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ABSTRACT 35 
Raveling on asphalt surfaces is a loss of fine and coarse aggregates from the asphalt matrix. The severity of 36 
raveling could be an important indicator of the state of pavements as excessive raveling not only reduces the 37 
ride quality, but eventually leads to pothole formation or cracking. Hence, it is importatnt to detect and quantify 38 
raveling. In this paper, an effort has been made, for the first time, to quantify raveling from a combination of 2D 39 
and 3D images. First, a texture descriptor method called Laws’ texture energy measure is used in conjunction 40 
with the Gabor filter and other imorphological operation to distinguish road areas from others. Then, signal 41 
processing techniques are used to detect and quantify raveling. Hundreds of industrial images are used to test as 42 
well as to show the promise of the proposed algorithm.   43 
 44 
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INTRODUCTION 52 
It is fundamental for road authorities across the world, to define, firstly, a data collection method to acquire 53 
knowledge of the pavement condition within a limited time and  management cost, without traffic disruption, 54 
ensuring safety of the workforce and the traffic in general. In the last twenty years, the rapid advancement in the 55 
processing power of computer, communication, laser and imaging technology made it possible to collect and 56 
analyze large amount of road surface distress information, avoiding high degree of variability, providing 57 
meaningful quantitative information, and leading to avoid inconsistencies. Current methods for distress 58 
identification use equipped vehicles with high resolution cameras and sensors to record pavement surface 59 
images and profile at traffic speed providing accurate information for optimal maintenance and rehabilitation 60 
needs despite some limitation still exist on the accuracy of crack detection [1]. Another major issue with the 2D 61 
video-based systems is their inability to discriminate dark areas not caused by pavement distress such as tire 62 
marks, oil spills, shadows, and recent filings [2]. Moreover, the shadows and poor illumination are also major 63 
problems for daytime operation though they can overcome using additional lighting systems or by acquiring 64 
data in the night after sunset [3].  65 
 66 
Other than the more traditional 2D image analysis to detect pavement distress (cracks, patches, potholes, etc.), 67 
new systems and procedures are proposed to obtain 3D pavement evaluation which has the potential to capture 68 
more accurate surface features and extract and quantify information that were extremely difficult from the 2D 69 
dimensional survey. For example, until now, the extent and the severity measurement of raveling has been a 70 
subjective assessment, estimating the area with the  missing stone.  71 
 72 
 73 
APPLICATION OF 3D TECHNOLOGY IN PAVEMENT CONDITION SURVEY 74 
Research in 3D technology for pavement evaluation is a recent development. Therefore, the literature in this 75 
area is limited. The 3D laser, photogrammetry and stereo vision techniques are the most popular among various 76 
types of 3D technology available [4,5]. All these systems have great potentials but also have limitations when 77 
equipment and management costs are considered. There are two main challenges to overcome before they are 78 
widely used in pavement evaluation. The first one is to capture the image in a consistent manner overcoming the 79 
effect of lighting, shadows, etc. The second challenge is to develop a fast and accurate algorithm to separate 80 
different defects accurately. The following sections highlight the key research on the 3D image capturing and 81 
processing techniques. 82 
 83 
An early systems for the 3D imaging of pavement surfaces was based on the photogrammetric principle [6]. 84 
Although the system yielded good results, ensuring lighting requirement was very difficult for the paired camera 85 
used in the system to obtain high fidelity 2D images of the pavement surfaces. Another system, known as 86 
LIDAR (Light Detection and Ranging) was widely used which composed of a rotating laser scanning system, 87 
GPS receiver and an IMU [7]. Although initially the system attracted widespread attention, due to the difficulty 88 
in making  significant improvement in the resolution of the system in the last decades, and the popularity of 89 
laser based 2D imaging system, the usage of this technique has been limited to niche applications [7].  90 
 91 
In 2008, Laurent et al proposed a 3D Transverse Laser Profiling System for the Automatic Measurement of 92 
Road Cracks, which then subsequently implemented as a commercial system with a custom made software to 93 
preprocess the data [8]. In this system, known as Laser Crack Measurement System (LCMS), high-speed 94 
cameras were used together with custom optics and laser line projectors to acquire both 2D images and high-95 
