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Abstract 

 

Specialised brain regions have been identified that selectively process faces 

(Kanwisher, McDermott, & Chun, 1997) and voices (Belin, Zatorre, Lafaille, Ahad, & 

Pike, 2000). However, little is known regarding how information from the face and 

voice is integrated to represent person identity. According to two distinct models, 

person identity representations could exist in multimodal brain regions that process 

both faces and voices, or in face-selective and voice-selective regions through 

functional connections (Campanella & Belin, 2007). This thesis tested these 

predictions using functional magnetic resonance imaging and representational 

similarity analysis to directly compare representations of familiar faces and voices in 

different brain regions. A representation of person identity was found in the 

multimodal right posterior superior temporal sulcus, providing support for the notion 

that face and voice information is integrated in multimodal regions.   

 

This thesis also showed evidence of representations of face identity in face-selective 

regions and voice identity in voice-selective regions that could both ‘tell apart’ 

different identities and ‘tell together’ different, naturalistically varying tokens of each 

person’s face and voice (Burton, 2013). To investigate the information processed in 

these regions, brain representations of faces and voices were compared with 

multiple models of face and voice information. Face-selective regions and voice-

selective regions were found to process information regarding the perceived and 

objective visual/auditory similarity between faces and voices, respectively. These 

findings provide novel insights into the computations of these regions. 

 

Lastly, this thesis investigated the relationship between information that is perceived 

from the face and the voice, and how this relationship compares between familiar 

and unfamiliar people. Information on social traits and perceived similarity was 

consistent across faces and voices, and more so for familiar compared with 

unfamiliar people. This finding suggests that having prior semantic knowledge about 

a person leads to similar judgements of their face and voice. Moreover, it suggests 

that some concordant information may be available even in the faces and voices of 

unfamiliar people. 
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Chapter 1 

Introduction 
 

It is possible to recognise a familiar person either from looking at their face or 

listening to their voice. This ability is strikingly robust to distortions in the visual 

appearance of the face and the sound of the voice, such as the blurring of face 

photographs (Hole, George, Eaves, & Rasek, 2002), and the reversing of voice 

recordings (Lavan, Scott, & McGettigan, 2016). Importantly, irrespective of whether a 

person is being recognised from a photograph of their face, or from the sound of 

their voice through the phone, these experiences grant access to the same 

knowledge about the specific person: who they are, how we know them, our 

relationship, etc.  

 

In addition to their role in person identification, faces and voices play a crucial role in 

communication and social interactions. They convey a wealth of information about a 

person, such as how old they are, what gender they are, and where they are from 

(Yovel & Belin, 2013). As well as physical characteristics, faces and voices are also 

used to make inferences about socially relevant qualities of a person, such as 

trustworthiness, attractiveness, and dominance (McAleer, Todorov, & Belin, 2014; 

Oosterhof & Todorov, 2008).  

 

The first main aim of this thesis is to determine how the brain integrates information 

from the faces and voices of familiar people to represent person identity. A second 

main aim is to determine where in the brain the different types of information 

conveyed by faces and voices are processed. The third and final aim is to determine 

how information extracted from a person’s face relates to the information extracted 

from their voice. To address these questions, this thesis will use representational 

similarity analysis (RSA) (Kriegeskorte, Mur, Ruff, et al., 2008; Kriegeskorte, Mur, & 

Bandettini, 2008) to compare brain activity between faces and voices, and to 

compare brain representations of faces and voices with models of different types of 

face and voice information. The novel application of this method will inform the 

understanding of the mechanisms through which face and voice information is 
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integrated in the brain, and of the informational content of face and voice 

representations. 

 

1.1 Representations of face and voice identity in the brain 

 
Over the past twenty years, brain regions that selectively respond to, and process 

information from either faces (Kanwisher et al., 1997) or voices (Belin et al., 2000) 

have been identified with the use of functional magnetic resonance imaging (fMRI). 

Face-selective and voice-selective regions are typically defined using functional 

localisers that contrast brain activation to faces or voices with activation in response 

to control visual (such as objects, scenes, scrambled faces or objects, or other body 

parts) or auditory stimuli (such as natural or artificial sounds from the environment, 

animal sounds, or musical instruments), respectively. In this thesis the terms 'face-

selective' and 'voice-selective' will be used to refer exclusively to regions defined 

using functional localisers. For regions defined based on contrasting responses to 

faces or voices with baseline activity, as opposed to a control condition, the terms 

'face-responsive' and 'voice-responsive' will be used instead. 

 

The face-selective regions that are most consistently identified across different 

individuals and different studies are the fusiform face area (FFA) in the fusiform 

gyrus (Kanwisher et al., 1997), the occipital face area (OFA) in the inferior occipital 

gyrus (Gauthier et al., 2000; Haxby et al., 1999), and the posterior part of the 

superior temporal sulcus (pSTS) (Hoffman & Haxby, 2000; Kanwisher et al., 1997). 

Additional regions, which are less consistently identified, include the anterior inferior 

temporal cortex (aIT) or the broader anterior temporal lobe (ATL) (Rajimehr, Young, 

& Tootell, 2009), the inferior frontal gyrus (Axelrod & Yovel, 2013; Chan & Downing, 

2011; Fox, Iaria, & Barton, 2009), the amygdala (Fox et al., 2009), and regions of the 

mid and anterior STS (mSTS and aSTS) (Fox et al., 2009; Pitcher, Dilks, Saxe, 

Triantafyllou, & Kanwisher, 2011). While face-selective regions have been detected 

in both hemispheres, responses tend to be more consistent in the right hemisphere 

(Duchaine & Yovel, 2015). 
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The main voice-selective brain regions are the “temporal voice areas” (TVAs), which 

are located in the bilateral STS and superior temporal gyrus (STG) (Belin et al., 

2000; Pernet et al., 2015; Von Kriegstein & Giraud, 2004). In a large-scale study 

combining data from 218 participants, Pernet et al. (2015) showed three distinct 

patches in the bilateral posterior, middle, and anterior TVAs. The same study found 

weak, albeit significant, voice-selective responses in the bilateral inferior prefrontal 

cortex, amygdala, and thalamus, although these responses were not consistently 

discernible in the brains of individual participants. 

 

The use of fMRI has been crucial in identifying regions that selectively respond to 

faces and voices. However, the identification of brain regions that process face and 

voice identity requires the investigation of brain activity at the level of individual faces 

or voices, rather than at the level of stimulus categories. Standard univariate fMRI 

approaches, which typically compare activation between different experimental 

conditions after averaging activation across multiple stimuli, do not show differential 

responses to individually presented faces (Kriegeskorte, Formisano, Sorger, & 

Goebel, 2007) or voices (Formisano, De Martino, Bonte, & Goebel, 2008). In order to 

overcome these issues, representations of face and voice identity have been 

investigated using fMRI-adaptation (fMR-A) (Grill-Spector & Malach, 2001) and 

multivoxel pattern analysis (MVPA) (Haxby et al., 2001; Norman, Polyn, Detre, & 

Haxby, 2006). 

 

1.1.1 fMRI-adaptation (fMR-A) studies 

fMR-A (Grill-Spector & Malach, 2001) has been used to investigate representations 

of face and voice identity in face-responsive and voice-responsive regions, 

respectively. fMR-A is based on the observation that BOLD (blood-oxygen-level 

dependent) activity in a brain region that processes a certain type of stimulus 

decreases with repeated presentations of that stimulus (Grill-Spector & Malach, 

2001). It is assumed that decreased BOLD activity reflects reduced firing of the 

underlying neurons (Grill-Spector & Malach, 2001). The nature of the representations 

in a given brain region can be tested by modifying properties of the presented 

stimulus (e.g. the viewpoint of a face) and comparing the magnitude of the brain 

response to this modification with the magnitude of the response to repeated 
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presentations of an identical stimulus (Grill-Spector & Malach, 2001). Increases in 

activation in response to the modification of a stimulus property signify release from 

adaptation, and indicate that representations in that region do not generalise to the 

particular stimulus modification (e.g. the same face presented from different 

viewpoints is not categorised as the same face) (Grill-Spector & Malach, 2001). In 

contrast, if activation remains suppressed after modifying a particular stimulus 

property, it is assumed that representations in that region are invariant to changes in 

that property (Grill-Spector & Malach, 2001). Grill-Spector & Malach (2001) proposed 

that adaptation indicates the presence of groups of neurons that are homogenous in 

terms of their representational properties, whereas release from adaptation indicates 

that neurons within the same group represent different stimulus properties.  

 

Adaptation studies investigating face and voice identity typically compare activation 

in response to the repeated presentation of face images/voice recordings featuring 

the same identity with activation in response to the repeated presentation of face 

images/voice recordings featuring different identities. The expectation is that brain 

regions that process face/voice identity will show a reduced response to repeated 

presentations of same-identity faces/voices compared with different-identity 

faces/voices.  Adaptation to the repeated presentations of the same face images, 

compared with different face images, has been found in face-selective regions, 

namely the FFA (Andrews & Ewbank, 2004; Ewbank & Andrews, 2008; Gauthier et 

al., 2000; Mur, Ruff, Bodurka, Bandettini, & Kriegeskorte, 2010; Pourtois, Schwartz, 

Seigher, Lazeyras, Vuilleumer, 2005; Rotshtein, Henson, Treves, Driver, & Dolan, 

2005; Verosky, Todorov, & Turk-Browne, 2013; Winston, Henson, & Dolan, 2004), 

the OFA (Gauthier et al., 2000; Ewbank & Andrews, 2008; Mur et al., 2010), and the 

pSTS (Winston et al., 2004). However, adaptation to the repreated presentation of 

the same face image may be due to adaptation to low-level properties of an image, 

rather than face identity per se. Thus, studies have also investigated adaptation in 

response to different images of the face of the same identity, and have shown 

reduced responses in the FFA for same-identity faces with different emotional 

expressions (Winston et al., 2004), for physically-different morphed faces that were 

perceived as having the same identity (Rotshtein et al., 2005), for same-identity 

faces manipulated to have different degrees of distinctiveness (Loffler, Yourganov, 



 
 
 
 
 

15 

Wilkinson, & Wilson, 2005), for same-identity faces presented from different 

viewpoints (Ewbank & Andrews, 2008; Mur et al., 2010; Verosky et al., 2013; Xu & 

Biederman, 2010), and for different images of the face of the same identity (Davies-

Thompson, Newling, & Andrews, 2013). Adaptation in the OFA has been found for 

same-identity images presented from different viewpoints (Mur et al., 2010; Xu & 

Biederman, 2010) and with different emotional expressions (Xu & Biederman, 2010), 

and for different images of the face of the same identity (Davies-Thompson et al., 

2013). Moroever, adaptation to different images of the face of the same identity has 

been found in the ATL (Yang, Susilo, & Duchaine, 2016).  

 

For voices, a handful of studies have investigated adaptation to different voice 

recordings of the same identity, compared with voice recordings from different 

identities. These studies have shown adaptation for same-identity voices speaking 

different syllables in the aSTS (Belin & Zatorre, 2003) and for physically-different 

morphed voices that are perceived as the same identity in the voice-selective 

bilateral mSTS, pSTS and anterior temporal pole (Andics et al., 2010) and in the 

right inferior frontal cortex and in the left cingulate gyrus (Latinus, Crabbe, & Belin, 

2011). However, it should be noted that these studies did not restrict their analysis to 

regions showing voice-selective responses.  

 

In sum, fMR-A studies have revealed brain regions that represent face identities with 

invariance to different images of the same face, and voice identities with invariance 

to different recordings of the same voice. However, a study by Mur et al. (2010) has 

brought into question the extent to which these invariant representations capture 

identity processing. Specifically, Mur et al. (2010) found evidence of adaptation to 

same-identity faces that varied in viewpoint or in degree of illumination in the early 

visual cortex. Given the known properties of the early visual cortex, which involve the 

processing of low-level stimulus properties (Engel, Glover, & Wandell, 1997), it is 

unlikely that this region would contain viewpoint-invariant face representations, let 

alone face identity representations. Mur et al. (2010) speculated that the adaptation 

effects in the early visual cortex might have been due to the carryover of activation 

from a connected brain region. Specifically, a higher-order brain region that shows 

adaptation to different images of the same face due to true representations of 
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identity may activate connected brain regions resulting in adaptation effects in these 

regions (Mur et al., 2010). As a consequence, regions that are not typically involved 

in identity processing may show false evidence of view-invariant face identity 

representations, and therefore fMR-A may not be an ideal method for identifying 

representations of face identity (Mur et al., 2010).  

 

Adaptation effects have also been shown to be confounded with attention when the 

adapting stimuli are naturally less attention-provoking than the test stimuli, and 

therefore elicit less activation (Huk, Ress, & Heeger, 2001). Thus, it is possible that 

conditions showing different face/voice identities may engage attention to a different 

extent than conditions showing same-identity faces/voices, and that adaptation to 

same-identity faces/voices does not reflect identity processing per se (Mur et al., 

2010). Conversely, adaptation has also been shown for stimuli that are explicitly 

attended to, compared to stimuli that are not attended to, suggesting that in some 

cases attention to the adaptor reduces activation (Eger, 2004; Henson & 

Mouchlianitis, 2007). A further limitation concerning the interpretation of findings from 

fMR-A studies is that, due to the presence of multiple neurons in each voxel, it is 

possible that some of these neurons show reduced responses due to adaptation 

while others show enhanced responses due to other types of stimulus processing 

(Krekelberg, Boynton, & van Wezel, 2006). In this case, adaptation effects may be 

cancelled out, and as a consequence the representational properties of the brain 

regions in question may be miss-interpreted (Krekelberg et al., 2006). Therefore, 

some regions that contain invariant representations of face or voice identity may not 

be identifiable using fMR-A. In conclusion, the interpretations of findings of fMR-A 

studies on face and voice identity representations are confounded by several 

limitations and should be regarded with caution. 

 

1.1.2 Multivoxel pattern analysis (MVPA) studies 

MVPA (Haxby et al., 2001; Norman et al., 2006) presents an alternative method to 

fMR-A for investigating representations of face and voice identity, and there is 

evidence that it is more sensitive to detecting subtle variations in stimulus properties 

compared to fMR-A (Sapountzis, Schluppeck, Bowtell, & Peirce, 2010). In contrast to 

univariate fMRI, which spatially averages across voxels that show a significant 
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change in activation, MVPA is a multivariate method that is based on the spatial 

patterns of activation across all voxels that are contained within a brain region of 

interest (Norman et al., 2006). MVPA is based on the notion that individual voxels 

within a brain region that represents a certain stimulus category (e.g. objects) will 

activate to different extents in response to stimuli sub-categories (e.g. chairs and 

shoes), forming a unique pattern of activation across the brain region in response to 

each sub-category (Haxby et al., 2001). Thus, MVPA investigates the discriminability 

of multiple sub-categories of stimuli based on their elicited response patterns. 

Moreover, MVPA can be used to examine the discriminability of stimulus properties, 

such as face identity (e.g. Nestor, Plaut, & Behrmann, 2011), or mental states, such 

attended and non-attended stimuli (Haynes & Rees, 2005).  

 

The following review will focus on studies that have used MVPA to test whether 

individual faces or voices elicit distinct multivoxel activity patterns in face-responsive 

and voice-responsive brain regions, respectively. These studies typically investigate 

the discriminability of different face identities or voice identities based on their 

response patterns in brain regions of interest. The majority of studies use linear 

pattern classifiers or discriminants that are trained to discriminate between different 

identities based on a subset of the data, and then tested on their discrimination 

accuracy on the remaining data. If a brain region discriminates between different 

face identities, each identity should elicit unique response patterns that are replicable 

across different presentations of that identity, and that distinguish that particular 

identity from all other identities. Some studies have also used similarity based 

MVPA, such as representational similarity analysis (RSA) (Kriegeskorte, Mur, & 

Bandettini, 2008), which commonly involves comparing the similarity between the 

response patterns to individual face identities between same-identity faces, and 

between different-identity faces (Verosky et al., 2013). In this approach, a brain 

region that contains identity representations is expected to show higher correlations 

between same-identity faces than between different-identity faces.  

 

Face identity discrimination 

Two studies investigated the discrimination of individual faces in face-selective 

regions by comparing response patterns to single images of the face of different 
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identities (Goesaert & Op de Beeck, 2013; Kriegeskorte et al., 2007). In one of the 

first studies to use MVPA to investigate representations of individual faces, 

Kriegeskorte et al. (2007) presented participants with two grey-scale photographs of 

a male and a female face, which had been matched in terms of size, viewpoint, and 

lighting. After localising the FFA and aIT in each participant’s brain, the authors 

created a discriminant between the two faces in each region based on one subset of 

the data, and then applied this discriminant to the remaining data. They found that 

the two faces could only be discriminated in the right aIT. The interpretation of this 

finding is confounded by the fact that the two faces were of different genders, and 

thus the representation in aIT could be reflecting the differences related to face 

gender. Goesaert & Op de Beeck (2013) addressed this issue by presenting faces of 

the same gender. In their study, the authors presented eight male artificially 

generated faces, and tested the classification of pairs of these faces in the FFA, 

OFA, and aIT. They found that all three regions were able to discriminate between 

the response patterns to different faces. The results of these two studies suggest 

that the FFA, OFA, and aIT can distinguish between different faces based on their 

individual response patterns elicited in these regions.   

 

While the findings of Kriegeskorte et al. (2007) and Goesaert & Op de Beeck (2013) 

provide evidence that face-selective regions can distinguish between different face 

images, these studies were not able to show whether these regions engage in face 

identity or face image discrimination. Moreover, both studies presented unfamiliar 

faces. Behavioural studies have shown that while people can discriminate between 

different face images regardless of whether the faces are familiar or unfamiliar, the 

recognition of face identity is contingent of the ability to categorise different images 

of the face of the same person as belonging to the same identity (Burton, 2013; 

Jenkins, White, Van Montfort, & Burton, 2011). This ability to ‘tell together’ different 

images of the same face has been shown to be relatively effortless for familiar faces 

but highly challenging for unfamiliar faces (Jenkins et al., 2011). In a pioneering 

study, Jenkins et al. (2011) presented mutliple naturalistically varying images of the 

faces of two identities to a group of participants who were familiar with the identities, 

and to a group of participants who were unfamiliar with the identities, and asked 

them to sort the images into piles based on identity. Jenkins et al. (2011)  found that 
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while participants who were familiar with the identities were able to correctly sort the 

images into two piles for the two identities, participants who were unfamiliar with the 

identities sorted the images into between 3 and 16 piles. This is a striking example of 

the very limited ability to ‘tell together’ different images of the face of an unfamiliar 

person. Therefore, a distinction must be made between face image discrimination 

and face identity discrimination, whereby both image and identity discrimination 

require the ability to ‘tell people apart’, but identity discrimination additionally requires 

the ability to ‘tell people together’ (Anzellotti & Caramazza, 2014; Jenkins et al., 

2011; Burton, 2013). The studies by Kriegeskorte et al. (2007) and Goesaert & Op 

de Beeck (2013) only presented one unfamiliar face image per identity, and were 

thus not able to test the ability of face-selective regions to ‘tell people together’. 

Thus, these two studies provide evidence of face image discrimination, rather than 

identity discrimination per se. 

 

In this thesis, I will argue that to test whether brain regions that discriminate between 

different faces contain representations of identity, as opposed to image-based 

representations, it is necessary to meet two criteria. The first criterion is that it is 

necessary to test whether representations in these brain regions generalise across 

multiple images of the face of each identity. The second criterion is that participants 

need to also have an adequate level of familiarity with the faces that will allow them 

to perceive two different images of the face of the same person as belonging to that 

person. A number of MVPA studies have addressed the first criterion by investigating 

the generalisation of face identity representations across different images of the face 

depicting different viewpoints (Anzellotti, Fairhall, & Caramazza, 2014; Collins, Koski, 

& Olson, 2016; Guntupalli, Wheeler, & Gobbini, 2017; Natu et al., 2010; Verosky et 

al., 2013; Visconti Di Oleggio Castello, Halchenko, Guntupalli, Gors, & Gobbini, 

2017), different emotional expressions (Nestor et al., 2011), different parts of the 

face (Anzellotti & Caramazza, 2016), or different photographs taken on separate 

occasions (Axelrod & Yovel, 2015). These studies differ in regard to three main 

points. First, they differ in regard to the extent to which they fulfil the second criterion. 

Specifically, with the exception of Axelrod & Yovel (2015) and Visconti Di Oleggio 

Castello et al. (2017), who presented familiar faces, they experimentally familiarised 

participants with the presented faces to different extents, ranging from a brief 
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presentation of the faces accompanied by names (Natu et al., 2010), to training 

participants to associate faces with biographical information (Collins et al., 2016; 

Verosky et al., 2013). It has been shown that the brain responds differently to familiar 

faces and newly learned faces (Leveroni et al., 2000), and therefore representations 

of face identity may differ between different levels of familiarity. Second, these 

studies differ in regard to the degree of generalisation of the observed face identity 

representations to novel images of that face. Studies that have used different images 

of a face identity for the training and the testing of their classifier provide stronger 

evidence for the generalisation of face identity representations to novel images 

(Anzellotti & Caramazza, 2016; Anzellotti et al., 2014; Guntupalli et al., 2017), 

compared with studies that train and test their classifier on the same images. Third, 

an important difference between these studies is the degree of natural variability 

between the different stimuli. This varies from highly-controlled artificially-generated 

stimuli with low variability (e.g. Anzellotti et al., 2014), to natural photographs of 

faces with higher variability (Guntupalli et al., 2017).  

 

The issue of the natural variability of face stimuli used in studies investigating face 

identity representations in the brain is related to the distinction between the 

processing of familiar and unfamiliar faces, whereby ‘telling people apart’ is possible 

regardless of familiarity, but ‘telling people together’ is much easier for familiar faces 

(Burton, 2013; Jenkins et al., 2011). This is particularly the case for different images 

of the face of the same person that show a naturalistic level of within-person 

variability, in that they are taken using different cameras on separate days, and are 

unconstrained in terms of lighting, pose, and expression (Burton, 2013; Jenkins et 

al., 2011). Studies have shown that familiar faces are markedly easier to identify 

than unfamiliar faces across changes in viewpoint (Bruce, 1982; Hill & Bruce, 1996), 

facial expression (Bruce, 1982), and lighting (Hill & Bruce, 1996), and from poor 

quality images or video footage (Bruce, Henderson, Newman, & Burton, 2001; 

Burton, Wilson, Cowan, & Bruce, 1999; Henderson, Bruce, & Burton, 2001). 

Moreover, familiar faces can be recognised despite image distortions, such as 

stretching and blurring (Hole et al., 2002). Therefore, the recognition of face identity 

involves abstracting across different, naturalistically variable images of the same 

familiar person (Burton, 2013; Jenkins et al., 2011). Consequently, representations 
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of face identity in the brain should also be able to ‘tell together’ multiple, 

naturalistically variable images of a person’s face, while at the same time ‘telling 

them apart’ from other people (Anzellotti & Caramazza, 2014). 

 

In one of the first studies to investigate the generalisation of face identity 

representations across different viewpoints of the face, Natu et al. (2010) presented 

participants with four artificially-generated male face identities, and included four 

images of the face of each identity, each of which showed the face from a different 

viewpoint. The authors only briefly familiarised participants with each identity by 

presenting each face image for five seconds alongside a given name for the 

respective identity, prior to the scanning session. They localised a visually-

responsive region in the ventral temporal cortex based on activation to both faces 

and control stimuli in a functional localiser. They then tested whether a classifier, 

which was trained to distinguish pairs of identities based on all four viewpoints of 

each identity, could discriminate between identities in an independent subset of the 

data. They showed that out of the six face identity pairs, four could be accurately 

discriminated in the ventral temporal cortex. However, when the authors repeated 

this analysis using a face-selective mask of the ventral temporal cortex, they failed to 

find significant discrimination of any identity pairs. As discussed previously, adequate 

levels of familiarity with a face identity are necessary to perceptually recognise that 

different images of a person’s face are the same person. Given the very short 

familiarisation session in this study, it is likely that participants were not familiar 

enough with the identities to form image-invariant representations of their faces. 

 

(Nestor et al., 2011) tested the generalisation of face identity representations across 

different facial expressions, after training participants to categorise unfamiliar face 

photographs based on identity until they reached a near-perfect level of accuracy 

(>98%). They included four male face identities, each of which was represented by 

four different colour photographs of their face displaying different facial expressions 

(neutral, happiness, sadness, disgust). They used spatiotemporal information-based 

brain mapping with a whole-brain searchlight analysis as well as a region of interest 

(ROI) analysis in the FFA. A classifier was trained to discriminate between the 

spatiotemporal patterns in response to pairs of face identities, after averaging across 
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the different images for each identity, and was tested using a leave-one-run-out 

approach. They found significant discrimination in the bilateral anterior fusiform 

gyrus, the right anterior middle temporal gyrus, the left posterior fusiform gyrus, and 

in the bilateral FFA. By ensuring that participants had learned the identity of each 

stimulus prior to the scanning session, Nestor et al. (2011) likely increased their 

chance of detecting representations of face identity. However, the acquired 

familiarity with the face identities was entirely visual, and did not include semantic 

knowledge that is typically associated with familiar people. Moroever, because the 

classifier was trained and tested on the same face images, the authors did not 

demonstrate that the observed representations generalise to novel images of the 

same identities. Finally, although the stimuli were not artificially-generated, the 

photographs of each identity were taken with the same camera in the same photo 

session, and therefore this study did not show face identity representations that are 

robust to natural within-person variability. 

 

Two studies tested the generalisation of face identity representations to different 

viewpoints after training participants to associate unfamiliar face photographs with 

biographical information (Collins et al., 2016; Verosky et al., 2013). Verosky et al. 

(2013) trained participants to associate 16 unfamiliar female face identities, each of 

whom was represented by three colour photographs of her face taken from different 

viewpoints, with different names. Crucially, half of these identities were also 

associated with short biographical descriptions that displayed either a positive or a 

negative tone. Participants were able to name the stimuli with a high level of 

accuracy (>95%) before the scanning session. RSA was used to compare 

correlations between multivoxel response patterns to the same identities with 

correlations between response patterns to different identities across different 

experimental runs (after averaging across the three images for each identity) in the 

face-selective fusiform gyrus (including the FFA) and ATL. They found that same-

identity correlations were higher than different-identity correlations in the bilateral 

fusiform gyrus and in the right ATL. In addition, correlations between identities that 

had been associated with a similar amount of semantic information (name only, or 

name plus biographical description) were higher than the correlations between 

identities associated with different amounts of semantic information only in the 
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bilateral fusiform gyrus, suggesting that face identity representations in this region 

are sensitive to the level of semantic information associated with an identity. 

 

Also investigating the association of unfamiliar faces with biographical information, 

Collins et al. (2016) trained participants to associate eight grey-scale, front-facing 

photographs of unfamiliar male faces with names and four different occupations, 

which were in turn associated with two different locations. Training took place over 

several sessions, and successful identity learning was tested using recognition 

matching and free recall tasks. In the scanner, the authors presented participants 

with four novel tokens for each of the eight identities, each showing a different 

viewpoint of the face, and tested for classification of identity in the OFA, FFA, and 

ATL, after averaging across the four different viewpoints for each face. They found 

that only the right ATL was able to discriminate between the different identities.  

 

To summarise, Collins et al. (2016) and Verosky et al. (2013) showed a consistent 

involvement of the ATL in the discrimination of face identities that had been 

associated with biographical information, despite using different multivariate analysis 

methods. However, although training participants to associate faces with 

biographical information may strengthen identity representations and presents a 

significant advancement, this level of ‘learned’ familiarity falls short of the level of 

familiarity with a face of a previously known person, whom one has been exposed to 

on multiple occasions over a period of time and instantly recognises even from highly 

variable pictures (Jenkins et al., 2011). Furthermore, Collins et al. (2016) and 

Verosky et al. (2013) did not demonstrate that the observed representations 

generalise to novel images of the same identities, and that they are robust to natural 

within-person variability. 

 

Two studies have investigated face identity representations using images of familiar 

faces (Axelrod & Yovel, 2015; Visconti Di Oleggio Castello et al., 2017). Visconti Di 

Oleggio Castello et al. (2017) presented faces of four people that were personally 

familiar to each participant, with each person represented by three colour 

photographs of their face shown from a different viewpoint and taken in the same 

photo session. They used a searchlight approach and a pattern classifier to test the 
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discrimination of the four identities (using regressors that included all three images of 

each person) across the whole brain. This revealed several regions showing 

significant discrimination across the brain, including the fusiform gyrus, the inferior 

frontal gyrus, the temporo-parietal junction, and the middle temporal gyrus/STS. 

Although some of these regions overlap with known face-selective regions, this study 

does not provide evidence of face identity representations in face-selective regions 

per se.  

 

Axelrod & Yovel (2015) also presented photographs of familiar identities, and tested 

identity discrimination in functionally defined face-selective regions. Specifically, they 

presented the faces of two famous people who were familiar to their participants. 

Each identity was represented by eight grey-scale images of their face that were 

largely front facing, had neutral facial expressions, were taken on separate 

occasions, and were obtained though Internet searches. The images of the two 

identities were equated in terms of luminance and colour, and a white background 

was added to all images. Classification with a leave-one-session-out procedure was 

performed after averaging the response to all images of each identity. Significant 

identity classification was found only in the right FFA, and not in other face-selective 

regions, including the ATL and pSTS. Importantly, Axelrod & Yovel (2015) replicated 

this finding in a second experiment, in which they used images of two different 

famous people.  

 

The studies by Visconti Di Oleggio Castello et al. (2017), and Axelrod & Yovel  

(2015) present significant advancements in that they used stimuli that were familiar 

to the participants. Moroever, Axelrod & Yovel  (2015) used completely different 

images of the face of each identity that were taken on separate occasions, most 

likely using different cameras, introducing a degree of within-person variability. 

However, because the images were selected to have neutral facial expressions, 

were converted to grey-scale, and equated in terms of luminance and colour, they 

cannot be considered naturalistically varying. Lastly, neither of the two studies tested 

whether face identity representations generalise to novel tokens of the same face. 

All the studies that have been reviewed so far have trained and tested their chosen 

pattern discrimination method using different presentations of the same face images. 
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Findings from these studies show brain regions that can generalise well enough 

across different images of the face of the same identity that they respond in a similar 

way to different presentations of the same images. However, they do not provide 

evidence that these brain regions respond in a similar way to the presentation of 

different images of that identity. Therefore, this method cannot exclude the possibility 

that the observed face identity representations are specific to the particular images 

of the face that were presented. Behavioural studies have shown that while training 

participants to recognise faces from multiple viewpoints leads to successful 

identification of the trained images, it does not facilitate the recognition of novel 

tokens of the same face (Liu, Bhuiyan, Ward, & Sui, 2009). Therefore, the 

observation that face identity representations generalise across different 

presentations of the same images of the face of a particular identity does not 

necessarily mean that the representations generalise to novel images of the face of 

that identity. Anzellotti & Caramazza (2014) discussed this same argument and 

concluded that, for face identity representations to be considered image-invariant a 

classifier must be trained and tested on different tokens of a person’s face. So far, 

only a handful of studies have used this approach to investigate representations of 

face identity (Anzellotti & Caramazza, 2016; Anzellotti et al., 2014; Guntupalli et al., 

2017).  

 

Anzellotti et al. (2014) investigated the generalisation of representations of face 

identity to different tokens of the face of the same identity in face-selective regions, a 

V1 (primary visual cortex) control region, and in the hippocampus. The hippocampus 

was included as a ROI due to the previous discovery of neurons in this region that 

respond preferentially to specific people with invariance to different images of the 

same person (Quiroga, Reddy, Kreiman, Koch, & Fried, 2005). In their experiment, 

Anzellotti et al. (2014) presented five male identities, each of whom was represented 

by five artificially-generated images of their face shown from different viewpoints. 

