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Abstract

The results are reported of an equilibrium Molecular Dynamics (MD) simulation study of the shear

viscosity, η, and self-diffusion coefficient, D, of the Lennard-Jones liquid using the Green-Kubo (GK)

method. Semi-empirical analytic expressions for both GK time correlation functions were fitted to the

simulation data and used to derive analytic expressions for the time dependent diffusion coefficient

and shear viscosity, and also the correlation function frequency transforms. In the case of the shear

viscosity for a state point near the triple point a sech function was found to fit the correlation

function significantly better than a gaussian in the ballistic short time regime. A reformulation of

the shear GK formula in terms of a time series of time integrals (‘viscuits’) and contributions to the

viscosity from components based on the initial stress (‘visclets’) enable the GK expressions to be

recast in terms of probability distributions which could be used in coarse grained stochastic models of

nanoscale flow. The visclet treatment shows that stress relaxation is statistically independent of the

initial stress for equilibrium and metastable liquids, suggesting that shear stress relaxation in liquids

is diffusion controlled. In contrast, the velocity autocorrelation function is sensitive to the initial

velocity. Weak oscillations and a plateau at intermediate times originate to a greater extent from

the high velocity tail of the Maxwell-Boltzmann velocity distribution. Simple approximate analytic

expressions for the mean square displacement and self van Hove correlation function are also derived.
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I. INTRODUCTION

The shear viscosity, η, and self-diffusion coefficient, D, of liquids have been much studied over

recent decades by experiment, statistical mechanical theory and Molecular Dynamics (MD)

computer simulation. The Green-Kubo (GK) relationships in which the transport coefficient

is proportional to the integral of the appropriate time autocorrelation function have played an

important role in these investigations.1 There is a well known strong link between the diffusion

coefficient and shear viscosity, for example, as expressed in the Stokes-Einstein relationship,2,3

and there have been many theoretical studies seeking to understand and quantify the factors

determining η and D, and the common factors between them (see e.g ., Refs.2,4).

In this work accurate semiempirical analytic formulas for the shear stress autocorrelation

(SACF) and velocity autocorrelation function (VACF) have been fitted to MD simulation data

for a Lennard-Jones (LJ) reference state point near the triple point. These were used to derive

analytic expressions for the time dependent viscosity and mean square particle displacement,

and the real and imaginary components of the frequency dependent viscosity and self-diffusion

coefficient. In the past the focus has been on parametrizing the more basic quantity, the

memory function (MF),5 which was then only able to give approximate representations of the

exact (MD) SACF and VACF. The present approach, by fitting the autocorrelation function

itself, leads to more practically useful outcomes.

Another aspect of this work is to recast the GK formulas in terms of probability distribution

functions. These provide new insights and ways of portraying the decorrelation of property

values with time, which is in a form that could be used in building simple stochastic models in

the tradition of the Eyring model,6 and in rejection-based stochastic treatments of nanoscale
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flows.

In Sect. II the shear viscosity and related quantities are considered. In Sect. III the self-diffusion

coefficient and associated functions are discussed, and conclusions and an overall summary of

the work are given in Sec. IV.

II. SHEAR VISCOSITY

The Newtonian shear viscosity, η, is calculated using the GK method by

Cs(t) =< σ(0)σ(t) >, η(t) =
V

kBT

∫ t

0

Cs(x)dx, η = lim
t→∞

η(t), (1)

where Cs(t) is the shear stress autocorrelation function (SACF). The shear stress is minus one

of the off-diagonal components of the pressure tensor, e.g ., σxy = −Pxy, which for notational

conciseness is referred to here by, σ. The angular brackets indicate an average over different

starting times or time origins, defined as t = 0. The Cs(t) decays monotonically with time to

zero. The so-called time dependent shear viscosity, η(t), is defined in the middle expression

of Eq. (1), where V is the volume of the simulation cell, kB is Boltzmann’s constant and T is

the temperature. The viscosity is the long time limit of η(t) as defined in Eq. (1). In practice,

this integral is carried out numerically to a time that is sufficiently long for the Cs(t) to be

statistically zero but before the statistical noise dominates. One procedure is to average the

time integral of Cs(t) over a time period between, t− τ and t, where τ might be, say, a quarter

of the value of the maximum value of t, as follows

η ≃ 1

τ

∫ t

t−τ

η(x)dx. (2)
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It is important to choose the value of τ such that the correlation function has levelled off by

t − τ . Mitigating the generally poor statistical convergence of Cs(t) (as it is calculated from

a whole system property) and hence η(t) by data smoothing or filtering both with respect to

time,7–9 and system size.3,10 has been the subject of a number of publications.11 The response

in stress from an infinitesimal step in strain (normalized by the strain step) applied to an

equilibrium fluid is called the stress relaxation function in rheology, which is (V/kBT )Cs(t) in

the present notation.

Another approach is to fit an analytic function to the simulation Cs(t) or stress relaxation

function data and then integrate this analytically to determine the viscosity. This might be

viewed as being just an alternative way of improving the statistics of the viscosity, without

practical advantage over Eq. (2). However, it also provides additional benefits, in that it gives

directly analytic expressions for η(t) and the frequency dependent complex viscosity, η(ω),

which can be used in other theoretical and practical modelling applications. Also the terms

of the expression could in principle be associated with specific diffusional and stress relaxation

mechanisms established by other means, which requires further investigation The procedure of

fitting the MD generated SACF to an analytic function is described in the next section.

A. Analytic expression for the stress relaxation function and derived quantities

A number of analytic forms for the stress decay function, Cs(t), have been proposed in the

literature.12 Strictly speaking the time correlation function should be even in time so its time

expansion should be in powers of t2.1 This is felt predominantly at short time, in the ‘ballistic’

or early part of the shear stress decay. That is why this part of the time decay has been
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represented by a gaussian or a related function which is an even function in time. Hartkamp

et al. proposed and explored with MD the following functional form for Cs(t),
12

Cs(t) = G∞
(
A exp(−t2/2τ 21 ) +B exp(−t/τ2) + (1− A−B) exp(−t/τ3)

)
,

η(t) =
V

kBT

∫ t

0

Cs(s)ds = G∞

(
Aτ1

√
π/2 erf(t/

√
2τ1)) + B τ2[1− exp(−t/τ2)]

)
+G∞(1− A−B)τ3[1− exp(−t/τ3)], (3)

where G∞ is the infinite frequency shear rigidity modulus. The dimensionless coefficients, A

and B, and the three relaxation times, τ1, τ2 and τ3 can be obtained by least squares fitting

the MD-determined Cs(t) to the first formula in Eq. (3). The two exponentials in Eq. (3)

are found to reproduce well the long time behavior of Cs(t) beyond the ballistic region. An

alternative analytic form to the gaussian where the first term is also even in time, employs the

sech function,

Cs(t) = G∞ (A sech(t/τ1) + B exp(−t/τ2) + (1− A− B) exp(−t/τ3)) ,

η(t) = G∞
(
Aτ1 tan−1[sinh(t/τ1)] + B τ2[1− exp(−t/τ2)]

)
+G∞(1− A−B)τ3[1− exp(−t/τ3)]. (4)

The usefulness of the sech function for Cs(t) was also noted in Ref.13 for the case of the steeply

repulsive inverse-power fluid. It has also been used as the memory function in numerous Mori

series treatments of transport coefficients.14–16 The advantage of Eq. (4) over (3) is that the first

term tends to an exponential at long times, just as the last two terms. This provides further

scope for fitting accurately with a sum of exponentials the MD-generated SACF in the transi-

tion period between ballistic to diffusive behavior and further out in time. Note that if A = 1

and B = 0 the Maxwell relaxation time of the analytic Cs(t) would be, τM ≡ η/G∞ =
√
π/2 τ1

and πτ1/2, for the gaussian and sech first terms, respectively, appearing on the right hand sides

of Eqs. (3) and (4) for Cs(t). The A, B and relaxation times obtained by fitting are different
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for the gaussian and sech equations.