resolution 3D profiles of the road. The system could be operated by night or by day under all types of lighting 96 
conditions — in both sunlit and shaded areas. Various pavement types like regular or open-graded asphalt, 97 
chipseal and concrete, can be measured at survey speeds up to 100km/h, and on roads reaching 4m in width.  98 
 99 
Wang et al also used the same technique as LCMS, developed a prototype automated vehicular platform 100 
including laser based sensors that can capture 1mm resolution 3D representation of pavement surface even in 101 
adverse lighting condition and the development of an algorithm and software to produce results on pavement 102 
distresses [9]. However, the software, Pavevision 3D, used in this system has substantially better performance  103 
than the LCMS in terms of 3D line rate and, 2D visual data. Other recent laser based 3D system is being 104 
proposed by [10], where a real-time 3D scanning system was used for the inspection of pavement distortion 105 
such as visualization of rutting and shoving using a high-speed 3D transverse scanning techniques based on 106 
structured light triangulation. To improve the accuracy of the system, a multi-view coplanar scheme was 107 
employed in the calibration procedure so that more feature points can be used and distributed across the field of 108 
view of the camera. A sub-pixel line extraction method is applied to the laser stripe location, which includes 109 
filtering, edge detection and spline interpolation. The pavement transverse profile is then generated from the 110 
laser stripe curve and approximated by line segments. Sun et al proposed a new method of analysis based on the 111 
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sparse representation to decompose the pavement profile signal into a summation of the mainly pavement 112 
profile and cracks [11].  113 
 114 
 115 
RAVELING OF ASPHALT SURFACES 116 
In simple terms, raveling on asphalt surfaces is a loss of fine and coarse aggregates from the asphalt matrix due 117 
to the adhesion failure at the interface. In many cases raveling is a combination of more than one contributing 118 
physical mechanisms by which the aggregate is separated from the binder; such as surface type, improper 119 
mixture design (lower binder content then the specification, high proportion of dust), inadequate compaction, 120 
weathering, traffic, ageing of bitumen, the high intense hydrostatic pressure created by a combination of traffic 121 
and water entering the pavement through interconnecting voids [12, 13], moisture or freeze-thaw cycles due to 122 
seasonal variation, effect of snow plowing in winter months. Excessive raveling not only reduces the ride 123 
quality, but eventually leads to pothole formation or cracking.  In addition, in recent years surface dressing and 124 
other thin surfacing systems are increasingly used as a means of preventative maintenance for pavement 125 
preservation. These surfaces are prone to reveling because of combination of factors as mentioned earlier. 126 
Therefore, there the severity of raveling could be an important informant to evaluate the state of the pavement. 127 
 128 
The measurement of raveling is based on the visual observation rather than any derived quantification. The 129 
severity level is rated by the degree of aggregate loss within a segment of a road.  The segment is typically one 130 
tenth of the mile or a kilometer and expressed relative to the surface area of the surveyed lane. It is important to 131 
note that raveling is measured or observed differently depending on the surface type. For Bituminous Surface 132 
Treatment (BST) raveling is caused by the loss of aggregate and the binder is exposed. On the other hand, for 133 
chip sealed pavements, as they tend to look raveled because of the inherent nature of the chip seal surface, it 134 
may be mistaken as raveling which is actually an excess asphalt resulting loss of aggregate, and should be rated 135 
as flushing [12]. The various stages of raveling are usually described as light (loss of surface fines), moderate 136 
(loss of fines and some larger aggregate exposed), and severe (loss of fine and coarse aggregate). The extent of 137 
raveling could be localized (patchy areas, usually in the wheel paths), on the wheel path (majority of wheel 138 
tracks is affected, but little or none elsewhere in the lane) or could extend through the entire lane width (most of 139 
the lane is affected) [12]. 140 
 141 
 142 
RESEARCH OBJECTIVES 143 
In this paper Laws’ texture energy measures are used to detect texture boundaries in intensity (i.e. 2D) images 144 
(Figure 1) to distinguish road surfaces from lane marking and other painted surfaces. In addition, the Gabor 145 
filter, a frequency domain based technique, is used to enhance the edges that result from the texture boundary 146 
detection as described above. Furthermore, some morphological operations are performed to further improve the 147 
segmentation accuracy.  148 
 149 