Participants were only briefly familiarised with the stimuli before entering the 

scanner. One of these the identities served as a target face during an identification 

task in the scanner and was not included in the classification analysis. The 

researchers performed two analyses using different methods of classification. First, 

they trained and tested their classifier on different presentations of the same images, 
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and showed above-chance classification in ATL, FFA, OFA, and in V1. Given the 

known properties of V1, which involve the processing of low-level image features, it 

seems unlikely that it would contain face identity representations. These results thus 

demonstrate that training and testing a classifier using the same images probably 

does not tap into representations of face identity per se. In their second analysis, 

Anzelotti et al. (2014) used a more stringent classification approach that involved 

training their classifier on data from four images of each identity and testing it on the 

fifth (untrained) image. They found above-chance classification in ATL, FFA, and 

OFA, but not in V1, in contrast to their previous analysis. Furthermore, they showed 

significant classification in the bilateral hippocampus. Based on these findings, 

Anzellotti et al. (2014) proposed that this method of classification presents a more 

stringent approach to identifying representations of face identity that generalise 

across different images. While this method provides stronger evidence for the 

presence of face identity representations, as opposed to image representations, the 

very brief familiarisation with the stimuli brings into question the nature of these 

representations. It is possible that perceiving images of an artificially-generated face 

presented from different viewpoints as belonging to the same identity is easier 

compared with different pictures of real faces, taken on different days and with 

different cameras, and thus does not require rigorous familiarisation with the 

presented identities. However, a brain region that can ‘tell together’ such images 

may rely on the high visual similarity between the images of the same person, rather 

than on the recognition that these images belong to the same identity. Thus, 

Anzelotti et al. (2014) do not show that face identity representations generalise 

across naturalistically varying images of the face of each identity. 

 

In a related study by the same group using similar methods, Anzellotti & Caramazza 

(2016) investigated representations of face identity that generalise across different 

halves of the face, as opposed to different viewpoints. Specifically, they presented 

participants with three artificially-generated male identities, each of whom was 

represented by one front-facing full-face image of their face, and four images 

showing different halves of their face (top, bottom, left, right). In contrast to the 

previous study, participants were trained to perceptually discriminate between the 

three identities prior to scanning based on the full-face images. As with the previous 
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study, one of these identities served as a target face and was not included in the 

classification analysis. They used recursive feature elimination mapping, a method of 

identifying the voxels across the brain that contribute most to classification, to 

identify ROIs that could discriminate between the four identities based on the full-

face images. Within each ROI, classification was performed by training the classifier 

on three different halves of the faces and testing on the fourth half. They found 

above change classification only in the right ATL, and not in a control V1 region. The 

results of Anzellotti et al. (2014) and Anzellotti & Caramazza (2016), taken together, 

show that the ATL forms representations of face identity that generalise across 

different viewpoints and different halves of the face of the same identity. They also 

suggest that representations in the FFA, OFA, and hippocampus only generalise 

across different viewpoints. However, the involvement of these regions in Anzellotti 

et al. (2014), but not in Anzellotti & Caramazza (2016) may be due to the different 

levels of familiarisation with the stimuli used in the two studies. However, although 

participants in Anzellotti & Caramazza (2016) were familiarised with the faces, 

familiarity was purely visual in nature and was not associated with any semantic 

information. Moreover, similar to Anzellotti et al. (2014), this study used artificially-

generated stimuli with low within-person variability, and therefore does not show that 

identity representations are robust to natural within-person variability. 

 

Guntupalli et al. (2017) investigated representations of face identity that generalise 

across different viewpoints using a similar classification method to Anzellotti & 

Caramazza (2016) and Anzellotti et al. (2014) (i.e. they trained and tested their 

classifiers on different viewpoints of the face), but used natural photographs of faces, 

as opposed to artificially-generated faces. Specifically, they presented participants 

with the faces of four unfamiliar identities (two male, two female), each of whom was 

represented by five different photographs of their face showing different viewpoints, 

taken in the same photo session. Prior to scanning participants were trained to 

recognise the four identities from the different images. They used a combination of 

several methods, including whole-brain searchlight analysis, ROI analysis in face-

selective ROIs, and RSA. For the RSA, the authors created an ‘identity’ model that 

predicted that response patterns to face images of the same identity would be more 

similar to each other than to response patterns to images of different identities. They 
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then identified representations of face identity using the searchlight and ROI 

analyses, and compared these representations with the predictions of the identity 

model. The searchlight analysis revealed a cluster in the inferior frontal cortex, 

whereas the ROI analysis showed above-chance classification in the FFA and ATL, 

in line with the findings of Anzellotti et al. (2014). In addition, RSA showed that the 

face representations in the inferior frontal cortex and the FFA were correlated with 

the identity model, although the representations in the ATL were not. The inferior 

frontal cortex was not originally included as a face-selective ROI, but post-hoc 

analyses showed that it demonstrated face-selectivity. The findings of this study 

highlight the need to test a wider range of face-selective regions, as opposed to 

focusing on the most commonly studied (FFA, OFA, ATL, and pSTS). Furthermore, 

this study shows that RSA can be a useful tool of testing to what extent the observed 

face identity representations capture similarities in the response patterns to different 

images of the same identity. However, Guntupalli et al. (2017) only visually 

familiarised participants with the presented faces, and used face photographs taken 

with the same camera in the same photo session. Therefore, this study does not 

show evidence of representations that generalise across naturalistically variable 

images of the same person. 

 

To summarise, studies investigating representations of face identity that can ‘tell 

people together’ as well as ‘tell people apart’ have indicated the involvement of 

several face-selective regions. Although no region was consistently implicated 

across all studies, the most consistently identified regions across studies using 

different MVPA methods and stimuli were the FFA (Anzellotti et al., 2014; Axelrod & 

Yovel, 2015; Guntupalli et al., 2017; Nestor et al., 2011; Verosky et al., 2013; 

Visconti Di Oleggio Castello et al., 2017) and ATL (Anzellotti & Caramazza, 2016; 

Anzellotti et al., 2014; Collins et al., 2016; Guntupalli et al., 2017; Verosky et al., 

2013). Specifically, these two regions were found to distinguish between different 

identities in studies using familiar (Axelrod & Yovel, 2015; Visconti Di Oleggio 

Castello et al., 2017) or unfamiliar faces (Anzellotti & Caramazza, 2016; Anzellotti et 

al., 2014; Collins et al., 2016; Guntupalli et al., 2017; Nestor et al., 2011; Verosky et 

al., 2013), in studies that trained and tested their classifiers on different 

presentations of the same stimuli (Axelrod & Yovel, 2015; Collins et al., 2016; Nestor 
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et al., 2011; Verosky et al., 2013; Visconti Di Oleggio Castello et al., 2017) or on 

presentations of different stimuli (Anzellotti & Caramazza, 2016; Anzellotti et al., 

2014; Guntupalli et al., 2017), and in studies using artificially-generated stimuli 

(Anzellotti & Caramazza, 2016; Anzellotti et al., 2014) or face photographs (Axelrod 

& Yovel, 2015; Collins et al., 2016; Guntupalli et al., 2017; Nestor et al., 2011; 

Verosky et al., 2013; Visconti Di Oleggio Castello et al., 2017). A consistent and 

important limitation of these studies is the lack of within-person variability across the 

different images of the face of each identity. The most variable stimuli used were 

images of faces that were obtained from the Internet and taken on separate 

occasions (Axelrod & Yovel, 2015), but even these images were constrained to 

neutral facial expressions, and they were converted to grey-scale and equated in 

terms of luminance and colour, thus minimising within-person variability. Therefore, 

none of the studies provided evidence of face identity representations that are robust 

to natural within-person variability in images of the same person. It is an open 

question whether the face identity representations in the brain regions identified in 

these studies would generalise to novel, naturalistically varying images of the face of 

the same identity. Furthermore, due to the low within-person variability of the faces, 

the possibility that the observed representations are based on the visual similarity 

between the different images of a person’s face, as opposed to the recognition of 

these images as being the same person, cannot be ruled out.  

 

Voice identity discrimination 

Only two studies have investigated representations of voice identity, i.e. speaker 

identity, using MVPA (Bonte, Hausfeld, Scharke, Valente, & Formisano, 2014; 

Formisano et al., 2008). Formisano et al. (2008) presented participants with three 

unfamiliar speakers (two male, one female), each of whom was represented by nine 

separate recordings of their voice, in which they were vocalising three different vowel 

sounds (/a/, /i/, and /u/). Participants were familiarised with the stimuli prior to 

scanning and were able to identify the speakers from the different recordings. A 

univariate analysis of responses to voices showed activation in a broad region of the 

STS/STG. A classifier was then trained to discriminate between different speakers 

based on one subset of the data and tested on the remaining subset. This analysis 

revealed above-chance classification of speaker identity in the STS/STG and 
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primarily in the right Heschl’s gyrus/sulcus and along the right STS. To test whether 

speaker identity representations would generalise to different voice recordings, the 

authors conducted a further analysis in which different voice recordings (i.e. different 

vowels) were used to train and test the classifier, and found accurate classification 

within the regions identified in the previous analysis. These findings present 

evidence for representations of speaker identity that generalise across different 

tokens of a speaker’s voice in voice-responsive regions of the STS/STG. This study 

addresses an important limitation of many studies investigating face identity 

representations, which did not test whether identity representations generalised to 

novel tokens of the same person’s face (Axelrod & Yovel, 2015; Collins et al., 2016; 

Nestor et al., 2011; Verosky et al., 2013; Visconti Di Oleggio Castello et al., 2017).  

 

A second study by the same group investigated the influence of task demands on 

representations of voice identity (Bonte et al., 2014). They presented participants 

with three unfamiliar speakers (adult male, child male, child female), each of whom 

was represented by six separate recordings of their voice, in which they were 

vocalising three different vowel sounds (/a/, /i/, and /u/). As with the previous study, 

participants were familiarised with the stimuli prior to scanning. During scanning 

participants performed a delayed-match-to-sample task based on either voice 

identity or vowel type. A functional localiser was used to define a sound-responsive 

ROI and a voice-selective ROI in the STS/STG, and a classifier was trained and 

tested on subsets of data from within these regions. Accurate classification in both 

the sound-responsive and voice-selective ROIs was found only for trials in which the 

task involved identity processing, i.e. matching a voice to an image of an identity, as 

opposed to speech processing, i.e. matching voice to an image of a vowel type in 

written form. This finding shows that voice identity representations are also present 

in voice-selective regions, but suggests that the context within which a voice is being 

processed influences the representations. However, in contrast to Formisano et al. 

(2008), Bonte et al. (2014) did not use different voice recordings for the training and 

testing of their classifier, and therefore do not demonstrate that representations in 

voice-selective regions generalise to novel tokens of a person’s voice.  
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Similar to many studies investigating face identity representations, both Formisano et 

al. (2008) and Bonte et al. (2014) presented unfamiliar stimuli. Much less is known 

regarding the distinction between familiar and unfamiliar voice processing. A recent 

study used the identity sorting paradigm that Jenkins et al. (2011) used with faces 

(described previously) to investigate the influence of familiarity on the ability to ‘tell 

together’ different recordings of the voice of the same person (Lavan, Burston, & 

Garrido, 2018). Specifically, the authors presented multiple voice recordings for two 

different identities to a group of participants who were familiar with the identities, and 

to a group of participants who were unfamiliar with the identities. Participants were 

required to ‘sort’ the voice recordings, presented as icons on a computer screen, into 

piles based on identity. Similar to Jenkins et al. (2011), the authors showed that 

familiar participants were better at categorising the voices based on identity than the 

unfamiliar participants, with familiar participants creating between three and four 

identity piles, and unfamiliar participants creating between four and nine identity 

piles. This study suggests that, similar to findings for faces (Jenkins et al., 2011), it is 

easier to ‘tell people together’ from their voices when those people are familiar, 

compared to when they are unfamiliar. Therefore, it is likely that the use of unfamiliar 

voice identities in the studies of Formisano et al. (2008) and Bonte et al. (2014) 

limited their ability to identify voice identity representations that ‘tell together’ different 

tokens of the voice of the same person. Lastly, both Formisano et al. (2008) and 

Bonte et al. (2014) presented recordings of different vowel sounds, which cannot be 

considered representative of the natural variability that is present in different 

exposures to a person’s voice in everyday life (Lavan, Burton, Scott, & McGettigan, 

2018). Therefore, it is not known whether identity representations within the 

STS/STG would generalise to more naturalistic voice stimuli with longer durations, 

such as words and sentences.  

 

1.1.3 Summary 

A multitude of studies have used fMR-A and MVPA to investigate representations of 

face and voice identity in face-responsive and voice-responsive regions. MVPA 

studies have brought substantial advantages for these attempts, allowing the 

investigation of the ability of different brain regions to distinguish between different 

face or voice identities based on the multivoxel activity patterns elicited by each 
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individual identity. However, the observed representations of face and voice identity 

have been largely based on face and voice stimuli with substantially lower within-

person variability than the faces and voices that the brain typically processes in 

everyday life. Therefore, these studies fail to provide evidence of face and voice 

identity representations that are robust to the natural variability that is present in 

different encounters with the face and voice of the same person.  

 

The majority of studies have investigated face and voice representations separately, 

and therefore little is known on how information from the faces and voices of familiar 

people is integrated to form representations of person identity. The next section 

addresses this issue by reviewing current evidence supporting different mechanisms 

of face and voice integration in the brain. 

 

 

1.2 The integration of face and voice information in representations 

of person identity 

 
Despite significant advances in identifying representations of either face or voice 

identity in the brain, there is still a limited understanding of how the brain combines 

and integrates information from these two modalities to represent person identity. 

Throughout this thesis, the terms ‘multimodal’ and ‘unimodal’ will be used to refer to 

brain regions that process information from multiple sensory modalities, and brain 

regions that process information primarily from one sensory modality, respectively. 

The terms ‘multisensory’ and ‘unisensory’ will be used to refer to single experimental 

conditions or neurons that engage multiple senses, or that engage primarily one 

sense, respectively. The term ‘crossmodal’ will be used to refer to brain 

representations that combine information from multiple modalities. It should be noted 

that the terms ‘multimodal’, ‘multisensory’, and ‘crossmodal’, as well as the terms 

‘unimodal’ and ‘unisensory’, are frequently used interchangeably in the literature 

(Calvert, 2001). The distinctions made here are therefore largely arbitrary and serve 

the purpose of clarification.    
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This section will first describe predictions from cognitive models of face and voice 

recognition regarding the integration of face and voice information to form 

representations of person identity. These predictions form the basis of two separate 

theoretical models on how faces and voice information is integrated in the brain. The 

evidence supporting each of these two models will then be reviewed. 

 

1.2.1 Cognitive models of face and voice recognition 

Cognitive models of face and voice recognition have included proposals about how 

face and voice information is integrated in representations of person identity. In their 

face recognition model, Bruce & Young (1986) proposed that information about 

familiar people is stored in a “person identity node” (PIN), which is activated when 

presented with information relating to this person regardless of the input modality. 

Specifically, Bruce & Young (1986) proposed that the PIN is a multimodal 

component of associative memory that can be activated by the face, voice, name, 

and even objects that are associated with a particular person. Activation of the PIN 

signals the recognition of person identity. In this model, face recognition processes 

are distinct from the identity recognition processes of the PINs and take place in 

specialised “face recognition units” (FRUs), which are only activated when presented 

with a face. Like PINs, there is one FRU for each known person. FRUs contain 

stored information about a familiar person’s facial appearance, and exchange 

information with the corresponding PINs. According to Bruce & Young (1986), while 

activation of the FRU results in the recognition of a face as familiar, face 

identification is contingent on the activation of the PIN. Burton, Bruce, & Johnston 

(1990) further proposed that more than one person-specific PIN can be attached to 

the same “piece” of semantic information (e.g. the same first name or occupation). 

The face recognition model proposed by Bruce & Young (1986) has been extended 

to include “voice recognition units “(VRUs), which are proposed to be analogous to 

the FRUs and are involved in familiar voice recognition  (Belin, Fecteau, Bédard, & 

Bedard, 2004; Campanella & Belin, 2007; H. D. Ellis, Jones, & Mosdell, 1997; 

Schweinberger, Herholz, & Stief, 1997; Stevenage, Hugill, & Lewis, 2012; Yovel & 

O’Toole, 2016). According to these extended models, PINs exchange information 

with both FRUs and VRUs.  
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Studies that proposed models that include both face and voice recognition differ in 

regard to their predictions of when and how face and voice information is integrated 

(Gainotti, 2014). H. D. Ellis et al. (1997) proposed that information from FRUs and 

VRUs is integrated at the level of the PIN. To corroborate this prediction, the authors 

presented evidence of crossmodal priming, i.e. the priming of the face of a familiar 

person by their voice and vice-versa, at very short time intervals (0.5 sec) between 

the presentation of the prime and target. Specifically, they presented primes and 

targets that were either the face and voice of the same person, or the face and voice 

of two different people. H. D. Ellis et al. (1997) showed that response times in a 

familiarity task were faster for targets that were primed by a stimulus of the same 

identity, compared with targets that that were primed by a stimulus of a different 

identity. The authors suggested that when a PIN for a particular person is activated 

through one modality it is activated faster when it is subsequently presented with the 

other modality within a short period of time. Moreover, they found no evidence of 

crossmodal priming at longer time intervals (10 min) between the presentation of the 

prime and target, and this was attributed to the PINs being “re-set” by the exposure 

to other stimuli during the prime-target time interval. Thus, H. D. Ellis et al. (1997) 

concluded that the activation of the PIN is required for face and voice integration, 

and that face and voice recognition take place independently until the PIN stage. 

Evidence of crossmodal priming for familiar faces and voices was also shown in a 

more recent study, which revealed that priming effects, i.e. reduction in response 

times, are stronger for voices primed by faces, than for faces primed by voices 

(Stevenage et al., 2012). Similar to Ellis et al. (1997), Stevenage et al. (2012) 

suggested that face and voice recognition are facilitated by the activation of the PIN 

by the other modality. Furthermore, the authors speculated that the face recognition 

pathway may be more strongly connected to the PIN than the voice recognition 

pathway, and therefore recognition is facilitated more by the other modality for voices 

compared with faces. However, the time interval between the presentation of the 

primes and the targets in this study varied across participants, and therefore their 

results cannot be interpreted based on this factor.  

 

Other studies have indicated that FRUs and VRUs exchange crossmodal information 

with each other independently of the PINs (O’Mahony & Newell, 2012; 
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Schweinberger, Herholz, & Stief, 1997). Early evidence for this prediction comes 

from a study that showed crossmodal face-voice priming (voice-face priming wasn’t 

tested) with a 10-minute time interval between the presentation of the prime and the 

target (Schweinberger, Herholz, & Stief, 1997). Specifically, the authors showed 

faster responses in a voice familiarity task for familiar voices that had been primed 

by faces compared with voices that had not been primed. This design is similar to 

that of H. D. Ellis et al. (1997), and contradicts their finding of no crossmodal priming 

at longer prime-target time intervals. Furthermore, Schweinberger et al. (1997) 

tested the priming of voices by names, and failed to find evidence of name-voice 

priming. Based on these two findings, Schweinberger, Herholz, & Stief (1997) 

suggested that face-voice crossmodal priming effects are unlikely to involve the 

PINs, which, given their proposed multimodal properties, should also support name-

voice priming. Instead, they speculated that crossmodal priming effects may involve 

an earlier processing stage, in which faces directly activate stored representations of 

the voices of familiar people in VRUs. In line with this proposal, a more recent study 

compared response times to face-voice pairs, or face-name pairs, between identity-

congruent and identity-incongruent pairs, and showed a positive effect of congruency 

on responses to face-voice pairs, but not face-name pairs (O’Mahony & Newell, 

2012). O’Mahony & Newell (2012) proposed that facial and vocal information is 

integrated prior to the PIN stage, whereas face information and name information is 

only integrated at the level of the PINs. The authors speculated that perceptual face 

and voice information is integrated in memory because exposure to a person’s face 

and voice is usually concurrent, and this exposure usually takes place before 

acquiring semantic knowledge about a person, such as their name. In sum, these 

two studies show evidence that FRUs and VRUs directly exchange information prior 

to the PIN stage. 

 

The two different positions regarding the stage at which face and voice identity 

information is exchanged and integrated are the basis of two theoretical models of 

face and voice integration in the brain (Blank, Anwander, & von Kriegstein, 2011; 

Campanella & Belin, 2007; Yovel & O’Toole, 2016). The first model, which will be 

referred to as the Multimodal Processing (MP) model, proposes that information from 

face and voice identity processing systems in integrated in multimodal nodes 
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associated with semantic person identity information (e.g. Shah et al., 2001). The 

second model, which will be referred to as the Coupling of Face and Voice 

Processing (CFVP) model, proposes that face and voice identity processing systems 

exchange crossmodal information at earlier, perceptual processing stages (e.g. von 

Kriegstein, Kleinschmidt, Sterzer, Giraud, et al., 2005). Within the framework of 

these two models, researchers have attempted to link computations from cognitive 

models of face and voice recognition to the processing of face, voice, and person 

identity in the brain. Specifically, the MP model predicts that face and voice identity 

information is integrated in multimodal brain regions that represent person identity, 

and roughly correspond to the PINs (Figure 1.1). The CFVP model predicts that face 

and voice information is combined at an earlier processing stage by means of direct 

functional and structural connections between face- and voice-responsive regions, 

which roughly correspond to the FRUs/VRUs (Figure 1.1). These models are not 

mutually exclusive, but they make different predictions about how information about 

faces and voices is integrated in the brain. The following section describes the 

evidence supporting the MP and the CFVP models separately. 

 

 

                         

Figure 1.1: The two models of face and voice integration. Predictions of the MP 

model and CFVP model regarding the integration of face and voice information in the 

brain. 

 

1.2.2 Multimodal Processing (MP) model 

Lesion studies  
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Some of the earliest evidence supporting the existence of multimodal brain regions 

that process information from both faces and voices comes from studies of patients 

with brain damage. There have been several reports of patients with lesions to the 

right ATL that show impairments in the recognition of both familiar faces and familiar 

voices. A. W. Ellis, Young, & Critchley (1989) presented a single case study of a 

woman (KS) who was treated for epilepsy with a right ATL lobectomy, which 

included the hippocampus and amygdala. After the lobectomy, KS showed a 

selective memory deficit for familiar people, characterised by extreme difficulty in 

recognising famous faces, voices, and names, and in recalling information relating to 

familiar people. This study suggested that the right ATL region is involved in the 

processing of identity-related information from multiple modalities, including faces 

and voices. The importance of the right ATL in face and voice recognition was also 

highlighted in a study that reviewed multiple case studies of patients who had lesions 

that included this region, and who had been tested on both face and voice 

recognition abilities (Gainotti, 2011). Out of 15 patients, 12 were impaired in both 

face and voice recognition. However, the lesions of some of these patients were not 

confined to the ATL and included regions such as the STG, STS, fusiform gyrus, 

frontal lobe, insula, hippocampus, and amygdala. Therefore, the ATL cannot be 

causally implicated in face and voice recognition impairments, but it seems likely that 

it plays some role in both face and voice processing. 

 

Other studies have shown evidence of co-occurring face and voice recognition 

deficits in patients with lesions in broader areas of cortex. Hanley, Pearson, & Young 

(1990) presented a case study of a woman (ELD) who had right cerebral damage, 

mainly in the frontotemporal region, caused by a rupture of a middle cerebral artery 

aneurism. After her illness, ELD showed a deficit for the learning of new visual forms, 

such as unfamiliar faces and objects, as well as a deficit in unfamiliar voice learning 

(familiar voice recognition was not tested). She also showed impaired recognition of 

famous faces, but not names, for people that became famous after her illness. 

Although ELD’s deficit was not specific to people, or selective to the processing of 

person identity, her difficulties with the processing of both faces and voices indicate 

that multimodal processing may take place in right frontotemporal regions. However, 

due to the extent of the brain damage, it is not possible to determine whether a 
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single region is responsible for both face and voice processing, or whether multiple 

regions within the damaged area independently process faces and voices. 

 

Neuner & Schweinberger (2000) tested a group of patients with brain damage on 

various tests involving face, voice, name, and object processing. They found that 

four patients had impairments in both face and voice recognition, three of which also 

showed impaired name recognition. However, none of these patients showed a 

selective deficit in person (i.e. face, voice, and name) recognition. Two patients had 

damage only to the right hemisphere, and two to both hemispheres. This study 

provides evidence of the co-occurrence of deficits in face- and voice-recognition in 

patients with brain damage. However, due to the lack of information on the precise 

location of the brain damage, this study does not implicate specific multimodal brain 

regions.  

 

A recent study used voxel-based lesion symptom mapping to identify relationships 

between lesion locations and behavioural measures of voice processing abilities in a 

large sample of 58 patients with unilateral lesions (Roswandowitz, Kappes, Obrig, & 

von Kriegstein, 2018). Although the authors were primarily interested in impairments 

in the processing of voice identity, they also included behavioural measures of face 

recognition ability. Specifically, they tested voice recognition from newly-learned and 

familiar voices, and face recognition from newly-learned faces. Their results showed 

that lesions to the inferior parietal lobe were associated with both voice and face 

recognition deficits. Moreover, inferior parietal lobe lesions were implicated during 

the recognition of voices that had been paired with faces during a learning phase. 

Taken together, these findings suggest the inferior parietal lobe as a candidate 

multimodal region for the integration of face and voice identity information. 

 

To summarise, lesion studies have associated impairments in both face and voice 

identity processing with damage to brain regions such as the ATL and the inferior 

parietal lobe. These brain regions are likely to be multimodal, and could contain 

representations of person identity. The main limitation of lesion studies, particularly 

earlier studies, is that lesions often involve large areas of cortex that may contain 

functionally distinct sub-regions. As a result, it is not possible to determine whether 
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damage to a single, multimodal brain region caused the observed deficits in face and 

voice recognition, or whether multiple regions that selectively process either face or 

voices were equally damaged. The next subsection presents evidence from 

neuroimaging studies, which complement the findings from lesions studies by 

identifying regions that are functionally involved in the integration of face and voice 

identity information in healthy participants. 

 

Neuroimaging studies 

Studies using fMRI have presented evidence of possible multimodal brain regions 

that integrate face and voice information into representations of person identity. In 

one of the first fMRI studies to investigate face and voice identity processing in the 

same experiment, Shah et al. (2001) compared brain activity in response to familiar 

faces and voices with brain activity in response to unfamiliar faces and voices. More 

specifically, the authors presented participants with photographs of the faces and 

short (1 to 1.1sec) recordings of the voices of personally familiar people (friends and 

relatives) and of unfamiliar people. Although participants performed unrelated tasks, 

they were instructed to try to identify each stimulus. They found that the bilateral 

posterior cingulate, and specifically the retrosplenial cortex, was more strongly 

activated in response to familiar compared with unfamiliar faces and voices. Shah et 

al. (2001) concluded that the retrosplenial cortex is multimodal region that processes 

both face and voice information. However, the authors acknowledge that it is not 

possible to determine whether this region is involved in the processing of stimulus 

familiarity or person identity. It has since been shown that the retrosplenial cortex 

also responds more to familiar objects and places, compared to unfamiliar objects 

and places (Sugiura, Shah, Zilles, & Fink, 2005). Therefore, it is more likely that the 

retrosplenial cortex is a multimodal region that is sensitive to familiarity, rather than 

to person-specific identity information. 

 

Joassin, Pesenti, et al. (2011) compared brain activity in response to faces and 

voices presented separately with brain activity in response to faces and voices 

presented simultaneously. They trained participants to associate unfamiliar face 

photographs, voice recordings, and names with four different identities. During the 

experiment, participants were presented with faces, voices, and face-voice pairs, 
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and had to decide which of two names corresponded to each stimulus. The authors 

used the supra-additive criterion to identify multimodal regions, which means that for 

a region to be considered multimodal, activation in response to face-voice pairs had 

to be larger than the sum of activation in response to the faces and voices presented 

in isolation (Calvert, Campbell, & Brammer, 2000). This analysis revealed greater 

activation to the face-voice condition in the bilateral fusiform gyrus and superior 

temporal gyrus, the right hippocampus, and the left calcarine sulcus and angular 

gyrus. Out of these regions, only the hippocampus and angular gyrus were activated 

mainly during the face-voice condition, whereas the other regions were also 

activated during the unimodal face and voice conditions. A subsequent functional 

connectivity analysis showed that the hippocampus had strong connections to the 

face-responsive right FFA and voice-responsive STS. Joassin, Pesenti, et al. (2011) 

proposed that the hippocampus is involved in the association of face and voice 

information in memory, and in the recall of these associations. They also speculated 

that the left angular gyrus is involved in the division of attention between different 

modalities in response to multimodal stimuli. However, due to the use of unfamiliar 

face and voice stimuli in this study and the inducement of experimentally-learned 

associations between them, it is not possible to determine whether the 

aforementioned brain regions responded to the face-voice stimuli because they 

recognised that the stimuli belonged to the same identity, or because participants 

had learnt to associate them with each other. Learnt associations can be formed 

between completely arbitrary stimuli. Therefore, it is not clear whether the 

hippocampus and angular gyrus contain representations of person identity, or 

whether these regions are involved in associative memory more generally.  

 

Hölig, Föcker, Best, Röder, & Büchel (2017) used a congruency manipulation 

paradigm to investigate the integration of face and voice information. They trained 

participants to associate silent videos of speaking faces, recordings of voices, and 

written names for twelve unfamiliar identities. In their experiment, the authors 

presented participants with pairs of a face and a voice, presented successively, that 

either belonged to the same identity or to different identities. Contrasting brain 

responses to identity-incongruent face-voice pairs with brain responses to identity-

congruent face-voice pairs, Hölig et al., (2017) found increased activation in the right 
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pSTS and angular gyrus. The authors proposed that viewing the faces activated 

stored representations of the associated voices in the right pSTS and angular gyrus, 

and when the subsequently presented voices did not match the activated 

representations brain activity increased due to the violation of expectations. 

However, similar to Joassin, Pesenti, et al. (2011), Hölig et al., (2017) presented 

faces and voices that were associated through learning, and therefore their findings 

could also be interpreted as the processing of learnt associations between faces and 

voices, as opposed to the processing of identity. Therefore, the possibility that the 

pSTS and angular gyrus are involved in associative memory, rather than identity 

processing, cannot be ruled out in this study.  

 

The studies by Shah et al. (2001), Joassin, Pesenti, et al. (2011), and Hölig et al., 

(2017) all used univariate fMRI methods to investigate the integration of face and 

voice identity information in the brain. However, as was discussed previously, 

standard univariate fMRI is not optimal for detecting identity representations, 

because responses to individual identities cannot be differentiated from each other 

(Formisano et al., 2008; Kriegeskorte et al., 2007). Shah et al. (2001) compared 

activation in response to familiar and unfamiliar faces and voices, and revealed brain 

regions that are sensitive to familiarity independently from modality. However, 

familiarity processing does not necessarily imply identity processing, let alone the 

integration of face and voice information. Joassin, Pesenti, et al. (2011) used the 

supra-additive criterion, which was originally developed to investigate audiovisual 

integration (Calvert et al., 2000). This criterion states that for a brain region to be 

considered multimodal, it must show greater brain activity in response to audiovisual 

stimuli that to the sum of the activation to the auditory and visual stimuli presented in 

isolation (Calvert et al., 2000). This approach is based on the notion that voxels that 

respond more during multisensory input that during individual unisensory inputs 

combined are likely to contain integrative multisensory neurons, as opposed to 

intermixed populations of unisensory neurons, which would also be activated by the 

unimodal conditions (Calvert, 2001). However this approach may not reveal voxels 

that contain both multisensory neurons and unisensory neurons, particularly if the 

multisensory neurons are outnumbered (Laurienti, Perrault, Stanford, Wallace, & 

Stein, 2005). Moreover, it has been pointed out that this approach would not reveal 
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multisensory neurons that display sub-additive, rather than super-additive responses 

to multisensory conditions (Laurienti et al., 2005). The use of the supra-additive 

criterion has further been criticised because of the possibility that saturation of the 

BOLD signal in response to one or both of the unisensory conditions could conceal 

signal related to the multisensory condition, leading to false negatives (Goebel & Van 

Atteveldt, 2009). Therefore, findings based on the supra-additive criterion should be 

interpreted with caution. An alternative to the supra-additive criterion is offered by 

congruency manipulations, demonstrated in the study by Hölig et al., (2017). 

Congruency manipulations are based on the assumption that, if a brain region 

distinguishes between congruent and incongruent pairs of stimuli, it is able to 

integrate information from the two stimuli (Goebel & Van Atteveldt, 2009). However, 

it is possible that certain brain regions respond to incongruence regardless of the 

modalities the stimuli presented (Laurienti et al., 2005). Therefore, higher responses 

to incongruent stimuli may not be due to crossmodal integration, but a reaction to 

incongruence per se.   

