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ELEMENTS OF POLYA-SCHUR THEORY IN FINITE
DIFFERENCE SETTING

PETTER BRANDEN, ILIA KRASIKOV, AND BORIS SHAPIRO

ABSTRACT. The Pdlya-Schur theory describes the class of hyperbolicity pre-
servers, i.e., the linear operators on univariate polynomials preserving real-
rootedness. We attempt to develop an analog of Pdlya-Schur theory in the
setting of linear finite difference operators. We study the class of linear finite
difference operators preserving the set of real-rooted polynomials whose mesh
(i-e., the minimal distance between the roots) is at least one. In particular,
finite difference version of the classical Hermite-Poulain theorem and several
results about discrete multiplier sequences are obtained.

1. INTRODUCTION

The systematic study of linear operators acting on R[z] and sending real-rooted
polynomials to real-rooted polynomials was initiated in the 1870’s by C. Hermite
and later continued by E. Laguerre. Its classical period culminated in 1914 with
the publication of the outstanding paper [I§] where G. Pdlya and I. Schur com-
pletely characterized all such linear operators acting diagonally on the standard
monomial basis 1,2, 22,... of R[z]. This article generated a substantial amount of
related literature with contributions by e.g. N. Obreschkov, S. Karlin, B. Ya. Levin,
G. Csordas, T. Craven, A. Iserles, S. P. Ngrsett, E. B. Saff, and, recently by the
first author together with the late J. Borcea.

Although several variations of the original set-up have been considered (includ-
ing complex zero decreasing sequences, real-rooted polynomials on finite intervals,
stable polynomials etc.) it seems that its natural finite difference analog discussed
below has so far escaped the attention of the specialists in the area. An exception
is [9.

Denote by HP C R[] the set of all real-rooted (also referred to as hyperbolic)
polynomials. A linear operator T : R[z] — R[z] is called a real-rootedness preserver
or a hyperbolicity preserver if it preserves HP. Given a real-rooted polynomial
p(z) € HP denote by mesh(p) its mesh; i.e., the minimal distance between its
roots. If a real-rooted p(x) has a multiple root, then by definition mesh(p) := 0.
Polynomials of degree at most 1 are defined to have mesh equal to +o00. Denote by
HP>q C HP the set of all real-rooted polynomials whose mesh is at least o > 0.
Let HPL, C HP>q be the subset of such polynomials with only non-negative
zeros.

One of rather few known results about linear operators not decreasing the mesh
is due originally to M. Riesz and deserves to be better known, see e.g. [9] 20].

Theorem 1. For any hyperbolic polynomial p and any real X,

mesh(p — Ap’) > mesh(p).
1
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FIGURE 1. Roots of A(p(x)) = p(z)—p(x—1) are the z-coordinates
of the intersection points between the graphs of p(z) and p(x —1).

Recall that the well-known Hermite-Poulain theorem [I5 p. 4] claims that a
finite order linear differential operator T = ag + a1d/dx + -+ + akdk/dmk with
constant coefficients is hyperbolicity preserving if and only if its symbol polynomial
Qr(t) = ag + ait + --- + axt® is hyperbolic. Thus Theorem |I| combined with the
Hermite-Poulain theorem imply the following statement.

Corollary 1. A hyperbolicity preserving differential operator with constant coeffi-
cients does not decrease the mesh of hyperbolic polynomials.

Our first goal is to find an analog of Corollary [I] in the finite difference con-
text. We consider the action on Clxz] of linear finite difference operators T' with
polynomial coefficients; i.e., operators of the form:

T(p)(z) = qo(z)p(x) + q(x)p(x — 1) + - - - + qi(z)p(z — k), (1)
where qo(),...,qx(z) are fixed complex- or real-valued polynomials. If g (x) Z 0
we say that T has order k. Although no non-trivial T" as in preserves HP, (see
Lemma below) it can nevertheless preserve HP>1. The simplest example of such
an operator is

A(p(z)) = p(z) —p(z — 1)
which is a discrete analog of d/dx, see Fig. 1.