The frequency dependent viscosity is widely encountered in various models for the dynamics of

the liquid on the molecular scale.17 The real and imaginary parts of the complex viscosity are

respectively,18

η′(ω) =

∫ ∞

0

Cs(t) cos(ωs)ds, η′′(ω) =

∫ ∞

0

Cs(t) sin(ωs)ds, (5)

where ω is the angular velocity. The two functional forms for SACF given in Eqs. (3) and (4)

substituted in Eq. (5) yield,

η′(ω) = G∞

(
Aτ1

√
π

2
exp(−(ωτ1)

2

2
) +

B τ2
1 + (ωτ2)2

+
(1− A−B)τ3
1 + (ωτ3)2

)
, (6)

and

η′(ω) = G∞

(
A τ1

π

2
sech(

π

2
ωτ1) +

B τ2
1 + (ωτ2)2

+
(1− A− B)τ3
1 + (ωτ3)2

)
, (7)

for the real part of the gaussian and sech formulas, respectively. The imaginary parts of these

two analytic forms for the stress relaxation function are,

η′′(ω) = G∞

(
Aτ1

√
π

2
exp(−(ωτ1)

2

2
) erf(ωτ1/

√
2) +

B ωτ 22
1 + (ωτ2)2

+
(1− A− B)ωτ 23

1 + (ωτ3)2

)
, (8)

for the gaussian of Eq. (3), where erf(x) is the error function of x. For the sech function,19

η′′(ω) = G∞

(
−Aτ1

2
[π tanh(

πωτ1
2

) + i[ψ

(
1

4
+ i

ωτ1
4

)
− ψ

(
1

4
− i

ωτ1
4

)
] +

B ωτ 22
1 + (ωτ2)2

+
(1− A−B)ωτ 23

1 + (ωτ3)2

)
,

= G∞

(
−Aτ1

2
[π tanh(

πωτ1
2

)− F (
1

4
,
ωτ1
4

)] +
B ωτ 22

1 + (ωτ2)2
+

(1− A−B)ωτ 23
1 + (ωτ3)2

)
, (9)

where ψ is Euler’s psi function. The last line of Eq. (9) is a further simplification using the

summation, F (x, y) =
∑∞

k=0 2y/[y
2 + (x+ k)2] (see Ref.20, p. 944, Eq. (8.363.4)) which enables

routine computation within a standard programing environment.
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The frequency dependent viscosity formulas could be used to include viscoelastic effects in

continuum models, by summing over as many frequencies as needed to generate a fluctuating

viscosity term.21 An alternative method of including viscoelastic effects in terms of time rather

than frequency is presented in the next section by using the time dependent decorrelation of

the shear stress.

The LJ state point, ρ = 0.8442 and T = 0.722, which is close to the triple point and has become

a standard or reference state point for the LJ system,22 was used to calculate the SACF and

viscosity by its numerical integration. The quantities quoted in this work are expressed in the

usual LJ pair potential units of energy and distance, and the mass, m, of the molecule. The

simulations used to calculate the analytically fitted VACF and SACF data were for N = 2048

molecules, with an interaction truncation distance of 2.8, with a tapering of the potential to

zero between r = 2.5 and 2.8. Computation of the properties shown was for 12 × 106 time

steps of magnitude 0.006. Prior to this, equilibration was for 5× 105 time steps. Time origins

for the correlation functions were taken every time step. The uncertainies in the viscosity

were less than 2%. The real and imaginary frequency Fourier transforms for the shear stress

autocorrelation function had statistical uncertainties of ca. ∼ 3% and 5%, respectively, and

about half these values for the Fourier transform of the velocity autocorrelation function. The

simulation codes were written by the authors in FORTRAN 90.

As the shear stress is the sum of a kinetic term (k) and a configurational term (c), there are

three components to the shear stress autocorrelation function and hence the shear viscosity

(namely, kinetic, kk, cross kinetic-configurational, kc, and configurational, cc).1 At this density

the cc term dominates (see also Table I). The shear viscosity of this state point has been

computed many times by different authors, and an average value of them is given in Refs.23,24.
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Table I shows that the viscosity given by the present work i .e., 3.25(3) particles is in statistical

agreement with this average of the literature values.

Figure 1(a) presents the Cs(t) obtained by MD and its least squares fit using the gaussian and

sech functions defined in Eq. (3) and (4), respectively. The differences between these two fits

and the MD data are also shown. The agreement is very good at all times for the sech function,

within the simulation statistics. The gaussian expression does not reproduce the MD data as

well in the transition region of ∼ 0.15 < t < 0.20 between the rapidly decaying (ballistic) and

slowly decaying (exponential) regions. The contributions to Cs(t) from the three component

functions of the fit are also shown in Fig. 1(a). Figure 1(b) shows η(t) obtained directly from

the MD data and using the analytic functions in Eq. (3) and (4). Just as for Cs(t), best agree-

ment with the MD correlation function is made with the sech containing analytic expression.

Figure 2 shows the corresponding η′(ω) and η′′(ω) obtained numerically from the MD stress

correlation function (represented by symbols), and from the analytic expressions given in

Eqs. (6) to (9), respectively. Numerical Fourier transform integration of the original MD data

produces noisy curves. The real part of the transform, η′(ω), decreases monotonically with

frequency, and η′′(ω) increases from zero and has a peak before descending at higher frequency.

Again it can be seen that the sech containing functions agree significantly better with the nu-

merical data than the gaussian cases. The imaginary components are more difficult to obtain

accurately at high frequency by applying the sine Fourier transform to the tabulated MD Cs(t).

The viscosities obtained by shearing the liquid using the SLLOD Non-equilibrium Molecular

dynamics (NEMD) method,25,26 are also shown in Fig. 2. For comparison purposes, on the

figure, ω, is replaced by 2πγ̇, where γ̇ is the shear rate (the data points are taken from Ref.6).
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The shear thinning curve descends more slowly than η′(ω), showing an increasing departure

from the Cox-Merz rule,27 which is a hypothesis based on empirical observation for polymer

solutions that for small ‘ω’ the two quantities are approximately the same. This equivalence is

not well obeyed for the LJ liquids.

