION ...................................................................... 87 

3.2.2.1 Conservative Synchronisation ....................................................... 87 

3.2.2.2 Optimistic Synchronisation ........................................................... 88 

3.2.2.3 Event Synchronisation................................................................... 88 

3.3 Requirements for Interoperability....................................................... 88 

3.4 Research Technique ............................................................................. 93 

3.5 Simulation Approach ........................................................................... 95 

3.5.1 DEFINE SIMULATION ENVIRONMENT OBJECTIVES .................................... 96 

3.5.2 PERFORM CONCEPTUAL ANALYSIS ......................................................... 97 

3.5.3 DESIGN SIMULATION ENVIRONMENT ...................................................... 98 

3.5.4 DEVELOP SIMULATION ENVIRONMENT ................................................... 98 

3.5.5 TEST SIMULATION ENVIRONMENT ......................................................... 98 

3.5.6 EXECUTE SIMULATION .......................................................................... 99 

3.5.7 ANALYSE DATA AND EVALUATE RESULTS .............................................100 

3.5.8 VERIFICATION AND VALIDATION PROCESS ............................................100 

3.5.9 CONCEPTUAL MODELLING AND INTEROPERABILITY...............................101 

3.5.9.1 Levels of Conceptual Interoperability .......................................... 102 



Table of Contents  x 

Athar Nouman 

3.5.9.2 Conceptual Model for Distributed Simulation .............................. 104 

3.5.10 DISTRIBUTED SIMULATION PARADIGM ................................................107 

3.5.10.1 Discrete Event .......................................................................... 108 

3.5.10.2 Agent Based.............................................................................. 108 

3.5.10.3 System Dynamics ...................................................................... 109 

3.6 IRMs Objectives ................................................................................ 109 

3.6.1 PROBLEM STATEMENT FOR TYPE A.1: GENERAL ENTITY TRANSFER .......110 

3.6.2 PROBLEM STATEMENT FOR TYPE A.2: BOUNDED RECEIVING ELEMENT ..110 

3.6.3 PROBLEM STATEMENT FOR TYPE A.3: MULTIPLE INPUT PRIORITIZATION 111 

3.6.4 PROBLEM STATEMENT FOR TYPE B.1: GENERAL SHARED RESOURCES ....112 

3.6.5 PROBLEM STATEMENT FOR TYPE C.1: GENERAL SHARED EVENT ...........113 

3.6.6 PROBLEM STATEMENT FOR TYPE D.1: SHARED DATA STRUCTURE .........113 

3.7 Summary............................................................................................ 114 

Chapter 4: DSI Framework......................................................................... 116 

4.1 Overview ............................................................................................ 116 

4.2 The Framework ................................................................................. 116 

4.3 Tools Selection ................................................................................... 119 

4.4 Data Representation and Distribution ............................................... 123 

4.4.1 DATA REQUIREMENTS .........................................................................123 

4.4.1.1 Contextual Data ......................................................................... 124 

4.4.1.2 Model Realisation ....................................................................... 124 

4.4.1.3 Model Validation ........................................................................ 124 



Table of Contents  xi 

Athar Nouman 

4.4.2 DATA PROCUREMENT ..........................................................................124 

4.4.2.1 Category A ................................................................................. 125 

4.4.2.2 Category B ................................................................................. 125 

4.4.2.3 Category C ................................................................................. 125 

4.4.3 SYSTEM VARIABILITY..........................................................................125 

4.4.4 EMPIRICAL DISTRIBUTION ....................................................................126 

4.4.5 STATISTICAL DISTRIBUTION .................................................................126 

4.4.5.1 Normal Distribution.................................................................... 126 

4.4.5.2 Exponential Distribution ............................................................. 128 

4.4.6 DATA SELECTION ................................................................................129 

4.5 IRM Model Conceptualisation........................................................... 129 

4.5.1 CONCEPTUALISATION FOR TYPE A.1: GENERAL ENTITY TRANSFER ........129 

4.5.2 CONCEPTUALISATION FOR TYPE A.2: BOUNDED RECEIVING ELEMENT....131 

4.5.3 CONCEPTUALISATION FOR TYPE A.3: MULTIPLE INPUT PRIORITIZATION .132 

4.5.4 CONCEPTUALISATION FOR TYPE B.1: GENERAL SHARED RESOURCES .....133 

4.5.5 CONCEPTUALISATION FOR TYPE C.1: GENERAL SHARED EVENT.............134 

4.5.6 CONCEPTUALISATION FOR TYPE D.1: SHARED DATA STRUCTURE...........135 

4.6 Summary............................................................................................ 136 

Chapter 5: IRM Protocols ........................................................................... 138 

5.1 Overview ............................................................................................ 138 

5.2 Proposed Protocols ............................................................................ 138 

5.2.1 HLA SELECTION .................................................................................139 



Table of Contents  xii 

Athar Nouman 

5.2.2 GENERAL ENTITY TRANSFER ...............................................................141 

5.2.2.1 Entity Transfer with Interaction Class Protocol ........................... 142 

5.2.2.2 Entity Transfer with Attribute Class Protocol............................... 146 

5.2.2.3 Entity Transfer using null message Protocol ................................ 149 

5.2.2.4 Model Verification and Validation............................................... 150 

5.2.3 BOUNDED RECEIVING ELEMENT ...........................................................151 

5.2.3.1 Bounded Receiving Element using Queue Update Protocol .......... 151 

5.2.3.2 Bounded Receiving Element using Bounded Buffer Update Protocol

.............................................................................................................. 157 

5.2.3.3 Bounded Receiving Element using Adaptive Protocol................... 162 

5.2.4 MULTIPLE INPUT PRIORITIZATION ........................................................166 

5.2.4.1 Multiple Input Specialised Prioritisation Protocol ....................... 166 

5.2.4.2 Multiple Input Dynamic Prioritisation Protocol ........................... 171 

5.2.5 GENERAL SHARED RESOURCE ..............................................................174 

5.2.5.1 Continuous Resource Update Protocol ........................................ 175 

5.2.5.2 Next Request Protocol................................................................. 180 

5.2.5.3 Message Queue Protocol ............................................................ 187 

5.2.5.4 Next Resource Event Protocol ..................................................... 193 

5.2.6 GENERAL SHARED EVENT....................................................................197 

5.2.7 GENERAL SHARED DATA STRUCTURE...................................................201 

5.2.7.1 Central Control Protocol ............................................................ 203 



Table of Contents  xiii 

Athar Nouman 

5.2.7.2 Central Update Protocol ............................................................. 210 

5.2.7.3 Full Replication Protocol ............................................................ 217 

5.3 Simulation Verification and Validation ............................................. 222 

5.3.1 INTEGRATION & INTEROPERABILITY TESTING ........................................223 

5.4 Case Study: London Emergency Medical Service (EMS).................. 225 

5.4.1 DATA COLLECTION .............................................................................228 

5.4.2 REALISATION OF THE MODELS ..............................................................231 

5.4.3 SOFTWARE TOOLS ...............................................................................232 

5.4.4 SELECTION OF PROTOCOL ....................................................................232 

5.4.5 SIMULATION TESTING ..........................................................................235 

5.4.5.1 Simulation Model Testing............................................................ 236 

5.4.5.2 Interoperability Testing............................................................... 236 

5.4.6 FAULT TOLERANCE..............................................................................238 

5.5 Summary............................................................................................ 239 

Chapter 6: Evaluation of the Framework ................................................... 241 

6.1 Overview ............................................................................................ 241 

6.2 Testing the simulation environment .................................................. 241 

6.2.1 NETWORK SETTING .............................................................................242 

6.3 Performance Testing.......................................................................... 242 

6.3.1 GENERAL ENTITY TRANSFER ...............................................................244 

6.3.2 BOUNDED RECEIVING ELEMENT ...........................................................247 

6.3.3 MULTIPLE INPUT PRIORITISATION ........................................................253 



Table of Contents  xiv 

Athar Nouman 

6.3.4 GENERAL SHARED RESOURCE ..............................................................255 

6.3.5 GENERAL SHARED EVENT....................................................................258 

6.3.6 SHARED DATA STRUCTURE ..................................................................260 

6.4 EMS Model testing results ................................................................. 262 

6.4.1 PERFORMANCE TESTING ......................................................................262 

6.4.2 SCALABILITY TESTING.........................................................................266 

6.5 Revisiting the DSI Framework .......................................................... 267 

6.6 Summary............................................................................................ 271 

Chapter 7: Conclusion ................................................................................. 272 

7.1 Overview ............................................................................................ 272 

7.2 Thesis Overview and Findings ........................................................... 273 

7.3 Research aim and objectives revisited ............................................... 276 

7.4 Framework Value .............................................................................. 277 

7.5 Research Contribution....................................................................... 281 

7.6 Research Limitations ......................................................................... 283 

7.7 Future Work ...................................................................................... 284 

7.8 Summary............................................................................................ 285 

References.................................................................................................... 287 

Appendix A ...................................................................................................... I 

Appendix B .................................................................................................. VII 

 

 



List of Figures  xv 

Athar Nouman 

LIST OF TABLES 

Table 1: Examples of Simulation Software packages ........................................ 28 

Table 2: Modelling and Simulation area types (Balci, 2016).............................. 57 

Table 3: Integration & Interoperability testing .................................................224 

Table 4: List of events ....................................................................................229 

Table 5: Data collection of check points  ..........................................................237 

Table 6: General Entity Transfer Performance .................................................244 

Table 7: Bounded Receiving Element PoRTIco Dedicated Network .................248 

Table 8: Bounded Receiving Element PoRTIco Non-Dedicated Network .........250 

Table 9: Bounded Receiving Element Pitch Non-Dedicated Network ...............252 

Table 10: Multiple Input Prioritisation Performance.........................................254 

Table 11: General Shared Resource Performance.............................................256 

Table 12: General Shared Event Performance  ..................................................259 

Table 13: Shared Data Structure Performance..................................................260 

Table 14: EMS Distributed Network run .........................................................262 

Table 15: Single Vs Network Execution run ....................................................264 

Table 16: Memory Consumption .....................................................................265 

 

 

 

 



List of Figures  xvi 

Athar Nouman 

LIST OF FIGURES 

Figure 1.1 : Empirical cycle (De Groot, 1961)  .................................................... 8 

Figure 1.2: Selected research approach based on empirical cycle ......................... 9 

Figure 1.3: Roadmap of the thesis  .................................................................... 12 

Figure 2.1: Elements, relationships, and processes involved in M&S ................. 15 

Figure 2.2: Classification of simulation models................................................. 18 

Figure 2.3: Events, Processes, Runtime, and Activity ........................................ 20 

Figure 2.4: The executive of four different Simulation Approaches ................... 26 

Figure 2.5: Visual Interactive Simulation example for Airport Security ............. 27 

Figure 2.6: Steps in Discrete Event Simulation Study (Banks et al., 2009)  ......... 31 

Figure 2.7: “What if” analysis with simulation (Robinson, 2014)  ...................... 33 

Figure 2.8: Modelling and Simulation Life Cycle (Loper, 2015) ........................ 34 

Figure 2.9: Distributed Simulation Engineering and Execution Process (DSEEP) 

(IEEE Std. 1730-2010) .................................................................................... 36 

Figure 2.10: Simulation studies: Key stages and activities (Brooks and Robinson, 

2001) .............................................................................................................. 38 

Figure 2.11: Modelling, Validation, and Verification (Tolk, 2010) .................... 38 

Figure 2.12: Robinson’s Conceptual Modelling Framework (Robinson, 2014)  ... 40 

Figure 2.13: The artefacts of conceptual modelling (Robinson, 2011) ................ 42 

Figure 2.14: Distributed Simulation.................................................................. 44 

Figure 2.15: Reuse Spectrum (Pidd, 2002) ........................................................ 50 



List of Figures  xvii 

Athar Nouman 

Figure 2.16: Computable function (Petty and Weisel, 2004)  .............................. 54 

Figure 2.17: Generic vs. Specific component design ......................................... 55 

Figure 2.18: HLA Overview (Nouman et al. , 2013)  .......................................... 60 

Figure 2.19: RTI middleware communication architecture ................................ 66 

Figure 2.20: Basic relationship between federate and the RTI............................ 68 

Figure 2.21: Strategies of interoperability and reusability .................................. 72 

Figure 2.22:  Interoperability Problem .............................................................. 75 

Figure 2.23: Reference Interoperability Framework (Taylor, 2006a) .................. 79 

Figure 3.1: Interoperability Challenge .............................................................. 84 

Figure 3.2: Distributed Simulation Engineering and Execution Process (DSEEP) 

(IEEE Std., 2010) ............................................................................................ 94 

Figure 3.3: Interoperability Phases ..................................................................102 

Figure 3.4: The level of Conceptual Interoperability Model (Wang et al., 2009)

 ......................................................................................................................104 

Figure 3.5: How simulation model accuracy changes with the complexity of the 

model (Robinson 2008a).  ................................................................................105 

Figure 3.6: Robinson’s Conceptual Model Framework revisited  .......................106 

Figure 3.7: Approaches in Simulation Modelling (Borshchev and Filippov, 2004)

 ......................................................................................................................107 

Figure 3.8: Type A.1: General Entity Transfer  .................................................110 

Figure 3.9: IRM Type A. 2: Bounded Receiving Element.................................111 

Figure 3.10: IRM Type A.3: Multiple Input Prioritization ................................112 



List of Figures  xviii 

Athar Nouman 

Figure 3.11: IRM Type B.1: General Shared Resource .....................................112 

Figure 3.12: IRM Type C.1: General Shared Event  ..........................................113 

Figure 3.13: IRM Type D.1: Shared Data ........................................................113 

Figure 4.1: An abstract view of Distributed Simulation Interoperability (DSI) 

Framework .....................................................................................................117 

Figure 4.2: Distributed Simulation Interoperability (DSI) Framework ..............118 

Figure 4.3: LRC Architecture (the poRTIco Project)  ........................................121 

Figure 4.4: Normal Distribution (Robinson, 2014)  ...........................................127 

Figure 4.5: Normal density function (summary of Pooch and Wall (1993))  .......127 

Figure 4.6: Exponential Distribution................................................................128 

Figure 5.1: Comparison of execution time on a single PC and a network with 

different numbers of federation models (Nouman et al. , 2013)  .........................141 

Figure 5.2: General Entity Transfer using HLA ...............................................142 

Figure 5.3: Sequence diagram (SD) General Entity Transfer via interaction using 

RTI ................................................................................................................144 

Figure 5.4 : Activity diagram for entity transfer ...............................................145 

Figure 5.5: SD General Entity Transfer via attribute using RTI  ........................148 

Figure 5.6: Sequence diagram General Entity Transfer using null message .......149 

Figure 5.7: Activity diagram using null messages ............................................151 

Figure 5.8: Bounded Receiving Element using HLA ........................................152 

Figure 5.9: SD Queue Update Protocol using RTI ............................................154 

Figure 5.10: Activity Diagram for Queue Update Protocol ...............................156 



List of Figures  xix 

Athar Nouman 

Figure 5.11: SD Bounded Buffer Update Protocol using RTI  ...........................159 

Figure 5.12: Activity diagram Bounded Buffer Update ....................................161 

Figure 5.13: SD Adaptive Protocol using RTI..................................................164 

Figure 5.14: Activity Diagram using Adaptive Protocol ...................................164 

Figure 5.15: Multiple Input Prioritisation using HLA  .......................................167 

Figure 5.16: SD Multiple Input Specialised Prioritisation using RTI  .................169 

Figure 5.17: Activity Diagram for Multiple Input Specialised Prioritisat ion ......170 

Figure 5.18: SD Multiple Input Dynamic Prioritisation ....................................172 

Figure 5.19: Activity Diagram for Multiple Input Dynamic Prioritisation .........173 

Figure 5.20: General Shared Resource using HLA ...........................................175 

Figure 5.21: SD of General Shared Resource for Resource Update Protocol .....177 

Figure 5.22: Activity Diagram of  Shared Resource for Resource Update .........178 

Figure 5.23: SD of General Shared Resource using Next Request .....................183 

Figure 5.24 Activity Diagram for General Shared Rsrouces .............................186 

Figure 5.25: General Shared Resource with LRM using HLA  ..........................188 

Figure 5.26: General Shared Resource with LRM using Message Queue ..........189 

Figure 5.27: SD of General Shared Resource for Next Request  ........................191 

Figure 5.28: SD of General Shared Resource using Next Resource Event  .........195 

Figure 5.29: General Shared Event HLA .........................................................198 

Figure 5.30: SD for a General Shared Event using RTI ....................................200 

Figure 5.31: Activity Diagram for Shared Event  ..............................................201 



List of Figures  xx 

Athar Nouman 

Figure 5.32: Shared Data Structure using Central Control & Update approach using 

HLA ..............................................................................................................204 

Figure 5.33: SD for Shared Data Structure using Central Control .....................207 

Figure 5.34: Activity Diagram for Central Control Protocol .............................210 

Figure 5.35: Sequence Diagram of Central Update Shared Data Structure.........214 

Figure 5.36: Activity Diagram for Central Update Protocol ..............................216 

Figure 5.37: Shared Data Structure using Full Replication approach .................217 

Figure 5.38: SD of Full Replication Shared Data Structure ...............................220 

Figure 5.39: Activity Diagram Full Replication ...............................................222 

Figure 5.40: Ambulance Service timeline (Fitzsimmons, 1973) ........................226 

Figure 5.41: A&E department flowchart diagram (Anagnostou, 2014). .............227 

Figure 5.42: London Emergency Medica l Service Model .................................230 

Figure 6.1: Execution time for General Entity Transfer proposed protocols  ......245 

Figure 6.2: Comparison for General Entity Transfer proposed protocols  ...........246 

Figure 6.3: Comparison for Bounded Receiving Element using PoRTIco on a 

Dedicated Network .........................................................................................249 

Figure 6.4: Comparison for Bounded Receiving Element using PoRTIco on a non-

dedicated Network..........................................................................................251 

Figure 6.5: Comparison for Bounded Receiving Element using Pitch on a non-

dedicated Network..........................................................................................253 

Figure 6.6: Execution time for Multiple Input Prioritisation proposed protocols  254 

Figure 6.7: Execution time for General Shared Resource protocols ...................256 



List of Figures  xxi 

Athar Nouman 

Figure 6.8: Comparison of different shared resource protocols  .........................257 

Figure 6.9 : Execution time for General Shared Event protocols  .......................259 

Figure 6.10: Execution time for shared data structure protocols  ........................261 

Figure 6.11: EMS Distributed Network Run ....................................................263 

Figure 6.12: Single Vs Network Execution run ................................................264 

Figure 6.13: Scalability run results  ..................................................................267 

  



Chapter 1:  Introduction  

 

Athar Nouman 1 

Chapter 1:  Introduction  

1.1 Overview 

The research presented in this thesis proposes a framework to address 

interoperability issues in distributed simulation. The emphasis of this research is to 

support the Commercial-off-the-shelf Simulation Package (CSP) vendors and other 

Simulation practitioners to take advantage of the proposed framework based on the 

Interoperability Reference Models (IRMs) to address the interoperability issues that 

are not covered by the Institute of Electrical and Electronic Engineers (IEEE) 1516 

standard. This research will also help practitioners to better address interoperability 

issues in reusability and scalability for large scale models.  

This introductory chapter provides a summary background study to help the reader 

understand the rationale behind the research. This section will briefly introduce the 

reader to the building blocks for this research followed by the research motivation 

for developing the framework to address interoperability issues for distributed 

simulation, and the aim and objectives of the research. A research approach is 

discussed to fulfil the aim and objectives presented in the earlier section. Finally, 

the chapter closes with a chapter summary followed by the thesis structure, 

including a diagrammatic view which gives the reader a pictorial illustration of the 

thesis structure. 

1.2 Background and Rationale 

The increase in computational power due to technology enhancements and low cost 

hardware has resulted in introducing new prospects to the Modelling and 

Simulation (M&S) industry. According to Pierre L’Ecuyer, large and more complex 
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models are now possible to simulate because of the possibility of parallel and 

distributed simulation via new hardware technologies such as multicore processors, 

cloud computing, and graphics processing unit (Taylor et al., 2013).  

M&S has been accepted as the most frequently used methodology for solving real 

world problems for more than two decades (Taylor et al., 2006). In many industries, 

M&S techniques are recognised as a critical technology to enable many core 

systems engineering functions (IEEE 1730.1, 2013). The increase in complexity 

and scalability of the models and the advent of new networking technology with 

supportive protocols has led to extensive use of distributed simulation. Distributed 

simulation is defined as a process “that enables a simulation program to execute on 

a computing system containing multiple processors, such as personal computers  

(PCs), interconnected by a communication network” (Fujimoto, 2000). The 

distributed simulation approach presents several advantages, such as integration of 

simulation models, cost effectiveness, reusability, encapsulation, etc. Distributed 

Simulation also has some challenges, mostly related to issues concerning modeling 

and interoperability (IEEE 1730.1, 2013; SISO-STD-006-2010) especially in large 

scale models. Interoperability is an important concept for distributed simulation, 

termed as “the ability of a simulation model to provide services to and accept 

services from other simulation models, or simulation model related components 

with the important goal to make an effective operating environment.” (Vasilecas et 

al., 2010).  

A generic HLA framework was developed to facilitate interoperability and 

reusability by the Defence Modeling and Simulation Office (DMSO) for the 

Department of Defence (DoD), defined by IEEE 1516. The development of HLA 

standard was also limited because different approaches were used by different CSP 

vendors and other simulation practitioners to interact their models (Santos et al., 

2013). This use of different approaches and implementations led Simulation 

Interoperability Standards Organization’s (SISO) Commercial off-the-shelf 

(COTS) Simulation Package Interoperability Product Development Group (CSPI 

PDG) to introduce a set of patterns to address complex interoperability problems, 



Chapter 1:  Introduction  

 

Athar Nouman 3 

defined in the Standard for CSP Interoperability Reference Models (SISO-STD-

006-2010). The proposed framework presented in this thesis presents an effective 

implementation for interoperability issues in distributed simulation as defined in 

the IRMs (Taylor et al., 2012a). 

The rationale behind this research is based on the understanding that distributed 

simulation is still presented with challenges for the Operational 

Research/Management Sciences (Taylor et al., 2013). The distributed simulation 

technique was introduced to address the need for more complex and large-scale 

models for industry, which raised some challenges. Usually these models were 

designed using COTS Simulation Packages. The biggest challenge faced by 

practitioners of distributed simulation techniques was the interoperability issue 

between models. Although IEEE 1516 Standard promised to bring solutions to all 

interoperability issues, but it failed to address all interoperability issues at semantic 

level. The standard for CSP IRMs is the latest advancement to address these 

interoperability issues. The concept of this thesis is that as the IRMs have helped 

practitioners to identify interoperability issues and bridge the gap between 

distributed simulation and IEEE 1516 standard, similarly, the framework presented 

in this thesis will bridge the gap for practitioners on how to best address these IRMs. 

The hypothesis presented in this thesis will define an effective framework to 

implement the issues identified by Standard for COTS Simulation Package 

Interoperability Reference Models and how this protocol will be effectively adopted 

by HLA standard to support Commercial Simulation Package interoperability. 

1.3 Research Motivations  

HLA was designed and developed by the DMSO for the US DoD, for integrating 

different types of their existing simulations (Kuhl, et al., 1999). The involvement 

of the SISO has largely supported development of distributed simulation in the 

M&S industry. 
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A majority of simulation practitioners and COTS vendors still find distributed 

simulation difficult and are hesitant to adopt it because they lack the proper tools to 

overcome its disadvantages. This thesis is intended to take this research a step 

forward for simulation practitioners and COTS vendors by answering the question 

raised by Boer et al., (2006), “How can we make distributed simulation and existing 

distributed solutions, like HLA, more attractive to the industrial community?”   

This research is motivated by advancements made in distributed simulation 

standards (DSS). It was discovered by Boer et al., (2008) that distributed simulation 

is rarely used in industry and mostly used in military defence, mainly because of 

the semantic interoperability problem in the HLA specification. HLA was designed 

by the DoD for two main reasons: interoperability and reusability. The reusability 

concept was introduced to integrate existing models with other existing models or 

new models. Interoperability and reusability were not much of a problem for DoD 

simulation models, but other simulation practitioners from industry found 

difficulties in implementation because of existing interoperability issues with HLA 

standard. Later, SISO presented a set of patterns of these interoperability problems. 

Therefore, it is logical to produce a framework to address these patterns and 

simplify the semantic interoperability problems raised by industry. 

A further motivation for this research is the contribution towards composability , 

where composability is defined as “a state ensuring the consistent representation of 

truth in all participating systems” (Tolk, 2013). Syntactic (engineering), Semantic 

(modelling) and Pragmatic are three different levels of composability defined by 

Gutiérrez and Leone (2013). Syntactic Composability is related to simulation 

component communication and Semantic Composability “is a question of whether 

the models that make up the composed simulation system can be meaningfully 

composed” (Weisel et al., 2003). Pragmatic Composability simulation components 

are aware of the intent of the use of data. Therefore, it is justifiable to say that this 

research also enhances syntactic and pragmatic composability by introducing fault 

tolerance strategies between the simulation components. 
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1.4 Research Aim and Objectives 

The aim of this thesis is to investigate how to address interoperability issues in the 

distributed simulation environment to benefit simulation industry, and to provide 

recommendations (if any) for improvement in the HLA standard. To achieve this 

aim, the following objectives were underlined. 

Objective 1: Present the hypothesis and identify the interoperability issues as 

defined in the IRMs.  

Initial research indicated a gap in resolving interoperability issues in a distributed 

simulation environment with no semantic guidelines available for simulation 

practitioners. These interoperability issues are highlighted in IRMs. A framework 

will be proposed using the detail, understanding, and knowledge gained from the 

literature reviews. The problem will be broken down by addressing each 

individual IRM separately.  

Objective 2: Develop an understanding of underlining standards, techniques, and 

industry approaches to identify if interoperability issues are 

hindering the use of distributed standards.  

For the development of a framework, thorough understanding of underlining 

technologies needs to be investigated; this would include the relevant published 

standards, tools, packages, simulation development environments and different 

implementations. From this study a final hypothesis and aim could be listed. 

Objective 3:  Propose a framework to address interoperability issues.  

To assess effectiveness and limitations of the framework, it will be evaluated 

practically and theoretically. The framework will be empirically implemented using 

generic case studies. Refinements to the framework will be proposed based on the 

results of this evaluation. Implementation of the framework will reveal any 

limitations that could not be identified by theoretical evaluation. 
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Objective 4: Experimentally test the Distributed Simulation Interoperability (DSI) 

Framework. 

Generic case studies for each IRM will be developed to experiment and collect test 

results for evaluation. These experimentations will allow reflection upon the 

limitations and consolidate the individual IRM solutions, which will lead to the final 

framework. 

Objective 5: Evaluate the performance of the DSI framework and test the 

hypothesis. 

The framework will be evaluated based on the performance of related proposed 

solutions in the industry and the suitability of the framework for implementing the 

IRMs. Based on this evaluation, it will be decided if the hypothesis is accepted or 

rejected. 

1.5 Research Approach 

There are two possible directions adopted by researchers to build and test their 

theories (Creswell, 2003). The “inductive approach” begins with the wider world 

view and heads towards abstract generalisation. It funnels from the detailed 

specification to a simpler generalisation. This approach is also sometimes known 

as “theory generating”. The “deductive approach” starts with the abstract and 

moves towards concrete empirical evidence. This approach is also known as 

“theory testing”. Using the deductive approach (empirical study), a hypothesis is 

generated from the theory and research and later the hypothesis is tested by applying 

research methods (Bryman and Bell, 2007). Collecting empirical evidence in 

computer science usually follows four clear steps – generating a hypothesis, 

identifying method, compiling results, and conclusion (Johnson, 2003).  

The field of research involves two distinctively known research methodologies 

known as Quantitative and Qualitative. Qualitative research focuses on describing 

situations using theories and research tools like observation, interviews and survey, 
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with the focus on generating theories (Saunders et al., 2007; Bryman and Bell, 

2007). This research methodology emphasises an inductive approach. Qualitative 

research uncovers trends in opinions and thought and digs deep into a problem. 

Quantitative research is a more logical data-oriented methodology. This 

methodology quantifies the numerical data or data collected via laboratory 

experiment, paper survey, mobile survey, face to face interviews, observation, 

system studies, or numerical methods and uncovers patterns in the research. 

Quantitative research emphasises the deductive approach. 

The choice of research methodology depends on the research involved and the 

hypothesis. It is noted that researchers often combine qualitative and quantitative 

methods to better answer research questions.  

Empirical research is yet another popular method among scientific researchers, 

which relies on observation and experimentation. In other words, it is research using 

empirical evidence. Empirical evidence (objective evidence) can be analysed by 

either qualitative method or quantitative method. According to Hughes (2016), 

“Quantitative research is empirical research where the data are in the form of 

numbers. Qualitative research is empirical research where the data are not in the 

form of numbers”. Adriaan De Groot has presented a clear understanding of the 

empirical cycle, as shown in Figure 1.1. The empirical cycle has five stages as listed 

below (De Groot, 1961). 

1. Observation: Generating the hypothesis 

2. Induction: Formulating the hypothesis 

3. Deduction: determining consequences of the hypothesis 

4. Testing: Testing the hypothesis with empirically derived evidence 

5. Evaluation: Evaluating the outcome.  
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Figure 1.1 : Empirical cycle (De Groot, 1961) 

It is observed that scientists use both quantitative and qualitative methodologies 

collectively. To achieve the research objective, i.e., to address the interoperability 

issues defined by the IRMs, an inductive approach has been applied. First of all, 

primary scientific knowledge needs to be gathered regarding M&S, distributed 

simulation, standards, etc. The literature will be obtained from different published 

sources. On the basis of the summarised information, a deductive approach is 

applied to define the hypothesis of the research. The following are the questions 

identified to test the hypothesis and to address the research question.  

1. Summarise the literature and develop the hypothesis. 

2. Build generic case studies using simulation techniques for appropriate IRMs. 

3. Validate the individual simulation model by comparing the findings with those 

in the literature. 

4. Evaluate each case study results and revisit the framework. 

To refine the framework and its development, the case study method is used. A case 

study is a method of observing in a systematic way (Weick, 1984). According to 

(Yin, 2009, p. 13) “A case study is an empirical inquiry that investigates a 

contemporary phenomenon within its real-life context, especially when the 

boundaries between the phenomenon and context are not clearly evident”. In brief, 

empirical methodology is used in this thesis and the steps are defined in Figure 1.2. 
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Figure 1.2: Selected research approach based on empirical cycle 

1.6 Thesis Structure 

The roadmap of this thesis, which is divided into seven chapters, is illustrated in 

Figure 1.3.  

Chapter 1 is an introduction to the work carried out in this thesis, underlining the 

research motivation and objectives. The first half of the chapter presents a brief 

background to the proposed research, followed by the hypothesis expressing the 

need for a framework to address the interoperability issues. Furthermore, this 

chapter discusses the selection of research methodology and thesis structure.  

Chapter 2 discusses the background theory and the relevant literature. This chapter 

starts with some background discussion about computer simulation and distributed 

simulations, followed by certain industry standards. This chapter then goes into 

detailed discussion about interoperability, reusability, composability and multi-

formalism in distributed simulation and the benefits of using a standard approach. 



Chapter 1:  Introduction  

 

Athar Nouman 10 

Later in this chapter, HLA is explained with its advantages and its limitations. The 

last section of this chapter focuses on the Interoperability Standard SISO-STD-006-

2010, which is published by the Simulation Interoperability Standards Organisation 

(SISO). This chapter will provide enough knowledge to the reader to understand 

the need for a framework.  

Chapter 3 is focused on presenting the interoperability framework requirements 

and some limitations. The framework refers to each IRM pattern. This chapter will 

also explain how this framework could be integrated with simulation models and 

how it can promote reusability. Further this chapter discussed a use of distributed 

simulation modelling methodology. Finally, the chapter concludes with an 

argument for needing a framework based on the interoperability issues highlighted 

by IRMs. 

Chapter 4 discusses development of a framework based on the discussions in 

Chapter 3. This chapter also discusses the suitability of this framework for the 

simulation practitioner from industry and presents conceptual models. 

Chapter 5 presents the framework design by deploying a generic case study based 

on the conceptual models prepared in the previous chapter. This chapter is 

important for identifying the limitations of the framework, which cannot not be 

done without implementation. Further, this chapter discuss a case study for London 

Emergency Medical Services (EMS). 

Chapter 6 discusses the results collected from the experiment runs on the case 

studies identified in the previous chapter. This chapter will evaluate the 

interoperability framework and discuss the usability of the framework. Finally, the 

framework is revisited based on the evaluation.  

Chapter 7 presents the summary and the conclusion of the thesis. It identifies the 

research contribution and discusses how the aim and objectives have been achieved. 

Based on the evaluation and revisit to the framework in the previous chapter, the 

hypothesis is accepted. This chapter also discusses future areas of research in the 

field of distributed simulation. 
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Figure 1.3: Roadmap of the thesis  

1.7 Contribution of the thesis 

After establishing the interoperability issues faced by the practitioners while 

distributing the simulation models, different protocols were proposed to address 

these interoperability challenges. After conducting experiment runs on these 

proposed protocols they were evaluated and a propose solution was concluded to 

address the interoperability issues presented by IRMs. This research also uncovered 

some other contribution which are listed below: 

1. The major contribution of this research is the DSI Framework, to enable 

simulation modellers and vendors to satisfactorily address the interoperability 

requirements of their distributed simulation environments. 

2. The second contribution of this research is to facilitate capturing of 

interoperability requirements at a semantic level. 

3. The third contribution of this research is the identification of the 

recommendation for new callback mechanisms in HLA Standard. 

4. The final contribution made by this research concerned making models more 

integratable and reusable. 

1.8 Summary 

This chapter began with an overview of the chapter contents followed by the 

background and rationale in Section 1.2. The next section defined the research aim 

and objectives. A detailed discussion was presented on which research 

methodology is to be selected for this research and why. Finally, this chapter 

presents an overview, or a roadmap, of the thesis to the reader. 

The next chapter presents the underlying standards and detailed background 

relevant to the proposed interoperability framework. 
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Chapter 2:  Distributed Simulation and 

Modelling Review 

2.1 Overview 

This chapter provides a contextual background to basic concepts, methodologies, 

tools, and standards involved in simulation modelling as well as the specific 

interoperability challenges in developing models for distributed simulation. The 

topics examined in this chapter begin with a review of the purposes of simulation 

and the different approaches and software involved. This is followed by further 

explication of M&S, distributed simulation, high-level architecture and the 

problems of interoperability faced by distributed simulation modellers. The chapter 

concludes with a review of various attempts to respond to outstanding distributed 

simulation problems as defined by the formal IRMs. 

2.2 Simulation 

According to Shannon (1975), simulation is  

“the process of designing a model of a real system and conducting 

experiments with this model for the purpose either of understanding the 

behavior of the system or of evaluating various strategies (within the limits 

imposed by a criterion or set of criteria) for the operation of the system.”  

Simulation can alternatively be described as a means of representing a real world 

system using an artificial environment. It is commonly used as a method for 

conducting experiments, whether to test existing systems or to develop new 

methodologies. Simulation is also widely used in training programmes to 

familiarise personnel with, for example, business processes. It can be effective in 
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providing initial training in many spheres to help avoid human errors and to provide 

role-playing practice in collective endeavours. A significant function of simulation-

based training is also to provide a safe environment in which to practice risky or 

dangerous operations, such as in the medical profession, the military domain, or 

any situation that presents health and safety risks. As noted by Banks (2010), 

simulation models mimic real-world systems, but they require the application of 

actual historical data to represent the characteristics of the systems they seek to 

reproduce.  

M&S, is a term which is also in common use and in fact defines the complete 

process more accurately. Modelling is first undertaken to create a representation of 

the system under focus. Simulation follows as the process of “running” the model 

to determine how the system performs and reacts. Together, M&S performs the re-

creation and analysis of real-world physical systems. M&S is a powerful method of 

examining aspects of the real world using a scaled-down artificial environment 

(Ingalls, 2013). It enables analysis of real systems that can help reveal the impact 

upon such systems of change.  

Employing M&S to study physical systems may occur for a variety of reasons. It 

may just be too expensive to create a real physical system or impractical to study 

an actual system due to inconvenience or physical endurance barriers. In the 

academic sciences today, M&S is used as a tool in very many fields of study, 

including defence, medicine and healthcare, computer communications, transport 

systems, the ecological environment, biosciences, behavioural studies, economics, 

and many more. It is also used widely in commercial domains, such as in the 

simulation of business practices involved in manufacturing and production, and in 

determining the provision of complex consumer services such as those in the retail 

financial sector (Taylor et al., 2012). 

Topçu et al. (2016) depicted M&S as involving a series of elements, relations, and 

processes with results derived from determining the interaction between those 

elements. This is shown in Figure 2.1. 
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Figure 2.1: Elements, relationships, and processes involved in M&S 

M&S may be used to create changes to real systems that already exist or to develop 

new systems so that resources can be used most effectively and performance is 

optimal (Maria, 1997). M&S may also be employed when a real system is not 

available, perhaps because it is inaccessible, access is dangerous or inconvenient, 

or a real world system does not exist. 

Computer simulation employs the computing power to run experiments on models 

that represent systems of concern (Pidd, 2004). Using computer simulation for 

experimentation is more cost-effective than using a real system, particularly when 

trial experiments may be discarded. Computer simulations can also be conducted 

and deliver results much more quickly than with real world systems. Analysing the 

behaviour of systems is easier with a simulation, and experiments can be readily 

replicated on a computer platform. The simulation also provides a safe environment 

for the study of dangerous scenarios (Brooks and Robinson, 2001). Use of a 
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computer model for testing increases knowledge about the system under review and 

helps establish appropriate procedures for operating the system (Shannon, 1998). 

Modelling is used to re-create a complex real-world system that can then be run 

virtually as a simulation. Because the computer simulation is virtual, it is essential 

to establish a detailed system view at modelling stage (Fishwick, 1995). 

Computer simulation is used for a variety of purposes in many domains. In industry, 

simulation can help improve productivity by determining the best deployment of 

resources (Zimmers and Brinker, 1978). In finance and insurance industries, 

simulation can be used to analyse portfolio assets and liabilities (Herzog and Lord, 

2003). Military forces can use simulation to improve training, rehearse critical 

missions, and test and evaluate strategy (Page et al., 2004). Healthcare authorities 

can simulate the outcomes of unpredictable epidemic events and model complex 

delivery systems such as blood supplies (Lowery, 1998). Simulation can be used to 

study human performance by integrating human and system performance models 

(Laughery, 1998). Business process re-engineering (BPR) can also benefit from 

simulation modelling to determine the effects on performance of process redesign 

(Bhaskar et al., 1994). 

Simulation that is based upon a single execution unit, such as a Central Processing 

Unit (CPU) core, is known as sequential simulation. Sequential simulation involves 

“pipeline” processing, or the processing of events in non-decreasing timestamp 

order (TSO). As each event is executed, state variables and the global clock are 

accordingly updated. Sequential simulation offers simplicity, but it is constrained 

in managing complex and very large simulation models. A single processor CPU 

may be easily overwhelmed by a large volume of events and Random Access 

Memory (RAM) capacity may be inadequate for retaining complete state 

information (Lopez et al., 2006). Additionally, some real-world events are not 

subject to modelling in sequential time. 

“Big simulation” is an expression describing the scale of data input for execution, 

and output for analysis, of large connected simulation models running on a highly 

distributed computer platform. Although employing standard internet tools and 
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protocols, such situations require ontologically defined models and model 

interfaces and large relational and non-relational databases to create models and 

produce output. Dynamic model partitioning and robust domain decomposition is 

also required (Taylor et al., 2013b). 

2.2.1  Simulation Models 

Models can be either a mathematical or a physical representation of a system and 

“a simulation model is a type of mathematical model of a system” (Banks et al., 

2009). Simulation models are further classified into being static or dynamic, 

discrete or continuous, and deterministic or stochastic. A static model is a system 

represented at a particular point in time, while a dynamic model represents a system 

that alters over time. Static simulation models are also known as Monte Carlo 

simulations. Similarly, simulation models having no random variable (as input) are 

called deterministic. A system is known to be deterministic if its behaviour is 

entirely predictable. Deterministic simulations work as a deductive form of science, 

e.g., the operating cycles of an automated machine, which keep repeating the same 

steps over and over again with the same output.  

A simulation model having one or more random variables (as input) is called a 

stochastic simulation. Stochastic simulation works as an inductive form of science; 

an example would be the production of electricity from a hydroelectric dam. The 

amount of electricity produced depends on the scale of water pressure and how it 

hits the propellers of the turbine. There can be many variables that might affect the 

water pressure, such as water level, hard vs. soft water, water temperature, weather, 

etc. Discrete simulation models or systems are those in which “the state of the 

variable(s) changes only at a discrete set of points in time” (Banks et al., 2009), 

whereas continuous simulation models are those in which the state of the variable(s) 

continuously changes over time (Banks et al., 2009). However, representation of a 

continuous system does not necessarily require a continuous simulation model, nor 

does representation of a discrete system necessarily require a discrete simulation 

model. In fact, several modelling approaches could be used together. The decision 

on modelling approach depends on objective and system characteristics. Since this 
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research is conducted using distributed Discrete-Event Simulation (DES), further 

discussion and research presented in this thesis is based on discrete, dynamic, and 

stochastic approaches.  

Figure 2.2 illustrates a hierarchical chart to explain the relationship between these 

different simulation models. 

 

 

 

 

 

 

 

Figure 2.2: Classification of simulation models  

2.2.2  Discrete-Event Simulation 

As described above, discrete simulations are those systems in which “the state of 

the variable(s) changes only at a discrete set of points in time” (Banks et al., 2009). 

Pidd (2006) defines DES as “a discrete simulation that employs a next-event 

technique to control the behaviour of the model”.  An example might be a queuing 

system outside a kiosk. Here, customers stand in a queue before each customer 

independently orders food. The customer joins the queue from the back and will 

leave once served. Depending on the order, the length of serving time will be 

discrete. Therefore, the simulation will proceed at certain events such as when a 

customer joins the queue, places the order, is served the order, and then leaves the 

queue.  
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Before going into further details of DES it is important to understand the major 

concepts of some terminologies used in DES practice. 

 Model: An abstract representation of a system (e.g., kiosk ordering as mentioned 

in the above example)  

 System: A process containing a number of entities that interact over time to 

achieve a goal (e.g., a call centre, logistics, and as in the kiosk example, a process 

of serving customers). 

 Entity:  An object that requires specific representation in the simulation model 

(e.g., a customer, tyre, medicine, etc.). There is a further classification of types 

of entities, i.e., permanent and temporary. Permanent entities remain in the 

system until the end of the simulation, while temporary entities leave the system 

once they have no further interest. 

 Attributes: These are the properties of an entity (e.g., customer height or 

weight). They represent extra information about an entity. 

 Classes: Entities are individuals, but similar entities of the same type can be 

represented by classes (e.g., customers, tyres). 

 Resources: These are representative of individual system elements and are part 

of the model. They can represent either a system or a human resource (e.g., a 

machine operator for the latter). These resources may affect the simulation 

process therefore the simulation keeps count of them at all times. (E.g., in the 

above kiosk example, persons preparing the food or serving the customers are 

considered as resources while the customers are entities.) 

 Queue(s):  A logical or physical location where associated entities are collected 

and the ordering is maintained by some logical function (e.g., First In–First Out 

(FIFO) or by priority). These queues can be placed at the input of any process, 

as described in the kiosk example above.  

 Event: An occurrence in time, which alters the state of the system (e.g. a 

customer joining the queue, as described in the kiosk example above). 
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 Event list: A listing of events due to occur, in order of their time of occurrence. 

This is also termed a future event list (FEL). 

 Activity: Any operation that has a duration in time of specific length and alters 

the state of the system is referred to as an activity. Activities often transform the 

state of entities (e.g., in the kiosk example above, the operation of preparing food 

following a customer order. Also note the resource in this example is associated 

with resource availability.) 

 Process: A sequence of time ordered events, which may include several 

activities, is termed a process (e.g., in the above kiosk example, the operation of 

taking the order, preparing the food, and serving it to the customer). 

 Simulation time: The period of time simulated by the model. Simulation time 

may not be the same as wall clock time (i.e., real time). Simulation time units 

might vary according to model requirements, therefore one simulation time tick 

could represent a second, a minute, hours, days, or even weeks.  

 Duration: The difference in clock time between when the simulation started and 

when the simulation terminated. 

 Run time: The total time that is, or needs to be, simulated for the period of 

interest.  

Figure 2.3 explains the relationship of some of the above terminologies. 

 

Figure 2.3: Events, Processes, Runtime, and Activity 
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2.2.2.1 DES Approaches 

In a simulation program, execution, entities, and resources are engaged in different 

activities and events. The simulation programme also maintains an event list and 

the simulation time (this will equal real clock time if the simulation is running in 

real time mode). The simulation proceeds forward in time at each scheduled event 

in the event list. There are four different known approaches to model a discrete 

event simulation system (Pidd, 2006). These approaches also symbolise a 

distinctive “world view”. 

1. Event-based approach 

2. Activity-scanning approach 

3. Process-based approach 

4. Three-Phase approach 

These four methods produce programmes commonly in three level hierarchical 

structures, i.e., executive (control programme), operations, and detailed routines. 

Further details on these levels can be studied in the work of Pidd (2006). However, 

special attention is drawn to the second level, as it is the set of statements describing 

the simulation operation that make up the model. At this level the actual programme 

(model) logic resides and executive level, sequence these operations as the 

simulation proceeds. The computer receives entity interaction instructions at this 

level and all of the four approaches above impose their own structure at this level. 

1. Event-based approach 

This approach was most popular in the USA in the early years of discrete event 

simulation and was used in SIMSCRIPT (Markowitz et al., 1963), though later 

versions encouraged to use the process-based approach. This, and other reasons, 

affected the use of event-based simulations after 1980 (Pidd, 2006). In the event-

based approach, the second level of hierarchical structure is made up sets of 

EVENT ROUTINES. The event routine is a collection of instructions in the 

computer model to execute all the logical instructions that can flow from an 

event. The first (executive) level must perform time scan, event identification 
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and event execution control the operation of a simulation. This can be achieved 

by maintaining a proper Event List. Each entity on the list must have at least two 

pieces of information, i.e., the time of execution and the identity of the event. 

The executive level performs a two phase cycle for the duration of the 

simulation. These two phases are: 

a. Time Scan: creating a list of all events due at the current simulation time, 

deciding the next event time from the list, and then setting the simulation 

clock at the next event time. 

b. Event Execution: ensuring all due events (identified by the time scan task) 

are executed. 

The two phase cycle continues until the simulation is over as illustrated in Figure 

2.3(a). An important design consideration in this approach occurs if the 

simulation has many events. In this case, an appropriate list processing technique 

should be used to reduce the time consumed by the executive process. 

2. Activity-scanning approach 

The activity-scanning approach has been comparatively more popular in the UK 

and was used in the CSL programming language (Buxton and Laski, 1962). The 

focus of this approach is on the process and interaction of entities and, unlike the 

event approach, does not execute operations that result in a state (i.e., event) 

change. This approach treats each activity separately, and so can lead to run-time 

inefficiency. Since it treats each activity independently, the activity scan phase 

attempts to run every activity, regardless of the simulation condition potentially 

meaning that only one activity is possible. In contrast, the event-based approach 

focuses only on those events that need processing. These events are identified 

by maintaining the Event List. Hence, the event-based approach is faster to run, 

but the activity-based approach is quicker and easier to program. 

In the activity-based approach Activity is the building block. This describes the 

actions that will take place once the change of state is triggered. Unlike the event- 
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based approach, the executive level in the activity-scanning approach has only 

one task to perform, i.e., Time scan. This task represents only one responsibilit y, 

which is to identify when the next event is due. Neither time scan nor the activity 

scan phase attempt to identify which entity will cause the state change. Also, no 

attempts are made to identify the next due activity. After the time scan and 

activity scan the simulation clock progresses to the next time and repeats the 

same process until the simulation reaches its end. This activity-scanning 

approach is illustrated in Figure 2.4(b). 

3. Process-based approach 

This is a hybrid approach that combines the features of both activities-based and 

event-based approaches. The process-based approach to discreet event 

simulation modelling is the most frequently used in the world. SIMULA (Hills, 

1973) and GPSS (Greenberg, 1972) are two process-based programming 

languages. In the event-based approach the second level is made up of event 

routines, therefore modellers have to analyse and identify all possible events. In 

the activity-based approach the second level is made up of activities, thus 

modellers have to identify all activities. In the process-based approach the 

second level is made up of processes. These processes are also an independent 

segment of the program. Thus, each entity is related to a specific process that 

starts and stops as the simulation runs but operates throughout the entire 

simulation runtime or life time, i.e., an entity’s complete process is identified. 

The executive level of the process-based approach maintains two lists of records, 

i.e., Future events list and Current events list. The future events list contains all 

events that need to be reactivated ahead of the current simulation time. The 

events in this list are those that are unconditionally delayed. Meanwhile, the 

current events list contains a record of events that need to be reactivated at the 

current simulation time, regardless of being conditionally or unconditiona lly 

delayed. As illustrated in Figure 2.4 (c) the executive goes through the following 

cycle: 
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a. Future events scan: the future events list contains the next event time. 

b. Move records: records moved from future events list to current events list 

where execution time equals current simulation time. 

c. Current event scan: Executes all the events in the current event list before 

proceeding to the next simulation time.  

