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Publishing Abstract

The results are reported of an equilibrium Molecular Dynamics (MD) simulation study of the shear
viscosity, 7, and self-diffusion coefficient, D, of the Lennard-Jones liquid using the Green-Kubo (GK)
method. Semi-empirical analytic expressions for both GK time correlation funwe fitted to the

simulation data and used to derive analytic expressions for the time depe } diffusion coefficient

and shear viscosity, and also the correlation function frequency tra f@s. he case of the shear

~
viscosity for a state point near the triple point a sech functi n.“\';‘vas,5 d to fit the correlation
function significantly better than a gaussian in the ballisti€ short t regime. A reformulation of
the shear GK formula in terms of a time series of tim irNals‘ézscuits’) and contributions to the
viscosity from components based on the initial stress™( vi s’) enable the GK expressions to be

\

recast in terms of probability distributions whi h.poSul e used in coarse grained stochastic models of
B

nanoscale flow. The visclet treatment sho ‘bbi ress relaxation is statistically independent of the

initial stress for equilibrium and metasta Ms, suggesting that shear stress relaxation in liquids

is diffusion controlled. In cont

‘t%velocity autocorrelation function is sensitive to the initial
velocity. Weak oscillations,And a pl?e u at intermediate times originate to a greater extent from

the high velocity tail th%ve -Boltzmann velocity distribution. Simple approximate analytic

expressions for thedneansgquare displacement and self van Hove correlation function are also derived.
V.
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-
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PYPISURE HpUCTION

The shear viscosity, n, and self-diffusion coefficient, D, of liquids have been much studied over

recent decades by experiment, statistical mechanical theory and Molec?ér Dynamics (MD)

computer simulation. The Green-Kubo (GK) relationships in which e~5ran rt coefficient

is proportional to the integral of the appropriate time autocorrelatjé%'

important role in these investigations.! There is a well known st@njbetween the diffusion

-
coefficient and shear viscosity, for example, as expressed in the Stoises— instein relationship,??
-

and there have been many theoretical studies seeking t@ understand and quantify the factors

determining 1 and D, and the common factors be%nﬁsee e.g., Refs.>?).

~

In this work accurate semiempirical anal hso as for the shear stress autocorrelation

r
o
(SACF) and velocity autocorrelation funégion (MACE) have been fitted to MD simulation data

for a Lennard-Jones (LJ) reference sta‘v%ﬂs near the triple point. These were used to derive

analytic expressions for the ti@:dem viscosity and mean square particle displacement,
and the real and imaginar@ne s of the frequency dependent viscosity and self-diffusion
f

/‘

4

coefficient. In the {ﬁ)\hﬂwcu has been on parametrizing the more basic quantity, the

which was then only able to give approximate representations of the

memory function /M
£
exact (MD) SAC d ¥ACF. The present approach, by fitting the autocorrelation function

itself, leads to 1ore))ractically useful outcomes.

Anoth(h@s@ct of this work is to recast the GK formulas in terms of probability distribution
functions. These provide new insights and ways of portraying the decorrelation of property
values with time, which is in a form that could be used in building simple stochastic models in

the tradition of the Eyring model,® and in rejection-based stochastic treatments of nanoscale
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In Sect. II the shear viscosity and related quantities are considered. In Sect. III the self-diffusion
coefficient and associated functions are discussed, and conclusions and e{ heKaH summary of

the work are given in Sec. IV. )

II. SHEAR VISCOSITY k

The Newtonian shear viscosity, 7, is calculated u ith\e method by
Cy(t) =< a(0)o Q\( de, = lim n(t), M
— 00

where Cy(t) is the shear stress auto \xjnctlon (SACF). The shear stress is minus one
of the off-diagonal components e pressure tensor, e.g., 0y, = —F,,, which for notational
conciseness is referred to hefe l/ayf-%‘he angular brackets indicate an average over different
ﬁ{ed as t = 0. The C,(t) decays monotonically with time to

starting times or time Q/UK.
zero. The so-called ting dependent shear viscosity, n(t), is defined in the middle expression

V' i6 the'wolume of the simulation cell, kg is Boltzmann’s constant and T is

the temperature. T%e iscosity is the long time limit of n(t) as defined in Eq. (1). In practice,

-

this integral is Sarrled out numerically to a time that is sufficiently long for the C(t) to be
stati zero but before the statistical noise dominates. One procedure is to average the
~

time integxal of Cy(t) over a time period between, ¢t — 7 and ¢, where 7 might be, say, a quarter

of the value of the maximum value of ¢, as follows
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18 mﬂp& tant to choose the value of 7 such that the correlation function has levelled off by
t — 7. Mitigating the generally poor statistical convergence of Cs(t) (as it is calculated from
a whole system property) and hence n(t) by data smoothing or filtering both with respect to
time,” ? and system size.>'? has been the subject of a number of publica{ ; 11 The response

in stress from an infinitesimal step in strain (normalized by the st 'Qtep) applied to an

equilibrium fluid is called the stress relaxation function in rheolg@yy whieh is (V/kgT)Cs(t) in
the present notation. Q e
)
Another approach is to fit an analytic function to gm@ion Cs(t) or stress relaxation
function data and then integrate this analytical W ine the viscosity. This might be
viewed as being just an alternative way of ir@ﬁhe statistics of the viscosity, without
practical advantage over Eq. (2). Howevyer, it}oﬁnovides additional benefits, in that it gives
directly analytic expressions for n( wd\\(requency dependent complex viscosity, n(w),
which can be used in other th (gi%aian practical modelling applications. Also the terms

n/eans, which requires further investigation The procedure of

of the expression could in ppinciple be associated with specific diffusional and stress relaxation
£
mechanisms established by ot

fitting the MD gen at% SACE to an analytic function is described in the next section.

4

= V.
)
A. Analytic é{pression for the stress relaxation function and derived quantities

=~

A number, of analytic forms for the stress decay function, C4(t), have been proposed in the
literature.'? Strictly speaking the time correlation function should be even in time so its time
expansion should be in powers of 2.1 This is felt predominantly at short time, in the ‘ballistic’

or early part of the shear stress decay. That is why this part of the time decay has been


http://dx.doi.org/10.1063/1.5095501

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishin

Tﬂf‘mmr‘fgf{ by a gaussian or a related function which is an even function in time. Hartkamp

et al. proposed and explored with MD the following functional form for C,(#),"

Cs(t) = G (A exp(—t*/277) + B exp(—t/m) + (1— A— B) exp(—/Tg)) ,

n(t) = ]@LT Otc«s(s)ds =Gy (Aﬁ \/7r_/2 erf(t/\/ﬁﬁ)) + BT 3%\1‘/72)])