 

Two recent studies used MVPA to investigate representations of person identity from 

faces and voices using crossmodal classification (Anzellotti & Caramazza, 2017; 

Hasan, Valdes-Sosa, Gross, & Belin, 2016). As discussed previously, the advantage 

of using MVPA over univariate fMRI methods is that it tests the ability of brain 

regions to distinguish between different conditions based on the pattern of response 

that they elicit across multiple voxels. To identify regions that integrate face and 

voice information,  Anzellotti & Caramazza (2017) and Hasan et al. (2016) tested 

whether the multivoxel activity patterns in response to individual identities in one 

modality could be distinguished by a classifier that had been trained to distinguish 

between the same identities in the other modality. The idea behind this approach is 

that a brain region that represents person identity independently of modality should 

respond in a similar way to the face and voice of the same person.  

 

Hasan et al. (2016) presented participants with four personally-familiar identities (two 

male, two female), each of whom was represented by one short (400ms) audio-

visual video of their face voicing the word “had”, one muted version of the same 

video, and one voice recording extracted from the video. Participants performed a 4-
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way identification task. To identify regions that process person identity, Hasan et al. 

(2016) used a whole-brain searchlight and trained a classifier to discriminate 

between the multivoxel response patterns to the four identities in one modality, and 

tested the accuracy of the classifier on data from the other modality (data from the 

audio-visual condition was not used in this analysis). This analysis revealed clusters 

in a number of brain regions that could discriminate between faces based on 

information from voices, and vice versa: the bilateral STS and middle temporal 

gyrus, the right inferior temporal gyrus, and the left inferior frontal gyrus. Hasan et al. 

(2016) proposed that these regions contain crossmodal representations of person 

identity. However, the presentation of a single token of each person’s face and voice 

that were derived from the same audio-visual clip, which was also presented during 

the experiment, raises the possibility that the observed crossmodal decoding was 

due to learned associations between specific face and voice stimuli (Lavan, 2017). 

Specifically, these learned associations may have resulted in similar responses to 

the face and voice of the same identity not because of the fact that they belong to 

the same person, but because they were presented simultaneously in the audio-

visual condition. Moreover, Hasan et al. (2016) did not independently test whether 

the brain regions revealed by the crossmodal classification were multimodal, i.e. 

responsive to both faces and voices. Therefore, although the authors speculated that 

these regions were multimodal, it is also possible that the observed crossmodal 

representations were the result of a coupling mechanism between face-responsive 

and voice-responsive regions, such as the one proposed by the CFVP model (von 

Kriegstein et al., 2005).  

 

Anzellotti and Caramazza (2017) also conducted an MVPA study that tested 

crossmodal classification between familiar faces and voices. In their study, the 

authors presented participants with three famous men, each of whom was 

represented by two grey-scale front-facing images of their face featuring a neutral 

facial expression and two recordings of their voice speaking different words. The 

face images were equated in luminance and contrast and cropped to an oval. 

Participants were asked to respond to stimuli of a target identity, and only data from 

the two remaining (distractor) identities were used for classification. The authors 

used a face localiser and a voice localiser to identify face- and voice-selective 
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regions, respectively. For each of these regions, they then trained a classifier to 

distinguish between the two identities in one modality, and tested it on the other 

modality. This analysis revealed significant crossmodal classification in the right 

pSTS, which showed both face-selective and voice-selective responses in a face 

and voice localiser, respectively. This finding suggests that this region is multimodal, 

and provides support to the prediction of the MP model that face and voice 

information is integrated in multimodal brain regions. In contrast to Hasan et al. 

(2016), who based their classification on data from one face and voice token for 

each identity, Anzellotti & Caramazza (2017) used two different tokens of the face 

and voice of each identity, thus providing stronger evidence of person identity 

processing (as opposed effects of learned associations between specific face and 

voice stimuli). However, they did not test whether unimodal representations of face 

and voice identity in the pSTS generalise across the two different face and voice 

tokens within the same study, possibly due to the insufficient number of tokens for 

this type of analysis.  

 

Although Anzelotti and Caramazza (2017) could not determine whether the 

multimodal pSTS could also discriminate between identities just from the faces or 

just from the voices, the authors re-analysed the data from a previous study in which 

they tested the classification of face identities across different viewpoints (Anzellotti 

et al., 2014), but in which the pSTS had not been originally defined. The authors 

aimed to test whether the pSTS also showed face identity representations that 

generalised across different images of the same person’s face. This new analysis 

showed viewpoint-invariant representations of face identity in the pSTS. Therefore, 

although it was not possible to determine that the crossmodal pSTS region identified 

by Anzelotti and Caramazza (2017) represented just face identities or just voice 

identities invariantly, these preliminary results suggest that this may be the case. It 

should be noted, however, that the stimuli in Anzellotti et al. (2014) were artificially-

generated, and therefore showed low within-person variability between different 

images of the face of the same person. Therefore, findings based on this study do 

not show that representations of face identity in the pSTS are robust to natural 

within-person variability.  
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The crossmodal classification method used in Hasan et al. (2016) and Anzellotti & 

Caramazza (2017) presents a novel way of identifying brain regions that represent 

person identity. However, these studies present similar limitations to the previously 

reviewed studies investigating face and voice identity representations. Specifically, 

they show no evidence (Hasan et al., 2016) or limited evidence (Anzellotti & 

Caramazza, 2017) of generalisation of face and voice identity representations to 

different tokens of the face and voice of the same person, within the regions in which 

they observe person identity representations. Moreover, although Anzellotti & 

Caramazza (2017) presented two photographs of the face, and two recordings of the 

voice of each person, face photographs were processed to show low natural 

variability, and the voice recordings comprised a single spoken word. Therefore, it is 

not known whether the observed person identity representation in the pSTS would 

tolerate more naturalistic within-person variability across different tokens of the same 

person’s face and voice.  

 

Neurophysiological studies 

Studies that conducted single-unit recordings in patients with epilepsy have shown 

evidence that structures in the medial temporal lobe, including the hippocampus, 

parahippocampal gyrus, amygdala, and entorhinal cortex, engage in multimodal 

person representation (Quiroga, Kraskov, Koch, & Fried, 2009; Quiroga et al., 2005). 

Specifically, Quiroga and colleagues (2005; 2009) showed that single neurons 

located in the medial temporal lobe respond to the face, spoken name, and written 

name of the same persons (Quiroga et al., 2009). These findings support 

neuroimaging findings showing the hippocampus as a candidate multimodal region 

(Joassin et al., 2011). However, responses to voices were not assessed in these 

studies, and therefore it is not known whether the medial temporal lobe is involved 

specifically in the integration of information from faces and voices. 

 

Conclusions 

Evidence in favour of the MP model comes from lesion, neuroimaging, and 

neurophysiological studies that have revealed a number of different brain regions 

that may be involved in multimodal face and voice identity processing. However, 

there is a lack of agreement between studies using different methods regarding the 
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regions involved. fMRI studies have proposed a number of brain regions that may 

integrate face and voice information to form representations of person identity, such 

as the retrosplenial cortex (Shah et al., 2001), hippocampus (Joassin et al., 2011), 

angular gyrus (Hölig et al., 2017; Joassin et al., 2011), pSTS (Anzellotti & 

Caramazza, 2017; Hölig et al., 2017), and STS, middle temporal gyrus, inferior 

temporal gyrus, and inferior frontal gyrus (Hasan et al., 2016). Notably, these regions 

do not include the ATL, which has consistently been implicated in the lesion studies 

with patients with face and voice identity recognition impairments that were reviewed 

previously. A meta-analysis of neuroimaging studies in healthy participants that 

compared responses between familiar and unfamiliar faces, voices, or names, 

showed a consistent involvement of the ATL in the processing of both personally-

familiar and famous-familiar stimuli (Blank, Wieland, & von Kriegstein, 2014). 

However, the same study failed to find consistent involvement of the ATL, or any 

other brain region, in studies investigating face, voice, and name recognition. 

Therefore, it is possible that the ATL is primarily involved in the processing of person 

familiarity, rather than person identification per se. The majority of patients with right 

ATL lesions who show deficits in face and voice recognition also show impairments 

in face familiarity tasks, and it may be that intact familiarity processing is a necessary 

pre-requisite for person identity recognition (Gainotti, 2011). However, an important 

point to consider is that localising the ATL using standard fMRI sequences is 

challenging due to the low signal-to-noise ratio in this region, particularly in the 

ventral part (Axelrod & Yovel, 2013). Therefore, it is also possible that the absence 

of the ATL in some of the fMRI studies investigating person-recognition is due to 

methodological issues.  

 

Finally, lesion, neuroimaging, and neurophysiological studies each have their own 

limitations. For lesion studies, the often extensive damage does not allow inferences 

to be made regarding a specific, functionally-independent brain region. For 

neuroimaging studies that presented unfamiliar faces and voices, which participants 

learned to associate through training, it is possible that the regions implicated in 

multimodal processing are involved in the processing of stimulus associations rather 

than person identity. MVPA studies using crossmodal classification present a 

significant advancement, but have been limited in regard to their ability to show that 
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person identity representations generalise across different tokens of the face and 

voice of each identity, and are robust to within-person variability in the face and 

voice. Lastly, neurophysiological studies present strong evidence of multisensory 

neurons, but did not test whether these neurons also respond to voices. The next 

section presents evidence supporting the CFVP model, which proposes that face- 

and voice-responsive regions exchange crossmodal information independently from 

multimodal regions. 

 

1.2.3 Coupling of Face and Voice Processing (CFVP) model 

Neuroimaging studies 

The main evidence in support of the CFVP model comes from fMRI studies that 

showed crossmodal interactions between face-responsive and voice-responsive 

brain regions during voice recognition. In one of the first studies to investigate the 

crossmodal effects of voice identity processing in the brain, von Kriegstein et al., 

(2005) showed that the face-selective fusiform cortex is activated during the 

recognition of familiar voices. In their study, the authors presented participants with 

47 voice recordings of sentences spoken by 14 familiar and 14 unfamiliar speakers. 

Participants performed either a speaker identity recognition task, in which they had 

to identify a target speaker irrespective of speech content, or a speech recognition 

task, in which they had to identify a target sentence irrespective of speaker. The 

same voice stimuli were presented in both tasks. Their results revealed activation in 

the bilateral fusiform cortex only during the identity recognition task, and only for 

familiar voices. A face-localiser task showed that this fusiform cortex activation either 

overlapped with, or was in close proximity to, the FFA in each participant’s brain. 

Moreover, a functional connectivity analysis of the fusiform cortex region showed an 

interaction with the voice-responsive bilateral middle/anterior STS during familiar 

voice recognition. The activation of a face-selective region during voice recognition, 

and the observed functional connectivity between this region and the voice-

responsive STS, suggest that presence of crossmodal interactions between face- 

and voice-responsive regions at a sensory level. Moreover, the absence of functional 

connections between the voice-responsive fusiform region and any other regions 

(apart from the STS) during familiar voice recognition suggests that face-voice 

interactions may take place without top-down crossmodal information being relayed 
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to the fusiform cortex by higher-level multimodal regions. Instead, von Kriegstein, et 

al (2005) proposed that the auditory modality directly recruits the visual modality 

during familiar voice recognition through a crossmodal coupling process that does 

not require the involvement of a separate multimodal region or PIN. As a potential 

explanation of the engagement of a face-selective region during voice recognition, 

the authors proposed that a familiar voice induces an “implicit imagery” of the 

person’s face. These findings provide support to cognitive models of face and voice 

identity processing that propose direct interactions between FRU and VRU prior to 

the PIN stage (Belin et al., 2004; Campanella & Belin, 2007).  

 

In a further study by the same research group, von Kriegstein, Kleinschmidt, & 

Giraud (2006) tested whether impaired face recognition influences the previously 

observed responses to familiar voices in the FFA. In this study, the authors used the 

same experimental paradigm to test a patient (‘SO’) with developmental 

prosopagnosia, which is a selective impairment in the recognition of familiar faces. 

The experiment was identical to their previous study (von Kriegstein et al., 2005), 

with the exception of the stimuli, for which 47 voice recordings from seven familiar 

and seven unfamiliar speakers were used (as opposed to 14 in the previous study). 

An analysis comparing FFA activation during familiar voice recognition between SO 

and the (healthy) participants from the previous study, which served as controls, 

showed no differences in activation. In addition, no differences were found in the 

functional connectivity between the FFA and the voice-responsive STS. Given SO’s 

impaired ability to process face identity, von Kriegstein et al. (2006) interpreted the 

finding of intact coupling between face and voice regions as evidence that the 

coupling mechanism does not directly involve person identity processing, and may 

take place at an earlier, sensory level. However, SO also reported impairments in 

face imagery, and therefore the face-voice coupling is unlikely to result from the face 

imagery induced by a familiar voice, as had been suggested previously (von 

Kriegstein et al., 2005). Therefore, the reason for the involvement of the FFA during 

voice recognition is not clear.  

 

The two studies described so far show activation of the FFA during the recognition of 

personally-familiar voices. To test whether this effect is due to having access to a 
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visual representation of a person’s facial appearance, or whether it is dependent on 

the knowledge of semantic information that is associated with personal familiarity, a 

further study by the same group investigated the coupling between face- and voice-

selective regions during voice recognition before and after learning to associate 

unfamiliar voices with their respective faces or with names (von Kriegstein & Giraud, 

2006). During the learning session, one group of participants learnt to associate the 

voices of five different speakers with faces, and a second group learned to associate 

the same voices with names. Before and after the learning session, participants were 

presented with 111 two-word sentences spoken by the five speakers, and performed 

a voice identity recognition task. After the learning of face-voice and name-voice 

associations, activation during the voice recognition task was compared between the 

group that learnt face-voice associations and the group that learnt name-voice 

associations. This analysis showed greater activation in the FFA after face-voice 

learning compared with name-voice learning. No significant activation was found for 

the opposite contrast (name-voice learning>face-voice learning). A functional 

connectivity analysis additionally showed increased interaction between the FFA and 

the voice-responsive STS after the learning of face-voice associations, compared 

with before the learning of these associations. A comparison of improvements in 

behavioural voice recognition accuracy post-learning phase between the face-voice 

association group and the name-voice association group suggested greater 

improvements for the face-voice association group. However, this group also had 

lower voice recognition rates than the name-voice group pre-learning phase, and 

therefore had more room for improvement. The results of von Kriegstein & Giraud 

(2006) demonstrate that activation of the FFA during voice recognition is dependent 

on knowledge of a person’s facial appearance, but does not require a person to be 

personally-familiar, i.e. associated with semantic person identity information. 

Therefore, the crossmodal coupling between the FFA and voice-responsive regions 

likely involves the exchange of sensory information (as opposed to semantic 

information, which is typically associated with a multimodal PIN in cognitive face and 

voice recognition models). Furthermore, these results suggest that crossmodal 

coupling during voice recognition is specific to faces, and does not extend to other 

visual identity-related information, such as visually-presented names. Von Kriegstein 

and Giraud (2006) speculated that voices engage multimodal representations that 
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are formed due to the ability of faces and voices to convey redundant identity 

information, in contrast to voices and names, which are arbitrarily associated. Their 

results are in line with behavioural studies showing shorter response times to face-

voice pairs compared with name-voice pairs in familiarity tasks, and which suggest 

direct connections between FRUs and VRUs prior to the PIN stage (O’Mahony & 

Newell, 2012; Schweinberger, Herholz, & Stief, 1997). While this study demonstrated 

that FFA activation during voice recognition is not contingent on being personally-

familiar with a person, the purpose of the FFA involvement is still unclear.  

 

To test whether impaired face recognition influences responses in the FFA during 

the recognition of unfamiliar voices, after the learned association with the face, von 

Kriegstein et al. (2008) compared a group of patients with prosopagnosia with a 

healthy control group. In this study, participants learned to associate three speakers 

with their corresponding face, and another three speakers with an occupation 

(represented by a visual symbol). Participants were then presented with 20 

sentences and were asked to perform a speaker and a speech recognition task, 

which were similar to the ones used in their original study (von Kriegstein et al., 

2005). The authors then contrasted activation in response to voices that had been 

associated with faces with activation in response to voices that had been associated 

with occupations. For both prosopagnosics and controls, they found increased 

activity in the FFA during the voice recognition task only, in line with their previous 

studies. Behaviourally, while speech recognition was better in both groups for voices 

that been associated with faces, speaker recognition was only improved for controls. 

Furthermore, a significant correlation between activation in the FFA and speaker 

recognition was only found for controls. This study suggests that, for people with 

intact face recognition abilities, learning a voice together with a face enhances voice 

recognition, and the extent of this enhancement in different people is related to the 

level of activation of their FFA during voice recognition. In contrast, learning a voice 

together with a face did not improve voice recognition in prosopagnosics, despite 

similar activation of the FFA during voice recognition in this group. Therefore, this 

study suggests that activation of the FFA during voice recognition may reflect the 

ability of a stored representation of a person’s face to enhance voice recognition, but 

only for people with intact face recognition processing. It is not clear why the FFA is 
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activated during voice recognition in prosopagnosics, given that it was not 

associated with enhanced voice recognition in this group. 

 

The studies described so far present evidence of functional connections between the 

FFA and voice-responsive brain regions during voice recognition. To test whether 

these functional connections correspond to structural connections in the brain, Blank 

et al. (2011) used diffusion magnetic resonance imaging to investigate white matter 

connections between the FFA and voice-responsive regions. To localise regions that 

respond to voice identity processing compared to speech processing, participants 

were scanned using fMRI while performing a speaker and a speech recognition task 

(von Kriegstein et al., 2005). Probabilistic fiber tractography was computed between 

the right FFA, which was defined both using a face-localiser and based on 

responses to the voice identity task, and the right mid, anterior, and posterior STS. 

The authors reported structural connections between the FFAs, defined using both 

methods, and the voice-responsive regions of the STS, with stronger connections to 

the aSTS and mSTS compared with the pSTS. These connections were present in at 

least 50% of the participants, with the exception of the connection between the face-

selective FFA and the pSTS which was only present in 5 participants, and contained 

at least 10 pathways between each pair of regions. The connections between the 

STS regions and the voice-responsive FFA were found to be stronger compared with 

the face-selective FFA, suggesting that the region of the fusiform gyrus that 

responds to voices may be functionally distinct from the face-selective FFA. Taken 

together, these findings further support the prediction of the CFVP model that face- 

and voice-responsive regions are able to directly exchange information with each 

other independently from multimodal brain regions. However, the functional 

significance of these connections remains unclear. 

 

A recent study by a different group provided further evidence of structural 

connections between the FFA and voice-selective regions in the right hemisphere 

(Benetti et al., 2018). In this study, probabilistic tractography was computed between 

the FFA, defined using a face localiser, and the TVA, defined using a voice localiser. 

Voxels in the TVA that overlapped with the face-selective pSTS, which was defined 

using the localiser, were excluded from the TVA masks based on the assumption 
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that the pSTS engages in multimodal processing. Benetti et al. (2018) argued that 

excluding the pSTS would allow focus on direct structural connections involving the 

TVA. Therefore, the TVA mask in this study included only the mSTS. Structural 

connections were found between the FFA and TVA, and these connections were 

present in 86% of participants and contained at least 10 pathways, similar to Blank et 

al. (2011). This finding shows that the connections between the FFA and the STS 

are not specific to regions of the STS that respond selectively during voice 

recognition, as demonstrated in Blank et al. (2011), and also apply to voice-selective 

regions of the STS, i.e. regions that respond selectively to voices over non-vocal 

sounds. 

 

A study using magnetoencephalography (MEG) investigated the timing of the 

activation of the FFA during voice recognition (Schall, Kiebel, Maess, & Von 

Kriegstein, 2013). They used a similar experimental paradigm to von Kriegstein et al. 

(2008), in which participants learnt to associate three speakers with their 

corresponding faces, and three speakers with different occupations. Responses 

during a subsequent voice identity recognition task were recorded using MEG, and 

the FFA was localised using a face-localiser. Comparisons were then made between 

voices that had been associated with faces, and voices that had been associated 

with occupations. These comparisons revealed significant greater activation in the 

FFA at approximately 100ms after the onset of the voice, for voices that had been 

associated with faces. Moreover, these voices led to faster M200 responses, which 

reflect a previously observed peak in activity at 200ms after voice onset (e.g. 

Charest et al., 2009),  and higher recognition accuracy. An analysis comparing 

average M200 latencies with recognition accuracy across participants showed a 

positive correlation, in that participants whose recognition accuracy benefitted more 

from seeing the faces, as opposed to the occupations, also showed a faster M200 

response. This study provides evidence that the interaction between the FFA and 

voice-responsive regions takes place at an early processing stage. Furthermore, it 

provides additional evidence that learning to associate a voice with a face facilitates 

voice processing, and that this facilitation is reflected in brain activity. 
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To summarise, studies using fMRI, functional connectivity, and structural connectivity 

analyses have shown that face- and voice-selective regions directly exchange 

information during voice identity recognition. This finding applies to the recognition of 

the voices of personally-familiar people, and to the recognition of voices that have 

been briefly associated with faces prior to the experiment. For people with intact face 

recognition abilities, it seems that learning to associate a voice with a corresponding 

face improves subsequent recognition ability of the voice, and this ability is 

associated with the degree of activation of the FFA during voice recognition. These 

effects on voice recognition were found to be specific to face-voice associations, and 

did not apply to name-voice or occupation-voice associations. This suggests that the 

connections between the FFA and the voice-sensitive regions are unique to faces 

and voices, and may be due to their ability to relay redundant information. However, 

the observed activation in the FFA of prosopagnosics during voice recognition, who 

are impaired in familiar face processing and face imagery, confuses the 

interpretation of the purpose of these connections. Crucially, it is not known whether 

voice-selective regions are activated during face recognition in analogous way to the 

FFA activation during voice recognition.  

 

Electrophysiological studies 

Joassin, Maurage, Bruyer, Crommelinck, & Campanella (2004) conducted an event-

related potential study exploring the electrophysiological basis of face and voice 

interactions during a task involving identity processing. They trained participants to 

associate faces, spoken names, and written names for 12 unfamiliar identities. In an 

electroencephalogram (EEG) experiment, the authors presented participants with the 

faces and voices in pairs (as an audio-visual stimulus) and separately. Each stimulus 

was preceded by a written name, and participants had to decide whether the name 

corresponded to the identity of the stimulus. In non-matching voice trials or face-

voice trials, the written name preceding the stimulus would be the same as the name 

being spoken by the voice, but the voice itself would not belong to the identity that 

had been associated with that particular name. To examine electrical activity that is 

unique to the multimodal condition, the authors used the supra-additive criterion and 

subtracted the unimodal conditions from the multimodal condition (Calvert et al., 

2000). They observed three main waves of electrical activity. The first wave occured 
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at around 100ms, was localised in the bilateral superior colliculus and fusiform gyrus, 

and was interpreted as potential evidence of an influence of auditory information on 

visual processing. The second wave occurred at around 175ms, was localised 

mainly in the bilateral superior colliculus, STG, and inferior frontal gyrus, and was 

interpreted as reflecting a possible influence of visual information on auditory 

processing. Finally, the third wave occurred at around 279ms and was localised 

mainly in a network formed of the superior colliculus, superior frontal gyrus, inferior 

frontal gyrus, and fusiform gyrus. Joassin et al. (2004) speculated that this third wave 

may reflect an interaction between unimodal regions, multimodal regions, and 

regions that process semantic information. While this study provides some evidence 

of early integration of face and voice information, the poor spatial resolution of EEG 

means that any interpretations of the brain regions involved and of the mechanisms 

of integration are largely speculative. 

 

In a more recent EEG study, Föcker, Hölig, Best, & Röder (2011) investigated 

electrical activity in response to face-voice combinations that were either congruent 

or incongruent in terms of identity. Specifically, the authors presented participants 

with voices that were preceded by a face that either belonged to the same identity, or 

belonged to a different identity, and asked them to judge the age of the voice. At 

100-140ms after the onset of the voice, they observed more negative event related 

potentials for voices that were preceded by a different-identity face, compared with 

voices that were preceded by a same-identity face. Although this study did not 

localise the sources of electrical activity, the authors speculated that the early 

modulation of activity by identity-incongruent face-voice pairings presents evidence 

for the integration of face and voice information at early processing stages. However, 

as discussed previously, brain activation to incongruent stimuli may be a response to 

incongruence regardless of the modalities being presented (Laurienti et al., 2005).  

 

Conclusions 

Evidence for the CFVP model comes mainly from fMRI studies showing activation of 

the FFA during voice recognition, and functional and structural connections between 

the FFA and voice-responsive regions in the STS. However, in the majority of 

studies FFA activation is contingent on an explicit voice recognition task, and there is 
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a lack of evidence for the involvement of voice-responsive regions during face 

recognition. Therefore, it is unclear whether the proposed exchange of information 

between the FFA and voice-responsive regions contributes to the recognition of 

person identity, or whether, instead, the primary role of this exchange is to facilitate 

voice identity processing by providing access to face representations.  

Electrophysiological studies have shown evidence of early interactions between face 

and voice processing, but due poor spatial resolution, cannot provide precise 

information regarding the brain regions that are involved in these interactions.  

 

1.2.4 Summary 

To summarise, current evidence suggests that face and voice information is 

integrated in the brain during identity recognition through two separate mechanisms. 

One mechanism involves early exchange of face and voice information between 

face- and voice-selective regions (CFVP model), whereas the other mechanism 

involves the integration of face and voice information in multimodal brain regions 

(MP model). The ‘coupling’ mechanism, proposed by the CFVP model and the 

‘multimodal’ mechanism, proposed by the MP model, are not mutually exclusive 

(Campanella & Belin, 2007; Gainotti, 2014). Specifically, it is possible that FRUs and 

VRUs communicate with each other prior to the PIN stage, in line with the CFVP 

model, and subsequently pass on information to be integrated and stored in the 

PINs, in line with the MP model. So far, the majority of studies have focused either 

on the ‘multimodal’ or on the ‘coupling’ mechanism. Thus, the relative contribution of 

each mechanism to the integration of information from faces and voices remains 

unclear. 

 

Currently, there is limited knowledge on the type of face and voice information 

represented and exchanged between face- and voice-selective regions, and the type 

of information represented in multimodal brain regions during identity recognition. 

The next section will review fMRI studies that examine the neural correlates of 

different types of information in faces and voices, including visual and auditory 

information, gender, and social information. 
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1.3 The informational content of face and voice representations 

 
Faces and voices serve as sources of multiple types of information (Yovel & Belin, 

2013). As visual and auditory stimuli, they convey physical information related to 

their corresponding modalities: faces convey visual properties, such as shape and 

texture (Troje & Bulthoff, 1996), and voices convey auditory properties, such as pitch 

and loudness (Titze, 1989). Furthermore, faces and voices serve as sources of 

person identification, and convey information about physical characteristics of a 

person that distinguish that person from others, such as gender and age (Yovel & 

Belin, 2013). Finally, due to their importance in communication and social 

interactions, faces and voices convey socially-relevant information about a person, 

such as how trustworthy, dominant and attractive they are (McAleer et al., 2014; 

Oosterhof & Todorov, 2008; Sutherland et al., 2013). The ‘special’ nature of faces 

and voices is reflected in the brain (Belin, 2017), which contains specialised neural 

substrates for the processing of both faces and voices, as discussed previously. 

However, despite significant advances in defining face-selective and voice-selective 

brain regions, little is known regarding the type of face and voice information that is 

processed in the different regions. Moreover, while studies have shown that face-

responsive regions can distinguish between different face identities (e.g. Anzellotti et 

al., 2014; Guntupalli et al., 2017), and that voice-responsive regions can distinguish 

between different voice identities (e.g. Bonte et al., 2014; Formisano et al., 2008), 

there is limited knowledge of the type of face or voice information used by different 

regions to distinguish between identities. This section will describe studies that have 

attempted to identify the type of information that is processed in face-selective 

regions, in voice-selective regions, and in regions that overlap with the known 

locations of face-selective and voice-selective regions. These studies are grouped 

into three broad categories, based on the type of face and voice information that was 

their primary focus: physical properties, gender, and social information.  

 

1.3.1 Physical properties 

Faces and voices convey information regarding their visual and auditory properties, 

respectively. This subsection describes evidence linking the FFA, OFA, and STS 

with the processing of visual properties in faces, and evidence linking the TVAs, or 
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regions known to overlap with the TVAs, with the processing of auditory properties in 

voices. 

 

Faces 

It has been proposed that individual faces are represented as locations in a 

multidimensional ‘face space’ that is centred on a ‘prototype’ face, which represents 

the average of all faces encountered during a lifetime (Valentine & Bruce, 1986). 

According to this norm-based coding model (Rhodes, Brennan, & Carey, 1987), the 

more distant an individual face is from the prototype face, the more distinctive it is 

perceived to be (Valentine, 1991). Loffler et al. (2005) examined activity in the FFA in 

response to artificially-generated faces that had been manipulated to have different 

geometric distances from their mean face within a face space. Specifically, these 

faces varied based on head shape, hair line, and the size and location of facial 

features. The authors showed that distinctive faces, i.e. faces that were further from 

the mean in the face space, elicited higher activation in the FFA compared with less 

distinctive faces. However, they also showed that FFA activation in response to 

presentations of faces with different degrees of distinctiveness was reduced for faces 

with the same identity, compared to faces with different identities, suggesting image-

invariant adaptation to identity in the FFA. This finding suggests that, while the FFA 

is sensitive to the degree of physical distinctiveness in faces, it is also sensitive to 

identity information and responds more similarly when different faces depict the 

same person. 

 

The right FFA has been shown to be sensitive to physical differences between 

stimuli regardless of whether these differences result from changes in identity or 

changes in viewpoint (Xu, Yue, Lescroart, Biederman, & Kim, 2009). In an fMRI 

adaptation experiment, Xu et al. (2009) presented participants with pairs of 

artificially-generated faces, presented in sequence, which varied in terms of identity 

and/or viewpoint or were identical. The face pairs were manipulated so that changes 

in identity and changes in viewpoint were equivalent in terms of physical magnitude, 

as determined by the Gabor-Jet model (Biederman & Kalocsai, 1997). This model 

was designed to simulate response properties of cells in area V1, and correlates with 

psychophysical measures of facial similarity (Yue, Biederman, Mangini, Malsburg, & 
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Amir, 2012). Xu et al. (2009) showed that activation in the FFA was higher for face 

pairs that differed in viewpoint or identity (showing release from adaptation), 

compared to face pairs that were identical. Moreover, there was no difference in the 

degree of release from adaptation between changes in identity and changes in 

viewpoint. These findings suggest that the FFA represents the physical similarity 

between faces. However, in contrast to Loffler et al. (2005), this study did not show 

evidence that FFA activity is modulated by face identity.  

 

In a subsequent study by the same group, Xu & Biederman (2010) used a similar 

experimental paradigm to investigate effects of changes in emotional expression and 

viewpoint in the bilateral FFA, OFA and STS. Similar to Xu et al. (2009), face pairs 

were manipulated so that changes in emotional expression and viewpoint were 

equivalent in terms of physical magnitude. The stimuli were pairs of artificially-

generated faces that varied in terms of emotional expression and/or viewpoint, or 

that where identical. In the FFA, the authors showed release from adaptation for 

changes in expression, but not for changes in viewpoint, suggesting that the FFA 

contains viewpoint-invariant representations of identity, in contrast to their previous 

study. This may be due to the use of a bilateral FFA ROI, as opposed to the right 

FFA. No adaptation effects were found in the OFA or the STS for expression or 

viewpoint, suggesting that these regions are not sensitive to physical differences 

between faces.  

 

In a MVPA study, Weibert, Flack, Young, & Andrews (2018) found that individual 

face representations in the FFA, OFA, and STS could be predicted by low-level 

image properties. Across two experiments, the authors presented grey-scale 

photographs of faces that varied in viewpoint and in either identity or emotional 

expression. Image statistics were obtained for each face image using the GIST 

image descriptor (Oliva & Torralba, 2001). The GIST descriptor was developed for 

images of scenes, and describes the spatial structure of images (Oliva & Torralba, 

2001). In this study, the GIST image descriptors were compared between different 

experimental conditions (there were multiple images in each condition), which were 

defined based on combinations of face identities, viewpoints, and emotional 

expressions, to determine their similarity in terms of low-level image properties. For 
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example, correlations were computed between GIST descriptors for pairs of 

conditions featuring faces that had the same identity but were presented from 

different viewpoints, with each viewpoint condition comprising several different 

images of the face of that identity presented from the same viewpoint. Weibert et al. 