4. Three-Phase approach 

Tocher (1963) first introduced the three-phased approach to combine the 

advantages of both event-based and activity-based simulation approaches, i.e., 

simplicity from activity-based approach and efficiency of the event-based 

approach. Initially, Tocher (1963) took the building block of the activity-based 

approach and extended Activity into two types of activities, i.e., ‘B’ Activities 

(bound or book-keeping) and ‘C’ Activities (conditional or co-operative). ‘B’ 

Activities are executed when the schedule time is reached. ‘C’ Activities depend 

on different classes of entities or a specific condition for their execution. Later 

the term “Activities” was removed and now they are just called Bs and Cs (Pidd, 

2006). 

The operations that have a predicted starting and finish time can be scheduled as 

if they were appointed. These are known as Bs. The Bs can be directly scheduled, 

therefore, the simulation executive will run them when the simulation clock is at 

the right time. This means that each of the Bs must be listed in the event list. All 

the remaining operations are regarded as Cs. These operations have no known 

time of occurrence, and might depend on a state change of resource or entity. 

The exception is operations that generate new entities in the system, which might 

occur at random but are classed as Bs. Figure 2.4 (item d) shows the three-phase 

executive operation. The reason it is called the three-phase approach is because 

it repeatedly executes three phases, A, B, and C. 

Unlike the event-based approach the entities in the three-phased approach need 

to retain at least three pieces of information, i.e., the time cell, the availability, 

and the next activity. The time cell is the next time due for a state change, 
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availability is to indicate if the entity is committed to some B, while the next 

activity is the B in which the entity will be engaged. 

a) The A phase 

The time scan is known as the A phase. During this phase the executive 

checks its event list to find the next event time and move the clock to that 

point. Then the executive will prepare a DueNow list. This list will contain all 

the operations that need to be processed at the current simulation time. 

b) The B phase 

Using the DueNow list, the executive will execute the Bs in order (there can 

be some priorities defined).  

c) The C Phase 

In this phase the executive executes remaining operations whose conditions 

are satisfied. The executive will repeatedly scan for other Cs in the list until 

no more activity is possible.  

If we analyse which approach is best, then we can safely remove activity-scanning 

and the event-based approaches We already have established that although activity 

scanning is simple, it is also inefficient, while the event-based approach gets 

complicated once the complexity and number of entities increases, though it is 

faster to run. The three-phase approach overcomes the disadvantages of both these 

approaches. Of the remaining two approaches, three-phase and process-based are 

similar, as they both result from combining the advantages of previously discussed 

approaches. 

However, in the three-phased approach the B phase is completed before the C 

phase, thus all dependent resources are free and all operations are addressed in a 

sequential process, meaning there are no changes subject to deadlock. In contrast, 

in the process-based approach each entity is taken through its process and may 

continue its process without waiting for other entity(s). This means the first entity 

might affect the results of the second entity. Therefore, it becomes the responsibility 

of the modeller to ensure that deadlocks are avoided in the process-based approach. 
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Nevertheless, the process-based approach does have one benefit over the three-

phased approach, namely, simplicity in the design and development of models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: The executive of four different Simulation Approaches  

2.2.3  Simulation Software  

The concept of DES software goes back to the 1950s. A decade later, in the 1960s, 

the simulation community greatly benefited from programming languages such as 

FORTRAN and GSP. The first simulation languages like SIMSCRIPT, GPSS 

(Schriber, 1974) and SIMULA (Dahl and Nygaard, 1966) were also introduced. 

With the introduction of smarter computing in the 1970s, the potential of both 

interactive and visual simulations were highlighted by Hurrion (1976) in his PhD 
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thesis, which resulted in the first visual interactive simulation (VIS) language in 

1979, SIMAN (based on modelling framework developed by Zeigler in 1976), SEE-

WHY (Fiddy et al., 1981). During the 1980s and 1990s a range of further simulation 

languages became available such as Simul8, WITNESS, and AnyLogic (Law and 

Kelton, 1999). Since then, different simulation software packages have been used 

across the world with different capabilities, for example, 3D displays, optimisation, 

databases, etc. The history of simulation programming languages was divided into 

the first five periods by Nancy (1995) and the sixth period by Banks (2009). 

1) Period of Search: 1955 - 1960 

2) Advent: 1961 - 1965 

3) Period of Formation: 1966 - 1970 

4) Period of Expansion: 1971 - 1978 

5) Period of Consolidation and Regeneration: 1979 - 1986 

6) Period of Integrated Environment (i.e. Interoperability, Composability, and 

Reusability): 1987 - Present  

Today, the most popular type of simulation software is VIS. The example illustrated 

in Figure 2.5 is of an airport security system. The idea is to have a holistic visual 

display of how the simulation interacts rather than a logical running of the 

simulation model. 

 

 

 

 

 

Figure 2.5: Visual Interactive Simulation example for Airport Security 

Further, these simulation packages provide interactive facilities such as enabling a 

modeller to obtain information at any point while the models are running or even 
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stop and resume the simulation at any time. According to Stewart Robinson (a 

discrete event simulation practitioner and researcher), simulation modellers have 

three options for developing their computer simulation model, i.e., spreadsheets, 

programming language, and specialist software. A spreadsheet such as Excel 

provides a number of functions which can help develop a simulation. Programming 

languages such as C++, Java, or Visual Basic are suitable for developing models. 

The object oriented approaches used by modern programming languages are also 

beneficial for simulation modelling (Pidd, 1992). Finally, specialist simulation 

software packages are helpful in preparing a quick, visually interactive modelling 

simulation (VIMS) model. A short list of some specialist simulation software is 

given in Table 1 below. However, both Salt (1993) and Chwif et al. (2000) have 

argued that the computing power of a PCs (especially the memory and hardware) 

is not enough to address the increasing complexity of simulation models, which has 

given birth to the potential for distributed simulation software. 

 

 

 

 

 

 

 

 

 

Table 1: Examples of Simulation Software packages 
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2.3 Modelling and Simulation 

Computer based simulations are essential requirements to meet the needs of a 

growing world economy. More economic competition has brought bigger 

challenges to achieve higher goals such as greater production at lower cost. This 

has led to the introduction of more complex systems that can deliver more 

integrated logistics and more efficient production, as well as better responses to 

social care needs such as more effective health care systems. Therefore, the 

development of M&S technologies has become ever more demanding to address 

these critical challenges of the world of computer simulation. The M&S concept 

itself dates back to Shannon (1975) but greater focus and the most dramatic changes 

have occurred in the last few decades due to the emerging needs of new applications 

and improvements in computing technologies. 

According to Fujimoto et al. (2017) Modelling and Simulation is defined as: 

“the discipline that comprises the development and/or use of models and 

simulations. Where models are a physical, mathematical, or otherwise logical 

representation of an entity, system, process or phenomenon, while simulation 

is a method for implementing a model and behaviors in executable software.” 

Both “Modelling” and “Simulation”, if examined independently, have equal 

importance. Modelling is the representation or abstraction of real world systems 

and models may consist of a simplified version of such systems (Pidd, 2013). 

Simulation involves mimicking the behaviour of a model over time. Hence, 

modelling provides the abstraction level while simulation provides the 

implementation level (Talk, 2010). In the same paper, Talk (2010) associated 

modelling with conceptualisation and simulation with implementation, and defined 

M&S as two separate activities that are dependent on each other. 

2.3.1  Simulation Studies 

System engineering defines the methodologies used to conceptualise/analyse, 

design, and develop a system. Similarly, frameworks and methodologies are 

important for simulation systems to create and design system artefacts and 
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modelling concepts that enable documentation and capture of simulation system 

requirements. However, it should be stressed that distributed simulation systems 

tend to be more complex due to the additional interoperability issues, which are 

discussed later in this chapter and in subsequent chapters.   

There are many concepts and descriptions by different authors that outline the 

activities inherent in a simulation study in terms of the M&S project life cycle 

(Robinson, 2014). Among these authors are Shannon (1975, 1998), Hoover and 

Perry (1990), Gogg and Mott (1992), Ulgen et al. (1994), Law (2006), Banks et al. 

(2009), Sturrock (2012), and Loper (2015). As part of an early simulation study, 

Balci (1994) presented six processes that address simulation modelling. These 

processes were: 

1. Problem formulation 

2. Feasibility assessment of simulation 

3. System and Objective definition 

4. Model formulation 

5. Model representation 

6. Programming 

Figure 2.6 (Banks et al., 2009) below defines the M&S life cycle in more detail, 

while Figure 2.8 (Loper, 2015) also defines the M&S life cycle, but with minor 

differences to the Banks et al. (2009) model. 

The model from Banks et al. (2009) has 12 steps in the life cycle. The life cycle 

begins with Problem formulation. A clear formalised statement formulating the 

problem issue must be established either by the policy maker or by the analyst. As 

the system study progresses further, there can be instances where the problem 

statement may need to be reformulated.  

The Objectives and Project plan are placed in the second step of the life cycle. At 

this stage, an evaluation should be made to decide if the simulation project is 

suitable for the requirements and that no alternative solution is available. A detailed 
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plan is then prepared, including feasibility study, project duration, people involved, 

and the expected outcome. 

 

Figure 2.6: Steps in Discrete Event Simulation Study (Banks et al., 2009) 



Chapter 2:  Distributed Simulation and Modelling Review  

Athar Nouman 32 

The Model conceptualisation and Data collection  stages are divided into two by 

Banks et al. (2009) while others have presented them as one. Banks’s model 

suggested that both these stages should run parallel to each other while some 

authors have advised completing conceptualisation before moving to data 

collection. Shannon (1975) identified that both conceptualisation of the models and 

data collection are closely connected with each other. The main reason for 

determining these as parallel activities is because the required data might change as 

the model changes in complexity. The early involvement of the end user also 

ensures the validity of the model and data. The data collection stage involves a 

substantial amount of time, therefore, it should start as early as possible. The data 

collected at this stage is also used late in the validation stage. This thesis will discuss 

the conceptual modelling stage in more detail later and in the next chapter. 

The Model translation stage involves converting the model into computer-

recognisable format via coding or programming. At this point, the modeller can 

decide which simulation platform will be used. The modeller might decide to use 

such simulation languages as Java, C++, or GPSS/H, or alternatively the modeller 

may employ special purpose simulation software, also known as Commercial Off-

The-Shelf (COTS) simulation packages, such as Simul8 or WITNESS, for example. 

Using COTS simulation packages can significantly reduce development time and 

may offer certain flexibility, but such packages generally also come with 

limitations, which are discussed in more detail in Simulation Challenges. 

The next two stages involve the simulation model in Verification and Validation 

(V&V). The verification stage is to confirm that the translated computer program is 

working properly. At this stage, the program can be tested with complex case 

scenarios and debugging tools to analyse the output. In the validation stage, this 

output is then compared with the actual system behaviour. Again, a number of case 

scenarios are drawn up to validate the program repeatedly by comparing with data 

collected in the data collection stage. Once the model has achieved acceptable 

accuracy the process of V&V will stop.  

In the next two stages, of Experimental design and Production runs and analysis, 

decisions regarding simulation runs are taken using cases that have been analysed 
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and completed. At this point, it is decided how long the simulation will run, i.e., the 

duration of each simulation run, and also how many times each simulation should 

be run. The results of these simulation runs are used for evaluating the simulated 

system performance. They also determine if further runs are required in the next 

Further runs? at decision stage. The experimental stage is also called the “What if” 

analysis stage as illustrated in Figure 2.7 (Robinson, 2014). As the cycle runs, using 

some data or values as input, the results or output from running the model is 

analysed, then the simulation is run again with different values to monitor the 

change. 

 

 

 

 

 

 

 

 

Figure 2.7: “What if” analysis with simulation (Robinson, 2014) 

In the Documentation and reporting stage, two different documentation types are 

prepared. The first is Program documentation and the second is Progress 

documentation. The focus of program documentation is all-round re-usability, i.e., 

enabling the programme to be used again by documenting the functions, constraints, 

inputs, and outputs for use by the same or a different analyst. This documentation 

is also useful if the program needs modification. The progress documentation 

provides the written history of an individual simulation. This documentation helps 

users who are not directly involved in any of the related procedures or processes to 

understand the simulation. Ulgen et al. (1994) identified various types of progress 

reports such as user and maintenance manuals, logs, project book, etc. 

The final stage is the Implementation stage. Successful implementation of the 

project is based on user acceptance and there is a strong relationship between 
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acceptance and user involvement throughout this stage. Also to be noted at this 

stage is that if the objectives set at the second stage are not met, then the 

implementation could suffer, regardless of acceptance.   

Banks et al. (2009) have further summarised these 12 stages into 4 phases. The first 

phase relates to the discovery and comprises Problem formulation and Setting of 

Objective and Overall Design. The second phase concerns model building and 

consists of Model Conceptualization, Data Collection, Model Translation, and 

Verification and Validation. The third phase relates to running the model and 

consists of Experimental Design, Production Runs & Analysis, and Additional 

Runs. The fourth phase of implementation consists of Documentation & Reporting, 

and Implementation. This four-phase approach is used by Robinson (2014) to 

summarise conceptual modelling and is discussed later in more detail. 

 

Figure 2.8: Modelling and Simulation Life Cycle (Loper, 2015) 

The model proposed by Loper (2015), shown in Figure 2.8, is a very similar concept 

to that of Banks et al. (2009) but with some differences. For example, the 

conceptualisation and data collection stages are not parallel. On the other hand, the 

V&V stages are not separate stages but are performed together. Configuration 

control and Execute simulation & analyse output are similar to the production run 
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and analysis stage presented in Figure 2.6. While Banks summarised the 

development life cycle into four phases, Loper (2015) classified the life cycle into 

two major activities or phases. “Model development activities” are presented by 

blue boxes and “Simulation development activities” are presented by orange boxes.  

On the other hand, IEEE has recognised that there are many possible ways to build 

distributed simulations (IEEE Std. 1730-2010). The diversity of these different 

approaches acknowledges the desire to avoid unnecessary practices in developing 

such an environment. For example, the approach to developing and executing 

distributed training exercises can be different to the analysis oriented simulation 

environment. Therefore, IEEE published the standard for recommended practice for 

Distributed Simulation Engineering and Execution Process (DSEEP) (IEEE Std. 

1730-2010). This approach for distributed simulation modelling is also 

acknowledged by Anagnostou and Taylor (2017). 

At an abstract level, IEEE has recommended seven basic steps for developing and 

executing distributed simulation (IEEE Std. 1730-2010).  

1. Define simulation environment objectives 

2. Perform conceptual analysis 

3. Design simulation environment 

4. Develop simulation environment 

5. Integrate and test simulation environment 

6. Execute simulation 

7. Analyze data and evaluate results. 

Figure 2.9 describes the top-level view of the process. Further detailed process flow 

can be studied from the Standard. The first step is for both user and developer to 

agree the objectives to be accomplished by the simulation goals. Once the goals are 

identified the development team proceeds to the Conceptual modelling phase 

(discussed in more detail in the next section). Design the simulation environment 

involves developing a plan to meet the required functionality and reuse of models. 

Elaboration of a data exchange model is conducted during the Develop simulation 

environment phase. The Integration and testing simulation environment phase 
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involves testing interoperability requirements. After Execution of the simulation, 

the final phase involves Analysis and evaluation of the received output data. 

 

Figure 2.9: Distributed Simulation Engineering and Execution Process 

(DSEEP) (IEEE Std. 1730-2010) 

Up to now, various approaches for developing a simulation model were discussed, 

but the IEEE recommendation introduces the missing ingredient for this discourse, 

i.e., the development of a distributed simulation model. The purpose of Step 5 in 

this development life cycle (Integrate and test simulation environment) is to 

conduct verification on the integration of different parts of the simulation models 

and test the validity of the interoperability between these models. 

2.3.2  Conceptual Modelling 

In the examples of the M&S life cycle described above, Conceptual Modelling 

represents the first and most important stage of model design, after identifying the 

problem domain. Conceptual modelling was initially regarded as an abstract 

simplification of the real world system (Zeigler, 1976) (Pidd, 2003). Later, 

conceptual modelling was defined by Robinson (2008) as:  

“A non-software specific description of the computer simulation model (that 

will be, or has been developed), describing the objectives, inputs, outputs, 

content, assumptions and simplification of the model” (Robinson, 2008a). 

As stated in this definition, conceptual modelling is not related to the software of a 

computer model, rather it creates the foundation to develop a computer model. Also, 

conceptual modelling describes the abstract of the real world system (including 

assumptions), which will be used to develop the computer simulation. The 
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definition refers to a simulation model “that will be, or has been developed” because 

the modelling process is considered to be iterative and likely to change during the 

development life-cycle (Balci, 1994; Willemain, 1995; Robinson, 2014). Finally, 

the definition describes a list of deliverables, i.e., objectives, inputs, outputs, 

content, assumptions, and simplifications. Onggo (2007), further described these 

deliverables in more detail.  

It is the responsibility of the system analyst or engineer to fill the gap between the 

conceptual model and implementation, and they need strategies to transfer 

knowledge between these activities (Tolk, 2010). Various authors have defined 

methodologies for designing a good conceptual model and for identifying what 

level of complexity should be used for model design (more of this is discussed by 

Pidd (2010)). The focus of this thesis, however, is on getting the correct level of 

simplification of a distributed simulation model rather than discussing the level of 

complexity of individual models. Therefore, further discussion will focus on the 

abstraction of simulation models. In the early 21st century the key elements of 

conceptual modelling were identified as: 

 Moving from problem situations to how and what is going to be modelled 

 An iterative process 

 Independent of code or software 

 Simplified (abstract) representation of the real world 

Robinson (2001), noted that the key activities identified in simulation studies 

conducted by various authors were largely similar. The main differences were in 

the activity names and their subdivisions. Therefore, Robinson presented a 

simplified version of conceptual modelling as shown in Figure 2.10. The boxes in 

the figure represent key stages and the arrows represent the activities or process 

between the stages. A model is valid and considered accurate if its response is 

within acceptable range of its requirements (Balci and Sargent, 1984). Based on this 

theory, Tolk (2010) presented a similar conceptual model focusing more on 

validation and verification.  
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This approach also confirms the ideas of Banks, et al. (2009) on modelling 

techniques. Figure 2.11 illustrates the modelling concept proposed by Tolk (2010). 

If we closely compare both conceptual models, then very little difference can be 

found. The idea presented by Robinson (2001) focuses more on bridging the gap 

between real world and simulated model, while the focus of Tolk (2010) is on 

simulation credibility. As the validation and verification phases are present also in 

the Robinson (2001) theory, this will be discussed in more detail later. 

 

 

 

 

 

 

 

Figure 2.10: Simulation studies: Key stages and activities (Brooks and 

Robinson, 2001) 

 

 

 

 

 

 

Figure 2.11: Modelling, Validation, and Verification (Tolk, 2010) 
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In Figure 2.10, the stages of Conceptual modelling, Model coding, 

Experimentation, and Implementation are defined as processes that result in the 

Conceptual model, Computer model, Solutions/understanding, and the start point 

Real world, respectively. (The Solutions/understanding stage was referenced as 

“Improvements/understanding” in later text by Robinson (2014)). Arrows at both 

ends of arcs represent the iterative nature of the model, hence the modeller can go 

back at any stage, while the circular representation of the diagram indicates that the 

process could be repeated over and over again. 

Although a range of approaches have been proposed, there are no set standards for 

documenting DES conceptual models (Robinson, 2015). The following are some 

alternative examples: 

• Component list (Robinson, 2014) 

• Process flow diagram (Robinson, 2014) 

• Activity cycle diagram (Robinson, 2014) 

• Logic flow diagram (Robinson, 2014) 

• List of assumptions and simplifications (Robinson, 2014) 

• Unified modelling language (UML) (Richter and März, 2000) 

• Petri nets (Torn, 1981) 

• Condition specification (Overstreet and Nance, 1985) 

2.3.3  Conceptual Modelling  

Conceptulisation for simulation modelling is defined as “a set of steps and tools that 

guide a modeller through the development of a conceptual model” (Robinson, 

2015). Another definition of conceptual modelling given by Pegden (2010) states, 

“A simulation modelling world view provides the practitioner with a 

framework for defining a system in sufficient detail that it can be executed 

to simulate the behaviour of the system. Unlike simple static descriptive 

tools such as Visio, IDEF, UML, etc., a simulation modelling world view 

must precisely define the dynamic state transitions that occur over time. 
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The world view must provide a definitive set of rules for advancing time 

and changing the state of the model.” 

As described in previous sections, while there are many modelling techniques, there 

is very little guidance available (Robinson, 2015). Recently, some authors have 

attempted to devise different conceptual modelling frameworks, such as “A 

conceptual modelling framework for manufacturing” (van der Zee, 2007) and “The 

ABCmod conceptual modelling framework” (Arbez and Birta, 2010). Similarly, 

Karagoz and Demirors (2011) have presented frameworks such as KAMA, FEDEP 

and BOM.  

Based on the description of conceptual modelling in Figure 2.10, Robinson (2014) 

illustrated his conceptual modelling framework as shown in Figure 2.12. According 

to his framework, there are five main activities: Understanding the problem 

situation, Determining the modelling and general project objectives, Identifying the 

model output, Identifying the model input, and Determining the model content 

(Robinson, 2014). 

 

 

 

 

 

 

 

 

Figure 2.12: Robinson’s  Conceptual Modelling Framework (Robinson, 2014) 
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According to Robinson (2014), Understanding the problem situation will result in 

a list of modelling objectives. These objectives can be further divided into two 

types. First, the modelling objectives that define the reason for the modelling 

project. The second type is general project objectives and might include timescale, 

model flexibility required, visual display, run-speed, and usability. These objectives 

are intrinsic to the model and therefore are related to the specific model. 

Different Inputs can result in better understanding of the problem situation by 

testing alternative input data. Output presents the responses from those different 

simulation runs, and determines achievement or failure of the objectives. Finally, 

Model content is determined based on the input and output. The most important 

thing to consider here is whether the model can accept the input and produce the 

desired output. The modeller must decide at this stage if a need for simulation exists 

or the problem could be resolved with other alternatives. 

2.3.4  Artefacts of Conceptual Modelling 

In 2011, Robinson simplified the key artefacts of conceptual modelling, as shown 

in Figure 2.13 below. On close examination of Figure 2.13, we can see that the 

artefacts are more or less the same as the deployment life cycles defined by other 

authors, with some changes to names and procedures. The key contribution is that 

the complete life cycle is divided into two parts (differentiated by the colours green 

and yellow). The top (green) section contains artefacts related to the Problem 

Domain while the bottom (yellow) section has artefacts related to the Model 

domain.  

In the Problem domain there is a cloud that represents a current or future Real world 

problem, and the System description, which defines knowledge acquired from the 

problem situation. The Model domain contains the artefacts of a Conceptual model, 

as described in the previous section; Model design, which represents the design of 

the computer model; and finally, Computer model as the conceptual model 

represented by software. 
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Figure 2.13: The artefacts of conceptual modelling (Robinson, 2011) 

Guizzardi and Wagner (2012) have expressed a contrasting opinion. They have 

presented their case in terms of Software Engineering concepts and argue that 

conceptual models are a “solution-independent description of a problem domain” .  

Simply put, they believe the Conceptual model artefact belongs in the Problem 

domain instead of the Model domain. If this definition is divided into two parts 

‘solution-independent domain’ and ‘description of the problem’, both of these are 

defined as independent artefacts by Robinson (2011). 

On the other hand, Nance (1994) presented the idea of conceptual modelling 

description being separated into the Conceptual model and the Communication 

model. In this case, the Communication model would be the explicit representation 

of the Conceptual model. (Communication represents a vital role, especially in 

modelling distributed simulation, and it will be revisited in the next chapter.) 

However, Robinson (2013) argued his case for having a Conceptual model for 

simulation modelling in the Model domain. The Conceptual model stage is 

described as how we abstract the model from our knowledge of the System 

description and this is the reason for separating the System description artefact and 

Conceptual model artefact. Nevertheless, they are also described as one by 
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surrounding them with a dotted line to break down model complexity and 

understanding of the system. 

The arrows in Figure 2.13 explain the flow of information. For example, knowledge 

acquisition from the Real world problem informs the System description. The 

arrows do not represent any order or flow of the modelling process, instead the 

modeller can return to any artefact at any point during the simulation study. These 

processes are defined as frequently repeating by Balci (1994), Willemain (1995) 

and Robinson (2014). Regardless of this, there is still some ordering to the process 

and information flow as the output of one artefact is fed as input to other artefacts.  

Finally, the dotted arrow in Figure 2.13 between the Computer model and Real 

world artefacts identifies conformity between the computer model and the real 

world. At this stage, this correspondence relates to the accuracy of the model 

developed and the real world problem. This stage is also defined in more detail in 

Figure 2.8 as the V&V stage. During this stage, the factual and conceptual veracity 

of the model is correlated with the real world problem. Hence, the computer model 

should be appropriate and validated. 

2.4 Distributed Simulation 

Distributed simulation has been defined as “the distribution of the execution of a 

simulation program across multiple processors” (Fujimoto, 2000). Distributed 

simulation techniques enable the simulation of a single model by dividing it 

between several processors (CPU), or the simulation of multiple models by 

establishing connections between the different processors on which the models run 

(see Figure 2.14).  

Beyond computer science and operational research, distributed simulation has also 

been used to represent portable and accessible simulated physical environments 

(such as in medical training) (Kneebone et al., 2010). In this thesis, the term 

distributed simulation identifies computer simulation models executed either over 
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single node with different hardware specifications or with multiple nodes in a 

networked environment. 

 

 

 

 

 

 

 

 

 

Figure 2.14: Distributed Simulation 

The following are certain examples in which distributed simulation provides an 

advantage (Fujimoto, 1999; Fujimoto, 2003).  

 Large simulations require large memory and processing capacity. By 

distributing execution across many machines distributed simulation provides 

access to the much larger resources. Distributed simulation enables the 

execution of combined simulation models that could not be performed with the 

capacity of a single computer.  

 Executing a simulation program on computers that are at different geographical 

sites enables multiple parties based at various locations to engage in a single 

virtual world. For example, training exercises conducted on simulated models 

executing at distant locations can enable participants to interact as if on a single 

site, thus saving the costs and inconvenience of travel to one location.  
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 Distributed simulation enables the recycling (or re-use) of existing models, 

thereby delivering considerable time and cost savings. Using previously 

developed independent models to create a combined simulation process with 

other models overcomes the need to recreate established models when 

integrating into a single simulation environment.  

 Simulation processes from different manufacturers that are designed to execute 

on different machines can be integrated (or composed) with Distributed 

simulation. As an example, the flight simulators for different aircraft designers 

can be remotely linked together to create a combined virtual environment. 

Rather than installing all programs on a single computer, each program can be 

executed on a different computer with simulation data distributed between all 

the computer locations.  

 Distributed simulation reduces the risk associated with computer failure. A 

simulation running on a single processor will be brought to a halt if that 

processor fails. Distributed simulation involves the combination of multiple 

processors, therefore if one machine fails, it is possible for its work to be taken 

over by others, and the simulation is enabled to continue.  

To achieve integration and interconnection (i.e., reusability and composability) 

through common architecture is still the aim of distributed simulation (Hakiri et al., 

2010). However, there are a number of particular characteristics that distinguish 

distributed simulation from conventional sequential simulation. 

Distributed simulation involves the simultaneous performance of tasks by a group 

of different simulators. To perform this process, simulators communicate with one 

another during run-time by sending and receiving messages. In contrast to 

sequential simulation, in which tasks are performed chronologically following a 

global clock, distributed simulation tasks do not follow the sequential time. It is 

therefore vital to ensure that accurate information is passed between models at the 

right time to guarantee that deadlocks are avoided and events are executed in 

appropriate order. This simultaneous performance of events considerably reduces 

overall run time and keeps communication overheads to a minimum.  



Chapter 2:  Distributed Simulation and Modelling Review  

Athar Nouman 46 

In addition to the above advantages, it is possible for multiple geographically 

separated participants to be embedded in the Distributed Virtual Environments 

(DVEs) and be able to intercommunicate in the virtual local environment. 

Simulators from different organizations can also be integrated via coordination 

mechanisms, thus eliminating the costs of manually merging geographically 

distributed simulators. 

Although distributed simulation is now used widely in military applications, its 

adoption in other sectors lags behind (Taylor et al., 2002a). A chief cause for this is 

the degree of technical expertise involved in implementing satisfactory 

communication protocols between distributed simulation models. However, there 

is a belief that standardising distributed simulation practices could significant ly 

help to overcome this obstacle (Taylor et al., 2012). 

The development of distributed simulation has resulted in the most common 

standard in use today, i.e., IEEE-1516-2010 High Level Architecture (HLA). This 

standard developed out of earlier protocols named Distributed Interactive 

Simulation (DIS) and Aggregate Level Simulation Protocol (ALSP), both of which 

originated with the US DoD. 

DIS emanated from the SIMNET military combat simulation project. It was 

proposed as a standard method for message changing in a virtual world with the 

status of an IEEE standard (IEEE-1278, 1993). DIS enabled common semantics for 

describing and implementing many relevant concepts such as system coordination, 

entity description, message specification, network communication, interoperability , 

scalability, and latency. DIS avoided the need for central control over execution as 

the individual distributed applications involved managed operation by changing the 

status of entities and objects through the simulation process as required. Dead 

reckoning was employed to compare local with global status and reduce 

communication demands. Standard Protocol Data Units (PDUs) enabled 

interoperability and runtime communication between different simulators. Software 

such as OpenDIS and KDIS support the DIS standard. 
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The ALSP is a protocol that enables individual simulations to interoperate with one 

another using supporting software (Baker, 1999). The Mitre Corporation was 

responsible for developing it within the US military for use in training and 

analytical simulations. ALSP involves specific infrastructure software (AIS) to 

support distributed runtime simulation, an interface that offers generic data 

exchange protocols, and dedicated simulation formats. ASLP was designed as a 

confederated system that enables communication between federated simulation 

models. Its development sought to overcome DIS limitations of restriction to local 

area networks (LAN) and real time simulations by providing data and time 

management services and object ownership, which can be dynamically changed 

between federates during simulation execution. 

This section will list some of the challenges faced by the simulation modeller while 

developing a distributed simulation model. At this step it is important to identify 

and appreciate these challenges. In later chapters there will be discussion on how to 

address these challenges at different stages of the system development life cycle 

(i.e., Conceptual modelling). 

2.4.1  Interoperability 

Interoperability refers to the ability to exchange data or information between two 

or more systems or models. The principal challenge for distributed simulation 

middleware is to achieve interoperability. The objective is to make software 

applications (simulation models) that have been developed independently not only 

achieve interaction through remote message passing, but also provides 

synchronisation so that messages can be correctly interpreted and responded to 

appropriately. Effective communication is the key factor between two models, 

therefore understanding the issues related to interoperability between interacting 

simulations is important (Taylor et al., 2012b).  

Leal et al. (2017) have also raised the importance of interoperability in enterprise 

business by suggesting that to remain competitive big enterprise businesses need to 

be connected with other companies. Businesses are becoming more interactive and 

are acting more like a networked enterprise, according to Jagdev et al. (2001). 
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Communication and collaboration between such companies, to exchange and share 

competencies, have thus increased the need for more interoperable systems.  

Interoperability has been in focus for many years. Harkrider and Lunceford (1999) 

stated that “technical integration of systems is necessary but not sufficient”. The 

observations of Dahmann et al. (1998) drew attention to the distinction between 

technical interoperability and substantive interoperability. Petty (2002) then 

extended technical interoperability requirements further by introducing 

communication, hardware, and a protocol layer. Page et al. (2004) further 

decomposed the implementation layers for interoperability both in the technical 

layer (for integratability) and modelling layer (for composability). Meanwhile, 

Fujimoto et al. (2017) has observed that “Achieving interoperability across these 

modelling approaches is an open problem”. 

The difficulty arises when independent simulation packages may have been 

developed by different teams using different semantics and synchronisation 

algorithms. It is true that application modellers can develop expertise with familiar 

tools, but are challenged by adapting to other application methods (Al-Zoubi and 

Gabriel, 2011). 

A principal user of distributed simulation technology is the defence sector where 

distributed simulation is used particularly to create virtual training environments 

that connect separate parties. In this sector, the development of HLA middleware 

protocols is predominant in providing generic, interoperable simulation architecture 

that is capable of reuse. However, these protocols still lack the ease of 

interoperability of plug-and-play, composability, and scalability. (Al-Zoubi and 

Gabriel, 2011). 

Distributed simulation interoperability means that simulation models can interact 

effectively, both technically and substantively. The US DoD Modelling & 

Simulation Coordination Office (M&SCO) characterises technical interoperability 

as the ability of federate models to physically connect and exchange data. The 

requirement is for common standards, compatible interfaces, and coordinated data 

structures.  
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The stated elements comprising technical interoperability are:  

 Hardware compatibility     

 Standards compatibility     

 Time management coordination  

 Coordinated use of RTI services  

 Control over security issues (Anon, 2011)  

Substantive interoperability refers to the ability of interconnected federates to 

provide accurate, appropriate, and reliable simulated representations that meet 

simulation objectives. 

The stated elements comprising substantive interoperability are:  

 Logical interaction between the entities of distributed federates  

 Temporal resolution     

 Spatial resolution 

 Coherent relationships between the components of the real-world physical 
environment. (Anon, 2011) 

2.4.2  Reusability 

The software engineering community recognised the economic benefits of 

reusability many years ago. Reese and Wyatt (1987) defined the reuse of software 

as “isolation, selection, maintenance and utilization of existing software artefacts in 

the development of new systems”. McIlroy’s law states that software reuse “reduces 

cycle time and increases productivity and quality” (Endres and Rombach, 2003).  

Petty et al. (2010) defined reuse as, “Using a previously developed asset again, 

either for the purpose for which it was originally developed or for a new purpose or 

in a new context”. Balci et al. (2011) defined reusability as “the degree to which an 

artefact, method, or strategy is capable of being used again or repeatedly”. In the 

above definitions, and in the simulation modelling world, an asset or an artefact is 

termed as a software component that can implement a model or part of a model. 

Reusability offers the opportunity for the community to “stand on the shoulders of 

giants”, according to Fujimoto et al. (2017). 
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Various approaches to reusability and its elements have been identified. Pidd (2002) 

describes the different forms of software reuse in terms of a spectrum, as shown in 

Figure 2.15. In this diagram, the frequency arrow shows the prevalence of software 

reuse in terms of different software elements. It shows that reuse is more common 

with smaller elements of software rather than with complete models. The arrow 

indicating complexity supports this principle by showing that the more complex, 

dedicated, or complete the software the less it is likely to be adopted for reuse. The 

conclusion observed is that the simpler the reuse operation, such as with code 

scavenging, the more it will be adopted, whereas complex full models are rarely 

chosen for reuse. 

 

Figure 2.15: Reuse Spectrum (Pidd, 2002) 

Pidd’s Reuse Spectrum indicates that Code Scavenging is the most common form 

of reuse adopted by programmers and designers. Cutting and pasting previously 

used code is a simple way to achieve simple objectives. It is often the way that 

programmers and modellers initially learn their skills. It is natural to turn to working 

code to address new problems, but such code scavenging is mostly practised by the 

creators of the original code.  

Function Reuse involves more than simple code and indicates some form of module 

service. This mainly indiucates reuse of previously defined modules or a built-in 

functionality. Component Reuse suggests the reuse of built-in components designed 

for an individual application that uses domain specific language or libraries. 
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Components, in this sense, are also described as building blocks (Verbraeck et al., 

2002; Oses et al., 2003).  

Full Model Reuse means reuse of a complete model in unaltered form. A complete 

application model clearly involves the most complexity and thus generally the most 

specificity. The opportunity to reuse full models provides the greatest economic 

benefit by saving development time. However, this is only practical if the need is 

to solve the same problem for which the model was designed. Most design 

challenges will not involve the same system or an identical problem, therefore, 

reusing a complete model for an alternative purpose requires further modification 

to the new model (Fishwick, 1995). Therefore, appraisal of the precision and 

credibility of the reused model will be required (Balci, 1997).  

Paul and Taylor (2002) classified the reuse of simulation models from the viewpoint 

of the commercial package modeller. Three groups were identified: basic modelling 

component reuse; reuse of subsystem models; and reuse of similar models. One 

concern highlighted was the importance of trust verification arising from reuse of 

simulation models, noting this could be a time-consuming and costly process. 

Today, technologies such as web-enabled simulations provide added support for the 

reuse of models, enabling better analysis of functions in model building. 

Robinson et al. (2004) discussed the advantages and difficulties of the various levels 

of model reuse, drawing parallels with object-oriented design and programming in 

terms of modularity and reusability. A significant conclusion was that purposeful 

consideration of reusability at the beginning of a project is more likely to deliver 

reusable simulations, with such careful recycling having a beneficial impact on time 

and costs. However, there is generally insufficient impulse for a modeller to follow 

this path.  

Balci et al. (2008) viewed the potential for reuse of simulation models from the 

higher perspective of conceptual modelling. Given that a conceptual model is a 

preliminary and simplified form of a domain-specific, real-world process, it was 

argued that conceptual models offer the most opportunity for reuse. This study 

concluded that the higher the level of abstraction the greater the availability for 
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reuse, regardless of the ultimate method of simulation implementation. However, 

the study focus was on static rather than dynamic simulation models. 

Garro and Falcone (2015) have observed the difficulties presented in reusing 

simulation models that are potentially available for reuse. The problem is due to the 

lack of structures enabling simulation models built on different platforms to 

interoperate; lack of support for execution on distributed infrastructures being a 

chronic difficulty. Similarly, Taylor et al. (2015) identified that “specialised 

knowledge” would be required for some models to be reused.   

Awareness of the disadvantages resulting from this lack of support has produced 

considerable research into methods, techniques and models that can enable reuse 

and interoperability of simulation models in the distributed computing 

environment. Two of the most significant developments are FMI (Functional Mock-

up Interface) (Fmi-standard, 2017) and HLA (IEEE Std. 1516-2010). HLA is 

discussed later in this chapter in more detail. Currently, the focus of the industry is 

on implementation standardisation to address reusability (Tolk et al., 2007). 

2.4.2.1 Reusability and Interoperability 

Effective communication between models has been identified as one of the barriers 

to achieving reusability (Fujimoto et al., 2017). Such effective communication, in 

these terms, refers to achieving interoperability across models. Interoperability , 

reusability, and composability are critical factors in the design of large-scale 

complex models, and appropriate implementation of these factors could result in a 

significant decrease in time and costs of development. This research is a step 

forward in addressing reuse problems by standardising the known interoperability 

issues affecting reusability. 

2.4.3  Composability 

The term composability was first used in the mid-1990s in the context of US 

defence industry simulation during the Composable Behavioural Technologies 

(CBT) project. The expression was reinforced in the late 1990s during the Joint 



Chapter 2:  Distributed Simulation and Modelling Review  

Athar Nouman 53 

Simulation System (JSIMS) project (Page and Opper, 1999). Composability is 

described by various authors in different ways.  

Lunceford and Harkrider defined composability as, “The ability to create, 

configure, initialize, test, and validate an exercise by logically assembling a unique 

simulation execution from a pool of reusable system components in order to meet 

a specific set of objectives” (1999).  

Kasputis defined composability as, “The ability to compose models across a variety 

of application domains, levels of resolution, and time scales” (Kasputis, 2000). 

Petty and Weisel (2003) recommended the following definition in their article on 

the theory of composability, which was later appended by Davis and Robert (2004): 

“Composability is the capability to select and assemble simulation components in 

various combinations into valid simulation systems to satisfy specific user 

requirements, meaningfully”.  

Dahmann et al., (1998) drew attention to a distinction between technical 

interoperability and substantive interoperability. As stated earlier, Lunceford and 

Harkrider (1999) viewed technical integration of systems as “necessary but not 

sufficient”. Petty (2002) extended the scope of technical interoperability by 

introducing the communication, hardware, and protocol layers. While, Page et al. 

(2004) further decomposed interoperability implementation layers into the 

technical layer for integratability and the modelling layer for composability. 

Later, numerous methodologies and issues concerning composability were 

published, which triggered further research on developing standards and 

frameworks for composability (Mahmood, 2013). Such standards and frameworks 

include HLA, ALSP, DIS, Extensible M&S Framework (XMSF), Base Object 

Model (BOM), Open Simulation Architecture (OSA), and Discrete Event System 

Specification (DEVS). Nevertheless, composability still remains a big simulation 

challenge (Taylor et al. 2015). As Fujimoto et al. (2017) have stated, “We face 

serious technical challenges in achieving reusability, composability, and 

adaptability for developing simulation models”. Also, composability and 

file:///F:/Personal/Phd/Brunal/Thesis/Research+Challenges+in+Modeling+and+Simu.pdf
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reusability issues have a serious impact in the development of ontologies due to 

inherent relationship mapping (Taylor et al., 2015). 

Simulation models are developed for specific purposes, therefore they depend on 

context sensitive assumptions (Robert et al., 2004). Therefore, composing 

simulation models can be more difficult than composing simple software 

components. Also, in most cases the composition of separate models cannot be 

valid (Weisel et al., 2003). Currently, the focus on composability by the industry is 

on achieving implementation standardisations (Tolk et al., 2007). There are certain 

challenges on higher levels that also need attention, together with the focus on 

implementation questions (Tolk et al., 2007).  Modellers are more focused on IEEE 

1516 and IEEE 1278, which define implementation standardisation, and pay less 

attention to conceptual modelling; but to ensure interoperability between systems 

the modelling level should not be neglected, according to Tolk et al., (2007) and 

Robinson (2014). Thus to achieve composability in simulation modelling it is 

important that both technical and modelling interoperability are standardised. 

A formal theory, Semantic Composability Theory (SCT), was established at the 

Virginia Modeling, Analysis & Simulation Center by Petty and Weisel (Petty and 

Weisel, 2004). Figure 2.16 below defines an SCT model as a computable function:  

y = ƒ(x) 

Where ƒ is a finite procedure, which relates to each input and a unique output. 

 

 
 

Figure 2.16: Computable function (Petty and Weisel, 2004) 

The theory of composability remains under development where comprehensive, 

mature, and coherent theories are still being researched to identify how to compose 

a model and verify the composition (Fujimoto et al., 2017). 
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2.4.3.1 Composability and Reusability 

 In view of the discussion above it should be pointed out that composability and 

reusability are not the same (Balci et al., 2011). Composability is where large, 

complex and sophisticated models are constructed from existing functional-specific 

components. Reusability is based on an isolated, generic functional design in which 

components may be used in other models. Thus, composable components can 

achieve reusability, but reusable components might not always fulfil the 

composability objectives. For example, development of a large model may be 

composed of smaller functionally specific components, which cannot be reused in 

different models because of their specific input and output. On the other hand, 

reusability is achieved when a component is scalable, adaptable, and general. These 

reusable components have a more abstract design and are intended to be generic for 

use in different models. Figure 2.17 below explains the relationship between levels 

of reusability and composability. 

 

Figure 2.17: Generic vs. Specific component design 

2.4.3.2 Composability and Interoperability 

IEEE defines interoperability as “The ability of two or more systems or components 

to exchange information and to use the information that has been exchanged”. A 

more thorough definition of composability and interoperability uses the following 

terms: 

“Composability contends with the alignment of issues on the modeling level. 

The underlying models are purposeful abstractions of reality used for the 

conceptualization being implemented by the resulting systems; whereas 
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Interoperability contends with the software and implementation details of 

interoperations; this includes exchange of data elements via interfaces, the 

use of middleware, mapping to common information exchange models…”  

(Page et al., 2004) 

One of the more recent challenges highlighted is to achieve composability , 

reusability, and interoperability by focusing on “effective communication”, as 

raised by Fujimoto (2017).  The concept of interoperability is to achieve 

composability at a technical level, where interoperability is not just dealing with 

interconnection between various models (as agreed both syntactically and 

semantically) but also it should be standardised to make it composable for the 

model, while the composability is achieved at the component or model level. 

Petty and Weisel (2003) described two types of composability: syntactic 

composability and semantic composability. Syntactic composability relates to 

composable components developed with standard message-passing algorithms for 

effective communication; semantic composability refers to whether the composed 

simulation comprises meaningful composed models and the combined computation 

is valid (Petty and Weisel, 2003). 

2.4.4  Multi-formalism 

Certain formalism in system specification is expected when building a model for 

simulation. Formalism is accepted as a convenient way to express models 

representing particular system classes or that address specific problems. Zeigler 

refers to formalism as “the types of modelling styles, such as continuous or discrete, 

that modellers can use to build system models” (Zeigler et al., 2000). 

However, in reality, real-world phenomena are often unable to be modelled into a 

single type of formalism. Complex systems may comprise several different 

components and structures, which do not fit into a description using a single overall 

formalism. For example, an automated traffic control system may require modelling 

as both a discrete and a continuous simulation (Zeigler et al., 2000). Table 2 below 

identifies M&S area types and the development approaches used. Each area listed 
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in the table has its own methodology and characteristics. This causes considerable  

technical challenges for reusability, composability, and adaptability. For example, 

one model could be developed using System Dynamics while another might be 

developed using an Agent-based approach. 

 

 

 

 

 

 

 

 

Table 2: Modelling and Simulation area types (Balci, 2016) 

To address this, either a tool is required supporting multi-formalism modelling or 

each component must be modelled with a tool that supports the most appropriate 

formalism in each individual case (Vangheluwe and De Lara, 2002). In distributed 

model-based problem solving, heterogeneous tools are used to build integrated sub-

models representing different system components that are modelled in 

heterogeneous formalisms. In this context, Anagnostou (2014) presented a paper 

for hybrid model reusability between Discrete M&S and Agent-based M&S 

techniques, in this work, she discussed how different types of interoperability 

(covered in later chapters) are addressed to achieve multi-formalisation. 
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2.5 High Level Architecture  

2.5.1  Introduction 

The history of HLA can be traced back to the emergence of DSS in the late 1980s. 

The development of distributed simulation techniques by the US DoD followed 

Congress approval in 1988 of the Simulation Network program (SIMNET) 

managed by the Defence Advanced Research Project Agency (DARPA) 

(Hollenbach, 2009). A conference in April 1989, named Interactive Networked 

Simulation for Training, identified several other initiatives in the same field that 

were then being developed by industry. The conference grew into DIS workshops 

based upon the SIMNET project (Hakiri et al., 2010; Calvin et al., 1993). In 1996, 

the development of HLA standards led DIS to transform into a more functional 

structure called the Simulation Interoperability Standards Organisation or SISO.  

During the 1990s, DARPA also employed the Mitre Corporation to study DIS 

principles. This research expanded into the linking of US Army and US Air Force 

simulations (air warfare simulation). The success of this project led to the 

development of the ALSP, with the focus centred on interoperability issues. Later, 

research under both DIS and ALSP was merged to propose the new standard Higher 

Level Architecture or HLA.   

In 1991, with the concept becoming more widely acknowledged, the Defence 

Modelling and Simulation Office (DMSO) was created to encourage joint 

interoperability and reuse in the Modelling & Simulation industry (Hollenbach, 

2009). By 1994, DIS was recognised for providing huge support to interoperability 

for DoD simulations (Hollenbach, 2009). In early 1995, the Architecture 

Management Group (AMG) was commissioned by the Executive Council for 

Modelling and Simulation (EXCIMS) under DoD to develop the HLA. The 

Modelling and Simulation Master Plan (DoD 5000.59-P) was provided by AMG 

with a remit for “a common high-level simulation architecture to facilitate the 

interoperability of all types of simulations among themselves and with C4I systems, 

as well as to facilitate the reuse of M&S components” (DMSO, 1995). 
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The baseline HLA version 1.0 was announced in September 1996 and approved by 

AMG. In the years that followed, HLA compliance was tested and reviewed and 

two new releases of HLA Version 1.3 were introduced as IEEE Standard 1516-2000 

and more recently IEEE Standard 1516-2010. 

The objective of the HLA is to enable simulation systems to work in conjunction 

with each other. As a generic framework, the HLA focus is primarily on 

interoperability rather than on specific domains. The aim is for generalised 

operability solutions that are applicable to many different applications. Close 

control over individual simulations within a distributed simulation enables HLA 

use in a wide variety of domains, with assurance of the vigorous but flexible 

approach typically applied in the military training domain (Rainey et al., 2015). 

The HLA structure defines simulation entities that operate together as a federation. 

Each HLA-compliant simulation entity within a federation is named as a federate. 

A federate may be a simulation model, a data recording system, or an interfacing to 

a live system such as radar. The simulation entities comprising the federation 

typically operate together as a process providing a service or solution. Each of these 

federates is able to communicate via run-time infrastructure (RTI) middleware 

using a common Object Model Template (OMT). In HLA, an object is a dataset 

passed between federates within the federation. An event is an interactive 

communication between federates (Rainey et al., 2015). Interfacing between 

federate models is implemented by the RTI software in accordance with HLA 

specifications. Typically, a C++ library or an alternative language library is 

provided by the RTI to enable federate data exchange. 

2.5.2  HLA Specification 

The integrated architecture of the HLA is intended to offer a common architecture 

for Modelling & Simulation (IEEE Std. 1561-2010). Distributed simulation 

involves the combination of several different simulation models. In some cases, the 

simulation models already exist, while in other cases, they may need to be 

developed and integrated. In normal circumstances, huge modifications to existing 

models can be required for integration into a new simulation, provided the source 
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code is available. Alternatively, all simulation components have to be redesigned 

from scratch. In other words, simulation modelling suffers from two 

underdeveloped properties: interoperability and reusability. The concept of the 

HLA is to provide a framework that addresses these properties. 

Both reusability and interoperability are closely related to each other. Reusability 

implies that simulation models can be used again in other simulation models.  

Interoperability means that either reused or newly developed simulation models can 

interoperate with each other effectively without needing to change the code. 

The HLA standard uses the distinct terms federate to denote each participating 

simulation model and federation to denote the complete combined simulation 

inclusive of its other components (as illustrated in Figure 2.18). To facilitate 

communication between federates (and to offer common architecture for distributed 

M&S) the simulation modeller must use standards to achieve portability, reliability , 

and flexibility, and to develop simulation models recognisable to other modellers. 