+Go(1 = A = B)m[1 — exp(—t/73)], \ (3)
D

where G, is the infinite frequency shear rigidity modulus. /The ensionless coefficients, A
and B, and the three relaxation times, 71,7 and 73 cam be aix)ed by least squares fitting
the MD-determined Cy(t) to the first formula in E a@r

are found to reproduce well the long time behaﬁi&%

C
alternative analytic form to the gaussian where %term is also even in time, employs the

sech function, \Q ~

Cs(t) = G (A sech(t/ﬁ)x%ap(—t/m) + (1 — A —B)exp(—t/73)),
77(t) = Goo (ATl

E e two exponentials in Eq. (3)

) beyond the ballistic region. An

(4)

The usefulness of t@on for C,(t) was also noted in Ref.!3 for the case of the steeply
owér

repulsive invers id. It has also been used as the memory function in numerous Mori

-

series treatments of sra sport coefficients.'* 1% The advantage of Eq. (4) over (3) is that the first
term terlls to aSl ponential at long times, just as the last two terms. This provides further
scop tt\1 accurately with a sum of exponentials the MD-generated SACF in the transi-
tion period between ballistic to diffusive behavior and further out in time. Note that if A =1
and B = 0 the Maxwell relaxation time of the analytic C,(t) would be, Tay = 11/Goe = \/7/2 71

and 77y /2, for the gaussian and sech first terms, respectively, appearing on the right hand sides

of Egs. (3) and (4) for Cy(t). The A, B and relaxation times obtained by fitting are different

3
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or the oFiissian and sech equations.

The frequency dependent viscosity is widely encountered in various models for the dynamics of

the liquid on the molecular scale.!” The real and imaginary parts of the %Viscosity are

respectively,'® 3
n'(w) = /000 Cs(t) cos(ws)ds, n'"(w) = /OOO C@s, (5)

where w is the angular velocity. The two functional forms.for C) given in Egs. (3) and (4)

substituted in Eq. (5) yield, \ ,)
? S
(wr)? 7o (1—A—-DB)r3

=6 (4ny3 eXp(T)\ et ) ©
\J

and ~
7' (w) = Gy (A Tlg S 0% : +B(;—j_2>2 N (11—+A<;T527'3) 7 (7)

for the real part of the gaussia dﬂdsch formulas, respectively. The imaginary parts of these

two analytic forms for the res; r tion function are,

71 )?

21 ) erf(wr /V/2) +

B wrs (1—A —B)wr?
14 (wry)? LT + (wT3)? ) (®)

for the gaussian‘ef E¢. (3] where erf(x) is the error function of x. For the sech function,®

Wty , 1 wn 1 wn B wrs (1—A— B)wri
)"‘ZW} <4+Z 1 ) ¢<4 ? 1 )] 1+(w7_2)2 1+(w7_3)2
TWT] 1 wn B w3 (1—A— B)wri

9)

A T e T It
where 1 1§ Euler’s psi function. The last line of Eq. (9) is a further simplification using the

summation, F(x,y) =Y roy2y/[y? + (x + k)?] (see Ref.?, p. 944, Eq. (8.363.4)) which enables

routine computation within a standard programing environment.
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Puqullsmarf]}fncy dependent viscosity formulas could be used to include viscoelastic effects in
continuum models, by summing over as many frequencies as needed to generate a fluctuating
viscosity term.?! An alternative method of including viscoelastic effects in terms of time rather
than frequency is presented in the next section by using the time depen{éﬁ%:orrelation of
the shear stress. ‘)

)
The LJ state point, p = 0.8442 and T' = 0.722, which is close gothe "i:f)oint and has become
a standard or reference state point for the LJ system,?*swas used to calculate the SACF and
viscosity by its numerical integration. The quantities otedt this work are expressed in the
usual LJ pair potential units of energy and distamce,“and fhe mass, m, of the molecule. The

simulations used to calculate the analytically fi WF and SACF data were for N = 2048

molecules, with an interaction truncatigfu (%W\ce\@f 2.8, with a tapering of the potential to

zero between r = 2.5 and 2.8. Co

@f the properties shown was for 12 x 10° time

steps of magnitude 0.006. Priordmathis, eqhilibration was for 5 x 10° time steps. Time origins
for the correlation functio WGYDAH every time step. The uncertainies in the viscosity
V.
1

iﬁaginary frequency Fourier transforms for the shear stress

were less than 2%. Th?/ea\Ba
autocorrelation fun@:ad shatistical uncertainties of ca. ~ 3% and 5%, respectively, and

about half these§aluyés foldhe Fourier transform of the velocity autocorrelation function. The

4

ritten by the authors in FORTRAN 90.

. . ﬁ
simulation cades W%e

-~
three components to the shear stress autocorrelation function and hence the shear viscosity

Qn
As t’i%:mr ess is the sum of a kinetic term (k) and a configurational term (c), there are
(namely, kinetic, kk, cross kinetic-configurational, kc, and configurational, cc).! At this density
the cc term dominates (see also Table I). The shear viscosity of this state point has been

computed many times by different authors, and an average value of them is given in Refs.?324,

8
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u[tg‘lh&m Q‘g-f ws that the viscosity given by the present work i.e., 3.25(3) particles is in statistical

agreement with this average of the literature values.

Figure 1(a) presents the C(t) obtained by MD and its least squares fit u{ the gaussian and

sech functions defined in Eq. (3) and (4), respectively. The differenc leeen these two fits

and the MD data are also shown. The agreement is very good at Nr he sech function,

within the simulation statistics. The gaussian expression doés“unot reproduce the MD data as

well in the transition region of ~ 0.15 < t < 0.20 betwe&-the ¢ i}ly decaying (ballistic) and
n

slowly decaying (exponential) regions. The contributiens toLQ9 (t) from the three component

functions of the fit are also shown in Fig. 1(a). Rxgu\ 1(b) shows 7(t) obtained directly from
the MD data and using the analytic functionsw and (4). Just as for Cs(t), best agree-

ment with the MD correlation function Qa 1th the sech containing analytic expression.

i m n"(w) obtained numerically from the MD stress
)

Figure 2 shows the correspond
correlation function (repre ntgi{xymbols , and from the analytic expressions given in
£

Egs. (6) to (9), respectiz/ ly. efical Fourier transform integration of the original MD data

produces noisy cur s.jhe réal part of the transform, 7/(w), decreases monotonically with

w)Ancréases from zero and has a peak before descending at higher frequency.

4

t the sech containing functions agree significantly better with the nu-

frequency, and
. . ﬁ
Again it canibe seerst

ﬁ
merical data thin e gaussian cases. The imaginary components are more difficult to obtain

accu t&].;}a igh frequency by applying the sine Fourier transform to the tabulated MD C,(t).

The viscosities obtained by shearing the liquid using the SLLOD Non-equilibrium Molecular
dynamics (NEMD) method,? 0 are also shown in Fig. 2. For comparison purposes, on the

figure, w, is replaced by 277, where 4 is the shear rate (the data points are taken from Ref.).