(2018) showed that the similarity between the brain representations of different face 

conditions was predicted by the similarity between these conditions on their low-level 

image properties in the FFA, OFA, and STS. This study suggests that face-selective 

regions primarily use low-level image properties to distinguish between different face 

characteristics, such as viewpoint, identity, and expression. The finding of sensitivity 

to low-level visual properties in the OFA and STS is in contrast to Xu & Biederman 

(2010), who found no effect of physical differences between faces in these regions. 

Aside from the methodological differences of the two studies, this discrepancy may 

be due to Weibert et al. (2018) using face photographs, which are more 

naturalistically variable, and therefore distinguishable from each other, compared 

with artificially-generated faces, such as those used by Xu & Biederman (2010). 

 

Another MVPA study compared different computational models of the visual system 

with representations of individual faces in the FFA (Carlin & Kriegeskorte, 2017). A 

sigmoidal-ramp tuning model and a Gaussian exemplar model were generated 

based on coordinates of faces in a PCA face space. This face space was computed 

based on four artificially-generated face identities with three different levels of 

distinctiveness. The sigmoidal-ramp tuning model was thought to simulate the 

processing of extreme visual features in area V4, whereas the Gaussian exemplar 

model was designed to simulate norm-based coding of individual faces (Valentine, 

1991). Furthermore, a Gabor-filter model was computed based on grey-scale pixel 

intensities in the images, thought to simulate processing in area V1. Carlin & 

Kriegeskorte (2017) showed that all three models explained variance in the FFA 

activation in response to individual faces, but the sigmoidal-ramp tuning model and 

the Gabor-filter model performed better than the Gaussian exemplar model. This 

study therefore demonstrates that the FFA uses physical image properties to 

distinguish between individual faces. 

 

Voices 
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A norm-based coding mechanism, equivalent to the one proposed for faces, has also 

been proposed for voices, whereby individual voices are represented within a ‘voice 

space’ based on their distance from a prototype voice (Latinus & Belin, 2011; 

Lavner, Rosenhouse, & Gath, 2001). Latinus, McAleer, Bestelmeyer, & Belin (2013) 

investigated whether the distance of individual voices to a prototype voice modulates 

activity in the TVAs. The authors presented participants with 64 male and female 

voices speaking the syllable “had”. Separately for male and female voices, voices 

were represented in a three-dimensional voice space along the dimensions of 

fundamental frequency (f0), formant dispersion, and harmonics-to-noise ratio. 

Prototype male and female voices were created by morphing together all voices for 

each gender. The distance of each individual voice to the prototype was correlated 

with perceived distinctiveness. Latinus et al. (2013) found that activity in the TVAs 

was higher for distinctive voices, i.e. voices that with larger distances to the mean, 

compared with less distinctive voices. This result was replicated in a separate 

experiment using different participants and stimuli. These findings suggest that voice 

distinctiveness is represented in the TVAs in a similar way to face distinctiveness in 

the FFA.  

 

Von Kriegstein, Smith, Patterson, Ives, & Griffiths (2007) investigated the neural 

correlates of human vocal tract length (VTL), an acoustic parameter that signals 

body size and is related to the filtering of sound through the vocal tract, i.e. the 

pharynx, mouth, and nose (Fitch, 2000). The authors manipulated a single 

vocalisation (the vowel ‘a’) from one speaker to simulate three speakers with 

different VTLs, and did the same for two control sounds featuring a bullfrog croak 

and a French horn note. Human voices and the control sounds were presented in 

separate blocks, and each block presented either the exact same sound or sounds 

featuring different VTLs. To reveal regions that are sensitive to changes in VTL, 

activation in response to blocks with varying VTL was contrasted with activation in 

response to blocks with consistent VTL. To additionally show regions that process 

VTL information in the human voice, results were compared between human voices 

and the control sounds. Von Kriegstein et al. (2007) showed that a region in the left 

posterior STG was significantly more sensitive to changes in VTL in the human voice 

compared with the control sounds. This finding suggests that the left posterior STG 
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processes VTL information in human voices. While this study did not demonstrate 

voice-selectivity in this region using a conventional voice localiser, the TVAs are 

known to contain the left STG (Pernet et al., 2015), and therefore may also be 

sensitive to VTL information.  

 

In a later study by the same group, von Kriegstein, Smith, Patterson, Kiebel, & 

Griffiths (2010) used a similar paradigm as von Kriegstein et al. (2007) to probe 

whether the previously identified region in the posterior STG that showed sensitivity 

to VTL is also involved in speech processing. The authors presented participants 

with sequences of spoken syllables that showed either constant or variable VTL, and 

asked them to perform either a speech recognition task or a control task (involving 

judgements of loudness). In the speech recognition task participants judged whether 

each syllable was the same as the previous one. To identify regions that process 

both VTL and speech, the authors compared activation in response to syllable 

sequences with variable VTL to activation in response to syllable sequences with 

fixed VTL, and additionally compared responses during the speech recognition task 

and the control task. The results revealed a region in the posterior STS/STG that 

was sensitive to VTL, in line with their previous study (von Kriegstein et al.,2007), 

and that also responded more during the speech recognition task that to the control 

task. Therefore, the posterior STS/STG appears to process both VTL and speech 

information. However, it is an open question whether this finding extends to the 

voice-selective left TVA.  

 

Finally a MVPA study investigating representations of voice identity (described in 

detail in section 1.1.2) showed that regions of the bilateral STS/STG could  

discriminate between different speakers and between different vowel sounds 

(Formisano et al., 2008). Although these regions where not defined based on voice 

selectivity, the voice-selective TVAs are known to include the STS/STG. To 

determine what type of information was associated with speaker discrimination and 

vowel discrimination in these regions, Formisano et al. (2008) computed distances 

between the activity patterns in response to different speakers and different vowel 

sounds, and correlated the obtained distances with measured distances between the 

stimuli on low-level acoustic properties. Specifically, the authors extracted the voice 
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fundamental frequency (f0), i.e. voice pitch, and the first two formant frequencies (f1, 

f2) from the voice stimuli. They showed that speaker identity discrimination was 

associated mostly with f0, whereas vowel sound discrimination was associated 

mostly with f1 and f2. These findings suggest that the bilateral STS/STG uses low-

level acoustic information to distinguish between different voices. However, it is not 

known whether these findings also apply to the voice-selective portions of the 

STS/STG.  

 

Conclusion 

The FFA has been associated with the processing of visual information faces, 

including face distinctiveness (Loffler et al., 2005) and low-level visual properties 

described by the Gabor-Jet model (Xu & Biederman, 2010; Xu et al., 2009), the 

GIST image descriptor model (Weibert et al., 2018), and computational models 

relating to the location of faces in face space and image pixel values (Carlin & 

Kriegeskorte, 2017). Out of these studies, only two investigated additional face-

selective regions, and they showed inconsistent findings (Weibert et al., 2018; Xu & 

Biederman, 2010). While Weibert et al. (2018) found that the face-selective OFA and 

STS used low-level information to distinguish between faces, Xu & Biederman 

(2010) did not show any modulation of activity in these regions related to physical 

differences between faces. This difference in findings may be due to Weibert et al. 

(2018) using naturalistically variable, as opposed to artificially-generated, face 

stimuli. Moreover, Weibert et al. (2018) used a MVPA approach, which may be more 

suited to detect sensitivity to physical stimulus properties in face-selective regions 

compared with adaptation designs, such as the one used by Xu & Biederman (2010). 

For voices, one study associated the voice-selective TVAs with the processing of 

voice distinctiveness (Latinus et al., 2013). Other studies have shown evidence of 

the processing of auditory information in voices in regions of the STS/STG, including 

VTL (von Kriegstein et al., 2007, 2010), vocal pitch, and voice formants (Formisano 

et al., 2008). While the STS/STG is known to overlap with the TVAs (Pernet et al., 

2015), these studies did not use a voice localiser to explicitly define the TVAs, and 

therefore it cannot be assumed that the findings also apply to voice-selective 

regions. Therefore, there is limited information on the computations of the TVAs 

themselves. Finally, it should be noted that the studies presented in this subsection, 
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which the exception of Weibert et al. (2018), used artificially-generated face images 

or short vocalisations as stimuli. Given that these stimuli weakly resemble the faces 

and voices encountered in everyday life, it is an open question whether the observed 

representations of physical properties in face-selective and voice-selective regions 

would also apply to more naturalistic tokens of faces and voices, such as colour face 

photographs that are unconstrained in terms of low-level image properties, and 

longer recordings of speech.  

 

1.3.2 Gender 

Information about a person’s gender is conveyed by both their face and their voice. 

This subsection describes evidence suggesting that multiple face-selective regions, 

including the FFA, OFA, and pSTS, process information relating to face gender, and 

that regions of the STS/STG that are known to overlap with the TVAs process 

information relating to voice gender. 

 

Faces 

To investigate brain responses to different levels of gender information in faces, 

Freeman, Rule, Adams, & Ambady (2010) presented participants with artificially-

generated grey-scale faces that had been morphed between the two genders so that 

they appeared highly feminine at one end of a continuum of faces, highly masculine 

at the other end of the continuum, and androgynous in the middle. The authors found 

that responses in the bilateral FFA increased as faces approached the ends of the 

continuum, i.e. as they became more feminine or masculine as opposed to 

androgynous. A similar finding of stronger responses in the FFA to very masculine 

and very feminine faces, compared to faces with average levels of masculinity-

femininity, is reported by Mattavelli, Andrews, Asghar, Towler, & Young (2012), who 

also presented images of faces that had been morphed along a masculinity-

femininity continuum. In addition, Mattavelli et al. (2012) showed a similar response 

pattern in the bilateral OFA, amygdala, and right pSTS. In the same study, Mattavelli 

et al. (2012) also found stronger responses to very trustworthy and very 

untrustworthy faces, compared with faces showing average levels of trustworthiness, 

in the same regions (this study is discussed in more detail in section 1.3.3). 

Therefore, the authors proposed that face-selective regions may have responded to 
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the facial distinctiveness that resulted from the gender manipulation, rather than to 

gender itself. Given that faces with extreme levels of masculinity and femininity are 

likely to be perceived as more physically distinctive than faces with average levels of 

masculinity-femininity in everyday life, it is possible that influences of facial 

masculinity-femininity on brain activity cannot be dissociated from influences of face 

distinctiveness. 

 

Two MVPA studies investigated the ability of face-selective regions to distinguish 

between individual faces based on their gender (Contreras, Banaji, & Mitchell, 2013; 

Kaul, Rees, & Ishai, 2011). In a study presenting a large number of grey-scale 

photographs of faces (320), Kaul et al. (2011) showed above-chance classification 

accuracy of male and female faces in multiple face-selective regions: the FFA, OFA, 

pSTS, inferior frontal gyrus, orbitofrontal cortex (OFC), and insula. In a study using a 

MVPA correlation approach, Contreras et al. (2013) presented grey-scale 

photographs of male and female faces of white or black race, and found that 

multivoxel patterns were more similar among faces with the same gender than 

among faces with different genders (regardless of race) in the bilateral FFA, but not 

in the OFA and STS (other face-selective regions were not defined). Taken together, 

the findings of these two studies agree that the FFA uses gender information to 

distinguish between different faces, but are inconsistent regarding the OFA and 

pSTS. This may be due to the different methodological approach used in the two 

studies, as well as the large number of stimuli presented by Kaul et al. (2011). In 

these studies the discrimination between male and female faces is unlikely to be 

confounded by distinctiveness. However, male and female faces differ systematically 

based on features of the face such as the eyebrows, nose, and chin (Bruce et al., 

1993), and therefore it is likely that gender discrimination is confounded by 

systematic physical differences between male and female faces. 

 

Voices 

The majority of studies on the neural correlates of voice gender have focused on 

comparing brain responses to male and female voices. While these studies did not 

explicitly define voice-selective regions, some implicated regions that are known to 

overlap with the TVAs. For example, Sokhi, Hunter, Wilkinson, & Woodruff (2005) 
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and Lattner, Meyer, & Friederici (2005) found stronger responses to female voices, 

compared with male voices, in regions of the right STS/STG. One study addressed 

the possibility that modulations in brain activity associated with gender are due to 

differences in vocal pitch between male and female voices (Weston, Hunter, Sokhi, 

Wilkinson, & Woodruff, 2015). Weston et al. (2015) presented participants with pitch-

altered male voices (sentences) that were raised to a similar pitch level as typical 

female voices, and pitch-altered female voices that were lowered to a similar pitch 

level to typical male voices, in addition to unaltered male and female voices. They 

then compared the combined brain activation to original and pitch-altered female 

voices with the combined activation to original and pitch-altered male voices, and 

revealed a stronger response to female voices compared to male voices in the upper 

bank of the left STS. Importantly, due to the inclusion of pitch-altered voices, the 

male and female voice conditions had a similar average pitch level. Therefore, the 

left STS response is unlikely to be due to differences in pitch. Finally, to test whether 

this response was due to the psychological perception of gender, the authors also 

presented gender-ambiguous voices, and compared activation in response to voices 

that were categorised as male and voices that were categorised as female by 

participants during a task. This analysis did not reveal any significant differences in 

the left STS or any other region between perceived-female and perceived-male 

voices, suggesting that the response in the left STS cannot be explained by the 

psychological perception of gender. Instead, the authors speculated that the higher 

response to female voices in the left STS may due to acoustic measures related 

voice timbre, which is a measure of voice quality that is considered to be 

independent from voice pitch (Cleveland, 1977).  

 

Finally, Charest, Pernet, Latinus, Crabbe, & Belin (2013) investigated 

representations of voice gender using an adaptation paradigm with voice stimuli 

(syllables) that had been morphed along male-to-female continua, in a similar way to 

the faces in Freeman et al. (2010) and Mattavelli et al. (2012). They showed that 

responses in the right aSTS increased linearly as the physical difference in gender 

between consecutive stimuli increased (i.e. as the stimuli were further apart along 

the gender continuum). This finding suggests that the right aSTS is sensitive to 

gender information in voices. Although this region overlapped with the right TVA, 
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which was identified separately using a voice localizer, neither of the TVAs showed a 

significant adaptation effect, despite a trend in that direction. Therefore, it is possible 

that a sub-region of the TVAs, and not the TVAs themselves, may contain 

representations of voice gender. However, in a similar way to faces, it is likely that 

very masculine and very feminine voices are perceived as physically distinctive, and 

therefore influences of vocal masculinity-femininity on brain activity cannot be 

dissociated from influences of voice distinctiveness. 

 

Conclusion 

Studies have shown evidence that face-selective regions respond more to faces with 

extreme levels of masculinity or femininity (Freeman et al., 2010; Mattavelli et al., 

2012). Moroever, a region in the right aSTS, which overlaps with the right TVA, 

responds more to voices with extreme levels of masculinity or femininity (Charest et 

al., 2013). However, in this review I argued that these findings may reflect a 

sensitivity to the facial and vocal distinctiveness in terms of physical characteristics, 

which results from extreme levels of masculinity and femininity in faces and voices. 

For faces, two MVPA studies showed that responses to male and female faces can 

be distinguished in mutliple face-selective regions, including the FFA (Contreras et 

al., 2013; Kaul et al., 2011), OFA, pSTS, inferior frontal gyrus, OFC, and insula (Kaul 

et al., 2011). However, given that differences in gender are confounded with 

systematic differences in visual appearance (Bruce et al., 1993), these studies 

cannot rule out the possibility that male and female faces are being distinguished in 

these regions based on their physical characteristics. For voices, studies have 

shown that regions of the STS/STG, which is known to overlap with the TVAs 

(Pernet et al., 2015), respond more to female voices compared with male voices 

(Lattner et al., 2005; Sokhi et al., 2005; Weston et al., 2015). One of these studies 

showed that the STS/STG response could not be explained by differences in vocal 

pitch between male and female voices, or by the psychological perception of gender 

(Lattner et al., 2005). Lattner et al. (2005) speculated that responses to gender may 

be explained by differences in voice quality between male and female voices. In 

sum, this review of studies investigating the neural correlates of face and voice 

gender suggests that face-selective and voice-selective regions may be sensitive to 

physical face/voice characteristics that differ systematically between male and 
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female faces/voices, and which cannot be dissociated from the perception of gender 

in these regions. 

 

1.3.3 Social information 

Both faces and voices serve as sources of socially-relevant information about people 

(Yovel & Belin, 2013). Studies have shown that both faces and voices elicit 

impressions of social traits such as trustworthiness, attractiveness, and dominance 

(McAleer, Todorov, & Belin, 2014; Oosterhof & Todorov, 2008; Sutherland et al., 

2013; Zuckerman & Driver, 1989). The majority of studies investigated the social 

evaluation of the faces and voices of unfamiliar people, and showed that impressions 

of faces and voices are largely consistent across participants even after very brief 

exposures (McAleer et al., 2014; Oosterhof & Todorov, 2008) and are formed 

automatically (Ritchie, Palermo, & Rhodes, 2017). Furthermore, these judgments 

seem to be associated with variations in facial and vocal features, such as face 

shape and vocal pitch (McAleer et al., 2014; Robinson, Blais, Duncan, Forget, & 

Fiset, 2014; Todorov & Oosterhof, 2011). This subsection describes evidence 

suggesting that activity in the amygdala, FFA, OFA, and pSTS is modulated by 

different levels of perceived traits in faces, and that activity in regions that overlap 

with the TVAs is modulated by different levels of attractiveness in voices. 

 

Faces 

Todorov & Engell (2008) compared brain activity in response to photographs of faces 

with behavioural ratings of the faces on 14 social traits. The authors localised the 

bilateral amygdala based on anatomical masks, and face-responsive regions were 

defined by contrasting activation in response to the faces with baseline. Although the 

amygdala was not defined based on face-selectivity in this study, face-selectivity has 

been identified previously in this region (Fox et al., 2009). The face-responsive 

fusiform gyrus region was consistent with the known location of the FFA, but none of 

the other regions overlapped with known face-selective regions. Todorov & Engell 

(2008) showed that activation in the bilateral amygdala and fusiform gyrus was 

negatively correlated with ratings of positive traits (e.g. trustworthy, attractive), and 

positively correlated with ratings of negative traits (e.g. threatening, mean). 

Moreover, after extracting a positive-negative valence component from a principal 
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component analysis of the trait ratings, the authors found significant correlations 

between this component and activity in both amygdala and the fusiform gyrus. In 

addition, when controlling for the variance in the ratings of each trait that was 

explained by the valence component, correlations between the traits and brain 

activity ceased to be significant. These findings suggest that the amygdala and 

fusiform gyrus are sensitive to a positive-negative valence dimension in faces. 

However, Todorov & Engell (2008) also showed that after partialling out the variance 

explained by the bilateral amygdala, the correlation between the fusiform gyrus and 

the valence dimension were no longer significant. Based on this finding, the authors 

proposed that activity in the fusiform gyrus is modulated by amygdala activity, and 

that facial valence is primarily processed in the amygdala.  

 

Further evidence supporting a negative relationship between amygdala activation 

and facial valence, in which the amygdala is more activated by untrustworthy 

compared with trustworthy faces, has been revealed by studies that used 

participants’ ratings of faces on social judgements as parametric modulators in the 

analysis of response magnitude to faces in the brain (Engell, Haxby, & Todorov, 

2007; Todorov, Baron, & Oosterhof, 2008; Winston et al., 2002). In this approach, for 

each participant, the modelling of the brain response to each stimulus includes the 

modulation of their rating of the stimulus, and then random effects analysis is 

conducted across all participants. Moreover, two meta-analyses have shown 

consistent involvement of the amygdala in the processing of facial trustworthiness 

and attractiveness (Bzdok et al., 2011; Santos, Almeida, Oliveiros, & Castelo-

Branco, 2016). Bzdok et al., 2011 conducted an activation likelihood estimation 

meta-analysis of 16 studies involving neural correlates of facial trustworthiness or 

attractiveness, whereas Santos et al., 2016 considered 20 studies involving 

trustworthiness only, using a meta-analysis of effect sizes in addition to activation 

likelihood estimation analysis. Finally, activation of the amygdala in response to 

untrustworthiness and unattractiveness was highlighted in a multi-level kernel 

density meta-analysis by Mende-Siedlecki, Said, & Todorov (2013), who examined 

11 studies that contrasted faces with negative valence with faces with positive 

valence in terms of trustworthiness or attractiveness.  
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Findings of a linear relationship between valence and amygdala activation have 

been brought into question by evidence showing quadratic effects of facial 

trustworthiness and attractiveness in the amygdala, with stronger responses to either 

untrustworthy or trustworthy faces compared with medium-trustworthy faces 

(Freeman, Stolier, Ingbretsen, & Hehman, 2014; Mattavelli et al., 2012; Said, Baron, 

& Todorov, 2009; Said, Dotsch, & Todorov, 2011; Todorov et al., 2008; Todorov, 

Said, Oosterhof, & Engell, 2011), and stronger responses to attractive and 

unattractive faces compared with average-attractive faces (Winston, O’Doherty, 

Kilner, Perrett, & Dolan, 2007). These findings raise the possibility that the amygdala 

may be responding to the facial distinctiveness that results from the extreme 

presence or absence of social traits. 

 

Evidence that the amygdala responds to face distinctiveness has been provided by 

two studies that demonstrated that the amygdala shows similar quadratic responses 

to valence and to non-social face dimensions (Mattavelli et al., 2012; Said et al., 

2011). Mattavelli et al. (2012) investigated the neural correlates of facial 

trustworthiness and face gender by using face stimuli that were manipulated to vary 

either in terms of trustworthiness or in terms of gender. Specifically, the authors first 

collected trustworthiness ratings on a large number of male and female faces (500) 

obtained from the Internet, which were unconstrained in terms of age, pose, and 

expression. Based on these ratings, for each gender the authors created an average 

trustworthy and an average untrustworthy face. The final stimuli were created by 

morphing these prototype faces to create four face continua for four different levels 

of trustworthiness, consisting of faces that varied in terms of gender, and four face 

continua for four different levels of masculinity-femininity, consisting of faces that 

varied in terms of trustworthiness. Importantly, an equal amount of morphing was 

applied to individual faces in the valence continua and in the gender continua, so 

that faces in the same position in the continua were equally distinct from the 

prototype faces. In the experiment, faces from each continuum were presented in 

separate blocks. Mattavelli et al. (2012) identified face-selective ROIs in the 

amygdala, FFA, OFA, and right pSTS, and tested for linear or quadratic responses to 

trustworthiness and gender within these regions. The results of Mattavelli et al. 

(2012) showed that the amygdala, FFA, OFA, and right pSTS showed stronger 
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quadratic responses, compared with linear responses, for both trustworthiness and 

gender. Specifically, activation in these regions was higher in response to highly 

trustworthy, untrustworthy, masculine, and feminine faces, compared with faces 

showing medium levels of trustworthiness and masculinity-femininity. No differences 

were found when comparing responses to trustworthiness and responses to gender. 

Given that faces in both the trustworthiness and gender continua were equally 

distinct from the average face these findings strongly suggest that the amygdala is 

involved in the processing of facial distinctiveness, as opposed to valence or gender 

per se. It should be noted that the majority of previous studies did not define the 

amygdala based on face-selectivity, and also did not explicitly investigate responses 

to valence in other face-selective regions. The finding of sensitivity to face 

distinctiveness in the FFA is in line with the previously described study by Loffler et 

al. (2005). Moroever, the findings of Mattavelli et al. (2012) suggest that the OFA and 

pSTS may also be sensitive to face distinctiveness in terms of physical features. 

 

Similar findings to Mattavelli et al. (2012) regarding quadratic relationships between 

activity in the amygdala and FFA for both social and non-social dimensions were 

reported by Said et al. (2011). This study used a computational model of social traits 

in faces (Oosterhof & Todorov, 2008) to manipulate artificially-generated faces on 

valence and on an undefined dimension orthogonal to valence, which was found to 

be less related to trait judgements of the faces compared with valence. Similar to 

Mattavelli et al. (2012), the faces in the two dimensions were equated based on their 

distance to an average face. The results showed a quadratic response to both 

valence and the control (non-social) dimension in the FFA and amygdala. Taken 

together, the findings of Mattavelli et al. (2012) and Said et al. (2011) suggest that 

both the amygdala and the FFA may be sensitive to facial distinctiveness regardless 

of the dimension that is being manipulated. 

 

Voices 

One study investigated the effect of different levels of perceived attractiveness in 

voices on response magnitude in voice-responsive regions (Bestelmeyer et al., 

2012). Bestelmeyer et al. (2012) presented participants with voices speaking the 

sound “ah”, which had been previously rated on attractiveness by a separate group 
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of participants, while they performed an unrelated task in the scanner. The authors 

found a negative correlation between attractiveness ratings and responses in the 

right inferior frontal gyrus and bilateral STS/STG, with stronger responses to voices 

as perceived vocal attractiveness decreased. Bestelmeyer et al. (2012) 

demonstrated that the STS/STG overlapped with the TVAs, which were defined 

separately using a voice localiser; however, responses to voice attractiveness were 

not directly tested in the TVAs. Although the inferior frontal gyrus is not commonly 

defined a voice-selective region, voice-selective responses have been observed 

previously in the inferior prefrontal cortex (Pernet et al., 2015). To determine whether 

the sensitivity of the STS/STG and inferior frontal gyrus to vocal attractiveness could 

be explained by variations in acoustic features, the authors repeated their analysis 

while controlling for variance attributed to the distance of each voice to the average 

voice for each gender, and to the harmonics-to-noise ratio of each voice, which is a 

measure of voice quality. This further analysis showed that acoustic measures 

explained much of the variance for the STS/STG, but not for the inferior frontal 

gyrus. This suggests that the inferior frontal gyrus processes higher-level perceptual 

information in voices that cannot be fully explained by the variation in acoustic 

features. In contrast, the STS/STG, and potentially the TVAs, may primarily process 

lower-level acoustic information that is associated with differences in vocal 

attractiveness.  

 

Conclusion 

Multiple studies have implicated the amygdala in the processing of valence 

information in faces (Bzdok et al., 2011; Mende-Siedlecki et al., 2013; Santos et al., 

2016). However, findings showing that the face-selective amygdala shows stronger 

responses to physically distinctive faces compared with average faces, regardless of 

whether this distinctiveness results from the extreme presence or absence of a 

social or a physical characteristic (Mattavelli et al., 2012; Said et al., 2011), suggest 

that the amygdala may primarily respond to physical distinctiveness in faces. Similar 

findings were also demonstrated in the FFA, OFA, and the pSTS (Mattavelli et al., 

2012; Said et al., 2011), suggesting that these regions show a similar response 

profile to the amygdala. For voices, one study showed that regions of the STS/STG 

that overlapped with the TVAs were sensitive to the acoustic sound properties that 
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were associated with vocal attractiveness (Bestelmeyer et al., 2012). However, the 

processing of social information in the TVAs has not directly been investigated. 

Moreover, to the best of my knowledge, no studies have investigated the ability of 

face-selective and voice-selective regions to discriminate between individual faces or 

voices based on perceived social information. 

 

1.3.4 Multimodal brain regions 

Little is known regarding the type of face or voice information that is processed in 

multimodal brain regions that respond to both faces and voices. Faces and voices 

often convey similar information about people, including physical characteristics such 

as masculinity-femininity (Smith, Dunn, Baguley, & Stacey, 2016a), and social 

characteristics such as trustworthiness, dominance, and attractiveness (McAleer et 

al., 2014; Oosterhof & Todorov, 2008; Sutherland et al., 2013; Zuckerman & Driver, 

1989). It is possible that this information is processed in separate regions for 

separate modalities, even if using similar coding principles (Yovel & Belin, 2013), 

and the evidence reviewed above suggests that this may be the case at least to 

some extent in face- and voice-responsive regions. However, it is possible that some 

of these characteristics are processed in the same brain regions for both modalities, 

such that a multimodal region would represent this information independently of input 

modality. Two previous studies suggest that this may be the case, in terms of 

representations of emotion (Peelen, Atkinson, & Vuilleumier, 2010) and positive-

negative valence (Chikazoe, Lee, Kriegeskorte, & Anderson, 2014).  

 

Peelen et al. (2010) showed that activity patterns in the medial prefrontal cortex and 

the left STS in response to faces, voices, and bodies expressing the same emotion 

were more similar to each other than to activity patterns in response to the same 

classes of stimuli expressing different emotions. This finding is in agreement with a 

behavioural study showing that emotions are conceptualised in similar way 

regardless of whether they are perceived through the face or the voice (Kuhn, 

Wydell, Lavan, McGettigan, & Garrido, 2017). Using similar methods to Peelen et al. 

(2010), Chikazoe et al., (2014) found that brain activity patterns in the medial and 

lateral OFC in response to pleasant images of scenes and tastes were more similar 

to each other than to activity patterns to unpleasant images and tastes (and vice 
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versa). Notably, the authors also found modality-specific valence representations in 

the ventral temporal cortex and in the anterior insula. Taken together, these studies 

indicate that the brain contains both crossmodal and modality-specific 

representations, and that crossmodal representations are likely to be found in 

multimodal brain regions such as the pSTS and OFC. 

 

1.3.5 Summary 

The computations of face-selective and voice-selective regions have been 

associated with physical face/voice properties, gender, and social information. 

However, the current evidence suggests that the face-selective FFA, OFA, pSTS, 

and amygdala may primarily process visual face properties, and that the TVAs may 

be mainly involved in the processing of acoustic voice properties. Specifically, the 

above review showed that many of the findings associating face-selective and voice-

selective regions with the processing of gender and social information could 

potentially be explained by physical face and voice properties, such as 

distinctiveness in terms of physical features. One limitation of the described studies 

is that the majority focused on investigating one type of face or voice information 

(with the exceptions of Mattavelli et al., 2012 and Said et al., 2011). Therefore, there 

is a lack of studies using the same experimental paradigm and stimuli to investigate 

the processing of different types of face/voice information in different brain regions. 

As demonstrated by Mattavelli et al. (2012) and Said et al. (2011), such studies can 

directly compare brain responses to different types of information.  

 

An important limitation concerning studies investigating neural correlates of 

information extracted from the voice is that many studies did not independently 

define the TVAs using a voice localiser (with the exceptions of Charest et al., 2013 

and Latinus et al., 2013). Therefore, even though many findings involved regions that 

are known to overlap with the TVAs, it is not certain that these findings would apply 

to voice-selective regions. For studies investigating the processing of physical 

properties in face-selective and voice-selective regions, one concern is the use of 

face and voice stimuli with low variability. It is not known whether findings from these 

studies would apply to more naturalistically variable face and voice tokens that would 

more resemble the faces and voice encountered in everyday life. Furthermore, the 
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majority of studies discussed in this review used univariate fMRI methods to 

investigate modulations in brain activity that are associated with information 

extracted from faces and voices. While univariate fMRI methods can reveal brain 

regions that are sensitive to a given type of information in faces or voices, they are 

not able to show whether such regions use this information to distinguish between 

individual faces or voices. Therefore, less is known regarding the type of information 

that may be used by different face-selective and voice-selective regions to 

discriminate individual faces and voices. Finally, virtually nothing is known regarding 

the informational content of face and voice representations in multimodal brain 

regions that respond to both faces and voices, and it is possible that these regions 

represent information that can be extracted from both the face and the voice.   

 

The next section focuses on how information that is extracted from a person’s face 

relates to information extracted from their voice in terms of behavioural face and 

voice judgements, and how this relationship compares between familiar and 

unfamiliar people. 

 

1.4 The relationship between perceived information from faces and 

voices 

 
The previous section discussed the possibility of the existence of crossmodal 

representations of face and voice information that is perceived from both the face 

and the voice, such as physical characteristics and social traits (Yovel & Belin, 

2013), in multimodal brain regions. If these representations exist at the level of 

individual person identities, it would require that the information perceived from a 

person’s face should be consistent with the information perceived from their voice. 

For example, in order for a person’s face and voice to elicit similar representations in 

a brain region that responds to trustworthiness, their face and voice should also elicit 

similar behavioural evaluations of trustworthiness. Regarding physical person-

specific information, it has been shown that faces and voices convey highly 

consistent (r ≥.70) information regarding masculinity-femininity, health and height 

(Smith et al., 2016a). Specifically, Smith et al. (2016a) compared ratings of unfamiliar 

faces and voices on these characteristics and showed that they were highly 
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correlated across the two modalities. However, little is known regarding the 

relationship between social information perceived from the face and the voice of the 

same person. The majority of studies investigating the social evaluation of faces and 

voices have focused on one of the two modalities, and it is not clear whether the face 

and voice of the same person convey consistent information regarding the social 

traits of that person.  