The viscosity, η, is obtained from the t→ ∞ limit of η(t) and the ω → 0 limit of η′(ω). For the

gaussian and sech-based η(t) functions in Eqs. (3) and (4), for the corresponding η′(ω) given

in Eq. (7), these two limits for the Newtonian viscosity are,

η = G∞

(
Aτ1

√
π

2
+Bτ2 + (1− A−B)τ3

)
gaussian

η = G∞

(
Aτ1

π

2
+Bτ2 + (1− A−B)τ3

)
sech . (10)

A classical hydrodynamic treatment predicts that time correlation functions for fluid trans-

port coefficients should decay algebraically at long time,28 a feature which is not included in

the present formulation. At liquid densities other stress relaxation mechanisms derived from

structural constraints (e.g ., the ‘molasses tail’,29) are also present. Nevertheless, there is still

evidence for this algebraic dependence within the simulation statistics at liquid densities.30–33

Its presence has a dominating effect on the low frequency, ω < 1, behavior of the complex

viscosity, and the real part should feature a ω1/2 cusp in this limit.34

In the next section an alternative perspective and resolution of the nature of shear stress re-

laxation mechanism in liquids based on probability distribution functions is reported.
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B. Probability distribution function formulation of the shear viscosity

Assuming that the probability distribution of the shear stress, σ, is gaussian at all times,

following the central limit theorem,

P (σ) =
1

(2π(S(σ))2)1/2
exp(− σ2

2(S(σ))2
), < σ2 >=

∫ ∞

−∞
σ2P (σ)dσ = (S(σ))2. (11)

where S(x) is the standard deviation of x (noting that the mean shear stress is zero at equilib-

rium, the limit considered in this work). The Green-Kubo relationship for the shear viscosity

can be simplified as follows,

η =
V

kBT

∫ ∞

0

< σ(0)σ(t) > dt,

=
V

kBT
< σ(0)2 >

∫ ∞

0

< σ(0)σ(t) >

< σ(0)2 >
dt,

=
V

kBT
< σ(0)2 > τs, = G∞τs, (12)

where τs is the shear stress relaxation time and G∞ is the infinite frequency shear rigidity

modulus. Equation (12) shows that Maxwell’s identity for the shear viscosity,35 η = G∞τs,

emerges naturally from this treatment. As < σ(0)2 >=< σ2 > the infinite frequency shear

modulus is defined by, G∞ = [V/kBT ] < σ2 >.

2D PDF profiles and the Viscuit

Using the shorthand, σ0 ≡ σ(0) and σt ≡ σ(t), a probabilistic representation of the evolution

of the shear stress of the whole system is proposed in this section. The relationship between an

initial stress value for the whole system, σ0, and its value, σt, at a later time, t, can be expressed

in the form of a 2D probability distribution function, an example of which is shown in Fig. 3.

This measures in a novel way the decay in correlation between initial and final stresses, which

in GK is represented simply by a one dimensional time autocorrelation function. The shear

stress at each time in a correlation period t is plotted in a 2D histogram against initial starting
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stress and fitted to a double gaussian expression with a cross-correlation term,36 of the form,

P (σ0, σt) =
1

2πS(σ0)S(σt)
√
1− c(t)2

exp

(
− [u20 − 2c(t)u0ut + u2t ]

2(1− c(t)2)

)
(13)

where uα ≡(σα − ⟨σα⟩)/S(σα) for α = 0 or α = t, and −1 < c(t) < 1 is the time dependent

correlation coefficient. The stress at the two times is initially completely correlated at t = 0,

which is represented by a straight line profile at 450 (not shown). Figure 3 shows that the profile

contours gradually broaden and reorient with time. At very short time, t = 0.02, there is still a

high correlation coefficient, c, between the two stresses. The decreasing slant angle of the PDF

seen in frames, b) and c) for times, 0.05 and 0.1, respectively indicates that the two stresses

become less correlated with time. The contours tend to concentric circles, a limit which indicates

that the final stress has become completely decorrelated from the initial value. Then the 2D

PDF is symmetrical and just the product of two independent gaussian distributions (i .e., c = 0).

The time dependent correlation coefficient, c(t), is found to be statistically indistinguishable

from the normalized autocorrelation, Cs(t), as shown in Fig. 1(a). The significance of this

result is that the independently computed Cs(t) or its fitted form given in Eq. (4) can be used

in conjunction with the PDF formula in Eq. (13) to represent the stress evolution of the system

with time in a probabilistic formulation. If the shear stress at time zero is known, the stress at

any later time can be obtained using,

σt = c(t)σ0 + ξ
√

1− c(t)2 (14)

where c(t) (≡ Cs(t) normalized), is the correlation obtained from Eq. (4), and ξ is a gaussian

random number generated using the Box-Muller method,37 with mean, < σt >, and standard

deviation, S(σt). This provides a method to include the stress correlation history in a higher

level Langevin or fluctuating hydrodynamics model.
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The contribution of the sequence of stresses in order of generation to the shear viscosity can be

determined by reversing the usual order of the time integral and the ensemble average of the

time correlation function in the Green-Kubo formula,

η(t) =
V

kBT

∫ t

0

⟨σ(0)σ(x)⟩ dx

=
V

kBT

1

τr

∫ τr−t

0

dτ

∫ t

0

σ(τ)σ(τ + x) dx

=
1

τr

∫ τr−t

0

dτ

∫ t

0

ηu(τ, x) dx

= ⟨ηu(t)⟩ shorthand

η = lim
t→∞

⟨ηu(t)⟩ (15)

where τr is the duration of the sampling (i .e., simulation time). Equation (15) involves a se-

quence of integrals of a single trajectory from (simulation) time, τ to time τ+t which is written

as, ηu(τ, t), which is referred to here as the ‘viscuit’. The τ argument is dropped henceforth,

as the average over the simulation of many time origins is implicit. This ‘hybrid’ reformulation

of GK (in a time origin averaged sense) is not new and was discussed by Erpenbeck,28 but its

properties were not explored in that work, and not in the context of single trajectories. A simi-

lar hybrid reformulation of the Green-Kubo formula was investigated for self-diffusion in Ref.38.

The viscosity is obtained from the average of the infinite time limits of the ηu(t). Note that

a viscuit can be negative unlike the viscosity itself. Figure 4(a) shows the probability density

function of viscuits, P (ηu) which is like a Laplace distribution but is in fact skewed to the right,

as the total viscosity, the 1st moment of this probability distribution,

η =

∫ ∞

−∞
ηuP (ηu)dηu

=

∫ ∞

0

ηu[P (ηu)− P (−ηu)]dηu (16)

must be non-zero and positive. The blue line is the MD viscuit PDF, which is peaky and

skewed to the right due to the correlation between the time dependent sequence of stress values
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during system’s correlation time. The red curve is the distribution from an autocorrelation of

two independent gaussian random number distributions. The dashed black curve was gener-

ated from correlated gaussian numbers using Eqs. (4) and (14). The red curve is not skewed

whereas the black curve is skewed. The correlated gaussian model exaggerates the extent of

skewness compared with the direct MD viscuit results because the correlating function, c(t),

is never negative (as it is a system average property). The random numbers can give negative

values, and that is why the distribution extends into the negative quadrant. The purely MD

generated case (blue curve) has a standard deviation which is about seven times larger than

the other two, which may be attributed to the wide tails on both sides in that case. The

MD distribution is skewed to the positive side because the initial values of stress are strongly

correlated, and therefore large positive viscuits are more likely than negative ones. The shape

of the distribution is not gaussian, indicating that the mean is not the most representative

of the range of possible autocorrelations in each of the systems. Negative viscuits are highly

probable, almost as likely as positive ones, and as a result the viscosity of the system computed

from this distribution is the difference between two large numbers.