9
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UIQ.QSQ ﬂﬂg thinning curve descends more slowly than r/(w), showing an increasing departure
from the Cox-Merz rule,?” which is a hypothesis based on empirical observation for polymer

solutions that for small ‘w’ the two quantities are approximately the same. This equivalence is

not well obeyed for the LJ liquids. / \

The viscosity, 7, is obtained from the ¢ — oo limit of 7(¢) and th w7> imit of 7(w). For the

-~
gaussian and sech-based 7(t) functions in Eqs. (3) and (4), forthesgorresponding n'(w) given

)

in Eq. (7), these two limits for the Newtonian viscosity ire,

®.

n = Gu (ATlﬁ + BT —% B)Tg) gaussian
2
Ale +B —&?

e ( d yind 3)73) sech . (10)
Q

A classical hydrodynamic treat ‘)redicts that time correlation functions for fluid trans-
V.

port coefficients should Mecay egraically at long time,?® a feature which is not included in

the present formul 10®At liquid densities other stress relaxation mechanisms derived from

structural constfaintg (e.gu, the ‘molasses tail’,*?) are also present. Nevertheless, there is still

4

ﬂ
evidence for this al%e ic dependence within the simulation statistics at liquid densities.3033

Its pres ce hasa ominating effect on the low frequency, w < 1, behavior of the complex

visco 'mﬁn e real part should feature a w'/? cusp in this limit.?*

~

In the next section an alternative perspective and resolution of the nature of shear stress re-

laxation mechanism in liquids based on probability distribution functions is reported.

10
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Assuming that the probability distribution of the shear stress, o, is gaussian at all times,

following the central limit theorem,

PO =m0 /Z”QH@)Q' (H)

where S(x) is the standard deviation of z (noting that the mea sﬁ@r}m is zero at equilib-

—

rium, the limit considered in this work). The Green-Kubo elationgh for the shear viscosity

can be simplified as follows,

1% og(®o(t) >
= — < (0)? dt
it <0 %{T\N(O)z >
V
= = < 0(0) T = G, (12)
where 7, is the shear stress relaxat%?ﬁd G is the infinite frequency shear rigidity

modulus. Equation (12) shows tb%/[ax 1I’s identity for the shear viscosity,®® n = Gy,
e

emerges naturally from thisftrea . As < 0(0)* >=< 0% > the infinite frequency shear

modulus is defined by, ?/ = k{T] <o?>.

2D PDF profiles and the Viscuit
DN
Using the shorthand, &y = 0(0) and oy = o(t), a probabilistic representation of the evolution
of the sh a?;tresss the whole system is proposed in this section. The relationship between an
initial S&;sss e for the whole system, o, and its value, oy, at a later time, ¢, can be expressed
N
in the form of a 2D probability distribution function, an example of which is shown in Fig. 3.
This measures in a novel way the decay in correlation between initial and final stresses, which

in GK is represented simply by a one dimensional time autocorrelation function. The shear

stress at each time in a correlation period ¢ is plotted in a 2D histogram against initial starting

11
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ess m‘g itted to a double gaussian expression with a cross-correlation term,¢ of the form,

B 1 oxn (= [u? — 2¢(t)uouy + u?
P(oo, o) = 215(00)S(0¢)y/1 — ¢(t)? P ( 2(1 —¢(t)?) ) (13)

where u, =(04 — (04))/S(04) for « =0 or a =t, and —1 < ¢(t) < 1 i/ time dependent
correlation coefficient. The stress at the two times is initially comple )orrelated at t =0,

which is represented by a straight line profile at 45° (not shown).

igjre hows that the profile
contours gradually broaden and reorient with time. At very ghest time. t = 0.02, there is still a
high correlation coefficient, ¢, between the two stresses. Che ea;ng slant angle of the PDF
seen in frames, b) and ¢) for times, 0.05 and 0.1, respectively Andicates that the two stresses
become less correlated with time. The contours tefid togoncentric circles, a limit which indicates
that the final stress has become completely dec m from the initial value. Then the 2D

PDF is symmetrical and just the producﬁwhd@pendent gaussian distributions (i.e., ¢ = 0).
t

The time dependent correlation co w , is found to be statistically indistinguishable

from the normalized autocorre , as shown in Fig. 1(a). The significance of this

D%Cs
result is that the independeytly computed Cs(¢) or its fitted form given in Eq. (4) can be used
£

in conjunction with the &‘nw{a in Eq. (13) to represent the stress evolution of the system

with time in a probabilistic formulation. If the shear stress at time zero is known, the stress at

any later time cdn bg obtained using,

~
_\K& o = c(t)og + &/ 1 — c(t)? (14)
)

wher D@i (\ s(t) normalized), is the correlation obtained from Eq. (4), and ¢ is a gaussian

random mymber generated using the Box-Muller method,?” with mean, < o, >, and standard
deviation, S(oy). This provides a method to include the stress correlation history in a higher

level Langevin or fluctuating hydrodynamics model.

12
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u[q- Smﬂnrg‘ ution of the sequence of stresses in order of generation to the shear viscosity can be
determined by reversing the usual order of the time integral and the ensemble average of the

time correlation function in the Green-Kubo formula,

) = va t<a<oz (@) da <\
=— . dT/ T—l—l’)

k’BTTT

Tr—t
= — / dr / Nu(7,2) d
Tr Jo 0
—
= (nu(t)) shorthand &5
= i B 1
n = lim (n.(t)) { ~ (15)
! -
where 7, is the duration of the sampling (i.e., atlo ime). Equation (15) involves a se-
quence of integrals of a single trajectory from ( % ime, 7 to time 7+t which is written
as, 1,(7,t), which is referred to here as th nit"™s The 7 argument is dropped henceforth,
as the average over the simulation of ma&\\mKe rigins is implicit. This ‘hybrid’ reformulation
of GK (in a time origin averaged sense new and was discussed by Erpenbeck,?® but its

properties were not explored i t rk, and not in the context of single trajectories. A simi-

ha
lar hybrid reformulatlor‘l/%ee “Kubo formula was investigated for self-diffusion in Ref.?8.