 

For unfamiliar people, faces and voices cannot be associated with each other based 

on person-specific semantic knowledge, and a small number of studies that have 

compared ratings of faces to ratings of voices of unfamiliar people have shown 

largely inconsistent results. The majority of these studies have focused on 

judgements of attractiveness, and have shown weak to moderate (.20-.59) 

correlations between face and voice ratings which are often dependent on stimulus 

and/or participant gender, with some finding correlations for male participants rating 

female stimuli (Abend, Pflüger, Koppensteiner, Coquerelle, & Grammer, 2015; 

Valentova et al., 2017; Wells, Baguley, Sergeant, & Dunn, 2013), or for both genders 

rating opposite-sex stimuli (Lander, 2008). Other studies found correlations between 

face and voice attractiveness ratings when including stimuli of both genders in their 

analysis, but these correlations were no longer significant when splitting the analysis 

by gender (Rezlescu et al., 2015; Saxton, Burriss, Murray, Rowland, & Craig 

Roberts, 2009). Lastly, one study found no relationship between face and voice 

ratings on attractiveness (Oguchi & Kikuchi, 1997). Findings in regard to dominance 

are contradictory, whith one study finding a modate negative correlation (-.52) 

between face and voice ratings in male participants (Rezlescu et al., 2015), and 

another finding a low positive correlation (.37) for perceived threat potential, a 

component derived from ratings of dominance, strength, and body size for 

participants of both genders rating male stimuli (Han et al., 2017). Finally, in regard 

to trustworthiness, one study showed a moderate correlation (.47) between face and 

voice ratings, that was, however, no longer significant when male and female stimuli 

were analysed separately (Rezlescu et al., 2015). 

 

A potential issue affecting the interpretation of findings relating the social evaluation 

of the face and voice in unfamiliar people is that, even within each modality, 
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judgments may not be consistent for different instances of the face or voice of the 

same person.  Studies have shown that the variance between the ratings of different 

face photographs of the same person on social judgements is equal or larger than 

the variance between ratings of different face identities that have been averaged 

across all photographs of each person’s face (Sutherland, Young, & Rhodes, 2017; 

Todorov & Porter, 2014). Specifically, different images of the same person’s face are 

evaluated differently, perhaps due to cues extracted from changeable aspects of the 

face, such as emotional expression and face viewpoint (Sutherland et al., 2017). In 

contrast, in regard to voices, Rezlescu et al., (2015) found moderate to high 

correlations between ratings of different vocalisations spoken by the same speakers 

on social judgements. However, Rezlescu et al. (2015) used vowel sounds as 

stimuli, and it is not known whether the evaluation of speech stimuli with longer 

durations (e.g. sentences), which better capture the natural variability in voices that 

we encounter in everyday life (Lavan, Burton, et al., 2018), would also be consistent 

across different tokens from the same speaker. Ultimately, given the variability in 

ratings of different images of the same face within modality, it is highly likely that 

variability in ratings of different face and voice tokens from the same person across 

modalities would be even greater, and may account in part for the inconsistencies 

between different studies.  

 

It is possible that the different nature of the cues extracted from unfamiliar faces and 

voices results in the formation of largely independent associations between faces 

and voices and social traits. However, a second possibility is that, through the 

experience of other people in everyday life, joint associations are formed between 

specific facial and vocal features, such as face shape and voice pitch, and certain 

social traits, such as trustworthiness or dominance. Over and Cook (2018) recently 

proposed that trait evaluations of faces reflect mappings between locations in ‘face 

space’ and locations in ‘trait space’ that are learned through experience. For 

example, different encounters with people whose faces are a certain shape and who 

also display a certain trait can lead to an association between that particular face 

shape and trait. Based on Over and Cook’s (2018) framework, it seems plausible 

that people could also learn associations between ‘voice space’ and ‘trait space’, 

and, given that exposure to faces and voices is usually concurrent during social 
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interactions, people could additionally learn joint associations of facial features and 

vocal features with their corresponding traits. Thus, the evaluation of a person’s face 

would be similar to the evaluation of their voice because of the knowledge that these 

particular face and voice features typically co-occur with certain traits. For example, 

if people perceived as dominant tend to have faces with a large jaw and low-pitched 

voices, both of these features will be associated with dominance.  

 

Certain face and voice features may co-occur across different people because they 

reflect physical characteristics of a person such as masculinity-femininity, health, and 

height, that are conveyed concordantly by both the face and the voice (Smith et al., 

2016a). Moreover, social judgements of faces and voices have been associated with 

some of these characteristics. For example, dominance has been associated with 

masculinity in both voices (McAleer et al., 2014) and faces (Oosterhof & Todorov, 

2008; Sutherland et al., 2013), and masculinity itself has been associated with 

influences of testosterone on facial appearance (Penton-Voak & Chen, 2004) and 

voice pitch (Dabbs & Mallinger, 1999; Evans & Davis, 2015). Therefore, it is likely 

that a person with high levels of testosterone will have a masculine facial and vocal 

appearance, and that both the face and voice of such a person would be evaluated 

as dominant. For attractiveness, evaluations of both faces and voices have been 

negatively associated with fluctuating asymmetry (Gangestad, Thornhill, & Yeo, 

1994; Hughes, Harrison, & Gallup, 2002), a measure of the extent to which bilateral 

external and internal body structures are symmetric (Van Valen, 1962), and which is 

considered an indicator of health (Thornhill & Moller, 1997). In sum, it is likely that 

some social judgements are derived, at least in part, from physical characteristics 

that are conveyed by both the face and the voice (Smith et al., 2016a). This may 

encourage the learning of associations between facial features, vocal features, and 

social traits through experience.  

 

Previous work investigating the relationship between the social evaluation of the face 

and the voice (Abend et al., 2015; Han et al., 2017; Lander, 2008; Oguchi & Kikuchi, 

1997; Rezlescu et al., 2015; Saxton et al., 2009; Valentova et al., 2017; Wells et al., 

2013) and the evaluation of physical person characteristics from faces and voices 

(Smith et al., 2016a) has used stimuli from unfamiliar people, and therefore virtually 
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nothing is known regarding the relationship between information extracted from a 

familiar person’s face and the information extracted from their voice. For familiar 

people, exposure to faces and voices during social interactions is often 

simultaneous, and these two sources of information are naturally associated through 

experience (Yovel & Belin, 2013). Moreover, faces and voices of familiar people both 

provide access to stored semantic knowledge about a person (Damjanovic & Hanley, 

2007). Therefore, it is likely that similar judgements regarding social and physical 

person characteristics would be made from the face and the voice of a familiar 

person due to prior knowledge and experience of that person. Furthermore, in 

contrast to unfamiliar people, for whom social judgements of the face and voice are 

likely to be primarily influenced by physical face and voice characteristics, social 

judgements of familiar faces and voices are likely to be influenced mainly by prior 

knowledge of the person’s character, and therefore judgements should be more 

similar between faces and voices for familiar people, compared with unfamiliar 

people. However, the influence of familiarity on the relationship between information 

perceived from the face and the voice has not yet been investigated.  

 

Conclusion 

Despite extensive knowledge of the social evaluation of faces and voices separately, 

very little is known regarding how the evaluation of a person’s face relates to the 

evaluation of their voice, and how this relationship compares between familiar and 

unfamiliar people. For familiar people, judgements of the face and voice are likely to 

be similar due to prior knowledge of the person. For unfamiliar people, this 

relationship is complicated by the within-subject variability across different tokens of 

the same person’s face and voice, and it is an open question whether the face and 

the voice convey redundant information about a person’s social traits.  

 

1.5 Organisation of thesis 

 
This thesis attempts to contribute to the three main issues reviewed in this 

introduction, namely: (1) how face and voice information is integrated in the brain to 

form representations of person identity, (2) what is the informational content of face 
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and voice representations and (3) how information extracted from the face relates to 

information extracted from the voice.  

 

Chapter 2 describes representational similarity analysis (RSA) (Kriegeskorte, Mur, & 

Bandettini, 2008), a multivariate data analysis method that will be used throughout 

this thesis. This method has the unique benefit of allowing comparisons of brain 

activity from different sensory modalities, here vision and audition. Moreover, it 

makes possible comparisons between brain representations and models of 

perceived or objective stimulus properties, to determine the informational content of 

these representations, and comparisons between behavioural judgements obtained 

using different types of tasks. 

 

Chapter 3 aims to disentangle the relative contributions of the ‘multimodal’ 

integration mechanism, proposed by the MP model, and the ‘coupling’ integration 

mechanism, proposed by the CFVP model, to the integration of face and voice 

information. In an fMRI experiment, RSA was used to compare the multivoxel activity 

patterns elicited by the faces and voices of the same identities in independently 

localised face-selective, voice-selective, and multimodal brain regions. In contrast to 

the majority of previous studies that examined face, voice, and person identity 

representations, this study used naturalistically varying face and voice stimuli, and 

presented multiple tokens of the face and voice of each identity. Thus, this work 

aimed to identify representations that are robust to the natural within-person 

variability encountered in faces and voices in everyday life. 

 

Chapter 4 investigates the informational content of face and voice representations in 

face-selective, voice-selective, and multimodal brain regions. It presents a study in 

which RSA was used to compare brain representations of individual faces and 

voices with models of both perceived and objective face and voice properties. The 

majority of previous work has focused on identifying modulations in the magnitude of 

the response of different brain regions to categorical levels of a single stimulus 

property (such as trustworthy or untrustworthy faces). This study will complement 

these findings by testing multiple stimulus properties that may be used by different 
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brain regions to distinguish between individual stimuli based on their multivoxel 

response patterns. 

 

Lastly, Chapter 5 examines the relationship between information extracted from the 

face and information extracted from the voice, and how this relationship compares 

between familiar and unfamiliar people. To overcome the issue of different tokens of 

the face and voice of a person eliciting different judgements, a novel paradigm is 

used in which face and voice ratings are based on multiple, naturalistically varying 

tokens of the face or voice. This study will inform the discussion on whether faces 

and voices convey concordant information about a person. 
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Chapter 2 

Methodology: Representational similarity 
analysis (RSA) 
 

The majority of data presented in this thesis were analysed using representational 

similarity analysis (RSA) (Kriegeskorte, Mur, Ruff, et al., 2008; Kriegeskorte, Mur, & 

Bandettini, 2008). This chapter introduces RSA by giving a general overview of this 

method, and explains the motivation for using RSA to address the aims of this thesis. 

A brief overview is then given to describe how RSA was used in each chapter. 

 

2.1 Introduction to RSA 

RSA was developed to address the problem of making comparisons between data 

obtained using different methods, and between data and computational models that 

describe different units (Kriegeskorte, Mur, Ruff, et al., 2008; Kriegeskorte, Mur, & 

Bandettini, 2008). For example, fMRI data is measured in voxels, which capture 

neural activity from multiple neurons, whereas many information-processing models 

make predictions about specific neurons. This greatly complicates the comparison 

between measured brain activity and model predictions. To overcome this problem, 

RSA abstracts from the individual measurement units by computing the dissimilarity 

between pairs of experimental conditions based on the data corresponding to each 

condition (Kriegeskorte, Mur, & Bandettini, 2008). It is then possible to compare 

whether two distinct data sources represent the dissimilarity between conditions in a 

similar manner. 

 

In their seminal study, Kriegeskorte, Mur, Ruff, et al. (2008) used RSA to compare 

representations of images of objects in the human inferior temporal cortex, 

measured using fMRI, with representations of the same objects in the monkey 

inferior temporal cortex, measured using single cell recordings. This approach 

revealed a distinction between representations of animate and inanimate objects in 

the inferior temporal cortex that was strikingly similar across both species, 

suggesting that the human and monkey brain represent objects in a similar way. In 
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the same study, Kriegeskorte, Mur, Ruff, et al. (2008) also used RSA to compare 

representations of objects in the human inferior temporal cortex with representations 

of the same objects in the human early visual cortex. This approach, which was 

termed “representational connectivity”, compares the representational dissimilarities 

of the same experimental conditions/stimuli between two different brain regions. 

Using this method, the authors revealed that pairs of stimuli that had similar 

representations in the inferior temporal cortex also tended to have similar 

representations in the early visual cortex, suggesting that these two brain regions 

represent objects in a similar way. 

 

In addition to comparing brain representations across different species and imaging 

methods (Kriegeskorte, Mur, Ruff, et al., 2008), and across different brain regions 

(Guntupalli et al., 2016; Kriegeskorte, Mur, Ruff, et al., 2008; Pegado et al., 2018; 

Visconti Di Oleggio Castello et al., 2017), RSA has also been used to compare 

dissimilarities between brain representations of experimental conditions with 

perceived dissimilarities between the same conditions obtained from behavioural 

ratings (Charest & Kriegeskorte, 2015; Connolly et al., 2012; Hiramatsu, Goda, & 

Komatsu, 2011; Mur et al., 2013; Saarimaki et al., 2015; Saarimäki et al., 2018; Said, 

Moore, Engell, & Haxby, 2010; Sormaz, Watson, Smith, Young, & Andrews, 2016). 

For example, Mur et al., 2013 compared the dissimilarities between brain 

representations of objects in the human inferior temporal cortex, measured using 

fMRI, with participants’ judgements of the perceived similarity of the same objects. 

This comparison revealed that pairs of objects with similar brain representations in 

the inferior temporal cortex also tended to be perceived as similar. A further use of 

RSA is to compare perceived similarities between different conditions with the 

objective similarity between the conditions as predicted by different computational 

models or models of stimulus properties (Carlin & Kriegeskorte, 2017; Mur et al., 

2013). In the current example, Mur et al. (2013) compared the perceived similarity of 

objects with the visual similarity of these objects as predicted by multiple models of 

low-level image properties such as luminance and colour. 

 

Other studies have used RSA to directly compare brain representations to 

computational models or models of stimulus properties (Carlin, Calder, Kriegeskorte, 
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Nili, & Rowe, 2011; Carlin & Kriegeskorte, 2017; Connolly et al., 2012; Guntupalli et 

al., 2017; Hiramatsu et al., 2011; Verosky et al., 2013; Weibert et al., 2018). For 

example, Connolly et al., 2012 showed that brain representations of images of 

animals in the early visual cortex were similar to a computational model of the 

properties of this region. RSA has also been used to compare brain representations 

elicited by different sensory modalities within the same brain regions (Chikazoe et 

al., 2014). For example, Chikazoe et al. (2014) compared representations of 

pleasant and unpleasant tastes and visual scenes, and showed that the OFC 

distinguished between pleasant and unpleasant stimuli independently from modalitiy. 

Lastly, RSA has been used to compare different behavioural judgements regarding 

the same experimental conditions (Stolier, Hehman, & Freeman, 2018). For example 

Stolier et al. (2018) compared representations of personality traits that were obtained 

based on judgements of faces and based on the measurement of stereotypes. In 

sum, RSA is a highly flexible method that can be used to investigate relationships 

between different types of data obtained using different methods and from different 

sources.  

 

2.2 Representational dissimilarity matrices (RDMs) and comparing 

representational geometries 

In multivariate fMRI, RSA is based on activity patterns across all voxels in a brain 

region of interest (ROI), which is elicited by an experimental condition or stimulus. An 

activity pattern is interpreted as a representation of that particular condition/stimulus 

in that particular ROI (Kriegeskorte, Mur, & Bandettini, 2008). The dissimilarities 

between the representations of all experimental conditions are arranged in a 

representational dissimilarity matrix (RDM). 

 

RDMs (Figure 2.1) are computed using a measure of dissimilarity between data such 

as the correlation distance, the Euclidean distance, the Mahalanobis distance, or the 

linear discriminant contrast (LDC) (Kriegeskorte, Mur, & Bandettini, 2008; Nili et al., 

2014; Walther et al., 2016). The correlation distance is computed as 1 minus the 

Pearson correlation between the multivoxel activity patterns in response to different 

conditions (Haxby et al., 2001; Kriegeskorte, Mur, Ruff, et al., 2008; Walther et al., 

2016). The Euclidean distance is calculated as the square root of the sum of the 
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squared differences between the activity patterns (Brooks & Freeman, 2018; 

Kriegeskorte, Mur, Ruff, et al., 2008; Walther et al., 2016). In a study comparing the 

reliability of multiple distance measures, i.e. the similarity of RDMs computed based 

on different subsets of the same data, Walther et al. (2016) showed that the 

correlation distance and the Euclidean distance were equally reliable. However, the 

authors noted that the interpretation of RDMs computed using the correlation 

distance is confounded by the fact that experimental conditions that elicit a high 

magnitude of brain activity are shown as more similar to each other compared with 

experimental conditions that elicit a lower magnitude of brain activity. In contrast, the 

computation of the Euclidean distance is not affected by the magnitude of the brain 

response. The Mahalanobis distance and the LDC are both based on the Euclidean 

distance (Walther et al., 2016). Specifically, the Mahalanobis distance is estimated 

by computing the Euclidean distance of activity patterns that have been normalised 

by their estimated multivariate noise covariance (Kriegeskorte, Goebel, & Bandettini, 

2006; Walther et al., 2016), whereas the LDC is estimated by computing the 

Mahalanobis distance across different subsets of data though crossvalidation (Carlin 

& Kriegeskorte, 2017; Walther et al., 2016). Walther et al. (2016) showed that both 

multivariate noise normalisation and crossvalidation improve the reliability of RDMs, 

highlighting the benefits of using the LDC.  

 

The number of rows and columns of a RDM is equal to the number of experimental 

conditions, and each cell contains a value that expresses the dissimilarity between 

the two conditions in the corresponding row and column (Kriegeskorte, Mur, & 

Bandettini, 2008). Figure 2.1 shows an illustration of a hypothetical RDM computed 

from the multivoxel activity patterns elicited by different faces in a hypothetical region 

of interest. RDMs provide a description of the representational geometry of the 

experimental conditions, i.e. their position within the multidimensional 

representational space defined by the units of measurement (Kriegeskorte & Kievit, 

2013). For fMRI data, representational geometry refers to the position of each 

condition within the space defined by all voxels in a ROI. This position is based on 

the activity pattern across all voxels in response to a particular condition. A brain 

RDM thus provides information regarding the ability of a ROI to distinguish or group 

together different conditions in its representational space. RDMs can also be 
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computed for measures of participant responses or model predictions regarding the 

same conditions. For example, an RDM for the same faces shown in Figure 2.1 

could be computed from ratings of the faces on perceived pairwise similarity, or 

based on the location of features in the faces. 

 

 

 

Figure 2.1: Hypothetical RDM. A hypothetical brain RDM for a hypothetical region 

of interest (ROI) showing the dissimilarity between the multivoxel activity patterns 

elicited by different faces. Each cell in the upper triangle shows the colour-coded 

dissimilarity between the activity patterns elicited by the faces in the corresponding 

row and column. Dissimilarities are represented on a dark-to-light colour scale for 

small-to-large dissimilarities. The diagonal features comparisons between identical 

faces, which are usually not of interest, and these cells are therefore assigned a 

value corresponding to the maximum possible similarity on the chosen scale.  

 

 

Different types of RDMs (e.g. brain, behavioural, model) for the same conditions can 

be directly compared to assess the relationships between them (Kriegeskorte, Mur, 

& Bandettini, 2008). This is possible because the RDMs abstract from the original 
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units of measurement (e.g. brain activity patterns, behavioural ratings) to represent 

the dissimilarities between the representations of different conditions. Comparing two 

RDMs reveals the extent to which the representational geometry of a set of 

conditions in one RDM is similar to the representational geometry of the same 

conditions in the other RDM. If the dissimilarities between different conditions in two 

RDMs are similar, it is likely that the information driving the representations of those 

conditions is also similar. For example, if two faces elicit similar response patterns in 

a given brain region, and those faces are also rated as being visually similar, it is 

likely that that brain region represents the perceived visual similarity between faces. 

Model RDMs of predicted dissimilarity relationships between different conditions in 

the brain can also be computed, in order to determine the extent to which those 

predictions explain the dissimilarity relationships between different conditions in the 

brain. 

 

Comparisons between different types of RDMs are commonly made using a 

correlation type measure, such as Pearson’s correlation coefficient, Spearman’s rank 

correlation coefficient, and Kendall’s tau a rank correlation coefficient (Nili et al., 

2014). Pearson’s correlation coefficient (or 1 minus the correlation) is used when two 

RDMs are expected to show a linear relationship (Kriegeskorte, Mur, Ruff, et al., 

2008; Walther et al., 2016). In contrast, Spearman’s and Kendall’s rank correlation 

coefficients (or 1 minus the correlation) are used when a linear relationship between 

two RDMs cannot be assumed due to comparing different types of data, e.g. brain 

RDMs and model RDMs (Kriegeskorte, Mur, & Bandettini, 2008; Walther et al., 

2016). Kendall’s tau a coefficient has been shown to perform better than Spearman’s 

rank coefficient when comparing data with tied ranks (such as model RDMs) and 

data without tied ranks (such as brain RDMs) (Nili et al., 2014). 

 

2.3 Motivation for the use of RSA in the current thesis 

The first aim of this thesis, which was to determine how information for the face and 

the voice is integrated to form a representation of person identity, was addressed by 

using RSA to directly compare representations of faces and voices in face-selective, 

voice-selective, and multimodal regions across the brain. Comparisons of brain 

activity elicited through different sensory modalities in fMRI studies are complicated 
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by the different nature and noise levels of the resulting brain activation. Univariate 

fMRI studies are not able to directly compare brain activity elicited by individual faces 

and voices because individual stimuli cannot be differentiated based on differences 

in activation magnitude (Formisano et al., 2008; Kriegeskorte et al., 2007). MVPA 

studies have compared multivoxel activity patterns elicited by the face and voice of 

the same identities by testing whether the activity patterns elicited by a pair of face 

identities can be distinguished based on the activity patterns elicited by their 

corresponding voice identities, using crossmodal pattern classification (Anzellotti & 

Caramazza, 2017; Hasan et al., 2016). However, pattern classification does not 

provide information on how representations of multiple face or voice identities are 

related to each other, and on the extent to which the relationships between identities 

in one modality are similar to the relationships between the identities in the other 

modality. In contrast, RSA can be used to directly compare the representational 

geometry of a set of face identities with the representational geometry of the 

corresponding voice identities. This is possible because RSA abstracts from the 

data, i.e. the multivoxel activity patterns, to create RDMs. A comparison between 

representational geometries for face and voice identities can reveal the extent which 

the geometries are similar, and therefore the extent to which a given brain region 

represents person identity information that is common to both faces and voices and 

therefore independent from modality. To the best of my knowledge, RSA has not 

been used previously to compare representations of faces and voices in the brain. 

 

In addition to the comparison of representational geometries of faces and voices, 

crossmodal representations of person identity were investigated by using RSA to 

compute the crossmodal discriminability of identities in one modality based on 

information in the other modality. This approach was possible using the LDC 

distance measure, which typically involves computing discriminants between pattern 

estimates for pairs of conditions in a subset of the data, and evaluating those 

discriminants on a different subset of the data for crossvalidation (Carlin & 

Kriegeskorte, 2017; Walther et al., 2016). In the current thesis, the LDC was also 

used to compute pattern discriminants in one modality and test them on the other 

modality, obtaining a measure of crossmodal discriminability. To the best of my 

knowledge, this is the first time that the LDC had been used to examine crossmodal 
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discriminabily. This analysis shares some similarities with crossmodal pattern 

classification analyses, such as those used by Anzellotti & Caramazza (2017) and 

Hasan et al. (2016) to compare activity patterns in response to faces and voices. The 

main benefit of using the LDC, as opposed to a pattern classifier, is that the LDC is a 

continuous measure of discriminability that provides information about the extent to 

which two patterns are discriminable, whereas classifiers produce a binary output 

that merely indicates whether a given pattern can, or cannot, be correctly classified 

as belonging to one of two pre-defined categories (Walther et al., 2016). Moreover, a 

study comparing the reliability of the two methods across different splits of the same 

data sets showed higher reliability for the LDC (Walther et al., 2016).   

 

The second aim of the present thesis, which was to determine where in the brain the 

different types of information conveyed by faces and voices are processed, was 

addressed by using RSA to compare representational geometries for faces and 

voices in face-selective, voice-selective, and multimodal regions with model 

geometries describing different types of information that can be extracted from the 

face and the voice. RSA has been used previously to compare brain representations 

of faces in face-selective regions with computational models of low-level visual 

properties, leading to informative insights into the computations of these regions 

(Carlin & Kriegeskorte, 2017; Weibert et al., 2018). However, aside from their visual 

properties, faces convey information related to a person’s identity, such as their 

gender and personality. Therefore, in the present thesis RSA was used to compute 

multiple models of perceived social and physical information from faces and voices 

derived from participants’ ratings, as well as models of objective face and voice 

properties. To the best of my knowledge, RSA has not been used before to compare 

brain representations of voices to models describing information extracted from the 

voice. 

 

Lastly, although not directly related to the main aims of this thesis, RSA was used to 

compute RDMs based on ratings of individual faces or voices on social traits, in 

order to test whether dissimilarities between the ratings of pairs of faces/voices on 

social traits could be explained by their ratings on perceived visual/auditory similarity, 
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obtained from pairwise similarity ratings tasks. Thus, ratings from two different types 

of behavioural tasks involving the same stimuli could be directly compared. 

 

2.4 Applications of RSA in the current thesis 

2.4.1 Comparing RDMs between faces and voices (Chapter 3) 

In an fMRI study presented in Chapter 3, RSA was used to compare RDMs of the 

faces of familiar people with RDMs of their voices in face-selective, voice-selective, 

and multimodal regions across the brain. For each ROI, one RDM was computed 

based on the multivoxel activity patterns elicited by familiar faces (similar to Figure 

2.1), and a second RDM was computed from the activity patterns elicited by the 

corresponding voices of the same identities. In both of these RDMs, the rows and 

columns corresponded to the same individuals (e.g. row and column 1 in both the 

face RDM and the voice RDM corresponded to identity 1), making the two RDMs 

directly comparable in terms of person identity. The aim of this analysis was to 

identify brain regions in which the geometries for faces and voices are similar, by 

testing whether pairs of identities that elicit similar response patterns in one modality 

also elicit similar response patterns in the other modality. Matching face and voice 

geometries for the same identities would indicate that the activity patterns elicited by 

the face and voice of each individual identity are similar. In other words, a brain 

region with matching representational geometries for faces and voices shows similar 

representations of the face and voice of the same identity, suggesting that it 

recognises and processes person identity regardless of the input modality. 

 

The LDC distance measure was used to compute the face and voice RDMs. In 

contrast to other commonly used distance measures, such as 1-correlation or 

Euclidean distance, the LDC performs multivariate noise normalisation on the activity 

patterns by taking into account the noise covariance between all voxels in a ROI 

(Walther et al., 2016). As mentioned previously, multivariate noise normalisation has 

been shown to improve the reliability of brain RDMs (Walther et al., 2016). A further 

advantage of using the LDC is that a value of zero can be interpreted as the true 

absence of discriminability between two activity patterns (Walther et al., 2016). This 

similarity cannot be attributed to noise covariance because the crossvalidation 
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across different partitions of the data renders the noise between the partitions 

independent. Thus, under the null hypothesis the LDC is symmetrically distributed 

around zero and unbiased. RDMs computed using the LDC show the 

representational geometry in terms of the discriminability between the activity 

patterns in response to different conditions in a ROI.  

 

Finally, for the comparisons between face and voice RDMs, Pearson’s correlation 

coefficient was selected because face and voice RDMs were compared within the 

same brain regions, and were therefore likely to show a linear relationship. A 

correlation between face and voice RDMs was computed for each ROI.  

 

2.4.2 Investigating crossmodal discriminability (Chapter 3) 

In the fMRI study that was presented in Chapter 3, in addition to the comparison of 

face and voice RDMs, a second method was used to investigate representations of 

person identity, which involved computing crossmodal RDMs between faces and 

voices in ROIs. To compute crossmodal RDMs using the LDC, the activity patterns 

of identity pairs in one modality were used to create a linear discriminant, which was 

then applied to differentiate the activity patterns of the same identity pairs in the 

other modality. The representational geometry of these crossmodal RDMs shows 

how discriminable the representations of different identities are in one modality 

based on information that discriminated their representations in the other modality. In 

other words, crossmodal RDMs show the degree to which pattern discriminants for 

each pair of identities generalise from one modality to the other.  

 

The LDC provides a continuous measure of discriminability for each pair of 

conditions, whereby an LDC value of zero or lower indicates no discriminability, and 

higher values indicate higher discriminability (Nili et al., 2014; Walther et al., 2016; 

Carlin and Kriegeskorte, 2017). Due to this property, it is possible to calculate the 

mean LDC value across all cells in an RDM to determine the overall ability of a ROI 

to discriminate between the activity patterns in response to the different conditions. 

Mean LDC values across participants can then be subjected to random-effects 

inference comparing against zero. In this study, mean LDC values were calculated 

for crossmodal RDMs to determine the overall ability of each ROI to discriminate 
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between different identities based on crossmodal information. Mean LDC distances 

for each ROI across participants were then compared against zero using one-sample 

t-tests. A brain region that shows crossmodal discriminability should display similar 

representations of the face and voice of the same identity, and therefore should be 

able to recognise and process person identity regardless of the input modality. 

 

This analysis complements the previously described analysis comparing face and 

voice representational geometries, and overcomes some of the constraints of the 

latter. Specifically, the analysis comparing representational geometries is 

constrained by two assumptions. The first assumption is that there is sufficient 

variability in the representational distances between different identities within-

modality, i.e. different degrees of dissimilarity between identities. If all identities are 

equally distinct from each other, it would not be expected to find correlations 

between geometries across the two modalities. The second assumption is that 

modality-general information dominates over any modality-specific information that 

may be present in the same voxels. Specifically, it is possible that the voxels 

comprising the pattern estimates contain both unisensory and multisensory neurons 

(Driver & Noesselt, 2008; Laurienti et al., 2005; Quiroga et al., 2009). In this case, 

the influence of modality-specific information on the representational distances 

between all identities could override the influence of modality-general information on 

the representational geometry, and could result in non-matching representational 

geometries across modalities. In contrast to the analysis comparing representational 

geometries, the analysis investigating person identity discriminability focuses on one 

pair of identities at a time, and thus is not affected by the degree of variability in the 

representational distances between all identities. In addition, this analysis is focused 

on pattern discriminants that generalise across modalities, and therefore is likely to 

be more sensitive to detecting modality-general person identity representations even 

in the presence of modality-specific information. 

 

2.4.3 Comparing face and voice RDMs to model RDMs (Chapter 4) 

In a study presented in Chapter 4, RSA was used to compare the brain RDMs for 

faces and voices that were computed in the study described in Chapter 3 to model 

RDMs that were computed from perceived and objective characteristics of the same 
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faces and voices. The aim of this analysis was to characterise the informational 

content of the brain representations of faces and voices in different ROIs by 

comparing brain representational geometries for faces or voices with model 

representational geometries. Model RDMs of perceived face or voice characteristics 

were computed based on ratings of faces and voices on perceived trustworthiness, 

dominance, attractiveness, positive-negative valence, and pairwise visual/auditory 

similarity. Model RDMs of objective face or voice characteristics were computed for 

faces based on computational models describing face properties, and for voices 

based on different acoustic measures. A binary model for face and voice gender was 

also constructed. Model RDMs, with the exception of perceived similarity and 

gender, were computed using Euclidean distance.   

 

Each candidate model RDM was compared to a reference brain RDM using 

Kendall’s tau a rank correlation coefficient, which was the most suitable similarity 

measure because of the different number of expected tied ranks in brain RDMs and 

in model RDMs. Similar representational geometry between a brain RDM and a 

model RDM would indicate that pairs of stimuli that are distinguishable in a given 

brain region based on their activity patterns would also be dissimilar in terms of the 

property described by the model (e.g. they would differ in their perceived 

trustworthiness). Put simply, it would suggest that the brain region processes the 

type of information described by the model.  