Figure 4(b) presents on the abscissa the logarithm of the ratio, R, of positive to negative viscuits

with the same |ηu|, obtained from the PDF in Fig. 4(a), which indicates that,

R =
P (ηu > 0)|ηu)
P (ηu < 0)|ηu)

= eA|ηu|, (17)

where the constant, A, decreases with time. Equation (17) bears some similarity with the Fluc-

tuation Theorem (FT) and its relationship to Green-Kubo.39–42 Although in the FT the time

averaged shear stress due to a finite shear rate is the independent variable, here it is the viscuit,

which is the integral of the product of two shear stresses at different times. Simply including

correlated random noise is not sufficient to capture the full underlying complexity of the MD
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model, as is demonstrated in Fig. 4(b) which shows the viscuit PDF generated assuming the

correlated gaussian model of Eq. (13) (the dashed curve). This has a much smaller standard

deviation and a very different shape.

Figure 5(a) shows a plot of A(t) defined in Eq. (17) and derived from the MD data for a range

of integration intervals, t. The figure also shows a fit to these data using the functional form,

A(t) = A1+A2/t
A3 , which matches well for not too small t. A(t) must tend to a non-zero limit

in the large time limit for P (ηu) to be asymmetric and therefore the viscosity to be nonzero

and positive using the definition of the viscosity given in Eq. (16).

A 2D map of initial stress against the resulting viscuit is given in Fig. 5(b) (Multimedia view).

This plot was generated by first starting at time step 1 with stress σ1 from which the values of

the first viscuit were plotted with time. Then the viscuit starting from time step 2 with stress σ2

was plotted after that. The sequence of points gives a chaotic distribution of points. It reveals

that the initial stress and viscuit are correlated for a period of time. Some trajectories switch

over a small number of time steps to being anti-correlated (i .e., a negative viscuit). There are

intermittent jumps of the map path from one part of the diagram to another in Fig. 5(b) (Mul-

timedia view), which could be a reflection of the system moving from one inherent structure

or metabasin to another.43,44 The final butterfly shape of the map indicated by the contour

lines on Fig. 5(b) is a consequence of the definition of viscuit and a reflection of the underlying

dynamical processes. Small initial stresses typically result in small viscuits, and in the limit,

an initial stress of zero means that the viscuit can only be zero at all times. Vertical slices

taken through the distribution at arbitrary values of initial stress, σ0, give a gaussian density

distribution of viscuits which becomes narrower with decreasing (absolute) initial stress. A high

initial stress typically results in a larger viscuit (‘viscosity’) and a non-symmetrical distribution

15

http://dx.doi.org/10.1063/1.5095501


about the ordinate axis reflects the effect of positive correlations on average at all times. From

Eq. (16) there have to be more points above the ordinate axis than below for the total viscosity

to be positive. The corresponding plot for the random correlated noise case (corresponding

to the black dashed line in Fig. 4(a)) shows a large positive viscuit lobe and a small negative lobe.

The single trajectory ‘viscosity’ or viscuit provides useful information about the shear stress

evolution in the system which would complement quasi-harmonic models of the liquid state,45,46

as it characterizes the time evolution of the stress on the potential energy landscape. In the

next section another type of PDF resolution of the stress evolution is introduced.

Green-Kubo initial stress resolution and the Visclet

The GK expression can be written in PDF form as a function of the initial stress, σ0. Let P (σ0)

be the probability distribution of σ0, then the shear viscosity can be written,

η =
V

kBT

∫ ∞

−∞
P (σ0)

∫ ∞

0

< σ0σt > dt dσ0,

=
V

kBT

∫ ∞

−∞
σ2
0P (σ0)

∫ ∞

0

< σ0σt >

σ2
0

dt dσ0,

=
V

kBT

∫ ∞

−∞
σ2
0P (σ0)

∫ ∞

0

Cs,0(t)dt dσ0,

=
V

kBT

∫ ∞

−∞
σ2
0P (σ0) τs,0 dσ0,

=
G∞

< σ2 >

∫ ∞

−∞
σ2
0P (σ0) τs,0 dσ0,

= G∞

∫∞
−∞ σ2

0P (σ0) τs,0 dσ0∫∞
−∞ σ2

0P (σ0) dσ0
,

= G∞

∫ ∞

−∞
E(σ0) τs,0 dσ0,

=

∫ ∞

−∞
E(σ0)ηs,0 dσ0,

= G∞τs (18)

where the definition of G∞ from Eq. (12) has been used. The relaxation time, τs,0, is that
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associated with a starting stress, σ0, and

Cs,0(t) =
< σ0σt >

< σ2
0 >

, τs,0 =

∫ ∞

0

Cs,0(t)dt, E(σ0) =
σ2
0P (σ0)∫∞

−∞ σ2
0P (σ0)dσ0

, ηs,0 = G∞ τs,0. (19)

The quantity, ηs,0, is henceforth called the ‘visclet’, which after time averaging is the contri-

bution to the total viscosity from those initial states which at t = 0 have a particular value

of the stress, σ0. The viscuit and visclet are formally related through, ηs,0 =< ηu(t, σ0) >0

i .e., the visclet is the ensemble average of the viscuits for which the starting stress is σ0. The

corresponding relaxation time of these states is τs,0. The function, E(· · · ), is the weight given

to the G∞τs,0 contribution to the viscosity. Therefore the Green-Kubo formula is now expressed

in terms the σ0−component correlation functions and relaxation times. If τs,0 is independent of

σ0 then the system is described by only one relaxation time and Eq. (12) is recovered, otherwise

the more general expression given in Eq. (18) is required.

To implement this initial stress resolution numerically in a computation, the visclets are col-

lected in a histogram of limited ranges of σ0. A set of M + 1 stresses, σ1 < σ2 < σ3 · · · < σM+1

specify the boundaries of the M (≤ 120) elements of Cs(t, σ0) ≡ Cs,0(t) defined in in Eq. (19).

Each bin index i corresponds to a limited range of σ0,

Cs,i(t) = G∞

∫ ∞

0

[H(σi+1 − σ0)−H(σi − σ0)]
< σ0σt >

< σ2
0 >

dσ0, (20)

where H(· · · ) is the Heaviside step function.