It is important to note that HLA only supplies a standard with no implementation. 

 

 

 

 

 

 

Figure 2.18: HLA Overview (Nouman et al., 2013) 

The HLA Standard provides an Application Programme Interface (API) 

specification for communication between federates known as the Runtime 

Infrastructure (RTI). These specifications are defined in the HLA Federate Interface 

Specification document (contained in IEEE Std. 1516.1-2010). The RTI functions 
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similar to an operating system for the distributed simulation environment by 

providing federate interaction and federation management services. The services 

provided by the RTI to support federate communication within a federation are 

illustrated in Figure 2.18. 

The HLA therefore consists of the following three services. 

a) HLA Framework and Rules   

b) HLA Object Model Template (OMT) 

c) HLA Federate Interface Specification 

2.5.2.1  HLA Framework and Rules 

HLA Framework and Rules are defined in IEEE 1516-2010 Standard specification. 

This specification presents a set of 10 rules split into two groups. The first five of 

these rules apply to federations and the remaining five apply to federates. Together, 

these rules ensure successful interaction for both federates and federation and list 

the responsibilities of each. These rules are compulsory for an HLA-compliant 

distributed simulation environment.  

The five federation rules enforce compliance of the federation object model (FOM) 

with the HLA OMT and require location of simulation objects, ownership of 

information (data), and communication procedures between federates to be in 

compliance with HLA interface specifications. The five rules that apply to federates 

enforce use of the Simulation Object Model (SOM) in accordance with the HLA 

OMT and local time management. 

The federation rules  as defined by IEEE Standard 1516-2010 are as follows: 

1) Federations shall have an HLA FOM documented in accordance with the HLA 

OMT. 

2) In a federation, all simulation-associated object instance representation shall be 

in the federates, not in the RTI. 

3) During a federation execution, all exchange of FOM data among joined 

federates shall occur via the RTI. 
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4) During a federation execution, joined federates shall interact with the RTI in 

accordance with the HLA interface specification. 

5) During a federation execution, an instance attribute shall be owned by at most 

one joined federate at any given time. 

The federate  rules  as defined by IEEE Standard 1516-2010 are as follows: 

6) Federates shall have an HLA SOM, documented in accordance with the HLA 

OMT. 

7) Federates shall be able to update and/or reflect any instance attributes and send 

and/or receive interactions, as specified in their SOMs. 

8) Federates shall be able to transfer and/or accept ownership of instance attributes 

dynamically during a federation execution, as specified in their SOMs. 

9) Federates shall be able to vary the conditions (e.g., thresholds) under which they 

provide updates of instance attributes, as specified in their SOMs. 

10) Federates shall be able to manage local time in a way that will allow them to 

coordinate data exchange with other members of a federation. 

2.5.2.2 HLA Object Model Template (OMT) 

The HLA OMT is defined in the IEEE Standard 1516.2-2010 specification. 

Effective communication between distributed simulation models, requires a 

standard protocol that enables models to understand the language of each other. 

This can be achieved either by adding individual translators (creating extra 

overhead) or by agreeing a single standard. The OMT specification adopts the latter 

approach by providing a common template for specifying data exchange between 

federation members and facilitating the design of common tool sets. 

Although HLA provides standardised specifications for the Object Model, 

compliance differs from the definition of object models generally expected in the 

object-oriented world. The object-oriented concept (Straßburger, 2001) usually 

treats the object as abstract, with definition relying on associated attributes and 

performance method data. In HLA, object abstraction is limited to focus on the 

internal data exchange between federates rather than on the simulated object of the 



Chapter 2:  Distributed Simulation and Modelling Review  

Athar Nouman 63 

model. Similarly, the data presented in HLA object models are identified by 

attributes gained from direct access by – and updated by – other federates. Further 

differences involve object interaction whereby HLA federates interact by sending 

and responding to attribute and event messages instead of direct interaction. 

Responsibility for updating an object lies not with the object itself, but with updates 

passed between the distributed federates. All relevant interfaces for HLA object 

models are defined by either object classes or interaction classes (Straßburger, 

2001). These classes are used to formulate the Federation Object Model (FOM) and 

Simulation Object Model (SOM). 

i. Federation Object Model (FOM) 

The goal of the FOM is to create a specification for data exchange among all 

participating federates in a common and standardised format (IEEE Std. 

1516.2-2010). It comprises an inventory for all objects and interactions 

relevant to the federation. An FOM module could be created for a single 

federation or could be formulated from multiple FOM modules. 

 

ii.  Simulation Object Model (SOM) 

The purpose of the SOM is to specify all the information required by a 

federate from other federates in the federation and all the information that is 

to be provided by a federate to other federates. Essentially, the SOM provides 

the structure for sending and receiving information to and from federates 

participating in the federation. 

2.5.2.3 HLA Federate Interface Specification 

The interface specification (HLA-IS) is abstract; its aim is to standardise an 

approach to persistent problems in a distributed application. The HLA-IS explains 

how federates will interact with the federation, and ultimately with one another , 

using language independence. It provides services and a communication 

mechanism to ensure information exchange between federates, usually 

implemented within the RTI (Straßburger, 2001). The interface has seven basic 

services and an eighth grouping of support services. The eight support services 
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describe the interface between the RTI and federates and also between software 

services and the RTI. These services are further discussed in more detail in the next 

section. 

 Federation Management service offer basic functions required to create, 

control, and delete a federation execution. 

 Declaration Management Service include publication, subscription, and 

supporting control functions. Federates which produce Object Class Attributes 

or Interaction must declare exactly what they are able to publish. 

 Object Management Service involves registration, updates, and dynamic 

transfer of the object, attributes, and interactions. 

 Ownership Management Service allows federates to transfer the responsibility 

for updating and deleting object instances and also transfer the ownership of 

object/attributes. 

 Time Management Service focus on the mechanics required to establish 

synchronization between distributed entities at runtime and ensure the delivery 

of messages. 

 Data Distributed Management (DDM) Service provides a flexible and efficient 

routing of data among federates for isolating publishers and subscribers. 

 Management Object Model (MOM) Service provides access to RTI operating 

information during federation execution. 

 Support Services are the eighth additional service utilised by the federation like 

converting handlers, getting update rates values, setting advisory switches, 

getting federate names, etc. 

2.5.3  Runtime Infrastructure (RTI) 

HLA federations are constructed on bus topology. This is an aspect of the RTI, 

which provides underlying software enabling HLA services to be applied to the 

federation. Simulation federates are enabled to publish their data and output to other 

federates and to subscribe to data from other federates. The RTI also provides the 

federation with essential management functions by hosting the FOM in XML file 
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format, which determines the kind of information data that can be transferred within 

the federation (Rainey et al., 2015).  

Appropriate choice of RTI software can be critical to the satisfactory federation 

operation in terms of both performance and cost. RTI software is available from 

many sources including government, universities, commercial companies, and open 

source projects. A vital issue for consideration at the start of a project is whether 

there is a need for the RTI to be compatible not only with all federates in a 

federation, but also with other federations. As the scope of simulation requirements 

increases, it is not exceptional to find the need for interoperability with other 

federation simulations. To enable intercommunication between federations that 

operate on different RTI brands often requires use of a connecting bridge. This can 

increase cost and latency and reduce stability. Considering an RTI type already in 

use by potential connecting federations can avoid such problems (Rainey et al., 

2015). Useful benchmarks for evaluating RTIs have been drawn up by Knight et al. 

(2002).  The active standard from SISO that provides guidance for building HLA 

federations is the DSEEP (IEEE Std. 1730-2010). 

Runtime Infrastructure (RTI) works as an HLA Proxy middleware to integrate two 

or more models or systems. This layer must be simple and flexible enough to allow 

easy integration with different application programs. The HLA goal of reusability 

requires this middleware to be adaptable for different platforms (e.g., Windows, 

Linux, etc.) and for alternative programming languages (e.g., C++, Java, etc.). 

Therefore, RTI maintains a common interface enabling the application to 

communicate, which works as an abstract layer between RTI and the application, 

as illustrated in Figure 2.19. This common interface is implemented as RTI 

Ambassador and Federate Ambassador (see Figure 2.18). The FOM abstraction 

module provides an interface for objects defined in the FOM document as attributes 

and interaction classes. These objects are transparently access the internal RTI 

database values to read or write. The FOM module is separated from the rest of the 

RTI common interface because it will be different for each model, i.e., the 

interaction objects might differ. 
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The HLA implementation of RTI generally adopts TCP/IP, UDP/IP, or HTTP 

protocols functioning at technical level. The FOM and SOM are at the core of HLA 

federations and correspond with the HLA OMT specification. Since the OMT does 

not specify the semantics of data exchange, FOM and SOM can only function at the 

syntactic level (Wang et al., 2009).  

 

 

 

 

 

 

Figure 2.19: RTI middleware communication architecture 

The RTI provides the following seven support services as illustrated in Figure 2.18 

and Figure 2.19. 

a) Federation management 

“Federation management refers to the creation, dynamic control, modification, 

and deletion of a federation execution” (IEEE Std. 1516.1, 2010). 

The RTI service requires that for a federate to undertake any interactions, 

including joining a federation, it must first perform a Connect to the RTI. 

Similarly, once a federate resigns from a federation, with no intent to rejoin or 

conduct further executions within the federation, it must perform a Disconnect 

from the RTI (IEEE Std. 1516.1, 2010). 

RTI-initiated services are invoked on a federate by callbacks, which are 

initiated according to the specific programming language chosen for use. 

However, the HLA governs when callbacks can be invoked and defines this 
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with two callback methods. The IMMEDIATE callback model requires 

immediate action by the RTI to invoke callbacks when available (provided they 

are not disabled by the Disable Callbacks service). The alternative EVOKED 

callback model requires callbacks to be actioned only if the federate has called 

the Evoke Callback/Evoke Multiple Callbacks services (provided this is not 

disabled by the Disable Callbacks service). The RTI is able to implement either 

one or both callback methods. Callback models are a specified argument of the 

Connect service (IEEE Std. 1516.1, 2010).  

Figure 2.20 below illustrates the basic relationship between a federate and the 

RTI during participation in a federation execution. Federates may join an 

existing federation and resign from it in any order determined by the federation 

user. The arrows in the illustration indicate the invoking of HLA service groups 

(but do not strictly represent service ordering requirements). The RTI can allow 

a single application to join a federation as multiple federates, and a single 

application can also participate in multiple federations as a single federate or 

as multiple federates (IEEE Std. 1516.1, 2010). 

b) Declaration management  

DM services are required for federates that have joined a federation to declare 

their intentions. It is necessary for joined federates to first invoke appropriate 

DM services before being able to generate information such as registering 

object instances, sending interactions, or updating attribute values. In order to 

receive information, joined federates must declare this intention using either 

DM services or DDM (Data Distribution Management) services. A federate 

may use just one of these services exclusively or use both services (IEEE Std. 

1516.1, 2010). 

c) Object management 

The object management group of HLA services controls the “registration, 

modification, and deletion of object instances and the sending and receipt of 

interactions” (IEEE Std. 1516.1, 2010). 
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Figure 2.20: Basic relationship between federate and the RTI 

d) Ownership management 

Federates and the RTI use ownership management to transfer ownership of 

instance attributes between federates. Transferring object ownership between 

the joined federates help model management in the federation. (IEEE Std. 

1516.1, 2010). 

e) Time management 

Time management services and associated mechanisms allow the orderly 

delivery of messages during execution of the federation. It is through these 

mechanisms that messages issued by federates are enabled to be sent and 

received by other federates within the federation in a consistent manner.   
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The time system in an executing federation is represented by points along the 

HLA time axis. Association with this time system can refer both to a federate 

itself and to certain of its activities, but each is referenced separately.  

The time value of a federate in relation to the HLA time axis is described as 

federates’ logical time (IEEE Std. 1516.1, 2010). The activities of a federate 

within the federation in association with the HLA time axis are denoted with 

timestamps. Although both time measures use the same datatype, they are 

denoted differently to distinguish between time values given for the federate 

itself (logical) and time values given for its activities (timestamped). 

During federation execution, federates can advance along the HLA time axis , 

although such logical time advancement may or may not be restrained by the 

relative progress in logical time of other federates.  

In managing time to advance each federate along the HLA time axis, it is 

essential to coordinate with object management services so that information 

passing and task execution are conducted in a causally correct and ordered 

manner (IEEE Std. 1516.1, 2010). 

f) Data distribution management (DDM) 

Use of DDM services enables federates to reduce overhead time by avoiding 

the sending and receiving of irrelevant data (IEEE Std. 1516.1, 2010). DM 

services facilitate by stipulating information on relevant data at the class 

attribute level. DDM services, on the other hand, also provide added refinement 

to data requirements at the instance attribute level and the specific interaction 

level (IEEE Std. 1516.1, 2010). 

Both sending and receiving federates can use DDM services to place bounds on 

the relevance of interactions or instance attribute update data to be sent or 

received. This can be expressed by providing user-defined dimensions to create 

space for relevant communications. This is defined by upper and lower limits 

specified by both sending and receiving federates. The overlap between these 

limits, bounds the space for relevant communications. At the communication 
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layer, it is the RTI that takes responsibility for recognizing irrelevant data and 

preventing its delivery (IEEE Std. 1516.1, 2010). 

g) Management object model (MOM) 
 

A federation requires monitoring and control of its elements from within for 

proper functioning of its execution. The MOM enables access by federates to 

RTI operating information during federation execution. Using these facilities, 

federates can obtain information about, and control the operation of, the 

federation by influencing RTI functioning and that of individual federates.  

Access to and exchange of RTI information elements present in the MOM are 

achieved by the same methods federates use to exchange information between 

themselves. This involves using predefined HLA constructs, objects, and 

interactions. The MOM also uses the OMT format (IEEE Std. 1516.2-2010) and 

syntax to define these control and information elements. 

The relevant, accessible activities of the RTI concern publishing object classes; 

registering object instances and updating their attribute values; subscribing to 

and receiving interactions; and publishing and sending interactions. A federate 

with responsibility for controlling a federation execution can subscribe to some 

or all of the object classes, reflect the updates, publish and send some 

interactions, and subscribe to and receive other interactions. 

All MOM information elements (e.g., object and interaction classes, attributes, 

and parameters) are contained in the FOM Document Data (FDD) file. They are 

predefined and cannot be revised. However, a federation is not compelled to use 

all, or any, of these standard classes or information elements.  MOM definitions 

can be extended by further subclasses, class attributes, and parameters for use 

by federates, but such new elements cannot be directly acted upon by the RTI 

(IEEE Std. 1516.1, 2010). Figure 2.18 above illustrates an HLA IEEE 1561 

Standard implementation. The HLA standard requires modellers to use a 

standard application programming interface (API), i.e., “The RTI” for inter-

federate communication. 
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h) Support services 

Various miscellaneous services are available to enable federates to implement 

such actions as: 

— Performing name-to-handle and handle-to-name transformations 

— Setting advisory switches 

— Manipulating regions 

— Getting update rates values. 

There are three standard distributed simulation architectures that are most widely 

used in the Modelling & Simulation Industry (IEEE Std. 1516, 2010). These are 

HLA defined by IEEE 1516, DIS defined by the IEEE 1278, and the Test and 

Training Enabling Architecture (TENA). All three standards face various 

interoperability issues, whether simulations are run in similar architectural 

environments or in multi-architecture environments. 

There are two strategies that could be used to address these interoperability and 

reusability issues. The first (Figure 2.21a) is to ensure that all participating 

simulation models are created in the same language, which would conform to the 

chosen architecture. The second is to introduce a translator for participating 

application programmes. The former solution is easy to implement and test, and it 

may be suitable for small scale projects, but it is not a practical approach for large 

scale projects involving many participating models. Adopting a single language 

also seriously discourages reusability. Therefore, the latter solution is being 

addressed by researchers and developers with the introduction of gateways or 

middleware to bridge communication barriers (Figure 2.21b). This solution does 

support reusability; however, it introduces an overhead to the simulation. While 

focus has been placed on developing the interactive features of the HLA, another 

objective has been to create a common strategy by which HLA federations can be 

built. This strategy has been presented at the IEEE DSEEP (IEEE Std. 1730, 2013) 

(IEEE Std. 1730.1, 2013). DSEEP defines seven steps of the development process 

but recommends that the methodology should not be treated as prescriptive, but as 
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a guide that can be tailored to individual circumstances. The DSEEP process 

follows the basic gateway/middleware concepts discussed above as strategies for 

addressing the model interoperability problem. According to DMAO (IEEE Std. 

1730.1, 2013), DSEEP currently presents one of the good practices suitable for use 

by the HLA community for building HLA-compliant federates and federations. 

 
 
 
 

 
 
 
 

 

 

 (a) Distributed simulation environment block diagram 

 
 

 
 
 
 

 
 
 
 

 

(b) Gateway configured distributed simulation environment 

Figure 2.21: Strategies of interoperability and reusability  

2.6 Distributed Simulation Interoperability 
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Single simulation models are most often created using COTS simulation packages 

(CSPs). Due to the variety of CSPs available from various vendors, creating a 
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distributed simulation from models designed with different CSPs presents problems 

of interoperability. Such a distributed simulation requires each participating model 

and its CSP to interoperate with all other participating models and their CSPs.  

Comparing the functionality of each approach is problematic, because of different 

methodologies used in creating and implementing individual simulation models.  

Furthermore, end-users of CSPs tend to be averse to technical specifics and CSP 

vendors are often confused by the complexity of interoperability techniques. 

Therefore, the SISO COTS Simulation Package Interoperability Product 

Development Group (CSPI PDG) has sought to introduce common approaches to 

the problems of distributed simulation interoperability. Part of this objective has 

involved identifying and defining a set of “IRMs” that can provide a common frame 

of reference when addressing solutions and help practitioners and vendors to assess 

particular interoperability approaches (SISO-STD-006-2010).  

Antecedence to the CSPI PDG began with the UK EPSRC1 industry-focused 

project GROUPSIM, which identified the need for common standards to address 

the interoperability problems of CSPs. This led, in 2002, to the creation of the 

COTS Simulation Package Interoperability Forum (CSPIF), an international 

consortium of practitioners, CSP vendors, and researchers. In 2005, SISO 

recognised the importance of this work by endorsing the then newly-formed CSPIF 

Product Development Group (PDG). Laying the foundations for the PDG project 

of creating CSP common interoperation standards involved workshops, extensive 

research publication, and platform presentations such as at the Winter Simulation 

Conference (WSC), the UK ORS Simulation Workshop, the ASIM Dedicated 

Conference on Production and Logistics, and the Germany HLA Forum, together 

with continued researcher, practitioner, and vendor consultation. The products of 

this initial work are published as a set of IRMs proposed as tools to assist the 

discrete-event distributed simulation community with model development (SISO-

STD-006-2010). 

While a distributed simulation can comprise models created by various types of 

software products (CSP, Gots, custom-built, etc.), the current HLA-IRM standards 
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are based on simulation models produced by CSPs. In the present description, 

therefore, a distributed simulation or federation comprises a set of CSPs and their 

models.  

Figure 2.22 represents two models/CSPs, i.e., federates, running on separate 

computers. Federate F1 comprises Model M1 and COTS Simulation Package CSP1 

and Federate F2 comprises Model M2 and COTS Simulation Package CSP2. For a 

distributed simulation, time synchronized data is exchanged between each 

model/CSP federate over a network (indicated by the bold double-headed arrow). 

To enable both Federate F1 and Federate F2 to send and receive information in an 

agreed time synchronised format, both must agree on common data description and 

communicate by the same method.  

Different protocols are needed for common activities such as the sharing of 

information resources and the “passing” of entities. Generally, entity passing from 

one model to another, treats departure and arrival as a single concurrent scheduled 

event. Such an event is achieved by sending a timestamped event message from one 

federate to another federate. Messages regarding shared resources follow a different 

protocol. The release of a resource or the arrival of an entity at a queue requires the 

relevant CSP to decide on the availability of a workstation to process the entity. The 

changed state of a shared resource requires a timestamped communication protocol 

to inform and update information on the shared resource.  

The research conducted by the CSPI PDG investigated the type of protocols 

required for simulations to meet typical real world scenario demands. The added 

complexities of developing workable distributed simulations to meet such demands 

are the challenges that IRMs seek to simplify. In a distributed simulation system, 

participating simulations must be able to interoperate (Mustafee and Taylor, 2006). 

To understand the numerous problems modellers face in achieving interoperation 

between interacting simulations it is of crucial importance to define these issues. 

(Taylor et al., 2012b). 
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Figure 2.22:  Interoperability Problem 

2.6.1  Interoperability Reference Models (IRMs) 

The purpose of the CSPI PDG, as formed in 2004 and supported by SISO, was to 

format distributed simulation data exchange specifications in a generic manner to 

complement the HLA OMT. The PDG initially identified six IRM types, each 

representing a particular type of data exchange.  

According to SISO-STD-006-2010, IRMs represent identified interoperability 

problem types in simplest form and are divided into several subcategories of 

problem type. The simple form of each model is intended to present a generic 

example understood by vendors, simulation users, and technology solution 

providers. Each IRM generally relates to the interfacing between two or more 

interoperating models. Reference to time synchronisation is specified only as 

appropriate. IRMs represent real model/CSPs by using standard model elements 

that can be related to the elements of specific CSPs. All IRMs are designed to be 

composable to enable use of several IRMs when addressing certain problems. 

As illustration, military distributed simulations are often used for cooperative 

combat training that requires interoperability between models developed in 

different countries. Although many militaries use HLA standards and common 

programming languages to develop models, ambiguities in the HLA result in no 

single approach to design, use of the RTI, or general compatibility. Research by 
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Serna et al. (2010) therefore proposed applying the common standards of IRM types 

to the particular requirements of military command and control (C2) applications. 

Interoperability between different military C2 systems involves sharing three types 

of data: Object-Item, Plan and Order, and Action. These data types are defined by 

National Atlantic Treaty Organisation’s (NATO) Multilateral Interoperability 

Programme (MIP-NATO) in a common data exchange standard - Joint 

Consultation, Command and Control Information Exchange Data 

Model (JC3IEDM). Serna et al. (2010) found the following equivalence with IRMs: 

Object-Item can be a Resource or an Entity and equated with IRM types A, B, and 

D. 

Action was an event to change a system state and was equivalent to IRM type C. 

Plan and Order (did not equate with any IRM type discussed later). 

Serna et al. (2010) chose to place focus on equating the methodology of military 

entity transfer (i.e., Object-Item) with IRM types A.1, A.2, and A.3.  

Three methods of appropriate time management, interfacing were chosen from 

several available HLA standards for the definition of a proposed military IRM Type 

A.  

Timestamp order was chosen for message ordering to ensure that no federate 

received messages “in its past”. 

Logical Time Synchronized was chosen as the time-evolving method to allow a 

federate to participate in the time advancement of other federates and to allow other 

federates to participate in its own time advancement.  

Event-Driven Federate time advance services were chosen to ensure events would 

be processed sequentially in TSO. 

There are four different types of IRMs.  

 TYPE A: Entity Transfer – This model and its sub-models represent 

interoperability problems related to entity transfer from one model to another 

in a distributed simulation environment. For ease of identifying the 
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interoperability problem this IRM is sub-divided into Type A.1 (General Entity 

Transfer), Type A.2 (Bounded Receiving Element) and Type A.3 (Multiple 

Input Prioritisation).  (The details of all IRMs are discussed in the next 

Chapter.) 

 TYPE B: Shared Resources – This IRM represents the interoperability 

problems in sharing one or more resource(s) between two or more models in a 

distributed simulation environment. 

 TYPE C: Shared Event – This IRM represents the interoperability problems 

related to sharing events between two or more models in a distributed 

simulation environment. 

 TYPE D: Shared Data Structure  – This IRM represents the interoperability 

problem related to sharing data elements or data structure between two or more 

models in a distributed simulation environment.  

2.6.2  Summary of the related work  

The CSP Interoperability Reference Model Standard presents templates and 

patterns that classify interoperability problems found when developing distributed 

simulations comprised of CSP models. The aim of the IRM standard is to establish 

a commonly understood basis from which CSP interoperability in distributed 

simulations can be evaluated and judged. IRMs simplify the assessment of present 

answers to CSP interoperability issues. They can help practitioners, model 

developers, and CSP vendors identify suitable solutions to such problems. IRMs 

also tackle several unaddressed interoperability issues identified in HLA. Taylor et 

al. (2002) underlined the basic problem of distributed simulation and stated, “If 

distributed simulation allows us to interoperate the two production model, then 

distributed simulation becomes a powerful technique that allows two (or more) 

companies to explore their relationships”. 

Existing work in the area of addressing interoperability issues and modelling 

techniques, especially with discrete-event distributed simulation, is mainly 

fragmented, purpose-built, and often lacking the use of standards. Furthermore, 
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while some solutions exist, they contain restrictions or are too specific, and they are 

also limited in reusability and composability.  

In this research thesis, all interoperability issues identified in SISO-STD-006-2010 

are addressed with different approaches using a standard HLA platform. The 

research also discusses the importance of interoperability issues during conceptual 

modelling. This research will not only help the modeller identify interoperability 

issues but will also propose a framework to address them. This section now 

discusses further contributions by different authors in addressing these IRMs. 

Taylor et al. (2006a) proposed an approach to address IRM Type A.1 (General 

Entity Transfer) for COTS simulation packages. These simulation packages lack 

the ability to provide an entity transfer facility for distributed models, therefore a 

simple CSP Handler (CH) connected to the standard RTI was proposed to 

communicate between simulation models prepared with COTS packages. Taylor et 

al. (2006a) described a solution to IRM Type A.1 requiring minimum 

intercommunication, which involved transfer of timestamped entity messages from 

one model to another, the correct receipt of such entity messages from one or more 

models, and correct coordination with any events being processed by a receiving 

model’s COTS simulation package. 

Assumptions made in compiling the Entity Transfer Specification (ETS) for the 

basic Type A.1 model were: only one reception point in the destination model for a 

specific entity type received from a single specified source model; a CH (Figure 

2.23) present in the Interoperability framework to provide a common data exchange 

format to convert to and from the ETS; time represented by the same units and 

resolution in both models; and entities defined by name and any attributes. 

Wang et al (2006) proposed a solution to address IRM Type A.2, using a middle 

layer interface between each COTS model and the message-passing RTI called a 

DSManager. The purpose of the DSManager was to interpret and apply generic 

functions based on the HLA standard to be invoked by each CSP. The resolution 

provided by the PDG was to use DSManager as a status monitor enabling it to 

introduce small increments to simulation time when forwarding timestamped status 
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messages. An additional variable time value was also added to the timestamp to 

denote any processing priority that receiving models might apply to two different 

entities. In the case of updating status, to allow for communication time and rapid 

status changes in complex environments, a small lookahead time was added by 

DSManager to the timestamp of the current simulation time. The software 

framework for operating such a distributed simulation federation was shown in 

Figure 2.23 describing IRM Type A.1. The difference is in the name of the 

middleware, i.e., DSManager, and the different function to the CH. 

 

Figure 2.23: Reference Interoperability Framework (Taylor, 2006a) 

Pedrielli et al. (2012) sought to modify and expand the protocols provided by the 

PDG for CSP interoperability as used in the civil sector. They focused on increasing 

functionality to meet unresolved situations by developing new solutions for entity 

passing and modifying the previous ETS. Pedrielli et al. (2012) based their 

proposed solutions on adopting or forming extensions to the previous work of the 

PDG, which involved a middleware adapter for communications between CSP and 

RTI and specific ETS protocols, as described earlier. 

The concept of “shared state” or “shared resource” – IRM Type B – in distributed 

simulation processing is problematic due to the different simulated times at which 

federate models may be operating. When data variables that periodically change 

need to be accessed by participating federates, global issuing of updated data to all 
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federates is inappropriate, so appropriately synchronized request and delivery 

mechanisms need to be devised. 

Mehl and Hammes (1993) sought to introduce algorithms to give the illusion of 

consistent shared variables without the presence of shared memory. This approach 

involved the use of distributed shared memory (DSM) algorithms. Two DSM 

algorithms were suggested for use with conservative (no roll-back) distributed 

simulation: the central server algorithm, and the read replication algorithm. 

Neither of these algorithms used HLA standards implementation. 

Turner, et al. (1998) proposed a resource conflict approach by creating conflict sets, 

assigning the resource weight, and then processing the simulation. This research 

assumed that the shared resources had multiple skills to operate multiple machines. 

The simulation was based on a deterministic approach in which resource utilisation 

was calculated before the simulation was run. 

Low et al (2006) used a hybrid approach (i.e., a combination of decentralised and 

centralised) in which the owner of a shared variable allocated the resource and also 

kept a list (non-zero look ahead only) which was replicated to all other federates. 

Low et al. (2006) analysed four potential solutions that involved replacing the TSO 

request and reply messages with request order (RO) messages, plus the addition of 

a middle-layer manager for data file implementation. 

Darma, Decentralised and Adaptive Resource Management, was the name of a 

proposal for optimising management of shared resource pools using mathematical 

algorithms, as presented by a research team at Dublin University (Loureiro et al., 

2010). Although not specifically considering distributed simulation issues, this 

work addressed misapplication of resources in optimal terms. The authors generated 

solutions to the notion that general allocation of resources according to application 

demand was disturbed by varying application workload.  

Some work has been presented on Shared Data – IRM Type D – but very little 

research has been conducted. Handling shared data in a distributed simulation 

environment is itself a big challenge. Some modellers confuse this IRM with Shared 

Resources or Type B. However, Type D is different and much more complex. 
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2.7 Summary 

This chapter began with a description of the purposes and advantages of computer 

simulation. Different classifications of computer simulations were discussed and it 

was stated that a discrete, dynamic, and stochastic approach would be adopted in 

this research. DES terminologies were described and the advantages and 

disadvantages of the four further choices of approach available to DES were also 

explained. A history of DES software developments up to the present was 

accompanied by a brief listing of software products and suppliers. 

The next section addressed M&S and noted that development of an appropriate and 

viable model was of equal importance as the ability to simulate its performance 

over time. Several illustrated examples were given of different analyses of the M&S 

project life cycle, from establishing real world problem and objectives to model 

conceptualisation and design, programming and testing, execution, and evaluation 

of results. The initial process of conceptual modelling was then examined in more 

detail with published examples of assistance to modellers of conceptual modelling 

frameworks and the principle artefacts involved. 

Distributed simulation was then addressed with a description of its purpose and 

advantages and its specific requirement of simultaneous task execution by a group 

of separate simulators – meaning distributed simulation does not follow sequential 

time. The leading challenge for distributed simulation was presented as achieving 

interoperability between separately developed simulation models, with technical 

interoperability dependent on compatible hardware, standards, time management, 

and use of RTI. Reusability was identified as an important facility in encouraging 

wider use and development of distributed simulation. However, reuse was shown 

to be indicated for simple model features, such as code and basic sub-systems not 

complex complete models, with remedy dependent on common structures that 

enabled interoperability of models developed on different platforms. 

Composability, or the ability to model, create, and execute unique simulations from 

reusable system components, was also discussed with references to many theories, 

standards and frameworks that have arisen. Formalism in model and system design 
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to address similar real world problems was illustrated with a table showing different 

types of modelling and the relevant development approach. 

HLA was introduced, offering a common framework and standards for distributed 

simulation aimed at interoperability and reuse. HLA framework and rules were set 

out, as defined by IEEE 1516-2010 standard specifications, and the HLA concept 

of models as federates interacting in a federation, via a runtime infrastructure (RTI) 

API, was illustrated and described. The HLA OMT, FOM and SOM were also 

described together with the Run Time Infrastructure (RTI), which enables federates 

to publish and subscribe data with other federates. 

The final section of this chapter presented the history of attempts by the Simulation 

Interoperability Standards Organisation (SISO) to create standards to assist in 

achieving interoperability between divergent COTS simulation packages. The 

current major effort from the CSPI PDG was then presented by focusing on the 

group’s development of IRMs, which identify the generic specifications of 

particular interoperability problem types including several subcategories. The four 

major IRM types were described and an example given of how these IRMs might 

be applied in the case of military distributed simulations. This was followed by a 

summary of other research attempts at resolving the problem types identified by the 

PDG IRMs. 

The next chapter discusses data and communication in simulation modelling. It also 

highlights available modelling techniques by offering some comparisons and their 

suitability for use in distributed simulations.
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Chapter 3:  Design of Interoperability issues to 

address IRMs   

3.1 Overview 

This chapter addresses the process of designing a working DSI framework for the 

use in distributed simulation industry, that incorporates the interoperability 

problem-solving methods described by IRMs. 

The chapter begins by discussing the problems of data exchange, communication, 

representation, and time synchronisation when conceptualising and developing a 

distributed simulation model. 

The chapter proceeds with an overview of the need for an DSI framework due to 

the common practice of COTS simulation packages using vendor-specific libraries, 

components, and reference models, and different conceptual and engineering 

approaches. Specific interoperability issues are discussed and optional approaches 

to simulation configuration outlined. 

The research technique adopted in this thesis is then established as following 

recommended IEEE standards including a modification of the DSEEP. 

This simulation design approach is then divided into each stage of the DSEEP 

developmental process with an explanation of each procedure. 

A discussion on conceptual modelling and interoperability is then followed by a 

concluding section explaining the objectives of each of the six IRMs. 

3.2 Issues in Modelling Interoperability 

Interoperability refers to the facility to exchange data or information between two 

or more systems or models. Interoperability is often confused with integration, 
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because both impact on enabling seamless and collaborative information flow 

between systems. Integration is connecting different models together with a 

communication infrastructure that enables the models to interoperate. The 

interoperability focus is on maintaining continuous communication between the 

systems. Therefore, to achieve integration requires successful interoperability, i.e., 

both the interface and specifications of the two systems must match. For example, 

the power plug in Figure 3.1 (on the left) is for a mobile charger. To charge a phone 

the power plug needs to be integrated with the wall socket (on the right). This is not 

possible because they are not compatible. So to interoperate, an adapter is required 

(centre) that helps connect the power plug to the wall socket. 

 

 

 

Figure 3.1: Interoperability Challenge  

Hence, interoperability is required to achieve a degree of compatibility between 

modelled systems. Systems using standard communication techniques, such as 

HLA, should ideally be automatically compliant with all major interoperability 

issues such as data exchange and interpretation of transferred data. However, this 

is not truly possible in practice, because of rapid changes in technologies, legacy 

systems, hardware changes, new programming languages, etc. The simulation 

research community has accepted this fact and has proposed system abstraction to 

hide interoperability and implementation details. This section further describes two 

special conditions required to provide interoperability between systems. 

3.2.1  Data exchange, communication and representation 

Achieving data integration between the sub-systems in distributed simulation is a 

challenge. It is also the case that distributed simulation is comprised of sub-models 

or sub-systems representing individual simulations themselves. Thus, it is important 

that all participants must agree on a common interpretation and data exchange. At 
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the abstract level this has been addressed with HLA object models. The interaction 

and attribute classes are defined by the FOM. These classes define how the data 

will be interpreted, e.g. 64-bit integer, 6-byte string, etc. The FOM can standardise 

the data objects and variables at interaction level, but it is not necessary that these 

objects or variables are similar to the internal data type used in each model (e.g., 

the size of a character in C++ is 1 byte while in Java it is 2 bytes). 

Another challenge concerns the ownership of the data element, i.e., who is allowed 

to change the value of a shared data element. HLA has provided a partial solution 

to this problem by requiring object / variable ownership to follow publish and 

subscribe methods before a simulation starts, i.e., object ownership and control need 

first to be identified by each participating model comprising the simulation 

federation. HLA also enables dynamic ownership, i.e., ownership can be transferred 

during the simulation run. However, changing values due to ownership of an object 

/ variable by more than one sub-model or federate could lead to conflict or deadlock. 

The implications of multiple ownership can result in problems identified in IRM 

Type B (shared resources) and Type D (shared data structure). Further, conflicts 

can be anticipated on how such data is represented (syntactics) by an individua l 

model and how a model interprets the meaning of that data (semantics). This section 

further discusses these abstractions, representation, and interpretation concerns. 

3.2.1.1 Data Values  

Data value conflict is a common problem faced by simulation modellers. The causes 

relate to the use of different data types of different programming interfaces and 

different forms of representation affecting how data is interpreted (e.g., type 

mismatch, allowed values, abbreviations, etc.) There is no single “fit for all” 

solution to this conflict because of constantly emerging technologies. Therefore, 

clarity of understanding must be established when using these data values with 

FOM objects, and if necessary conversion methods should be introduced. 
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3.2.1.2 Data Models 

Data model conflicts arise due to different programming approaches to modelling 

data. For example, one model is designed using structural language while another 

is developed using object-oriented language. Similarly, with hybrid simulations, 

one model may be developed using Agent-Based Simulation (ABS) while the other 

is developed using DES practice. Both the models should allow for the complete 

semantics (data representation), otherwise information could be misinterpreted or 

lost.  However, one way to address this conflict is to focus on the definition of the 

data model at an abstract level. 

3.2.1.3 Schema 

Schema conflicts can occur due to misunderstanding of the data object. For 

example, the definition of a vehicle in one model is based on properties or attributes 

related to objects that drive on the road, while another model may also include 

properties or attributes of other vehicle types, including planes and boats. Hence, 

understanding of the speed unit could involve a mismatch between car and boat, 

since car speed is measured in kilometres or miles per hour while boat speed is 

measured in knots. Another conflict is the use of different names for the same 

element, such as the use of “vehicle” or “car” for the same real world object. There 

can also be a situation where a metadata from one schema can be a data in the other 

schema. Although this problem has been addressed by the HLA FOM at a more 

abstract level, the problem remains at the model syntactic level. 

3.2.1.4 Semantic and Syntactic 

Semantic issues are defined as the way models interpret the meaning of data 

exchanges between models. Syntactic issues are defined as how that data is 

represented. Syntactic conflicts can arise at the data model level or the schema level. 

Semantic conflicts may occur at any level of abstraction, i.e., schema, instance, or 

data value. Therefore, both semantic and syntactic conflicts can exist in some 
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situations, but they should be tackled independently. One approach is to maintain 

interoperability of models at the most abstract level possible to avoid such conflicts.  

3.2.2  Time Synchronisation  

One of the major issues in distributed simulation is the synchronisation of time 

between the participating models. HLA therefore provides a time management 

service in its interface specification. It is easy to manage time in a standalone 

simulation system because the simulation progresses sequentially, but in distributed 

simulation the process progresses in parallel. HLA establishes synchronisation by 

providing an advance time facility within its time management service. The reason 

is that, in reality, even similar hardware (e.g., PC) may not have the same 

performance and speed. The process routines of models might also differ.  Each 

participating node (PC) will try to run its model as fast as possible, so it is possible 

that one model needs to wait for another model to reach its required status. This is 

managed by the time advance feature. Although HLA achieves time 

synchronisation, it is still the individual model that decides what data or information 

needs to be exchanged at a particular time. Data exchange becomes more 

complicated when the simulation requires more than just simple message passing 

as indicated in the IRMs. A further consideration affecting time synchronisation is 

the approach used by the modeller. In distributed simulation, there are two 

traditional time synchronisation approaches used, apart from the Hybrid approach, 

these are Time-stepped synchronisation and Real-time synchronisation. 

3.2.2.1 Conservative Synchronisation 

Conservative Synchronisation was the first synchronisation technique designed to 

judge when it is “safe” to process an event. In this approach, time does not advance 

as real clock time, but is advanced when an event needs to be processed in non-

decreasing time stamp order to avoid local causality. The Conservative approach 

also uses a lookahead variable to specify how far ahead the system will schedule an 

event.  A zero lookahead means the event with the smallest timestamp can be 
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processed. The first synchronisation algorithm Chandy-Misra-Bryant (CMB) was 

proposed by Bryant (1977) and Chandy and Misra (1979). This paper’s research is 

conducted using the Conservative synchronisation approach and most of the 

implementation is with zero lookahead. 

3.2.2.2 Optimistic Synchronisation 

In the Optimistic synchronisation approach, event causality is initially allowed, but 

is then reversed, i.e., this approach allows “unsafe” events to be run, which are later 

detected and recovery made from any causality error. The optimistic 

synchronisation approach exploits the greater degree of parallelism, but with the 

cost of potentially creating more computational overhead, which can also seriously 

affect performance. Both conservative and optimistic synchronisation is supported 

by HLA. 

3.2.2.3 Event Synchronisation 

Event synchronisation is an important factor to consider when creating a simulation 

using the discrete event approach. Events are instances in time, therefore once an 

event is scheduled the simulation clock is advanced to the next scheduled event. 

There is a possibility that more than one event is scheduled for the same time. In 

such a situation the simulation must decide which event should be scheduled first 

to maintain the proper sequence of events. This is because one event could affect 

another, for example, it could cancel the other event. Event management is outside 

the scope of HLA, and event clashes could seriously affect interoperability between 

participating models. 

3.3 Requirements for Interoperability  

Before establishing the importance of interoperability standards in distributed 

simulation, we need to establish the need for distributed simulation and consequent 
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interoperability standards when specialised and optimised tools for developing 

simulations are already in the market.  

Many software vendors provide simulation packages with predefined libraries 

specific to their package. These libraries might consist of common built-in 

components which can be used in different simulation scenarios, e.g., a conveyor 

system. Such libraries are either available with the packages or as add-ons. To 

communicate between these sets of libraries the vendors establish their own 

reference models. These reference models provide a specific standard, which only 

operates with their package. Thus, with each vendor, creating their own reference 

model, their simulation software will not be compatible with other vendor packages.  

Hence, to assist re-usability and scalability we need a standard reference model for 

interoperability. Another reason for using distributed simulation is the possibility 

for a business to hide its processes from competitors or the outside world, e.g., in a 

supply chain of multiple businesses. Having standard IRMs can help establish the 

process-hiding facility for the business. 

In Chapter 2, the theory of distributed simulation was discussed and the most 

advanced approaches for distributed simulation were presented. It was established 

that for interoperability and re-usability a standard platform is required, and that 

HLA defined by IEEE 1516-2010 is the most appropriate known standard for 

integrating simulation models. 

As stated previously, the design and development of HLA originated with the US 

defence community. The DMSO have been responsible for integrating many types 

of potential defence-oriented simulation models (Kuhl et al., 1999). In 1996, the 

DoD chose HLA to be the standard for their simulations (DMSO, 1998a, 1998b, 

1998c). HLA was later accepted in 2000 by IEEE as the distributed simulation 

standard IEEE 1516 (IEEE, 2000a, 2000b, 2000c). 

Due to the continuous evolution of distributed computing and to meet the demand 

for increasing complexity in large scale simulation systems, the HLA standard 

widened its scope to handle the interoperability of such simulation models. Large 

organisations, such as the DoD Modelling and Simulation Coordination Office 

(DMSCO), and the Simulation Interoperability Standards Organisation (SISO), are 
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continuously involved in expanding the potential of distributed simulation by 

identifying challenges faced by industry.   

SISO arranges extensive forums to educate the M&S industry about simulation 

interoperability. SISO also helps the development of standards and arranges large 

workshops and conferences on simulation interoperability, such as the annual 

European Simulation Interoperability Workshop (SIW) and the semi-annual 

Simulation Interoperability Workshop. Despite SIW focusing on simulation 

interoperability only, these workshops have drawn large numbers of attendees, 

comparing favourably with the WSC, which is the largest annual simulation event 

with a much broader simulation scope. Additionally, under the umbrella of SISO, 

many product development groups and study groups have begun with an objective 

of investigating simulation interoperability issues from different viewpoints. 

This activity confirms a considerable effort toward developing the interoperability 

of simulation models and the use of HLA as a common application. However, the 

use of HLA remains generally within the defence domain and there is still little 

awareness in other industries. The reason for this fact is not clear given HLA 

promises to provide such facilities as reuse of existing components, interoperability , 

provision for information hiding, and integration of heterogeneous models. 

Although the defence community initiated the design and development of the HLA 

standard, this significant effort was also planned to support the industrial 

community. It has been noted that HLA is rarely applied in the industrial sector 

(Bore et al., 2006), therefore, several panel discussions have been held at the WSC 

to investigate the reasons behind this phenomenon (Taylor, et al., 2002, 2003a). In 

addition, a forum named HLA-CSPIF10 was created to study the usage of 

distributed simulation in industry. 

It is assumed that COTS simulation packages are used for most commercial 

simulation projects. This premise is based on different researches conducted within 

the industry and on discussions with simulation practitioners at several conferences 

and workshops. The general reflection is that COTS simulation products rarely 

support HLA, and that vendors rarely address distributed simulation (Bore et al., 

2008). This may be why distributed simulation or HLA cannot be found in the 
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industrial market, i.e., because most simulation practitioners (understood to 

normally use COTS packages) do not have the option or knowledge to implement 

it. 

Furthermore, there also appears to be lack of demand from simulation practitioners 

for such distributed simulation services as transparent HLA user interfaces. Perhaps 

this is because absence of the proper tool means its benefits cannot be appreciated. 

This may suggest that lack of engagement by industry with distributed simulation 

is a supply and demand problem. But this is another assumption. 

Distributed simulation does not only face the issues of interoperability and 

reusability, but also the influence of COTS simulation package vendors. COTS 

simulation package vendors identify few successful distributed simulation projects 

and consider that distributed simulation broadly is rarely used in industry (Boer, et 

al., 2008). In a survey conducted by Csaba Attila Boer (2005), approximately only 

half of the COTS vendors or their customers claimed success with distributed 

simulation projects. Undoubtedly, COTS simulation package vendors adopting the 

distributed simulation concept would involve cost to either purchase the 

interoperability tools or develop them and additional time to design and develop the 

distributed models. At present, most COTS simulation package vendors do not 

support distributed simulation features and complain of increased costs to 

incorporate the tool (Bore et al., 2008), although a counter argument points out that 

DMSO RTI has been available as a free tool since 1996. 

Monolithic models are much easier to build than distributed models. Distributed 

models involve the additional understanding of time synchronisation, data 

representation, data exchange, management of object ownership, etc. In monolithic 

simulation models most of these factors would not apply so a regular modeller 

would be unfamiliar with these complex concepts. Furthermore, to standardise the 

model for distributed simulation the modeller needs to understand and become 

familiar with the concepts of HLA. This all adds additional time requirements for 

design and development. 

HLA was introduced by the DoD to provide an architecture for simulation 

interoperability and the reuse of defence projects. But practical use by wider 
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industry requires more work and time on the semantic inconsistencies that can occur 

during inter-operation between models. Many experts have identified the unsolved 

interoperability problems, where the main obstacle to practitioners using distributed 

simulation is aligning different data models. According to one expert, “Semantic 

interoperability is a big issue. This is a hard problem, and probably much harder 

than the problem for which HLA was designed and developed” (Bore et al., 2008). 

Indeed, distributed simulation interoperability is a known issue for the system 

engineering community (Boer and Verbraeck, 2003). 

A survey was conducted by experts and industry specialists (Boer et al., 2008) to 

identify the issues faced by COTS simulation package vendors. The majority of 

responses from industry experts identified the complexity of HLA. This research 

also concluded that the previously identified issues of cost, i.e., acquiring and 

embedding HLA (RTI) in COTS packages, was not an issue. Instead, both vendors 

and industry believed that the HLA interface was too complex and technical, and it 

resided at too low a level in the system hierarchy. They believed it would not be 

possible for a regular modeller to use vendor packages to develop distributed 

simulation models. As identified previously, distributed modellers would still need 

to take other interoperability issues into account. A defence expert claims that 

“there is no incentive for different vendors of different simulation packages to agree 

on a common interoperability standard” (Bore et al., 2008), but if HLA functionality 

became more abstract, it would lower the learning curve required by modellers and 

boost the potential of HLA within the industry. 

In 2014, NASA launched the Simulation Exploration Experience (SEE) project in 

collaboration with scientific organisations such as SISO, Liophant, SCS, and 

Simulation Team, with the support and participation of many professional 

associations, industry bodies, universities, and students. SEE is a distributed 

simulation challenge in which a number of dispersed inter-university teams with 

their technical partners work in collaboration to design, develop, test, and execute 

a simulated lunar mission. The sole aim of this challenge is to the importance of 

distributed simulation interoperability, especially in large scale projects. The SEE 

evolved from the Smackdown project, initiated in 2011, which focuses on COTS 

simulation packages like Pitch and VT MAK. Teams composed of company 
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internships and university students and departments develop different simulators , 

based on HLA Evolved, to be integrated into the Smackdown Federation (Taylor et 

al., 2014) (Garro et al., 2015). 

As indicated by the discussion above, in fact there have been various attempts by 

COTS simulation package (CSP) vendors to create a distributed simulation 

environment based on HLA standard. Strassburger et al. (1998) was first to address 

the problems faced by CSPs using HLA to create distributed simulation. The 

standard is complex and it is difficult to assess how models may interoperate 

(Taylor et al., 2006). Therefore, the SISO CSPI PDG developed and standardised a 

set of IRMs. The objective of these IRMs is to reveal the interoperability issues 

faced by the modeller when designing and developing a distributed simulation 

model. (Details of IRM standards are listed in the previous chapter.) 

CSPI PDG has defined the IRMs as creating a common frame of reference “to help 

vendors and industrial experts to achieve solutions to complex interoperability 

problems”. There have been many different and isolated approaches proposed to 

address the issues identified in IRM SISO-STD-0006-2010 standard. The possible 

solutions, different methods and implementations are extremely difficult to capture. 

The next section will discuss these approaches in more detail to emphasise the need 

for the proposed framework. 