 

2.4.4 Comparing face/voice RDMs between different brain regions (Chapter 4) 

In the study presented in Chapter 4, an exploratory analysis also used RSA to 

compare the “representational connectivity” (Kriegeskorte, Mur, Ruff, et al., 2008; 

Kriegeskorte, Mur, & Bandettini, 2008) of face or voice RDMs across different ROIs 

(within the same modality) to assess their similarity in terms of information content. 

Face or voice RDMs in every ROI were compared with the same-modality RDM in 

every other ROI using Spearman’s rank correlation. This distance measure was 

chosen because, although a linear relationship is not expected between RDMs 

across different brain regions, these RDMs are likely to contain a similar number of 

tied ranks. Although this analysis does not reveal the type of information being 

shared across regions, it complements the previously described analysis, which 
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attempts to characterise the informational content of brain RDMs by comparing them 

to different model RDMs, by revealing which ROIs process similar information from 

faces or voices.  

 

2.4.5 Comparing ratings of social traits with ratings of pairwise similarity 

(Chapter 5) 

In a study presented in Chapter 5, RSA was used to compare ratings of faces/voices 

on social traits, namely trustworthiness, dominance, attractiveness, and positive-

negative valence, with ratings of the faces/voices on pairwise visual/auditory 

similarity. For this analysis, RDMs were computed for each trait, separately for faces 

and voices, using the Euclidean distance between ratings of all pairs of identities. 

For each modality, the RDMs for each trait were each compared with the ratings of 

pairwise similarity using Spearman correlation, given that a linear relationship cannot 

be assumed between different dissimilarity scales. These comparisons revealed 

whether pairs of face/voice identities that were given similar ratings on social traits 

were also perceived as being visually/acoustically similar. 
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Chapter 3 

Crossmodal representations of person identity 
in the brain 
 

This chapter addresses the first aim of this thesis, which was to determine how the 

brain integrates information from the faces and voices of familiar people to represent 

person identity. It describes a study that aimed at disentangling the relative 

contributions of the ‘multimodal’ integration mechanism, proposed by the MP model, 

and the ‘coupling’ integration mechanism, proposed by the CFVP model, to the 

integration of face and voice information (Blank et al., 2011; Campanella & Belin, 

2007; Yovel & O’Toole, 2016). Briefly, the MP Model proposes that information from 

faces and voices is integrated in multimodal brain regions, and lesion studies (Ellis et 

al., 1989; Gainotti, 2011) and fMRI studies (Anzellotti & Caramazza, 2017; Hölig et 

al., 2017; Joassin et al., 2011; Shah et al., 2001) suggest the ATL, the pSTS, the 

angular gyrus, the retrosplenial cortex, and the hippocampus as candidate 

multimodal regions. In contrast, the CFVP proposes that the direct coupling between 

face- and voice-responsive brain regions is crucial for the integration of person 

identity information (von Kriegstein et al., 2005). In particular, fMRI studies have 

shown that voice recognition of familiar (or recently learned) people is associated 

with increased activation in face-responsive regions of the fusiform gyrus (von 

Kriegstein et al., 2008, 2006, 2005; von Kriegstein & Giraud, 2006).  

 

A recent MVPA study found support for the MP model by showing that a multimodal 

region in the right pSTS could discriminate between the activity patterns elicited by a 

pair of familiar faces based on the activity patterns elicited by their corresponding 

voices, and vice-versa (Anzellotti & Caramazza, 2017). However, as discussed In 

the Introduction chapter, this study was limited in its ability to show that these 

crossmodal representations of person identity generalise to different tokens of the 

face and the voice of each identity, and presented just two tokens for each identity. 

Therefore, this study could not rule out the possibility that the observed person 

identity representations were in some way specific to the particular face and voice 

stimuli that were presented in the study. Moreover, the presented faces and voices 
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were constrained in terms of their natural variability, and it is not certain whether the 

observed crossmodal representation in the pSTS would be robust to more 

naturalistically varying face and voice stimuli.  

 

In the present study, multivoxel fMRI activation patterns were measured in response 

to the faces and voices of 12 famous individuals. It was important to use highly 

familiar individuals because of the need to guarantee that participants were well 

acquainted with the faces and voices of those individuals. Thus, participants were 

only recruited for the full study if they demonstrated that they were familiar with the 

majority of the famous individuals in an online recognition task. In addition, and in 

contrast to previous studies, this study presented multiple, naturalistically varying 

face videos and voice recordings of 12 different identities. Thus, this study was able 

to sample the variability of visual and auditory appearance encountered in everyday 

life, and to better capture processes of person identification, which are distinct from 

image or sound recognition (Burton, 2013). 

 

In order to directly compare the mechanisms proposed by the MP model and the 

CFVP model, the present study localised face-selective, voice-selective, and 

multimodal brain regions, and tested for crossmodal representations of person 

identity within each of these regions. Specifically, RSA was used to (a) compare the 

representational geometries of faces and voices in each region, and to (b) test 

whether linear discriminants computed based on data in one modality could 

discriminate pairs of identities in the other modality. The expectation was that, if a 

region shows a crossmodal person identity representation, the representational 

geometry of face and voice identities will match, and/or pattern discriminants will 

generalise across faces and voices. The MP model predicts that crossmodal person 

identity representations will exist in multimodal brain regions, and the CFVP predicts 

that these representations will also exist in face-selective and voice-selective brain 

regions. 
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3.1 Methods 

3.1.1 Overview of study 

Participants were recruited after completing an online Recognition Task to 

demonstrate that they were familiar with the famous individuals used as stimuli. The 

full study then consisted of two MRI scanning sessions and one behavioural session, 

with each session taking approximately 90 minutes. All three sessions took place on 

separate days. Before entering the scanner at the start of the first MRI session, 

participants repeated the Recognition Task in the presence of the experimenter and 

also completed a Familiarity Task in which they rated all face and voice stimuli on 

perceived familiarity.  

 

In each MRI session participants completed three functional runs (main experimental 

runs) in which they viewed the faces and listened to the voices of the famous people 

in an event-related design. In addition, participants underwent two structural scans 

(one in each session) and functional localisers for face-selective, voice-selective, 

and multimodal regions of interest (ROIs). Across both sessions participants 

completed at least one run (in most cases two) of (1) the temporal voice area (TVA) 

localiser (Belin et al., 2000), (2) a face localiser, (3) a multimodal (face-voice) 

localiser, and (4) a voice localiser. Finally, participants completed a behavioural 

testing session (the methods and results of this session will be presented in chapter 

4).  

 

To investigate the existence of crossmodal person identity representations in each of 

our ROIs, RSA was used to compare the representational geometry of face identities 

with the representational geometry of voice identities (Analysis A), and to investigate 

the degree to which pattern discriminants for each pair of identities generalise from 

one modality to the other (Analysis B). Analysis A focused on the representational 

geometry of all of the identities, i.e. the entire structure of pairwise distances 

between the activity patterns elicited by these identities in each modality, and 

compared geometries across modalities. Analysis B focused on the discriminability 

of pairs of identities, and used a linear discriminant computed in one modality to test 

discriminability of the same pair of identities in the other modality (in a similar way to 

traditional pattern classification methods). As discussed in the Method chapter, these 
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two analyses complement each other and allow the testing of different predictions 

regarding the nature of crossmodal person identity representations. For Analysis A 

(RSA comparing representational geometries), it was predicted that brain regions 

with crossmodal person identity representations would show matching 

representational geometries for face identities and voice identities. For Analysis B 

(RSA investigating identity discriminability), it was predicted that brain regions with 

crossmodal person identity representations would be able to discriminate between 

pairs of identities in one modality based on their representational distance in the 

other modality.  

 

3.1.2 Participants 

Participants were recruited at Royal Holloway, University of London and Brunel 

University London to take part in a behavioural and fMRI experiment. All participants 

were required to be native English speakers aged between 18 and 30, and to have 

been resident in the UK for a minimum of 10 years. These requirements were set to 

increase the likelihood of participants being familiar with the famous people whose 

faces and voices were presented in the experiment. In addition, participants 

completed an online Recognition Task (see below) as part of the screening 

procedure for the study and were only invited if they were able to recognise at least 

75% of a set of famous people from both their face and their voice.  

 

Thirty-one healthy adult participants were recruited who matched all the above 

criteria. One participant was excluded from the study after the first MRI session due 

to excessive head movement in the scanner (more than 3 mm in any direction within 

one run). The final sample consisted of 30 participants (eight males) with mean age 

of 21.2 years (SD=2.37, range=19-27). All reported normal or corrected-to-normal 

vision and normal hearing, provided written informed consent and were reimbursed 

for their participation. The study was approved by the Ethics Committee of Brunel 

University London (see Appendix A).  

 

Recognition Task 

Participants completed a face and voice Recognition Task to determine whether they 

could recognise at least 75% of the famous people (i.e. at least 9 out of 12) from 
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both the face and the voice. Face stimuli consisted of single photographs of each of 

the 12 famous people that were obtained from the Internet through Google Image 

searches. Photographs included the top part of the body and were front-facing. Voice 

stimuli consisted of single sound-clips for each of the 12 famous people and were 

obtained from YouTube videos. Sound-clips were approximately 8-seconds long and 

were root-mean-square (RMS) normalized using Praat (version 5.3.80; Boersma and 

Weenink, 2014; www.praat.org). None of these face or voice stimuli were presented 

in the main experiment.  

 

Stimuli were presented using Qualtrics (Qualtrics, Provo, UT). For each stimulus 

participants had to identify the person shown in the picture or the person speaking 

(by providing their name or other uniquely identifying biographical information). In the 

online task participants typed their responses below each stimulus, and in the lab 

task responses were made verbally.  

 

3.1.3 Stimuli  

Six silent, non-speaking video clips of moving faces, and six recordings of voices for 

each of the 12 famous people (six female, six male) were obtained from videos on 

YouTube (in total, 72 stimuli per modality). These people had been identified in 

previous pilot studies conducted in the lab as having highly recognisable faces and 

voices within samples of native English speakers between the ages of 18-30 who 

have been resident in the UK for a minimum of 10 years. This list of famous people 

included actors, pop stars, politicians, comedians, and TV personalities: Alan Carr, 

Beyonce Knowles, Daniel Radcliffe, Emma Watson, Arnold Schwarzenegger, Barack 

Obama, Sharon Osbourne, Kylie Minogue, Graham Norton, Cheryl Cole, Barbara 

Windsor, and Jonathan Ross.  

 

It has been shown that famous voices are harder to recognise than famous faces 

(Damjanovic & Hanley, 2007; Hanley & Damjanovic, 2009). Therefore, a pilot 

experiment was conducted to determine the minimum amount of time that 

participants needed to listen to a recording of the voice of the 12 famous people in 

order to be able to reliably identify them. Ideally, the aim for the fMRI study was to 

present as many stimuli as possible in the shortest amount of time possible in order 
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to maximise design efficiency. In the experiment, participants (N=8) were presented 

with recordings of the voices of the 12 famous people that featured three, five, or 

seven seconds of speech. Three different voice recordings were presented for each 

of the three time duration conditions (nine stimuli per person). After listening to each 

recording participants were asked to verbally identify the person by name or other 

uniquely identifying biographical information. The average number of voices that 

were correctly identified in each time duration condition (out of a total of 36 voices) 

was calculated for each participant, and then averaged across participants. The 

results showed that participants recognised an average of 32.6 (SD=3.54) voices in 

the 3 s condition, 33.5 (SD=2.62) in the 5 s condition, and 32.6 (SD=3.07) in the 7 s 

condition. There were no significant differences in recognition accuracy between the 

three duration conditions [F(2,14)=2.27, p=.140], and therefore a duration of three 

seconds was chosen for the voice recordings to be presented in the fMRI 

experiment. 

 

The face videos were selected so that the background did not provide any cues to 

the identity of the person. Other than the absence of speech, there were no 

constraints on the type of face movement. Examples of face movements included 

nodding, smiling, and rotating the head. However, all stimuli were selected to be 

primarily front-facing. Face videos were edited using Final Cut Pro X (Apple, Inc.) so 

that they were three seconds long and centred on the bridge of the nose. Six video-

clips of the face of the same person were obtained from different original videos set 

in a different background.  

 

Voice recordings were edited using Audacity® 2.0.5 recording and editing software 

so that they contained three seconds of speech after removing long periods of 

silence. The recordings were then converted to mono with a sampling rate of 44100, 

low-pass filtered at 10KHz, and RMS normalised using Praat. Six recordings of the 

voice of the same person were obtained from different original videos. All of the 

voice recordings had a different verbal content and were non-overlapping. The 

recordings were selected so that the speakers’ identity could not be determined 

based on the verbal content, conforming to the standards set by Van Lancker, 

Krieman, & Emmorey (1985) and Schweinberger, Herholz, & Sommer (1997).  
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Familiarity Task 

Before entering the scanner, participants rated all stimuli that would be presented in 

the main experimental runs on perceived familiarity. Participants were presented with 

the face stimuli first, followed by the voice stimuli, in separate blocks. Stimuli were 

presented using the Psychophysics Toolbox (version 3; Brainard, 1997; Pelli, 1997) 

running in Matlab (version R2013b; MathWorks). Face stimuli were presented in the 

centre of the screen. Participants listened to the voice stimuli through headphones 

(Sennheiser HD 202). Participants rated each stimulus on scale from 1 (very 

unfamiliar) to 7 (very familiar). Each block took approximately 5 minutes to complete. 

 

3.1.4 MRI data acquisition and pre-processing 

Participants were scanned using a 3.0 Tesla Tim Trio MRI scanner (Siemens, 

Erlangen) with a 32-channel head coil at the Combined Universities Brain Imaging 

Centre (CUBIC) at Royal Holloway, University of London. In each of the two 

scanning sessions, a whole-brain T1-weighted anatomical scan was acquired using 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) [1.0 x 1.0 in-

plane resolution; slice thickness, 1.0mm; 176 axial interleaved slices; PAT, Factor 2; 

PAT mode, GRAPPA (GeneRalized Autocalibrating Partially Parallel Acquisitions); 

repetition time (TR), 1900ms; echo time (TE), 3.03ms; flip angle, 11°; matrix, 

256x256; field of view (FOV), 256mm].  

 

For all functional runs T2*-weighted whole-brain functional scans were acquired 

using echo-planar imaging (EPI) [3.0 x 3.0 in-plane resolution; slice thickness, 

3.0mm; PAT, Factor 2; PAT mode, GRAPPA (GeneRalized Autocalibrating Partially 

Parallel Acquisitions); 34 sequential (descending) slices; repetition time (TR), 

2000ms; echo time (TE), 30ms; flip angle, 78°; matrix, 64x64; field of view (FOV), 

192mm]. For the majority of participants, slices covered all parts of the brain except 

for the most dorsal part of parietal cortex. In each experimental run we obtained 293 

brain volumes, in the TVA localiser we obtained 251 brain volumes, and in each run 

of the face, voice, and multimodal localiser runs we obtained 227 brain volumes.  
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Data were pre-processed using Statistical Parametric Mapping (SPM12; Wellcome 

Department of Imaging Science, London, UK; http://www.fil.ion.ucl.ac.uk/spm) 

operating in Matlab. Pre-processing was performed separately for each scanning 

session. All runs within each session (main experiment or localizer runs) were pre-

processed together. The first three EPI images in each run (dummy scans) were 

discarded to allow for T1-equilibration effects. Images were slice-time corrected 

based on the middle slice in each volume and then realigned to correct for head 

movement based on the first image. The structural image in native space was then 

coregistered with the realigned mean functional image and segmented into grey 

matter, white matter, and cerebrospinal fluid. No smoothing was performed on the 

images from the experimental runs. Functional images from the localiser runs were 

smoothed with a 4-mm Gaussian kernel (full width at half maximum).  

 

After separate pre-processing of the images in each session, images from the 

second scanning session were realigned to the structural image from the first 

session. Specifically, the structural image from session two was coregistered to the 

structural image from session one, and the transformation was then applied to all 

functional images from session two. As a result, all functional images were in the 

same space.   

 

3.1.5 Functional localisers 

TVA localiser 

The TVA localiser developed by Belin et al. (2000), which contains vocal and non-

vocal auditory stimuli, was used to localise the TVAs. Stimuli were presented in 40 

blocks of 8 seconds each. Vocal stimuli were presented in 20 blocks and included 

speech and non-speech vocalisations obtained from 47 speakers (Pernet et al., 

2015).  Non-vocal stimuli were presented in 20 blocks and consisted of industrial 

sounds, environmental sounds, and animal vocalisations. Within each block stimuli 

were presented in a random order that was fixed across participants. Participants 

were instructed to close their eyes and focus on the sounds. The TVA localiser was 

presented directly after the main experimental runs. The duration of a single run was 

approximately 10 minutes.  

 

http://www.fil.ion.ucl.ac.uk/spm
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Face, Voice, and Multimodal localisers 

New face, multimodal, and voice localiser runs were created that shared the same 

experimental design and presented stimuli from comparable categories (people and 

objects/scenes). Importantly, these localisers used videos and not static images of 

faces. Dynamic face stimuli have been shown to be more effective that static face 

stimuli for localising face-selective regions (Fox et al., 2009; Pitcher et al., 2011). 

Stimuli used for the face localiser were silent, non-speaking video clips of famous 

and non-famous (French celebrities unknown to our participants) moving faces, and 

silent video clips of moving large objects and natural or manmade visual scenes 

(such as videos of airplanes, trains, traffic, rainforests, waves on a beach) obtained 

from videos on YouTube. For the multimodal localiser the stimuli were audio-visual 

and included videos clips of the faces of famous and non-famous people speaking, 

and video clips of moving large objects and natural or manmade scenes (same 

categories as above). The voice localiser presented voice clips of famous and non-

famous people, and sound clips of manmade or natural environmental sounds (same 

categories as used in the other two types of localisers), with no video.  

 

Videos (640 x 360 pixels) were presented at the centre of the screen. The screen 

resolution was 1024 x 768 pixels, and from a distance of 85 cm, the videos 

subtended 20.83 x 12.27 degrees of visual angle. Audio stimuli were presented via 

MR-compatible earbuds (S14; Sensimetrics Corp.), which participants used for each 

entire scanning session. Each stimulus lasted 8 seconds and each run presented 48 

stimuli. Stimuli were presented in pairs (24 pairs) showing the same person (such as 

two videos of Brad Pitt) or the same category of objects or scenes (such as two 

videos of trains). Eight pairs showed stimuli from famous people, eight pairs showed 

stimuli from non-famous people, and eight pairs showed object/scene stimuli. 

Participants were encouraged to always fixate at the centre of the screen. 

Participants performed a one-back task in which they had to detect the exact same 

stimulus repetition within each pair, which occurred in approximately 15% of the 

trials. A 16-second period of fixation was presented at the end of each run and twice 

in the middle of each run (every 16 trials). 
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The order of the face, voice, and multimodal localisers was counterbalanced across 

participants. For participants who completed two runs of each localiser, different 

identities were presented on each run. The duration of each localiser run was 

approximately 8 minutes.  

 

To identify face-selective (face localiser), voice-selective (voice localiser and TVA 

localiser), and people-selective (multimodal localiser) brain regions, mass univariate 

time-series models were computed for each participant. Regressors modelled the 

blood-oxygenation-level-dependent (BOLD) response following the onset of the 

stimuli and were convolved with a canonical hemodynamic response function (HRF). 

We used a high-pass filter cutoff of 128 seconds, and autoregressive AR(1) model to 

account for serial correlations. For the face, voice, and multimodal localisers there 

were three experimental regressors: (1) famous faces/voices/people, (2) non-famous 

faces/voices/people, and (3) objects and scenes. For the TVA localiser there were 

two experimental regressors: (1) voices and (2) non-voices. For all localisers six 

head motion parameters computed during realignment were included as covariates. 

Selectivity was defined with a t-test contrasting the responses to faces/voices/people 

(famous and non-famous) versus responses to the control stimuli. 

 

3.1.6 ROI definition 

Probabilistic maps from previous studies were used to define regional masks in 

which our regions of interest (ROIs) were predicted to be located. ROIs were then 

defined by extracting all selective voxels within those regional masks for each 

participant. This approach is similar to the one implemented by Julian, Fedorenko, 

Webster, & Kanwisher (2012) and avoids experimenter biases in ROI definition.  

 

Probabilistic maps were thresholded to only show voxels that were present in 20% of 

the participants and binarised to create regional masks. We used a probabilistic map 

of the TVAs created by Pernet et al. (2015) and obtained from neurovault 

(http://neurovault.org/images/106/) to create separate masks for the right and left 

TVA (rTVA, lTVA). For all other regional masks, we used probabilistic maps that 

were obtained from a previous study conducted in the lab (unpublished data). In this 

previous study, 22 participants were tested using the same face and voice localisers 

http://neurovault.org/images/106/
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as the current study (the multimodal localizer was not used in this previous study). 

We defined face-selective and voice-selective t-test images for each participant, 

thresholded each image at p<.05 (uncorrected), binarised the resulting image, and 

summed all images across participants to create face-selective and voice-selective 

probabilistic maps. In cases where there was some overlap between the masks for 

different regions we manually defined the borders of these masks using anatomical 

landmarks.   

 

Regional masks of face-selective regions were created for the right fusiform face 

area (rFFA), the right occipital face area (rOFA), and the right posterior superior 

temporal sulcus (rpSTS). Regional masks of voice-selective regions were created for 

the right and the left superior temporal sulcus and gyrus (rSTS/STG, lSTS/STG). 

Regional masks of multimodal regions were created based on joint face-selective 

and voice-selective probabilistic maps. These masks were created for a number of 

regions that showed both face-selective and voice-selective responses in most 

participants: precuneus/posterior cingulate, orbitofrontal cortex (OFC), frontal pole 

(FP), and right and left temporal pole with anterior inferior temporal cortex (rTP-aIT, 

lTP-aIT) — we considered the TP and aIT together as the peaks were difficult to 

separate in most participants. We did not create a mask of the multimodal STS using 

this method due to the voice-selective STS region being much larger than the face-

selective STS region. However, there was large overlap between the mask of the 

face-selective rpSTS and the masks of the rSTS/STG and rTVA, suggesting that this 

face-selective rpSTS region also responds to voices.  

 

All of the regional masks (in MNI space) were registered and resliced to each 

participant’s native space using FSL (version 5.0.9; Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012). These masks were then used to extract ROIs from the t-

test maps obtained from the contrasts of interest from the face, voice, TVA, and 

multimodal localisers from the current study. All voxels that fell within the boundaries 

of the mask and that were significantly activated at p<.001 (uncorrected) were 

included in the subject-specific ROI. If there were fewer than 30 voxels at p<.001 the 

threshold was lowered to p<.01 or p<.05. If we could not define 30 selective voxels 
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even at p<.05, the ROI for that participant was not included in the analyses. It was 

required that all ROIs be present in at least 20 participants (out of 30).  

 

3.1.7 Main experimental runs: Experimental design 

Design and procedure 

Face and voice stimuli were presented using the Psychophysics Toolbox via a 

computer interface inside the scanner (Figure 3.1). Face and voice clips of all 12 

identities were intermixed within each run. A fixation point was always present and 

participants were asked to fixate. The videos were 640 x 360 pixels and, from a 

viewing distance of 85cm, videos subtended 20.83 x 12.27 degrees of visual angle. 

The six face videos and the six voice recordings for each of the 12 identities were 

evenly distributed among the three runs so that each run contained two different 

videos of the face and two different recordings of the voice of each identity. Each 

individual stimulus was presented twice within each run. Therefore, in each run there 

were 96 experimental trails (48 face trials, 48 voice trials) in total.  

 

Participants performed an anomaly detection task that involved pressing a button 

when they saw or heard a novel famous person that was not part of the set of the 12 

famous people that they had been familiarised with prior to entering the scanner. 

Therefore, each run also contained 12 task trials presenting six famous faces and six 

famous voices that were not part of the set of famous people that the participants 

had been familiarised with. 
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Figure 3.1: Example trial sequence and stimuli for fMRI experiment. Please note 

that there was a 1000ms inter-trial-interval that is not depicted in this figure. 

Therefore, the total time from the start of one trial to the start of the next trial was 

4000ms. 

 

Stimuli were presented in a pseudorandom order that ensured that within each 

modality each identity could not be preceded or succeeded by one of the other 

identities more than once, and that each stimulus could not be succeeded by a 

repetition of the exact same stimulus. Face and voice clips were presented for three 

seconds with a SOA of four seconds. Thirty-six null fixation trials were added to each 

run (~25% of the total number of trials). Thus, each run contained 144 trials in total 

and lasted approximately 10 minutes.  

 

The presentation order of the three runs was counterbalanced across participants. 

The same three runs with the same face videos and voice recordings that were 

presented in scanning session one were also presented in session two. However, 

the three runs were presented in different orders in both sessions (counterbalanced 

across participants) and stimuli within each run were presented in a new 

pseudorandom sequence. As an exception, the stimuli for the task trials were 

different in the two sessions in order to maintain their novelty.  

 

3.1.8 Main experimental runs: Statistical analysis 

General linear models 

Mass univariate time-series models were computed for each participant. Models 

were defined separately for each scanning session and each experimental run (six 

runs in total). Regressors modelled the BOLD response following the onset of the 

stimuli and were convolved with a canonical hemodynamic response function (HRF). 

We also used a high-pass filter cutoff of 128 seconds and autoregressive AR(1) 

model to account for serial correlations. The 12 different identities in each modality 

were entered as separate regressors in the model (i.e. 24 regressors). Each of these 

regressors included the two different face videos and voice recordings of each 

identity that were presented in the run, as well as the two repetitions of each 
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stimulus. Task trials and six head motion parameters computed during realignment 

were included as regressors of no interest.  

 

As part of the crossvalidation procedure used in the RSA analyses described below, 

separate models were estimated for each partition of each crossvalidation fold, thus 

resulting in parameter estimates and residual time courses for every possible 

independent partition. For partitions with two runs, data was concatenated before 

estimating the model.  In the analyses described below we used the beta estimates 

computed at each voxel of each ROI for each of the 24 experimental conditions (12 

face-identities and 12 voice-identities).  

 

Mean response to faces and voices in ROIs 

We conducted an analysis to characterise the responses to faces and voices in each 

ROI, and to confirm that each ROI showed the expected responsivity to faces and 

voices. For this analysis, we calculated the mean (across all voxels in each ROI, and 

across all runs) of the parameter estimates for the 12 face-identities and the mean of 

the parameter estimates for the 12 voice-identities. For each ROI we tested whether 

the mean for faces and mean for voices were significantly different from zero (across 

participants) using one-sample t-tests. P values were corrected for 24 comparisons 

(2 tests x 12 ROIs) controlling the false discovery rate (FDR), with q<.05. We also 

compared the mean for faces with the mean for voices in each ROI using paired t-

tests. P values were corrected for multiple comparisons (12 comparisons) using FDR 

with q<.05. 

 

Analysis A: RSA comparing representational geometries 

For this analysis we computed representational dissimilarity matrices (RDMs) for 

faces and voices separately for each participant, each scanning session and each 

ROI. All analyses were performed using in-house Matlab code and the RSA toolbox 

(Nili et al., 2014). RDMs were computed using the LDC between the pattern 

estimates (beta estimates across all voxels within an ROI) elicited by the different 

face or voice identities. To calculate the LDC, crossvalidation was performed using a 

leave-one-run-out procedure between runs that presented different tokens of the 

face and voice of each identity. This procedure ensured that face and voice 
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representations reflected face and voice identity, rather than specific face videos and 

voice recordings. In each crossvalidation fold the pattern estimates for each identity 

were computed with data from two runs (partition one) and separately from the 

pattern estimates from the remaining run (partition two). The pattern estimates from 

each pair of identities from partition one were used to obtain a linear discriminant, 

which was then applied to differentiate the activity patterns of the same identity pairs 

in partition two (Nili et al., 2014; Walther et al., 2016). Multivariate noise 

normalisation was applied by computing a noise variance-covariance matrix based 

on the residual time courses obtained from the general linear model (GLM) that was 

estimated with data from partition one. More specifically, to compute the LDC for 

each pair of identities we first multiplied the contrast between the patterns of a pair of 

identities in partition one (the discriminant weights) by the inverse of the noise 

variance-covariance matrix (after regularisation using the optimal shrinkage method: 

Ledoit & Wolf, 2004), and transformed the resulting weights to unit length. We then 

computed the dot product between the resulting vector and the vector with the 

contrast between the patterns of the same pair of identities from partition two (Carlin 

and Kriegeskorte, 2017), which resulted in an LDC value showing the discriminability 

of the two identities. The resulting RDMs with LDC values from each crossvalidation 

fold were averaged to create a single RDM. 

 

The resulting 12x12 RDMs were symmetric around a diagonal of zeros. Each cell in 

the RDMs showed the discriminability of the pattern estimates corresponding to a 

pair of identities in the chosen modality and ROI. RDMs with LDC values from each 

crossvalidation fold were averaged to create one RDM per scanning session. This 

procedure resulted in four RDMs per participant per ROI: faces session 1, voices 

session 1, faces session 2, and voices session 2 (Figure 3.5).   

 

In order to compare the representational geometries of the face and voice identities, 

the RDMs for each participant were compared across the two scanning sessions 

using Pearson’s correlation coefficient (Figure 3.5). We also compared the 

representational geometries of face and voice-identities within modality across two 

scanning sessions in order to investigate the stability of the representational 

geometries across the two scanning sessions. For the crossmodal comparisons we 
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compared the face and voice RDMs from session one with the RDMs of the other 

modality in session two (i.e. faces session 1 vs. voices session 2, and voices session 

1 vs. faces session 2). For the unimodal comparisons we compared the face and 

voice RDMs from session one with RDMs of the same modality in session two (i.e. 

faces session 1 vs. faces session 2 and voices session 1 vs. voices session 2). At 

the group level for each ROI we compared the single-subject correlations for each of 

the four comparisons (two crossmodal, two unimodal) against zero using one-sample 

one-tailed Wilcoxon signed-rank tests (because correlations are not normally 

distributed). P values were corrected for multiple comparisons (48 comparisons: 4 

tests x 12 ROIs) controlling for FDR with q < .05. Correlations between face and 

voice RDMs that are significantly greater than zero would indicate that that a region 

contains crossmodal person identity representations.  

 

Analysis B: RSA investigating identity discriminability  

For this analysis we computed crossmodal RDMs separately for each participant, 

each scanning session and each ROI. We used the LDC to compute a linear 

discriminant based on the activity patterns of identity pairs in one modality, and then 

applied the discriminant to the activity patterns of the same identity pairs in the other 

modality. With this exception, the crossvalidation procedure was identical to the 

procedure for creating face and voice RDMs for the previous analysis. Two 

crossmodal RDMs for each ROI were computed using this method: one by applying 

a linear discriminant based on face data to voice data, and one by applying a linear 

discriminant based on voice data to face data. We then calculated the mean LDC 

value across all cells in each RDM and each ROI to determine the overall ability of 

that ROI to discriminate between identities.  

 

In addition to investigating identity discrimination across modalities using crossmodal 

RDMs, we also investigated the ability of each ROI to discriminate between identities 

within modality, using the face and voice RDMs that were created in the previous 

analysis. For this analysis the corresponding RDMs (e.g. faces session 1 and faces 

session 2) for each scanning session were averaged across the two sessions, and 

then the mean LDC across the vectorised matrix was calculated.  
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For each participant and each ROI we obtained four mean LDC values representing 

(1) face discriminability, (2) voice discriminability, (3a) crossmodal discriminability - 

face discriminant generalised to voices, and (3b) crossmodal discriminability - voice 

discriminant generalised to faces. For each ROI and each type of discriminability we 

entered participants’ LDC values into a one-sample one-tailed t-test comparing them 

against zero. P values were corrected for all comparisons (48 comparisons: 4 tests x 

12 ROIs) controlling for FDR with q<.05. Mean LDC distances that are significantly 

greater than zero in crossmodal RDMs would indicate that a region contains 

crossmodal person identity representations. Moreover, LDC distances that are 

significantly greater than zero in face or voice RDMs would indicate a region 

contains representations of face or voice identity.  

 

Exploratory whole-brain searchlight analyses 

Despite including a broad range of functionally defined ROIs, it is possible that 

crossmodal person identity representations may exist in brain regions not covered by 

these ROIs. Specifically, these representations may exist in brain regions that are 

not face-selective or voice-selective. Therefore, we used an exploratory whole-brain 

searchlight analysis to identify potential brain regions with person identity 

representations using the same methods as in the main ROI analyses. We note that 

we focused solely on crossmodal person identity representations in this exploratory 

analysis, as that was the main aim of this study. 