Figure 6(a) shows the probability distribution function, P (σ0), and the PDFs of the ηs,0 and

τs,0 as a function of the initial stress in dimensionless form as, σ0/S(σ0). The figure confirms

that the stress PDF is gaussian (the least squares fit is shown). Also the ηs,0 PDF is essentially,

σ2
0P (σ0), as τs,0 only very weakly depends on σ0. Figure 6(b) presents the same data plotted
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on a lin-log scale, to reveal the wide range of stresses for which the gaussian approximation is

valid. Figure 6 reveals that the relaxation times are only very weakly dependent on the initial

shear stress.

Figure 7 shows the total SACF for three LJ state points, the standard one used above, and

two metastable fluid states. One of the metastable states is along the zero pressure isobar and

is above the glass transition, which is at ca. T = 0.29 and ρ = 0.98.47,48 A supercooled liquid

shows dynamical heterogeneities,49 which one might expect would have an effect on the SACF.

The total SACF (shown in green) decays slower at long times as the system goes further into

the metastable region, and in each case as an exponential. Ladd et al.,29 showed that at high

density structural orientational time evolution correlates well with the shear-stress autocorre-

lation function, which decays as a stretched exponential with a density independent exponent.

Exponential fits to the three Cs(t) for t > 0.4 are also shown on the figure. Figure 7 also

presents the normalized Cs,0(t) defined in Eq. (19) where the initial stress is taken within four

bands of initial stress relative to the standard deviation of the stress, σ0/S(σ0). Components

resolved for initial stresses of σ0/S(σ0) in the ranges, 0 − 1, 1 − 2, 2 − 3 and 3 − 4 reveal

that the curves are statistically indistinguishable, which is consistent with the conclusions from

Fig. 6, and suggests that stress decay in dense fluids is determined by the relative diffusion of

the molecules rather than by a stress activated process. The nature of self-diffusion in these

systems is considered in the next section.
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III. SELF-DIFFUSION

The self-diffusion coefficient can be calculated by either the Einstein-Helfand (EH) equations,

∆r2(t) =
1

N

N∑
i=1

(ri(t)− ri(0))
2 , D = lim

t→∞

∆r2(t)

6t
, D = lim

t→∞

1

6

d∆r2(t)

dt
, (21)

or a Green-Kubo (GK) formula,1 employing the velocity autocorrelation function (VACF),

Cv(t) =< v(s) · v(0) >, D′(t) =
∆r2(t)

6t
=

1

3

∫ t

0

(1− s

t
) < v(s) · v(0) > ds, (22)

where D′(t) may be considered to be an effective time dependent diffusion coefficient. The link

between Eqs. (21) and (22) is (see Ref.1 p. 272),

∆r2(t) = 2t

∫ t

0

(1− s

t
) < v(s) · v(0) > ds. (23)

The first route to D in Eq. (21) takes the form D(t) = A/6t +D (where A is a constant) for

large t, and the O(t−1) term is slow to converge with t. The third (time derivative) route to

D in Eq. (21) converges more rapidly. Applying Leibniz’s rule (see Ref.50 p. 335) to Eq. (23)

then,

D(t) =
1

6

d∆r2(t)

dt
=

1

3

∫ t

0

< v(s) · v(0) > ds, D = lim
t→∞

D(t) (24)

which is the equation usually found in the literature for D rather than Eq. (22). The same

derivation steps lead to the corresponding definition of the time dependent viscosity already

given in Eq. (1) (i .e., without the (1− [s/t]) factor).

Figure 8(a) presents the normalized VACF obtained for the reference LJ state point by MD.

The normalized force autocorrelation function (FACF), CF (t) =< F (t) · F (0) > / < F (0)2 >

is also given on the figure. For dense fluids the form of the VACF is determined primarily by

the interaction of the particle with its first coordination shell.51 The effect of increasing the

attractive forces in addition to a short range repulsion is to enhance the cohesiveness of the
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cages,52 and to delay crystal nucleation to lower temperatures.53

The analytic form of the VACF has been explored in the literature.54 Previous theoreti-

cal descriptions of the VACF and diffusion coefficient have been based on the hard sphere

(i .e., Enskog) approximation, or the more indirect memory function approach,14–16 with an

assumed form for the memory function.

A. Analytic expression for the velocity autocorrelation function and derived quantities

The MD simulation generated VACF can be represented to a good approximation by the ana-

lytic function,

Cv(t)/Cv(0) = exp(−(t/τ1)
2) + At2 exp(−(t/τ2)

2) +Bt2 exp(−t/τ3) + Ct4 exp(−t/τ4). (25)

where A,B and C have units of time to the power −2,−2 and −4, respectively. The terms in

Eq. (25) are inspired by formulas for the memory function proposed about 50 years ago.55–57

The first two terms in Eq. (25) are composed of gaussians rather than the sech function used

for Cs(t) in Eq. (4). Figure 8 compares the MD generated VACF with a least squares fit using

the new expression in Eq. (25). The green curve on the figure is the difference between the

MD-generated and fitted VACF, which may be seen to be very small at all t even though the

VACF has a rather difficult damped oscillatory shape to match.

Figure 8(b) presents D(t) from Eq. (24 ) taking the Cv(t) directly from the MD simulations

and its fit using Eq. (25). From Eq. (25) the time dependent diffusion coefficient, D(t), is

D(t) =
1

3

∫ t

0

< v(s) · v(0) > ds,
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=
kBT

m
[
1

2
τ1
√
π erf(t/τ1) + A

(
−1

2
tτ 22 exp(−(t/τ2)

2) +

√
πτ 32
4

erf(t/τ2)

)
−Bτ 33

(
(t/τ3)

2 + 2(t/τ3) + 2
)
exp(−t/τ3) + 2Bτ 33

−Cτ 54
(
(t/τ4)

4 + 4(t/τ4)
3 + 12(t/τ4)

2 + 24(t/τ4) + 24
)
exp(−t/τ4) + 24Cτ 54 ]. (26)

Equation (26) for D(t) in the t→ ∞ limit gives for the self-diffusion coefficient,

D =
kBT

m

(√
π

2
τ1 +

√
π

4
Aτ 32 + 2Bτ 33 + 24Cτ 54

)
. (27)

The mean square displacement itself gives another perspective on the transition from ballistic

dynamics at short time to the diffusion regime, and some expressions for this quantity have

been proposed previously to represent this change.58,59 The following expression reproduces the

simulation data reasonably well,

∆r2(t) = A−B sech([t− δt]/τd) + 6D t, (28)

where D is the self-diffusion coefficient, and A, B, δt and τd are positive constants. The sech

term captures the deviation at short time of the MSD from the long time limiting formula,

A+6Dt. Figure 9 presents ∆r2(t) calculated directly from the particle coordinates and from the

velocity autocorrelation function using Eq. (23), both by MD. The figure also shows the long

time limiting formula, A + 6Dt, and the difference between this and the actual MSD i .e., the

sech term in Eq. (28). The least squares fit parameter values are given in the figure caption.

The δt term is introduced because at short times when ∆r2(t) ≃ 3kBTt
2/m the correction to

the diffusive limit formula has a maximum.