3.4 Research Technique 

It has been established that M&S is the backbone of operational research to address 

the challenges of a highly complex and dynamic simulation environment (Tolk et 

al., 2007). Chapter 2 described various approaches for planning and building a 

distributed simulation environment. M&S is used by a wide spectrum of users and 

systems to support personnel training, analyse logistic issues, test and evaluate new 

systems, and for many other objectives. In general, M&S is not only used as an 

exercise to document a process, but also to reduce system development risk, and to 

save cost. Documentation is necessary to understand, modify, and reuse the system 

or system components, while risk is calculated during the conceptual phase when 
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the stakeholder makes a decision on whether the system is required.  Thus, the 

purpose of this risk assessment exercise is to make a wise decision on how and what 

system should be designed, developed, and implemented. 

There are several factors that influence the choice of system engineering 

methodology that works best in developing a distributed simulation. These include 

security issues, class of application (e.g. experimental, training, testing, etc.), 

development team experience, cost, M&S assets (verification, validation and 

acceptance), etc. While the distributed simulation community continues further 

research in the sixth era of integration, using different methodologies to support 

different M&S assets, the community still has not reached its goals. One way to 

further enhance the process is to harmonise commonalities found in different 

distributed simulation methodologies and bring these together with additional areas 

of research. This is the approach used in this thesis.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Distributed Simulation Engineering and Execution Process 

(DSEEP) (IEEE Std., 2010) 
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The majority of this research follows the simulation methodology defined by IEEE 

Std. 1730-2010 and IEEE Std. 1730.1-2013 (IEEE Std., 2010, 2013). The 

recommended standard practice for DSEEP is illustrated in Figure 3.2. The IEEE 

recommended approach is based on research from different M&S techniques 

proposed by different authors, but is more specific to distributed simulation and that 

is why it is used for this research. In the majority of modelling technique, literature 

is related to non-distributed simulation environments. This chapter will identify 

how this approach is used, with slight modification, to address distributed 

simulations. In identifying the importance of interoperability in distributed 

simulations, it was also discovered that Validation and Verification was an item 

missed out in Stage 5 (i.e., Integrate & Test Simulation Environment). This thesis 

will discuss a framework proposed by Robinson (2014) to understand how the 

proposed conceptual modelling stage could be further refined to suit the needs of 

distributed simulation.  

3.5 Simulation Approach 

The approach used in this research (based on IEEE Std. 1730-2010) consists of 7 

steps, which are illustrated in Figure 3.2. These steps were briefly discussed in the 

previous chapter with an abstract view of the approach shown in Figure 2.9.  This 

section will detail more thoroughly how these steps were used to develop the 

proposed framework and the approach adopted to manage interoperability issues 

within a distributed simulation environment. There are four main types of identified 

interoperability problems (Types A, B, C, and D), but Type A is further divided 

into three sub types. Therefore, in total, there are six IRMs. A solution to each IRM 

was developed using the simulation techniques described below. Each IRM was 

addressed in isolation for simplicity and to better understand the process of 

modelling through different stages of the life cycle. In a real world system, there 

can be more than one IRM applicable. As an example, an Emergency Medical 

System that was developed by Anagnostou (2014) using hybrid distributed 

simulation models. The two major models in the system represented an A&E 

hospital department and an ambulance service. The ambulance service was 
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responsible for collecting patients and delivering them to A&E. Therefore, Type C 

IRM (shared event) was used in the ambulance model to announce all vehicles 

available to collect a patient. The A&E model used both Type A.1 (General Entity 

Transfer) and Type A.2 (Bounded Receiving Element) to manage the transfer and 

the reception of each patient delivered by ambulance to the hospital. 

3.5.1  Define simulation environment objectives  

Like other simulation development approaches, the focus of this stage is to 

understand the problem domain. A need statement is prepared which includes key 

events and environment conditions, initial estimates of required reliability, high 

level description of critical systems, and input and output data. Most importantly, it 

should list the available resources (e.g., funding, personnel, facilities, etc.), and 

known limitations (e.g., deadline, holidays, restriction to data access, etc.) to 

underlining the simulation environment. 

A good approach to model a system is to keep it simple (Pidd, 2004), because in 

becoming more and more complex it also becomes less understandable. Hence, in 

this research the problems identified by IRMs (i.e., issues related to interoperability 

between distributed simulations) are addressed individually. Each of the six IRMs, 

as described above, will be modelled separately providing six different Problem 

statements / objectives. Each of these problems will be addressed by following a 

complete iterative process of the selected development life cycle. 

1) Problem Statement for Type A.1: General Entity Transfer       

2) Problem Statement for Type A.2: Bounded Receiving Element 

3) Problem Statement for Type A.3: Multiple Input Prioritization 

4) Problem Statement for Type B.1: General Shared Resources 

5) Problem Statement for Type C.1: General Shared Event  

6) Problem Statement for Type D.1: Shared Data Structure 
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3.5.2  Perform conceptual analysis  

This stage develops the non-software-based representation of the real world model. 

During this stage the modeller will develop a functional specification of the 

scenario. According to the simulation approach (e.g., discrete event, agent-based, 

system dynamic), multiple scenarios are defined as part of the functional 

specification. 

IEEE Std. 1730-2010 recommends introducing the Simulation Data Exchange 

Model (SDEM) at Stage 4 during the development of the simulation environment. 

However, this research proposes and implements using SDEM going forward from 

Stage 2 of the development life cycle to find the interoperability problems defined 

by IRMs, and the levels of interoperability required (Talk, 2003), as functional 

specifications arise from the multiple scenarios identified during this stage. The 

SISO’s Conceptual Modelling Group believes that interoperability should be 

identified at conceptual modelling level (Borah, 2006). Similarly, Wang et al. 

(2009) also emphasise identifying levels of interoperability (Talk, 2003) at 

conceptual modelling stage.  

A further reason for drawing up the interoperability study at this stage is the link 

between Conceptual Analysis (Stage 2) and Integration and Testing of Simulation 

Environment (Stage 5). (More details about this relationship are given in section 

3.5.4 below.) Establishing the need to identify interoperability at conceptual 

modelling stage leads us to a further issue, namely, when and how to identify 

interoperability issues during conceptual modelling. This is further explained in 

section 3.5.9 (Conceptual Modelling and Interoperability) where a conceptual 

modelling approach identified by Robinson (2014) is modified to suit the new 

requirements. Meanwhile, the IRM problem list represents the interoperability 

issues for which requirements and conditions will be prepared individually for each 

problem statement. 
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3.5.3  Design simulation environment  

The main objective of Stage 3 is to produce the design of the simulation. During 

this step, the suitability of individual simulation systems is determined. These 

individual simulation systems represent the multiple scenarios identified in the 

conceptual modelling step. Potential entities and events for each member 

application (termed model in this research) are identified. Reusable member 

applications can be discovered and arrangements for integration put in place. The 

final selection of member applications is influenced by two constraints: Technical 

(e.g., V&V) and Managerial (e.g., security, facility, and availability). Further, only 

once the individual simulation has been identified (in the previous step) can the 

approach be determined to address interoperability between the member 

applications (models in the IRMs). 

3.5.4  Develop simulation environment 

This step has three main objectives:  

 Develop simulation data exchange model (SDEM);  

 Establish simulation environment agreements; and  

 Implement member application designs.  

As discussed above, the author proposed introducing SDEM during the conceptual 

modelling stage to identify interoperability issues and needs, whereas the IEEE 

standard recommends introducing the SDEM at Stage 4 of the development life 

cycle.  

The recommendation states that SDEM identify the runtime data exchange between 

the member applications and an agreement on how these members will interact with 

each other. In this research, identifying and selecting such agreements was 

completed in earlier steps. Therefore, focus stresses development and 

implementation – based on the identified interoperability issues. 

3.5.5  Test Simulation Environment 

The purpose of this stage in the DSEEP approach is to:  
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 Fully describe and plan the execution environment;  

 Test the interoperability between all member applications; and  

 Test the simulation environment for achieving the core objectives.  

A complete set of information and agreements defined in SDEM, and detailed 

functional specifications and interoperability requirements from conceptual 

modelling, are tested, verified, and validated. 

To achieve this, three levels of testing are defined, which contribute toward the 

overall system of V&V.  

1) Member application testing: During this testing each member application is 

tested for expected performance as defined earlier in the conceptual modelling.  

2) Integration testing: During this testing, the integrated simulation environment is 

tested to verify the level of interoperability. 

3) Interoperability testing: During this testing, interaction between the member 

applications is tested to ensure it accords with the defined scenario. 

Testing is achieved by evaluating system compliance with the specified 

requirements. In other words, testing is only possible if there is a set of defined 

criteria with which to compare the results. Therefore, the statement in Step 2 

recommending linking these two steps together is now revisited. Effective 

interoperability testing is only possible at this stage if the detailed interoperability 

requirement specifications have been identified earlier, i.e., during the conceptual 

modelling stage, similar to the remaining two testing levels. 

3.5.6  Execute simulation 

After necessary amendments as required following the testing step, the simulation 

must be executed as a set of member applications (i.e., as one simulation). Key 

simulation test criteria should be executed to evaluate the success of the execution. 

The successful execution result in data output is collected and pre-processed (i.e., 

data formatted) for the next stage where the output will be analysed. Further 

execution might be required if erroneous data is suspected from any execution run.  
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3.5.7  Analyse data and evaluate results 

This step involves the evaluation of data collected during the execute simulation 

step. To analyse the data collected, appropriate methods or third party, COTS tools 

can be used. It is a possibility that the required analysis cannot be achieved by any 

single available tool, therefore either specialised analysis tools could be developed 

or a combination of tools could be used. The tools required for data analysis must 

be identified during the conceptual modelling step with the resource requirement. 

Similarly, the analysed data must be evaluated against the objectives set in the 

conceptual modelling step. This analysis and evaluation step determines if the 

simulation is “passed / failed”. 

3.5.8  Verification and Validation process 

Verification and Validation (V&V) is one of the most important processes. The 

system analysis or M&S community was the first to apply technical discipline to 

struggle with the terminology of V&V (Oberkampf and Roy, 2010). 

Verification 

The US DoD defined Verification as “a process of determining that a model 

implementation accurately represents the developer’s conceptual description and  

specification” (Engel, 2010). 

Validation 

Similarly, the DoD definition of Validation is as “a process of determining the 

degree to which a model is an accurate representation of the real world from the 

perspective of intended uses of the model.” (Engel, 2010).  

In software engineering, verification triggers at the evaluation phase to examine if 

the product meets the requirement specifications. Petty (2009) defined verification 

in M&S as “the process of determining if a model is consistent with its 

specification”. In other words, it establishes the correctness of the model. This 

definition does not completely satisfy distributed simulation modelling. As there 

are multiple applications (models), each representing a simulation, the verification 

is not limited to the individual model correctness, but also deals with the correctness 
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of interoperability between the models. Hence, the proposal in this research for 

earlier identification and selection of interoperability issues in the development life 

cycle to determine models by how they interoperate with each other against the 

given specification.  

Validating a model deals with building the correct model, i.e., accurately 

representing the real world system. This is achieved by model testing. Testing will 

ensure the system is an actual representation of the real world. Hence, Stage 5, as 

explained above, has three levels of testing, including interoperability, to validate 

the model as a whole. 

3.5.9  Conceptual Modelling and Interoperability 

Communication between models can drastically affect performance and outcome, 

thus to avoid intercommunication problems, analysts need to improve the ability of 

models to share or exchange information, i.e., improve interoperability (Leal, 

2017). Leal (2017) further proposed using a holistic interoperability assessment 

approach based on the interoperability dependencies for any given simulation. 

SISO-STD-006-2010 lists templates or patterns as IRMs that classify specific 

interoperability problems for such environments. There are two clear objectives for 

this standard:  

 “to clearly identify the model/CSP interoperability capabilities of an 

existing distributed simulation” (SISO-STD-006-2010). 

 “to clearly specify the model/CSP interoperability requirements of a 

proposed distributed simulation”( SISO-STD-006-2010 ). 

This standard presents common standardised templates or patterns to identify 

interoperability problems in distributed simulation as selected by a team of 

industrial specialists. Hence, we have a list of known interoperability proble ms 

faced by the distributed simulation modeller community.  

If we summarise the discussion, the modelling of interoperability for distributed 

simulation can be divided into the following four phases, also illustrated in Figure 

3.3. 
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Figure 3.3: Interoperability Phases 

1. Identification: to identify which IRMs are required for the proposed 

simulation environment. This phase must be part of Stage 2 (Conceptual 

Analysis) of the development life cycle.   

2. Selection: to select the approach to address the IRMs. This phase must be 

part of Stage 3 (Design Simulation Environment) of the development life 

cycle. 

3. Development: to apply the selected approach. This phase must be part of 

Stage 4 (Develop Simulation Environment) of the development life cycle. 

This phase requires outlining the exact data structure (i.e., SOM, FOM, and 

component level variables) and the level of access for each model to interact 

with each other based on the approach selected in the previous phase. 

4. Testing / Evaluation: to verify, validate, and evaluate the proper 

interoperability between the member models. This phase must be part of 

Stage 5 (Testing) and Stage 6 (Evaluation) of the development life cycle.   

3.5.9.1 Levels of Conceptual Interoperability 

“Conceptual Interoperability between two machines is hard to achieve, but this 

must not stop us from trying” (Wang et al., 2009).  

We can at least identify how close the system is to achieving conceptual modelling. 

Therefore, Tolk and Muguira (2003) first proposed Level of Conceptual 

Interoperability Model (LCIM), as a framework towards conceptual 
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interoperability and composability. The seven levels of conceptual interoperability 

are illustrated in Figure 3.4. This figure is the latest version of the LCIM framework 

presented by Wang et al. (2009). From the bottom upward, this figure illustrates the 

increasing capability for interoperation, from Level 0 representing No 

Interoperability to Level 6 achieving Conceptual Interoperability. The LCIM  

framework suggested that HLA standard can be used to achieve up to Syntactic 

Level 2, while the BOM (Base Object Model Standards – SISO-STD-003-2006) is 

used to improve the composability, reusability, and interoperability at component 

level only. Hence BOM can exist at Dynamic Level 5 (Wang et al., 2009). This 

research is also used by different authors, most recently Kostelic (2017), to 

implement a digital Library Ecosystem. The LCIM framework also serves two 

descriptive and prescriptive functions defined by software engineering. 

The descriptive roles document the interoperability and levels of interoperability 

between the models, while the prescriptive roles describe the requirements and 

approaches to achieve conceptual representation between models. Hence, the 

descriptive role can be applied at the Conceptual modelling phase to identify and 

document interoperability, and the outcome can be used to evaluate interoperability 

in the later stages of the development life cycle. Page et al. (2004) categorised the 

same model in three distinct layers.  

 Integratability: This layer deals with the physical connection. 

 Interoperability: This layer describes implementation issues, e.g., data 

exchange. 

 Composability: This layer operates at the component / model level.   

We already have established that to achieve composability in distributed simulation 

the systems must be interoperable, but composability is not necessary for a system 

to be interoperable (Page et al., 2004). All models are not necessarily composable 

but they still need the interoperability to function in a distributed environment.  
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Figure 3.4: The level of Conceptual Interoperability Model (Wang et al., 2009) 

3.5.9.2 Conceptual Model for Distributed Simulation 

Robinson (2015) stated that “it is useful to identify the requirements for generic 

conceptual frameworks”. Developing distributed large scale and complex 

simulation models was not in the scope of work presented by Robinson (2008, 

2015). Nevertheless, it is relevant to consider the work in Figure 3.5 below, showing 

the relationship between model complexity and model accuracy by Robinson 

(2008a). The research in this thesis focuses on model accuracy only, but for further 

discussion on model complexity the reader’s attention is drawn to Pidd (2010). 

Reaching the optimum level of accuracy of a model is marked by point x in Figure 

3.5. Going beyond x will add further complexity, but might begin to lose accuracy. 

Another way to reach the model objectives is to distribute the model into smaller 

and less complex models, where individual models can reach up to maximum 

accuracy vs. complexity, in other words point x. Using smaller models is also 

advantageous for further development by reusing them in another complex model. 

Distributing the model requires addressing the interoperability challenges, as 
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identified in the previous chapter. It implies that the type of interoperability required 

for a distributed model needs to be identified before any further analysis. This could 

be established during the Conceptual modelling stage. 

 

 

 

 

 

 

Figure 3.5: How simulation model accuracy changes with the complexity of 

the model (Robinson 2008a). 

Capturing all the elements required of conceptual models is not easy. Robinson 

stated that there is “no right conceptual model for any specific problem” (Wang et 

al., 2009). Robinson, (2008a) also described conceptual modelling as a non-

software specific descriptor of computer simulation. This specific description of 

computer simulation includes objectives, inputs, outputs, content, assumptions, and 

simplification. But for distributed simulation during the conceptual modelling stage 

interoperability should also be included in the specific description. Hence the 

definition of conceptual modelling in distributed simulation could be reworded as:  

“A non-software specific description of the computer simulation model (that 

will be, is, or has been developed), describing the objectives, inputs, outputs, 

content, assumptions, interoperability, and simplification of the model.” 

Earlier in Chapter 2, conceptual modelling was explained in detail, but how 

conceptual modelling is used to develop distributed simulation was unspecified. By 

now, we already have established that interoperability must be identified at the 

conceptual level phase, but we are left with questions of how and when to identify 
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interoperability within the conceptual modelling phase. Figure 3.6 answers these 

questions.  

 

 

 

 

 

 

 

Figure 3.6: Robinson’s Conceptual Model Framework revisited 

The Robinson (2014) conceptual modelling framework (see Figure. 2.12, Chapter 

2) is revisited to illustrate an extra activity of interoperability. The original 

conceptual model consisted of four main components, but the proposed approach 

comprises five main components: objectives, interoperability, inputs (experimental 

factors), outputs (responses) and model contents. The objectives component 

describes the model objective and general objectives (e.g., purpose of the model, 

ease of use, time scale). The interoperability component describes what type of 

interoperability relationship will exist between models (this refers to the IRMs). At 

this stage, the interoperability types will be determined between Type A.1: General 

entity transfer and Type B: Resource Sharing. The model objectives will raise the 

following questions to identify the interoperability type: 

 Is there a need to transfer an entity?  

 Does the receiving model have any limitation on receiving entities? 

 Is there more than one model passing entities? 

 Is any resource shared among the models? 
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 Is any event shared between the models? 

 And finally, is any shared data used by the models? 

The inputs that will feed into the model are determined by the objectives; and output 

is the expected response from a simulation run. Finally, the model content describes 

the range of the model and the level of detail for each component. 

3.5.10  Distributed simulation paradigm 

The level of abstraction will also be determined during conceptual modelling. The 

interoperability between models does not determine the level of interaction details. 

But level of detail does not influence which simulation approach is most 

appropriate. In Figure 3.7, Borshchev and Filippov (2004) have presented three 

major approaches used in the simulation industry.  

 

 

 

 

 

 

 

Figure 3.7: Approaches in Simulation Modelling (Borshchev and Filippov, 

2004) 

In this figure we can see that two of these simulation approaches, i.e., Discrete 

Event (DE) and Agent Base (AB), are classified under discrete modelling while 

system dynamics is classified under continuous modelling. In the last few decades, 

ABS has been used as a purely academic approach. The difference in approach 

between these systems and the separate practitioner expertise required has restricted 
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the modelling communities’ ability to interact with each other (Borshchev and 

Filippov, 2004). However, industrial requirements have forced practitioners to 

combine approaches for deeper insight into complex interdependencies (e.g., 

research done by Anagnostou (2014), that uses Discrete-event and Agent-based 

distributed simulation modelling). The question, therefore, is not which is the best 

approach to use, but which approach suits the abstraction requirement. 

3.5.10.1 Discrete Event 

DE is an approach to simulation that dates back to the 1960s when Geoffrey Gordon 

at IBM conceived the idea of a General Purpose Simulations System or GPSS 

(Gordon, 1961). As described in Chapter 2, “in DES the state variable changes only 

at discrete set points in time” (Banks et al., 2004). This means there is a time interval 

in which the entity enters or leave an activity. Since this approach has been 

practiced over a number of decades, there are many COTS tools and packages for 

use in such industries as production, logistics, defence, health care, and 

manufacturing. This approach was further enhanced with the introduction of VIS. 

As discussed in our previous sections, creating a distributed simulation model faces 

the additional challenge of interoperability. Due to this, it is extremely difficult to 

capture the differences between all approaches and implementations used across 

industry. As DES is the most widely used approach, Distributed Discrete Event 

simulation was selected for this research with stochastic elements. 

3.5.10.2 Agent Based 

AB is the most recently emerging approach used for modelling deterministic or 

stochastic simulations. Unlike discrete event and system dynamics, ABS models 

are decentralised. The system behaviour is not defined globally, instead global 

behaviour emerges from the individual’s simulation or model behaviour. This 

means that the agents interact with the environment and with other agents, which 

results in changes of agent behaviours by changing their properties. Because of this 

behaviour, it is similar to the Object-oriented approach (North and Macal, 2007).  
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Despite the functional and implementation differences between AB and DE 

approaches, they are significantly similar to each other, because in both simulation 

approaches time is progressed in discrete time steps (Pawlaszczyk and Strassburger, 

2009). Law’s conclusion was that “Agent Based Modelling is just a special case of 

Discrete Event Simulation” (Law, 2014). 

3.5.10.3 System Dynamics 

In common with the longevity of the discrete-event approach, System Dynamics 

dates back to the late 1950s. System Dynamics is “the study of information-

feedback characteristics of industrial activity to show how organizational structure, 

amplification (in policies), and time delays (in decisions and actions) interact to 

influence the success of the enterprise” (Forrester, 1958). Social, ecological, and 

urban systems are some examples where system dynamics is used to determine the 

flow between stocks and information. The mathematical structure of a system 

dynamics simulation model is based on a system of coupled differential equations 

(systemdynamics.org, n.a.). This approach seeks to capture the behavioural 

influence of continuous dynamic endogenous change upon a real world system by 

progressively selecting narrow discrete intervals of computational time. 

3.6 IRMs Objectives 

This section aims to describe the simulation environment objects, i.e., the problem 

statement that is the first step in determining the modelling methodology used. As 

discussed previously, there are a total of four IRMs with the first, Type A: Entity 

Transfer, sub-divided into three separate models all related to Entity Transfer 

issues. Hence, a total of six different problem statements for each model is 

explained in this section.  

 TYPE A: Entity Transfer 

o TYPE A.1: General Entity Transfer 

o TYPE A.2: Bounded Receiving Element  
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o TYPE A.3: Multiple Input Prioritisation 

 TYPE B: Shared Resources  

 TYPE C: Shared Event 

 TYPE D: Shared Data Structure  

3.6.1  Problem Statement for Type A.1: General Entity 

Transfer 

General Entity Transfer occurs when transferring an entity from one model/federate 

to another. For example, in Figure 3.8, M1 represents a cookie preparation area and 

M2 a packing line. In this system, cookies at M1 from queue Q1 are cooked at 

activity A1, are transferred to M2 arriving at buffer queue Q2, and are then packed 

at activity A2. For example, if M1 is a firing barrel production unit and M2 is a tank 

Assembly line, then a firing barrel would leave a finishing activity in M1 at T1 and 

arrive in a buffer in M2 at T2 to await fixing. 

 

Figure 3.8: Type A.1: General Entity Transfer 

3.6.2  Problem Statement for Type A.2: Bounded 

Receiving Element 

The Bounded Receiving Element type is similar to Type A.1 except the receiving 

buffer Q2 may be bounded, i.e., a buffer with limited space as illustrated in Figure 

3.9. In such a case, a check must be performed before sending an entity from M1 to 

ensure the buffer at M2 has sufficient space and is ready to accept the entity. If there 

is no space in Q2, then M1 should retain the entity until space is available. For 
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example, if the packing of cookies at M2 is slower than the production of cookies, 

then the production line at M1 must hold the cookies until space is made available 

at the packaging buffer Q2 to enable cookie transfer to recommence.  

 

Figure 3.9: IRM Type A. 2: Bounded Receiving Element 

IRM Type A.2 – Bounded Receiving Element was originally classified by the CSPI 

PDG as Type II – Synchronous Entity Passing. A second paper from the PDG 

(Taylor, 2006a) described its distinction from Type I by explaining the specific 

difficulties involved in synchronous entity passing and setting out the PDG’s 

proposed solutions. 

3.6.3  Problem Statement for Type A.3: Multiple Input 

Prioritization 

This type represents a situation in which a receiving queue in one model can receive 

entities from more than one model (Figure 3.10). The problem arises when entities 

from two or more models arrive at the same time. Several strategies are available 

to resolve such conflicts, for example, orders of priority could be established. In 

this case, if model M3 is due to receive entities simultaneously from models, M1 

and M2, then M3 could set a higher priority for receiving entities from M1. 

Alternatively, a decision to embed a similar priority within the entity itself could be 

made at runtime. This IRM does not include cases where the receiving element is 

bounded as described in IRM Type A.2. 
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Figure 3.10: IRM Type A.3: Multiple Input Prioritization 

3.6.4  Problem Statement for Type B.1: General Shared 

Resources 

The Shared Resources IRM (Figure 3.11) represents a problem related to 

resource(s) sharing between two or more distributed simulation models. The current 

state of such resource(s) must be represented consistently in each model that shares 

the resource(s). For example, in the cookie manufacturing simulation, such 

resources could be a machine operator and a quality tester.  

 

Figure 3.11: IRM Type B.1: General Shared Resource 
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3.6.5  Problem Statement for Type C.1: General Shared 

Event 

A Shared Event deals with issues in which an event is experienced by two or more 

models. For example, in Figure 3.12, an event (E) represents a fire alarm sounding 

requiring both models, M1 and M2, to stop production immediately.  

 

Figure 3.12: IRM Type C.1: General Shared Event 

3.6.6  Problem Statement for Type D.1: Shared Data 

Structure 

Shared Data Structure IRM (Figure 3.13) represents problems concerning data 

sharing between two or more models or federates, in which maintaining vital data 

consistency can be a challenge.  

 

Figure 3.13: IRM Type D.1: Shared Data 
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3.7 Summary 

This chapter first considered the importance of interoperability standards for the 

modelling and implementation of distributed simulations. Issues involving effective 

data exchange, communication, and representation were presented, stressing the 

need for common interpretation. The HLA object model was introduced as a 

solution operating at abstract level by providing defined interaction and attribute 

classes. Similarly, the partial HLA solution to ownership and control of data 

elements was explained as following publish and subscribe methods. It was noted 

that overcoming semantic and syntactic conflicts was best addressed at the highest 

abstract level. The importance of time synchronisation between models was 

introduced with explanations of alternative techniques and the advantages presented 

by the HLA time management service. 

The problem of non-transferable libraries and reference models typically created by 

COTS software vendors was noted as reinforcing the need for a DSI Framework. 

The superiority of HLA as a medium for embracing interoperability solutions was 

stressed given its expanded development from a defence industry utility to a 

medium actively seeking distributed simulation solutions for wider industry. 

The approach to interoperability used in this thesis was explained as aiming to 

harmonise the common features of different distributed simulation methodologies 

and bring them together with additional research. The thesis methodology was 

confirmed as following IEEE standards and the recommended standard practice for 

DSEEP. The seven DSEEP stages of the development life cycle were noted together 

with the introduction of a missing stage of V&V for interoperability in distributed 

simulation after integrating the simulation.  

A further modification to the DSEEP model – of introducing the SDEM at 

conceptual Stage 2 rather than the recommended developmental Stage 4 – was 

explained as following SISO Conceptual Modelling Group’s belief that 

interoperability issues should be identified at conceptual modelling level. 

Importance was thus placed on adopting and modelling the six IRMs from SISO 

PDG at Stage 2 to identify and manage specific interoperability problems at early 
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analysis stage. Additionally, it was noted that the V&V stage was introduced in this 

thesis to verify that the assembled distributed simulation system meets required 

specifications and that it validly represents the real world system. 

Application of the seven stages of the DSEEP – from conceptual development to 

design, execution, validation and verification of the simulation environment – were 

individually explained in detail with emphasis on the challenges faced. 

The chapter continued with a broad discussion on the relationship between 

conceptual modelling and interoperability, including the balance to be struck 

between complexity and accuracy. As a result, a revised conceptual modelling 

mthodology was presented for the use of distributed simulation industy 

practitioners. Three different simulation approaches – discreet event, agent based, 

and system dynamics – were also briefly outlined and evaluated. Finally, this 

chapter concluded with illustrated and explanatory examples of each of the IRM 

problem types representing known interoperability problems in distributed 

simulation. 
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Chapter 4:  DSI Framework  

4.1 Overview 

Earlier chapters have stressed the importance of interoperability between models in 

a distributed simulation and have explained the function of the RTI in enabling 

interaction between models. The function of IRMs in identifying known common 

problems in communication between models during distributed simulation 

operation has also been discussed. In this chapter, DSI Framework is introduced, 

which incorporates a new IRM Manager layer into the standard HLA distributed 

simulation communication structure. After explaining the internal structure of the 

IRM Manager, the chapter continues with a rationale for the tools chosen for 

assembling and operating the new DSI Framework, followed by a breakdown of the 

different forms and sources of data and statistical distribution involved in analysing 

simulation performance and measuring achievement. Finally, each of the six IRMs 

installed with the IRM Manager is analysed for its constraints, limitations, and 

requirements. 

4.2 The Framework 

Distributed simulation using HLA standard is defined in Figure 2.18 in Chapter 2. 

There are several other protocols for distributed simulation but the most dominant, 

popular, and accepted standard is HLA IEEE-1516. The description of HLA in 

Chapter 2 (Section 2.5.2) explained how individual federates interact with each 

other using the RTI implementation. The responsibility of RTI and its functions are 

also explained in Chapter 2 (Section 2.5.3). From previous discussion, we can 

acknowledge the importance of interoperability issues identified by IRMs, which 

cannot be ignored while developing any distributed simulation. If these 
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interoperability issues are addressed by using some standard, then more composable 

and reusable models can be achieved. Therefore, in this research an IRM Manager 

layer is introduced between the models and RTI. This provides transparency 

between the model programme and the RTI communication interface. Figure 4.1 

illustrates an abstract view of the proposed DSI Framework. The models within the 

federates connect directly with the IRM managers to send and receive information. 

The IRM Managers use the FOM declared by the federates to translate data to and 

from the models. 

 

 

 

 

 

 

 

 

 

Figure 4.1: An abstract view of Distributed Simulation Interoperability (DSI) 

Framework 

The proposed IRM Manager consists of six components identified in Figure 4.2, 

i.e., Federate Interface, HLA Interface, Entity Transfer, Shared Resources, Shared 

Event, and Shared Data Structure. Out of these six components, the first two 

components – Federate Interface and HLA Interface – are compulsory, while the 

remaining four are optional as not every federate will use all four components. The 

selection and use of these components is determined in the conceptual modelling 
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phase where the required type of interoperability between the models is identified. 

The use of these components could be triggered based on the requirement analysis 

and an abstract system model.  

 

Figure 4.2: Distributed Simulation Interoperability (DSI) Framework 

The Federate interface component translates the data objects or variables between 

the model and the IRM manager. The IRM uses pre-defined FOM objects which 

might not be syntactically or semantically compatible with the model. For example, 

a model might save information such as a house door number in actual number but 

it could also be represented by char or a string in FOM. Similarly, the HLA interface 

component sends and receives time stamped messages to and from RTI using RTI 

Ambassador and Federate Ambassador respectively.    

The Entity transfer component as defined by the IRM is further classified into three 

categories all related to entity transfer, i.e., General entity transfer, Bounded 

receiving element, and Multiple input prioritisation. Again, a federation will not 
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necessarily require the use of all these components. The Shared resource component 

will be used when a federation requires the use of shared resources. Similarly, 

Shared event and Shared data structure components will be used when there is a 

need for shared event or shared data structures to be used by federates in the 

federation. Different protocols are discussed in this research for each of these four 

components.   

Event synchronisation, data exchange, and time synchronisation between different 

federates/models is implemented using DSS. A federation is composed of all the 

federates, which are connected by RTI implementation. Figure 4.1 clearly illustrates 

the Federation and how each federate is connected with an RTI implementation 

with the RTI manager providing all the data exchange, time synchronisation and 

event synchronisation. 

4.3 Tools Selection 

The rationale behind this research is to find all opportunities to make distributed 

simulation techniques more flexible, reusable, and composable. Therefore, not only 

does the technique used for the approach play an important role, but also the tools 

that are used. The main object of this research is to exemplify the IRMs, therefore 

the following requirements were identified for selecting the RTI: 

 Platform Independence: The selected RTI should be generic and able to 

be used cross-platform. 

 Open Source : Selecting an open source RTI provides the facility to support 

continuous research and development with the code able to be modified to 

meet specific requirements if required. As opposed to commercial software, 

open source software is cost free and enables access to source code. The 

other advantage of open source software is the wider community use and 

support.  

 HLA Evolved support: The selected RTI must be implemented using the 

latest standard implementation defined by IEEE 1516e. 
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 Backward Compatibility: The selected RTI should also support the 

previous versions of IEEE 1516 standard, i.e. RTI 1.3. 

The PoRTIco RTI implementation was carefully selected after considering the 

above requirements. It is cross platform, open source, and fully supports HLA RTI 

implementation. PoRTIco engages in continuous research and development and is 

intended to provide a production grade RTI (Portico, 2009a; 2009b) for simulation 

and training. It is developed and maintained actively by its team and contributors, 

i.e., Australian Defence Simulation Office (ADSO) and is licensed under the terms 

of the Common Development and Distributed License (CDDL). Figure 4.3 presents 

complete PoRTIco Local RTI Component (LRC) architecture. 

PoRTIco provides a modular architecture enabling its behaviours to be modified or 

replaced at five different points. This flexibility makes PoRTIco RTI 

implementation more desirable for this research. The developer can load their own 

programme logic at the following five different points. 

 RTI Request:  LRC sends messages to this RTI Request component. This 

component maintains an “Action Queue” into which new requests can be 

placed.  

 LRC Request: message types can be turned into message before sending 

the request to RTI by using this component. It validates the request on the 

LRC side.  

 LRC Callback: This component processes all callbacks from the “LRC 

Queue”. It also triggers the FederateAmbassador Callbacks. 

 LRC and RTI Connections: This component works as an RTI 

communication interface, i.e., it sends and receives information to and from 

RTI.  

 RTI action: This component processes the objects in the “Action Queue”. 

During this processing of objects, a federate callback message might be 

generated, i.e., if a callback message is required by the process.  

 

 



Chapter 4: DSI Framework  

 

Athar Nouman 121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: LRC Architecture (the poRTIco Project) 
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However, in this research, for portability and reusability purposes, Pitch pRTI free 

evaluation version was also used in a few instances. Pitch pRTI is a commercially 

licenced distributed simulation infrastructure implementation based on HLA IEEE 

1516-2010 standard. It provides a good visual implementation for both LAN and 

Cloud, which can be accessed through a web browser, smartphone, or tablet.  

Compared to Portico, Pitch pRTI also supports backward compatibility for older 

versions of HLA implementation. There are a number of additional support 

modules and tools available, e.g., Pitch visual OMT Editor, Pitch Talk, etc. The RTI 

is packaged with an additional layer for fault tolerance, robustness, and ease-of-use. 

For model implementation, Repast Simphony was used. It is a cross platform, 

interactive, and tightly integrated Java-based modelling toolkit. This toolkit is 

available for Microsoft Windows, Linux, and Apple Mac OS X. Repast Simphony 

was developed by Sallach, Collier, and others (Collier et al., 2003) in 2000 at 

University of Chicago to support “rapid social science discovery”. The objectives 

of Repast Simphony are as follows: 

 A strict separation between model execution, data storage, model 

visualisation, and model specification. 

 User model components based on plain Java objects open to external 

software for accessing or replacing. 

 Tasks automated for model developers. 

 “Boilerplate” code can be replaced or eliminated, i.e., the repetitive code 

used by the models. 

 Simple and direct idiomatic code expressions. 

(North et al., 2005) 

Although Repast Simphony was intended for Agent-based modelling, it can easily 

be adapted for DES. The flexibility of this toolkit makes it ideal for this research. 

Furthermore, it supports ReLogo, Groovy, and “point-and-click” state charts. It also 

supports Visual interactive (VIS) simulations. It has been successfully used in many 
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industrial scenarios such as hydrogen infrastructure, supply chains, consumer 

products, traffic systems, and social sciences. Repast has two versions, “Repast 

Simphony” and “Repast HPC”. Repast HPC, or “Repast for High Performance 

Computing”, is used for large models to run only on super computer using C++. 

Repast Simphony is most commonly used as a multipurpose toolkit (North et al., 

2013). 

Repast Simphony toolkit uses the well-known Eclipse as a primary development 

tool. Eclipse is open source, free, and a widely used development environment. 

Eclipse also supports multiple languages including Java and C++. There are other 

Repast Simphony Eclipse plug-ins that provides perspectives, views, and tools for 

creating Repast-specific components 

4.4 Data Representation and Distribution 

In distributed simulation, data representation and distribution means a collection of 

quantitative data or numbers on various elements as a result of a successful 

execution of a simulation run.  Although data is involved at different stages, such 

as data exchange during interoperability, internal model data, etc., this topic 

concerns the data used for analysing simulation performance and measuring 

achievement. There are several points where data could be collected, for example, 

breakdown frequencies, departure patterns, arrival patterns, cycle time, 

communication time, etc. Mostly, the modeller focuses on quantitative data and 

forgets about the importance of qualitative data (Robinson, 2014). In this research, 

the data collection and analysis focus on both quantitative and qualitative data. 

4.4.1  Data Requirements 

Data representation and distribution starts at the identification of data requirements. 

According to Pidd (2003), data requirements can be split at three different stages in 

simulation modelling: contextual data, model realisation, and model validation. 
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4.4.1.1 Contextual Data 

Contextual data is basic data, a layout diagram, or the source of a problem 

experienced when developing thorough understanding of the system at problem 

identification stage. At this stage, the data is only used for identifying and 

understanding the problem domain, therefore, large amounts of data collection can 

be avoided. This data feeds into the conceptual modelling phase and becomes the 

basis for further data collection. For example, in this research, input data, frequency 

of message passing, data distribution and simulation performance related data were 

considered. 

4.4.1.2 Model Realisation 

This second type of data required is used to determine the development of a 

computer model, i.e., detailed data is required about entity arrival, frequency of 

breakdowns, cycle time, frequency of departure, etc. This data provides a basis for 

developing the computer model, because all data required by individua l 

components of a simulation (including interoperability of all models) is identified 

at this conceptual modelling stage. 

4.4.1.3 Model Validation 

Model validation is the final type of data requirement. A simulation project is 

classed as successful if the simulation model as a whole is correctly representing 

the real world system with acceptable accuracy. Therefore, in this stage the data 

from the real world system is compared with the results of the simulation run to 

validate the model. 

4.4.2  Data Procurement 

There are following three different types of data identified at three different stages 

of data requirement described in the previous section. 
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4.4.2.1 Category A 

This category of data is related to information or data previously known before the 

proposal of a simulation project. For example, cycle time of a production unit and 

breakdown time of the production unit. This type of data is usually available and is 

used in the problem identification stage. This data may not be necessarily be 

collected for the purpose of the simulation and may exist historically for some other 

purpose. 

4.4.2.2 Category B 

This category of data needs to be collected as a requirement for the simulation 

project. This often includes departure patterns, service time, shared resources, time 

to repair, etc. This data might be collected by human monitoring or other systems. 

The recommended approach is the direct involvement of the modeller. This will 

help the modeller to understand the system behaviour at grassroots level. 

4.4.2.3 Category C 

This category of data is neither directly collectable nor available. This could be as 

a result of missing real world system data, i.e., for a proposed system. This type of 

data is assumed to the closest possible known factors or the experience of a domain 

expert is required to fill the gaps. 

4.4.3  System Variability 

In a stochastic simulation model, unpredictable or random variability of data is at 

the centre of the simulation. Many aspects of the simulation are subject to this 

random behaviour, for example, arrival time, service time, or repair time. The 

modeller might be aware that customers arrive at random times in the real world, 

but the exact time can never be identified. Hence, system variability presents a key 

challenge to meet real world system data requirements. Therefore, statistical and 

empirical distribution is used to represent system variability. 
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4.4.4  Empirical distribution 

Data from the real world system can be collected that define sequences of events. 

This could represent the time at which the event occurred. In empirical distribution 

this predefined collected data is summarised in histogram. During the simulation 

data values are randomly selected by using random numbers. Mostly the data is 

provided by the user but the sampling process is hidden. For example, the data 

might be the customer arriving at a station after every 2, 3, 4 and 5 minutes. The 

system will randomly select the arrival time and the resultant data could be 3, 2, 2, 

5, 3, 4 minutes. 

4.4.5  Statistical Distribution 

Statistical distributions are defined by some “Probability Density Function (PDF)” 

or mathematical function. There are many types of distribution each having its own 

properties and purpose, e.g., Normal, Exponential, Discrete, Erlang, Binomial, 

Uniform, Poisson, and Triangular distribution. This list is not exhaustive, but this  

research uses exponential and normal distribution because they are the best known 

and most commonly used distribution techniques. The reason for using two 

different distributions is to identify that this research is not limited to any specific 

distribution method. 

4.4.5.1 Normal Distribution 

Normal distribution is a commonly used PDF. It is used in the natural and social 

sciences where the exact value of the data is unknown in the real world system. This 

distribution technique is used to predict data like customer arriving time, processing 

time, repair time, etc., in the simulation. Normal distribution is specified with two 

parameters: standard deviation (and mean (µ) and the PDF for normal 

distribution (Pooch and Wall, 1993) is: 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝

−
(𝑥−µ)2 

2𝜎2  
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An example of normal distribution is illustrated in Figure 4.4 where the mean is 2 

and the standard deviation is 1. The mean defines the location and the standard 

deviation defines the spread. The values under the curve are represented by X and 

the higher the curve, the higher is the probability of that value. This curve is not 

static, i.e., the centre of the distribution probability can shift left or right and even 

more flat. This can be demonstrated by changing the mean and standard deviation 

values as shown in Figure 4.5. The increase in standard deviation value (lowers 

the centre of the distribution (shown by orange colour) and the change in the mean 

(µ) changes the position of the centre from right to left shown in green colour. 

 

 

 

 

 

Figure 4.4: Normal Distribution (Robinson, 2014) 

 

 

 

 

 

 

Figure 4.5: Normal density function (summary of Pooch and Wall (1993)) 

Mostly, in normal distribution the 𝑓(𝑥)  result can be negative and in decimal value, 

i.e., the value of  𝑓(𝑥) can be less than 0 and it can have n decimal point value, e.g., 
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“1.37”, “-0.42”. The simulation practice used in this research is conservative and 

this distribution is used to identify the next event or customer arriving in the queue, 

then this distribution must produce positive number where 𝑓(𝑥) > 0. In 

conservative approach next event can only be generated where next event time (et) 

is greater than simulation clock(t), i.e., 

et >= t 

Further, in this research the simulation time used is an integer rather than a float 

(decimal point) therefore the value of 𝑓(𝑥) must also be non-decimal, i.e., integer 

value. Therefore, a round function is used to convert the decimal value of 𝑓(𝑥) into 

plain integer to a nearest level of precision. 

4.4.5.2 Exponential Distribution 

Exponential distribution is another widely used data distribution in the simulation 

industry. It defines a process where events occur independently and continuously 

at a constant average rate. This distribution is also known as negative exponential 

distribution and is popular in situations like “catastrophic and sudden” change in 

behaviour, for example, a light bulb suddenly burns out.  

 

 

 

 

 

 

 

 

 

Figure 4.6: Exponential Distribution 
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The probability function for exponential distribution (Pooch and Wall, 1993) is: 

𝑓(𝑥) = 𝛼𝑒−𝛼𝑥 ,    0 ≤ 𝑥 <  ∞ 

𝑓(𝑥) = 0,                  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒  

Where 𝛼 is a positive parameter, i.e., 𝛼 ≥ 0, the standard deviation and mean are 

the same. The exponential distribution is illustrated in Figure 4.6. Similar changes 

to the results for exponential distribution were adopted to meet conservative–

stochastic simulation modelling, i.e., to ensure the exponential distribution is 

positive number and values are in integer to the nearest precision. 

4.4.6  Data Selection 

The IRM solution presented in this research is generic therefore Category A data 

was not available. All the data used in the conceptual modelling phase is either 

Category B or Category C, because this framework will be used for the new 

proposed system. This is one of the main reasons for using statistical distribution. 

It is also known that the distribution can affect simulation performance, therefore, 

in such cases multiple distribution values were used to monitor the affects. 

4.5 IRM Model Conceptualisation 

In this section each IRM (as discussed in the previous chapter) is conceptualised, 

i.e., requirements, limitations, and constraints are identified. Each IRM is modelled 

individually therefore the conceptual model presented below for each IRM is totally 

independent (while applying SISO-STD-006-2010 IRM standards). 

4.5.1  Conceptualisation for Type A.1: General Entity 

Transfer 

The problem statement for IRM Type A.1: General Entity Transfer is presented in 

section 3.6.1. Type A.1 IRM represents a model that interacts on the basis of 

entities, i.e., models linked together enable one model to pass an entity to another. 

Type A.1 was previously termed “Asynchronous Entity Passing” in the IRM 
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standard defined in SISO-STD-006-2010. It was called “asynchronous” because 

there was no direct or immediate feedback when the entity was transferred. All that 

is required to support the logical link between the two models is the transmission 

of time stamped entity information between model M1 and model M2 so that model 

M2 receives the entity information in appropriate order with its own events as 

illustrated in Figure 3.8. There is no need for a synchronous message exchange  

between the two models to transfer the entity information (as opposed to the later 

recommendation for Type A.2). Therefore, in Type A.1 IRM there is also no need 

for direct feedback when an entity is transferred between models. It is assumed the 

receiving model can accept the entity in any case because message passing is 

guaranteed by the RTI.  

Entities are not used by all simulation packages, as described in the IRMs. “Entity” 

in the context of IRM Standard SISO-STD-006-2010 represents some physical or 

logical system element that is processed by some set of instantaneous state changes 

at Time T at any given event(s). “Transaction” or “Object” are terms also used in a 

similar context (Taylor, et al., 2004). Different comments in the literature have been 

made about the semantics of passing an entity from one model to another (described 

in Chapter 2). For the purposes of this discussion, “entity transfer” means “the 

transfer of time stamped information relating to the representation of an object 

transferred from one model to another” (SISO-STD-006-2010). 

Entity transfer representation in this case is kept simple. The bounded receiving 

element and multiple inputs are not included in the definition of Type A.1. These 

will be discussed in the following IRM sections. However, there are two conditions 

defined in Type A.1 standards: 

 An entity e1 leaves model M1 from F1 at T1 and arrives at model M2 at 

F2 at T2. 

 Where, T1=<T2 or T1<T2. 
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4.5.2  Conceptualisation for Type A.2: Bounded Receiving 

Element 

The problem statement for IRM Type A.2: Bounded Receiving Element is 

presented in section 3.6.2 in detail. Figure 3.9 can illustrates an example where an 

attempt is made to transfer an entity e1 from Activity A1 at T1 in Model M1 to 

arrive in bounded queue Q2 at T2 in model M2. When A1 has an entity ready to 

transfer, it attempts to pass the entity to Q2. When transferring the entity, there are 

two possible scenarios. If Q2 has space to accommodate the entity, then the entity 

will be transferred. If Q2 has no space (i.e., Full) then A1 must hold the entity and 

block its further operations, therefore, any further entity in Q1 must wait for A1 to 

become available before it can be processed. Eventually, when Q2 has available 

space to accommodate a new entity, A1 must be notified to transfer the entity to 

Q2. Importantly, the rest of the model M1 remains functional while A1 is blocked 

because Q2 is bounded (i.e., the simulation of model M1 should not stop).  

IRM Type A.2 represents a model that interacts on the basis of entities passing, i.e., 

the link between the models is due to the passing of entity to another, similar to 

IRM Type A.1. However, in this case, the receiving model has a limited element to 

receive the entities. Unlike IRM Type A.1, IRM Type A.2 needs some sort of 

synchronised message exchange to transfer entity information between the two 

models because of the conditions defined above and further detailed below. It is 

important for both models to send and receive messages to keep the model 

consistent because, although message passing is guaranteed by the RTI, bounded 

buffer and blocking behaviour are external to RTI implementation. 

The entity transfer representation in this case includes the bounded receiving 

element along with general entity transfer, but multiple input is not included in the 

definition of Type A.2. This will be further discussed in later sections about IRMs. 

However, the following conditions are defined in Type A.2 standards: 

 If bounded element Q2 is empty, the entity e can leave element A1 at T1 

and arrive at Q2 at T2, or 
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 If bounded element Q2 is full, the entity e cannot leave element A1 at T1. 

Element A1 may then block, if appropriate, and must not accept any more 

entities. 

 When bounded element Q2 becomes not full at T3, entity e must leave A1 

at T3 and arrive in Q2 at T4; element A1 becomes unblocked and may 

receive new entities at T3. 

  T1 = <T2 AND T3 =< T4 

 If element A1 is blocked, then the simulation of model M1 must continue. 

Exceptions 

 In some special cases, element A1 may represent some real world process 

that may not need to block. 

 If T3<T4 then it may be possible for bounded element Q2 to become full 

again during the interval if other inputs to Q2 are allowed either locally 

within the model or externally via other models. 

4.5.3  Conceptualisation for Type A.3: Multiple Input 

Prioritization 

The problem statement for IRM Type A.3: Multiple Input Prioritization is presented 

in section 3.6.3 in more detail. There could be two possibilities for receiving 

multiple entities by any model element. Consider two Models M1 and M2 capable 

of sending entities to an element Queue Q3 in Model M3 as illustrated in figure 

3.10. If Q3 has implemented First-In-First-Out (FIFO) strategy, then if an entity e1 

is sent from M1 at T1 and arrives at Q3 at T2 and an entity e2 is sent from M2 at 

T1 and also arrives at Q3 at T2, we would expect Queue Q3 order of entity as e1, 

e2. However, a problem arises when both entities from M1 and M2 arrive at the 

same time in M3, i.e., where T2=T4. In such circumstances the Queue order could 

be either e1, e2 or e2, e1, which will be unpredictable.  