Definition 1. A linear finite difference operator 1s called a discrete hyper-
bolicity preserver if it preserves HP>1.

Obviously, the set of all discrete hyperbolicity preservers is a semigroup with
respect to composition. We start with a finite difference analog of Theorem [I| A
similar result was proved by S. Fisk in [9, Lemma 8.27].

Theorem 2. For positive real numbers o and A, define an operator T by
T(p)(z) = p(z) — Ap(z — ).
Then for any hyperbolic polynomial p € HP>q,
mesh(7T'(p)) > mesh(p).
Moreover if A > 1, then T preserves the set 7—[73;&.

This statement settles Conjecture 2.19 from a recent preprint [7]. Our next result
is a natural finite difference analog of the Hermite-Poulain theorem.
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Theorem 3. A linear finite difference operator T with constant coefficients of the
form

T(p(x)) = aop(x) + arp(x — 1) + - + axp(z — k) (2)
is a discrete hyperbolicity preserver if and only if all zeros of its symbol polynomial
Q(t) = ag + art + - - + apt® are real and non-negative.

As we mentioned above, a famous class of hyperbolicity preservers is the class
of multiplier sequences introduced and studied by G. Pdlya and I. Schur in [I§].
Let us recall this notion and introduce its finite difference analog.

Definition 2. Given a sequence A = {a;}32, of real or complex numbers, we
denote by T 4 the linear operator

Ta(x?) = a;a

acting diagonally with respect to the monomial basis of Clx]. We refer to T s as the
diagonal operator corresponding to the sequence A.

Notice that any diagonal operator T as above can be also written as a formal
linear differential operator of (in general) infinite order

0o ) di
T = a;xt—.
; dx?

The relation between the sequences A = {;}52, and A = {a;}{2, representing the
same diagonal operator T is of triangular form and given by:

ai:ao—i-ial+i(i—1)a2+~~+i!ai, i:0,1,2,...

Definition 3. We call a sequence A = {a;}5°, of real numbers a multiplier
sequence of the 1st kind, if its diagonal operator T 4 preserves HP; i.e., sends
an arbitrary hyperbolic polynomial to a hyperbolic polynomial. The above sequence
A is called a multiplier sequence of the 2nd kind, if the above Ty sends an
arbitrary hyperbolic polynomial whose roots are all of the same sign to a hyperbolic
polynomial.

The main results of [I8] are explicit criteria describing when a given sequence
A = {0;}52, represents a multiplier sequence of the 1st and the 2nd kind.

Let us now describe a finite difference version of multiplier sequences. Natural
analogs of monomials in the finite difference setting are the Pochhammer polyno-
mials {(z);}$2, defined by

(x)o=1, (z)i=zx-1)---(x—i+1),i>1. (3)

Definition 4. A finite difference operator T as in is called diagonal if it acts
diagonally with respect to the Pochhammer basis {(x);}32,.

Analogously to the above case of the usual diagonal operators we can associate
to any sequence A = {;}5°, of real numbers the corresponding diagonal finite
difference operator T4 (in general, of infinite order) by assigning

Ta((z);) = a;(x)iy i =0,1,2,. ..
Observe that a finite difference analog zA of the Euler operator x% given by

aA = z(p(r) - p(z - 1))
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acts diagonally in this basis, namely, A((x);) = i(z);. Moreover any diagonal finite
difference operator T (of finite or infinite order) can be represented as a formal series

T = i al(:c)lAl
=0

Definition 5. We say that a diagonal finite difference operator T is a discrete
multiplier sequence if it preserves 'HP;.

Our next result is as follows.

Theorem 4. An operator U given by
Ulp(x)) = ap(x) + BzA(p(x)) = ap(x) + Sz(p(z) — p(z — 1)),

is a discrete multiplier sequence if o and (8 are real numbers of the same sign.