MD simulations of Alder and Wainwright,60 revealed that the VACF decays algebraically at

long times as, ∼ t−3/2 in 3D. Other studies,61–65 support this asymptotic behavior, which leads

to a cusp in the frequency dependent diffusion coefficient at the origin.64 This long time tail

has only been observed at intermediate densities, as far as we are aware however.66 The value
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of t when this limiting behavior dominates is not specified by the theory, and therefore its

contribution to D is difficult to assess. At liquid densities coupling between the single particle

motion to longitudinal and transverse momentum current density correlation functions,62,67,68

also become important, as another factor determining the VACF and hence the diffusion coef-

ficient.

The normalized power spectrum (PDF) of the VACF has been frequently investigated and

calculated, in part because of its relevance to quasi-harmonic and itinerant oscillator models

of molecular motion in liquids.57,63,69–72 Since Rahman’s 1964 pioneering study,73,74 the form of

the VACF power spectrum has been interpreted in terms of a combination of low frequency

(diffusive) and high frequency (oscillatory) modes, with an overlap region in the frequency PDF

obtained by MD.75

The real and imaginary parts of the Fourier Transform of the VACF are,

D′(ω) =

∫ ∞

0

Cv(t) cos(ωs)ds, D′′(ω) =

∫ ∞

0

Cv(t) sin(ωs)ds, (29)

respectively. Note that the unnormalized VACF is used. From Eq. (25) substituted in (29),

D′(ω) =
kBT

m

√
π

2
[
τ1√
2
exp(−(ωτ1)

2/4) +
√
2
A

8
τ 32

(
2− (ωτ2)

2
)
exp(−(ωτ2)

2/4)]

+2
kBT

m
Bτ 33

(
(1− 3(ωτ3)

2)

(1 + (ωτ3)2)3

)
+ 24

kBT

m
Cτ 54

(
(1− 10(ωτ4)

2 + 5(ωτ4)
4)

(1 + (ωτ4)2)5

)
(30)

and

D′′(ω) =
kBT

m

√
π

2
[−iτ1

√
1

2
exp(−(ωτ1)

2/4))erf(
iωτ1
2

) + A

√
2

π
F(ωτ2, τ2)]

+2
kBT

m
Bτ 33

(3(ωτ3)− (ωτ3)
3)

(1 + ((ωτ3)2)3
+ 24

kBT

m
Cτ 54

(5(ωτ4)− 10(ωτ4)
3 + (ωτ4)

5)

(1 + (ωτ4)2)5
, (31)

where i erf(ix) = −(2/
√
π)

∑∞
0 x2k+1/(2k + 1)n!, and x is real. Also,

F (z, τ2) =

√
πτ 32
4

∞∑
k=0

(−1)kz2k+1(1 + k)4−k

Γ(3
2
+ k)

22

http://dx.doi.org/10.1063/1.5095501


=
τ 32
4

(
[ωτ2]− i(2− [ωτ2]

2)

√
π

2
exp(−(ωτ2)

2/4)erf(
iωτ2
2

)

)
. (32)

The contributions to D′(ω) and D′′(ω) from each term in the fit function for Cs(t) are presented

for the near triple point state point in Figs. 10(a) and (b), respectively. The real part of the

Fourier transform has a peak at ω ≃ 10, which is lower than the Einstein frequency, ω0 (≃ 17,

see Table I) and tends to D in the ω → 0 limit. The first gaussian term is monotonically

decaying and the other three are oscillatory in Fig. 10(a). The imaginary part of the Fourier

transform rises from 0 at ω = 0 and has a weak maximum at ω ≃ 25. The first term in Eq. (25)

dominates the total function at high frequency, while the remaining terms are oscillatory.

Figure 11 shows the high frequency limit of D′(ω) and D∗ = [(D′)2 + (D′′)2]1/2 which indicates

that the power law formula, Ap/ω
p, where p = 6, fits the D′ data well for ca. ω > 35. Also

the function, D′ = Aa(τaω)
q exp(−(τaω)

q), where τa, p and q are obtained from the analytic

formulas given in Ref.76 matches the simulation D′ quite well in this high frequency range (Aa

is treated as a fit parameter).

The probability distribution of the velocity follows the Maxwell-Boltzmann distribution,

P (vx) =
1

(2πkBT/m)1/2
exp(− mv2x

2kBT
), (33)

where the standard deviation of the x−component of the velocity, vx is
√
kBT/m. The VACF

was calculated as a function of the initial speed, with element i of the histogram defined by,

Cv,i(t) =

∫ ∞

0

[H(vi+1 − |vx,0|)−H(vi − |vx,0|)]
< vx,0vx,t >

< v2x,0 >
d|vx,0|, (34)

for the x−component of the velocity. The Cv,i(t) is the numerical evaluation of the initial

speed resolved VACF or Cv,0(t). The Cv,i(t) in four bands of speed in units of the standard

deviation are shown in Fig. 12. The figure shows that much of the solid-like (‘cage related’)
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oscillatory behavior evident at intermediate times arises from states where the initial velocity

is greater than the root mean square velocity. Molecules with initially high kinetic energy are

more likely to invoke a reaction from the cage of surrounding molecules, to give rise to the

weak oscillations in the VACF in the approximate time range, 0.4 < t < 0.6, trends which are

consistent with previous simulation studies of the exchange of momentum between a molecule

and its neighbors.77,78

The self part of the van Hove correlation function, Gs(r, t),
79–81 represents the spread of dis-

tances, ∆r, a molecule executes in time t (i .e., r = 0 at t = 0),

Gs(r, t) =

(
3

2π < r2(t) >

)3/2

exp

(
− 3r2

< r2(t) >

)
, (35)

where < r2(t) > can be approximated by the formula in Eq. (28). The function, W (r, t), (see

Ref.1 p. 347),

W (r, t) = 4πr2Gs(r, t) (36)

is more conveniently plotted. This is because the progression of Gs(r, t) with increasing time

is dominated by its divergent t → 0 limiting values, which are also very noisy as r → 0.

Figure 13(a) shows that the W (r, t) for three times computed directly in the MD simulations

agrees quite well with the analytic solution given in Eq. (35).