In some models, a priority order can be specified for such situations, e.g., it can be 

specified in model M3 that model M1 entities have a higher priority than model M2 

in cases where T2 = T4. This priority order could be either specific to a model or 
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could be determined during runtime, i.e., dynamic. Also, priority order could 

change during simulation if needed.  

4.5.4  Conceptualisation for Type B.1: General Shared 

Resources 

Sharing a resource becomes challenging when an activity within a model requires 

a resource to work on or produce an entity, while an activity from a different model 

also requires the same resource to work on an entity. In such circumstances the 

resource will be held up by one of the models until the activity has completed its 

operations. This means, the other model activity has to wait until the resource 

becomes available. Similarly, access to a shared resource is not limited to 

concurrent access only, but also applies to situations where more than one federate 

share the same resource.  Therefore, in a distributed simulation, maintaining the 

consistent state of that resource in both models becomes a problem.   

Figure 3.11 illustrates the state of resource R shared between two models. The IRM 

Type B.1 General Shared Resource specifies that the known state of the shared 

resource R must be kept consistent in all sharing models at any given time. For 

example, if two models M1 and M2 share a Resource R, then both models will have 

a copy of the resource as RM1 and RM2. The IRM Type B.1 states that the resource 

state must be guaranteed at any time, e.g., at T1 the state of RM1 from Model M1 

will be same as the state of RM2 from Model M2. Additionally, there must be a 

guarantee that both Models M1 and M2 can attempt to change their copies of 

Resource R.  

The following conditions apply to this IRM to maintain consistency among all 

copies of shared resources in all participating models. 

 If a model M1 wishes to change its copy of R (RM1) at T1 then the state of 

all other copies of R will be guaranteed to be the same at T1, and 

If two or more models wish to change their copies of R at the same time T1, then 

all copies of R will be guaranteed to be the same at T1. 
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Strategies defined in IMR A.3 Multiple Input Prioritisation could be adopted if 

two or more models wish to request a Resource R or wish to change their copies 

of Resource R at the same time. 

4.5.5  Conceptualisation for Type C.1: General Shared 

Event 

The problem statement for IRM Type C.1: General Shared Event is presented in 

section 3.6.5 above and Figure 3.12. can illustrates an example of a problem where 

the same event E is shared between two or more models. In the figure, model M1 

shares an event E with model M2 at T1. Hence, both models should schedule their 

local events, i.e., EM1 and EM2, respectively, at the same time T1. There are two 

guiding conditions for this IRM:  

 Both copies of the event, i.e., EM1 and EM2 (in our example), must be 

guaranteed to occur once the shared event is triggered. 

 Both copies of the event, i.e., EM1 and EM2, are instigated at the same 

time by M1 and M2.  

Similarly, if there are more than two models then all events E in all models must 

take place at the same time T. This IRM is also defined as a guaranteed execution 

of all shared events in all models at the same time. For example, a situation where 

a building is on fire. Consider each house in a building is a model and they run their 

daily life events in their homes, but suddenly a fire alarm is triggered. Every other 

household member will stop their activities and start the evacuation procedure at 

the same time and soon after that the building will be empty. In this example, the 

fire alarm was the trigger to run a shared event “evacuation” at the time it was 

triggered. Similarly, in an industrial assembly line example, if the packaging 

machine breaks down, this will cause all other production units to stop as the 

products cannot process to final stage of packing. Hence, an event is triggered at a 

certain time when the packaging machine breaks down. A halt message will be sent 

to all other production units and all units will stop production and execute a halt 

procedure as soon as the message is received.  
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There are some other considerations while planning for a shared event. Scheduling 

of events occurring at the same time might trigger cancellation or changes in an 

event. In the industrial assembly line example, the production units were scheduled 

to run an event to produce new entity or a unit. But when the packaging machine 

breaks down, all future scheduled production unit events must be removed from the 

next event list. This is further explained in chapter 3 (Section 3.2.2.3) Event 

Synchronisation. Additionally, these shared events could be bidirectional, i.e., it is 

not necessary that only one model will generate a shared event trigger. Again, in 

our industrial assembly line example, if any production unit breaks down, then this 

will trigger a halt to the packaging unit as it is dependent on production. Also, we 

cannot exclude the possibility that there will be multiple types of triggers and shared 

event processes in real practice. Again, in our industrial assembly line example, a 

factory might have more than one production unit feeding to one packaging unit 

and if one production unit breaks or slows down with another still working then an 

event message can be sent to the packaging unit to reduce packaging speed by some 

factor and / or give information about which unit is broken down, etc. 

4.5.6  Conceptualisation for Type D.1: Shared Data 

Structure 

Shared Data Structure could be a transaction record or a variable shared between 

the models. In a distributed simulation environment, the communication between 

the models is restricted to the message exchange. Clearly, the distributed models 

have no physical shared memory and can only communicate via message passing 

using some sort of underlying technique. This state of disjointedness due to 

distribution is unnecessarily restrictive from an application modeller viewpoint 

where the data need to be shared between models. Due to this distributed data 

structure the data is replicated among the models and much effort is spent on 

keeping this data consistent by having many specified events. Hence, the immediate 

challenge in distributed simulation for Shared Data Structure is about consistency 

of the state of that data structure. However, shared data structure has similar issues 
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to the previous topic of Shared resources, but in simulation, resources are different 

to data. This IRM also covers issues related to a single data item such as an integer.  

Figure 3.13 illustrates the state of shared Data D, shared between two models. The 

IRM Type D.1 General Shared Data Structure stipulates that the state of the 

resource R must be kept consistent in all sharing models at any given time. For 

example, if two models, M1 and M2 share a Data Structure D, then both models 

will have a copy of the Data as DM1 and DM2. The IRM Type D.1 states that both 

copies of DM1 and DM2 must be guaranteed to be the same at any given time T, 

i.e., the state of DM1 from Model M1 will be same as the state of DM2 from Model 

M2. Additionally, it must be guaranteed that both Models M1 and M2 can attempt 

to change their copies of Data Structure D. 

The following conditions apply to this IRM to maintain consistency among all 

copies of shared data in all participating models. 

 If a model M1 wishes to change its copy of D (DM1) at T1 then the state of 

all other copies of D will be guaranteed to be the same at T1, and 

 If two or more models wish to change their copies of D at the same time T1, 

then all copies of D will be guaranteed to be the same at T1. 

Unlike strategies defined in IRM A.3 Multiple Input Prioritisation, where if two or 

more models wish to request a Data Structure D or wish to change their copies of 

D at the same time T, it could be executed but will not guarantee the correctness of 

data value. Therefore, additional and more complex algorithms are required to 

identify which update will happen first, especially in the case of a concurrent 

update. 

4.6 Summary 

The focus of this chapter has been the introduction of the proposed DSI Framework, 

its formulation, and the operation of the principle new feature incorporated into DIS 

– the Interoperability Reference Models Manager. 
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A diagrammatic and written description of the DIS Framework has detailed how a 

new IRM Manager layer has been added to the standard HLA distributed simulation 

configuration. It was explained how the IRM Manager layer sits between the 

federate models and the HLA/RTI, while the Federate Interface of the IRM 

Manager translates data objects and variables from the models into the more 

abstract language of HLA. Similarly, the HLA Interface of the IRM Manager has 

been explained as sending and receiving timestamped messages to and from RTI 

via an RTI Ambassador and a Federate Ambassador applicable to each federal 

model in the distributed federation. 

This chapter next addressed the choice of modelling and communication tools used 

with the proposed DIS Framework. It was explained that the rationale was to select 

products that assisted the modeller in implementing flexible, reusable, and 

composable distributed simulation techniques. On this basis, Repast Simphony was 

selected for model implementation and PoRTIco as principle RTI. 

Next, a listing and description was provided of various types and sources of data 

that may be required or collected for analysing performance and measuring success 

after a simulation run. Various systems of statistical distribution used in the 

simulation industry were also discussed. 

Finally, this chapter provided a problem statement for each of the six individua l 

IRMs controlled by the IRM Manager in the DSI Framework. Conceptualising each 

IRM identified the interoperation problem that exists in each case and the 

requirements that need to be fulfilled to overcome the problem, together with any 

limitations or constraints. 
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Chapter 5:  IRM Protocols  

5.1 Overview 

Discussion of the structure and operation of the DSI Framework with IRM Manager 

in the previous chapter was followed by problem statements describing 

communication issues represented by each of the six identified IRMs. In this 

chapter, proposed protocols for running tests of the DSI Framework are first 

described beginning with the need for independently developed, generic distributed 

models representing these problem scenarios. Next, the use of software tools to 

develop the models is explained followed by justification for the versions of HLA 

and poRTIco chosen for development, with particular reference to their integration. 

These introductory factors are followed by detailed descriptions of approaches 

proposed for developing the simulation models. These cover all six of the IRM 

Types and sub-Types. A total of seventeen proposals in total were developed to 

address these six IRMs. 

5.2 Proposed Protocols 

IRMs define a set of interoperability problems while creating a distributed 

simulation. As described in earlier chapters, these IRMs consists of four main 

models. The first model is further sub-divided into three models. Generic, reusable, 

and discrete event distributed models are developed not only to examine 

performance and limitations, but also to provide different methods to approach the 

same problems and their effects. Each IRM model is developed independently in 

accordance with SISO-STD-006-2010 standard definitions and will be explained in 

detail further in this chapter. Having these models developed independently allow s 

a deeper understanding of their impact on simulation and how effectively the HLA 
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standard can be utilised to adopt the appropriate approach. The list is not exhaustive, 

but enough representations are made to give a clear understanding about the 

challenges. These model approaches can easily be adopted by any simulation 

modeller to address any of the Interoperability issues (identified by SISO-STD-006-

2010) facing distributed simulation models. In the given models, most focus is 

given to interoperability while keeping the model simple.  

The software tools used for developing these models were discussed in Chapter 4, 

i.e., all models were developed in the Repast Simphony simulator. Although the 

Repast Simphony is an ABS toolkit, its main simulation engine is based on Schedule 

Class which is a discrete-event engine. Similarly, in the majority, PoRTIco RTI 

implementation was used as a middleware, but at some places Pitch RTI was also 

used. Both the toolkit and PoRTIco are open source while Pitch is a commercially 

licenced RTI. PoRTIco and Pitch both support RTI implementation and Java and 

C++ programming interfaces, but Repast Simphony includes a Java application 

programming interface. Hence, the selection of programming language was derived 

from the Repast Simphony. The selection of Repast Simphony was inspired because 

it not only has the ability for ABS and DES distributed simulation support, but also 

provides VIS support tools, which are easy to integrate. The Java programme 

language interface was also selected because it offers the guarantee to be useable 

from any ware at any time, i.e., “write once and run anywhere”. All the protocols 

were implemented using Time Advance Request (TAR) approach. 

The research began with older versions of PoRTIco V1.0 which implemented HLA 

1.3. Later a newer version of PoRTIco V2.1.0 was used to develop the models. This 

new version of PoRTIco implements HLA Evolve standard RTI. This also gave an 

opportunity to investigate the performance differences between the old standard 

HLA 1.3 and the new standard HLA Evolved. 

5.2.1  HLA Selection 

As discussed in the last section, the research began with HLA 1.3, an old RTI 

implementation based on IEEE 1516-2000 standard. This standard was first 

published in 1998 but was first implemented in 2001. The standard was revised a 
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decade later in 2010, focusing on more web supported services and changes in OMT 

structure. The new IEEE standard moved a step forward toward better reusable 

implementation. The first PoRTIco implementation of this new standard was seen 

around 2012, but this was also not complete, i.e., some features like MOM 

implementation were missing.  

The current version of PoRTIco also supports both HLA 1.3 and HLA Evolved 

implementation. Unlike MÄK and Pitch Commercial RTIs, PoRTIco is easy to use 

and apply. With the author experience PoRTIco can be the best learning platform 

because the package comes with no or very little configuration requirements, i.e., 

plug-and-play. For example, there is no need to configure Central RTI Component 

(CRC) and LRC in PoRTIco unless the modeller has specific requirements, i.e., 

running the simulation over a cloud, multiple domains, or complex network 

configurations. Both the CRC and LRC are created at runtime and are destroyed 

automatically once the simulation end. The CRC and LRC are designed to identify 

and establish a network connection on any regular network. An exception to a 

firewall may be required if sub-domains are involved.  

Some of the RTIs needs to configure some of their components before use i.e. CRC 

and LRC. In some cases, both of the components are always running as a 

background process. Moving down to the complex networked environment, it is 

easier to configure these commercial RTI’s because they provide a good user 

friendly Graphical User Interface (GUI). On the other hand, configuring PoRTIco 

on a complex network will require higher understanding of network configurations, 

because this is achieved either through the programming interface or by changing 

the configuration files. The PoRTIco network configuration was kept similar to the 

old version, but the newer version is restricted to be used with Java 1.7+ versions.  

During the initial published research (Nouman et al., 2013) a distributed hybrid 

agent-based and DES was developed, using both HLA 1.3 and HLA Evolved 

standards. The research had two main objectives. The first objective was to 

demonstrate the interoperability of different simulation techniques, i.e., ABS and 

DES applying the SISO-STD-006-2010 standard. The second objective was to test 

the performance of HLA 1.3 over HLA Evolved. Figure 5.1, illustrates the test 
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results from different simulation runs. These experiments clearly identified that 

running different simulation models on a single PC even with multi core and multi-

threading is not advantageous over running the model on a network. 

It was also noted that single PC performance runs were more linear with the old 

HLA 1.3 implementation while the newer version HLA Evolved had an upward 

“Zigzag” behaviour. But this behaviour was linear when the same simulation run 

was performed over a network. The performance of HLA Evolved got better as the 

simulation models increased, but the performance of the new standard was never 

noted to be any less than the old standard. It was concluded that further research 

would be done using the new HLA Evolve standards. In the present research, no 

further models were developed using the older version of HLA. 

 

 

 

 

 

 

 

Figure 5.1: Comparison of execution time on a single PC and a network with 

different numbers of federation models (Nouman et al., 2013) 

5.2.2  General Entity Transfer 

IRM Type A.1: General Entity Transfer represents an interoperability problem that 

occurs when transferring an entity from one model to another. This problem is 

already defined in Chapter 3 & 4 in more detail, but this section will focus on the 

conceptual modelling of each protocol used to address this IRM issue. 
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5.2.2.1 Entity Transfer with Interaction Class Protocol 

The first possible approach to address IRM Type A.1 General Entity Transfer is by 

using interaction classes. The relationship between the Models, CSP, and the RTI 

is shown in Figure 5.2 below. For the purpose of understanding the entity transfer 

concept, it is necessary to identify the source and destination model, i.e., which 

model will send an entity and which model will receive it. There could be 

alternative possible entity routings defined by the models between them. Therefore, 

it will be assumed that M1 is a source model from which an entity leaves and M2 a 

destination model at which the entity arrives. Time will be defined as the time when 

an entity leaves a source model and instantaneously arrives at the destination mode l, 

i.e., an event happens in M1 at time “T1” marking the departure of an entity from 

M1 and instantly arriving at M2 at “T2” (where T1=T2=t). 

 

 

 

 

 

 

Figure 5.2: General Entity Transfer using HLA 

With regard to transferring an entity from a model M1 in federate F1 to a model 

M2 in federate F2, the entity could be represented as an object with a number of 

attributes defined by the type of entity. The actual entity representation depends on 

the model implemented in a CSP and how the modeller will use the entity. For the 

purposes of understanding, in this research entity is represented as a single 

interaction class parameter “entity” in both the models. As there are only two 

models in a given scenario, and the source and destinations are defined, we do not 
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need to define the destination and source names, this will be taken care of by RTI 

features of Publishing and Subscribing classes. However, it is important in the case 

of multiple destination federates to either include a destination variable or better to 

have an entity as an object and define the destination federate as an attribute value 

within the object.   

As defined in IEEE 1516.2-2010 standard for Object Modelling Template (OMT) 

specification, an interaction class must indicate whether it is published or 

subscribing. For FOM, valid entries are Publish(P), Subscribe(S), 

PublishSubscribe(PS), or Neither (N), defined as follows: 

 Publish: The federate is capable of publishing the interaction class. 

 Subscribe: The federate is capable of subscribing to the interaction class. 

 PublishSubscribe: The federate is capable of publishing and subscribing to the 

interaction class. 

 Neither: The federate is incapable of either publishing or subscribing to the 

interaction class. 

In the scenario shown in Figure 5.2, the FOM will define the interaction class with 

the “entity” parameter available for both federates to Publish and Subscribe. 

Therefore, Federate F1 will publish the “entity” interaction class parameter while 

Federate F2 will subscribe to the “entity” interaction class parameter. It is important 

to note that according to the OMT specification “HLAinteractionRoot” remains the 

superior class over all other interaction classes in Federate Object Model (FOM) 

and is mandatory. The following is the FOM used to define the interaction class: 

1. <interactions> 
2.      <interactionClass> 
3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 
5.           <dimensions>NA</dimensions> 
6.           <transportation>HLAreliable</transportation> 
7.           <order>Receive</order>   

8.           <interactionClass> 
9.                <name>EntityTransfer</name> 
10.                 <sharing>PublishSubscribe</sharing> 
11.                 <transportation>HLAreliable</transportation> 
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12.                 <order>TimeStamp</order> 
13.                 <parameter> 
14.                      <name>entity</name> 

15.                      <dataType>HLAinteger32BE</dataType> 
16.                 </parameter> 
17.            </interactionClass> 
18.       </interactionClass> 

19.  </interactions> 

In this scenario, Model M1 will produce an entity at time T that needs to be 

transferred to Model M2. Time to transfer is identified at run time, i.e., it is not 

fixed because as discussed in Chapter 4 this simulation model uses exponential 

distribution and all the models are based on a stochastic approach. Entity arriving 

in Model M1 is generated using an exponential distribution where α=1.5. Similarly, 

the service time for Activity A1 in Model M1 and Activity A2 in Model M2 also 

uses the exponential distribution where α=1. Also, this scenario uses zero 

lookahead, and it assumes that entity travel time from one model to another is zero. 

Figure 5.3 is a sequence diagram of the proposed approach that follows based on 

the protocol explained above and Figure 5.4 describe the flow of the programme 

algorithm. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Sequence diagram (SD) General Entity Transfer via interaction 

using RTI 
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Sequence of Events 

 At initialisation stage : Federate F1 will indicate that it is capable of sending 

entities by publishing entity interaction class parameter to any destination 

federate who is subscribing entity interaction class parameter. 

 At initialisation stage :  Federate F2 will indicate that it is capable of receiving 

entities by subscribing to entity interaction class parameter from any source 

federate who is publishing entity interaction class parameter. 

 Simulation Runtime: Both Federates F1 and F2 will progress time “t” using the 

time management service.  

 Simulation Runtime: At a particular time “Tx” the activity A1 in Model M1 

will have an entity to send to Q2 in model M2. Therefore, Federate F1 will send 

an interaction message with the entity to Federate F2 using the RTI ambassador. 

 Simulation Runtime: At time “Tx” the interaction message will be received by 

Federate F2 and will be sent to Q2 in Model M2 via the Federate Ambassador. 

Figure 5.4 : Activity diagram for entity transfer 
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5.2.2.2 Entity Transfer with Attribute Class Protocol 

The second possible approach to address IRM Type A.1 general entity transfer is 

by using attribute classes. This initial research will indicate if there are any 

performance issues using these two different approaches. The relationship between 

the Models, CSP, and RTI is shown in Figure 5.2 above. For the purpose of 

understanding the entity transfer concept, it is necessary to identify the source and 

destination model. Therefore, it will be again assumed that M1 is a source model 

from which an entity leaves and M2 a destination model at which the entity arrives. 

Similarly, time will be defined as the time when an entity exits from a model and 

immediately arrives at the destination model, i.e., an event happens in M1 at time 

“T1” marking the departure of an entity from M1 and instantly arriving at M2 at 

“T2” (where T1=T2=t). 

In regard to transferring an entity from a model M1 in Federate F1 to a model M2 

in Federate F2, the entity could be represented as an object with a number of 

attributes defined by the type of entity. In this research, “entity” represents a single 

object class attribute in both the models. As there are only two models in a given 

scenario and also the source and destinations are defined, therefore, we do not need 

to define the destination and source names, this will be taken care of by RTI features 

of Publishing and Subscribing classes.   

As defined in IEEE 1516.2 2010 standard for Object Modelling Template (OMT) 

specification, object class must also indicate whether it is published or subscribing. 

For FOM, valid entries are Publish(P), Subscribe(S), PublishSubscribe(PS), or 

Neither (N), as described in the last section.  

In this scenario, the FOM will define the object class with the “entity” attribute that 

is available for both federates to Publish and Subscribe. Therefore, federate F1 will 

publish the “entity” object class attribute while the federate F2 will subscribe to the 

“entity” object class attribute. It is important to note that according to the OMT 

specification “HLAobjectRoot” remains the superclass over other object classes in 

Federate Object Model (FOM) and is mandatory. The following is the FOM used 

to define the interaction class. 
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1. <objects> 

2.      <objectClass> 

3.      <name>HLAobjectRoot</name>  

4.      <sharing>Neither </sharing> 

5.      <objectClass>  

6.           <name> EntityTransfer</name>  

7.           <sharing>PublishSubscribe</sharing>  

8.           <attribute> 

9.                <name>entity</name> 

10.                 <dataType>HLAinteger32BE </dataType> 

11.                 <updateType>Conditional </updateType> 

12.                 <ownership>NoTransfer</ownership> 

13.                 <sharing>PublishSubscribe</sharing> 

14.                 <dimensions>NA </dimensions> 

15.                 <transportation>HLAreliable</transportation> 

16.                 <order>TimeStamp</order> 

17.            </attribute>    

18.       </objectClass> 

19.  </objects> 

This scenario is similar to the one defined in 5.2.2.1 Entity Transfer with Interaction 

Classes, with the exception of using the object class instead of interaction class. 

Therefore, Model M1 will produce an entity at time T that needs to be transferred 

to Model M2. Time to transfer is identified at run time because it uses exponential 

distribution. The entity arriving in Model M1 is generated using an exponential 

distribution where α=1.5. Similarly, the service time for Activity A1 in Model M1 

and Activity A2 in Model M2 also uses exponential distribution where α=1. 

Further, this scenario uses zero lookahead and assumes that entity travel time from 

one model to another is zero. Figure 5.5 illustrates the sequence diagram for this 

proposed approach. The sequence of events also remains similar to the illustration 

in the last section also Figure 5.4 describe the flow of the programme algorithm. 
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Figure 5.5: SD General Entity Transfer via attribute using RTI 

Sequence of Events 

 At initialisation stage : Federate F1 will indicate that it is capable of sending 

entities by publishing the entity attribute of an object class to any destination 

federate who is subscribed to the entity attribute. 

 At initialisation stage :  Federate F2 will indicate that it is capable of receiving 

entities by subscribing to the entity attribute of an Object class from any source 

federate who is publishing entity attributes. 

 Simulation Runtime: Both Federates F1 and F2 will progress time “t” using the 

time management service.  

 Simulation Runtime: At a particular time “Tx”, the activity A1 in Model M1 

will have an entity to send to Q2 in Model M2. Therefore, Federate F1 will send 

an attribute update message with the entity to Federate F2 using the RTI 

Ambassador. 

 Simulation Runtime: At time “Tx” the attribute update message will be 

received by Federate F2 and will be sent to Q2 in Model M2 via the Federate 

Ambassador. 
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5.2.2.3 Entity Transfer using null message Protocol 

Chandy-Misra presented a conservative algorithm for distributed simulation and 

proposed to use null messages to avoid deadlooks (Chandy and Misra, 1979). This 

approach is further investigated by the similar implementation. The above two 

different protocols were developed using limited message passing while two similar 

protocols were developed using a null message technique. These protocols are the 

same as defined above, but with one exception, i.e., the use of null message. 

Therefore, the relationship between the Models, CSP and RTI remains the same as 

shown in Figure 5.2 above. Similarly, the source model and the destination models 

are the same. The FOM for both the models remains unchanged, i.e., the same FOM 

is used as defined in the above two approaches. The same distribution will be used 

and entity transfer will also be instantaneous. The sequence of events, however, is 

slightly different to the above two protocols. This is illustrated in Figure 5.6 below. 

Also Figure 5.7 illustrate the flow of the protocol algorithm. 

 

 

 

 

 

 

 

Figure 5.6: Sequence diagram General Entity Transfer using null message 

Sequence of Events 

 At initialisation stage : Federate F1 will indicate that it is capable of sending 

entities by publishing an entity interaction class parameter (or object class 
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attribute in the case of attribute protocol) to any destination federate that is 

subscribing to the entity interaction class parameter. 

 At initialisation stage :  Federate F2 will indicate that it is capable of receiving 

entities by subscribing to the entity interaction class parameter (or object class 

attribute in the case of attribute protocol) from any source federate that is 

publishing the entity interaction class parameter. 

 Simulation Runtime: Both Federates F1 and F2 will progress time “t” using the 

time management service.  

 Simulation Runtime: At a particular time “Tx”, the activity A1 in Model M1 

will have an entity to send to Q2 in model M2. Therefore, Federate F1 will send 

an interaction message (or attribute update) with the entity to Federate F2 using 

the RTI Ambassador. If there is no entity to transfer a null message “” denoted 

by a value Zero 0 is sent.  

 Simulation Runtime: At time “Tx”, the interaction message (or attribute 

update) will be received by the Federate F2 and will be sent to Q2 in Model M2 

via Federate Ambassador. If there is no entity to transfer a null message is 

received which is ignored by Model M2. 

5.2.2.4 Model Verification and Validation 

IRM Type A.1 defined the following conditions to satisfy the requirements to 

achieve the General entity transfer.  

 An entity e1 leaves model M1 at T1 from F1 and arrives at model M2 at 

T2 at F2. 

 Where, T1=<T2 or T1<T2. 

The above models were programmatically checked against the requirements, and 

the behaviour of the models remained the same as running a standalone simulation. 

This is further analysed in the next chapter within the discussion of simulation test 

results. 
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Figure 5.7: Activity diagram using null messages 

5.2.3  Bounded Receiving Element 

IRM Type A.2: Bounded Receiving Element represents an interoperability problem 

that occurs in transferring an entity from one model to another model when the 

initial receiving element for the entity to be transferred is a buffer in the destination 

model. This problem is defined in more detail in Chapter 4. This section will focus 

on the conceptual modelling of each protocol used to address this IRM issue. The 

following three sections consider the three protocols identified to address this 

problem. 

5.2.3.1 Bounded Receiving Element using Queue Update Protocol 

The first possible approach to addressing IRM Type A.2: Bounded Receiving 

Element is by using the simple approach of Queue update. The relationship between 

the Models, CSP, and RTI is shown in Figure 5.8 below. For the purpose of 
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understanding the entity transfer concept for IRM Type A.2, it is necessary to 

identify the source and destination model, i.e., which model will send an entity and 

which model will receive it, and also in this case which model has a bounded 

receiving queue. There may be alternative entity routings defined between the 

models themselves. Therefore, it will be assumed that Federate F1 has a source 

model M1. It is the model from which an entity leaves, and Federate F2 implements 

a destination model M2 at which the entity will arrive.  The queue Q2 in Model M2 

is declared as a Bounded Receiving Element. Time will be defined as the time when 

an entity leaves a source model and may instantaneously arrive at the destination 

model, i.e., an event happens in M1 at time “T1” marking the departure of an entity 

from M1 and instantly arriving at M2 at “T2” (where T1=T2=t). 

 

Figure 5.8: Bounded Receiving Element using HLA 

Transferring an entity from Model M1 in Federate F1 to a Model M2 in Federate 

F2, the entity could be represented as an object with a number of attributes defined 

by the type of entity. Once again, how an entity is actually represented depends on 

the model implemented by a CSP and how the modeller will use the entity. For the 

purpose of understanding entity in this research, represents a single interaction class 

with two parameters “entity” and “Queuestatus” in both models. As there are only 

two models in a given scenario and the source and destinations are defined, we do 

not need to define the destination and source names, this will be taken care by RTI 

features of Publishing and Subscribing classes. However, this is important in the 
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case of multiple destination federates, and it is also important to either include a 

destination variable, or better, to have an entity as an object and define the 

destination federate as an attribute value within the object. In short, further 

attributes could be adjusted based on the simulation requirements and the nature of 

the entity. 

As defined in IEEE 1516.2-2010 standard for Object Modelling Template (OMT) 

specification, interaction class must indicate whether it is publishing or subscribing. 

For FOM, valid entries are Publish(P), Subscribe(S), PublishSubscribe(PS), and 

Neither (N). Therefore, in this protocol federate F1 will publish the “entity” 

parameter and subscribe to “Queuestatus” parameter of the interaction class, while 

federate F2 will subscribe to the “entity” parameter and publish the “Queuestatus” 

parameter of the interaction class. The expected value for the “Queuestatus” is 

Boolean, i.e., either the Queue is full or not full. Therefore, in this protocol 

“Queuestatus” is declared as an integer having only two values (i.e., 0: not full; and 

1: Full). It is important to note that according to the OMT specification 

“HLAinteractionRoot” remains the superclass of all other interaction classes in 

Federate Object Model (FOM) and is mandatory. Also, the given protocol will use 

zero lookahead. The FOM for this protocol is defined as below. 

1. <interactions> 
2.      <interactionClass> 
3.           <name>HLAinteractionRoot</name> 
4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 
6.           <transportation>HLAreliable</transportation> 
7.           <order>Receive</order>   
8.           <interactionClass> 

9.                <name>EntityTransfer</name> 
10.                 <sharing>PublishSubscribe</sharing> 
11.                 <transportation>HLAreliable</transportation> 
12.                 <order>TimeStamp</order> 

13.                 <parameter> 
14.                      <name>entity</name> 
15.                      <dataType>HLAinteger32BE</dataType> 
16.                 </parameter> 

17.                 <parameter> 
18.                      <name> Queuestatus </name> 
19.                      <dataType>HLAinteger32BE</dataType> 
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20.                 </parameter> 
21.            </interactionClass> 
22.       </interactionClass> 

23.  </interactions> 
 
In this scenario, Model M1 will produce an entity at time T that needs to be 

transferred to Model M2. Time to transfer is identified at run time, i.e., it is not 

fixed as discussed in Chapter 4. Each simulation model uses exponential 

distribution and all the models are based on stochastic approach. An entity arriving 

in Model M1 is generated using an exponential distribution where α=1.5. Similarly, 

the service time for Activity A1 in Model M1 and Activity A2 in Model M2 also 

uses the exponential distribution where α=1. However, there will be some different 

test runs with different distribution values to monitor changes in performance. Also, 

this scenario uses zero lookahead and it assumes that entity travel time from one 

model to another is zero. Figure 5.9 illustrates the sequence diagram (SD) of the 

following proposed approach based on the protocol explained above. Similarly, 

Figure 5.10 illustrate the flow of the protocol algorithm. 

 

 

 

 

 

 

Figure 5.9: SD Queue Update Protocol using RTI 

Sequence of Events 

 Initialisation stage: Both federates will either create or join federation. 
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 Initialisation stage: Federate F1 will indicate that it is capable of sending 

entities by publishing “entity” interaction class parameter and by subscribing 

to “Queuestatus” interaction class parameter to any destination federate that is 

subscribing to “entity” and publishing “Queuestatus” interaction class 

parameter. 

 Initialisation stage:  Federate F2 will indicate that it is capable of receiving 

entities by subscribing to “entity” and publishing “Queuestatus” interaction 

class parameter for any source federate who is publishing “entity” and 

subscribing “Queuestatus” interaction class parameter. 

 Simulation Runtime: Both Federate F1 and F2 will progress time “t” using 

the time management service of RTI.  

 Simulation Runtime: At a particular time “T1”, the element A1 in Federate 

F1 will have an entity to be transferred to Q2 in Federate F2. Therefore, 

Federate F1 will first send a request to Federate F2 via RTI Ambassador, to 

check space in Q2 and it will wait for the response. Federate F2 will check the 

space and send the status of Q2 using “Queuestatus” parameter via RTI 

Ambassador.  

o Case 1: If Q2 in Federate F2 can accommodate a new entity e1 from element 

A1 then “1” value message will be sent to Federate F2. A1 in F1, then will 

send an entity e1 to Q2 in F2 using Federate Ambassador and request time 

advance to RTI. Similarly, Federate F2 will update its queue and request 

time advance to RTI and simulate progress normally. 

o Case 2 (a):  If Q2 in Federate F2 is full and cannot accommodate new entity 

e1 from A1 then a “0” value message will be sent to Federate F2, and F2 

will request time advance to RTI. Element A1 in Federate F1 will hold the 

entity and will block the processing of the element A1 (only). Federate F1 

then will request time advance from RTI.   

o Case 2(b): After a successful time advance, at time T2, element A1 from 

Federate F1 will attempt to send the entity e1 again (using the above defined 



Chapter 5: IRM Protocols 

 

Athar Nouman 156 

processes in Case 1 or 2(a)). If Q2 is not full at T2 the entity e1 will be 

transferred to Q2 in Federate F2 from the element A1 in Federate F1 (as 

defined in case 1) and both federates will request time advance. But, if Q2 

is still full at T2 the element A1 in Federate F1 will remain blocked (as 

defined in case 2(a)) and both federates will request time advance.  

 

 

Figure 5.10: Activity Diagram for Queue Update Protocol 
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5.2.3.2 Bounded Receiving Element using Bounded Buffer Update 
Protocol 

The second possible approach to address IRM Type A.2 bounded receiving element 

is by slightly modifying the previous protocol to reduce the message passing 

between federates by sending bounded buffer updates. The relationship between the 

Models, CSP, and RTI is shown in Figure 5.8 above. For the purpose of 

understanding the entity transfer concept for IRM Type A.2 Bounded Receiving 

Element, it is necessary to identify the source and destination model. Therefore, 

similar to the last protocol, it will be assumed that Federate F1 is a source, M1 is 

the model from which an entity leaves, and Federate F2 implements a destination 

model M2 at which the entity arrives.  The queue Q2 in model M2 is declared as a 

Bounded Receiving element. Time is defined as the time when an entity exits a 

model and may immediately arrive at the destination model, i.e., an event happens 

in M1 at time “T1” marking the departure of an entity from M1 and instantly 

arriving at M2 at “T2” (where T1=T2=t). 

The message passing in this protocol is represented as a mixture of the Object class 

and Interaction class with one parameter for “entity” and another attribute for 

“Queuestatus” in both the models. As there are only two models in a given scenario 

and the source and destinations are defined, we do not need to define the destination 

and source names. This protocol will also use zero lookahead. The FOM for this 

protocol is defined as below. 

1. <objects> 

2.      <objectClass> 

3.      <name>HLAobjectRoot</name>  

4.      <sharing>Neither </sharing> 

5.      <objectClass>  

6.           <name> EntityTransfer</name>  

7.           <sharing>PublishSubscribe</sharing>  

8.           <attribute> 

9.                <name> Queuestatus </name> 

10.                 <dataType>HLAinteger32BE </dataType> 
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11.                 <updateType>Conditional </updateType> 

12.                 <ownership>NoTransfer</ownership> 

13.                 <sharing>PublishSubscribe</sharing> 

14.                 <dimensions>NA </dimensions> 

15.                 <transportation>HLAreliable</transportation> 

16.                 <order>TimeStamp</order> 

17.            </attribute>    

18.       </objectClass> 

19.  </objects> 

20.  <interactions> 

21.       <interactionClass> 

22.            <name>HLAinteractionRoot</name> 

23.            <sharing>PublishSubscribe</sharing> 

24.            <dimensions>NA</dimensions> 

25.            <transportation>HLAreliable</transportation> 

26.            <order>Receive</order>   

27.            <interactionClass> 

28.                 <name>EntityTransfer</name> 

29.                 <sharing>PublishSubscribe</sharing> 

30.                 <transportation>HLAreliable</transportation> 

31.                 <order>TimeStamp</order> 

32.                 <parameter> 

33.                      <name>entity</name> 

34.                      <dataType>HLAinteger32BE</dataType> 

35.                 </parameter> 

36.            </interactionClass> 

37.       </interactionClass> 

38.  </interactions> 

In this scenario, model M1 will produce an entity at time T that needs to be 

transferred to model M2. Time to transfer is identified at run time. Each simulation 

model uses exponential distribution and all the models are based on a stochastic  

approach. The entity arriving in model M1 is generated using an exponential 

distribution where α=1.5. Similarly, the service time for activity A1 in model M1 
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and activity A2 in model M2 also uses exponential distribution where α=1. 

However, there will be some different test runs with different distribution values to 

monitor the change in performance.  

Federate F1 will publish the “entity” parameter of the interaction class and subscribe 

to the “Queuestatus” attribute of the object class, while Federate F2 will subscribe 

to the “entity” parameter from the interaction class and publish the “Queuestatus” 

attribute of the Object class. The expected value for the “Queue status” is the size 

of the queue. Therefore, “Queuestatus” is declared as an integer having only values 

(i.e., value greater than 1: representing Queue not full and 0: representing Queue 

Full). Federate F1 will provide the instance parameter values of entity, hence it will 

be updating the entity instance parameter while Federate F2 will receive the 

instance parameter values of entity and will be reflecting the entity instance 

parameter.  

 

 

 

 

 

 

Figure 5.11: SD Bounded Buffer Update Protocol using RTI 

Similarly, Federate F2 will provide the Object attribute values of Queuestatus, 

hence it will be updating Queuestatus Object attribute while Federate F1 will 

receive the Object attribute value of Queuestatus, hence it will be reflecting the 

Queuestatus Object attribute. Model M1 will continue to send an entity until it 

receives a full queue message from model M2 via Queuestatus. The entity will be 

held at A1 in model M1 until the other federate does not send a message for 
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available space in the bounded queue in model M2 via Queuestatus. The model M2 

will indicate to sender when there is no space left in the queue, this will allow model 

M1 to stop activity A1 initiating further events after completing the current event. 

Hence, in this protocol model M1 will not request the queue status from model M2. 

While Model M2 will update the status to Model M1 once the Queue is full. Figure 

5.11 illustrates the sequence diagram (SD) of the following proposed approach 

based on the protocol defined above. Also Figure 5.12 illustrate the flow of the 

protocol algorithm. 

Sequence of Events 

 Initialisation stage: Both Federates will either create or join federation. 

 Initialisation stage: Federate F1 will indicate that it is capable of sending 

entities by publishing “entity” interaction class parameter and by subscribing 

to “Queuestatus” Object class attribute for any destination federate that is 

subscribing to “entity” and publishing the “Queuesize” parameter and 

attribute. 

 Initialisation stage:  Federate F2 will indicate that it is capable of receiving 

entities by subscribing to “entity” interaction class parameter and publishing 

“Queuestatus” Object class attribute for any source federate who is publishing 

“entity” and subscribing “Queuesize” parameter and attribute. 

 Simulation Runtime: Federate F2 will publish the Queuestatus in Q2 via 

RTI Ambassador and indicate if the Queue Q2 is full or has space to 

accommodate more entities. Both Federates F1 and F2 will progress time “t” 

using the time management service of RTI.  

 Simulation Runtime: At a particular time “T1”, the Element A1 in Federate 

F1 will have an entity to be transferred to Q2 in Federate F2. Federate F1 will 

check against the local copy of Queuestatus (previously updated by Federate 

F2 at Time < T1). Similarly, on every change of the state of the queue, 

Federate F2 will update the Queuestatus attribute via RTI ambassador. 
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o Case A:  If the value of Queuestatus is “1” or greater, this indicates that 

the Queue Q2 in Federate F2 is not full and can accommodate new entity 

e1 from A1. Entity e1 will then be transferred from Federate F1 via RTI 

ambassador and both Federate F1 and F2 will progress time “t” using the 

time management service of RTI. 

o Case B:  If the value of Queuestatus is “0” this indicates that the Queue 

Q2 in Federate F2 is full and cannot receive any entities; therefore, the 

element A1 will hold the entity and block the processing of the element 

A1 (only) and both Federates F1 and F2 will progress time “t” using the 

time management service of RTI. While element A1 is blocked, on every 

successive time advance Federate F1 will check the value of Queuestatus 

and at any time the value is updated to “0” by Federate F2 attribute update, 

the Case A scenario will be executed to successfully transfer the entity.  

Figure 5.12: Activity diagram Bounded Buffer Update  
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5.2.3.3 Bounded Receiving Element using Adaptive Protocol 

The third possible approach to address IRM Type A.2 bounded receiving element 

is by using an adaptive approach. In this protocol The message passing is limited 

and done when necessarily required. The relationship between the Models, CSP and 

RTI is as shown in Figure 5.8 above. This protocol will have the same assumption 

about the models, i.e., Federate F1 is a source model from which an entity leaves 

and Federate F2 is the destination model at which the entity arrives and contains a 

bounded queue Q2. Time will be defined as the time when an entity exits a model 

and may immediately arrive at the destination model, i.e., an event happens in M1 

at time “T1” marking the departure of an entity from M1 and instantly arriving at 

M2 at “T2” (where T1=T2=t). 

 
Message passing in this protocol is represented by a single interaction class with 

two parameters “entity” and “Queuesize” in both the models. Further parameters or 

attributes could be adjusted based on the simulation requirements and the nature of 

the entity. Federate F1 will publish the “entity” parameter and subscribe to the 

“Queuesize” parameter of the interaction class, while Federate F2 will subscribe to 

the “entity” parameter and publish the “Queuesize” parameter of the interaction 

class. The expected value for the “Queuesize” is a positive integer value, unlike the 

previous implementation, i.e., available Queue slots to receive entities. Therefore, 

“Queuesize” is declared as Integer where Queuesize => 0. Also, in Federate F1 and 

Federate F2 a local queue size variable “QSize” will be created and initialised to 

Zero. It is important to note that according to the OMT specification 

“HLAinteractionRoot” remains the superclass of all other interaction classes and is 

mandatory. Also, the given example will use zero lookahead. The FOM for this 

protocol is defined as the following: 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 
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6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name>EntityTransfer</name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                      <name>entity</name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 

17.                 <parameter> 

18.                      <name> Queuesize </name> 

19.                      <dataType>HLAinteger32BE</dataType> 

20.                 </parameter> 

21.            </interactionClass> 

22.       </interactionClass> 

23.  </interactions> 

Both models will maintain “QSize” local variable with the max size of the Queue 

(in this case the initial size is set to 10). This size will reduce by one on each 

successful entity transfer from Model M1 to Model M2. The entities will transfer 

until the QSize is reduced to zero, at this stage Model M1 will expect a new 

available QSize from Model M2. This new size will be once again updated to 

“QSize” local variable. This process will continue until the end of the simulation as 

illustrated in Figure 5.13. In this scenario, Model M1 will produce an entity at time 

T that needs to be transferred to Model M2. Time to transfer is identified at run 

time. Each simulation model uses exponential distribution and all the models are 

based on a stochastic approach. Entity arriving in Model M1 is generated using an 

exponential distribution where α=1.5. Similarly, the service time for Activity A1 in 

Model M1 and Activity A2 in Model M2 also uses exponential distribution where 

α=1. However, there will be some different test runs with different distribution 

values to monitor the change in performance. Figure 5.14 illustrate the flow of the 

protocol algorithm. 
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Figure 5.13: SD Adaptive Protocol using RTI 

Figure 5.14: Activity Diagram using Adaptive Protocol 
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Sequence of Events 

 
 Initialisation stage: Both Federates will either create or join a federation. 

 Initialisation stage: Federate F1 will indicate that it is capable of sending 

entities by publishing “entity” interaction class parameter and by subscribing 

to “Queuesize” interaction class parameter from any destination federate that 

is subscribing to “entity” and publishing “Queuesize” interaction class 

parameter. 

 Initialisation stage:  Federate F2 will indicate that it is capable of receiving 

entities by subscribing to “entity” and publishing “Queuesize” interaction 

class parameter for any source federate that is publishing “entity” and 

subscribing to “Queuesize” interaction class parameter. 

 Simulation Runtime: Federate F2 will publish the available space in Q2 via 

RTI Ambassador and also update its local QSize variable. Also, Federate F1 

will record the available space in its QSize local variable. Both Federates F1 

and F2 will progress time “t” using the time management service of RTI.  

 Simulation Runtime: At a particular time “T1”, the Element A1 in Federate 

F1 will have an entity to be transferred to Q2 in Federate F2. Therefore, 

Federate F1 will check its local variable QSize to see if Q2 has space. On each 

successful transfer of entity this variable is subtracted by “1”, i.e., unlike the 

previous solution Federate F1 will not request the queue size, instead it will 

wait for the other federate to update the queue size. Therefore, at any time in 

simulation if QSize becomes Zero “0”, Federate F2 will update its local 

variable QSize (with the current available space in Queue) and publish the 

available space via RTI Ambassador. Federate F1 will also update its local 

QSize variable with the new value.   

o Case A: If Q2 in Federate F2 can accommodate a new entity e1 from 

Element A1, i.e., the QSize > 0, then A1 in F1 will send an entity e1 to 

Q2 in F2 using federate Ambassador. Both federates at this point will 

subtract the number of entities from QSize (i.e., in this case QSize = 
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QSize-1) and request time advance to RTI and simulation progress 

normally. 

o Case B:  If QSize becomes zero “0” in Federate F1, then Federate F1 

will block the processing of the Element A1 (only) and request time 

advance. Similarly, Federate F2 will also request time advance and the 

simulation will progress normally. Once Q2 has space in time Tn to 

accommodate more entities, Federate F2 will update its local QSize 

variable and publish the available space via RTI Ambassador. Federate 

F1 will update its local variable QSize and proceed to case A. Element 

A1 will be released to continue its processing with the next entity in line.  

5.2.4  Multiple Input Prioritization 

IRM Type A.3 Multiple Input Prioritization represents an interoperability problem 

that occurs when a model element can receive entities from more than one different 

source. The receiving element in a model could be a Queue. Note that this IRM 

does not include cases where the receiving element is bounded as described in IRM 

Type A.2. This problem is already defined in Chapter 4 in more detail; therefore, 

this section will focus on the conceptual modelling of each protocol used to address 

this IRM issue. There are two protocols identified to address this problem.  

5.2.4.1 Multiple Input Specialised Prioritisation Protocol 

The first possible approach to address IRM Type A.3 multiple input prioritisation 

is by using a specialised prioritisation of receiving entities. The relationship 

between the Models, CSP and RTI is shown in Figure 5.15. In the multiple input 

prioritisation protocol, it is necessary to identify the source and destination 

model(s). Therefore, it will be assumed that Federate F1 and Federate F2 are source 

models from which an entity leaves and Federate F3 a destination model at which 

the entity(s) arrive either simultaneously or at different times. Time will be defined 

as the time when an entity exits a model and may immediately arrive at the 

destination model, i.e., an event happens in M1 at time “T1” marking the departure 

of an entity from M1 and instantly arriving at M3 at “T2” (where T1=T2=t). For 
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the purpose of explaining Multiple Input Prioritisation requirements, it will be 

assumed that the entities arrive at Federate F3 at the same time from Federate F1 

and Federate F2. 

 

Figure 5.15: Multiple Input Prioritisation using HLA 

To transfer an entity from Model M1 and Model M2 in Federate F1 and Federate 

F2 to model M3 in Federate F3, the message passing is represented by an interaction 

class with number of attributes defined by the type of entity. Again for the purpose 

of understanding, entity in this protocol is represented as a single interaction class 

with two parameters “entity” and “ModelID” in all source models. Model ID 

parameter is used because there are more than two models in a given scenario 

therefore it will ease the identification of the source model. Since each of the source 

and destination federates are defined separately by RTI, the information related to 

source identity could be extracted by the destination federate, but for simplicity it 
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is included as an identifier. Alternatively, the entity could also be defined as an 

object, having an identifier as an attribute value of the object.  

The following is the FOM used to define the interaction class. 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name>EntityTransfer</name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                      <name>entityF1</name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 

17.                 <parameter> 

18.                      <name> ModelIDF1 </name> 

19.                      <dataType>HLAinteger32BE</dataType> 

20.                 </parameter> 

21.                 <parameter> 

22.                      <name>entityF2</name> 

23.                      <dataType>HLAinteger32BE</dataType> 

24.                 </parameter> 

25.                 <parameter> 

26.                      <name> ModelIDF2</name> 

27.                      <dataType>HLAinteger32BE</dataType> 

28.                 </parameter> 

29.            </interactionClass> 

30.       </interactionClass> 

31.  </interactions> 
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Using the above given FOM, Federate F1 and Federate F2 will publish the 

“entityFx” (“x” represents the federate identifier number) and “ModelIDFx” 

parameter of the interaction class, while the SOM for Federate F3 will subscribe to 

the “entityFx” and “ModelIDFx” of the interaction class. In this case of specialised 

prioritisation, a higher priority for Federate F1 over Federate F2 entities has been 

set in Federate F3, i.e., if Federate F3 receives entities from Federate F1 and 

Federate F2 at the same time, and the Queue Q3 of Federate F3 implements the 

FIFO strategy, then the entity from Federate F1 will be added to Queue Q3 before 

inserting the entity from Federate F2. This protocol will also use zero lookahead.  

In this protocol each simulation model uses normal distribution and all the models 

are based on a stochastic approach. Both simulation models, i.e., Model M1 and 

Model M2 use the same normal distribution for generating the new entities (i.e. 

Arrivals) where the mean = 4.0 and Standard deviation SD = 1.5 (i.e. µ=4, . 

The service time for Activity A1, Activity A2 and Activity A3 are also defined by 

Normal Distribution of mean = 4.0 and Standard deviation SD = 1.5 (i.e. µ=4, 

 Figure 5.16 illustrates the sequence diagram of the proposed approach 

based on the protocol explained above and Figure 5.17 illustrate the flow of the 

protocol algorithm. 