Remark 1. Observe that, in general, the above operator U is not mesh-increasing.
Therefore, Theorem [4]is not a complete analog of Theorem [2} A simple example of
this phenomenon is U(p(z)) = p(x)+ (3/4)z(p(z) —p(z—1)); ie., a =1, [=3/4.
When p(z) = (x —1)(z —4)(x —7), then U(p(x)) has three positive roots which are
approximately equal to (0.433167,3.12467,6.36524) and its mesh is smaller than 3.

Proposition 5. If {a;}32, is a discrete multiplier sequence, then it is a multiplier
sequence in the classical sense.

Remark 2. Notice that the converse to Proposition [5] fails since the ordinary
multiplier sequence {p*}$2,,, where 0 < p < 1, is not a a discrete multiplier sequence.

Denote by £L—P, the positive subclass in the Laguerre-Pdlya class; i.e., real entire
functions which are the uniform limits, on compact subsets of the complex plane,
of polynomials with only real positive zeros.

Theorem 6. If ¢(x) € L—P, then the sequence {¢(i)}52, is a discrete multiplier
sequence.

A sequence {a;}52 is said to be trivial if a;; # 0 for at most two indices 4. Trivial
discrete multiplier sequences are simple to describe.

Proposition 7. A trivial sequence {a;}32,, is a discrete multiplier sequence if and
only if there is an integer m > 0 such that cpomy1 > 0 and o = 0 unless
i€ {m,m+1}.

We conjecture the following tantalizing characterization of non-trivial discrete

multiplier sequences, which would be a discrete parallel to the classical result of
Pélya and Schur [18].

Conjecture 1. Let {a;}5°, be a non-trivial sequence such that a; > 0 for some i.
Then it is a discrete multiplier sequence if and only if it is a multiplier sequence
such that 0 < ag < g < ---.

We almost prove one direction of Conjecture[l]} namely we prove that any discrete
multiplier sequence with infinitely many non-zero entries and at least one positive
entry is weakly increasing, see Proposition

Acknowledments. The authors are grateful to Professors O. Katkova and A. Vish-
nyakova of Kharkov National University for discussions of the topic. The third
author is grateful to the Department of Mathematics, Brunel University for the
hospitality in June 2009 when this project was initiated.
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2. PROVING A DISCRETE HERMITE-POULAIN THEOREM

The following lemma emphasizes the difference between ordinary and discrete
hyperbolicity preservers.

Lemma 8. A finite difference operator T' of the form 1s hyperbolicity preserving
in the classical sense if and only if ¢;(x) Z 0 for at most one i, and g;(x) is hyperbolic
for such an 1.

Proof. If T satisfies the conditions of the lemma, then T is trivially a hyperbolicity
preserver.
Consider the bivariate symbol

k k
Gz, y) =T(e ™) = gi(x)e” W =™ " g;(x)e’.
=0 =0

If T is a hyperbolicity preserver, then by [I, Theorem 5], G(z,y) or G(z,—y) is
the limit (uniform on compact subsets of C) of bivariate polynomials that are non-
vanishing whenever Im « > 0 and Im y > 0. It follows that for each zy € R the
function

k
Z q;(wg)eE @09y
3=0

is in the Laguerre-Pdlya class. However this is the case only if ¢;(z¢) # 0 for
at most one j, from which it follows that ¢;(x) # 0 for at most one j. Since
T(f) = q;(x)f(x — j) this forces g;(x) to be hyperbolic. O

Before we present a proof of Theorem [2| we need to recall some notation and
well known results about hyperbolic polynomials. Let 74 < v < .-+ < 7, and
01 < 0y < --- < 6y be the zeros of two hyperbolic polynomials p and ¢q. These
zeros interlace if either 1 < 93 < <dg < ---ordy <13 <Jp <y <---. A
pair of hyperbolic polynomials (p,q) are in proper position, written p < ¢, if their
zeros interlace and p(z)q’'(z) — p'(z)q(z) > 0 for all z € R. Note that if the zeros
of two hyperbolic polynomials p and ¢ interlace, then either p < ¢ or ¢ < p. By
convention we set 0 < p and p < 0 for any hyperbolic polynomial p. The next
lemma follows from a simple count of sign changes, see [I9, Theorem 6.3.8], [22
Lemma 2.4] and [2, Lemma 2.6].