   150 
 151 

FIGURE 1 An intensity image and its corresponding range image [Courtesy Dynatest UK Ltd.] 152 
 153 
 154 
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LAWS’ TEXTURE ENERGY MEASURES 155 
Surfaces can be distinguished from their texture. Several texture analysis methods exist. Co-occurrence 156 
matrices, autocorrelation features and wavelet-based methods are to name a few [14]. The laws’ texture energy 157 
method measures the amount of texture variation within a finite-sized window. Texture energy is computed 158 
within a 5x5 window, usually. A number of masks are formed from the vectors shown below.  159 
 160 
L5 (Level)     =  [  1   4   6   4   1]   161 
E5 (Edge)      =  [ -1  -2  0   2   1] 162 
S5 (Spot)      =  [ -1   0  2   0  -1] 163 
R5(Ripple)   =  [  1  -4  6  -4   1]  164 
 165 
R5 vector has been designed to detect ripples in the images. The rationale behind these detections is that the 166 
texture of a given image can be broken down into very fundamental geometric shape descriptions like edges, 167 
spots, levels, etc. These 4 vectors are then used to form 5x5 masks.  168 
 169 

The mask L5S5 is formed in the following manner:   
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 171 
In total, 16 such masks are formed: L5L5, L5E5, L5S5, L5R5, E5L5, E5E5, E5S5, E5R5, S5L5, S5E5, S5S5, 172 
S5R5, R5L5, R5E5, R5S5 and R5R5.  173 
 174 
Pavement images are convolved with the above masks as shown in Figure 2. 175 

 176 
FIGURE 2 Mask convolution. 𝒚𝒚𝒊𝒊 = ∑ 𝒙𝒙𝒊𝒊 × 𝒎𝒎𝒊𝒊

𝑵𝑵
𝒊𝒊=𝟏𝟏 , where Pixels  = 𝑵𝑵 = 𝑳𝑳 × 𝑳𝑳 [15] 177 

 178 
The resulting image from convolution can be used to detect texture boundaries. 179 
 180 
 181 
GABOR FILTER 182 
The Gabor filter is a frequency based technique that has been used for object recognition, edge detection and 183 
optical character recognition. This filter is very special in the sense that visual cortex cells in mammals can be 184 
expressed by Gabor functions. The filter has the ability to respond to different orientations, hence it helps 185 
distinguish objects oriented in different directions. The Gabor filter is implemented as a filter bank consisting of 186 
filters with a number of orientations (see θ below).  187 
 188 
The Gabor filter is formed by the modulation of a Gaussian envelope by a complex sinusoid. The filter’s real 189 
part can be expressed as follows, 190 
 191 

 𝑔𝑔𝑖𝑖(𝑥𝑥, 𝑦𝑦) = 1
2𝜋𝜋σ2

𝑒𝑒−
1

2𝜎𝜎2
��𝑥𝑥′�2+�𝛾𝛾𝛾𝛾′�2�{sin[2𝜋𝜋

𝜆𝜆
 (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑥𝑥𝑦𝑦𝑦𝑦𝑥𝑥) +  𝜓𝜓]}                                                  (1) 192 

 193 
 194 
Where, 𝑥𝑥′ =  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑥𝑥𝑦𝑦𝑦𝑦𝑥𝑥  and  𝑦𝑦′ =  −𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦𝑥𝑥 + 𝑦𝑦𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥. Here σ is the standard deviation of the Gaussian 195 
neighborhood in the x’ direction. γ is the ellipticity of the filer. θ is desired orientation of the filter, λ is the 196 
wavelength of the sinusoid,  ψ is the phase offset of the modulation factor, which decides the symmetry or anti-197 
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symmetry of the filter and the width (a) and the length (b) of the elliptical Gaussian (2D) envelope and the angle 198 
between the orientation of the sinusoidal wave vector and the two dimensional Gaussian axes. 199 

Figure 3 shows three different Gabor filters where the orientation, θ, or the wavelength, λ, is changed. The 200 
pictures depict the continuous domain representations of the Gabor filter.  201 
 202 

 203 
 204 

FIGURE 3 Gabor filter with θ=0, λ=2 (a), Gabor Filter with θ=0, λ=0.5 (b) and Gabor filter 205 
with θ=π/4, λ=5 (c)  [16] 206 

 207 
For practical image processing applications the continuous function has to be digitized and represented by a 208 
mask as discussed in the previous section. Then the image is convolved with the mask as explained in Figure 2. 209 
For a detailed explanation of the theory, refer to [17], where the Gabor filter is utilized for pavement crack 210 
detection.  211 
 212 
 213 
MORPHOLOGICAL OPERATIONS ON BINARY IMAGES 214 
Binary images are the images that consist only black (gray level 0) and white pixels (gray level 1), i.e. the image 215 
has two intensity levels only. Blobs in binary images are the collection of white pixels that are connected by a 216 
neighborhood. A lone white pixel, that does not have any neighbors, is also considered as a blob. According to 8 217 
neighborhoods, the middle pixel with value x5 in Figure 2 will have all the 8 pixels surrounding it {x1, x2, x3, x4, 218 
x6, x7, x8, x9} as its neighbors. When it comes to 4-neighborhood, the pixels { x2, x4, x6, x8} are considered the 219 
neighbors of the middle pixel, x5. The corner connectivity is not considered for a 4-neighborhood. In this paper 220 
only 8 neighborhood is used (this is the default option with MATLAB’s Image Processing Toolbox’s 221 
morphological functions).  222 
 223 