 

 

 

 

 

 

Figure 5.16: SD Multiple Input Specialised Prioritisation using RTI 
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Figure 5.17: Activity Diagram for Multiple Input Specialised Prioritisation 

Sequence of Events 

 Initialisation stage: Both Federate will either create or join a federation. 

 Initialisation stage: Federate F1 and Federate F2 will indicate that they are 

capable of sending entities by publishing “entity” and “ModelID” 

interaction class parameter to any destination federate who is subscribing to 

“entity” and “ModelID” interaction class parameter. 

 Initialisation stage:  Federate F3 will indicate that it is capable of receiving 

entities by subscribing to “entity” and “ModelID” interaction class 

parameter for any source federate who is publishing “entity” and “ModelID” 

interaction class parameter. 

 Simulation Runtime: Both Federates F1 and F2 will progress time “t” 

using the time management service of RTI.  

 Simulation Runtime: At a particular Time “T1” the element A1 in Federate 

F1 will have an entity to be transferred to Queue Q3 in Federate F3. 
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Similarly, at the same time “T1” the element A2 in Federate F2 will also 

have an entity to be transferred to Queue Q3 in Federate F3.  Both the 

entities will arrive at time “T1” in Queue Q3 of Federate F3.  

 Simulation Runtime: Federate F3 will check against its specific list for 

priority against the ModelID received from both federates. As illustrated 

above, the specific list was set to have higher priority for Federate F1 over 

Federate F2. Therefore, the entity from Federate F1 will be inserted into 

Queue Q3 before inserting the entity received from Federate F2 (based on 

the predefined priority order in the model).  

5.2.4.2 Multiple Input Dynamic Prioritisation Protocol 

The second possible approach to address IRM Type A.3 multiple input 

prioritisation is by using a dynamic prioritisation of receiving entities. The 

relationship between the Models, CSP and RTI is shown in Figure 5.15 above. The 

source and destination model(s) are the same as defined in the previous protocol. 

Therefore, Federate F1 and Federate F2 are source models from which an entity 

leaves and Federate F3 a destination model at which the entity(s) arrives either 

simultaneously or at different times. Time T will be defined as the time when an 

entity exits a model and might immediately arrive at the destination model. 

Similarly, in this protocol it will be assumed that the entities arrive at Federate F3 

at the same time from Federate F1 and Federate F2. 

In relation to transferring an entity from Model M1 and Model M2 in Federate F1 

and Federate F2 to Model M3 in Federate F3, it is represented as a single interaction 

class with two parameters “entity” and “ModelID” in all source models as described 

in the previous section. The FOM used for this protocol is the same as the one used 

for Multiple Input Specialised Prioritisation. Therefore, Federate F1 and Federate 

F2 will publish the “entityFx” and “ModelIDFx” parameters of the interaction class, 

while Federate F3 will subscribe to all “entityFx” and “ModelIDFx” of the 

interaction class. In this case of dynamic prioritisation, Federate F3 will decide the 

priority for Federate F1 and Federate F2 entities at run time, i.e., if Federate F3 

receives two entities from Federate F1 and Federate F2 at the same time and the 
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Queue Q3 of Federate F3 implements the FIFO strategy, then Model M3 will make 

a decision based on the simulation requirement. Once the priority list is determined, 

the entity from a federate with the highest priority will be added to Queue Q3 

followed by the entity from the other federations. This priority list could stay fixed 

(once determined at the first transfer of entity) for the duration of the simulation or 

could change every time Federate F3 receives entities. But for this protocol the 

model will determine the priority list every time when it receives the simultaneous 

entity.  

In this protocol each simulation model uses normal distribution and all the models 

are based on a stochastic approach. Both simulation models, i.e., Model M1 and 

Model M2 use the same normal distribution for generating the new entities (i.e., 

Arrivals) where the mean = 4.0 and Standard deviation SD = 1.5 (i.e. µ=4, . 

The service time for Activity A1, Activity A2, and Activity A3 are also defined by 

Normal Distribution of mean = 4.0 and Standard deviation SD = 1.5 (i.e. µ=4, 

 Figure 5.18 illustrates the sequence diagram of the proposed approach 

based on the protocol explained above and Figure 5.19 illustrate the flow of the 

protocol algorithm. 

 

 

 

 

 

Figure 5.18: SD Multiple Input Dynamic Prioritisation 
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Figure 5.19: Activity Diagram for Multiple Input Dynamic Prioritisation 

Sequence of Events 

 Initialisation stage: Both Federates will either create or join federation. 

 Initialisation stage: Federate F1 and Federate F2 will indicate that they are 

capable of sending entities by publishing “entityFx” and “ModelIDFx” 

interaction class parameter to any destination federate that is subscribing to 

“entityFx” and “ModelIDFx” interaction class parameter. 

 Initialisation stage:  Federate F3 will indicate that it is capable of receiving 

entities by subscribing to “entity” and “ModelID” interaction class 
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parameter for any source federate that is publishing “entity” and “ModelID” 

interaction class parameter. 

 Simulation Runtime: Both Federate F1 and F2 will progress time “t” using 

the time management service of RTI.  

 Simulation Runtime: At a particular Time “T1” the Element A1 in 

Federate F1 will have an entity to be transferred to Queue Q3 in Federate 

F3. At the same time “T1”, the Element A2 in Federate F2 will also have an 

entity to be transferred to Queue Q3 in Federate F3.  Both the entities will 

arrive at time “T2” in Queue Q3 of Federate F3 (where T1=T2, i.e., zero 

travel time).  

 Simulation Runtime: The Federate F3 will generate the priority list and 

then select entities priority against its new priority list from both Federate 

F1 and Federate F2. The entities will be inserted into the Queue Q3 in 

Federate F3 from Federate F1 and Federate F2 accordingly.  

5.2.5  General Shared Resource 

IRM Type B Shared Resource represents an interoperability problem that occurs 

when elements of two or more models share the same resource. The issue of sharing 

a resource is not only limited to concurrent requests, but also defines the strategy 

of maintaining resource consistency when shared between models running 

separately. This problem is already defined in Chapter 4 in more detail; therefore, 

this section will focus on the conceptual modelling of each protocol used to address 

this IRM issue. There are four different protocols identified to address this problem. 

The relationship between the Models, CSP and RTI is shown in Figure 5.20 below. 
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Figure 5.20: General Shared Resource using HLA 

5.2.5.1 Continuous Resource Update Protocol 

The first possible approach to address IRM Type B.1 general shared resource is by 

using a continuous resource update approach. The relationship between the Models, 

CSP and RTI is shown in Figure 5.20 above. For the purpose of understanding the 

general shared resource, it is necessary to identify the copies of Resource R and the 

models sharing the resource. A shared resource is not typically owned by any 

federate or model, their presence in a model is technical and logical. Therefore, a 

copy of a same resource is kept at each model as RMx. To maintain consistency 

among all copies of a shared resource at any given time T1 the models will keep 

these copies updated using message passing via RTI. Although a resource could be 

shared among more than two models, this example uses two federates, i.e., F1 and 

F2 for ease of understanding. Similarly, there could be more than one type of 

resource shared among federates for different purposes. 

This protocol may represent a scenario where two units in a factory need attention 

for either fixed or variable time intervals and they need a machine engineer/ 

operator to acknowledge them. Further, this could also simulate the behaviour of a 

self-checkout till operator in a superstore, where an operator is assigned to multiple 

tills. This operator will intervene if any customer needs assistance or if the tills need 

approval for certain items. 
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To share the state of the resource among all copies of federates a resource could be 

represented as an object defining different attributes of the resource, e.g., a resource 

could perform more than one role, i.e., a machine operator or machine engineer , 

etc. Or there could be two different resources shared between the same models. The 

actual representation of the resource depends on the model implemented in a CSP 

and how the modeller will use the resource. Again for the purpose of understanding, 

resource in this protocol is represented as a single interaction class with one boolean 

parameter “requestFx” for each federate (“x” represents the federate number). The 

state of the request parameter could be either zero “0” indicating no resource request 

or one “1” for resource requests. Additionally, each federate will maintain a boolean 

variable in their local copies of a resource, i.e., RM1 and RM2. This variable will 

be used to record the status of the Resource at any given time, which will be 

consistent across the federation. The following FOM is used for this protocol. 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name> SharedResource </name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                      <name> requestF1 </name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 

17.                 <parameter> 

18.                      <name> requestF2 </name> 

19.                      <dataType>HLAinteger32BE</dataType> 

20.                 </parameter> 

21.            </interactionClass> 

22.       </interactionClass> 

23.  </interactions> 
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Using the above given FOM, Federate F1 will publish the “requestF1” parameter 

and subscribe to “requestF2” parameter of the interaction class, while Federate F2 

will publish the “requestF2” parameter and subscribe to “requestF1” parameter of 

the interaction class. Each federate will use a fixed / static priority table in the case 

of both model requests for the same resource occurring at the same time T. In this 

protocol, Federate F1 has higher priority for using the resource over Federate F2. 

Again, this priority table could also be dynamic or with a different strategy based 

on the model scenario and requirements.  

In this protocol each simulation model uses normal distribution and all the models 

are based on a stochastic approach. Both simulation models, i.e., Model M1 and 

Model M2 use the same normal distribution for generating new entities (i.e. 

Arrivals) where the mean = 5.0 and Standard deviation SD = 1.7 (i.e., µ=5, . 

The service time for Activity A1 and Activity A2 are also defined by Normal 

Distribution of mean = 4.0 and Standard deviation SD = 1.5 (i.e., µ=4,  

Figure 5.21 illustrates the sequence diagram of the proposed approach based on the 

protocol explained above. Figure 5.22 illustrate the flow of the protocol algorithm. 

 

 

 

 

 

 

 

 

Figure 5.21: SD of General Shared Resource for Resource Update Protocol 
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Figure 5.22: Activity Diagram of  Shared Resource for Resource Update  
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Sequence of Events 

 Initialisation stage: Both federates will either create or join federation. 

 Initialisation stage: Federate F1 and Federate F2 will indicate that they are 

capable of sending resource requests by publishing “requestF1” and 

“requestF2” interaction class parameter to any destination federate that is 

subscribing to them. 

 Initialisation stage: Federate F1 and Federate F2 will indicate that they are 

capable of receiving requests by subscribing to “requestF2” and “requestF1” 

interaction class parameter from any destination federate that is publishing 

them. 

 Simulation Runtime: Both Federate F1 and F2 will progress time “t” using 

the time management service of RTI.  

 Simulation runtime Case A:  

a) If Activity A1 in Federate F1 requires a resource at time T1 it will first 

check the status of the resource RM1 in its local copy.  

b) If the resource R status is busy then the Activity A1 will block and wait 

for the next time tick to check and request.  

c) If the resource is available or becomes available, then F1 will send a 

request notification to occupy the resource R to F2 at time T2. 

d) If Federate F1 does not receive any resource request from Federate F2 

at T2 it will update the status of RM1.   

e) Similarly, F2 will update the status of RM2 as busy/unavailable in its 

local copy of the resource and both the federates progress to next time. 

f) Once the activity in F1 has completed its operation and will not require 

the resource at time T3, it will send a Zero “0” in its request to indicate 

to F2 that F1 no longer requires the resource and F2 can mark the 

resource as now available. 

g)  Both F1 and F2 will update the status of their local copies of resource 

at time T3.  
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h) Similarly, F2 can notify F1 to use the resource by following the above 

steps. 

 Simulation runtime Case B:  

a) If the activities A1 and A2 in both models F1 and F2 wish to use 

resource R at the same time, then both federates will send request 

notifications to each other at time T1.  

b) Both models will evaluate the priority by looking at their priority table 

and update their local copy of the resource accordingly. In this case, a 

higher priority is assigned to Federate F1; therefore, Activity A1 in 

Federate F1 will occupy the resource R while M2 will wait for the 

resource to be available and block its activity in A2. 

c) After the resource is allocated the simulation will continue further: 

from Case A step f onwards, as given above.  

d) Once the resource becomes available, F2 must request for the resource 

again, which could lead to either Case A or Case B, until the 

simulation ends. 

5.2.5.2 Next Request Protocol 

The second possible approach to address IRM Type B.1 General Shared Resource 

is by using a Next request approach, i.e., if the resource is already busy then the 

resource will be booked for next use by any model. The relationship between the 

Models, CSP and RTI is shown in Figure 5.20 above. The concept of sharing 

resource R is the same as described in the last section, i.e., a shared resource is not 

owned by any federate or model; therefore, a copy of the same resource is kept at 

each model RMx. In this protocol explanation, two federates share the same 

resource. 

This protocol may be applicable to a scenario similar to one explained in the 

previous section where two units in a factory may need attention either at fixed or 

variable time intervals and require a machine engineer/ operator to acknowledge 

them. Similarly, a resource could be represented as an object with multiple 

attributes, which could define more than one behaviour of the resource. But for 

simplicity, this research assumes only one behaviour of the resource as is in the case 
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of the previous protocol. This protocol is further enhanced by having two 

parameters. Therefore, the resource within this protocol is represented as a single 

interaction class with one boolean parameter “RequestFx” for each federate (“x” 

represents the federate number), “DurationFx”.  

The state of the request parameter (RequestFx) could be either zero “0” indicating 

no resource request or one “1” for resource requests. Duration parameter is used to 

indicate the duration in time when the resource will be occupied by the federate, 

i.e., it defines the time when the next resource request can be raised. This will allow 

the other federate to schedule its next event or wait without verifying at every time 

tick. Finally, the Model ID parameter can be used if there are more than two models 

in a given scenario, it will ease the identification of the source model. Unlike the 

simple protocol, each federate will maintain a boolean status variable in their local 

copies of resource requests (i.e., RMx), and a duration variable (D) to hold the time 

for which the resource will be occupied by another federate (i.e. Dx). The RMx 

status variable will be used to record the status of the Resource at any given time, 

which will be consistent across the federation. This variable will be null if there is 

no simultaneous resource request. Following FOM is used for this protocol. 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name> SharedResource </name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 
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13.                 <parameter> 

14.                      <name> requestF1 </name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 

17.                 <parameter> 

18.                      <name> requestF2 </name> 

19.                      <dataType>HLAinteger32BE</dataType> 

20.                 </parameter> 

21.                 <parameter> 

22.                      <name> DurationF1 </name> 

23.                      <dataType>HLAinteger32BE</dataType> 

24.                 </parameter> 

25.                  <parameter> 

26.                      <name> DurationF2 </name> 

27.                      <dataType>HLAinteger32BE</dataType> 

28.                 </parameter> 

29.            </interactionClass> 

30.       </interactionClass> 

31.  </interactions> 

In this protocol, Federate F1 will publish the “requestF1” and “DurationF1” 

parameters and subscribe to “requestF2” and “DurationF2” parameters of the 

interaction class, while Federate F2 will publish the “requestF2” and “DurationF2”  

parameters and subscribe to “requestF1” and “DurationF1” parameters of the 

interaction class. Each federate will use a fixed / static priority table in case both 

models request the same resource at the same time T. Again, to maintain 

consistency, Federate F1 will have a higher priority for using the resource over 

Federate F2.  

In this protocol, each simulation model uses normal distribution and all the models 

are based on a stochastic approach. Both simulation models, i.e., Model M1 and 
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Model M2 use the same normal distribution for generating new entities (i.e., 

Arrivals) where the mean = 4.0 and Standard deviation SD = 1.5 (i.e. µ=4, . 

The service time for Activity A1 and Activity A2 are also defined by Normal 

Distribution of mean = 4.0 and Standard deviation SD = 1.5 (i.e., µ=4,  

However, during simulation runs different values of mean and SD will be used. 

Figure 5.23 illustrates the sequence diagram of the proposed approach based on the 

protocol explained above. Figure 5.24 illustrate the flow of the protocol algorithm. 

 

Figure 5.23: SD of General Shared Resource using Next Request 

Sequence of Events 

 Initialisation stage: Both Federates will either create or join federation. 

 Initialisation stage: Federate F1 will indicate that it is capable of sending 

resource requests by publishing to “requestF1” and “DurationF1” and can 

receive by subscribing to “requestF2” and “DurationF2” interaction class 

parameters. 
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 Initialisation stage: Federate F2 will indicate that it is capable of sending 

resource requests by publishing to “requestF2” and “DurationF2” and can 

receive by subscribing to “requestF1” and “DurationF1” interaction class 

parameters. 

 Simulation Runtime: Both Federates F1 and F2 will progress time “t” 

using the time management service of RTI.  

 Simulation runtime Case A:  

a) If Activity A1 in Federate F1 requires a resource at time T1 it will first 

check the status of the resource RM1 in its local copy.  

b) If the resource R status is busy then the Activity A1 will block and 

schedule the next activity processing when the resource will be 

available next using time identified in duration variable D1. 

c) If the resource is available or becomes available, then F1 will send a 

request notification to F2 to occupy the resource R at time T1, with the 

duration D1 required to process the entity. 

d) If the Federate F1 does not receive any resource request from federate 

F2 at T1 it will update the status of RM1 (as available) and keep the 

federate name as null.   

e) Similarly, F2 will update the status of RM2 as busy/unavailable in its 

local copy of the resource and update next available time for the 

resource. Both the federates progress to next time. 

f) Once the activity in F1 has completed its operation and no longer 

requires the resource for the next activity, it will then send a Zero “0” 

in its request to indicate to F2 that F1 no longer requires the resource 

and F2 can mark the resource as now available. 

g) Both F1 and F2 will update the status of their local copies of the 

resource at Time T2.  
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h) Similarly, F2 can notify to use Resource to F1 by following the above 

steps. 

i) While the resource was blocked by F1, if F2 needed to use the resource 

it would send the resource request with duration to F1. F1 would also 

update the next request and occupy the resource once it had completed 

its processing. 

 Simulation runtime Case B:  

a) If the activities A1 and A2 in both models F1 and F2 wish to use 

resource R at the same time, then both federates will send request 

notifications to each other at time T1.  

b) Both models will evaluate the priority by looking at their priority table 

and updating their local copy of the resource accordingly. In this case, 

a higher priority is assigned to Federate F1; therefore, Activity A1 in 

Federate F1 will occupy the resource R while M2 will wait for the 

resource to be available and block Activity in A2. 

c) Also, as Federate F2 requested the resource at the same time, there will 

be no re-election for the resource and both models will update their 

federate name variable with “F2” as next requesting federate. 

d) Once the Activity A1 has completed its operation and wants to release 

the resource, it will send a message to F2 at T2 and mark the resource 

status as unavailable and empty the next federate name variable. 

e) When F2 receives the resource release message from F1 it will also 

update the next federate name with a null and keep the resource busy 

for its own use at T2.  

f) Once Federate F2 has released the resource at T4, the resource is again 

available for use for both federates. But if at T3 F1 had requested the 

resource again, both the models would update their federate name 

variable with the next requesting federate and continue from Case B 

Step d. 
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Figure 5.24 Activity Diagram for General Shared Rsrouces 



Chapter 5: IRM Protocols 

 

Athar Nouman 187 

5.2.5.3 Message Queue Protocol 

The third possible approach to address IRM Type B.1 general shared resource is by 

using a message queue and a resource manager, i.e., each model will have a local 

resource manager (LRM) that will arrange the resource requirements of the models 

sharing resource. The relationship between the Models, CSP, and RTI is shown in 

Figure 5.25 below. Similarly, to the previous two approaches, a copy of the same 

resource is kept at each model RMx and the resource is shared between two models.  

This approach for resource sharing between federates, where there is one resource 

shared by two or more federates without any predefined priority, can also be termed 

as a fairer distribution of resources. This could be based on FIFO (First In First 

Out), LIFO (Last in First Out) or any other policy. Any resource shared by two or 

more models is problematic for consistently maintaining the state of that resource 

in a distributed simulation. This model assumes that all the participating federates 

are publishing and subscribing. 

In this approach, to maintain the consistent state of the resource, each federate is 

equipped with a LRM, which will control the resource allocation of its federate. 

When any activity A wants to use a resource R, it will send a request to its LRM to 

release the resource. The resource manager will check and release the resource to 

the activity A at appropriate time T. If the resource is not currently available and is 

being used by another federate then LRM will send a wait message to its activity 

until the resource is available to use. This protocol provides resource guarantee and 

avoids starvation. 

This protocol could also be used to avoid a deadlock situation because of resource 

locking. This could be achieved by sending an extra dynamic priority variable in 

the communication, which will sort the resources according to the priority. Before 

allocating the priority, all conditions for deadlock need to be identified. Later, based 

on the deadlock algorithms, the resource dynamic priority could be assigned. Being 

dynamic gives the flexibility to reduce or increase the resource use by any federate. 

For example, if more than two federates are used (i.e. F1, F2 and F3) and some 

federates are dependent on other federates’ output, i.e., if Activity A2 in Federate 
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F2 has requested the use of resource but does not have all its entities to process as 

they have to come from Activity A1 and A3 from Federates F1 and F3, which are 

also waiting for the resource to process. In such case, A1 in Federate F1 should 

have the highest priority of resource R1 followed by Federate F3 before allocating 

the resource to Federate F1. Similarly, during the same simulation run, if A1 has 

already produced an entity and already requested the resource to process the next 

entity (this can happen if A1 processing time is shorter than A2), while A2 is still 

waiting to process its previous entity because of resource availability, then A2 

might have the highest priority. 

 

 

 

 

 

 

 

Figure 5.25: General Shared Resource with LRM using HLA 

Message Queue 

A message queue used in this proposed approach is a linked list where each node 

will be composed of the following as described in Figure 5.26 

1. Federate name (FN) 

2. Next release time (NRT) 

Next release time will be calculated based on the following two cases:  

Case A: If the message queue is empty 

Next release time = Current simulation time T+ time required by activity before it 

could release the resource (AT). 
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Case B: If the message queue already has some previous notifications 

The next release time = the last node of the message queue NRT + time required 

by activity before it could release the resource (AT). 

 

 

 

 

 

 

Figure 5.26: General Shared Resource with LRM using Message Queue 

To share the state of the resource among all copies of federates a resource could be 

represented as an object and perform more than one role. Therefore, in this example, 

resource is represented as a single interaction class with one parameter “NRTFx” 

for each federate and “ModelIDFx”. The NRT parameter will carry the time 

Activity will require to block the resource while ModelID will contain the federate 

name for requesting the resource. ModelID parameter is used because there are 

more than one models in a given scenario; therefore, it will ease the identification 

of the source model and will help in calculating the next resource available. Each 

federate will maintain a LRM (defined below) to store the status of the shared 

resource. The FOM used for this protocol is defined as: 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name> SharedResource </name> 
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10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                      <name> NRTF1 </name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 

17.                 <parameter> 

18.                      <name> NRTF2 </name> 

19.                      <dataType>HLAinteger32BE</dataType> 

20.                 </parameter> 

21.                 <parameter> 

22.                      <name> ModelIDF1 </name> 

23.                      <dataType>HLAinteger32BE</dataType> 

24.                 </parameter> 

25.                  <parameter> 

26.                      <name> ModelIDF2 </name> 

27.                      <dataType>HLAinteger32BE</dataType> 

28.                 </parameter> 

29.            </interactionClass> 

30.       </interactionClass> 

31.  </interactions> 

Using the above FOM, Federate F1 will publish the “NRTF1” and “ModelIDF1” 

parameter and subscribe to “NRTF2” & “ModelIDF2” parameter of the interaction 

class, while the SOM for Federate F2 will publish the “NRTF2” and “ModelID2” 

parameter and subscribe to “NRTF1” & “ModelID1” parameter of the interaction 

class. Each federate will also use a fixed / static priority table in cases when both 

models request the same resource at the same time T. Federate F1 will have higher 

priority for using the resource over Federate F2. Again, this priority table could also 

be dynamic or with a different strategy based on the model scenario and its 

requirements. 

Local Resource Manager (LRM) 

Each LRM will replicate the resource utilisation information to all other federates 

to maintain consistency. LRM is implemented by a message queue for each 

resource. This message queue is based on FIFO policy and it will store the federate 
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name (FN) that is using or waiting to use the resource and the time taken by the 

activity to release the resource “NRT”. If Activity wants to use a resource within 

Federate, it will send a resource release request to its LRM. LRM then will publish 

the Activity resource request (with request timestamp in microseconds, federate 

name, and the time required by Activity before releasing the resource) and wait for 

notification from other federate(s) before fulfilling the time advance request and 

before releasing the resource. If the resource is available, then the LRM will release 

the resource to Activity based on the following cases, otherwise it will ask Activity 

to wait until the resource is available.  

 

Figure 5.27: SD of General Shared Resource for Next Request 

In this protocol each simulation model uses normal distribution and all the models 

are based on a stochastic approach. Both simulation models, i.e., Model M1 and 

Model M2 use the same normal distribution for generating new entities (i.e., 

Arrivals) where the mean = 4.0 and Standard deviation SD = 1.5 (i.e., µ=4, . 

The service time for Activity A1 and Activity A2 are also defined by Normal 

Distribution of mean = 4.0 and Standard deviation SD = 1.5 (i.e. µ=4,  

However, during simulation runs different values of mean and SD will be used. 

Figure 5.27 illustrates the sequence diagram of the proposed approach based on the 

protocol explained above. This diagram illustrates an example of how messages are 
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communicated between LRM and the model. Figure 5.24 illustrate the flow of the 

protocol algorithm. 

Sequence of Events 

 Initialisation stage: Both Federates will either create or join federation. 

 Initialisation stage: Federate F1 will indicate that it is capable of sending a 

resource request by publishing to “NRTF1” and “ModelIDF1” and can receive 

by subscription to “NRTF2” and “ModelIDF2” interaction class parameter. 

 Initialisation stage: Federate F2 will indicate that it is capable of sending a 

resource request by publishing to “NRTF2” and “ModelIDF2” and can receive 

by subscription to “NRTF1” and “ModelIDF1” interaction class parameter. 

 Simulation Runtime: Both Federate F1 and F2 will progress time “t” using the 

time management service of RTI.  

 Simulation runtime Case A 

a) If Activity A1 in Federate F1 requires a resource, then Federate F1 will 

publish the notification at a specific time T1 and send T2 (NRT) to Federate 

F2. 

b) All other federate LRMs will update their message queue with the published 

notification.  

c) The LRM in F1 will check against its local message queue if there is no 

previous notification, then the LRM will release the resource to A1 and 

request time advance.  

d) If there is a previous notification in the queue (i.e., the resource is busy and 

is not available) then it will ask Activity A1 to wait until time T2 and store 

the notification in the message queue.  

e) At time T2 the LRM will remove a notification from the message queue if 

NRT is equal to the current simulation time. The resource will be then 

released once all the previous notifications are timed out. 
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 Simulation runtime Case B  

a) If both federates have published the notification at the same simulation time, 

then the LRM of each federate will prioritise the notification from all 

federates, based on the local requested timestamp and it will insert the new 

information in their local message queue. Each LRM will check against the 

first request in their local message queue and next time release. Further 

execution will continue as discussed in case A.  

b) Note: The priority decision is not made on the order of messages received 

by the federate, instead it is based on the ascending TSO to accommodate 

both TSO and received order (RO) federate message configuration. 

 Simulation runtime Case C 

a) If other federates have also published the notification at the same simulation 

time with the same timestamp this will mean messages having the same 

timestamp will be delivered in an arbitrary order (i.e., no tie-breaking 

mechanism is provided by an RTI) (IEEE 1516.2-2010).  

b) In such a case, when two or more notifications have the same timestamp, 

then the messages could be prioritised. Similar to the previous approaches, 

the resource will be prioritised by ascending order of the federate name to 

make sure all federates have a consistent message queue, i.e., in this case, it 

will be Federate F1 with higher priority. Further execution will continue as 

discussed in case A. 

Case C uses the hybrid Specialised and dynamic prioritisation technique, which is 

much more flexible and scalable. Having priority set using federate name will 

determine the priority order at run time, while the strategy is defined specifically to 

all models. 

5.2.5.4 Next Resource Event Protocol 

The fourth possible approach to address IRM Type B.1 general shared resource is 

similar to the one discussed in the last section, but instead of using a message queue 

all the requests for resources are recorded in an event list. This event list already 
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exists in the discrete event simulation approach; therefore, list management 

functions are not necessarily required to be separately implemented. The 

relationship between the Models, CSP and RTI is shown in Figure 5.20. Similar to 

the last three approaches, a copy of the same resource is kept at each model RMx 

and the resource is shared between two models. 

To share the state of the resource in this protocol, a single interaction class with one 

parameter “NRT” is defined. The NRT parameter will carry the time required by 

the activity to use a resource and also this will be used to calculate when to schedule 

the next event in the event list. Both the Models will maintain a local variable Last 

next request time “NRT”. This variable will be updated on each resource request 

locally. This variable helps to determine the next resource allocation and release 

time. In this approach, when Activity A1 from model M1 requires a resource, both 

model M1 and Model M2 will block the resource and at the same time T they will 

schedule an event to release the resource at the time defined by NRT. Note that in 

the discrete event simulation implementation the event list implements time based 

strategy for its event. But our sequential scheduling of the event will make sure that 

the resource request is allocated using FIFO strategy and Activity A1 will use the 

resource and Activity A2 will wait until NRT.  The FOM used for this 

implementation is as under. 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name>SharedResource</name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                      <name> NRTF1 </name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 
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17.                 <parameter> 

18.                      <name> NRTF2 </name> 

19.                      <dataType>HLAinteger32BE</dataType> 

20.                 </parameter> 

21.            </interactionClass> 

22.       </interactionClass> 

23.  </interactions> 

Using the above FOM, Federate F1 will publish the “NRTF1” parameter and 

subscribe to “NRTF2” parameter of the interaction class, while federate F2 will 

publish the “NRTF2” parameter and subscribe to “NRTF1” parameter of the 

interaction class. Each federate will also use a fixed / static priority table in cases 

when both models request the same resource at the same time T and Federate F1 

will have higher priority for using the resource over Federate F2.  

 

 

 

 

 

 

 

Figure 5.28: SD of General Shared Resource using Next Resource Event 

Each simulation model uses normal distribution and both simulation models, i.e., 

Model M1 and Model M2 use the same distribution for generating new entities (i.e., 

Arrivals) where the mean = 4.0 and Standard deviation SD = 1.5 (i.e. µ=4, . 

The service time for Activity A1 and Activity A2 are also defined by Normal 

Distribution of mean = 4.0 and Standard deviation SD = 1.5 (i.e. µ=4,  

However, during simulation runs different values of mean and SD will be used. 

Figure 5.28 illustrates the sequence diagram of the proposed approach based on the 

protocol explained above. This diagram illustrates an example of how messages are 
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communicated between LRM and the model. Figure 5.24 illustrate the flow of the 

protocol algorithm. 

Sequence of Events 

 Initialisation stage: Both Federates will either create or join federation. 

 Initialisation stage: Federate F1 will indicate that it is capable of sending 

resource requests by publishing to “NRTF1” and can receive by subscribing to 

“NRTF2” interaction class parameter. 

 Initialisation stage: Federate F2 will indicate that it is capable of sending 

resource requests by publishing to “NRTF2” and can receive by subscribing to 

“NRTF1” interaction class parameter. 

 Simulation Runtime: Both Federate F1 and F2 will progress time “t” using the 

time management service of RTI.  

 Simulation runtime Case A 

a) If Activity A1 in Federate F1 requires use of a resource, then Federate F1 will 

publish the notification at a specific time T1 and send T2 as NRT to Federate 

F2. 

b) Both Model M1 and Model M2 will mark the resource as busy in their local 

copy of RMx and schedule an event to release the resource using the NRT.  

c) Since the resource is blocked by Model M1, if Activity A2 in Model M2 

wishes to use the resource, then it has to repeat the request procedure from 

Step a.  

d) The resource will be booked using the last NRT time plus the time required 

for activity A2 to schedule the activity A2 and to release the resource.  

 Simulation runtime Case B 

a) If both federates have published the resource request at the same time, then 

the predefined priority strategy must be applied. In this case Federate F1 has 

higher priority, therefore two events will be scheduled for using the 

resource, but the first event will be for Model M1 and later for Model M2.  
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b) Both Models will mark the resource as busy in their local copy. 

5.2.6  General Shared Event 

IRM Type C.1: General Shared Event represents an interoperability problem that 

occurs when two or more models in the distributed simulation are sharing the same 

events at the same time. It has been established in Chapter 4 that each model will 

have its local copy of the shared event, i.e., the process that will execute once the 

shared event is triggered. Therefore, a shared event message (a trigger) will be sent 

to all participating models, in which this event will not join any queue but will 

immediately trigger the shared event. It is also possible that these events are not 

same for all models, but they all have to start at the same time. For example, 

evacuating the building (when a fire alarm is triggered) might be quicker for people 

living on the ground floor, while people living on the second floor have to perform 

additional tasks and a process of climbing down the stairs. 

Figure 5.29 illustrates the relationship between the Model, CSP and RTI. For the 

purpose of understanding the general shared event concept, it is necessary to 

identify the participating models, i.e., all models that will send and receive the 

shared event message, and are required to process the shared event at time T. 

Therefore, it will be assumed that two models, M1 and M2 to participate in the 

shared event example and Time t will be defined as the time when the event is 

triggered and the same time as the shared event starts processing at both models. 

For the purpose of simplicity M1 will trigger the shared event at time T1 and both 

models will run the shared event EM1 and EM2 at time T2 (where T1=T2=t). 

The event trigger to execute the shared event, in both Model M1 from Federate F1 

and M2 from Federate F2, could be represented as a single variable message or an 

object with attributes. There is also expected to be multiple types of triggers and 

shared event processes in real practice. For example, an industrial assembly line 

can have more than one production unit feeding to one packaging unit. If one 

production unit breaks down or slows down when others are still working then an 

event message can be sent to the packaging unit to reduce the packaging speed by 
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some factor and the information about which unit is broken down, etc. Therefore, 

this information could be sent in the event trigger object as attribute or interaction 

values. The actual representation of the event trigger message depends on the model 

implementation in a CSP and how the modeller will use the message.  

 

 

 

 

 

 

 

Figure 5.29: General Shared Event HLA 

For the purpose of understanding the event trigger message used, it is represented 

as a single interaction class parameter “Event” in both models, M1 and M2. As 

there are only two models in a selected scenario, both models will be aware of the 

message source. However, defining the source of the event is important in case of 

more than two models used and when there are different types of event triggers 

and/or different shared event procedures. This “Event” attribute of the interaction 

class will be Published and Subscribed by both models by using RTI features. 

Therefore, both models will use the following FOM. 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 



Chapter 5: IRM Protocols 

 

Athar Nouman 199 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name>SharedEvent</name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                      <name> event </name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 

17.            </interactionClass> 

18.       </interactionClass> 

19.  </interactions> 

Using the above FOM, Federate F1 will publish the “event” parameter, while 

Federate F2 will subscribe to “event” parameter of the interaction class. Each 

federate will have its local copy of the shared event and each simulation model uses 

normal distribution. Both the models, i.e., Model M1 and Model M2 use the same 

distribution for generating new entities (i.e., Arrivals) where the mean = 4.0 and 

Standard deviation SD = 1.5 (i.e. µ=4, . The service time for Activity A1 

and Activity A2 are also defined by Normal Distribution of mean = 4.0 and 

Standard deviation SD = 1.5 (i.e. µ=4,  However, during simulation runs 

an event is generated with a normal distribution where the mean = 100 and Standard 

deviation SD = 15 (i.e. µ=100, . Figure 5.30 illustrates the sequence 

diagram of the proposed approach based on the protocol explained above. This 

diagram illustrates an example of how messages are communicated between RTI 

and the model and Figure 5.31 illustrate the flow of the protocol algorithm. 
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Figure 5.30: SD for a General Shared Event using RTI 

Sequence of Events 

 Initialisation stage: Both Federates will either create or join federation. 

 Initialisation stage: Federate F1 will indicate that it is capable of sending an 

event message by publishing “event” interaction class parameter. 

 Initialisation stage: Federate F2 will indicate that it is capable of receiving an 

event message by subscribing to “event” interaction class parameter. 

 Simulation Runtime: Both Federates F1 and F2 will progress time “t” using the 

time management service of RTI and schedule their local events. 

 Simulation runtime Case A 

a) If Model M1 in Federate F1 requires triggering a shared event at time T1, 

then Federate F1 will broadcast the notification at T1 to all available 

federates. 

b) Both Model M1 and Model M2 will stop their current activities and schedule 

a local shared event process.  
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Figure 5.31: Activity Diagram for Shared Event 

5.2.7  General Shared Data Structure 

IRM Type D: Shared Data Structure represents an interoperability problem for 

sharing data between two or more models in a distributed simulation environment 

as described in Chapter 4. Although a shared data structure is not the same as 

sharing resources, there are some similarities; therefore, it must not be confused 

with shared resources. Shared resources face challenges like time guarantee, 

avoiding deadlocks, and resource starvation, while a shared data structure comes 

with challenges like consistency, deadlock, concurrent access, and update anomaly. 

This problem is already defined in Chapter 4 in more detail, and therefore this 

section will focus on the conceptual modelling of each protocol used to address this 

IRM.  
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Distributed simulation consists of different models, each having some event. An 

event is an action occurring at a certain time t. An event could be related to access 

a shared data, i.e., a request to read or update some data value. Any read request is 

to get the latest available value of the data structure. An update is a process where 

a data variable is first read, then a certain operation or event is applied to generate 

a new value which is used to replace the old value of that same variable. These 

event sequences in a distributed simulation are performed according to the TSO 

associated with them. All requests having the same timestamp are executed either 

in a sequential order or by event priority according to the program code of the event. 

The sequential execution of events might lead to a different problem. For example, 

if a model M1 requested a read operation at same time when another model M2 

requested an update operation of shared data structure D, then by following 

sequence inconsistent data would be returned to model M1, when the actual 

sequence of events was to change and update the shared data before the read of the 

shared data structure D. 

Therefore, one approach to implement a shared data in a distributed simulation 

environment is to use a DSM model on top of the distributed simulation application. 

This DSM acts as a virtual physical memory for all of the models. In simplicity, all 

models will have one shared memory externally. However, DSM does not fully 

address the issues in distributed simulation applications and creates further issues 

related to casualties (Mehl and Hammes, 1995). Therefore, this approach is 

modified below to best suit the requirements for distributed applications. Based on 

this DSM model, the following three approaches could be considered. 

1) Central control 

In this approach a shared variable or data structure is kept on a separate node  

(federate). This node will be the owner of the variable and will retain the most 

updated copy of the variable. This node will receive requests for both read and 

update and will make decisions on request before sending the information back. 

Additional processes need to be implemented to avoid bottlenecks, casualties, and 
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to maintain consistency while dealing with multiple shared variables. Alternatively, 

each shared variable could be hosted by different nodes. 

2)  Central Update  

In this approach a copy of shared variable or data structure is kept at each model 

(requesting shared data). The value of these copies will be kept consistent at all 

times, allowing immediate concurrent access to read the value; updates will be 

controlled by the central server.  

3)  Full replication 

In this approach, a copy of shared variable or data structure is kept at each model 

(requesting shared data). The values of these copies will be kept consistent at all 

times allowing immediate access to read the values, but the updates will also be 

controlled by these models. This means no central server will be implemented to 

control read and update as all relevant processes will be implemented within the 

models. This approach is more flexible and scalable, but with costs to complexity 

and efficiency. 

5.2.7.1 Central Control Protocol 

The first possible approach to address IRM Type D.1 General Shared Data Structure 

is by using the central control approach as explained in previous section. The 

relationship between the models, CSP and RTI is illustrated in Figure 5.32. For the 

purpose of understanding the Shared Data Structure with the central control 

approach, it is necessary to identify responsibilities and how the models are sharing 

the data structure. In this approach, a shared data structure is not owned by the 

requesting federate, instead a separate federate, termed as controller federate, will 

maintain the concurrent state of the data structure and the requesting federate will 

request a copy of the data structure at every read or write using the Data Manager 

(DM) in controller federate.  
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Figure 5.32: Shared Data Structure using Central Control & Update 

approach using HLA 

To maintain consistency among all federates for shared data structure at any given 

time t the controller federate will use an exclusive locking mechanism whereby 

access to the data structure could be restricted for other federate(s) while an update 

is in process.  

A controller federate can implement more than one shared data structure or more 

than one controller federate can be created for each shared data structure but the 

concept of access will remain the same. In this protocol there is one controller 

federate F1 with one shared data structure between two other requesting federates, 

F2 and F3.  
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To share the state of the data structure among all the federates a shared data 

structure could be represented as an object with a number of attributes as required 

by the model. Shared data structure in this protocol is represented as a single 

interaction class with three parameters: a string parameter for the federate name or 

ID “ModelID” for each federate identification; a string parameter “opcode” to 

define the operation, i.e., Read or Write (R or W); and the “value” to send the new 

value. The value parameter will be null in case of the read operation. The following 

FOM will be used by all three federates. 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name>SharedData</name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                      <name> valueF1 </name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 

17.                 <parameter> 

18.                      <name> ModelIDF2</name> 

19.                      <dataType>HLAinteger32BE</dataType> 

20.                 </parameter> 

21.                 <parameter> 

22.                      <name> opcodeF2</name> 

23.                      <dataType>HLAASCIIchar </dataType> 

24.                 </parameter> 

25.                 <parameter> 

26.                      <name> valueF2 </name> 

27.                      <dataType>HLAinteger32BE</dataType> 

28.                 </parameter> 



Chapter 5: IRM Protocols 

 

Athar Nouman 206 

29.                  <parameter> 

30.                      <name> ModelIDF3</name> 

31.                      <dataType>HLAinteger32BE</dataType> 

32.                 </parameter> 

33.                 <parameter> 

34.                      <name> opcodeF3 </name> 

35.                      <dataType>HLAASCIIchar </dataType> 

36.                 </parameter> 

37.                 <parameter> 

38.                      <name> valueF3 </name> 

39.                      <dataType>HLAinteger32BE</dataType> 

40.                 </parameter> 

41.            </interactionClass> 

42.       </interactionClass> 

43.  </interactions> 

 

In the above FOM, Federate F2 will publish the “ModelIDF2”, “opcodeF2” and 

“valueF2” parameter and subscribe to “valueF1” parameter of the interaction class 

from Federate F1. Similarly, Federate F3 will publish the “ModelIDF3”, opcodeF3” 

and “valueF3” parameter and subscribe to “valueF1” parameter of the interaction 

class from Federate F1. While Federate F1 will publish the “valueF1” parameter 

and subscribe to “ModelIDF2”, “opcodeF2”, “valueF2”, “ModelIDF3”, 

“opcodeF3” and “valueF3” of the interaction class. 

Each federate will use a fixed / static priority table in cases when two or more 

models initiate an update request for the shared data structure at the same time t. In 

this case, Federate F2 has higher priority for updating the shared data structure over 

Federate F3. Again, this priority table could also be dynamic or with a different 

strategy based on the model scenario and requirements.  

 

Read Request  

If a read request is initiated on shared data structures by the requesting federates at 

time T1, this request (including ModelID, opcode, value) is sent to Federate F1, 

while the requesting federates suspend operations until the controller returns the 

value. The controller will hold these read requests until receipt guarantee assures it 
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will not receive any further update request. When the controller is satisfied of this, 

it extracts the latest value of the data structure at time T1 and returns to the 

requesting federates. In read only operation the value parameter of the request will 

be null. 

 

 

Figure 5.33: SD for Shared Data Structure using Central Control 

Update Request  

If an update request is initiated on shared data structures by the requesting federates 

at time T1, this request is sent to the controller Federate F1. While the requesting 

Federates F2 and F3 will suspend their operations until the controller returns the 

value. The controller will hold all the requests until receipt guarantee ensures it will 

not receive any further update request. If the controller receives a single update 

request, then it will send the current shared data structure value to the federate 

requesting an update and hold the reply to other federates (if requesting to read). 

The federate requesting an update will send an updated value to the controller and 

the controller will then send this new value to the other federates (if requested). But 

if in case two or more federates have requested an update, then this could be 

prioritised either by using a timestamp approach or defined priority approach as 

discussed in other IRM solutions explained above. Note, the update operation 

means data has to be read first before an operation is done to update the value. The 
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sequence diagram in Figure 5.33 above illustrates the sequence of events and Figure 

5.34 illustrate the flow of the protocol algorithm. 

Sequence of Events 

 Initialisation stage: All Federateswill either create or join federation. 

 Initialisation stage: Federate F2 and Federate F3 will indicate that they are 

capable of sending requests by publishing “ModelIDF2”, “opcodeF2”, 

“valueF2”, “ModelIDF3”, “opcodeF3” and “valueF3” interaction class 

parameters respectively. While Federate F1 will publish “valueF1” 

interaction class parameter. 

 Initialisation stage: Federate F2 and Federate F3 will indicate that they are 

capable of receiving requests by subscribing to “valueF1” interaction class 

parameter while Federate F1 will indicate that it is capable of receiving 

requests by subscribing to “ModelIDF2”, “opcodeF2”, “valueF2”, 

“ModelIDF3”, “opcodeF3”, and “valueF3”. 

 Simulation Runtime: All federates F1, F2 and F3 will progress time “t” 

using the time management service of RTI.  

 Simulation runtime Case A (Read only):  

a) If Activity A1 in Federate F2 requires reading the shared data at time 

T1 it will send a read request (ModelID F1, opcode R and value V) to 

F1 at time T1 and will wait for a reply. 

b) Once Federate F1 has received all the requests from other federates and 

there is no update request in the list, then Federate F1 will reply to all 

read requests with the latest copy of the shared data structure D using 

the value (V) to Federate F2 and Federate F3 (if requested). 

c) All federates will progress to next time. 
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 Simulation runtime Case B (single update): 

a) If Activity A1 in Federate F2 requires an update to the shared data at 

Time T1 it will send an update request to F1 at time T1 and will wait 

for other federate(s) to send their request.  

b) Once Federate F1 has received all the requests from other federates and 

there is no other update request in the list, then Federate F1 will send 

the current value to Federate F2 at time T1 and will hold the reply to 

another read request (if any). 

c) Federate F2 will update the variable and send the new value to Federate 

F1. Federate F1 will replace the shared data structure value with the 

new value before acknowledging the read requests from other federates 

(if any).   

d) All federates will progress to next time. 

 

 Simulation runtime Case C (Multiple updates): 

a) If Activity A1 and Activity A2 in Federate F2 and Federate F3 require 

an update to the shared data D at the same time T1, they will send an 

update read request to F1 at time T1 and will wait for other federate(s) 

to send their request.  

b) Once Federate F1 has received all the requests, then based on priority 

(as discussed above) F2 will receive the current value of the shared data 

structure to update while Federate F3 will hold its operation and will 

wait until the value is not being updated. 

c) When Federate F1 receives the new value (V) from Federate F2, it will 

send it to Federate F3 for its update. Federate F3 will process the value 

and generate a new value (V) which will be posted to Federate F1 at 

same time T1. Federate F1 will update the shared data structure D.   

d) All federates will time advance. 
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Figure 5.34: Activity Diagram for Central Control Protocol 

5.2.7.2 Central Update Protocol 

The second possible approach to address IRM Type D.1 General Shared Data 

Structure is by using the central update approach as defined above. The relationship 

between the models, CSP and RTI is illustrated in Figure 5.32. In this approach, as 

discussed above, a copy of the data is kept at the concerned federates to have 

concurrent access for any read operation while the updates are managed by a central 

server. Unfortunately, this approach cannot directly be used in every scenario in the 

conservative simulation approach because rollback is not possible. For example, 

suppose M2 requests a read to its local data at time t. Further, M2 proceeds with 
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execution until at any virtual time tv it requests to read data again. Because its read-

only copy of data is still not updated, M2 would continue to read and use the data 

from its local copy, whereas in real time the model might be messaged about a new 

value update by another federate M3, which would invalidate the read copy of M2 

at virtual time tt, where t < tv = tt. Therefore, the read request at tv by M2 can use 

an invalid copy. Being a conservative simulation, the algorithm does not offer 

rollback or undo wrong event executions, so this approach can compromise 

consistency. However, this approach could be used within simulation where the 

lookahead is greater than zero, the simulation exercises a rollback facility, or the 

frequency of use of shared data is minimized. 

Some arrangements must therefore be made whereby a local copy remains valid 

until the next time advance when the federate is notified about the change in state 

of the data, while the read operation continues without any further communication. 

Additional strategies could be defined based on model requirements. 

This approach could also represent a situation where the update operations are not 

the responsibility of the requesting federate and the update is done by some other 

federate. For example, in a military war game, firing a missile from an aircraft or 

firing a shell from a tank could represent two different federates while the effect of 

these two different arsenals hitting targets could only be calculated by a third 

federate responsible for terrain impact. Both other federates could send parameters 

to define the power of their arsenals, but the effects have to be calculated and 

updated to both federates by the terrain federate. Both the requesting federates can 

then hold the updated terrain condition as a local copy for their use. 

In this approach, a shared data structure is partially owned by the requesting 

federate, along with a third federate which will be responsible for updating and 

maintaining the concurrent state of the data structure. The requesting federate will 

request an update using the DM in the third federate. To maintain consistency of 

shared data structure among all federates at any given time t, the third federate will 

use an exclusive locking mechanism to update the data structure whereby access to 

the data structure could be restricted for other federate(s) while an update is in 

process. In this protocol, unlike the last central control approach, DM will take the 
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values as parameters from the other federates and will process further to generate a 

new value before it sends out to the requesting federates. There is one federate F1 

responsible for updates, with one shared data structure between two other 

requesting federates, F2 and F3. 

To share the state of the data structure among all federates, a shared data structure 

could be represented as an object with a number of attributes as required by the 

model, e.g., a shared data could be an object with listed attributes. Shared data 

structure in this approach is represented by a single interaction class with two 

parameters: a string parameter for the federate name “Model ID” for each federate 

identification; and an integer parameter “value” to provide the value for the update. 