The viscosity is from the average of the infinite time limits of the 7,(t). Note that
a viscuit canbene t1 vé unlike the viscosity itself. Figure 4(a) shows the probability density
function of i 1ts (n,) which is like a Laplace distribution but is in fact skewed to the right,

as the tot Visclsity, the 1st moment of this probability distribution,

NP (1) d1y

I~ .
=/

— [ mlP() - P-nldn, (16)
0
must be non-zero and positive. The blue line is the MD viscuit PDF, which is peaky and

skewed to the right due to the correlation between the time dependent sequence of stress values

13
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nring cjg‘ em’s correlation time. The red curve is the distribution from an autocorrelation of
two independent gaussian random number distributions. The dashed black curve was gener-
ated from correlated gaussian numbers using Eqs. (4) and (14). The red curve is not skewed
whereas the black curve is skewed. The correlated gaussian model exag tes the extent of
skewness compared with the direct MD viscuit results because the c ating function, c(t),
is never negative (as it is a system average property). The rand 1 rs can give negative

—
values, and that is why the distribution extends into the nggative quadrant. The purely MD

generated case (blue curve) has a standard deviation vtlih 1 ‘bo)xt seven times larger than
the other two, which may be attributed to the widestails on both sides in that case. The

MD distribution is skewed to the positive side b N initial values of stress are strongly
correlated, and therefore large positive Viscuit&@ﬂt likely than negative ones. The shape
of the distribution is not gaussian, indjcatin at* the mean is not the most representative
of the range of possible autocorrela j&@h of the systems. Negative viscuits are highly
probable, almost as likely as positive ones, and as a result the viscosity of the system computed
from this distribution is thedlifference between two large numbers.
A
Figure 4(b) present n??e abscissa the logarithm of the ratio, R, of positive to negative viscuits

with the same |#,], obtaiited from the PDF in Fig. 4(a), which indicates that,

= V.
P(nu>0)|n) _ .
_\K& R:mze | |, (17)

wher L*he>co nt, A, decreases with time. Equation (17) bears some similarity with the Fluc-
o

™

tuation Theorem (FT) and its relationship to Green-Kubo.?*4? Although in the FT the time
averaged shear stress due to a finite shear rate is the independent variable, here it is the viscuit,
which is the integral of the product of two shear stresses at different times. Simply including

correlated random noise is not sufficient to capture the full underlying complexity of the MD

14
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Pgﬂb{!ﬁmgg s demonstrated in Fig. 4(b) which shows the viscuit PDF generated assuming the

correlated gaussian model of Eq. (13) (the dashed curve). This has a much smaller standard

deviation and a very different shape.

Figure 5(a) shows a plot of A(t) defined in Eq. (17) and derived from@) data for a range

of integration intervals, t. The figure also shows a fit to these d tajxsi the functional form,
‘H
must

A(t) = Ay + A/t which matches well for not too small t. A(#) tend to a non-zero limit
in the large time limit for P(n,) to be asymmetric andetherefere ;'Le viscosity to be nonzero
and positive using the definition of the viscosity giveiu q@)

NS
A 2D map of initial stress against the resulting i given in Fig. 5(b) (Multimedia view).
This plot was generated by first startinggat ti>s%p 1 with stress oy from which the values of
the first viscuit were plotted with timé. ;\Kﬁm viscuit starting from time step 2 with stress o9
was plotted after that. The seq eu,oxof points gives a chaotic distribution of points. It reveals

that the initial stress and viécuit are correlated for a period of time. Some trajectories switch

V.

over a small number of #ine steps £6 being anti-correlated (i.e., a negative viscuit). There are
intermittent jumps @f th %a‘ch from one part of the diagram to another in Fig. 5(b) (Mul-
timedia view), which/could be a reflection of the system moving from one inherent structure
or metabasi t‘c?an%t r.4344 The final butterfly shape of the map indicated by the contour

ﬁ
lines on Fig. 5(% iS"a consequence of the definition of viscuit and a reflection of the underlying

processes. Small initial stresses typically result in small viscuits, and in the limit,
N

stress of zero means that the viscuit can only be zero at all times. Vertical slices
taken through the distribution at arbitrary values of initial stress, oy, give a gaussian density
distribution of viscuits which becomes narrower with decreasing (absolute) initial stress. A high

initial stress typically results in a larger viscuit (‘viscosity’) and a non-symmetrical distribution

15
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ont H]g rrdinate axis reflects the effect of positive correlations on average at all times. From
Eq. (16) there have to be more points above the ordinate axis than below for the total viscosity
to be positive. The corresponding plot for the random correlated noise case (corresponding

to the black dashed line in Fig. 4(a)) shows a large positive viscuit lobe and all negative lobe.

N

The single trajectory ‘viscosity’ or viscuit provides useful infor i:zl out the shear stress

evolution in the system which would complement quasi-har cls of the liquid state,*>46
as it characterizes the time evolution of the stress on t e-.po tla energy landscape. In the
next section another type of PDF resolution of the stregs ev@wn is introduced.

s
Green-Kubo initial stress resolutmi::r e Visclet

The GK expression can be written i s a function of the initial stress, o¢. Let P(oy)

be the probability distribution then e shear viscosity can be written,
P(09) < oo0; > dt doy,
P (00) wdt doy,
0 o
kBT 0'0 (00) / Cso(t)dt doy,
kBT P(UO) Ts,0 doy,

oo
=z 02 / oo P(0y) Tsp doy,

f_oooo oP(Uo) Ts,0 doy
5 e
> ffooo 02P (o) dog '

\I< <
:GOO/_

E(09) 75,0 doo,

o0

:/ E(00)ns doo,

—00

= G o Ts (18)

where the definition of G, from Eq. (12) has been used. The relaxation time, 740, is that

16
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Pg\pelrléh s with a starting stress, oy, and
s = 5 Tso0—= s ) 0o) = ’ 5 oo Ts
,0 < 03 N ,0 0 ,0 0 ffooo agp(do)d(fo a0 = o

The quantity, 1,0, is henceforth called the ‘visclet’, which after time a\ébgin\gis the contri-
bution to the total viscosity from those initial states which at t = e@ a particular value
of the stress, og. The viscuit and visclet are formally related r31g Ws0 =< nu(t,00) >0
i.e., the visclet is the ensemble average of the viscuits for whieh t tarting stress is gg. The
corresponding relaxation time of these states is 7, 9. Th i l' , is the weight given
to the G750 contribution to the viscosity. Therefore %@(ubo formula is now expressed

in terms the op—component correlation functions@ ion times. If 7, is independent of

0o then the system is described by only one rela e and Eq. (12) is recovered, otherwise

the more general expression given in Eq\\\“fﬁ‘ulred

To implement this initial stressa 01 tion umerlcally in a computation, the visclets are col-
lected in a histogram of limj ed ramnge of og. A set of M + 1 stresses, 01 < 09 < 03+ < Opr41

specify the boundaries the 4{ 120) elements of Cy(t, 0¢) = Cs(t) defined in in Eq. (19).

Each bin index ¢ 00@ a limited range of oy,

< 090t >
<\ H(0y11 — 00) — H(o; — 00)]<§—2t>d00, (20)
0

Heav181de step function.