 

For each participant we created 6mm radius spheres centred on each voxel within a 

grey-matter mask of their brain (obtained from the segmentation procedure) using 

the RSA toolbox (Nili et al., 2014) in Matlab. A 6mm radius resulted in a searchlight 

sphere of 33 voxels, which matched our requirement for minimum ROI size of 30 

voxels in the main analyses. For the analysis comparing representational geometries 

we computed a face and a voice RDM in each searchlight sphere, averaging the 

RDMs from both scanning sessions, and then calculated the Pearson correlation 

between them. Correlations were Fisher z-transformed. The output of this analysis 

was a whole-brain map of Fisher-transformed correlation coefficients for each 

participant. For the second analysis investigating identity discriminability we 

computed a single crossmodal RDM in each searchlight sphere by averaging the 
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crossmodal face-voice RDM with the crossmodal voice-face RDM, and then 

calculating the mean LDC across the resulting matrix in vector form. The output for 

each participant was a whole-brain map of mean LDC values.  

 

The whole-brain searchlight maps from each analysis were normalised to MNI space 

using the normalisation parameters generated during the segmentation procedure 

and spatially smoothed with 9-mm Gaussian kernel (full width at half maximum) to 

correct for errors in intersubject alignment. For group-level analysis, all searchlight 

maps were entered into a one-sample t-test to determine whether the correlation 

coefficient/mean LDC value was significantly greater than zero at each voxel. We 

used the randomise tool (Winkler, Ridgway, Webster, Smith, & Nichols, 2014) in FSL 

for inference on the resulting statistical maps (5000 sign-flips). Clusters were 

identified with threshold-free cluster enhancement, and p-values were corrected for 

multiple comparisons (FWE < 0.05).  

 

 

3.2 Results 

3.2.1 Familiarity ratings 

Familiarity ratings of both faces and voices were high (Faces: M = 6.28, SD = 0.5; 

Voices: M = 6.2, SD = 0.49). Average familiarity of each identity’s face and voice are 

shown in Table 3.1.  

 

Table 3.1: Familiarity ratings of the face and voice of each identity. Ratings are 

averaged across participants and show the mean (M) rating of the face and voice of 

each identity across all face videos and all voice recordings of that identity, the 

standard deviation (SD) of participants’ ratings of each identity, and the range of 

mean ratings for the six face tokens and six voice tokens for each identity. The rating 

scale ranged from 1 (very unfamiliar) to 7 (very familiar). 

  AC AS BO DR GN JR BK BW CC EW KM SO 

Faces M 6.48 5.72 6.94 6.76 6.27 6.42 6.36 5.65 6.49 6.73 5.25 6.32 

 SD 0.75 1.19 0.2 0.59 0.85 0.59 0.94 1.45 0.79 0.45 1.48 0.92 

 Token 6.37- 4.83- 6.90- 6.67- 5.87- 6.17- 6.07- 5.33- 6.37- 6.47- 4.6- 6.17- 
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3.2.2 ROI definition 

Using functional localisers we defined face-selective ROIs (rFFA, rOFA, rpSTS), 

voice-selective ROIs (rSTS/STG, rTVA, lSTS/STG, lTVA), and multimodal ROIs 

(OFC, FP, rTP-aIT, lTP-aIT, Prec./P.Cing. [including the retrosplenial cortex]) in each 

participant. We were able to localise these ROIs with at least 30 voxels in all 30 

participants, except for the face-selective rFFA (28 participants) and rOFA (29 

participants), the Prec./P.Cing. (26 participants), and the OFC (21 participants). We 

note that the voice-selective ROIs in the right hemisphere (rTVA, rSTS/STG) overlap 

with each other and with the face-selective rpSTS and the multimodal rTP-aIT ROIs. 

In addition, the voice-selective ROIs in the left hemisphere (lTVA, lSTS/STG) overlap 

with each other and with the multimodal lTP-aIT ROI. For visualisation purposes 

only, probabilistic maps of all ROIs were created by normalising the single subject 

ROIs to MNI space and summing them. Figure 3.2 shows these maps thresholded to 

display all voxels that were present in at least 20% of the participants.  

 

range 6.60 6.13 7 6.87 6.5 6.57 6.57 5.9 6.60 6.9 5.57 6.47 

              

Voices M 6.59 5.66 6.73 6.69 6.37 6.54 6.23 5.54 6.63 6.07 5.3 6.02 

 SD 0.54 1.48 0.63 0.57 0.77 0.71 1.04 1.74 0.74 0.94 1.45 1.03 

 Token 

range 

6.37- 

6.83 

5.43- 

5.87 

6.7- 

6.8 

6.57- 

6.8 

6.07-

6.67 

6.3 

6.7 

6.07- 

6.37 

5.47- 

5.67 

6.4- 

6.77 

4.6- 

6.53 

5- 

5.53 

5.5- 

6.43 
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Figure 3.2: Face-selective, voice-selective, and multimodal ROIs. Location of 

ROIs that resulted from the face, voice, and multimodal localisers in MNI space.  

  

r = right, l = left, FFA = fusiform face area, OFA = occipital face area, pSTS = 

posterior superior temporal sulcus, STS/STG = superior temporal sulcus/superior 

temporal gyrus, TVA = temporal voice area, OFC = orbitofrontal cortex, FP = frontal 

pole, TP = temporal pole, aIT = anterior inferior temporal cortex, Prec = precuneus, 

P.Cing. = posterior cingulate. 

 

 

 

3.2.3 Mean response to faces and voices in ROIs 

In order to confirm that each ROI showed the expected responsiveness to faces and 

voices, we computed the regional mean of the parameter estimates for faces and for 
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voices across participants for each ROI and modality (Figure 3.3). As expected, 

mean beta values for faces were high and significantly greater than zero in all three 

face-selective ROIs (all one-sample t-tests with p<.0001). Mean beta values for 

voices were also significantly greater than zero in the rFFA (p<.0001) and rpSTS 

(p<.0001), but not in the rOFA. The rFFA and the rOFA showed significantly greater 

responses to faces compared with voices (both paired-samples t-tests with p<.0001). 

In contrast, the rpSTS showed significantly greater responses to voices compared 

with faces (p=.0002) despite being defined using our face localiser. This is most 

likely due to the large overlap between this ROI and the voice-selective rSTS/STG 

and rTVA ROIs. This finding demonstrates that the rpSTS also showed substantial 

responses to voices.  

 

 

 

Figure 3.3: Regional mean responses to faces and voices in ROIs. Regional 

mean responses for all face identities and for all voice identities in face-selective, 

voice-selective, and multimodal ROIs (mean beta estimates across all voxels of each 

ROI, and across all runs). Bars show mean responses across participants, error bars 

show standard error, and grey circles show individual participants. We tested 

whether mean responses were significantly greater than zero using one-sample t-
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tests across all 30 participants, and stars show significant results at p≤.0209 (FDR 

corrected for all 24 comparisons). We also tested whether mean beta values for 

faces were significantly different from mean beta values for voices in each ROI using 

paired t-tests across all participants. In all ROIs mean beta values for faces and 

voices were significantly different at p≤.0011 (FDR corrected for all 12 ROIs).  

 

It could be that the responses to voices in rpSTS were due to the voices being 

familiar, and not because of being voices per se. To determine whether this region 

responded to voices more generally or just to familiar voices, we investigated the 

responses in rpSTS to familiar voices, unfamiliar voices, and non-voices during the 

functional voice localisers. For each participant, we calculated the mean parameter 

estimates across all voxels of the face-selective rpSTS for each condition of the 

voice localiser (familiar voices, unfamiliar voices, and auditory scenes) and of the 

TVA localiser (vocal and non-vocal sounds). For the voice localiser, both the familiar 

and the unfamiliar voices had significantly higher parameter estimates than the 

auditory scenes (both p<.0001). For the TVA localiser, the rpSTS also showed 

significantly higher responses to voices than non-voices (p<.0001). These results 

show that the face-selective rpSTS also responds to voices in general and not only 

familiar voices (for similar results, see Deen et al., 2015), and therefore in the rest of 

this article we will refer to this rpSTS region as displaying multimodal responses.  

 

Returning to the analysis of the parameter estimates for faces and voices during the 

main experimental runs, the mean beta values for voices were significantly greater 

than zero for all four voice selective ROIs (all p<.0001). Mean beta values for faces 

were also significantly greater than zero for all voice-selective ROIs (all p≤.0209), but 

the parameter estimates were significantly lower than for voices (all p<.0001). 

 

For the multimodal ROIs mean beta values for faces and for voices were significantly 

greater than zero in all ROIs (all p≤.0009) except the frontal pole for faces. This 

result demonstrates that, although we still included the frontal pole ROI in the main 

analyses, one cannot be confident about the multimodal responses of this ROI. Also, 

we note that in all multimodal ROIs (OFC, FP, rTP-aIT, lTP-aIT, Prec./P.Cing.) mean 
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beta values for voices were significantly higher than mean beta values for faces (all 

p≤.0011). This was observed consistently across all participants.  

 

3.2.4 Analysis A: RSA comparing representational geometries 

The first main analysis compared the representational geometry of the 12 famous 

identities across and within modalities in each ROI. Face and voice RDMs were 

computed separately for each session using the LDC and RDMs were compared 

using Pearson correlation (Figures 3.4 & 3.5). We then tested whether these 

correlations were significantly above zero. 

 

 

 

 

Figure 3.4: Results of RSA comparing representational geometries. 

Comparisons between the representational distance matrices (RDMs) from two 

scanning sessions using Pearson’s correlation coefficient. Bars show mean 

correlations across participants, error bars show standard error, and grey circles 

show the correlations of individual participants. Correlations were calculated across 

scanning sessions and compared face RDMs, voice RDMs, face and voice RDMs, 
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and voice and face RDMs in face-selective, voice-selective, and multimodal ROIs. 

We tested whether correlations were significantly greater than zero using Wilcoxon 

signed-rank tests across all 30 participants. No correlations were significant after 

correction for multiple comparisons at p≤.0001 (FDR corrected for all 48 

comparisons). Note that in this figure the rpSTS is classed as a face-selective ROI 

for consistency purposes only, but in fact it demonstrated multimodal properties. 

 

 

 

Figure 3.5: Representational distance matrix (RDM) comparisons across 

scanning sessions 1 and 2 in the rpSTS. Face and voice RDMs for the rpSTS 

were averaged across all 30 participants for illustration purposes. Each cell shows 

the discriminability of the brain activity patterns corresponding to a pair of identities 

(12 identities in total) computed using the linear discriminant contrast (LDC) and 

crossvalidating across data from three runs. Each matrix is symmetric around a 

diagonal of zeros. A value of zero or lower indicates no discriminability. For each 

participant we compared the representational geometry of the face and voice RDMs 

with the representational geometry in the RDM of the other modality (crossmodal 

comparisons) and in the RDM of the same modality (unimodal comparisons) using 

Pearson’s correlation. The figure shows Pearson’s correlations for all comparisons 

averaged across participants.  
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We expected that face and voice RDMs would be correlated in ROIs that represent 

person identity independently from modality. However, the results showed no 

significant correlations between face and voice RDMs in face-selective, voice-

selective, or multimodal ROIs (Figure 3.4). It is possible that comparing RDMs 

across different scanning sessions taking place on separate days did not allow the 

detection of subtle consistencies in the representational geometry for face identities 

and voice identities. To address this concern, we also compared face and voice 

RDMs within the same scanning session. However, we still found no significant 

correlations between face and voice RDMs. Therefore, using this method we found 

no evidence of crossmodal person identity representations in our ROIs.   

 

We also expected that there would be correlations between RDMs within the same 

modality in regions that represent only face identity or only voice identity. No 

correlations between face RDMs or between voice RDMs in any ROI were significant 

after correction for multiple comparisons.  

 

It is possible that the low correlations between same-modality RDMs across the two 

scanning sessions could be due to low intra-subject reliability of the brain activity 

patterns elicited by individual face and voice identities. To investigate this possibility, 

for each participant, each ROI, and each modality, I averaged the activity patterns 

(betas) elicited by each of the 12 identities across the three runs in each scanning 

session. This resulted in an average activity pattern for each identity in session 1, 

and an average activity pattern for each identity in session 2. I then computed the 

Pearson correlation between the average activity patterns for each identity across 

the two sessions. Finally, for each ROI and each participant I averaged these 

correlations across the 12 identities, and then across all participants. This resulted in 

two average correlations for each ROI: one showing the intra-subject reliability of 

activity patterns elicited by face identities in that ROI, and the other showing the 

intra-subject reliability of activity patterns elicited by voice identities.  High 

correlations (r >.70) were found between activity patterns for faces in the face-

selective rFFA and rOFA, and for voices in voice-selective bilateral STS/STG and 

TVAs (Table 3.2). Moderate to high correlations (r > .50) were found between activity 
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patterns for faces and voices in the rpSTS, and for voices in the bilateral TP-aIT 

(Table 3.2). These results suggest that the low correlations between same-modality 

RDMs across scanning sessions were not due to the low reliability of the activity 

patterns elicited by individual face and voice identities. In fact, the activity patterns 

elicited by face identities in face-selective regions, and by voice identities in voice-

selective regions, were highly reliable, despite the low reliability of the RDMs in these 

regions.  

 

Table 3.2: Average correlations between brain activity patterns for faces and 

for voices across scanning sessions. Correlations in each modality were 

averaged across the 12 identities and across participants. The rpSTS is classed as a 

face-selective ROI for consistency purposes only, but in fact it demonstrated 

multimodal properties. M = mean, SD = standard deviation. 

 Faces Voices 

 M SD M SD 

  Face-selective ROIs  

rFFA .729 .164 .209 .143 

rOFA .805 .170 .164 .155 

rpSTS .668 .179 .846 .133 

     

  Voice-selective ROIs  

rSTS/STG .381 .172 .879 .131 

rTVA .496 .186 .865 .132 

lSTS/STG .245 .130 .861 .135 

lTVA .303 .183 .858 .136 

     

  Multimodal ROIs  

OFC .133 .108 .321 .156 

FP .179 .120 .446 .195 

rTP-aIT .223 .137 .641 .178 

rTP-aIT .128 .116 .518 .209 

Prec./P. Cing. .31 .161 .484 .164 
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3.2.5 Analysis B: RSA investigating identity discriminability 

The second main analysis tested the generalisation of pattern discriminants from one 

modality to the other. More specifically, we computed crossmodal RDMs and we 

tested whether linear discriminants computed on pairs of faces could be used to 

discriminate between pairs of voices, and vice-versa. We also tested whether each 

ROI could discriminate between pairs of stimuli within the same modality. Mean LDC 

distances across all cells in crossmodal, face, and voice RDMs were compared 

against zero. 

 

 

 

Figure 3.6: Results of RSA investigating identity discriminability. Mean LDC 

between identities in face RDMs, voice RDMs, and crossmodal RDMs in face-

selective, voice-selective, and multimodal ROIs. There are two types of crossmodal 

RDMs: (a) face discriminant applied to voices (F-V), and (b) voice discriminant 

applied to faces (V-F). Bars show mean LDC values averaged across participants, 

error bars show standard error, and grey circles show mean LDC values for 

individual participants. We tested whether the mean LDC values were significantly 

greater than zero using one-sample t-tests across all 30 participants. Stars represent 

significant tests at p≤.0150 (FDR corrected for all 48 comparisons). These results 
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show generalisation of the pattern discriminants from one modality to the other in the 

rpSTS and in the lSTS/STG. In addition, face-selective ROIs discriminate between 

face-identities, and voice-selective ROIs discriminate between voice-identities. Note 

that in this figure the rpSTS is classed as a face-selective ROI for consistency 

purposes only, but in fact it demonstrated multimodal properties.  

 

 

Table 3.3: One-sample t-test results for mean LDC values in crossmodal RDMs. 

Stars represent statistical significance at p≤.0150 (FDR corrected for all 48 

comparisons in face, voice, and crossmodal RDMs). The rpSTS is classed as a face-

selective ROI for consistency purposes only, but in fact it demonstrated multimodal 

properties. 

  Crossmodal RDMs 

(face-voice) 

 Crossmodal RDMs 

(voice-face) 

 df t Sig. (1-

tailed) 

d  t Sig. (1-

tailed) 

d 

  Face-selective ROIs 

rFFA 27 -0.198 .5779 0.04  -0.529 .6993 0.10 

rOFA 28 0.374 .3557 0.07  0.624 .2689 0.12 

rpSTS 29 4.091 .0002* 0.75  4.582 .0001* 0.84 

         

  Voice-selective ROIs 

rSTS/STG 29 1.928 .0319  0.35  2.093 .0226 0.38 

rTVA 29 2.064 .0240 0.38  1.662 .0537 0.30 

lSTS/STG 29 2.443 .0104* 0.45  3.543 .0007* 0.65 

lTVA 29 0.062 .4755 0.01  1.891 .0343 0.35 

         

  Multimodal ROIs 

OFC 20 1.698 .0525 0.37  0.841 .0250 0.18 

FP 29 -0.062 .5244  0.01  0.285 .3888 0.05 

rTP-aIT 29 0.023 .4910  0.00  0.153 .4398 0.03 

lTP-aIT 29 0.301 .3830 0.05  0.075 .4703 0.01 

Prec./P.Cing. 25 0.660 .2577 0.13  0.220 .4138 0.04 

 

 

Table 3.4: One-sample t-test results for mean LDC values in face and voice 

RDMs. Stars represent statistical significance at p≤.0150 (FDR corrected for all 48 
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comparisons in face, voice, and crossmodal RDMs). The rpSTS is classed as a face-

selective ROI for consistency purposes only, but in fact it demonstrated multimodal 

properties. 

               Face RDMs               Voice RDMs 

 df t Sig. (1-

tailed) 

d  t Sig. (1-

tailed) 

d 

 Face-selective ROIs 

rFFA 27 7.764 .0001* 1.47  -0.753 .7711 0.14 

rOFA 28 6.707 .0001* 1.25  0.995 .1641 0.18 

rpSTS 29 4.378 .0001* 0.80  5.871 .0001* 1.07 

         

 Voice-selective ROIs 

rSTS/STG 29 1.850 .0373 0.34  5.025 .0001* 0.92 

rTVA 29 2.945 .0031*  0.54  5.447 .0001* 0.99 

lSTS/STG 29 1.019 .1583  0.19  8.667 .0001* 1.58 

lTVA 29 2.846 .0040*  0.52  7.834 .0001* 1.43 

         

 Multimodal ROIs 

OFC 20 -0.662 .7424 0.14  2.337 .0150* 0.51 

FP 29 0.799 .2153  0.15  4.007 .0002* 0.73 

rTP-aIT 29 1.617 .0583  0.30  2.685 .0059*  0.49 

lTP-aIT 29 -2.369 .9877  0.43  1.630 .0570 0.30 

Prec./P. Cing. 25 2.538 .0089* 0.50  5.524 .0001* 1.08 

 

 

 

We expected that in brain regions with crossmodal person identity representations 

the mean LDC values for crossmodal RDMs would be significantly greater than zero. 

The results showed that mean LDC values in these RDMs were significantly greater 

than zero in the rpSTS, and in the voice-selective lSTS/STG (Figure 3.6; Table 3.3). 

These results show that the rpSTS could discriminate pairs of face-identities based 

on pattern discriminants computed from pairs of voice-identities (and vice-versa), 

and therefore appears to form modality-independent person identity representations.  

 

We note that while the mean LDC values for crossmodal RDMs in the lSTS/STG 

were significant, the mean LDC value for face RDMs was not. While this result 

suggests that this region was able to discriminate identities based on crossmodal 
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information, it is unlikely that a crossmodal representation could exist without face 

identity discrimination. Therefore, this result should be interpreted with caution. It is 

possible that in addition to the rpSTS, the lpSTS also contains a crossmodal person 

identity representation and it could be driving the positive result in the lSTS/STG. 

However, we were not able to test this because we could not localise the lpSTS in 

our participants using our face localiser.  

 

We also expected that mean LDC values for face RDMs and voice RDMs would be 

significantly greater than zero in ROIs that represent face identity and voice identity, 

respectively. We found that mean LDC values in face RDMs were significantly 

greater than zero in all ROIs originally defined as face-selective (rFFA, rOFA, 

rpSTS), in the TVAs, and in the multimodal Prec./P. Cing. (Figure 3.6; Table 3.4). 

These results show that all these regions could discriminate between face identities. 

A follow up analysis in which all overlapping rpSTS voxels were removed from the 

rTVA showed that the significant result for faces in rTVA was driven by the rpSTS. 

Mean LDC values in voice RDMs were significantly greater than zero in all voice-

selective ROIs (TVAs, STS/STG), in the rpSTS (originally defined as face-selective), 

and in the multimodal OFC, FP, rTP-aIT and Prec./P. Cing. (Figure 3.6; Table 3.4).  

 

It is possible that the discrimination of identities in our ROIs was driven by different-

gender identity pairs (female-male). To investigate this possibility, for each ROI and 

condition that showed mean LDC values significantly greater than zero (Figure 3.6 & 

Tables 3.2, 3.3) and for each participant we compared the mean LDC values for 

different-gender identity pairs (calculated across 36 pairs) with the mean LDC values 

for same-gender identity pairs (calculated across 30 pairs: female-female & male-

male) in each RDM (we used paired t-tests, and used FDR correction for all 19 

comparisons). Results for the rpSTS showed no significant difference between the 

discriminability of different-gender and same-gender identity pairs for face, voice, or 

crossmodal RDMs (all p>.0533), demonstrating that person identity discrimination in 

this region was not driven by discriminating gender. In contrast, mean LDC values 

for different-gender identity pairs were significantly higher than mean LDC values for 

same-gender identity pairs for face RDMs in the rFFA and rOFA (both p ≤.0010), and 

for voice RDMs in the bilateral TVAs and STS/STG (all p≤.0005), suggesting that 
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gender contributed to the discrimination in these regions. However, mean LDC 

values for same-gender identity pairs were still significantly greater than zero (one-

sample t-tests) for face RDMs in the rFFA and rOFA (both p<.0001) and for voice 

RDMs in the bilateral TVAs and STS/STG (all p≤.0239), suggesting that identity 

discrimination in these regions is not solely driven by differences in gender.  

 

3.2.6 Exploratory whole-brain searchlight analyses 

We conducted additional exploratory searchlight analyses across the whole brain to 

determine whether there were brain regions with crossmodal person identity 

representations that are not included in the ROIs. The first searchlight analysis 

investigated correlations between face and voice RDMs across the whole brain, and 

we did not find any regions showing such correlations between face and voice 

representational geometries. 

 

The second searchlight analysis investigated crossmodal generalization of 

discriminants for pairs of identities across the whole brain. We found a number of 

clusters in which the mean LDC in crossmodal RDMs was significantly greater than 

zero (FWE corrected threshold p ≤ .05), and below we report t-values and MNI 

coordinates for the peak grey matter voxels in each cluster. Anatomical labels for 

peak voxels are based on the Harvard-Oxford cortical and subcortical structural 

atlases. The results showed a large cluster (k=1927, p=.007) with peaks in the right 

putamen (t=4.33, x=21, y=20, z=-1), the left posterior middle temporal gyrus 

(t=4.04,x=-57, y=-19, z=-7), and the right precentral gyrus (t=3.89, x=54, y=8, z=32). 

Significant clusters were also found in the right paracingulate gyrus (k=1340, p=.003, 

t=4.34, x=6, y=47, z=23), in the left hippocampus (k=160, p=.017, t=4.45, x=-24, y=-

37, z=2), in the right anterior supramarginal gyrus (k=84, p=.006, t=6.18, x=48, y=-

22, z=38), in the left cuneal cortex (k=48, p=.036, t=3.99, x=-18, y=-76, z=29), and a 

cluster (k=100, p=.039) with peaks in the left temporooccipital middle temporal gyrus 

(t=3.58, x=-48, y=-46, z=5) and inferior lateral occipital cortex (t=3.45, x=-48, y=-67, 

z=8). Finally, we also found a significant cluster in the rpSTS at an uncorrected 

threshold of p ≤ .005 (k=592, p=.001, t=4.05, x=48, y=-49, z=11) that overlapped 

with the rpSTS ROI. 
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3.3 Discussion  

This study showed that there is a crossmodal person identity representation in a 

multimodal region of the rpSTS, demonstrating that this region is able to discriminate 

familiar identities based on crossmodal information in faces and voices. More 

specifically, the rpSTS could discriminate pattern estimates for pairs of face identities 

based on linear discriminants computed from pattern estimates for pairs of voice 

identities, and vice-versa. A crucial and novel aspect of this study is the finding that 

the rpSTS not only discriminates between identities, but also generalises across 

multiple naturalistically varying face videos and voice recordings of the same identity. 

By using different tokens of the face and voice to obtain and test pattern 

discriminants, it was demonstrated that the face- and voice-elicited person identity 

representations in the rpSTS are stimulus-invariant and modality-invariant. Stimulus-

invariant identity representations were also found for face identities in face-selective 

regions (rFFA and rOFA) and for voice identities in voice-selective regions (bilateral 

TVA and STS/STG). Finally, there was no evidence of matching representational 

geometries for faces and voices, across or within modalities, and possible reasons 

for this will be discussed below.  

 

A crossmodal and invariant person identity representation in the rpSTS 

The finding of a crossmodal person identity representation in a multimodal region of 

the rpSTS supports the MP model, which proposes that face and voice information is 

integrated in multimodal brain regions (e.g. Hölig et al., 2017; Joassin et al., 2011). 

In contrast, no support was found for the prediction from the CFVP Model (e.g. von 

Kriegstein & Giraud, 2006; von Kriegstein et al., 2005) that there would be a 

crossmodal identity representation in face-selective regions of the fusiform gyrus.  

 

The finding that the face-selective rpSTS also shows voice-selectivity is in 

agreement with multiple studies showing overlap between face-selective and voice-

selective regions in the rpSTS (Anzellotti & Caramazza, 2017; Davies-Thompson et 

al., 2018; Deen, Koldewyn, Kanwisher, & Saxe, 2015; Kreifelts, Ethofer, Shiozawa, 

Grodd, & Wildgruber, 2009; Watson, Latinus, Charest, Crabbe, & Belin, 2014; 

Wright, Pelphrey, Allison, McKeown, & McCarthy, 2003), suggesting that the pSTS is 
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not only multimodal but also shows a preference for people-related stimuli regardless 

of modality (Watson, Latinus, Charest, et al., 2014). The pSTS has previously been 

associated with person identity processing by a study showing that this region 

responded more to voices that were primed by the face of a different identity, 

compared with voices that were primed by the faces of the same identity (Hölig et al., 

2017). Moreover, the rpSTS has been associated with crossmodal representations of 

emotion from faces and voices (Watson, Latinus, Noguchi, et al., 2014). Finally, the 

pSTS has been implicated in audiovisual integration by studies comparing responses 

to audiovisual conditions with responses to auditory and visual conditions presented 

in isolation, for voices and speaking mouths (Calvert et al., 2000), sound-producing 

animals and tools (Beauchamp, Lee, Argall, & Martin, 2004), emotional faces and 

voices (Davies-Thompson et al., 2018; Kreifelts, Ethofer, Grodd, Erb, & Wildgruber, 

2007; Robins, Hunyadi, & Schultz, 2009), and neutral faces and voices (Watson, 

Latinus, Charest, et al., 2014).  

 

The main finding of a crossmodal representation of person identity in the rpSTS is in 

agreement with a study showing crossmodal classification of pattern estimates for 

familiar faces and voices in this region (Anzellotti & Caramazza, 2017). Similar to the 

present study, the rpSTS region in Anzellotti & Caramazza (2017) showed both face- 

and voice-selectivity. In contrast to Anzellotti & Caramazza (2017), who tested the 

discrimination of just two identities, in the present work discrimination was tested 

across a larger set of 12 identities. Moreover, the present work additionally showed 

that the rpSTS contains representations of face and voice identity that are invariant 

to different tokens of the same face and voice. Although Anzellotti & Caramazza 

(2017) presented two tokens of the face and voice of each identity, they did not test 

whether the two identities could be discriminated within each modality by training 

and testing their classifiers using different tokens. The ability to “tell people together” 

by identifying different tokens of a face and voice as belonging to the same person is 

as important as the ability to “tell people apart” (i.e. discriminate between different 

people) (Anzellotti & Caramazza, 2014; Burton, 2013). Finally, the present work was 

based on the presentation of multiple naturalistically varying face videos for each 

identity, in sharp contrast to Anzellotti & Caramazza (2017), who presented grey 

scale images of faces with low within-person variability, and thus shows that identity 
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representations in the rpSTS are robust to substantial within-person variability. While 

behavioural studies have shown the importance of within-person variability for 

recognition (Jenkins et al., 2011; Burton, 2013; Burton et al., 2016), this is rarely 

taken into account in neuroimaging experiments, which typically use highly similar or 

artificial stimuli for the same person. 

 

It should be noted that while there was also evidence of crossmodal person identity 

discrimination in the voice-selective lSTS/STG, this region could not discriminate 

between individual faces, and therefore this finding should be interpreted with 

caution. It has previously been shown that the left pSTS shows crossmodal 

representations of emotion from faces and voices (Peelen et al., 2010) and is 

involved in audiovisual integration (Beauchamp, Lee, et al., 2004; Calvert et al., 

2000, 2001; Robins et al., 2009). Thus, it is possible that a multimodal pSTS region 

within the voice-selective lSTS/STG ROI shows person identity representations. 

However, the lpSTS was not included as a ROI in the present study because it was 

not consistently activated across participants in the face localiser.  

 

Invariant representations of face identity and voice identity 

In addition to discriminating between person identities across modalities, this study 

also demonstrated that the pSTS could discriminate between individual face and 

voice identities within each modality by generalising across different tokens of the 

face and voice of each identity. For faces, these findings complement previous work 

showing that the pSTS can discriminate between face identities by generalising 

across different viewpoints of the face (Anzellotti & Caramazza, 2017; Visconti Di 

Oleggio Castello et al., 2017). Evidence for representations of face identity in the 

pSTS also come from a study showing adaptation to repeated presentations of the 

same identity (Winston et al., 2004). For voices, previous studies have shown that 

regions in the STS/STG can discriminate between different voice identities by 

generalising across different recordings of the voice (Bonte et al., 2014; Formisano 

et al., 2008). Moreover, adaptation to morphed voices with the same perceived 

identity has been shown in the bilateral pSTS (Andics et al., 2010). In contrast with 

these studies, which largely used stimuli with low within-person variability, the 
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present study shows that representations in these regions generalise across highly 

variable, naturalistic face videos. 

 

The face-selective rFFA and rOFA were also able to discriminate between the faces 

of different people while also showing invariance to the different videos of each 

person’s face. This finding is in agreement with Anzellotti et al. (2014) and Guntupalli 

et al. (2017), who showed representations of face identity in the FFA (and OFA, in 

Anzelotti et al., 2014) that generalise to novel viewpoints of the face. Moreover, 

studies have shown evidence of representations of face identity in the FFA that 

generalise across different face images (Axelrod & Yovel, 2015), different emotional 

expressions (Nestor et al., 2011), and different viewpoints of the face (Verosky et al., 

2013; Visconti Di Oleggio Castello et al., 2017), although these studies did not test 

whether these representations generalised to novel tokens of the face. Adaptation 

studies have also shown evidence of invariant representations of face identity in the 

FFA for same-identity faces with different emotional expressions (Winston et al., 

2004), for physically-different face morphs that were perceived as having the same 

identity (Rotshtein et al., 2005), and for same-identity images presented from 

different viewpoints (Ewbank & Andrews, 2008; Mur et al., 2010; Verosky et al., 

2013). In contrast with these previous studies, the current work shows that face 

identity representations in the rFFA and rOFA are robust to naturalistic changes in 

the appearance of the face of the same person.  

 

Voice-selective regions in STS/STG and the TVAs bilaterally could discriminate 

between different speakers while showing invariance to the different recordings of 

each voice. These findings are in line Formisano et al. (2008), who showed 

representations of voice identity that generalise to novel utterances of different 

vowels in the lateral Heschl’s gyrus/sulcus and in the right STS. Bonte et al. (2014) 

also showed some evidence of voice identity representations in the TVAs, but did not 

test whether these representations generalise to novel utterances from the same 

voice. The present study extends previous findings by showing that generalisation to 

different recordings of the same voice is possible in voice-selective regions even 

when using short sentences with variable speech content that were recorded in 

different settings. Finally, the finding of voice identity representations in voice-



 
 
 
 
 

129 

selective regions is also in agreement with adaptation studies showing adaptation to 

same-identity voices in the mid and posterior STS (Andics et al., 2010) and anterior 

STS (Belin & Zatorre, 2003).  