() 224 
(a) 225 

 226 
(b) 227 

 228 
FIGURE 4 Two morphological operations: dilation (a) and erosion (b) performed with 8 pixel 229 

connectivity on an image with two blobs [18] 230 
 231 
A number of morphological operators are available. Out of these, dilation and erosion are used in this project. 232 
Image morphology is frequently used for image enhancement. In a general sense, dilation adds white pixels to 233 
an image based on any given criteria. Whereas, the erosion operation removes white pixels from the image.  234 
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Dilation 235 
Any black pixel that has a white pixel in its 8 – neighborhood is turned into a white pixel (i.e. its value is set to 236 
1). This operation is depicted in Figure 4 (a), where the image on the left is the original image and the right one 237 
shows the dilated version. To explain it more, for the lone white pixel in the top right corner of the original 238 
image in Figure 4(a), the dilation operation makes all the pixels in its 8-neighborhood white. The bwmorph 239 
function of MATLAB has been used with the dilation option chosen [19] 240 
 241 
Erosion 242 
Erosion removes any white pixels that have at least one black pixel in its 8-neighborhood (See Figure 4 (b)). 243 
Only the four white pixels, shown in the image after erosion, have white pixels entirely in their 8-neighborhood . 244 
Once again MATLAB’s bwmorph is employed used with the dilation option [19].  245 
 246 
Two other operations are also performed on the images. Boundary extraction, extracts the boundaries of every 247 
blob in the image based on 8-neighborhood. MATLAB function boundaries are used to extract blob boundaries. 248 
Hole filling replaces the black pixels, fully inside a blob, with white ones. For this purpose imfill function of 249 
MATLAB is employed. 250 
 251 
 252 
EXPERIMENTATION  253 
Image Acquisition 254 
The 2D and 3D images used in this study are obtained by Dynatest UK Ltd. using the LCMS system on a road 255 
section in the UK. There is some post-processing on the images by the Pavemetrics software and the resulting 256 
are 2D (i.e. intensity) and 3D (i.e. Range) both of which are 8-bit grayscale images. The size of the road imaged 257 
by the systems is 10 x 4.16 m2.  Both the images have a resolution of 2500 x 1040. Hence, once pixel images an 258 
area of 4 x 4 mm2 on the road. Ninenhundred 2D-3D image pairs have been supplied by Dynatest. 259 
 260 
Texture Edge Detection: Laws’ texture energy masks 261 
The target here is to segment road areas from the paints, lines, etc. found in the images and then to look for 262 
raveled areas, preferably using the range images.. The use of 3D image for the purpose of region segmentation is 263 
very limited as distinguishing different surfaces from each other using 3D imaging can result in ambiguity. This 264 
is especially the case for a road surface, as it can be smooth and rough at two different locations at ground level. 265 
This variation will result in 3D images with low and high range fluctuations. Furthermore two different surfaces 266 
can exhibit same smoothness, in their range values, as such cannot be differentiated. Hence, range images are 267 
not very good for distinguishing different surfaces. Intensity (i.e. 2D) images are used to extract road surface in 268 
this study.  269 
 270 
As seen in Figure 5 (a), the intensity images are complex with varying amounts of image intensities, within any 271 
given type of surface. The texture within a given surface change greatly as well. Due to these variations, image 272 
segmentation techniques like thresholding and edge detection are not found to give effective results. To segment 273 
different the road regions from the non-road areas, the 16 masks based on Laws’ texture energy measured are 274 
used to convolve the 2D intensity image. 275 
 276 
It is experimentally found that the average of the images resulting from the convolution with the masks S5L5 277 
and L5S5 give the best texture segmentation for these images. The corresponding texture edge image is shown 278 
in Figure 5 (b). It can be seen from Figure 5 (b) that many of the pseudo edges, which are due to intensity 279 
variations, are eliminated, esp. when compared with Figure 5 (a). However, many micro edges are still detected, 280 
preventing a clear segmentation between road and other regions. To eliminate these a thresholding operation is 281 
performed. The thresholded, hence binary, image is shown in Figure 5 (c). The segmentation is not perfect as 282 
there remain lots of edges within the letters ‘S’, ’L’ and ‘W’, written on the road. In addition, the lane markings 283 
that are at the right- and leftmost regions of the image, have line segments missing.     284 
 285 
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           286 
 287 
 288 
 289 
 290 
 291 
 292 
 293 