Figure 6(&) shows the probability distribution function, P(oy), and the PDFs of the 7y, and
Ts0 as a function of the initial stress in dimensionless form as, og/S(0p). The figure confirms
that the stress PDF is gaussian (the least squares fit is shown). Also the 7, PDF is essentially,

02 P(0y), as Tso only very weakly depends on og. Figure 6(b) presents the same data plotted

17
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on.a m-gg scale, to reveal the wide range of stresses for which the gaussian approximation is

valid. Figure 6 reveals that the relaxation times are only very weakly dependent on the initial

A

Figure 7 shows the total SACF for three LJ state points, the stand Dle used above, and

shear stress.

two metastable fluid states. One of the metastable states is alo

Hﬁ zE€¥Q pressure isobar and

is above the glass transition, which is at ca. T = 0.29 and p™=0.98."* A supercooled liquid

shows dynamical heterogeneities,*® which one might exp&wo h)ive an effect on the SACF.

The total SACF (shown in green) decays slower at 10 tlm@s the system goes further into

the metastable region, and in each case as an exﬁ%&i{l. Ladd et al.,?” showed that at high

density structural orientational time evolution m well with the shear-stress autocorre-
n

lation function, which decays as a Stret@ 1iential with a density independent exponent.

Exponential fits to the three Cj(¢) are also shown on the figure. Figure 7 also

presents the normalized Cj () eﬁ%din . (19) where the initial stress is taken within four

bands of initial stress relatiye to the standard deviation of the stress, 0¢/S(0g). Components
£

/8(0p) in the ranges, 0 — 1, 1 — 2, 2 — 3 and 3 — 4 reveal

resolved for initial stre?é( S 0 8(
that the curves are sfatis mndistinguishable, which is consistent with the conclusions from

Fig. 6, and sugg%ixt ress decay in dense fluids is determined by the relative diffusion of

ﬂ
the moleculeg rather than by a stress activated process. The nature of self-diffusion in these

ﬁ
systems @ ered in the next section.
NI
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The self-diffusion coefficient can be calculated by either the Einstein-Helfand (EH) equations,

N
1 P LAY B ,r{dArz(t)
N; , D=lm 6t b=l 6 dt ' (1)

or a Green-Kubo (GK) formula,! employing the velocity autocorrelKnctlon (VACF),

) > ds, (22)

where D'(t) may be considered to be an effective time d }usmn coefficient. The link

between Eqs. (21) and (22) is (see Ref.! p. 272), \

r\)f/‘“

Ar?(t) = / 2(0) > ds. (23)

0 \
The first route to D in Eq. (21) takes t f = A/6t + D (where A is a constant) for
large t, and the O(¢t™') term is slow 0 cO 9 with ¢. The third (time derivative) route to

D in Eq. (21) converges more rapldly Abplying Leibniz’s rule (see Ref.®® p. 335) to Eq. (23)

then,

t—o00

¢
D(t) = #- ;. —/ <wv(s)-v(0) >ds, D= lim D(t) (24)

0
which is the equatigh @ally und in the literature for D rather than Eq. (22). The same

derivation stepséleadsto corresponding definition of the time dependent viscosity already

ﬂ
given in Eq. (1) (Z%
ﬁ

)

Figu ‘8(3} presents the normalized VACF obtained for the reference LJ state point by MD.
"

ithout the (1 — [s/t]) factor).

The normalized force autocorrelation function (FACF), Cr(t) =< F(t) - F(0) > / < F(0)?
is also given on the figure. For dense fluids the form of the VACF is determined primarily by

151

the interaction of the particle with its first coordination shell.”® The effect of increasing the

attractive forces in addition to a short range repulsion is to enhance the cohesiveness of the

19
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f‘mmcm I 1 to delay crystal nucleation to lower temperatures.®

The analytic form of the VACF has been explored in the literature.’® Previous theoreti-
cal descriptions of the VACF and diffusion coefficient have been basec/mt\he hard sphere
(i.e., Enskog) approximation, or the more indirect memory functio )roach, 416 with an

assumed form for the memory function.

b

A. Analytic expression for the velocity autocorrél%l factlon and derived quantities

The MD simulation generated VACF can be r. pres%”m a good approximation by the ana-

lytic function,

Cy(t)/C,(0) = exp(—(t/m1)?) + tQQ 2) + Bt? exp(—t/m3) + Ct* exp(—t/74). (25)

where A, B and C' have units of tinl to the power —2, —2 and —4, respectively. The terms in

Eq. (25) are inspired by fi mu}as the memory function proposed about 50 years ago.?> 57

The first two terms 1n 25 e Composed of gaussians rather than the sech function used

for Cy(t) in Eq. (4). re 8 compares the MD generated VACF with a least squares fit using

the new expressi
—

MD-generated, and stted VACF, which may be seen to be very small at all ¢ even though the

-

VACF has a raﬁ?er difficult damped oscillatory shape to match.

\I<

Figure 8(b) presents D(t) from Eq. (24 ) taking the C,(¢) directly from the MD simulations

in E}q (25). The green curve on the figure is the difference between the

and its fit using Eq. (25). From Eq. (25) the time dependent diffusion coefficient, D(t), is

D@=%£<@ﬁ%ﬂ®>%,

20
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- %[%’ﬁ merf(t/m) + A (—%t@? exp(—(t/72)?%) + \/T—Z erf(t/rg))

—B73 ((t/75)° + 2(t/73) + 2) exp(—t/73) + 2B}

—C7} ((t/7'4)4 +4(t)74)? 4 12(t)74)* + 24(t/T4) + 24) exp(—t/r) + 24077, (26)

P

Equation (26) for D(¢) in the ¢ — oo limit gives for the self-diffusion efﬁfleﬁx

kT
po kel (VT VT s gt ougm ) (27)
m 2 4
—~——

The mean square displacement itself gives another perspect Ve on Sh ransition from ballistic
dynamics at short time to the diffusion regime, and SC@ expressions for this quantity have

been proposed previously to represent this change.58’5g\ﬂxfdllewing expression reproduces the

simulation data reasonably well, \
\\;\
Ar®(t) = A — B sec b Ot)/7a) + 6D ¢, (28)

where D is the self-diffusion coefﬁci&\‘m@n\?}B, 0t and 74 are positive constants. The sech
term captures the deviation at rt time“of the MSD from the long time limiting formula,

A+6Dt. Figure 9 presents M (t)ealculated directly from the particle coordinates and from the
£
ncti

velocity autocorrelatio u{ing Eq. (23), both by MD. The figure also shows the long

time limiting form

,2)—% 6Dt; and the difference between this and the actual MSD i.e., the

sech term in Eq€(28). least squares fit parameter values are given in the figure caption.