The FOM used by the federates is defined below.  

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name>SharedData</name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                      <name> valueF1 </name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 

17.                 <parameter> 

18.                      <name> ModelIDF2</name> 

19.                      <dataType>HLAinteger32BE</dataType> 

20.                 </parameter> 

21.                 <parameter> 

22.                      <name> valueF2 </name> 
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23.                      <dataType>HLAinteger32BE</dataType> 

24.                 </parameter> 

25.                  <parameter> 

26.                      <name> ModelIDF3</name> 

27.                      <dataType>HLAinteger32BE</dataType> 

28.                 </parameter> 

29.                 <parameter> 

30.                      <name> valueF3 </name> 

31.                      <dataType>HLAinteger32BE</dataType> 

32.                 </parameter> 

33.            </interactionClass> 

34.       </interactionClass> 

35.  </interactions> 

Using the above FOM, Federate F2 will publish the “ModelIDF2” and “valueF2”  

parameter and subscribe to “valueF1” parameter of the interaction class from 

Federate F1. Similarly, Federate F3 will publish the “ModelIDF3” and “valueF3” 

parameter and subscribe to “valueF1” parameter of the interaction class from 

Federate F1. Federate F1 will publish the “valueF1” parameter and subscribe to 

“ModelIDF2”, “valueF2”, “ModelID3” and “valueF3” of the interaction class. 

Federate F1 will use a fixed / static priority table in cases when two or more models 

initiate an update request for the shared data structure at the same time t. In this 

example, Federate F2 has higher priority for updating the shared data structure over 

Federate F3. Again, this priority table could also be dynamic or with a different 

strategy based on model scenario and requirements.  

Read Request  

If a read request is initiated on shared data structure by requesting federates at time 

t, this request need not to be sent to Federate F1, as the requesting federate will use 

their local copy of the shared data structure for this purpose.  

Update Request  

If an update request is initiated on shared data structure by requesting federates at 

time T1, this request is sent to Federate F1 and the requesting federate will use the 
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read operation from its local copy of the shared data structure. Federate F1 will hold 

all requests until by receipt guarantee it knows it will not receive any further update 

request. If Federate F1 receives a single update request, then it will update the 

shared data structure only, but if two or more federates have requested an update, 

then this could be prioritised either by using a timestamp approach or defined 

priority approach, as discussed in other IRM solutions explained above. Once the 

data is updated, a new value will be sent to all requesting federates at the same time 

T1 before time advance. The sequence of events is illustrated by the sequence 

diagram below in Figure 5.35. 

 

Figure 5.35: Sequence Diagram of Central Update Shared Data Structure  

Sequence of Events 

 Initialisation stage: All Federates will either create or join federation. 

 Initialisation stage: Federate F2 and Federate F3 will indicate that they are 

capable of sending an update request by publishing “ModelIDF2”, 

“valueF2”, “ModelIDF3” and “valueF3” interaction class parameter 

respectively to Federate F1. While Federate F1 will publish “valueF1” 

interaction class parameter. 

 Initialisation stage: Federate F2 and Federate F3 will indicate that they are 

capable of receiving requests by subscribing to “valueF1” interaction class 
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parameter while Federate F1 will indicate that it is capable of receiving 

requests by subscribing to “ModelIDF2”, “valueF2”, “ModelIDF3” and 

“valueF3”. 

 Simulation Runtime: All Federates F1, F2 and F3 will progress time “t” 

using the time management service of RTI.  

 Simulation runtime Case A (Read only):  

a) If Activity A1 in Federate F2 or Activity A2 in Federate F3 require to 

read the shared data at time T1 they will not send any message to Federate 

F1 and will use their local copy of shared data structure D.  

b) All federates will progress to next time. 

 Simulation runtime Case B (single update): 

a) If Activity A1 in Federate F2 requires an update to the shared data at time 

T1, then it will send an update request (federate ID F2, and value V) to 

F1 at time T1 and will wait for other federate(s) to send their request.  

b) Once Federate F1 has received all requests from other federates and there 

is no other update request in the list, then Federate F1 will use the 

parameter value (V) to update the current value of the shared data 

structure and send the current updated value (value V) to Federate F2 and 

Federate F3 at time T1. 

c) Federate F2 and Federate F3 will update their local copy of shared data 

structure D at time T1.  

d) All federates will progress to next time. 

 Simulation runtime Case C (Multiple updates): 

a) If Activity A1 in Federate F2 and Activity A2 in Federate F3 require an 

update to the shared data at time T1, then they will send an update request 

to F1 at time T1.  

b) Once Federate F1 has received all requests from federates and there is no 

other update request in the list, Federate F1 will use the parameter value 
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to update the current value of the shared data structure based on the 

priority set (in this case, F2 parameter will be used first to update the 

value). 

c) Once both updates are applied by Federate F1, Federate F1 will send the 

current value to Federate F2 and Federate F3 at time T1. 

d) Federate F2 and Federate F3 will update their local copy of shared data 

structure at time T1.  

e) All federates will progress to next time. 

Figure 5.36: Activity Diagram for Central Update Protocol 
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5.2.7.3 Full Replication Protocol 

The third possible approach to address IRM Type D.1: General Shared Data 

Structure is by using a full replication approach, as defined above. There is no need 

for a third federate to manage the shared data as the shared data copies are kept with 

each federate; therefore, a minimum of two federates are required to demonstrate 

the full replication behaviour. The relationship between the models, CSP, and RTI 

is illustrated in Figure 5.37. In conservative simulation, full replication can be 

implemented more effectively with non-zero lookahead. To block the read request 

before the correct value is updated is a challenge in full replication and can only be 

possible if the update request is known before a read operation. In a zero lookahead 

scenario and in the case of multiple updates with no blocking to read operations, 

increased overheads for the update could result. It could mean running update 

operations more than once, which will increase cost of time and complexity, but 

only for the concurrent update. No communication is required for read operations.  

This protocol illustrates how full replication can be achieved using zero lookahead 

with multiple updates.  

 

 

 

 

 

 

Figure 5.37: Shared Data Structure using Full Replication approach 

In this approach, a shared data structure is completely owned by the requesting 

federate, and no third federate is involved in the process for updating and 

maintaining the concurrent state of the shared data structure D. To maintain 
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consistency among all federates for shared data structure at any given time t, both 

federates will use message passing to update the state of their local copies of the 

shared data structure. Shared data structure for this protocol is represented as a 

single interaction class with one as an integer value “value” to provide the new 

value for the update. The FOM used for this protocol is as under. 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name>SharedData</name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                      <name> valueF1 </name> 

15.                      <dataType>HLAinteger32BE</dataType> 

16.                 </parameter> 

17.                 <parameter> 

18.                      <name> valueF2 </name> 

19.                      <dataType>HLAinteger32BE</dataType> 

20.                 </parameter> 

21.            </interactionClass> 

22.       </interactionClass> 
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23.  </interactions> 

Using the above FOM, Federate F1 will publish “valueF1” parameter and subscribe 

to “valueF2” parameter of the interaction class from Federate F2. Similarly, 

Federate F2 will publish “valueF2” parameter and subscribe to “valueF1” 

parameter of the interaction class. Each federate will use a fixed / static priority 

table in cases when two or more models initiate an update request for the shared 

data structure at the same time t. A higher priority for Federate F1 is defined for 

updating the shared data structure.  

Read Request  

If a read request is initiated on shared data structure by requesting federates at time 

t, the requesting federate will use their local copy of the shared data structure for 

this purpose.  

Update Request  

If an update request is initiated on shared data structure by requesting federates at 

time T1, this request is sent to the other federate(s) sharing the data structure. The 

requesting federate will hold its operation until it receives a null value or no further 

update requests from other federates at time T1. If the first Federate has not received 

any other update request, then it will update the local copy of the shared data 

structure. The other federates will update their local copy of the shared data 

structure with the message received.  But if two or more federates have requested 

an update at the same time T1, then this could be prioritised either by using a 

timestamp approach or defined priority approach, as discussed in other IRM 

solutions explained above. In a concurrent update request, the first selected federate 

will update its local copy of the shared data structure and ignore the value from the 

other federate. While the other federate will use the updated value of the first 

selected federate and re-run the update process to generate a new value. 

Alternatively, the event related to update can be scheduled after receiving the value 

from other federates. This new value will be sent to the first selected federate which 

will get updated in its local copy of the shared data structure while the first federate 

waits before both can advance time. The sequence of events is illustrated by the 
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sequence diagram below in Figure 5.38. Figure 5.39 illustrate the flow of the 

protocol algorithm. 

 

Figure 5.38: SD of Full Replication Shared Data Structure 

Sequence of Events 

 Initialisation stage: All Federates will either create or join federation. 

 Initialisation stage: Federate F1 and Federate F2 will indicate that they are 

capable of sending an update request by publishing “FnameF1”, “ValueF1”, 

“FnameF2” and “valueF2” interaction class parameter respectively. 

 Initialisation stage: Federate F1 and Federate F2 will indicate that they are 

capable of receiving requests by subscribing to “FnameF2”, “ValueF2”, 

“FnameF1” and “valueF1” interaction class parameter respectively. 

 Simulation Runtime: Both Federates F1 and F2 will progress time “t” using 

the time management service of RTI.  

 Simulation runtime Case A (Read only):  

a) If Activity A1 in Federate F1 or Activity A2 in Federate F2 require to read 

the shared data at time T1, they will not send any message to Federate F1 

but will use their local copy of the shared data structure.  

b) All federates will progress to next time. 
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 Simulation runtime Case B (single update): 

a) If Activity A1 in Federate F1 requires an update to the shared data D at time 

T1, then it will send an update request (Federate name F1, and a new value 

V) to F2 at time T1 and will wait for other federate(s) to send their request.  

b) If Federate F1 receives no request from Federate F2 then Federate F1 will 

use the new value to update the current value of the shared data structure 

(D) and Federate F2 will update its local copy of the shared data structure D 

at time T1. 

c) All federates will progress to next time. 

 Simulation runtime Case C (Multiple updates): 

a) If Activity A1 in Federate F1 and Activity A2 in Federate F2 require an 

update to the shared data at time T1, then they will send an update request 

to each other at time T1 with their new value (V). 

b) Federate F1 will use the new value to update its current value of the shared 

data structure D and wait for the reply from Federate F2 (based on the 

priority set, in case F1 value will be used first to update the value). 

c) Federate F2 will run its update operation again using the new value from 

Federate F1 and generate a new value.  

d) Federate F2 will then update its local copy of shared data structure (D) 

with this new value and also send this new value (V) to Federate F1 at time 

T1. 

e) Federate F1 will update its local copy of shared data structure using the 

new value at time T1.  

f) All federates will progress to next time. 
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Figure 5.39: Activity Diagram Full Replication 

5.3 Simulation Verification and Validation  

To test the performance of the possible solutions to the interoperability issues 

identified in IRM, simple distributed simulation models were created with no model 

over heads but they all are time synchronised using RTI. All these models were 
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created using HLA 1516e standard. These models will help benchmark the 

performance for each protocol defined above. The overall system V&V is achieved 

by addressing the following level of testing.  

 
1) Member application testing: Each IRM defined in SISO-STD-006-2010 has 

some expectations and constraints; these are discussed in Chapter 4. During setting 

the experimental design, the requirements are reviewed for each IRM to make sure 

they comply with the conditions.  

2) Integration & Interoperability testing: During this testing, data was collected at 

different points of simulation runs and verified against the required interoperability 

behaviour. Each protocol was initially executed with short runs. These runs were 

introduced with check points at which the data was debugged. This data was also 

scrutinised to verify the overall simulation. 

5.3.1  Integration & Interoperability testing 

The six IRM types implemented by a number of different protocols and each 

protocol consist at least a minimum of two federate. One of each federate act as a 

sender (i.e. The federate that generated its own entities and after processing send 

them to other federate), while the other federate act as a receiver (i.e. This federate 

do not generate its own entity, but depends on entity send by the sender federate). 

Both of these federate run in a single federation. Since these two federates are 

running on a separate machine to simulate a specific simulation scenario. There are 

issues related to Integration and Interoperability between them. To test this, there 

was a list of  several check points introduced to verify each protocol, a sample is 

listed in Table 3. This table illustrates four check points for sender federate and 

three for receiver.  

The example used in this table is for IRM type A.1: General Entity Transfer. The 

parameters include the time when the entity arrived (or generated in sender 

federate), followed by the time after the processing  is completed on that entity and 

when the entity is ready to be send and finally, when the time the entity is sent. On 

the receiving side, similar parameters are monitored such as the time the entity 
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received followed by the timely processing is completed. This table also monitors 

the queue size, because in some protocol’s likes IRM A.2 Bounded buffer, it was 

important to note the behavior of receiving side queue.  

Sender Federate Receiver Federate 

Entity 
Arrival 
time 

Sender 
Queue 
size 

Sender 
Process 
time 

Entity 
Send 
time 

Received 
Entities 
time 

Receiver 
Queue 
Size 

Receiver 
Process 
time 

0 0 1 1 1 0 2.5 

2 0 3 3 3 0 4.5 

7 0 8 8 8 0 9.5 

11 0 12 12 12 0 13.5 

11 1 13 13 13 1 15 

15 0 16 16 16 1 16.5 

16 0 17 17 17 2 18 

16 1 18 18 18 2 19.5 

19 0 20 20 20 1 21 

20 0 21 21 21 2 22.5 

22 0 23 23 23 2 24 

25 0 26 26 26 1 25.5 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

36900 - 36600 36600 36600 - 36590 

Table 3: Integration & Interoperability testing  

In case of IRM Type A.3: Multiple input prioritization and Type D General Shared 

resources, there was a minimum of three federate used, but with the same 

parameters.  Since, the distribution is stochastic i.e. the entity generated by the 

sender have random probability distribution or pattern, therefore, it is important that 

the data must be captured from both federates in a single run.  

The testing begins by running the model for a shorter simulation time, later the 

output from both federates were joined together and analyised for checking the 

behavior of the protocol. This was also verified and matched with each IRM 

requirements as defined above. The important part of the interoperability test is to 

check if the sending entities matches with the receiving entities. At times when the 
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protocol did not had the desired output it was revised and a shorter simulation run 

was tested before running the federation for bigger simulation runs. However, the 

data compared identified that the models are behaving the same as they were if 

running in a non-distributed environment. 

5.4 Case Study: London Emergency Medical 

Service (EMS) 

Emergency Medical Services systems are heterogeneous, complex and 

multidimensional. All over the world they provide medical services to patients for 

minor or critical illnesses or injuries on site or during transport to the hospital. This 

research used a scaled down prototype model of London Emergency Medical 

Services (EMS) as an exemplar case study to measure the interoperability , 

scalability and the performance of some of the proposed protocols in a hybrid 

environment. The EMS system represents several Accident and Emergency (A&E) 

systems at various London hospitals. These A&E systems are grouped together with 

ambulance services, facilitating A&E departments.  

The ambulance model consists of emergency call centre(s), the crew and vehicles. 

This is accessible to the public through an emergency telephone number. Before, 

dispatching the appropriate vehicle and crew, the call operator has to access the 

nature of the emergency over the phone. Later, the call operator has to find and 

dispatch the closest available vehicle and crew to the incident site. After 

administering first aid, the crew make a decision on whether the patient needs to be 

hospitalised or released after onsite treatment. If they make a decision to transfer 

the patient to a hospital, then the nearest available hospital is selected. After 

transferring the patient to the hospital, the ambulance and the crew will travel to its 

standby location and will be once again available for any future response.  
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The ambulance service performance is measured by three distinct periods in its 

service timeline as shown in Figure 5.40. The time an emergency call is made until 

the selection of the appropriate ambulance is measured by waiting time. Similarly, 

time of departure of the ambulance until the transfer of the patient to the hospital is 

the service time. The response time is measured from the time the call was made 

until the ambulance arrives at the scene. The boxes in the diagram indicate the 

events that will take place in the model. 

Figure 5.40: Ambulance Service timeline (Fitzsimmons, 1973) 

Travel time for the ambulance is calculated assuming an average London 

ambulance speed and the Euclidean distance between the starting point and the 

ending point. According to Silva and Pinto (2010), “use of a corrective coefficient 

to realistically represent the relationship between the actual distance and the 

Euclidean distance of two points in an urban environment”. Therefore, each 

location point has an X and a Y Cartesian coordinate, so the Euclidean distance |s| 

between two points is: 

The travel time is: t = c * s / v, where t is the travel time, c is the corrective 

coefficient, s is the distance and v is the average speed. With the help of google 

maps a corrective coefficient was generated as c = 1.32. This was obtained from 40 

samples, ranging from 0.5 to 20.5 miles across Greater London. 
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Figure 5.41: A&E department flowchart diagram (Anagnostou, 2014). 

However, the A&E department in a hospital is in itself a complete and complex 

system. A&E department is not restricted to serve the patient brought in via 

ambulance services, but also for all other patients including walk-ins. This would 

mean that the resources such as doctors, cubicle or beds and equipment etc. varies. 

There are no number of fix resources allocated for any type of emergency. A 

decision is made based on the patient condition. If a patient arrives through 

ambulance service they are not treated as differently, if the required resources are 

not available then the patient had to wait. But in most of the cases the patient 

conditions and details are shared by the ambulance crew while they are selecting 

the hospital. This provides an advance notice to A&E department to prepare the 

resources based on the type of emergency. For the purpose of understanding, this 

case study has classified the emergency in two types, i.e. major or minor. Major 

mean it is a serious life-threatening situation while a patient with a minor condition 

could wait before they get any further treatment from A&E. Some patient might 

need further treatment, for which they can be either transferred to the hospital or 

send home with arrangements. In some cases, a patient could be referred to their 

GP for further treatment. The functioning of hospital and GP is not part of this case 

study, therefore they will not be referenced in further discussion. Further details of 

these models can be found in the full work of Anagnostou (2014).  
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Since A&E department is linked with other activates (such as specialist clinics, 

medical test facilities and hospital etc.), therefore the level of abstraction for this 

model were kept high. The main purpose was to demonstrate the interaction 

between Ambulance model and A&E and also how the proposed protocols could 

be used to provide interoperability solutions for such a problem. Therefore, all the 

models represent general functions of the A&E department without considering the 

resuscitation units in them. Figure 5.41 present a flowchart of two different 

scenarios where the patient arrives at the hospital through walk-in and through 

ambulance service. Walk-in patients had to go for a triage to identify the seriousness 

of the emergency, while in case of ambulance services, this is done by the 

ambulance crew while administering first aid. After this stage patient joins 

appropriate queue for treatment before exiting A&E department. While accessing, 

the availability of the hospital, clinical staff and beds/cubical are considered as 

follows: 

Available clinical staff = staff capacity – occupied staff 

And 

Available beds type = capacity type – occupancy type  :where type ={minor, major} 

5.4.1  Data Collection  

The The ambulance service prototype model in this case study is a 1:5 scaled-down 

London EMS system. Department of Health (DoH) is ultimate responsible for the 

London Ambulance service (LAS) through NHS trust. Therefore, the data used in this  

model were taken from the NHS England website during the year 2011 to 2012. 

According to the DoH, London ambulance service has a fleet of 998 vehicles, 375 of 

which are abundances covering 620mi2. It was 70 ambulance station with 5 

headquarters within the boundaries of the M25 (www.londonambulance.nhs.uk).  

Similar to the ambulance service model, the data were also acquired from the same 

published sources for A&E department. Based on the data and identified process 

above, following list of events is generated in Table 4.  

http://www.londonambulance.nhs.uk/
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Ambulance Model A&E Model 
Emergency call Patient arrival 

Ambulance found Triage Queue 

Arrival at incident scene Triage Service  

Hospital found Minors queue entry 

Departure of ambulance to hospital Minor Service entry 

Arrival at hospital Major queue entry 

Ambulance return to station Major Service entry 

 A&E exit 

Table 4: List of events 

Regional hospitals with A&E services are located in the ambulance coverage area. 

Ambulances are not restricted to serving a particular hospital and they can transfer 

an emergency patient to either nearest or most appropriate hospital. The selection 

of the hospital could be either on the type of services/expertise or availability. A&E 

function in itself is a complete process and limited to its hospital, therefore several 

simulation models are required to represent different A&E. Since the ambulance  

services will communicate with all the A&E department and make their decisions 

on the transfer of a patient, therefore a separate model is developed for ambulance 

services. This ambulance model will communicate with all other A&E models. This 

case study extends to apply the proposed protocol using two different distribution 

techniques i.e. ABS and DES. Hence, the A&E departments are modelled using 

DES and the ambulance service is modelled using ABS technique. Since both the 

simulation techniques use discrete time-stepped approach, it becomes easier to 

interoperate the two approaches. However, DES has two different implementations, 

i.e. Next Event Request (NER) or Time Advance Request (TAR). In NER, it is not 

necessary that there will be an event at every time tick therefore the simulation can 

jump to next simulation time at its next scheduled event. While in the TAR scenario 

the simulation will not jump to the next event, instead it will check if the event is  
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scheduled after every single time tick. The latter strategy is easily adopted with 

ABS technique. 

Figure 5.42: London Emergency Medical Service Model 

The ambulance service model is the central component of this system and all the 

communication between the models will occur through this model. While, all the 

other A&E models will not directly communicate with each other. An abstract view 

of the system is presented in Figure 5.42 above, where the arrows indicate the 

interactions between the models.  

The central Ambulance service require to find the nearest available A&E 

department to transfer the patient. Therefore, ambulance services need access to the 

availability of the A&E department status based on the type of emergency. Once an 

A&E is selected, the A&E department will reserve resources and prepare for the 

patient arrival. Hence, once an agreement to accept the patient is done, no other 

patient can be accepted in its place. When the ambulance arrives at the hospital, the 

patient object (including all its attributes) transfers to the A&E department.  

The EMS case study deals with three different types of interoperability issues. It 

was mentioned above that the ambulance service model needs up-to-date A&E 

status to accept the patient. Therefore, Type D shared data structure is used to keep 

the information updated with the ambulance service model. Similarly, once an A&E 

is selected by the ambulance it will announce the emergency to A&E using Type C 

Shared Event. This will notify the A&E model that a patient is on its way and A&E 
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should reserve resources for that patient. This will also notify the Ambulance model 

that a particular ambulance is busy and not available to attend any casualty for next 

specific time until it becomes available or the patient is being transferred. The 

transfer of patient from ambulance to A&E is addressed by using Type A.2 

(Bounded buffer) at the selected hospital. In case the hospital has no space (i.e. the 

queue is full), the ambulance crew might not necessarily wait instead will try to find 

alternative hospital. 

5.4.2  Realisation of the models  

All the federate models are designed to be interoperable. Therefore, the messages 

and information will be shared between the models are identified. A list of shared 

variables and its ownership in the distributed environment is drawn. The following 

subsections explain the implementation of each federate model and the RTI. 

a) Ambulance Services model 

The conceptual modelling requires the identification of the objects and their 

interactions. For calculating travel to the emergency and hospital a GIS grid 

topology was implemented. This topology was selected because of more accurate 

distance calculation and realistic visualisation. The ambulance coverage area is fed 

into this grid topology. Similarly, ambulance station locations and capacity are also 

fed into this grid.  

The ambulance service model will have one input point, i.e. emergency call and 

there are two exit points. Either the patient is treated on site and then the patient is 

released or the patient is transferred to the selected A&E 

b) A&E Model 

Figure 5.41 illustrates the A&E process and the Table 4 provide the list of events. 

Since the focus of this case study is to test the interoperability only, therefore all 

the departments within A&E model are kept abstract. All the clinical resources are 

clubbed together. These indicate nurses, doctor and other staff. Since A&E is 
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implemented as DES, therefore workstations and resources are hard coded. 

Similarly, the functioning of different departments is also coupled together and an 

overall three procedures are identified i.e. triage, minor and major. This model will 

have two input points, the first will be the walk-in patients and second will be 

through ambulance service. The availability of the resources, including the capacity 

is calculated and shared with the ambulance model when requested 

5.4.3  Software Tools  

For the implementation of EMS case study, it was required that simulation platform 

can support both ABS and DES implementation of DS techniques. Since, Repast 

Simphony (as described in section 4.3) support both techniques and it is also an 

open source tool, therefore both ambulance and A&E models are built in Repast 

Suite. To use this simulator for DES the fundamental components namely, work 

stations, resources and queues was developed and used similar to the 

implementation of other protocols in this thesis.  

A detail discussion of HLA standard is present in various sections and it was 

decided to use the most recent standard i.e. HLA IEEE-1516. Therefore, similar to 

other implementations in this thesis PoRTIco was selected as an RTI for a 

communication standard for this case study. 

5.4.4  Selection of Protocol  

The EMS case study requires the application of three IRM’s i.e. Type D, C and A.2 

as described in the previous sections. Let us now examine how to select an 

appropriate protocol to address the interoperability issue. This will also guide the 

simulation practitioners (as an exemplar) on how to selected the right protocol for 

their problem. First, let’s examine the requirements for share data structure, i.e. 

Type D. In this case study, the A&E in hospitals models are the owners of the 

information and only they have the right to update the resource status, while the 

ambulance model is only reading or using the information to make decisions, i.e. 

no updates are required for the ambulance model to this data and there is no issue 
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for update anomaly. Also, the A&E models do not communicate with each other 

directly, their communication is limited to ambulance models. This means that each 

A&E will update its own data structure shared with only an ambulance model. 

Hence, a need for a separate central controller is not required. Therefore, the 

modular can select full replication protocol to address this interoperability issue, 

because the other proposed models have separate central server to handle updates 

anomalies. 

Announcement of the emergency to all other federate or models is another type of 

IRM problem i.e. shared event. This event is an interrupt to notify other models 

about the emergency and since this data will not be required thereafter, it is 

therefore advisable to use the shared event protocol using interactions. However, a 

shared event protocol using attribute can also be used, but since a persistent memory 

is not required, therefore the model will not fully utilise the attribute potential.  

Finally, the selection of protocol to address the interoperability issue related to 

transferring a patient from ambulance model to A&E model. First, consider the 

operation of the A&E. There are two entry points for a patient (an entity) in A&E 

model, i.e. walk-in-patients and ambulances. The number of resources like staff, 

beds and facilities are also limited. In most of the cases the number of walk-in-

patient is greater than the ambulance transfers. Therefore, there will be a continuing 

change in the availability of resources to accept patients from the ambulance. It also 

seems unnecessary for the A&E model to continually update ambulance model, 

when this data is not required. Therefore, this process rules out the use of Bounded 

receiving element using Adaptive protocol because in this protocol, the receiving 

model/federate continually updated the other model about the status of the bounded 

queue. There are now two other proposed possibilities to address this issue, i.e. 

either using Queue Update Protocol or Bounded Buffer Update protocol. Therefore, 

to further filter the requirements it is required to consider the ambulance decision 

process for selecting the A&E. Based on the queue update protocol, if for example 

the simulation uses several A&E models, then ambulance model has to send 

messages to all models and wait for the response before making the decision for 
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patient transfer, whilst in the case of Bounded Buffer Update, the ambulance model 

is kept updated with the status of A&E availability. Unlike adoptive protocol, 

ambulance model does not require the update on every change of the queue, instead 

it only needs to know if there is a space or not and this is only updated by A&E 

model when the queue is full or gets some space. Therefore, the information will be 

readily available for the ambulance model to make decisions with limited 

communication with other models. Hence, the bounded buffer update protocol was 

selected to address this approach to minimise the communication.  

From the above it is possible to list the interoperability requirements and draw a 

template FOM for each type of federate. In summary hospital federate will send and 

update the resource status, receive notification of the emergency and finally it will 

receive the patient from ambulance model. Therefore, a parameter to represent the 

queue status must be defined in the FOM with read & write (i.e. Publish and 

Subscribe) rights and an event parameter along with patient parameter must be 

created with read (i.e. Subscribe) rights only. A sample FOM for one hospital is 

presented below. 

1. <interactions> 

2.      <interactionClass> 

3.           <name>HLAinteractionRoot</name> 

4.           <sharing>PublishSubscribe</sharing> 

5.           <dimensions>NA</dimensions> 

6.           <transportation>HLAreliable</transportation> 

7.           <order>Receive</order>   

8.           <interactionClass> 

9.                <name>EntityTransfer</name> 

10.                 <sharing>PublishSubscribe</sharing> 

11.                 <transportation>HLAreliable</transportation> 

12.                 <order>TimeStamp</order> 

13.                 <parameter> 

14.                     <sharing>Publish</sharing> 

15.            <name>queuestatus</name> 

16.                      <dataType>HLAinteger32BE</dataType> 
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17.                 </parameter> 

18.                 <parameter> 

19.                     <sharing>Subscribe</sharing> 

20.            <name>event</name> 

21.                      <dataType>HLAinteger32BE</dataType> 

22.                 </parameter> 

23.                 <parameter> 

24.                     <sharing>Subscribe</sharing> 

25.            <name>patient</name> 

26.                      <dataType>HLAinteger32BE</dataType> 

27.                 </parameter> 

28.            </interactionClass> 

29.       </interactionClass> 

30.  </interactions> 

Similarly, the ambulance model will receive the hospital status, send notification of 

emergency and transfer patients to the hospital model. Therefore, the same 

parameters need to be created in ambulance federate FOM but with reverse right 

i.e. patient and event will have write (i.e. Publish) right while queue status 

parameter will only have read (i.e. subscribe) right. A part from these changes, 

Queue status parameter must be repeated for each hospital model. 

5.4.5  Simulation testing  

All the models in EMS case were designed and developed as discrete-event 

simulation. As described in chapter 2, Discrete event simulation structured around 

events and processes. In an overview, an event results in some exchange of 

message(s) which alters the state of the system, while the processes represent a 

sequence of activities, this represent the core components of the system. Processes 

explicitly advance virtual time to represent “processing time” and implicit ly 

advance time when events are scheduled to occur in future.  

Simulation based testing is one of the testing techniques used within a simple and 

generic testing process (Rutherford et al., 2006). To initiate this testing, the first 

step was to prepare the test cases. Normally, these test cases are defined in the early 

stages of system development life cycle i.e. at conceptual modelling stage. Each 
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test case will have a direct input to the system as an input vector, functional 

parameters, environment input and conditions. In case of EMS case study, the 

sequence of processes is illustrated in figure 5.41 and figure 5.42. Further the 

expected events are also explained in table 4. 

5.4.5.1 Simulation Model Testing  

There are two different models used in EMS case study one represents the 

Ambulance service and the other A&E department of a typical hospital. All the 

A&E models are identical, therefore for model verification and testing one of the 

A&E hospitals is used. For the purpose of testing, simulation, code, both the models 

were tested in this study during the development phase by using both Black box and 

White Box testing technique. Later this code was verified by a professional M&S 

programmer.  

Testing for simulation execution or validation of the models, pilot runs were 

performed and data was collected at different point as mentioned above to ensure 

the models meets its requirements. Some of the data were verified from the 

published data to ensure the accuracy of simulation execution. For example, the 75 

percent response time for life threatening (major) and 95 percent of all other 

emergencies are listed in LAS Annual Review (2011-12) as 8 minutes and 19 

minutes respectively.  

Similarly, in A&E model the time for patient journey is the key indicator. 

According to the published data 2011-12, all patients at A&E must be served within 

four hours. Therefore, the data collected at several points was checked against these 

indicators to verify the simulation model. 

5.4.5.2 Interoperability Testing  

Each hospital model run independently and they only communicate with ambulance 

model. Similarly, the ambulance model does not share hospital information with 

other hospital models. The ambulance model and all the hospital models run within 

a single federation and for interoperability the PoRTIco provides the basic 
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communication, time synchronisation and message passing platform. The previous 

section described how the simulation models were tested and verified, but to test 

the distribution and the interoperability between these models’ separate tests were 

conducted.  

Therefore, the first step used was to run the single simulation execution to collect 

category B data. To achieve that, a number of check points were introduced to 

observe and collect data during the simulation executions, this include, “call 

generation”, “ambulance dispatch”, “arrival at scene”, “hospitalisation required”, 

“find hospital”, “arrival at hospital”, “returning back to station”. A sample data 

collection is presented in table 5 below. 

Time 

Tick 

Call 

generation 

ID 

Ambulance 

dispatch 

ID 

Arrival 

at scene 

Hospital 

Required 

Find 

hospital 

Arrival 

at 

hospital 

Returning 

to station 

1 1 31      

5 3 22      

9 4 11      

27 5 23      

34 1 31 33.599 TRUE 34 102.862 135.461 
35 4 11 34.228 TRUE 35 60.273 85.502 

37 6 12      

39 3 22 38.621 FALSE 0 0 82.621 

42 7 24      

46 5 23 45.356 FALSE 0 0 84.356 

49 8 13      

53 6 12 52.273 TRUE 53 83.866 99.139 
57 9 32      

Table 5: Data collection of check points 

Later the experiment was repeated, but this time both the models ran in a federation 

and similar data was captured. Although, the models are stochastic i.e. call 

generation, arrival times, selection of hospitals, etc. are identified at run time, 

therefore the runs do not produce exactly the same output. However, the data 

compared identified that the models are behaving the same as they were while 

running in a non-distributed environment. 



Chapter 5: IRM Protocols 

 

Athar Nouman 238 

5.4.6  Fault tolerance  

When a simulation model is distributed, a crash of any federate can force the entire 

simulation to an end. The increase in the number of federates in a federation also 

increases the probability of failure during a simulation run and if the federates are 

not at the same geographical location, it further increases the risk. Restarting a 

failed federate can leave the system in an inconsistent state, therefore some sort of 

fault tolerance is required.  

A crash of a federate is due to a problem in either software or hardware. The 

hardware failures can be the CPU malfunction, power cut-out or even disconnection 

from the network. The problems related to software can be further sub divided at 

different levels i.e. operating systems, RTI, simulation model and the 

interoperability. Operating system problem can be a process malfunction or crash 

of the operating system itself. On the other hand, RTI’s based on HLA standard do 

provide fault tolerance at the communication level, i.e. if either of the federate will 

resigned or terminated from the federation, a simulation can continue to 

communicate with the remaining federates. Similarly, a federate can re-join the 

federation. But this does not necessarily mean that the results produced from the 

simulation run will not be affected. Therefore, to overcome the failure, fault 

tolerance strategy should be considered in the design of simulation model and the 

interoperability between these models.  

There are many known techniques for fault tolerance in distributed simulation. 

These can be classified into two categories i.e. checkpointing or replication. 

Replication techniques have additional synchronisation overhead between its 

replicas, while checkpoints technique, need additional storage to save a safe 

checkpoint, i.e. if any failure happens the simulation could be restored to its last 

checkpoint. Replication techniques can be implemented through simulation model 

while the checkpoint technique can also be achieved by using the standard RTI 

funtions. But both of them are only possible if the simulation does not crash at the 

time of failure. The reasons for a simulation crash can be a deadlock i.e. if a federate 

is expecting a response from another federate which have failed and will not 
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respond. In such circumstances the simulation can not be restored using any 

strategy, therefore it is important that the interoperability protocol used between the 

federates also support fault tolerance.  

The proposed protocols in the given DSI framework are designed to support such 

conditions. For example, in the case study of London emergency medical services, 

there are several A&E federates communicating with the ambulance model. The 

entire simulation may halt if any one of the A&E models fail. But the 

interoperability protocols are designed to avoid deadlocks conditions i.e. when 

A&E model fail to respond its availability, no value will be returned which, by 

default will be assumed as non-available and the ambulance model will search 

another available hospital to transfer the patient. It is very important to note that 

recovery from fault tolerance is only possible if the simulation is still in a running 

state since interoperability protocols are running at the grass root level in the 

distributed simulation, any deadlock at this level could result in simulation halt. 

5.5 Summary  

The first sections of this chapter addressed the need for independently developed 

distributed models representing generic interoperability problem scenarios for 

running experiments. The use of software tools for developing the models was then 

followed by a reasoning for selecting different versions of HLA and PoRTIco for 

development. 

The remaining sections of this chapter focused on the conceptual modelling of 

optional proposed protocols to address each IRM issue. 

A graphic representation of the relationship between federate models, the 

simulation package, and the RTI was included for each principle IRM Type. Two 

basic methods of entity transfer were established: using interaction class with 

attribute parameters, or using object class via publish/subscribe with attributes. The 

FOM used to define the interaction class was set out for each problem case and the 
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sequence of events for implementation was described, step-by-step, for all proposed 

case protocols for every IRM Type.  

Each proposed protocol with optional case scenarios was presented independently 

to ensure clarity of procedure for practitioners. The next chapter presents an 

evaluation of experimental results using the DSI Framework. 
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Chapter 6:  Evaluation of the Framework  

6.1 Overview 

Previous chapters discussed conceptual models and the design of different 

approaches to addressing the IRMs. In total, seventeen different approaches were 

discussed and proposed. Some of these approaches are based on different case 

studies to evaluate performance under different conditions.   

The focus of this chapter is on experimental runs and the analysis and evaluation of 

data collected from them. The chapter, first describes the simulation test 

environment, i.e., network, software, and equipment. This is followed by 

presentation and discussion of the data collected from implementation with 

graphical representation and some comparisons. The examination of results 

presented in this chapter concludes the evaluation of the hypothesis. Finally, the 

proposed DSI Framework is revisited, together with some further 

recommendations. 

6.2 Testing the simulation environment 

To test the hypothesis, the DSI framework presented a number of solutions for each 

interoperability issue presented in IRM. These solutions are not exhaustive, but can 

provide options to select an appropriate solution for the distributed simulation 

practitioner’s problem(s) or point the practitioner in the right direction. These 

solutions are kept purposely generic for ease of understanding and adoption for any 

scenario because (as discussed in previous chapters) a practitioner will not 

necessarily require all the given interoperability issue solutions. Similarly, the OMT 

and the sequence of events are also explained separately, to help the practitioner 

avoid unnecessary implementation. The different solutions presented purposely use 

similar variable names to assist in better understanding. The variable names used 
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are also generic, and can be adopted by the practitioner according to their simulation 

models. Some of the proposed protocols were run using different distribution values 

to experience the impact on system behaviour of different model environments. 

6.2.1  Network Setting 

A dedicated LAN network was established for running the proposed simulation 

models with PCs connected over 100Mbps. To maintain consistency, all the models 

were executed on the same PCs and in the same environment. An average of five 

runs for each protocol was recorded to reduce variance due to operating system and 

network communication (Mustafee et al., 2009; Taylor et al., 2002b). The network 

consisted of three PCs interconnected via LAN and configured in a star topology. 

Each PC was branded Dell Optiplex 745 with Intel(R) Core(TM) 2 Duo processor 

E6400 2.13Ghz, 4.00GB RAM and 80GB secondary storage. Each PC had a fresh 

Microsoft Windows 7 (64 bit) operating system installation to avoid unnecessary 

background application delays. To achieve best network performance no additional 

Internet security or firewall was installed. The software installed included Java 1.7 

JRE with Repast Simphony 2.1; poRTIco 2.1.0 package with HLA 1516e; and HLA 

1.3 RTI support. 

6.3 Performance Testing 

Usually in a typical simulation V&V testing, some data are collected to compare 

with the results of test runs for analysis and evaluation, but in this case category C 

data were used, as described in Chapter 4, because the protocol is generic. 

Performance testing is not just a simple task of comparing test results. First, we 

need to decide the parameters of performance measurement, only then can the 

performance be benchmarked. Defining measures is important because in a 

complex system there are different possible setups that a practitioner might use, and 

performance parameters might also be different. In this case, the performance is 

measured for a distributed simulation where we have already established that 

because of complexity and difficulty such simulations cannot be executed on a 
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single machine. They are therefore distributed over a network of CPUs arranged in 

any order. This means the performance testing that was conducted completely omits 

performance comparison of a simulation running between a single node and a set 

of networked nodes. However, such a study was conducted in work previously 

published by Nouman et al. (2013) and discussed later. The simple solution to single 

node overload is to distribute the load to multiple nodes, but the real problems come 

when these nodes interoperate with each other. The interoperability solution has 

already been covered in this research, but now the question is about performance. 

Network communication is considered a bottleneck and great effort is placed on 

reducing this bottleneck through considerable research, as the speed of execution 

of a CPU is much faster than network communication speed. Additionally, the 

introduction of network security, such as the firewall, is contributing to further 

reducing speed. Network communication plays an important role in distributed 

simulation performance, and therefore the focus of performance in a distributed 

simulation is on the measurement of time. A single microsecond delay in a single 

simulation time tick will make a huge difference when the same simulation is run 

to monitor effects for a month, a year, or more.  

This research uses an RTI based on the IEEE 1516-2010 standard at its heart of 

network communication. Therefore, communication depends on federation 

configuration and implementation such as in time synchronisation. For example, 

over time, synchronisation requires the federate to have to block and wait for 

approval from RTI to advance time. Again, the main focus of this research is not to 

measure the performance of the RTI, but some results are compared with different 

RTIs to monitor the possible impact of using different products. Every RTI vendor 

tries to implement the best possible solution to improve the performance of their 

product. For example, MAK RTI optimise data transfer by placing the computers 

in the role of HLA switches/routers. Similarly, pitch RTI uses a booster application 

to speed up communication by simplifying network and firewall configuration 

issues. Hence, the main focus of this research is to measure the performance of each 

of the IRM protocols explained in the last chapter. With some of the initial research, 
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it was concluded that the following parameters can have a significant impact on 

performance: 

 The model design  

 The selected RTI 

 The operating system configuration 

 The selected hardware configuration 

 The network configuration 

The performance statistics (discussed later) will help practitioners determine the 

impact of implementing strategies to deal with the interoperability issues. The test 

run results for each IRM are discussed individually, as explained in Section 5.2. 

The research uses speed as a matrix to measure the performance because 

distribution is required to improving the execution speed of a simulation (Fujimoto, 

1987). Similar matrics were used in the most recent research by Fujimoto (2015), 

Feldkamp et al., (2015) and Anagnostou and Taylor (2017). 

6.3.1  General Entity Transfer 

Four different protocols explained in Chapter 5 (Section 5.2.2) for General Entity 

Transfer were executed five times each to capture the performance parameters. The 

performance results for these protocols are shown in Table 6. The test was 

conducted for up to 5 weeks of simulation run time and the average (Avg.) run of 

each protocol is shown in this table. Also, the table lists the standard deviation (SD) 

of five runs for each protocol. The standard deviation is within acceptable limits. 

Table 6: General Entity Transfer Performance 

Simulation 
Run time 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks 

Protocol / 

Execution time Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Interaction  15.45 0.26 30.01 0.54 44.69 0.63 59.20 0.80 74.19 0.76 

Interaction 
with Null msg 

15.38 0.21 31.05 0.43 45.97 0.70 60.77 0.82 75.81 0.78 

Attribute 15.23 0.55 29.88 0.18 44.44 0.83 59.12 0.61 73.31 0.61 

Attribute with 

Null msg 
15.20 0.53 30.52 0.61 44.79 0.77 60.15 0.60 75.13 0.49 
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The general entity transfer interoperability problem is generic and common in 

distributed simulations. The solution is achieved by message passing via RTI. There 

are two possible ways for message passing, i.e., either by interaction or by 

attributes. The RTI implementation of interactions is defined as non-persistent 

memory, while that for attributes is defined as persistent memory.  The above table 

can be seen as comparing the difference between use of interaction classes and 

attribute classes and then a comparison between two different approaches: i) a 

simple approach with continuous update using null message technique, and ii) on 

demand.  

The graphical representation of the performance results are shown in Figure 6.1, 

which presents the combined test run results for all four protocols. Figure 6.2 

illustrates comparison figures in a pair of different combinations. The Y-axis on 

these graphs shows the execution time in minutes while the X-axis on these graphs 

shows the number of weeks. 

 

 

 

 

 

 

 

 

 

Figure 6.1: Execution time for General Entity Transfer proposed protocols  

The graphical representation of the test run illustrates little difference, and the 

results look mostly similar. But a close examination of data presented in Table 6 

indicates slight differences between these approaches. Although the difference is 

not significant in generic model implementation, but it still exists. Figure 6.2(a) 
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presents a comparison between two different approaches using interaction classes. 

Similarly, Figure 6.2(b) illustrates the comparison between two different 

approaches using attribute classes. Finally, Figure 6.2(c) illustrates the difference 

between use of interaction class and attribute class. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Comparison for General Entity Transfer proposed protocols  

As can be seen, as the simulation run time increases the difference in null message 

technique also increases. The difference is not very prominent because all the 

experiments were run in a dedicated network environment and the main objective 

of these experimental runs was to demonstrate the solution for the IRM Type A.1 

problem and identify the performance of two possible approaches for message 

passing. Further, the impact of dedicated network and non-dedicated network are 

explored in experimental results in the bounded receiving element approach (next 

section). As expected, the difference between the use of interaction and attribute is 

hardly visible and in some execution runs they overlap. Therefore, the experimental 
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runs shown above demonstrate that the two approaches have no or negligible 

overhead over each other and the choice does not compromise performance. This 

is unsurprising considering the issue is simple entity passing and no significant 

action is required by any model upon receipt of the message. 

6.3.2  Bounded Receiving Element 

Three different protocols were executed with different scenarios, RTI, and 

environment to capture the performance parameters. Since it is being concluded 

from our previous experimentation that use of either attributes or interaction class 

has no significant effect, the research continues by using interaction class for 

message passing for the rest of the implementation. Further details for selecting the 

interaction classes is discussed in next chapter. The three protocols were explained 

in more detail in Chapter 5 (Section 5.2.3), but the three different scenarios used 

for each protocol execution are based on the state of a bounded queue and are listed 

as: 

1) Unlimited Queue 

2) Partially Full 

3) Always Full  

In an unlimited queue scenario, the bounded buffer never blocks. This means the 

entity will be transferred without blocking the sender federate. But in the partially 

full scenario, the bounded buffer behaviour will change over a period of time, i.e., 

at unpredictable times the buffer will be full and block the incoming entity. In the 

always full scenario, the bounded buffer will remain full at all times and will block 

incoming entities. The results of these different protocols and scenarios are 

illustrated in Table 7(a)(b) and (c). The experimental runs were also conducted in a 

dedicated environment. 

The test was conducted for up to 5 weeks of simulation run time and an average 

(Avg.) run of each protocol is shown in table 7. The standard deviation for all runs 

conducted in a dedicated networked environment were similar to the previous 

results, i.e., below 1. Therefore, the standard deviation is not included in the tables 
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below. The graphical representation of the data is illustrated in Figure 6.3(a)(b) and 

(c). The Y-axis on these graphs shows the execution time in minutes while the X-

axis on these graphs shows the number of weeks. 

(a) Unlimited Queue  

Simulation 

Run time 1 Week  2 Week 3 Week 4 Week 5 Week 

Protocols 
Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Queue update 16.24 0.36 32.75 0.31 48.15 0.42 63.01 0.52 80.30 0.54 

Buffer update 15.27 0.57 30.28 0.42 45.06 0.28 59.19 0.39 77.42 0.67 

Adaptive 15.14 0.41 29.98 0.63 44.29 0.32 58.99 0.57 76.15 0.51 

 

 

Table 7: Bounded Receiving Element PoRTIco Dedicated Network 

Three different scenarios (i.e. unlimited queue, partially full and always full) were 

applied to three different protocols (i.e. Queue update, Buffer update and Adaptive) 

to monitor the impact of each protocol performance on the change of scenario. It 

can be noted from the figures and graphs that Unlimited Queue and Always Full 

Queue have some similarity. But in Unlimited Queue the queue update performance 

(b) Partially Full 

Simulation 

Run time  
1 Week  2 Week 3 Week 4 Week 5 Week 

Protocols Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Queue update 21.31 0.68 42.28 0.72 63.12 0.69 84.83 0.75 106.25 0.87 

Buffer update 18.11 0.81 35.75 0.83 53.45 0.78 71.46 0.77 89.51 0.83 

Adaptive 15.23 0.76 30.46 0.74 45.26 0.81 60.99 0.75 75.95 0.79 

(c) Always full 

Simulation 

Run time 
1 Week  2 Week 3 Week 4 Week 5 Week 

Protocols Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Queue update 15.52 0.57 30.67 0.48 45.83 0.34 61.21 0.74 76.13 0.64 

Buffer update 15.40 0.53 30.69 0.47 45.60 0.51 61.16 0.36 76.02 0.32 

Adaptive 15.23 0.59 30.31 0.55 45.38 0.54 60.58 0.41 75.81 0.48 
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is less than the other protocols because it still sends extra messages to update queue 

to the sending federate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Comparison for Bounded Receiving Element using PoRTIco on a 

Dedicated Network 
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In Always Full scenario, all three federates request the same information and also 

process in similar fashion because of the blocked nature of the receiving queue. In 

Partial Full scenario, each protocol has a different run time because of the multiple 

request and block procedure. As expected, the adaptive protocol outperforms the 

others.  

The best two protocols based on performance were selected for further experimental 

runs on a non-dedicated network to experience the impact of applying these 

protocols on a shared network. Table 8 illustrates the averages for a five week run 

on a non-dedicated network. The standard deviation for all runs conducted in a non-

dedicated networked environment was higher than the dedicated environment, 

ranging between 2 and 4.  