Lemma 9.
(a) Let p be a hyperbolic polynomial. Then the sets

{eeR[z]:g<p} and {geR[z]:p<q}

are convex cones.
(b) If p < ¢, then p < ¢+ ap and p + ag < ¢ for all a € R.

Proof of Theorem[3 Let T(p)(z) = p(z) — Ap(xz — ) where a, A > 0. We want to
prove that T': HP>g — HP>p for all 8 > «. First we prove it for 8 = . Note that
p € HP>q if and only if p(z) < p(z— ). Lemma 9] (b) implies T'(p)(z) < p(x) and
T(p)(z) < p(x — a), which is easily seen to imply T'(p) € HP>q. Next we prove
that if p,q € HP>, satisfy p < ¢, then T'(p) < T(q). This will prove Theorem
since if p € HP>g C HP>aq, then p(x) < p(x — ) and thus T'(p)(xz) < T'(p)(x—B)
which is equivalent to T'(p) € HP>s. By a continuity argument invoking Hurwitz’
theorem on the continuity of zeros [19, Theorem 1.3.8] we may assume that p and
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q have the same degree. To prove that T' preserves proper position we claim that
it is enough to prove that

T((z—a)r) < T((z —b)r) (4)

whenever ¢ < b and r € HP>,. Indeed, let a be the smallest zero of p, b be
the greatest zero of ¢ and r = p/(z — a). Then we may construct a sequence of
hyperbolic polynomials:

(z—a)r=p=pKp <€ KqgKL - Lp, = (x—b)r,
where for each 1 < i < k — 1 there is a factorization p;_1(x) = (x — a;)r;(z) and
pi(z) = (x — b;)ri(x), where a; < b; and 7;(x) € HP>o. By hypothesis
T((x—a)r) =T(p) =T(po) < <T(q) <+ <T(pr) =T((z = b)r),
and T((x — a)r) < T((x — b)r) which implies T'(p) < T(q) as claimed.

It remains to prove (). Since T'((z — b)p) = T((z — a)p) — (b — a)T(p) it is, by
Lemma [J] (a) and invariance under translation, enough to prove that T'(p) < T'(zp)
for all p € HP>o. Now

T(zp) = (x —)T(p) + ap.

Since T'(p) < p and T'(p) < (z—a)T'(p), Lemmal[9]b implies T'(p) < (z—a)T(p)+ap
as desired.

Finally suppose p € HPZ_ and A > 1. Write p(z) = A[[}_, (v —6;) where §; > 0
for all . Then for y > 0

p(=y) y+0;
= <1<
p(-y—1) Hy+9i+1

Hence T'(p)(—y) # 0, which proves that T preserves ’H”P;a. O

Proof of Theorem[3 Theorem [2] implies that if the symbol polynomial Qr(t) =
ag + at+ - - -+ axt® has only real and non-negative zeros, then the finite difference
operator T'(p(z)) = agp(x) +ar1p(x —1)+- - - +agp(z — k) is a discrete hyperbolicity
preserver. We need to prove the necessity of the latter condition. Consider the
action of T' on the Pochhammer polynomials (z);. Assuming that i > k, we get