(a)                                                  (b)                                                   (c) 294 
 295 

FIGURE 5 An intensity image (a), its Laws’ texture edge image (b) and the threshold edge image (c) 296 
 297 
 298 
Texture Edge Enhancement: The Gabor Filter 299 
Twelve Gabor filters at orientations {0°, 15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150°, 165°} are used to 300 
convolve the image given in 5 (c). Other parameters used for the Gabor filters are, γ =1, σ =12, λ = 40 and ψ = 0. 301 
All 12 images resulting from the filters are then thersholded. Figures 6 (a) and 6 (b) show the threshold images 302 
for the filter orientations, θ, of 0° and 90°, respectively.  303 
 304 
As seen in Figure 6 (a), the orientation θ=0°  picks up all the horizontal edges in Figure 5 (c). From Figure 6 305 
(b), it can be seen that the 90° orientation Gabor filter detects all the vertical edges. In addition to orientation 306 
based edge detection, Gabor filters also have a smearing effect hence fill up the gaps (non-detections) in the line 307 
segments in Figure 5 (c). The main disadvantage is that the line segments tend to get thicker after processing 308 
with Gabor filters. However, this drawback works to the advantage of this project, as it leads to a more 309 
conservative detection, i.e. under detection, of the road surface.   310 
 311 
  312 
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        313 
(a)                                                      (b)                                                        (c) 314 

 315 
FIGURE 6 Gabor response for θ=0° (a), Gabor response for θ=90° (b) and overall response of Gabor 12 316 

filter bank 317 
 318 
The 12 thresholded images resulting from the 12 Gabor filters are then combined into a single image using the 319 
logical OR operation (i.e. If one of the images has a white pixel the corresponding pixel in the aggregated image 320 
will be set to white). The aggregated image is shown in Figure 6 (a). 321 
 322 
Figure 6 (a) detects most of the desired features detections, but the outer contour of the letter ‘S’ is not fully 323 
detected. To make sure that all the contours are properly closed, dilation operation is performed 8 times and then 324 
erosion is also carried out 8 times. This will close of contours while maintaining line thicknesses the same, in 325 
general. Then a hole filling operation is implemented. The resulting image, with a better contour describing ‘S’ 326 
is shown in Figure 7 (a). In Figure 7 (a), the linear lane marking near the top right corner appears as broken, 327 
due to its small thickness. However, in reality, there exists a ‘U’ shaped contiguous contour starting from and 328 
finishing in the top edge of the image. Figure 7 (b) shows the image obtained by the logical OR of Images 6 (c) 329 
and (7a). For the unclosed contours that touch the image edges at two, or more, places, a ‘closing’ scheme is 330 
implemented so that parts of the image edge completes the contour. Then, all closed contours (i.e. blobs) are 331 
filled for the holes with the imfill function. This image is shown in Figure 7 (c). The foregoing process 332 
completes the region segmentation operation.  333 
 334 
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        335 
(a)                                                       (b)                                                        (c) 336 

 337 
FIGURE 7 Image after morphological operations (a), after logical OR (b) and the final detection (c) 338 

 339 
 340 

RESULTS 341 
Figures 8 (a) and 8 (b) show the detected boundaries embedded in original intensity and range images, 342 
respectively. The sand patch test covers an area of 250 x 250 mm2, in general [20]. This amounts to an a square 343 
area of 62 x 62 pixels in the image as 1 pixel is 4 x 4 mm2. Figure 8 (c) highlights the square tiles that are on the 344 
road surface and will be analyzed for raveling. 345 
 346 
The raveling is proposed to be quantified by the amount of range variation found within a window of 62 x 62 347 
pixels. The measure of standard deviation of the range values inside a window is used here. However, if the 348 
standard deviation, within a window, alone is considered as a measure of raveling, it may lead to erroneous 349 
results. For example, within the window highlighted in red in Figure 8 (c), the surface profile of the road 350 
changes drastically. 351 



10 
 

          352 

(a)                                                      (b)                                                     (c) 353 

FIGURE 8 Detection embedded in the original intensity (a) and range (b) images, and the tiles to be 354 
analyzed for raveling (c). 355 