The set of even moments of the particle displacements with time are, ∆r2k(t) =< (r(t) −

r(0))2k >, for k = 1, 2, 3, · · · . The non-gaussian parameter,57,74,82,83 α(t) = 3[∆r4(t)/∆r
2
2]/5−1

represents the departure of the displacements from a gaussian distribution at short and in-

termediate times. Figure 13(b) compares α(t) with the mean square displacement. As has

been noted in previous studies the spread of particle displacements is non-gaussian for times

much larger than those at which the MSD starts to exhibit a linear time dependence (i .e., the
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‘diffusive’ regime).84 Therefore this behavior is not confined to certain types and shapes of

molecule but is present even in simple liquids of spherical particles, as has been known for a

few decades since the pioneering work of Rahman. At the state point considered even at t = 10

the particle on average only diffuses about half a molecular diameter. The α(t) ̸= 0 behavior is

due to the intermittency of the molecule’s dynamics in different cage geometries and the long

time it takes the molecule to escape from its initial cage into a more spatially homogeneous

environment. Nevertheless in these systems, the deviations from a gaussian PDF are rather

small, as may be seen in Fig. 13(a), despite the differences in the higher moments indicated by

α(t).
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IV. CONCLUSIONS

This work is concerned primarily with the Green-Kubo (GK) method used to compute the shear

viscosity, ηs and self-diffusion coefficient, D, by equilibrium Molecular Dynamics simulation. A

popular state point near the triple point of the Lennard-Jones liquid was used for most of the

simulations, and some calculations were carried out at higher density and lower temperature

in the metastable liquid part of the phase diagram. Although this is a field which has been

studied extensively since the pioneering work of Rahman in the 1960s,73,74 a number of new

aspects of it are revealed in this work. For the shear viscosity of the near triple point state an

accurate analytic expression for the shear stress autocorrelation function was obtained by fit-

ting a semi-empirical expression to the simulation data. A formula based on a sech rather than

gaussian function for the short time region was found to reproduce the simulation data better.

This function was used to derive analytic expressions for the time dependent viscosity, and real

and imaginary parts of the complex viscosity. These accurate analytic representations of the

shear stress autocorrelation function can therefore also be used in other theoretical models.

The same procedure was carried out for the velocity autocorrelation function and D. In the

diffusion case, analytic expressions for the time dependence of the mean square displacement

and diffusion coefficient were also obtained, and used to define a completely analytic formula

for the self part of the van Hove correlation function.

Time correlation functions give an average smoothly varying representation of the decorrelation

of property values with time. In contrast, decorrelation of individual trajectories is far from

being predictable, showing wildly chaotic and structure dependent behavior. This is explored

in this work by rewriting the usual Green-Kubo shear viscosity formula in two different ways

which bring out the stochastic nature of the underlying processes in a probability distribution
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function (PDF) description. The first analysis was to reverse the usual order of integrating with

time the ensemble averaged shear stress autocorrelation function (SACF), to instead express

the viscosity as a time sequence of single trajectory time integrals or ‘viscuits’. The viscosity

is the first moment of the probability distribution of long time viscuits. The time-ordered

sequence of viscuits as a function of the initial stress on a 2D projection takes the form of a

chaotic 2D trajectory with sudden ‘jumps’ to different points on a ‘butterfly’ shaped map. The

viscuit probability distribution has a Laplacian-like form but is skewed to positive values, which

cannot be reproduced by partly stochastic models as its important features are a consequence

of the deterministic evolution of the system. The ratio of positive to negative viscuit PDF

values is shown to be an exponential function of the absolute viscuit value. A 2D map of the

shear stress against its value at a time later showed a transition from perfect correlation to total

decorrelation (a series of concentric circles) at long times. This transition can be represented

accurately by a double gaussian expression with a cross-correlation term, a formula which could

be used in rejection sampling coarse grained continuum models of flow on the nanoscale.

The second decomposition of GK was to resolve the ensemble averaged time correlation func-

tion, Cs(t), into components differentiated by the initial stress. The ensemble averaged time

integral of each component of Cs(t) is referred to as a ‘visclet’. Perhaps surprisingly the nor-

malized component SACFs were shown to be statistically independent of initial stress, which

may suggest that shear stress relaxation in liquids is diffusion rather than stress controlled.

The probability distributions of stress were gaussian, and was a stress squared scaled gaus-

sian for the visclets, which is consistent with the cross-section slices of the 2D viscuit map in

Fig. 5(b). In contrast, the corresponding decomposition of the velocity autocorrelation function

(VACF) was found to be a function of initial velocity. The intermediate time plateau and weak

oscillatory feature in the VACF at long times was shown to be determined to a greater extent
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by those particles with large initial velocities (above the root mean square value). This is

consistent with the picture that these features in the VACF are caused by the response of the

cage to the molecule-cage ‘collision’ (i .e., when the VACF goes from being positive to negative).

The various aspects of this work, when combined, open up the prospect of using time correla-

tion function and Green-Kubo calculations obtained by MD simulation as input to parametrize

coarse grained stochastic models of liquid flow on the nanoscale. Such a hybrid model would

be on a time and distance scale intermediate between the fully molecular and continuum de-

scriptions.
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quantity quantity quantity literature,23

ur 5.815(1) Dmsd 0.0335(3) ηkks 0.050(1) 0.051(1)

ua −11.898(2) < F 2 > 592(1) ηkcs 0.075(5) 0.060(1)

u −6.083(2) < F 4 > /106 1.07(1) ηccs 3.13(2) 3.15(3)

Ptot 0.157(1) Mv,2 274(1) ηtots 3.25(3) 3.29(3)

Z 0.2575(2) Mv,4/10
5 2.33(1) rmin,1 1.541(1)

Gc
∞ 23.46(1) MF,2 838(1) g(rmin,1) 0.576(1)

G∞ 24.07(1) MF,4/10
6 1.79(1) rmax,2 2.071(1)

Ms,2 297(1) rmax,1 1.086(1) g(rmax,2) 1.283(1)

Ms,4/10
6 −6.66(3) g(rmax,1) 3.018(1) ω0 16.52(1)

TABLE I. Physical properties of the LJ state point, ρ = 0.8442 and T = 0.722, from an MD simulation

of N = 6912 particles, with an interaction truncation distance of 3.5, and for a production simulation

time of, tsim = 9415. The quantities, ur and ua are the repulsive and attractive components of the

potential energy per particle, u; Ptot is the total pressure; Z is the compressibility factor; Gc
∞ is the

interaction part of the infinite frequency shear rigidity modulus, G∞; MX,2 and MX,4 are the 2nd

and fourth frequency moments,85 of the X−property autocorrelation function, where v and F are the

velocity and force on a molecule, and s denotes the shear stress; ω0 is the Einstein frequency,1; < F 2 >

and < F 4 > are the second and fourth moments of the particle force. g(rmax,1) is the value of the

RDF at its first peak and at r = rmax,1; g(rmin,1) is the value of the RDF at its first minimum at

r = rmin,1. The numbers in brackets are the statistical uncertainty in the last digit.
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Figure Captions

Figure 1: Upper Frame (a), Comparison between the normalized time correlation function,

Cs(t), from MD and its fitted forms, both gaussian (shifted upwards by 1) and sech. The brown

curves are the fit to the gaussian expression given in Eq. (3), and the sech function of Eq. (4).

The contributions of the three terms in each expression to the total fit are also shown on the

figure. For the gaussian function, A = 0.66135, B = 0.35820, τ1 = 0.0563258, τ2 = 0.261270

and τ3 = 0.260116. and for the sech function, A = 0.72637, B = 0.192605, τ1 = 0.0492775,

τ2 = 0.182062 and τ3 = 0.572743. The green filled in squares are the c(t) values defined in

Eq. (13) which was fitted to the MD viscuit data. The red squares are the difference between

the MD and fitted correlation function. The Lennard-Jones (LJ) state point is ρ = 0.8442 and

T = 0.722. The simulation data minus the least squares fit is shown as the red squares near

the baseline. The lower frame (b) is as for frame (a) except the time dependent viscosity, ηs(t)

is plotted.