T((x)i) = (x = k) (z —i+1)Ri(x),
where R;(z) is a hyperbolic polynomial of degree k. Observe that

lim W:xkg(“f‘l), (5)

i—00 ik T
where Q7 (¢) is the above symbol polynomial. Hence if T is a discrete hyperbolicity
preserver, then Qr(t) is hyperbolic. We need to show that its zeros are non-
negative. Suppose that Qr(y) = 0 for y < 0. The assumption y = (z — 1)/x
implies 0 < < 1. By and Hurwitz’ theorem on the continuity of zeros it
follows that there are real numbers 0 < a < b < 1 and an integer iy such that
R;(ix) has a zero in the interval (a,b) whenever ¢ > ig. Hence R;(z) has a zero in
(a,ib) for all i > iy. If we choose i > ig large enough so that (ia,ib) C (k,%), we
see that the mesh of T'((z);) = (x — k) - - - (x —i+ 1) R; () is strictly smaller than 1
which contradicts our assumption. Hence all zeros of Qr(t) are non-negative. [
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3. PROVING RESULTS ON DISCRETE MULTIPLIER SEQUENCES
To prove Theorem [4] it suffices to consider the operator:

Wi(p) = p(x) + AzA(p(x)) = p(x) + Az (p(x) — p(z - 1)).

Proposition 10. For each A > 0,
Wi(p) : 7-[77§1 — 7—[77;,

i.e. Wy is a discrete multiplier sequence.
Proof. Let p € HP;I. As in the proof of Theorem [2| we observe that

p(z) —p(r — 1) < p(z) and p(z) — p(z — 1) < p(x — 1).

Since the degree of p(x) — p(x — 1) is one less than that of p(x) and since all the
zeros of p(x) — p(x — 1) are non-negative (they interlace those of p) we have

Az(p(z) — p(z — 1)) < p(z) and Az(p(z) - p(z — 1)) < p(z - 1).
Since p(z) < p(z) and p(z) < p(z — 1), Lemmal[9] (a) implies
Wi(p)(z) < p(z) and Wx(p)(z) < p(z —1),
which in turn implies Wy (p) € HP>1. Since
HPL, 5 z(p(z) — ple — 1)) < p(z) € HPL,,

these polynomials have the same sign for negative real numbers which implies
Wi(p) € HPerl (Il

The next result is due to F. Brenti [3]. We provide a proof here for completeness.
Lemma 11. Let T : R[x] — R[] be defined by
T(z%) = (x);.

If all the zeros of the polynomial p(x) are real and non-negative, then T (p) € ’7'-[79;1.

Proof. We prove Lemma [I1] by induction on n, the degree of p. The cases n = 0
and 1 are trivial so assume p(x) is polynomial of degree n + 1 > 2 and write

where a > 0. By induction we know that Q(z) = T(q) € 7—[73'2"1. An elementary
manipulation shows

T(p) = 2Q(z — 1) — aQ(x).
Since Q(z) € 7—[7342'1:
2Q(z-1) € —Q(2), —aQ(z) < —=Q(z), —2Q(z—1) < —Q(z—1), —aQ(z) < —Q(z—1),
so by Lemma [I] (a):
T(p) < =Qz) and T(p) < -Q(z—1),
which proves T'(p) € HP;I. O
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Proof of Proposition[5 Suppose that all zeros of a test polynomial p(xz) = o +
Y1x + - - - + y,z" are real and non-negative. By Lemma
n
Z%’Pi(ﬂf)i € HPL,
i=0
for all p > 0. But then

Z%piai(x)i € 7-[77;1 and thus Z%—piai(az/p)i € 7-[77;)
i=0 i=0
for all p > 0. Letting p — 0 we see that

n
Z"yiaixi € ’H’P;O,
i=0
and hence {«;}2, is an ordinary multiplier sequence. O

Proof of Theorem [, Proposition [10] claims that the sequence {1 + \i}$° is a dis-
crete multiplier sequence for each A > 0. Since the set of all discrete multiplier
sequences is a semi-group under composition all hyperbolic polynomials with neg-
ative zeros give rise to discrete multiplier sequences via p — {p(#)}$2,. The set
L—P is the closure of such polynomials, from which the theorem follows. (Il

Lemma 12. Suppose p(z) =31 ai(z); € HPL, with a, > 0. Then (—1)""a; >
0 for all 0 <i<n. -

Proof. Since p(x) has n non-negative zeros and p(x) > 0 for > 0 large enough,
we have (—1)"p(0) = (—1)"ag > 0. As in the proof of Proposition we see that
V(p) < pand V(p) € HPZ,. Here Vp(z) = p(x+1) —p(x) is the forward difference
operator. Now -

n—1
V(p) =Y (i +Daip(x)i,
i=0
and the lemma follows by iterating the argument for i = 0. O

An immediate consequence of Lemma [12] is:

Corollary 2. All non-zero entries of a discrete multiplier sequence have the same
sign.