 356 
The range data for this window is plotted in 3D in Figure 9(a) and it can be seen that the road profile is a low 357 
frequency variation. Hence, only the high frequency variations of the road must be considered for raveling 358 
detection. Here, 3D window data are proposed to be filtered with a Gaussian filter mask of 5 x 5 size with a 359 
standard deviation (σ) of 3.9.  360 
 361 
A Gaussian is given by the following function with A being a constant ,  362 
 363 
𝑔𝑔𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝐴𝐴𝑒𝑒−

1
2𝜎𝜎2

�x2+y2�                                                                                                                          (2) 364 

The designed Gaussian mask is  0.0455

⎣
⎢
⎢
⎢
⎡
0.768
0.848
0.876
0.848
0.768

0.848
0.936
0.968
0.936
0.848

0.876
0.968
1.000
0.968
0.876

      

0.848
0.936
0.968
0.936
0.848

0.768
0.848
0.876
0.848
0.768⎦

⎥
⎥
⎥
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. This is a normalized mask.  365 

The 3D data of the window, when convoluted with this mask, results in the low-pass data shown in Figure 9 366 
(b). In Figure 9 (b) all high frequency components in the original data are removed. Now, the low-pass data, in 367 
Figure (9b), is subtracted from the original data in Figure 9 (a) to reveal the high frequency changes to which 368 
raveling contributes. This is high-pass filtered data in effect. The high frequency variations are shown in Figure 369 
9 (c).     370 
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(a)  371 

(b)  372 

(c)  373 

FIGURE 9 The range data of a 62 x 62 pixel window (a), its low-pass filtered form (b) and its high-pass 374 
filtered form(c) 375 

The standard deviation of the high-pass filtered data is 11.66 given in the 8 bit range [0 255], as the range image 376 
is 8 bits, called units hereafter. If the conversion factor between the range image data and the physical range 377 
value, in meters, the standard deviation value can also be expressed in meters. In this paper, the standard 378 
deviation value above is used to quantify the amount of raveling in that particular window.     379 
 380 
The above algorithm was tested on the 900 2D-3D image pairs, and the maxim and minimum value of standard 381 
deviation of the high-pass filtered window data, among all range images, are 17.4 and 2.9 units, respectively.  382 
The raveling condition for a window, thus found, is proposed to be classified as good, average or bad, denoted 383 
by the window highlighted in green, orange or red colour. Here, windows with standard devition less than 5   384 
unit are characterized as good, the ones that fall in the range of 5 – 10 units are branded average and the 385 
windows that have standard devitions greater than 10 units are considered as badly raveled. Figures 10 and 11 386 
show two intensity-range image pairs with the third images showing the range image showing the detections.   387 
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            388 

                           (a)                                                      (b)                                                       (c) 389 

FIGURE 10 Intensity(a), range(b) and detection embedded range (c) images 390 

           391 

(a)                                                       (b)                                                       (c) 392 

FIGURE 11 Intensity(a), range(b) and detection embedded range (c) images 393 
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DISCUSSION 394 
In the supplied image set of 900 pairs, the road surface is correctly detected in all images. Very rarely, small 395 
islands of road surface is is characterized as non-road, e.g. the ones surrounded by blue contours immediately 396 
above and to the left of the longer arrow in Figure 11(c). This usually happens when the local intensity of the 397 
road surface, in the 2D image, is at its highest. However, when considering all 900 images these false negatives 398 
are found to be extremely rare (<< 1%).   399 
   400 
The range images supplied by Dynatest are preprocessed with proprietary software that is available with the 401 
hardware. Hence, the actual depth values are not valuable for the range images. If a conversion factor is 402 
available to translate the range image intensities to depth values in meters, the raveling can be expressed in 403 
either volumetric format (i.e. cubic meters per a 250 x 250 mm2 window) or as a roughness-like value in meters. 404 
Furthermore, in the presence of a conversion factor, a bench marking process can be devised so that the raveling 405 
measure proposed here can be correlated to some standard procedures to detect raveling, e.g visual survey. 406 

 407 

CONCLUSIONS 408 
This paper provides a methodology, for the first time, to detect and quantify raveling from 2D and 3D images 409 
that are captured in a synchronous manner. Using an array of methods available within image processing, it has 410 
been shown that road surfaces can be accurately segmented from other painted areas on the road. Additionally, 411 
signal processing methods are used to process and measure raveling from the 3D range images.   412 
  413 
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