(a) Unlimited Queue  

Simulation 

Run time 
1 Week  2 Week 3 Week 4 Week 5 Week 

Protocols Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Buffer update 17.97 1.45 36.24 1.68 54.31 1.52 71.91 1.21 88.42 1.87 

Adaptive 17.50 1.59 34.73 1.87 51.65 1.24 69.70 1.73 86.15 1.64 

 

(b) Partially Full 

Simulation 

Run time 
1 Week  2 Week 3 Week 4 Week 5 Week 

Protocols Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Buffer update 17.97 2.14 36.24 2.76 54.31 3.14 71.91 2.25 88.42 2.16 

Adaptive 17.50 2.37 34.73 2.15 51.65 1.98 69.70 2.24 86.15 2.37 

 

(c) Always Full 

Simulation 

Run time 
1 Week  2 Week 3 Week 4 Week 5 Week 

Protocols Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Buffer update 17.97 2.58 36.24 2.81 54.31 2.14 71.91 3.54 88.42 2.85 

Adaptive 17.50 2.75 34.73 1.85 51.65 2.49 69.70 2.82 86.15 1.65 

Table 8: Bounded Receiving Element PoRTIco Non-Dedicated Network 
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The graphical representation of the data presented in Table 8(a)(b) and (c) is 

demonstrated in Figure 6.4(a)(b) and (c). As expected, the behaviour of these 

protocols is similar on both dedicated and non-dedicated networks with only one 

exception, i.e., the total execution time. These protocols run faster over a dedicated 

network compared to a non-dedicated network as illustrated in Figure 6.4(d). The 

reason for the longer execution time is not known, but it is almost impossible to 

calculate the performance, delay of all the variables, i.e., type of network 

equipment, network topology, firewall, background process, etc. Although the same 

PC’s were used for this experiment they were connected over the Brunel University 

network. This experiment indicates that running the same protocol will show 

different performance over different networks. 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Comparison for Bounded Receiving Element using PoRTIco on a 

non-dedicated Network 
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Both of these protocols were further tested in a non-dedicated network environment 

with a different commercial RTI, i.e., Pitch. The intent of this experiment was to 

establish if different RTI has similar performance or they differ in implementation, 

as per the studies. It cannot be established from this research that the performance 

of a particular RTI will not change in its subsequent versions, but the research gives 

an indication of the effect of different implementations. Table 9 below shows the 

results of these experimental runs.  

(a) Unlimited Queue  

Simulation 

Run time  
1 Week  2 Week 3 Week 4 Week 5 Week 

Protocols Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Buffer update 39.52 2.25 69.811 1.87 104.83 2.95 138.48 2.18 175.16 2.38 

Adaptive 32.47 2.75 64.99 2.14 97.70 2.24 129.42 2.24 162.54 1.81 

 

(b) Partially Full 

Simulation 

Run time  
1 Week  2 Week 3 Week 4 Week 5 Week 

Protocols Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Buffer update 38.81 3.14 80.31 2.89 121.08 3.35 163.18 2.16 204.60 2.47 

Adaptive 32.48 3.59 65.08 3.27 97.37 2.76 130.17 3.18 162.40 2.51 

 

(c) Always Full 

Simulation 

Run time  1 Week  
2 Week 3 Week 4 Week 5 Week 

Protocols 
Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Buffer update 65.49 2.18 131.86 2.86 196.76 2.26 264.24 1.29 331.12 2.74 

Adaptive 32.65 2.53 64.94 1.54 97.61 2.84 129.72 2.12 161.41 2.59 

Table 9: Bounded Receiving Element Pitch Non-Dedicated Network 
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Figure 6.5(a)(b) and (c) demonstrate the behaviour of the two selected protocols 

using three different scenarios. The behaviour of these protocols in Unlimited 

Queue and Partially Full scenarios is similar to the above, but the behaviour of these 

protocols in Always Full Queue is unexpectedly not the same. It is a known fact 

that most commercial RTI’s wrap the core RTI standard implementation under 

additional features and it is speculated that these wrappers might have an effect on 

performance. This can also be demonstrated from Figure 6.5(d) where PoRTIco 

outperforms Pitch RTI and the difference increases as the simulation run time 

increases. This does prove that the selection of an RTI will have some performance 

effects. 

  

 

 

 

 

 

 

 

 

Figure 6.5: Comparison for Bounded Receiving Element using Pitch on a 

non-dedicated Network 

6.3.3  Multiple Input Prioritisation 

For multiple input prioritisation two different protocols were discussed in Chapter 

5 (Section 5.2.4). The experiment strategy was the same as used in the previous 
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sections, but with no further testing in a non-dedicated environment. All further 

experiments were conducted in a dedicated environment and executed five times 

each to capture the performance parameters. The results of the two protocols are 

shown in Table 10. Similarly, the tests were conducted for up to 5 weeks of 

simulation run time and an average (Avg.) run of each protocol is shown in this 

table. The standard deviation of five runs is below one and is not included in the 

table. 

Simulation 

Run 1 Week  2 Week 3 Week 4 Week 5 Week 

Protocols Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Dynamic 15.19 0.24 30.10 0.52 45.15 0.27 60.15 0.43 75.13 0.26 

Specialised 14.92 0.18 30.07 0.29 45.04 0.14 60.03 0.29 75.08 0.41 

Table 10: Multiple Input Prioritisation Performance 

The above table and the graphical representation of the data in Figure 6.6, express 

very little difference between the two protocols. The graphical representation 

follows the same pattern, i.e., execution time in minutes is shown on the Y-axis 

while simulation run duration in weeks is shown on the X-axis. The difference is 

only visible on close examination of the figures listed in the table. The reason for 

specialised protocol performing slightly better is because the priority list is static 

and does not need to generate a new list when it receives entities simultaneously. 

Also note that simultaneous entities are generated purposely at a more random time 

to demonstrate the behaviour of multiple input prioritisation.  

 

 

 

 

 

Figure 6.6: Execution time for Multiple Input Prioritisation proposed 

protocols 
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The advantages of dynamic and specialised have been discussed briefly in Chapter 

5 (Section 5.2.4) and based on advantages and disadvantages of these protocols and 

the data from the test results, it would be hard to say that any of these protocols is 

better than the other. In fact, a selection can be made based on the simulation model 

requirement.  

6.3.4  General Shared Resource 

To address general shared resource issues in distributed simulation four different 

approaches were discussed in Chapter 5 (Section 5.2.5). In this section, two of these 

approaches were experimented with using different distributions to access the 

behaviour in different circumstances, similar to the tests conducted for the bounded 

buffer problem. The next request protocol was tested with three different 

distributions for service time named Test 1, Test 2, and Test 3 and each test given 

different service time distributions of (µ=4, , (µ=4, and (µ=5, 

 respectivelyThe change in distribution alters the resource request time, 

i.e., in Test 3 there will be less resource request while in Test 1 the resource request 

will be higher. These different tests were scheduled to identify if the change in 

distribution would affect the performance as expected. 

Similarly, next resource event was tested with two different distributions for service 

time, named Test 1 and Test 2, with different service time distributions of (µ=4, 

 and (µ=5,  respectively. Again, the idea is to identify change in 

performance with change of distribution. The experiment strategy is the same as 

used in the previous sections. All experiments are conducted in a dedicated 

environment and executed five times each to capture the performance parameters. 

The results of all the protocols are presented in Table 11. As previously, the tests 

were conducted for up to 5 weeks of simulation run time and an average (Avg.) run 

of each protocol is shown in this table. The standard deviation of five runs is below 

one and is not included in the table below. 
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The graphical representation of the performance results is shown in Figure 6.7. This 

graph presents the combined test run results for all four protocols while Figure 6.8 

illustrates comparison figures with different combinations of protocols and test 

cases. The Y-axis on these graphs shows the execution time in minutes while the 

X-axis shows the number of weeks. Figure 6.8(a) presents a comparison between 

the three different test cases for next request protocol as described above, and Figure 

6.8(b) illustrates the comparison between the two different test cases for next 

resource event protocol, while Figure 6.8(c) presents a comparison between next 

resource, message queue, and next resource event protocols.  

Simulation 

Run / 
Protocols 

1 Week  2 Week 3 Week 4 Week 5 Week 

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

Resource 

Update 
30.3 0.67 60.23 0.74 90.35 0.63 115.75 0.58 148.22 0.82 

Next Request - 

Test 1 
15.63 0.57 30.29 0.58 44.73 0.46 59.72 0.61 72.51 0.47 

Next Request - 

Test 2 
14.64 0.45 30.06 0.37 45.97 0.62 60.72 0.53 75.85 0.42 

Next Request - 
Test 3 

14.81 0.54 29.69 0.41 44.16 0.58 60.08 0.37 74.12 0.56 

Message queue 
15.19 0.78 30.24 0.67 45.01 0.58 59.45 0.73 73.9 0.68 

Next Resource 

Event - Test 1 
15.97 0.64 29.72 0.55 44.81 0.79 61.03 0.48 75.76 0.53 

Next Resource 

Event - Test 2 
15.05 0.83 29.64 0.85 44.25 0.72 60.28 0.62 74.27 0.73 

Table 11: General Shared Resource Performance 

 

 

 

 

 

Figure 6.7: Execution time for General Shared Resource protocols 
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Figure 6.8: Comparison of different shared resource protocols   
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Figure 6.8(a), the comparison of different test cases for the next request protocol, 

identifies the effect of different distributions on this protocol as expected. After 

close examination, we can see that increase in the standard deviation in the normal 

distribution increased the execution time in Test 2, while increase in mean reduced  

the execution time demonstrated in Test 3. 

Similarly, Figure 6.8(b), compared the test results for next resource event and 

similar behaviour is observed, i.e., having greater mean for service time increased 

the performance of the protocol. Reducing and increasing the value of mean in 

normal distribution of service time means fewer resource requests. But in either 

case, the difference is not phenomenal and is still in acceptable range.  

From Figure 6.7 and the data presented for resource update protocol, it is clear that 

performance is not so good. There is performance drawback, despite this protocol 

being less complex and easier to implement. Therefore, a comparison between the 

three protocols is illustrated in Figure 6.8(c). The test results indicate that these 

three protocol have similar performance but they have some limitations, i.e., next 

resource protocol does not guarantee resource time while message queue provide s 

a time guarantee. Similarly, next resource event can only be used with distributed 

simulation using the even list approach, and it is not suitable for other types of 

simulation. Message queue is complex to implement, but is more scalable, and as 

the simulation progresses further its performance increases. 

6.3.5  General Shared Event 

General shared event, as explained in Chapter 5 (Section 5.2.6), is more about the 

technique and process following the trigger of a shared event. Shared events can be 

triggered by a simple message similar to entity passing; the only difference is the 

occurrence of event. Two test scenarios were created, one ran a broadcasted event 

using interaction classes, and the other involved an event determined by attribute. 

As discussed earlier, these are the only two methods provided by RTI to transmit 

messages between participating federates in a federation. The results of these 

experimental runs are shown in Table 12. The test was conducted for up to 5 weeks 
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of simulation run time and the average (Avg.) run of each protocol is shown in the 

table. The standard deviation is within acceptable limits. As explained in Chapter 

5, the events are generated by using normal distribution of mean, µ=100, and 

standard deviation, . 

Simulation Run 1 Week  2 Week 3 Week 4 Week 5 Week 

Interaction 14.87 29.92 44.96 59.19 74.19 

Attribute 14.73 29.88 44.44 59.09 73.21 

Table 12: General Shared Event Performance 

A graphical representation of the performance results is shown in Figure 6.9. This 

graph presents the combined test run results in both the cases. The Y-axis on these 

graphs shows the execution time in minutes while the X-axis shows the number of 

weeks. 

 

 

 

 

 

 

 

Figure 6.9 : Execution time for General Shared Event protocols 

We can observe that the difference in execution follows a similar trend to the test 

results received for general entity passing. The one noticeable difference is the 

reduced overall execution time for both experimental runs as compared to general 

entity passing. This is because the implementation does not include any entity 
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passing and both the models are independent. They are only time synchronised with 

each other and pass a message when an event occurs. Hence the models have limited 

interaction with each other. 

6.3.6  Shared Data Structure 

Three different approaches were implemented to resolve shared data structure 

problems. Two of these approaches, i.e., central control and central update, required 

a minimum of three nodes, while the full replication experiment runs were 

conducted on two nodes. As discussed in Chapter 5 (Section 5.2.7), both central 

control and central update could also be implemented using two nodes where one 

of the nodes would have to perform a double role, and the balance of load 

distribution would not be the same. Therefore, it was decided to use three nodes for 

the implementation and experiment runs. Also, having a separate central node 

supports scalability. The results of all the protocols are shown in Table 13. As 

before, the tests were conducted for up to 5 weeks of simulation run time and the 

average (Avg.) run of each protocol is shown in the table. The standard deviation 

of five runs is below one, and therefore not included in the table. 

Simulation Run 

1 

Week  

2 

Week 3 Week 4 Week 5 Week 

Central Control 15.03 30.82 45.41 60.64 75.93 

Central Update 15.05 30.06 45.05 59.88 75.04 

Full Replication 29.33 58.22 89.56 117.87 141.99 

Table 13: Shared Data Structure Performance  

The graphical representation of the performance results is shown in Figure 6.10.  

This graph presents the combined test run results for all three protocols. The Y-axis 

on these graphs shows the execution time in minutes while the X-axis shows the 

number of weeks. The difference in execution time for full replication and the other 

two protocols can be seen quite noticeably. This is because of the extra 

synchronisation required to provide data consistency. In shared resource, the 
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challenge is limited to a read and insert anomaly, while in the shared data structure 

an additional challenge of update anomaly needs addressing. This feature is not 

known to be fully supported by the RTI. Using an additional database server can 

also resolve this issue, but this is outside the scope of this research and was not 

considered for testing.  

The comparison of test results for central control and central update does not reveal 

major differences, but again there are some limitations, which can affect simulation 

performance given sizable execution run time. The performance of central update 

is slightly better than central control because with central control the federates have 

to communicate more frequently with the central node to read data value and to 

send the value as an update. In central update, a copy of the data is kept locally for 

read operation and no federate has to communicate with the central node to read the 

values, except when they need to update the value. The difference in both central 

update and central control will vary based on the frequency of updates. If the 

updates rarely happen, then central update can easily outperform the central control 

protocol.   

 

 

 

 

 

 

 

 

 

Figure 6.10: Execution time for shared data structure protocols  
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6.4 EMS Model testing results 

In chapter 5 London EMS case study was introduced to demonstrate how the 

proposed protocols could be applied on a practical scenario. To evaluate these 

protocol two different types of experiments were conducted i.e. Performance testing 

and Scalability testing. For performance testing the A&E and Hospital models were 

executed number of times by increasing the duration of the simulation run while for 

scalability testing the number of federates were increased to observe the effect on 

simulation. The results are shown in table 14 with their Standard deviation (SD). 

The experiment runs were performed under the same network settings as mentioned 

in section 6.2.1. 

No. 

Federates / 

Run Time 

2 Weeks 4 Weeks 6 Weeks 8 Weeks 

Min SD Min SD Min SD Min SD 

2 136.3 0.81 665.7 2.43 1405.7 1.26 2843.1 2.35 

4 144.6 1.25 675.2 0.93 1412.0 0.78 2851.0 1.76 

6 149.7 2.46 685.4 1.35 1418.2 0.89 2857.3 0.87 

8 158.0 1.65 694.3 2.32 1424.2 2.34 2862.0 1.23 

10 166.3 2.40 703.0 1.45 1430.1 1.69 2868.9 0.84 

Table 14: EMS Distributed Network run 

6.4.1  Performance Testing 

To measure the performance of the protocol it is necessary to analyse the data in 

order to note predictable behaviour or any anomalies. Therefore, the decision on 

how long the simulation test should be conducted was done on the bases of the 

initial test runs. For example, it was decided not to record the data for a week 

duration because the model have some warmup time, and because of this the data 

collected might not reflect the true behaviour of the protocol. Therefore, it was 

decided to begin the test with a minimum of two weeks and increase the duration 
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by two weeks to collect the data until consistency was achieved as shown in table 

14.  

The graphical representation of the performance results is depicted in Figure 6.11. 

The figure illustrates the duration of simulation run in weeks on X-axis, while the 

time (in minutes) it took to run the execution are illustrated on Y-axis. Underneath 

the simulation duration, a legend is presented with different colour codes for each 

number of participating federates. From the data shown in table 14 it was observed 

that there was a steady increase as the duration of the simulation run increases by 

weeks, with an exception of slight dip in the first two weeks run. This is because of 

the effects of warmup time. This increase can be noted from figure 6.11. This figure 

also represent similar behaviour for different number of federates. The reason for 

conducting the experiments with different number of federates will be discussed in 

next section of scalability testing. However, it is noted that having more federates 

in a distributed network results in similar performance. Finally, a linear forecast 

trend line is indicated by yellow dotted line for additional of two future periods to 

predict the execution time if the simulation ran longer than eight weeks. 

 

Figure 6.11: EMS Distributed Network Run 
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The distributed network model performance was also compared with single node 

execution on four-week run with a number of federates. The data collected is 

presented in table 15. This data is also graphically presented in figure 6.12. It was 

interesting to note that the single node or single pc execution for fewer federate was 

faster than running the simulation in a distributed environment. However, this was 

only true for up to certain number of federates. In the data and the graph presented, 

it can be observed that the graph takes a steep curve upwards after 6 federate and 

cross the execution time for networked simulation run. It should also be noted that 

there is no data available for ten-federate run for a single node execution. That is 

because the simulation for ten-federate was unable to successfully run on single 

node. 

Federate 2 4 6 8 10 

Single node 654.7 659.0 668.3 698.3 - 

Distributed Network 665.7 675.2 685.4 694.3 703.0 

Table 15: Single Vs Network Execution run 

Figure 6.12: Single Vs Network Execution run 

The reason for failure was further investigate and the cause of the problem was 

identified. The reason for the upward spike after the six federate and unsuccessful 

run of the ten federate was because of the shortage of main memory. Hence, a 

memory consumption table was created to identify the cause and break points. 
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Table 16 provides the figures of memory consumption and the CPU usage at the 

time on initialising federates. Note, this is not the memory consumption figures 

during the execution. Also, it is to be noted that this memory consumption includes 

the operating system and applications required to run this simulation i.e. 

approximately just over 50% of the memory is used by the operating system and 

other application such as repast simphony, while the remaining 50% is used at 

runtime. The CPU usage figures were hard to record but there were spikes of high 

usage at certain times i.e. at the start of the federate, therefore the data presented is 

the maximum average usage. Since, up until nine federate the CPU was 

underutilised therefore it was not considered as the root cause of problem. 

No. 

Federates 

Memory 

Consumption 

 

CPU Usage 

1 54.2% 60% 

2 59.0% 64% 

3 64.2% 68% 

4 70.7% 66% 

5 76.0% 70% 

6 82.0% 73% 

7 88.5% 72% 

8 94.2% 73% 

9 99.5% 75% 

Table 16: Memory Consumption 

However, up until six federate the execution of the simulation was smooth and it 

did outperform the networked execution run but thereafter the performance started 

to reduce dramatically. This is because up until six federate 82% of total memory 

was used at initialisation stage and the PC still had 18% of memory left to be used 

for the execution run. But when eight federates were executed 94.2% of the memory 

was used at the initialisation stage and a minor part of the auxiliary memory (i.e. 

page file) was used to run the simulation, which reduced the performance. In the 

case of nine or more federate, the federates require more than 100% primary 

memory for initialisation only, hence some of the federate were automatically 

moved to the auxiliary memory by the operating system. Therefore, the federation 

having more than eight federate, kept crashing because of the response time delay 
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and were not possible to run. From all of the above it is derived that the single node 

execution can be limited because of memory and/or the complexity of the model, 

in this case it was the memory that was not sufficient enough to run the simulation. 

These findings also indicate that networked solution might have communication 

bandwidth as a bottle neck but it can overcome in case of large simulation with 

more federates involved. During these experiments the protocols implementation 

was tested for a longer time period and also on a larger simulation model. It was 

observed that these protocols did not contributed to any additional performance 

issues. 

6.4.2  Scalability Testing 

In section 6.3 the performance of the protocols was measured with the minimum 

number of federates. Further, tests were conducted with the larger implementation 

of London EMS case study, more federates were used as shown in table 14 to test 

if the protocols can be implemented with more than the minimum federates 

involved. Table 14 demonstrate the execution run for up to ten federates. Since the 

objective was to test the scalability of the protocol in scalable environment, 

therefore having ten federates was found sufficient to demonstrate the functioning 

of the proposed protocols. Figure 6.11 indicate that there is no or very little impact 

of scaling the federates and the execution time increased proportionally.  

To examine the difference more closely each scaled up run is presented separately 

in figure 6.13. This figure contains four different experimental runs based on the 

duration of the runs. It was noticed that each of the simulation runs had a similar 

incline as the number of federate increased. Ideally this should be a flat and straight 

line. But, because as the number of federate increases the simulation complexity 

also increases i.e. each increase in federate represent an increase in the hospital 

model. Additionally, the area of ambulance services model also increases, and thus 
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will encounter more emergencies i.e. the simulation becomes more computationally 

complex. This results in increased interoperability and more computation. 

 

Figure 6.13: Scalability run results 

In comparison with single node execution as illustrated in figure 6.12 and figure 

6.11, the graph of network simulation is much more linear. The results of these 

experiment runs indicates that having a scalable model does not guarantee the same 

execution time. The simulation execution time is affected by the model complexity 

and the model response when the model is scaled. 

6.5 Revisiting the DSI Framework 

The number of plausible solutions to the interoperability problems were discussed 

in practical detail above. We have already acknowledged that distributed simulation 

cannot avoid interoperability issues and all such identified issues are listed in the 

IRMs. Therefore, a generic framework for addressing these identified 
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interoperability problems (outlined in Chapter 4) is necessarily required. This is not 

only to address the interoperability problems but also to achieve better reusability 

and composability between distributed simulation models. Before this can be 

achieved, it is important to approve a standardised approach to addressing these 

interoperability issues as different solutions might create confusion for the 

practitioner and hinder in reusability. Therefore, this section discusses the best 

possible solution(s) to these interoperability problem for recommendation as part 

of the final DSI Framework based on both practical and theoretical analysis.  

In revisiting the first interoperability problem, i.e., general entity transfer, 

discussion of the output of experiment runs in the previous section makes it clear 

there is little difference between the use of interaction classes and attribute classes, 

although attribute class implementation is slightly faster. But a theoretical analysis 

shows that entity passing is a one off event. There is no arithmetic operation to be 

performed once the entity is delivered. Any update on entity value or its attribute 

can occur at the receiving side by the model and as interactions are defined as non-

persistent variables whereas attributes are persistent. Therefore, theoretically, using 

interaction classes for transferring entities is better suited as the entity object is not 

required later for any arithmetic or non- arithmetic update. Therefore, using 

interaction classes seems to be the better option for general entity transfer and is 

recommended for use. 

The second interoperability problem, i.e., bounded receiving element, is related to 

the first problem. In fact, we can say that bounded receiving element problem is an 

extension of general entity transfer. Having established that using interaction 

classes for passing entities is the better approach, three different approaches were 

implemented each using interaction classes. All three listed approaches fulfil the 

requirements for bounded receiving element in Chapter 3. These three approaches 

were rigorously tested in different environments with different possible scenarios 

and with different RTIs but, as expected, the performance trend of each remained 

similar. Therefore, based on performance and implementation, the adaptive 

protocol can be recommended for use. 
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The third interoperability problem relates to multiple input prioritisation. This type 

of problem is very common in distributed simulation when more than two federates 

share or pass messages to each other at the same time. In a large distributed 

environment, there are greater possibilities for implementing solutions for 

concurrent message passing. Although experiment implementation was limited to 

entity passing, the protocols discussed can also be used for other scenarios. These 

other scenarios featured in implementation of the other interoperability problems 

involving concurrent access such as shared resources and shared data structure. The 

implementation discussed two different approaches, one specialised and the other 

dynamic. In practice, the performance of the specialised protocol is slightly better 

than the dynamic protocol. However, in theory dynamic protocol is more flexible, 

scalable, and reusable. Hence, the use of dynamic protocol is recommended to 

address this interoperability problem.  

The fourth interoperability problem discussed related to shared resources between 

two or more federates. This interoperability problem is similar to shared data 

structure but, as defined above, there are differences and the same protocols and 

approach cannot be used for both problems. Here, four different approaches were 

implemented to evaluate performance and suitability. Because of RTI limitations 

the first protocol, i.e., continuous resource update, was struck out of the equation 

unless the limitation can be addressed. There is a huge performance delay and that 

is because of the RTI Callback function. This limitation is covered in more detail 

in the discussion of shared data structure below.  

Based on performance figures, the next request protocol performed best in the Test 

1 scenario, while in other cases it was inferior to the message queue protocol. The 

next request protocol also presents another drawback, i.e., resource time guarantee. 

A model cannot have a resource guarantee if multiple resource requests are 

generated from the other model, because a log of only one resource request per 

model is kept at any given time. 

The message queue protocol is difficult to implement but provide resource 

scalability, time guarantee and no limitation to simulation techniques used. In fact, 

this protocol covers all the disadvantages of the protocols discussed above for 
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resource sharing. This protocol is also suitable if the shared resource is maintained 

by a separate node. It provides a transparent layer between the model and the RIT. 

The next resource event protocol is easy to implement in discrete event simulations, 

and also provides all the benefits of a message queue, but it is limited to simulation 

techniques using event list only because it uses the event list to schedule next release 

of the resource. This protocol also might not be suitable with other types of 

simulations. Therefore, in theory, the best recommended protocol for use to address 

general shared resource interoperability problems is the message queue protocol to 

maintain standardisation. 

The fifth interoperability problem is related to shared event, which again is similar 

to general entity transfer. The only difference is the process of implementation, i.e., 

all federates must subscribe to the event, while possible implementations can be 

achieved using interaction or attribute classes. Using theoretical evaluation, events 

do not need further processing, so keeping them in a persistent state with RTI is of 

no use. Therefore, using interaction classes for this approach is recommended to 

address this interoperability issue.  

Finally, the last interoperability problem is related to shared data structure. Three 

different protocols were discussed for this approach. Two of these have similar 

performance while one, i.e., full replication, has a somewhat lower performance 

due to RTI limitation. In the RTI implementation, callbacks are linked to time 

advance and there is no mechanism to generate a time guarantee callback without 

calling time advance. Hence, this protocol suffers from multiple time advance 

callbacks to RTI, which is responsible for a huge time delay, not only in 

synchronising the time of participating federates, but also in accessing and 

delivering all registered message events (even if none are used at that particular 

time interval). If RTI can present a separate callback method for particular 

registered variables, then this protocol could be ideal for use. Similar problems are 

encountered in continuous resource update protocol implementation, as discussed 

above. Unless this issue is resolved by RTI it is hard to recommend this approach. 

The remaining two protocols require a third central node to interact with the 
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federate requesting shared data. In comparing the performance figures, central 

update is the solution most recommended for this interoperability problem. 

6.6 Summary 

This chapter has evaluated the different approaches discussed in the previous 

chapter. A standardised dedicated environment was put together to collect the 

experiment run results. A comprehensive performance review was conducted for 

each approach with different case studies having different parameters. Later all 

these approaches were critically evaluated both practically and theoretically to 

conclude the best practices for the DSI Framework. 

The design, development, and testing of this framework brought forward some 

recommendations for improvement in the HLA standard and also recommended use 

of the proposed methodology for distributed simulation development. The next 

chapter summarises the research presented above and in the previous chapters. 
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Chapter 7:  Conclusion 

7.1 Overview 

This concluding chapter of the thesis begins with a Research Summary, which sets 

out the defining motivation for this research: to assist HLA to fulfil its promise of 

solving interoperability problems in distributed simulation. The research summar y 

explains that the research was stimulated by literature review, which revealed that 

while HLA assisted technical connectivity through structural data exchange 

measures it failed to provide the semantics of how data should be exchanged. This 

observation led to the objective of bridging the gap between integratability and 

interoperability by offering semantic solutions to the interoperability problems 

identified by IRMs.  

The research summary below introduces development of the resulting DSI 

Framework, for integration with HLA, as the major contribution of this research. 

Validity of the hypothesis presented is confirmed as offering potentially significant 

advantages and encouragement to industry wishing to engage with distributed 

simulation methodology. 

The research aim and objectives of the thesis are revisited by presenting five 

objectives and listing how each objective was met in the preceding chapters. Four 

contributions to science made by this thesis are described. Limitations to the work 

conducted in this thesis are set out. Finally, future research opportunities are 

presented to further simplify the modelling toolkit, expand case studies, and identify 

further problematic interoperability issues. 
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7.2 Thesis Overview and Findings 

The motivation for this research began by seeking to understand why the simulation 

industry is not using the standard HLA and why the standard is not being promoted. 

The HLA objective was to promote reusability and address interoperability issues. 

But after interrogating several research studies and works from different authors, it 

was identified that HLA standard was not entirely fulfilling its promise to provide 

complete solutions to interoperability issues in distributed simulation. Close 

examination of the Wang et al. (2009) conceptual interoperability model identifies 

that HLA was able to provide interoperability solutions up to Level 2 (Figure 3.4), 

i.e., Syntactic Interoperability, while the BOM specification standards can provide 

interoperability from Levels 4 to 5, i.e., Pragmatic Interoperability and Dynamic 

Interoperability. The HLA implementation of Runtime Infrastructure (RTI) 

provides connectivity between federates at a technical level, and the HLA OMT 

specifications provide the structure of the data exchange but not the semantics of 

how data should be exchanged. Therefore, according to this paper’s research, HLA 

was only achieving integratability at connection level and not real interoperability. 

This research identified the gap, i.e., at Level 3 Semantic Interoperability. Some 

argue that interoperability is a model responsibility, i.e., it should be addressed at 

Level 4 or the Pragmatic Level. Others are confused about the ownership of these 

interoperability issues. But this research believes that interoperability should be part 

of the HLA standard and composability should remain in the domain of model 

specific design. 

The interoperability issues were identified in IRMs SISO-STD-006-2010. The 

objective of this interoperability standard was to identify and specify model 

interoperability capabilities and requirements. The scope of IRMs did not include 

semantic solutions for these issues and it was left to practitioners to identify 

candidate solutions for these problems. Therefore, further research was conducted 

on these interoperability issues to make them part of the HLA standard by 

introducing semantic solutions in OMT specifications. 
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To summarise the above, in addressing the hypothesis of testing the feasibility of a 

framework to tackle the IRM issues, it was observed that such implementation 

could also help bridge the gap between integratability and interoperability by 

offering semantic solutions to the interoperability problems. The major contribution 

of this research is the development of a generic framework to address these 

interoperability issues. This research believes that if HLA standard provides the 

semantic solutions to these interoperability problems, then it might also address 

issues like re-usability, composability, and increase in industrial use. Therefore, by 

combining HLA standards and the interoperability solutions, the distributed 

simulation industry might achieve a better interoperable distributed simulation 

standard. 

To achieve this, an empirical research was conducted. In this study, the research 

stages followed were: propose the hypothesis; identify different approaches to 

address and evaluate the hypothesis; obtain results by applying the identified 

approaches iteratively; and finally, evaluate the hypothesis. The hypothesis was 

tested in a generic case study, which means it could be adopted by practitioners for 

use or for further research. This research had led to development of the generic DSI 

Framework and some design research for the development of distributed simulation 

projects.  

To evaluate the proposed hypothesis, a detailed literature review was conducted to 

first investigate the gap in industry use that led to study of interoperability issues, 

followed by an explanation of the importance of interoperability, and finally the 

identification of an interoperability solution. To achieve this, six IRMs were 

identified. Although IRM defines four main interoperability issues, the first Type 

A has three sub-types. Therefore, this research addressed each separately and 

classified six interoperability issues. A total of seventeen different generic 

approaches were implemented covering all six interoperability issues, and some of 

these were also tested in a different network environment, with different RTIs and 

versions, and with different scenarios. The centre of implementation was the 

poRTIco RTI because it is open source, licence-free, and had the latest 

implementation of HLA Evolved when the research came to the design phases. 
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The research then indicated the need to list the “recommended” approaches to 

addressing these six interoperability issues to help the practitioner make more 

informed choices. Chapter 6 discussed all these approaches both practically and 

theoretically. Certain recommendations were made based on performance while 

others were made based on both performance and theoretical argument. The 

solutions to some interoperability issues were also tested in a specific case study 

published earlier (Nouman et al., 2013), in which the interoperability problems 

were tested in an EMS case study, using hybrid simulation technique.  

The present research also identified different methodologies, including the DSEEP, 

but none of these reported a generic conceptual modelling to capture and address 

interoperability issues in distributed simulation. This research also proposes to fill 

that gap and provide modifications to existing methodologies to highlight and 

action the interoperability issues. The rationale behind the development of this 

methodology is grounded in the work presented by the DSEEP standard and 

conceptual modelling by Robinson (2014). A detailed literature review is presented 

in this research to identify, select, implement, evaluate, and verify the 

interoperability issues in a distributed simulation. In previous studies, 

interoperability issues were not given much importance and were not even included 

in the conceptualisation phase. 

Another evaluation from this research was highlighted, which relates to RTI 

restrictions and flexibility. It was noted that very little technical documentation 

exists for implementation of RTIs and that this is common for both commercial and 

non-commercial based products. Available information was found to be scattered 

between IEEE standards and some from RTI publishers. This makes it harder for 

practitioners to understand and use the standards. During development of the DSI 

Framework, some approaches to design solutions for the interoperability issues 

were withdrawn because of RTI multiple message passing with a time guarantee 

within a time advance. Having a feature to avoid this will allow more options to be 

explored for proposing further approaches to these interoperability issues.  

The evaluation of this research concludes that the proposed framework if used can 

bridge the gap and provide interoperability solutions to distributed simulation 
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practitioners. Therefore, the hypothesis presented in this research is valid and 

demonstrates that the advantages of using the DSI Framework will benefit the 

distributed simulation industry. 

7.3 Research aim and objectives revisited 

The aim of this thesis is to investigate how to address interoperability issues in the 

distributed simulation environment to benefit simulation industry, and to provide 

recommendations (if any) for improvement in the HLA standard. To achieve the 

aim, five objectives were underlined. 

 Objective 1: Present the hypothesis and identify the interoperability issues 

as defined in the IRMs.  

Based on initial research, Chapter 1 presented the research aim and hypothesis 

and also discussed the research methodology used for testing the hypothesis. 

While Chapter 2 introduced the interoperability issues defined by IRMs.  

 Objective 2: Develop an understanding of underlining standards, techniques, 

and industry approaches to identify if interoperability issues are hindering 

the use of distributed standards.  

This objective was achieved in Chapter 2. To achieve this objective, a 

thorough literature review was conducted of different standards, industrial 

practices, industrial surveys, and work from different authors on distributed 

simulation, and these were discussed in depth. Chapter 2 also discussed 

different simulation techniques, simulation studies, and simulation models, 

and the different distributed simulation methodologies in practice. This 

chapter helped to establish the research gap and underline the requirements 

for resolving that gap, and information gained from the literature review 

provided the foundation for development of the generic DSI Framework.  

 Objective 3: Propose a framework to address interoperability issues.  

Chapter 3 described the requirements for the DSI framework with the 

proposed methodology for modelling. The following Chapter 4 presented 
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the proposed framework and the conceptual modelling of the different 

approaches used.  

 Objective 4: Experimentally test the DSI Framework  

The solutions provided to all six interoperability issues were designed and 

developed using seventeen different approaches as detailed in Chapter 5. 

Chapter 6 presented the experimental runs and test results for evaluation.  

 Objective 5: Evaluate the performance of the DSI Framework and test the 

hypothesis 

The results of the experimental runs were evaluated and recommendations 

for use were made in Chapter 6. Presentation of the research summary and 

acceptance of the hypothesis was completed in Chapter 7. 

7.4 Framework Value   

There are many challenges involved when creating a distributed simulation model. 

A single model can be created by using any CSP or open source simulation 

packages, but while creating a distributed simulation model for the same single 

model, it introduces interoperability challenges. Many different approaches were 

used to address this problem, but it is extremely difficult to capture the difference 

between the approaches and their implementation. Further, simulation practitione rs 

and the vendors often find simulation interoperability techniques inaccessible. 

Therefore, to address this issue CSPI PDG was established to identify the common 

approaches to these problems. As part of this research IRM’s were used to create a 

common frame of reference to access the capabilities of particular approaches and 

to help practitioners and vendors achieve solutions to complex interoperability 

problems. With a substantial effort by consulting, including CSP vendors and well-

known practitioners, the distributed simulation interoperability problems were 

standardised. Therefore, a standard set of patterns was identified to encounter 

interoperability problems while developing distributed simulations. 
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The IRMs standard was intended to simplify the complexity and to assist 

practitioners. For both, solution developers and CSP vendors this standard was 

intended to identify solutions to their interoperability problem. This research 

presented a framework to provide possible solutions to these interoperabili ty 

problems using a standard communication platform i.e. HLA. While developing the 

framework it was considered that the scope, purpose and target audience of this 

framework at least match with the IRM standards i.e. the framework should not be 

restricted to a particular CSP vendor or programming environment. However, the 

scope of this work is limited to the leading distributed simulation standard for 

communication i.e. HLA. 

HLA standard offers many other features like reusability, portability, scalability 

etc. these are explained in more detail in chapter 2. After having all these benefits, 

still HLA is not widely used in the industry and practitioner restrain to use this 

standard because of its complexity. Therefore, CSPI PDG took a step further by 

identifying the interoperability issues in distributed simulations. This in itself was 

not sufficient to address the complexity of HLA. The IRM’s were first presented in 

2006 and after over a decade practitioner are still struggling. This research is a step 

forward to bridge gap between these interoperability problems and the HLA 

standards and provides an insight on how this could be achieved.   

The focus behind this work was to keep it simple and easy for the practitioner. 

Therefore, the functioning of these protocols is almost isolated from the federate 

initialisation and the simulation model as described in figure 4.2. Most of the 

operation is happening within the IRM manager layer which is presented in this 

research. This research also enhances the practitioner understanding by simplifying 

the simulation into layers. This framework also guides the practitioner on selection 

of different approaches for developing a distributed simulation. This framework is 

not restricted to be only used with standard practices used in the industry. Infect, 

this could be used in conjunction with either. But using the standard approach will 

widen the prospects for reusability and portability. It is clear that reusing a model 

can save cost both time and money. But this is not always possible, because to reuse 

a model, minor modifications are required, but if a DS model is developed using a 
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nonstandard approach, then it not only becomes difficult for successor practitioners 

to understand the model but also it might not be compatible with the other 

environment. Having a standard approach will help to overcome these problems.  

During this research a number of published related work was identified in 

chapter 2. Different authors have provided solutions to these problems, but if 

studied in detail, they are limited to a specific problem. While, the proposed 

solutions can also be adopted for those problems. The solutions provided in the 

research are based on the most recent technologies used in the industry and the 

proposed solutions is derived on these technologies. Therefore, this framework also 

inherits the benefits of underlying technologies. The use of the proposed framework 

will also promote the use of standards in the industry. This will not only further 

help to improve the standard, but also widen the scope of implementation. 

The industry is expecting advancement from DS especially for large-scale 

simulation projects. Having these standards in place, simulation industry could 

benefit greatly with the new emerging technologies such as cloud computing. The 

benefits could be unlimited, on-demand access to multiple computing resources 

(Chaudhry et al, 2015). To overcome the significant technical challenges faced by 

cloud computing, it is important that standard practices are adopted to increase the 

scope of reusability and address the interoperability issues. The work presented in 

Chaudhry et al (2015) also tested one of the proposed protocols over the cloud. 

Although, the proposed protocols and the case study used in this research uses 

the open source software’s and packages, but the work is not limited to the given 

environment. Some of the work had been tested to be working in different 

commercial RTI environments such as the most popular Pitch and MAK RTI, 

similarly two other commercial simulation packages i.e. Simul8 and Anylogic were 

also used for testing purposes. This was not discussed earlier in the thesis, but it 

was tested during this research. Both of these simulation packages were tested with 

a general entity transfer Type A.1 IRM.  

Similarly, development environment is not restricted as long as the detail 

functioning and the sequence of events are known. Therefore, in this thesis the focus 
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was on explaining the details of individual protocol detached from any specific 

programming language. It is understood that all the CSP’s do not use a particular 

language, therefore to scope this framework a practitioner should understand, how 

they can use proposed protocol and then translate it into the required programming 

language. A simple test was conducted at the beginning of the research with Simul8 

using C++ language. The practitioner must consult to the CSP manual to identify 

the available options. Some CSPs provide this as additional facility and do not ship 

it with the standard version. 

PoRTIco, on the other hand is not limited for use in open source simulation 

packages. As described earlier, this was also tested with some CSPs. There are 

commercial applications using this RTI e.g. Titan. IM the next wave in a virtual 

simulation, Unity3D a powerful cross-platform 3D engine and a user-friendly 

development environment, alongside application packages like AutoCAD and 

Simulink for Matlab can also benefit from this RTI. However, there are still some 

compatibility issues between different RTI’s which could be used for further 

research to investigate.  

Distributing a simulation require a simulation package, RTI and the 

interoperability solution. Once a simulation package is identified, i.e. a package that 

can support external script/API’s or to have capability to use code within the 

simulation.  If coding or the programming languages are not supported, then a 

bridging API could be designed. The selection of a simulation package can also be 

influenced by the proposed RTI, because some RTI’s might provide limited 

support. Finally, the selection of interoperability solution. This thesis provides the 

detail functioning of each protocol in the simplest way possible i.e. using a federate 

with a simple simulation model. It is also not necessary, that both simulation 

package and RTI must use the same programming language. In case of Simul8 

example, this was tested by creating an interface to communicate between the RTI 

implementation (using C++) and Simul8 (Visual Logic). 

Finally, the required interoperability problems must be identified before selecting 

any interoperability solution. A thorough analysis must be conducted to understand 

the requirements of each interoperability problem and then match these 



Chapter 7: Conclusion 

 

Athar Nouman 281 

requirements with the proposed protocol. Selection of Protocols (section 5.4.4) 

presents an example exercise on how these details can be compared to selecting the 

necessary interoperability solution. In this example, three different IRM’s were 

used and compared with the proposed protocols to identify the best possible 

solution for the problem. For the practinior support and guidance all the protocol 

source code used in the thesis is also made available for the practicitioners on 

Github at the following link (https://github.com/atharnoumangit/IRM-Protocol). 

Although, this might require setting up parameters but default settings are built in 

the sample code. 

7.5 Research Contribution 

After establishing the interoperability issues faced by the practitioners while 

distributing the simulation models, different protocols were proposed to address 

these interoperability challenges. After conducting experiment runs on these 

proposed protocols they were evaluated and a propose solution was concluded to 

address the interoperability issues presented by IRMs. This research also uncovered 

some other contribution which are listed below: 

1. The major contribution of this research is the DSI Framework, to enable 

simulation modellers and vendors to satisfactorily address the interoperabilit y 

requirements of their distributed simulation models. This framework provides 

a set of protocols that can be used by the practitioners to address the 

interoperability between their distributed simulation models. This research also 

helps the beginners (in the field of distributed simulation) to understand the 

challenges faced while distributing a simulation.  

The core objective of the HLA standard was to achieve interoperability, but 

this research and the IRMs have clearly identified that HLA standards have not 

completely met these objectives specially issues related at semantic level.  

Therefore, this research proposes that these semantic recommendations 

become part of the HLA OMT standardised specification to help practitioners. 

https://github.com/atharnoumangit/IRM-Protocol
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Only if the HLA OMT can specify the structure of interoperability and data 

exchange, then it can reach the semantic level. The DSI Framework provides a 

generic solution to each interoperability issue, enabling practitioners to use the 

recommendations to address known interoperability problems. This research 

also highlighted the relationship between interoperability, reusability, and 

composability. The proposed framework can help the HLA standard fulfil its 

promise of achieving interoperability, and standard interoperability semantics 

will promote reusability in distributed simulation, encouraging potential 

increased support from industry. 

2. The second contribution of this research is to facilitate capturing of 

interoperability requirements at a semantic level. Identifying the requirements 

during the conceptual modelling phase will allow to prepare validation and 

verification test condition.  The proposed distributed simulation modelling 

methodology highlights the importance of interoperability, which was a subject 

missing from all extant simulation methodologies. One reason for this absence 

is because a majority of methodologies do not address distributed simulation 

but only discuss modelling of single simulations model executed on a single 

node, i.e., non-distributed. A major justification for distributing a simulation is 

because of system complexity and resource limitations, but practitioners were 

not being provided with the proper tools and methodologies for modelling 

distributed simulation. This research will therefore help practitioners to address 

these challenges, during design and development of a distributed simulation. 

3.  The third contribution of this research is the identification of the requirement 

for new callback mechanisms in HLA Standard. This emanated from 

framework development and the experiment runs. It was noted during the 

experiment runs that the majority of time was consumed by model time 

synchronisation and time advancement because RTI provides a guarantee to 

deliver all messages before time advance. This contribution highlights the need 

to introduce additional methods for callback in RTI implementation that could 

only guarantee synchronised delivery of messages without time advance. This 
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could be achieved in an open source RTI, but changing this in a particular RTI 

will defeat the objective of the standards. Therefore, this research proposes 

additional callback methods in HLA federate interface specifications, which 

can also open another dimension of research into better performing solutions. 

The other proposed change related to this change is to have an additional 

method whereby synchronised time advance can be forced without checking 

and delivering all messages. 

The proposed framework can be introduced as an extension to SISO Standard 

SISO-STD-006-2010. As mentioned above this standard present a set of 

templates or patterns for specific interoperability problems faced by the 

industry experts in distributed simulation models. The work presented in this 

thesis, propose a solution to these interoperability problems therefore it will be 

best to present an extension to this standard as SISO-STD-006-2010-2. The 

proposed framework uses only HLA standard therefore this extension will also 

produce a similar HLA OMT specification for this framework within this 

standard extension as presented in HLA Object Model Template Specification 

(IEEE1516.2.2010). 

4. The final contribution made by this research concerned making models more 

integratable and reusable. Models reusability and integratability can seriously 

be affected when each model uses custom build method to address 

interoperability. The solution to this is achieved by bridging the gap between 

integratability and interoperability by offering semantic solutions to the 

interoperability problems. Using a standards-based approach to address 

interoperability issues, through a standard communication platform such as 

HLA, enables model design to become more integrated and reusable. 

7.6 Research Limitations  

This research contributed to addressing the interoperability issues identified by 

IRMs. The research was limited to the interoperability issues identified by SISO, 
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and there could be other interoperability issues specific to a certain problem 

domain. The author does not claim to have exhausted all possible interoperability 

problems other than IRMs because it is extremely difficult to capture all scenarios.  

The framework uses generic case studies, and only two of them were tested in a 

specific case study, but number of experimental runs were conducted to depict 

different system behaviour. Yet again, it is not possible to capture all the scenarios 

due to time limitation. Similarly, these proposed recommendations were mainly 

tested using one open source RTI and in few cases comparison with one commercial 

RTI. Due to time constraints all the RTI can’t be tested and specially the 

commercial RTI vendors do release frequent versions. It can become extremely 

difficult to keep track of the performance comparison.   

Chapter 6 discussed the individual limitations of each approach, but in terms of 

testing almost all the experimental runs were made on a dedicated network because 

it would be hard to calculate alternative performance delay. As discussed in Chapter 

6, performance will vary on different networks, but the performance graphs 

presented in this research were based on experiment runs over a dedicated network. 

Also, due to the huge number of experiment runs, it was not possible to collect data 

for more than five weeks of the run. 

7.7 Future Work 

This research has shown how investigation into the design and development of 

distributed simulation can produce work that is of benefit to practitioners. The target 

audience, i.e., the end-user, is considered to comprise industry experts. These 

industry experts are expected to have a knowledge of M&S, and underlying 

technologies (e.g., Java or C++), and an understanding of HLA standard, that is, 

RTI. In earlier discussion it was highlighted that RTI documentation is not as good 

as it should be. Therefore, to promote the use of HLA standards, it would be ideal 

to develop higher-level tools, or a toolkit, that can hide the complexity of 

distributing the simulation and enable the modeller to concentrate only on the model 

itself.   
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Because of time limitation, all the researched approaches were tested only on 

generic case studies. It would be rewarding to test different proposed approaches 

on specific case studies to compare and re-evaluate the performance. Since the case 

studies were very generic, they had no or very little effect on the overall 

performance.  

Furthermore, this research was limited to the interoperability issues identified by 

the IRM. Further research could be conducted to identify more interoperability 

issues, which could be more specific to a problem, for appending to the 

recommendations. 

7.8 Summary 

The Research Summary that begins this chapter commenced by stating the 

motivation for this research was to enable HLA to better fulfil its objective of 

overcoming interoperability problems in distributed simulation. 

Literature review had exposed that HLA was not providing complete solutions to 

interoperability issues and while IRMs identified interoperability problems they did 

not offer semantic solutions to resolve them. 

The hypothesis put to the test, therefore, was the feasible of defining a framework 

that implements the issues identified by SISO standard for COTS Simulation 

Package IRMs (SISO-STD-006-2010), which could be effectively adopted by the 

HLA standard. The stages of this research study were listed from hypothesis 

proposal to experiment evaluation, involving a generic case study and seventeen 

different approaches to implementing six IRMs. 

It was noted that some potential implementations were withdrawn due to RTI 

limitations, giving rise to recommendations for changes to RTI features. This 

chapter confirmed through evaluation of the experimental tests that the validity of 

the hypothesis was confirmed and continued by listing the five objectives 

underpinning the research aim, and the chapters in which each were addressed. 
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The contributions made by his research were stated as threefold: capturing 

interoperability requirements at semantic level for integration with HLA to enable 

modellers and vendors to address these issues; the proposed distributed simulation 

modelling methodology, which establishes interoperability as a core feature of 

simulation design and development; identifying the need for additional callback 

methods in RTI implementation to enable improved interoperability solutions; and 

finally making models more integratable and reusable. 

Limitations of this research were noted as not covering unknown potential specific 

interoperation problems; the majority of case studies being generic rather than 

specific; limits on the number of RTI products tested; and tests being conducted on 

a dedicated network limited to five weeks’ duration.  

Future research suggestions included development of a higher level toolkit to hide 

complexity for the modeller; further testing of the proposed approaches using 

specific case studies, and identification of further case-specific interoperability 

problems. 
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