Next we give the proof of the characterization of trivial discrete multiplier se-
quences.

Proof of Proposition[] Suppose {a;}:2, is a trivial discrete multiplier sequence.
Then, by Corollary 2| we may assume that all entries are nonnegative. The only
if direction now follows from the well known fact that all nonnegative and trivial
multiplier sequences are of the desired form.

Assume that the sequence satisfies the conditions in the statement of the propo-
sition with anoumy1 > 0. Let

p(z) =Y ai(@);,
=0

and T be the diagonal finite difference operator associated to {a;}5°,. Then

T(p)(x) = mam(T)m + Wmi1Am+1(T)mt+1 = —a(T)m + b(T)mt1,
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where ab > 0 by Lemma [I2] If b = 0 we are done, so assume b > 0. Then
T(p)(z) = b(x)m(z —m —b/a) € 7-[7342'1,
as desired. |

Proposition 13. Let {a;}2, be a discrete multiplier sequence. If apmia > 0 for
some m > 0, then oy, < aupy1-

Proof. Let a > 0 and consider
T((@)m(z—m—a)(z —1—m—a))
= (@) (mi2(z —m)(x — m — 1) — 2a04,41(x — m) + amala + 1))
A polynomial Ax(x — 1) — 2Bx + C where A, B,C > 0 is in H’P;l if and only if
AC < B? + AB, which yields
0< a(cufnJr1 — A Qmi2) + @mpa(@me1 — ),  for all a > 0.
In particular au,+1 > Q. O

Let us present more examples of discrete multiplier sequences.

e For any non-negative i the operator (z); A’ is a discrete multiplier sequence, i.e.
{(n);}52, is a discrete multiplier. It follows from the fact that if p € HPZ, then
Ap(z) < p(x — 1) and therefore all zeros of Ap are in [1,00). -

e For any non-negative ¢ and any polynomial ¢ with all roots in (—o0, 4], the se-
quence {p(i)}2, where

is a discrete multiplier sequence.

4. FINAL REMARKS

The Hermite-Poulain theorem has a version in finite degrees (which we could
not find explicitly stated in the literature):

Proposition 14. A differential operator T = ag+a1d/dx+- - -+ apd® /dz®, aj, # 0
with constant coefficients preserves the set of hyperbolic polynomial of degree at
most m if and only if the polynomial T'(z™) is hyperbolic.

Proposition follows immediately from the algebraic characterization of hyperbol-
icity preservers, Theorem 2 of [IJ.

The role of monomials ™ in the finite difference setting is often played by the
Pochhammer polynomials . In particular, Propositionmight have the following
conjectural analog in the finite difference setting.

Conjecture 2. A difference operator T(p(x)) = agp(z)+ar1p(x—1)+- - -+arp(x—k)
with constant coefficients preserves the set of hyperbolic polynomial of degree at most
m whose mesh is at least one if and only if the polynomial T ((x)m) is hyperbolic
and has mesh at least one.

There is an alternative formulation of Conjecture [2] which is maybe more attrac-
tive. Let Vp(x) = p(x + 1) — p(x) be the forward difference operator, and consider
the following product on the space of polynomials of degree at most d:

d
(pog)(x) =Y _(VEp)(0) - (V" Fq)(a).

k=0
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Conjecture [2] is equivalent to

Conjecture 3. If p and q are hyperbolic polynomials of degree at most d and of
mesh > 1, then so is peq.
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