4

ﬂ
The 4t term s intr%d ed because at short times when Ar?(t) ~ 3kgTt?/m the correction to

rmula has a maximum.

the diffufive linsi
\ <
MD simulations of Alder and Wainwright,® revealed that the VACF decays algebraically at
long times as, ~ =32 in 3D. Other studies,’" "% support this asymptotic behavior, which leads
to a cusp in the frequency dependent diffusion coefficient at the origin.%* This long time tail

has only been observed at intermediate densities, as far as we are aware however.® The value
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upl “7{1 g this limiting behavior dominates is not specified by the theory, and therefore its
contribution to D is difficult to assess. At liquid densities coupling between the single particle

62,67,68

motion to longitudinal and transverse momentum current density correlation functions,

also become important, as another factor determining the VACF and heé\%iﬁusion coef-

ficient. Q
. )R . .
The normalized power spectrum (PDF) of the VACF has feen uently investigated and

calculated, in part because of its relevance to quasi-ha; ltinerant oscillator models

of molecular motion in liquids.?"%3972 Since Rauhmauﬁ‘\O ‘))neering study,™™ the form of

the VACF power spectrum has been interpreted%im%

(diffusive) and high frequency (oscillatory) mode v T overlap region in the frequency PDF

f a combination of low frequency

obtained by MD."™ \Q -
\ Transform of the VACF are

The real and imaginary parts of«the Fourie ,
D'(w) = % ds, D'(w / C1(8) sin(ws)ds (29)
respectively. Note that thewnnor ahzed VACF is used. From Eq. (25) substituted in (29),
é?%exp T /4) +VEGT (2~ (wn)?) exp(—(wr)?/4)

3(ws)2) k?BT (1 — 10(wTy)? + 5(wmy)?)
1 + (wT3)? )3) +24_O ( (1+ (wm)?)® ) &

Kg
1 1w71) + A\/%F(WTQ, To)]

—im —exp( (wri)?/4))erf(

(3(0.)7'3) (CUTg)g) kB 5 (5(&)7’4) — 10(0.)7'4)3 + ((JJT4)5)
A+ (@rpy i (1+ (wr4)?)?

where i erf(ix) = —(2/y/7) Yo x**1/(2k + 1)n!, and z is real. Also,

VaTy o (S 4 k)4
F(z,m) = 1 Z F(§+k‘)

kBT

2 B3 31
+ o 7'3 7( )

k=0
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The contributions to D'(w) and D”(w) from each term in the fit function for Cy(t) are presented
for the near triple point state point in Figs. 10(a) and (b), respectively. The real part of the
Fourier transform has a peak at w ~ 10, which is lower than the Eins iﬁ*smcy, wo (~ 17,

see Table I) and tends to D in the w — 0 limit. The first gaussian term is monotonically

decaying and the other three are oscillatory in Fig. 10(a). The' :%ma@ part of the Fourier
-
transform rises from 0 at w = 0 and has a weak maximum at% The first term in Eq. (25)

dominates the total function at high frequency, while tl‘k maﬁnng terms are oscillatory.

Figure 11 shows the high frequency limit of D@ (D)2 + (D)2 which indicates

that the power law formula, A,/w?, where the D’ data well for ca. w > 35. Also

the function, D' = A, (1,w)? exp(— q%% Ta, p and ¢ are obtained from the analytic

f76

formulas given in Ref.”® matches the 51 n D’ quite well in this high frequency range (A4,

is treated as a fit parameter). ‘\

The probability distr h\\the velocity follows the Maxwell-Boltzmann distribution,

K QWkJBT/m)l/Z ( 2]{?3;—‘)7 (33)

where the st dard eviation of the x—component of the velocity, v, is /kgT/m. The VACF

was calc(@% a function of the initial speed, with element i of the histogram defined by,

NI

< Q:C,Oy:v,t >

Td\vx,d: (34)
z,0

Coalt) = / [H (i — [osol) — H(vs — [va0])]

for the z—component of the velocity. The C,;(¢) is the numerical evaluation of the initial
speed resolved VACF or C,(t). The C,;(t) in four bands of speed in units of the standard

deviation are shown in Fig. 12. The figure shows that much of the solid-like (‘cage related’)
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mmﬁ!]flfﬂvg behavior evident at intermediate times arises from states where the initial velocity
is greater than the root mean square velocity. Molecules with initially high kinetic energy are
more likely to invoke a reaction from the cage of surrounding molecules, to give rise to the
weak oscillations in the VACF in the approximate time range, 0.4 < t <({st which are

consistent with previous simulation studies of the exchange of momen IDoetween a molecule

and its neighbors.”"® .)
—

The self part of the van Hove correlation function, G (a4 g‘Q}ﬂesen‘cs the spread of dis-

tances, Ar, a molecule executes in time ¢ (i.e., r = 0ag t = Q
3 2
Gy(r,t) = Kﬁ{( _ 35
() = (27r<7‘2 (1) 3 <r2 (35)

\

where < r%(t) > can be approximated b&mﬂa in Eq. (28). The function, W (r,t), (see

N\

W (r, 8= 47r°G(r, t) (36)

Ref.! p. 347),

T ‘\ecause the progression of G(r,t) with increasing time

is more conveniently plottedt
is dominated by its d1 gen 4; 0 limiting values, which are also very noisy as r — 0.

Figure 13(a) shows at he ) for three times computed directly in the MD simulations

agrees quite wel Wlt}vl the nalytic solution given in Eq. (35).

The set of e evers ments of the particle displacements with time are, Ary(t) =< (r(t) —
r(0)) k\?foi =1,2,3,---. The non-gaussian parameter,’” 8283 () = 3[Ary(t)/Ar3]/5—1
representS the departure of the displacements from a gaussian distribution at short and in-
termediate times. Figure 13(b) compares a(t) with the mean square displacement. As has

been noted in previous studies the spread of particle displacements is non-gaussian for times

much larger than those at which the MSD starts to exhibit a linear time dependence (i.e., the
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UP H"c“mgleglme).M Therefore this behavior is not confined to certain types and shapes of
molecule but is present even in simple liquids of spherical particles, as has been known for a
few decades since the pioneering work of Rahman. At the state point considered even at ¢t = 10

the particle on average only diffuses about half a molecular diameter. Th/ 75 0 behavior is

due to the intermittency of the molecule’s dynamics in different ca etrles and the long

time it takes the molecule to escape from its initial cage into re atlally homogeneous

environment. Nevertheless in these systems, the deviation aussmn PDF are rather

small, as may be seen in Fig. 13(a), despite the dlfferen S4n igher moments indicated by
P

a(t). >

\\\
$“
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This work is concerned primarily with the Green-Kubo (GK) method used to compute the shear
viscosity, 1, and self-diffusion coefficient, D, by equilibrium Molecular Dy?mics simulation. A
popular state point near the triple point of the Lennard-Jones liquid aﬂmr most of the

simulations, and some calculations were carried out at higher density and Jower temperature

in the metastable liquid part of the phase diagram. Although 1DQﬁeld which has been

_—
studied extensively since the pioneering work of Rahman if the 186 5,7%™ a number of new
aspects of it are revealed in this work. For the shear vi&o\sity f the near triple point state an
accurate analytic expression for the shear stress a&% a%“l?)'n function was obtained by fit-

ting a semi-empirical expression to the simula@: formula based on a sech rather than
o)

gaussian function for the short time region axgun to reproduce the simulation data better.
N
This function was used to derive analytic %{ ions for the time dependent viscosity, and real
and imaginary parts of the complex v1\s1ry~. These accurate analytic representations of the
shear stress autocorrelation f c‘%san therefore also be used in other theoretical models.
The same procedure was Farriefl out™for the velocity autocorrelation function and D. In the
diffusion case, analyti e}Non for the time dependence of the mean square displacement
and diffusion coefficient were also obtained, and used to define a completely analytic formula

£

c van Hove correlation function.