Figure 2: The real and imaginary parts of the frequency dependent viscosity, η(ω), directly

from MD and from the gaussian and sech fit formulas. The real gaussian formula is given in

Eq. (6) and the real sech expression is in Eq. (7). The imaginary gaussian formula is in Eq. (8)

and the imaginary sech is in Eq. (9). The state point is ρ = 0.8442 and T = 0.722, and other

details are as for Fig. 1. Finite shear rate viscosities are also plotted taken from NEMD data

using the SLLOD method, where ω is replaced by 2πγ̇, and γ̇ is the shear rate.6

Figure 3: Two dimensional conditional PDF of initial stress at time zero σ(0) and at time t,

σ(t), for four times, t = {0.02, 0.05, 0.1, 2.5}. The contours shown are for the same stress values

from the fit function given in Eq. (13). The value of c(t) is shown in each frame. Frames

(a)-(d) are in order of decreasing c. The range of shear stress is between −0.21 and 0.16 on
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both axes. The 2D stress plots can be normalized by the standard deviation, in which case the

range is, −2.96 to 2.25. The Lennard-Jones (LJ) state point, ρ = 0.8442 and T = 0.722 was

used.

Figure 4: Viscuit analysis with in frame (a) the probability density function of the viscuits

as defined in Eq. (15) after a time of 600 time steps (solid blue line). The red curve is the

distribution of an autocorrelation of two independent gaussian number distributions, while the

dashed black curve was generated from correlated gaussian numbers using Eqs. (4) for c(t) and

(14). In frame (b) the ratio, R(ηu), defined in Eq. (17), is plotted on a lin-log scale. On the

figure are given the following key numerical values, (i) the time t in units of number of time

steps (each of 0.005), (ii) the corresponding time dependent viscosity, η(t), and (iii) the A pa-

rameter defined in Eq. (17). The Lennard-Jones (LJ) state point was ρ = 0.8442 and T = 0.722.

Figure 5:(a) The A(t) parameter, where t is the duration of the viscuit, in the exponential

given in Eq. (17), and a least squares fit curve going through the data points.

Figure 5:(b) A 2D probability distribution map of the trace of the time dependent viscuits

taken up to 600 time steps on the abscissa against the initial time origin shear stresses. The

accumulated probability density function of these traces was obtained from over 15 million

starting trajectories and is shown in the background. Some individual viscuit trajectories are

also shown superimposed on the map (Multimedia view).

Figure 6: Upper Frame (a): The PDF of the initial shear stress σ0 (blue symbols) and that

of the visclet (red symbols) with M = 120. They are represented very well by, respectively, a

gaussian with the analytic form for P (σ0) given in Eq. (11) and x2P (x), see Eq. (18), respec-
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tively, fitted to the MD data. The ∗ symbols are the initial stress dependent relaxation times

or τs,0. Lower Frame (b) As for frame (a) except on a lin-log scale.

Figure 7: The Cs,0(t) defined in Eq. (19) for four bands of initial stress, σ0. Key: σ0/S(σ0) in

the range 0− 1, 1− 2, 2− 3 and 3− 4, which are also indicated on the figure. The state points

are from bottom to top T, ρ: (a) 0.722, 0.8442, (b) 0.500, 0.8442, and (c) 0.500, 0.9211. The

latter two states are in the metastable liquid region of the phase diagram. The pressures are

close to zero for (a) (0.148) and (c) (−0.025 ) but slightly negative for (b) (−1.363). The green

curves are the GK total stress relaxation and the lower magenta curves are fits for t > 0.4 to

the exponential form, Cs(t) = A exp(−Bt), where A,B are for the curve sets from bottom to

top are: 0.146, 2.31, 0.184, 1.45 and 0.200, 0.569 for the three state points, respectively.

Figure 8: Upper Frame (a): The VACF and least squares fit using Eq. (25) fit for the state

point ρ = 0.8442 and T = 0.722, with N = 4000. Key: The constants for Eq. (25) are:

τ1 = 0.1071, τ2 = 0.2250, τ3 = 0.1240, τ4 = 0.09222, A = 18.50, B = −88.85, and C = 1217.7.

The lower frame (b): The time dependent diffusion coefficient, D(t) directly from the MD

simulation and from the integral of the fitted VACF of Eq. (25) leading to Eq. (26).

Figure 9: The mean square displacements, ∆r2(t) calculated directly and from the velocity

autocorrelation function using Eq. (23). The upper brown line is the long time limiting formula

A + 6Dt. The difference between A + 6Dt and the actual MSD is the red curve, and the fit

to this using the expression in Eq. (28) is the black line. The constants are A = 0.021813,

B = 0.025424, τ1 = 0.134862, D = 0.033234 and δt = −0.05. The magenta curve is the short

time ballistic region of the analytic form, ∆r2(t) = 3kBTt
2/m. The state point is ρ = 0.8442

and T = 0.722.
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Figure 10: Upper Frame (a): The real part of the cosine Fourier transform of the VACF D′(ω).

The 4 components and total ‘T ’ from Eq. (30) are shown as solid lines. The corresponding

numerical integration of the four components of the analytic VACF defined in Eq. (25) are also

shown as symbols. The lower Frame (b) is as for the upper frame, except the sine or imaginary

part of the Fourier transform of the VACF, i .e., D′′(ω) from Eq. (31), is plotted.

Figure 11: D′(ω) and D∗(ω) obtained directly from the MD simulation data by numerical

integration. A power law decay, denoted on the figure by ‘P.L.’ of the form, Ap/ω
p, where

Ap = 1.57× 106 and p = 5.564 are least square fits to the data in the range, 55 > ω > 35. The

formula,76 D′ = Aa(τaω)
q exp(−(τaω)

q) where τa = 0.822, p = 0.632 and q = −0.0752 from

the given formulas and Aa = 21.50 by fitting to the simulation data in the frequency range,

55 > ω > 30 which is denoted by ‘P.E.’ on the figure. ‘Fit anal.’ and ‘Fit num.’ are numerical

transforms of the fitted Cv(t) shown in Eq. (25). Note the log-log scale. The state point is

ρ = 0.8442, and T = 0.722.

Figure 12: The Cv,i(t) defined in Eq. (34) for four bands of initial velocity, v0. Key: v0/σv in

the range 0− 1, 1− 2, 2− 3 and 3− 4, which are also indicated on the figure. The state point

is ρ = 0.8442, and T = 0.5 and T = 0.722.

Figure 13: In the upper frame (a) is shown, W (r, t), defined in Eq. (36) for three times (given

on the figure) computed directly in the MD simulations. The analytic solution of the self van

Hove function in Eq. (35) using Eq. (28) for the mean square displacement is also shown as a

continuous red curve. The lower frame (b) gives the non-gaussian function, α(t) and the mean

square displacement.
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