Time cor atiob functions give an average smoothly varying representation of the decorrelation

for the self partio

-

of prohy%lues with time. In contrast, decorrelation of individual trajectories is far from
being predictable, showing wildly chaotic and structure dependent behavior. This is explored
in this work by rewriting the usual Green-Kubo shear viscosity formula in two different ways

which bring out the stochastic nature of the underlying processes in a probability distribution
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mction g[ DF) description. The first analysis was to reverse the usual order of integrating with
time the ensemble averaged shear stress autocorrelation function (SACF), to instead express
the viscosity as a time sequence of single trajectory time integrals or ‘viscuits’. The viscosity
is the first moment of the probability distribution of long time viscui‘( he time-ordered
sequence of viscuits as a function of the initial stress on a 2D projecti Dcakes the form of a
chaotic 2D trajectory with sudden ‘jumps’ to different points on “’e>1tt " shaped map. The
viscuit probability distribution has a Laplacian-like form but gs-ske to positive values, which
cannot be reproduced by partly stochastic models as it@po nt}eatures are a consequence
L@itive to negative viscuit PDF
values is shown to be an exponential function of w te viscuit value. A 2D map of the

of the deterministic evolution of the system. The ratio of

shear stress against its value at a time later sho@%si’cion from perfect correlation to total
decorrelation (a series of concentric ciriia}ng\times. This transition can be represented

accurately by a double gaussian expr saqklt cross-correlation term, a formula which could

be used in rejection sampling C@<ﬁ&ine continuum models of flow on the nanoscale.
£

The second decompositzzﬂ’ﬂ ifas to resolve the ensemble averaged time correlation func-
nts

erentiated by the initial stress. The ensemble averaged time

tion, Cs(t), into 00@“
integral of each €omponent of C,(t) is referred to as a ‘visclet’. Perhaps surprisingly the nor-
— £
ent S

malized compon S Fs were shown to be statistically independent of initial stress, which
may su est thg ear stress relaxation in liquids is diffusion rather than stress controlled.
The bl\ distributions of stress were gaussian, and was a stress squared scaled gaus-
sian for the visclets, which is consistent with the cross-section slices of the 2D viscuit map in
Fig. 5(b). In contrast, the corresponding decomposition of the velocity autocorrelation function

(VACF) was found to be a function of initial velocity. The intermediate time plateau and weak

oscillatory feature in the VACF at long times was shown to be determined to a greater extent
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l"l\b ﬁmm varticles with large initial velocities (above the root mean square value). This is
consistent with the picture that these features in the VACF are caused by the response of the
cage to the molecule-cage ‘collision’ (i.e., when the VACF goes from being positive to negative).
The various aspects of this work, when combined, open up the pros ‘(Qusing time correla-
tion function and Green-Kubo calculations obtained by MD sim aﬁ;%g'(lput to parametrize

coarse grained stochastic models of liquid flow on the nanogtale. h a hybrid model would

be on a time and distance scale intermediate between @u mgecular and continuum de-

\\
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quantity quantity quantity literature,?3
Uy 5.815(1)  Dpnsq 0.0335(3) nk* 0.050(1) 0.051(1)
Uq —11.898(2) < F? > 592(1)  nke 0.075(5) 0?0(1)
u —6.083(2) < F*> /10% 1.07(1) n©

Piot 0.157(1) M, 274(1)  nlet

Z 0.2575(2) M,4/10°  2.33(1)  Tmina D}-)\

,ﬁ
G, 23.46(1)  Mps 838(1)  g(Fmin, 0.57!3(1)
Goo 24.07(1)  Mp4/10°  1.79(1) rng,._;, 7.071(1)
g'
M, 297(1) Tmaz.1 1.086( T g(rmaw.2) 1.283(1)
M;4/10% —6.66(3)  g(rmaz1) 3 0 16.52(1)

/\S\

TABLE I. Physical properties of the L.J tate& = 0.8442 and T' = 0.722, from an MD simulation

of N = 6912 particles, with an interaction trumcation distance of 3.5, and for a production simulation

time of, tg,, = 9415. The quanti “%and ug are the repulsive and attractive components of the

£

ot }é the total pressure; Z is the compressibility factor; GS is the

potential energy per partidle, u3

92

interaction part of t ﬁ?}hequency shear rigidity modulus, Go; Mx2 and Mx 4 are the 2nd
and fourth frequeficy o 5,35 of the X —property autocorrelation function, where v and F are the

,ﬁ
velocity and f@rce on S lecule, and s denotes the shear stress; wy is the Einstein frequency,'; < F? >

,ﬁ
and < Ff > are the second and fourth moments of the particle force. g(rmqz,1) is the value of the

fﬁs first peak and at r = 740,15 9(Tmin,1) is the value of the RDF at its first minimum at
.-

T = Tmin,1-5Lhe numbers in brackets are the statistical uncertainty in the last digit.
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Publishing Figure Captions

Figure 1: Upper Frame (a), Comparison between the normalized time correlation function,
Cs(t), from MD and its fitted forms, both gaussian (shifted upwards by ) and sech. The brown
curves are the fit to the gaussian expression given in Eq. (3), and the se Wn of Eq. (

The contributions of the three terms in each expression to the total also shown on the

figure. For the gaussian function, A = 0.66135, B = 0.35820, 7

30. 3258, 7, = 0.261270
. H

and 73 = 0.260116. and for the sech function, A = 0.72637,"8 =0,192605, 7, = 0.0492775,

7o = 0.182062 and 73 = 0.572743. The green filled in gquar ar> the ¢(t) values defined in

Eq. (13) which was fitted to the MD viscuit data. Tﬁ%@res are the difference between

the MD and fitted correlation function. The Lenb@

T = 0.722. The simulation data minus the lea s fit is shown as the red squares near

(LJ) state point is p = 0.8442 and

the baseline. The lower frame (b) is as fer fr\aQ (a) except the time dependent viscosity, 7s(t)

is plotted. \\\

Figure 2: The real and i gina\pts of the frequency dependent viscosity, n(w), directly
£

from MD and from the gaussian afid sech fit formulas. The real gaussian formula is given in

Eq. (6) and the rea e@xpre ion is in Eq. (7). The imaginary gaussian formula is in Eq. (8)

' seth issin Eq. (9). The state point is p = 0.8442 and T = 0.722, and other

-ﬁ
details are ag for F]% Finite shear rate viscosities are also plotted taken from NEMD data

using th SLLO ethod, where w is replaced by 274, and 7 is the shear rate.®

NI

Figure 3% Two dimensional conditional PDF of initial stress at time zero ¢(0) and at time ¢,
o(t), for four times, ¢t = {0.02,0.05,0.1,2.5}. The contours shown are for the same stress values
from the fit function given in Eq. (13). The value of ¢(¢) is shown in each frame. Frames

(a)-(d) are in order of decreasing c. The range of shear stress is between —0.21 and 0.16 on
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mmg The 2D stress plots can be normalized by the standard deviation, in which case the

range is, —2.96 to 2.25. The Lennard-Jones (LJ) state point, p = 0.8442 and T' = 0.722 was

A

Figure 4: Viscuit analysis with in frame (a) the probability densit Dtion of the viscuits

used.

as defined in Eq. (15) after a time of 600 time steps (solid bl ‘hse) he red curve is the
distribution of an autocorrelation of two independent gaussiafraumber distributions, while the
dashed black curve was generated from correlated gausshc;:nu erssusing Egs. (4) for ¢(t) and
(14). In frame (b) the ratio, R(n,), defined in Eq. (%@ted on a lin-log scale. On the
figure are given the following key numerical val M time ¢ in units of number of time
steps (each of 0.005), (ii) the correspondin tir%&@ndent viscosity, 7(t), and (iii) the A pa-

rameter defined in Eq. (17). The Lennar?n ; (LJ) state point was p = 0.8442 and 7" = 0.722.

Figure 5:(a) The A(t) param % is the duration of the viscuit, in the exponential

given in Eq. (17), and a lea squﬂht curve going through the data points.

A V.

Figure 5:(b) A 2 p@m distribution map of the trace of the time dependent viscuits

taken up to 600€timg’ steps on the abscissa against the initial time origin shear stresses. The

4

ﬂ
accumulated probalsih density function of these traces was obtained from over 15 million
ﬁ
starting raject%rl and is shown in the background. Some individual viscuit trajectories are

rimposed on the map (Multimedia view).

Figure 6: Upper Frame (a): The PDF of the initial shear stress og (blue symbols) and that
of the visclet (red symbols) with M = 120. They are represented very well by, respectively, a
gaussian with the analytic form for P(oy) given in Eq. (11) and 2%P(x), see Eq. (18), respec-
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ngl!§!l mgf d to the MD data. The % symbols are the initial stress dependent relaxation times

or 7. Lower Frame (b) As for frame (a) except on a lin-log scale.

Figure 7: The C;(t) defined in Eq. (19) for four bands of initial stress,/ow 00/S(0p) in

the range 0 — 1, 1 — 2, 2 — 3 and 3 — 4, which are also indicated on th%The state points
are from bottom to top T, p: (a) 0.722, 0.8442, (b) 0.500, 0.84 ,%O. 00, 0.9211. The
. . . . . K
latter two states are in the metastable liquid region of the phase ram. The pressures are
close to zero for (a) (0.148) and (c) (—0.025 ) but slightlynegatiye f}r (b) (—1.363). The green
curves are the GK total stress relaxation and the lovﬁs%@a curves are fits for ¢ > 0.4 to
B ar

the exponential form, Cy(t) = Aexp(—Bt), Whe% for the curve sets from bottom to

top are: 0.146,2.31, 0.184, 1.45 and 0.200, O.569\Q@ﬁhree state points, respectively.
\

Figure 8: Upper Frame (a): The \%‘ ast squares fit using Eq. (25) fit for the state
point p = 0.8442 and T' = 0. Z*h = 4000. Key: The constants for Eq. (25) are:
0,74 = 0.09222, A = 18.50, B = —88.85, and C' = 1217.7.

dépendent diffusion coefficient, D(t) directly from the MD

7 = 0.1071, 7 = 0.2250, 73/& 0.

The lower frame (b):

the integral of the fitted VACF of Eq. (25) leading to Eq. (26).

simulation and fro

/
Figure 9: h«? me%n quare displacements, Ar?(t) calculated directly and from the velocity
autocorrflation gu tion using Eq. (23). The upper brown line is the long time limiting formula
A+ Uiy ifference between A + 6Dt and the actual MSD is the red curve, and the fit
to this using the expression in Eq. (28) is the black line. The constants are A = 0.021813,
B =0.025424, 11 = 0.134862, D = 0.033234 and 6t = —0.05. The magenta curve is the short
time ballistic region of the analytic form, Ar?(t) = 3kgTt?/m. The state point is p = 0.8442
and T' = 0.722.
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Figure 10: Upper Frame (a): The real part of the cosine Fourier transform of the VACF D’ (w).
The 4 components and total ‘T” from Eq. (30) are shown as solid lines. The corresponding
numerical integration of the four components of the analytic VACF deﬁn%\'% (25) are also
shown as symbols. The lower Frame (b) is as for the upper frame, exc ae sine or imaginary

part of the Fourier transform of the VACF, i.e., D"(w) from E (é)y, 15plotted.

-~
Figure 11: D'(w) and D*(w) obtained directly from q&ﬁvi&)ﬂaﬁon data by numerical

integration. A power law decay, denoted on the ﬁgﬁiX“E};.’ of the form, A,/wP, where

A, =157 x 10° and p = 5.564 are least square fi \

formula,”® D' = Aa(t,w)?exp(—(7,w)9) Where \(7"822 p = 0.632 and ¢ = —0.0752 from

ta in the range, 55 > w > 35. The

the given formulas and Aa = 21.50 by % ﬁ}e simulation data in the frequency range,
55 > w > 30 which is denoted by ‘P. e gure. ‘Fit anal.” and ‘Fit num.” are numerical

transforms of the fitted C,( m\ 25 Note the log-log scale. The state point is

p=0.8442, and T = 0.722.

Figure 12: The C(t) %m Eq. (34) for four bands of initial velocity, vy. Key: vy/o, in

the range 0 — 1,4 — 2, 2 and 3 — 4, which are also indicated on the figure. The state point

ﬂ
is p = 0.8442, and I} = .5 and T = 0.722.
ﬁ

Fig N.g: he upper frame (a) is shown, W(r,t), defined in Eq. (36) for three times (given
o

on the figure) computed directly in the MD simulations. The analytic solution of the self van

Hove function in Eq. (35) using Eq. (28) for the mean square displacement is also shown as a

continuous red curve. The lower frame (b) gives the non-gaussian function, «(t) and the mean

square displacement.
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