 

The present study also showed invariant discrimination of face identity and of voice 

identity in a multimodal region in the precuneus/posterior cingulate. This region has 

been previously associated with the processing of familiar faces and voices (Shah et 

al., 2001), and has been found to discriminate between different face identities 

(Visconti Di Oleggio Castello et al., 2017). Our results suggest that representations 

of faces and voices may be interspersed in this region, but are not shared across 

modalities. Finally, we showed invariant representations of voice identity, but not 

face identity, in the frontal pole, a region that has been previously associated with 

the processing of familiar voices (Nakamura et al., 2001). It should be noted that 

although we initially localised the frontal pole as a multimodal region, our results 

showed that it did not respond significantly to faces in the main experimental runs. 

 

Representational geometries 

There was no evidence of matching representational geometries across faces and 

voices in rpSTS despite the finding of crossmodal generalisation of the pattern 

discriminants. It is possible that all identities were equally distinct from each other 

within each modality (i.e. the nature of person identity code in these regions does not 

result in variable representational distances between identities). In addition, the 

rpSTS showed both modality-specific and crossmodal representations, and it is 

possible that the former had stronger influence on the representational geometry. 

Beauchamp, Argall, Bodurka, Duyn, & Martin (2004) showed that the pSTS contains 

intermixed visual, auditory, and multisensory patches, and future studies could use 

higher-resolution neuroimaging methods to probe person identity representations in 

this region.  

 

There was also no evidence of stable representational geometries across scanning 

sessions for face identities or voice identities in any of the ROIs. Again, it could be 

that identities were equally distinct across from each other within each modality, or it 
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could be that experimental conditions would need to be improved to obtain more 

reliable representational geometries.  

 

Anterior temporal lobe and searchlight results 

There was no evidence of face, voice, or person identity representations in the 

anterior temporal lobe. This was surprising given that this region has been previously 

associated with the processing of person identity (A. W. Ellis et al., 1989; Gainotti, 

2011). The fact that the TP-aIT ROIs responded more to voices that to faces 

suggests that the multimodal region localizer used in the present study was not 

optimal for detecting multimodal responses in the anterior temporal lobe. Moreover, 

the sequences used were not tailored to detect fMRI responses in this region 

(Axelrod and Yovel, 2013), and therefore more research using specialised scanning 

parameters for the localisation of this region is warranted. 

 

It is possible that crossmodal representations exist outside face- and/or voice-

selective regions, and the exploratory searchlight results revealed person identity 

representations in the paracingulate gyrus, right insular cortex, left nucleus 

accumbens, left anterior postcentral gyrus, and left hippocampus. Quiroga et al. 

(2005, 2009) found that cells in the hippocampus (and also amygdala and entorhinal 

cortex) were highly responsive to specific identities, and responded to both the face 

and name of that person. It will be interesting to further probe the role of the 

hippocampus (and the other regions found during the searchlight analyses) in person 

identity recognition.  

 

Limitations and future directions 

A possible limitation of the present study is that the set of identities whose faces and 

voices were presented in the study were highly variable in terms of facial and vocal 

appearance. Specifically, the identities differed in respect to their gender, age, 

nationality, accent, and race. Moreover, these famous identities were selected 

(based on pilot studies previously conducted in the lab) because they were highly 

recognisable based on both their face and voice, and thus are likely to display 

particularly distinctive facial and vocal features. Although the different face videos 

and voice recordings for each identity were also highly variable within the same 
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identity, it is possible that the between-person variability was higher that the within-

person variability. Thus, it can be argued that discrimination between identities, both 

within modality and across modalities, was facilitated by their distinct appearances. 

Future studies should attempt to replicate findings of the current study using a more 

homogenous set of familiar identities.  

 

A further potential limitation concerns the use of famous-familiar identities. Although 

participants reported being highly familiar with the famous people from both their 

faces and voices, it is unlikely that participants ever interacted with these people 

personally. Instead, familiarity will have been obtained from a third-person 

perspective, and most likely through the mass media. In contrast, familiarity with 

personal acquaintances, such as friends and relatives, is usually obtained through 

direct interactions. Studies contrasting brain activation in response to personally-

familiar faces with activation in response to famous-familiar faces showed stronger 

activation in a number of regions, including the bilateral pSTS, posterior 

cingulate/precuneus, and fusiform gyrus (Gobbini, Leibenluft, Santiago, & Haxby, 

2004; Sugiura, Mano, Sasaki, & Sadato, 2011). Therefore, it is possible that 

representations of individual face identities, voice identities, and person identities 

may differ depending on the type of familiarity with a person, and future studies 

should investigate potential differences between the representations of faces and 

voices of famous-familiar and personally-familiar identities.  

 

A third potential limitation relates to the use of dynamic face stimuli and the 

interpretation of the finding of a person identity representation in the pSTS, given its 

association with the processing of dynamic faces (Fox et al., 2009; Pitcher et al., 

2011) and audiovisual speech processing (Calvert et al., 2000; Kreifelts et al., 2007; 

Robins et al., 2009; Watson, Latinus, Charest, et al., 2014). It is possible that the 

observed crossmodal representation in this region is specific to dynamic faces, and 

dynamic speech-related information that is shared between the face and the voice 

(Yovel & O’Toole, 2016). Behavioural studies have shown that it is possible to 

successfully match faces and voices of unfamiliar people when presented with 

speech samples and silent videos of speaking faces, even when the faces are 

speaking a different sentence to the speech sample (Kamachi, Hill, Lander, & 
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Vatikiotis-Bateson, 2003; Lachs, Lorin, Pisoni, 2004; Lander, Hill, Kamachi, & 

Vatikiotis-Bateson, 2007; Smith, Dunn, Baguley, & Stacey, 2016b). This raises that 

possibility that dynamic faces and voices of the same identity share information even 

when the person is unfamiliar, and that this information may be cross-decodable in 

the brain. However, in contrast to these studies, the dynamic face stimuli used here 

did not feature silent speech, and  thus should not necessarily engage auditory 

representations relating to speech (Calvert et al., 1997).  Moreover, person identity 

representations in the rpSTS have been shown previously in a study using static 

face stimuli (Anzellotti & Caramazza, 2017). However, future work should probe the 

existence crossmodal face-voice representations in the rpSTS using unfamiliar 

stimuli.  

 

Conclusion 

To conclude, this study showed a crossmodal person identity representation that 

generalises across different, naturalistically varying face videos and voice recordings 

of the same person in a multimodal region of the rpSTS. This supports the MP Model 

for face and voice integration. This study also showed evidence of video-invariant 

face identity representations in face-selective regions (rFFA, rOFA), and sound-

invariant voice identity representations in voice-selective regions (TVA, STS/STG). 

The next chapter will focus on the type of information that is represented in these 

different regions.  
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Chapter 4 

The informational content of face and voice 
representations 
 

Chapter 3 presented an fMRI study that revealed a number of face-selective and 

voice-selective regions, and multimodal brain regions that selectively respond to both 

faces and voices. While previous work has demonstrated that some of these regions 

consistently respond to faces and voices, the type of information from the face or the 

voice that is represented in each region is unclear. Therefore, this chapter will 

address the second aim of this thesis, which was to determine where in the brain the 

different types of information conveyed by faces and voices is processed. It 

describes a study that compared representations of faces and voices in face-

selective, voice-selective, and multimodal brain regions with models of different 

types of information that can be extracted from faces and voices.  

 

Previous studies have shown evidence that face-selective and voice-selective 

regions, or regions known to overlap with the location of these regions, process 

information related to physical properties of faces and voices (Formisano et al., 

2008; Weibert et al., 2018), gender (Kaul et al., 2011; Weston et al., 2015), and 

social information (Bestelmeyer et al., 2012; Todorov & Engell, 2008). However, a 

review of findings from these studies, presented in Chapter 1, suggested that many 

of the findings relating to representations of gender and social information in face-

selective and voice-selective regions may be explained by variations in physical face 

and voice characteristics. For gender, differences between male and female faces or 

voices are related to differences in facial features (Bruce et al., 1993) and vocal 

features (Titze, 1989), respectively, confounding the interpretation of studies 

showing discrimination of male and female faces in face-selective regions (Contreras 

et al., 2013; Kaul et al., 2011), and stronger responses to female voices in voice-

responsive regions (Lattner et al., 2005; Sokhi et al., 2005; Weston et al., 2015). 

Moreover, findings that highly masculine and highly feminine faces and voices 

increase brain activity in face-selective and voice-selective regions are likely to be 

confounded by the high distinctiveness of these faces and voices in terms of physical 
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features (Charest et al., 2013; Freeman et al., 2010; Mattavelli et al., 2012). For 

social information, a similar confound exists for studies showing increased brain 

activity in face-selective regions in response to faces and voices with very positive or 

very negative valence (Mattavelli et al., 2012; Said et al., 2011). However, the 

majority of previous studies focused on one type of face and voice information, and 

were therefore not able to directly compare different types of information. 

 

Few studies have investigated the type of information used by face-selective and 

voice-selective brain regions to distinguish between individual faces and voices. 

Weibert et al. (2018) showed that the similarity between the representations of 

different face conditions (featuring multiple face images that could vary based on 

identity, viewpoint, and/or emotional expression) in the FFA, OFA, and STS was 

predicted by the similarity between the low-level properties of the images, as 

measured by the GIST descriptor model. The use of low-level visual information to 

distinguish between different faces in the FFA was also demonstrated in a study 

showing that response patterns to artificially-generated faces in this region were 

explained by computational models of low-level visual properties, including 

simulations of visual processing in areas V1 and V4 (Carlin & Kriegeskorte, 2017). 

Moreover, studies have shown evidence of discrimination of male and female faces 

in multiple face-selective regions, including the FFA, OFA, and pSTS (Contreras et 

al., 2013; Kaul et al., 2011), suggesting that these regions are sensitive to visual 

information that distinguishes faces based on gender. For voices, Formisano et al. 

(2008) showed that regions of the STS/STG, which are known to overlap with the 

voice-selective TVAs (Pernet et al., 2015), use information about vocal pitch to 

distinguish between individual voice identities, and information about formant 

frequencies to distinguish between different vocalisations. However, the information 

used by the TVAs to distinguish between different identities has not been explicitly 

investigated. Moreover, to the best of my knowledge, the ability of face-selective and 

voice-selective regions to distinguish between individual faces and voices based on 

social information has not been investigated. Finally, virtually nothing is known 

regarding the informational content of face and voice representations in multimodal 

regions that respond to both faces and voices. In Chapter 1, it was argued that 

multimodal regions may represent information that is extracted from both faces and 
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voices, such as information relating to social traits (McAleer et al., 2014; Oosterhof & 

Todorov, 2008).  

 

The present study used RSA to compare representations of individual face and voice 

identities in face-selective, voice-selective, and multimodal regions (computed in 

Chapter 3), and in the amygdala with multiple models of physical face/voice 

properties, gender, and social information, with the aim to determine the 

informational content of representations in these regions. Although the amygdala 

was not included in the analysis in Chapter 3, it was included in the present study to 

test its proposed involvement in the processing of social information in faces (Bzdok 

et al., 2011; Mende-Siedlecki et al., 2013; Santos et al., 2016). Models of perceived 

physical properties were computed based on ratings on visual/auditory pairwise 

similarity tasks, and models of objective physical properties were computed based 

on measures of stimulus similarity obtained using the OpenFace and Gabor-Jet 

programs for faces, and using f0 and AVTL for voices. A model of gender predicted 

that response patterns would be more similar between same-gender faces/voices 

than between different-gender faces/voices. Models of social information were 

computed from ratings of faces and voices on social traits, namely trustworthiness, 

dominance, attractiveness, and positive-negative valence. It was predicted that face-

selective and voice-selective regions would primarily process information relating to 

the perceived and objective visual/auditory similarity of the faces/voices, as well as 

gender. In addition, it was predicted that multimodal regions would primarily process 

social information from faces and voices. Finally, it was expected that the amygdala 

would process social information from faces as well as information on the visual 

similarity of faces. 

 

An additional exploratory analysis was performed that compared the representations 

of faces and voices between different face-selective regions, voice-selective regions, 

multimodal brain regions, and the amygdala with the aim to identify brain regions that 

share information with each other. Although this analysis does not reveal what 

information is being shared across regions, it provides insights into which regions 

share information, and how the different regions are organised in terms of their 
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representations of faces and voices.  Moreover, it enables the identification of brain 

regions that share types of information that were not included in one of models. 

 

4.1 Methods 

The present study used the fMRI data that was reported in detail in Chapter 3. For 

the analysis in this chapter, we used the face RDMs and voice RDMs that showed 

the pairwise discriminability of the response patterns for all pairs of face identities 

and all pairs of voice identities in face-selective, voice-selective, and multimodal 

brain regions. 

 

The same participants that took part in the fMRI study reported in Chapter 3 also 

completed a behavioural session. In this study, participants rated the same faces 

and voices (i.e. the stimuli that they were presented with in the scanner) on 

trustworthiness, dominance, attractiveness, positive-negative valence, and on 

perceived pairwise visual and auditory similarity. We then created model RDMs 

based on the distance between stimuli for each of these attributes, and used 

correlation to compare the face and voice RDMs in different brain regions to the 

model RDMs. In addition, face and voice brain RDMs were compared with RDMs of 

visual and acoustic features and gender. Given that details of the methods for the 

fMRI sessions are presented in detail in Chapter 3, below I focus on the behavioural 

session only. 

 

4.1.1 Stimuli for the behavioural session 

The same stimuli that were presented in the fMRI task (described in detail in Chapter 

3) were presented in the behavioural session. However, although the duration of the 

original face and voice stimuli was 3000ms, only the first 1500ms of each stimulus 

were presented in this study. The length of the original stimuli had been determined 

to accommodate the fMRI study, and they were cropped for the behavioural session 

in order to shorten the length of the tasks. 

 

4.1.2 Procedure for the behavioural session 

Trustworthiness, Dominance, Attractiveness, and Valence rating tasks 
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There were 8 blocks in total (4 judgements x 2 modalities). Faces and voices were 

presented in separate blocks, and presented using ABBA counterbalancing. The 

modality of the first block was counterbalanced across participants. The presentation 

order of the four judgements was also counterbalanced across participants. All tasks 

and stimuli were presented using the Psychophysics Toolbox (version 3;  Brainard, 

1997; Pelli, 1997) running in Matlab (version R2013b, The MathWorks, Inc.). Face 

stimuli were presented in the centre of the screen. Participants listened to the voice 

stimuli through headphones (Sennheiser HD 202). 

 

In each trial of each task, a face or voice identity was represented by three tokens of 

their face or voice, presented successively with no gap in between them (Figure 4.1). 

Each identity was presented in two trials; one trial presented three face/voice tokens 

randomly selected from the six available, and the other trial presented the remaining 

three tokens. This resulted in 24 trials in each face/voice block (12 identities x 2 

presentations). Tokens within each trial were presented in a random order, and trial 

order was also randomised. Each video and audio clip was presented for 1500ms 

and there was a 1000ms inter-trial-interval following the response. 

 

In each trial, participants were asked to rate how trustworthy/dominant/attractive the 

face/voice is, or how they feel about the face/voice (for valence), basing their 

judgement on three tokens of the face/voice that were presented successively 

(Figure 4.1). The rating scale ranged from 1 (very untrustworthy/non-

dominant/unattractive/negative) to 7 (very trustworthy/dominant/attractive/positive) 

and participants responded using the corresponding keys on the keyboard. 

Trustworthiness was defined as ‘able to be relied on as honest and truthful’. 

Dominance was defined as ‘having power and influence over other people’. No 

definition was provided for valence or attractiveness. Participants were advised that 

there was no time limit to their responses and that they should go with their first 

instinct. The duration of each block was approximately 3 minutes. 
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Figure 4.1: Example trial sequence and stimuli for Trustworthiness, 

Dominance, Attractiveness, and Valence rating tasks. A:  Example trial in face 

block. B: Example trial in voice block. 

 

 

 

Figure 4.2: Example trial sequence and stimuli for pairwise auditory and visual 

similarity ratings tasks. A:  Example trial in face block. B: Example trial in voice 

block. 
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Visual and Auditory Similarity rating tasks 

In these tasks, participants rated the visual or auditory similarity of pairs of face 

identities or pairs of voice identities, respectively. For each task, each of the 12 

identities was paired with the other 11 identities to create 66 identity pairs. Each 

identity pair contained three tokens for each identity that were randomly selected 

from the six available tokens for that identity. Each identity pair was presented in two 

trials to counterbalance the presentation order of the two identities within the trial. 

Because the tokens for each identity were selected randomly, the two trials did not 

necessarily present different tokens. There were 132 trials in each task (66 identity 

pairs x 2 presentations). 

 

The presentation order of the visual similarity task and the auditory similarity task 

was counterbalanced across participants. In addition, the presentation order of the 

pairwise similarity tasks in relation to the other ratings tasks (Trustworthiness, 

Dominance, Attractiveness, Valence) was counterbalanced across participants so 

that the similarity tasks were either completed before or after the other tasks. 

 

In the visual similarity task, participants were instructed to rate the similarity between 

the visual appearance of the two face identities in each pair, focusing on the facial 

features. In the auditory similarity task participants were instructed to rate how 

similar the two voice identities sounded in terms of the characteristics of their voices. 

In both tasks, participants were told to ignore similarities between identities that were 

related to non-perceptual, biographical or semantic information (e.g. identities that 

were both actors). Furthermore, to encourage participants to base their judgements 

on perceptual information, participants were advised to consider to what extent two 

identities could potentially be related to each other, i.e. be part of the same family, 

based on how they looked (visually similarity task) or sounded (auditory similarity 

task). 

 

In each trial, participants were first presented with the three tokens of the face/voice 

of identity A. Following a 500ms fixation screen, they were presented with the three 

tokens of the face/voice of identity B. Stimuli were presented using Psychtoolbox in 

Matlab 2013b. Tokens for each identity were presented successively with no gap in 



 
 
 
 
 

140 

between (Figure 4.2).  Participants were then asked to rate how similar the two 

faces/voices looked/sounded on a scale from 1 (very dissimilar) to 7 (very similar) by 

pressing the corresponding key on the keyboard. Participants were advised that 

there was no time limit to their responses and that they should go with their first 

instinct. Each video and audio clip was presented for 1500ms and there was a 

1000ms inter-trial-interval (ITI) following the response. The presentation order of the 

trials within each task was randomised. The duration of each task was approximately 

30 minutes.  

 

4.1.3 Representational geometries: computing RDMs 

Brain RDMs 

We used the RDMs for faces and voices, defined as described in Chapter  3, for all 

the ROIs previously defined, namely (1) face-selective regions (right fusiform face 

area (FFA), occipital face area (OFA), and posterior superior temporal sulcus (pSTS) 

— the latter was originally defined as face-selective, but shown to display multimodal 

properties), (2) voice-selective regions (bilateral superior temporal sulcus/gyrus 

(STS/STG) and temporal voice areas (TVAs), and (3) multimodal regions 

(orbitofrontal cortex (OFC), frontal pole (FP), precuneus/posterior cingulate 

(Prec/P.Cing.), and bilateral temporal pole and anterior inferior temporal cortex (TP-

aIT)). In addition to these RDMs, we also computed RDMs for the right and left 

amygdala (Amyg). The amygdala was not consistently activated across participants 

in the face localiser, and therefore anatomical masks of this region were obtained 

from the Harvard-Oxford brain atlas in FSL. These masks were thresholded to 

include voxels that were present in at least 20% of participants. The masks were 

then transformed to each participant’s native space and used as ROIs. In contrast to 

all other ROIs, which were created by masking the results of the functional localisers, 

the anatomical amygdala masks themselves were used as amygdala ROIs. These 

ROIs were then used to compute GLMs and RSA using the same procedures 

reported in Chapter 3.  

 

For each participant, face and voice brain RDMs for each ROI were averaged across 

the two scanning sessions, resulting in one 12x12 face RDM and one 12x12 voice 
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RDM per ROI. RDMs showed the discriminability (computed using the LDC) of the 

response patterns for all 12 face identities and all 12 voice identities.  

 

Candidate model RDMs for behavioural ratings 

RDMs for ratings of the faces and voices on trustworthiness, dominance, 

attractiveness, and positive-negative valence were computed for each participant. 

For each modality and each judgement, the Euclidean distance between the ratings 

of each possible pair of identities was calculated (ratings were averaged across the 

two trials in which the same identity was presented), separately for faces and voices. 

Thus, for each judgement, we obtained a 12x12 matrix of Euclidean distances 

between ratings for 66 identity pairs.  

 

The RDMs based on judgments of perceptual similarity were computed in a different 

manner given that the judgments themselves were already of the similarity of each 

identity pair. The ratings of the face and voice pairs were averaged across the two 

trials in which each identity was presented, and were reverse-coded to match the 

LDC and Euclidean distance measures, where a higher value indicated higher 

dissimilarity. Thus, after reverse scoring, a similarity value of one reflected maximum 

similarity and a value of seven reflected maximum dissimilarity. The resulting values 

were arranged into 12x12 RDMs for face identities and for voices identities.  

 

Candidate model RDM for gender 

A 12x12 RDM for identity gender was created by assigning a value of 0 to same 

gender identity pairs, and a value of 1 to different-gender identity pairs.  

 

Candidate model RDMs for visual features 

In addition to the perceived similarity between stimuli, we also used objective 

measures of the similarity between the visual appearances of the faces of the 12 

identities based on models or descriptors of the visual features of the faces. Here, 

we used two methods to do this, one based on neural networks using OpenFace 

(Amos, Ludwiczuk, & Satyanarayanan, 2016) and one using the Gabor-Jet model 

(Biederman & Kalocsai, 1997; Margalit, Biederman, Herald, Yue, & von der 

Malsburg, 2016; Yue et al., 2012). 
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The first model of the similarity between visual features of the faces was computed 

using the OpenFace face recognition library (Amos et al., 2016; 

http://cmusatyalab.github.io/openface/). Briefly, this program detects a face, does an 

affine transformation so that the eyes and mouth appear in approximately the same 

location, and then creates a descriptor or low-dimensional representation of the face. 

The program then uses a deep neural network to map each face to its low 

dimensional representation (128 measurements), and computes the distance 

between the low dimensional representations of each two faces. For use as input to 

OpenFace, we extracted one still frame from each face video used in the 

experiment. Thus, we obtained six different images of the face of each identity, taken 

from the six different videos in which the identity was presented, resulting in 72 

images in total. The low-dimensional representations for each face that were 

obtained from OpenFace were used to compute Euclidean distances between each 

pair of face images. Figure 4.3A shows the 72x72 RDM with the OpenFace 

distances between each pair of images. Zero means it is the same image and values 

between 0 and 1 likely indicate that two pictures likely belong to the same person. 

Larger values than 1 indicate that the two pictures belong to different people. We 

found that OpenFace performed quite well at grouping images of the same person 

(M = 0.652) compared to images of different people (M = 1.914) in our stimuli. To 

obtain a 12x12 RDM for the 12 identities, which would be comparable to the brain 

RDMs, for each identity pair we averaged the distances across all possible stimulus 

pairings for that pair. Thus, we obtained an RDM showing the similarity between the 

visual appearances of the faces of the 12 identities, averaged across all stimulus 

pairs featuring those identities (Figure 4.5A). 

 

A second measure of similarity between face images was obtained using the Gabor-

Jet model (Biederman & Kalocsai, 1997; Margalit et al., 2016; Yue et al., 2012). This 

model was designed to simulate response properties of cells in area V1. Moreover, 

Gabor-Jet similarity has been found to correlate with psychophysical measures of 

facial similarity (Yue et al., 2012). The same images that were used as input to the 

first model were also used in this analysis. First, OpenFace 2.0 (Baltrusaitis, Zadeh, 

Lim, & Morency, 2018) was used to detect faces in each image, and the images 

http://cmusatyalab.github.io/openface/
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were then greyscaled. The Matlab script provided in 

www.geon.usc.edu/GWTgrid_simple.m was then used to create a 100 x 80 Gabor 

descriptor for each face. After transforming these matrices into vectors, we 

computed the Euclidean distance between the vectors from each pair of faces. 

Figure 4.3B shows the matrix with the Gabor-Jet distances between each pair of 

images.  In contrast to the OpenFace distance model, there was a very small 

difference between the mean Euclidean distances for different tokens of the same 

people (M= 411) compared with different tokens of different people (M= 438). Finally, 

to obtain a 12x12 identity RDM for comparison with the brain RDMs, we followed the 

same procedure as with the OpenFace model (Figure 4.5A). From Figure 4.3B it is 

apparent that identity ‘AC’ shows larger dissimilarity between the different stimuli of 

AC compared with other identities, and Figure 4.5A shows that this identity is 

dissimilar to all other identities. It is likely that these effects are due to AC wearing 

glasses in the images, and perhaps this analysis introduced some errors in locating 

the eyes in each picture of AC. 

 

 

 

A. OpenFace  

                      

 

 

 

 

http://www.geon.usc.edu/GWTgrid_simple.m
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B. Gabor-Jet 

                     

Figure 4.3: RDMs showing the Euclidean distances between face images of the 

12 identities based on the OpenFace program (A) and the Gabor-Jet model (B). 

Matrices are symmetric around a diagonal of zeros, and each cell shows the 

distance between the stimuli in the corresponding row and column. 

 

 

 

Candidate model RDMs for acoustic features 

For voices, we also included measures of objective similarity between identities, this 

time based on acoustic properties of the stimuli. Based on their relevance for voice 

identity processing (Baumann & Belin, 2009; Lavner et al., 2001), RDMs were 

computed based on the similarity of the mean fundamental frequency (f0; perceived 

as voice pitch), and apparent vocal tract length (AVTL) of the voices of the 12 

identities. F0 is related to the rate of vocal fold vibration in the larynx, where sound is 

produced, whereas AVTL is related to the filtering of sound through the vocal tract, 

i.e. the pharynx, mouth, and nose (Fitch, 2000).  

 

The mean f0 of each voice stimulus was extracted using Praat (version 5.3.80; 

Boersma and Weenink, 2014; www.praat.org). To calculate AVTL, the first four 

formant frequencies (f1, f2, f3, f4) for each voice stimulus were extracted using 

Praat, and the AVTL for each stimulus was then computed using the formula 
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described in Cartei, Cowles, & Reby (2012). Briefly, the average formant spacing 

(∆F) for each voice, i.e. the distance between all neighboring formants, was 

calculated as the slope of a linear regression line obtained by plotting the values for 

the four formant frequencies against increments of formant spacing that are 

predicted by a model of the vocal tract, and which correspond to 0.5, 1.5, 2.5, and 

3.5 for formants f1, f2, f3, and f4, respectively. The known approximate speed of 

sound in the vocal tract, which is 35000 m/s, was then divided by the resulting ∆F 

value, after multiplying the value by 2. The resulting AVTL value is expressed in 

centimetres. Figure 4.4 shows the matrices with the f0 and AVTL distances between 

each pair of sounds.  For both f0 and AVTL, the mean Euclidean distances for 

different tokens of the same people (f0: M= 30.2, AVTL: M= 0.52) were only slightly 

lower compared with different tokens of different people (f0: M= 53.03, AVTL: M= 

1.26). 

 

To create identity RDMs, the mean f0 values and AVTL values for the six different 

voice stimuli for each speaker were averaged to create one mean f0 value and one 

AVTL value for each of the 12 identities. Finally, we calculated the Euclidean 

distance between the mean f0 values, and between the AVTL values, for all possible 

pairs of identities, resulting in a 12x12 f0 RDM and a 12x12 AVTL RDM (Figure 

4.5B). 

 

 

A. f0 
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A. AVTL 

                        

Figure 4.4: RDMs showing the Euclidean distances between voice recordings 

of the 12 identities based on measures of f0 (A) and AVTL (B). Matrices are 

symmetric around a diagonal of zeros, and each cell shows the distance between 

the stimuli in the corresponding row and column. 

 

 

4.1.4 Data analysis 

RSA comparing brain and candidate RDMs 

For each individual participant and each ROI, we used their brain RDM for faces or 

for voices as a reference, and compared it with candidate RDMs computed from their 

behavioural ratings of the faces or voices (trustworthiness, dominance, 

attractiveness, positive-negative valence, perceptual similarity), with a RDM for 

identity gender, and for RDMs of visual (OpenFace, Gabor-Jet) and acoustic 

features (f0, AVTL) (Figure 4.5). Comparisons between the reference and candidate 

RDMs were made using Kendall’s tau a correlation, and p-values for each 

comparison were obtained by computing a one-sample Wilcoxon signed-rank test 

across the correlation values for all participants, comparing them against zero (Nili et 

al., 2014). P-values were corrected for multiple comparisons using FDR correction 

(q=.05) across all comparisons within each ROI (8 for faces, 8 for voices).  
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An estimate of the noise ceiling was calculated for each ROI and modality to indicate 

the maximum achievable correlation with a candidate RDM given the noise in the 

brain RDMs. A lower bound of this noise ceiling (Nili et al., 2014) was calculated by 

correlating (tau a) the brain RDM for each participant with the average brain RDM 

across all other participants, after sign rank transforming the RDMs, and then 

averaging these correlations across all participants. Please note that this estimate of 

noise ceiling is also an estimate of inter-subject reliability of the brain RDMs.  

 

RSA comparing brain RDMs across different ROIs 

Finally, for each individual participant, face or voice RDMs were compared between 

different brain regions to assess their similarity in terms of information content. 

Individual RDMs were compared using Spearman correlation, and a p-value for each 

comparison was computed using one-sample Wilcoxon signed-rank test across the 

correlation values for all participants, comparing them against zero. P-values were 

corrected for all comparisons using FDR correction with q=.05. Finally, correlations 

were averaged across participants for visualisation purposes by Fisher-transforming 

the correlation values, averaging them, and then reverse transforming the resulting 

values.   
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A. Faces 

 

 

B. Voices 
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Figure 4.5: Example RDMs for faces (A) and for voices (B) for one participant. 

Matrices are symmetric around their diagonals. A: Example brain RDM for the rFFA 

(centre) and candidate RDMs (top and bottom row). B: Example brain RDM for the 

rTVA (centre) and candidate RDMs (top and bottom row). Note that the OpenFace 

and Gabor-Jet (for faces), f0 and AVTL (for voices), and gender RDMs are based on 

stimulus characteristics, and are therefore the same for all participants. The gender 

RDM is the same for both faces and voices.  

 

 

4.2 Results 

4.2.1 RSA comparing brain and candidate RDMs 

Figure 4.6A shows correlations between brain RDMs for faces and candidate model 

RDMs in different brain regions. Significant correlations were found in the face-

selective rFFA for perceived pairwise visual similarity (mean r = .05, Z = 2.585, p 

=.0097), gender (mean r = .05, Z = 3.074, p =.0021), and OpenFace similarity (mean 

r = .07, Z = 3.564, p =.0004), and in the rOFA for dominance (mean r = .03, Z = 

2.325, p =.0201), gender (mean r = .04, Z = 2.854, p =.0043), OpenFace similarity 

(mean r = .05, Z = 2.887, p =.0039), and Gabor-Jet similarity (mean r = .12, Z = 

3.882, p =.0001). In addition, there was a correlation with perceived pairwise visual 

similarity in the voice-selective rSTS/STG (mean r = .04, Z = 2.736, p =.0062). The 

noise ceiling, indicated by the dashed lines in Figure 4.6A, was low for all ROIs. 

From the correlations that were significantly greater than zero, only the correlation 

with OpenFace similarity in the rFFA approached the noise ceiling (τ = .08).  

 

Figure 4.6B shows the correlations between brain RDMs for voices and candidate 

model RDMs. Significant correlations with gender, f0, and AVTL were found in all 

four voice-selective regions (bilateral TVAs and STS/STG), and significant 

correlations with perceived pairwise auditory similarity were found in all voice-

selective regions apart from the lTVA. Specifically, for the rSTS/STG, perceived 

similarity: mean r = .07, Z = 4.103, p <.0001; gender: mean r = .08, Z = 4.401, p 

<.0001; f0: mean r = .10, Z = 3.909, p <.0001; AVTL: mean r = .10, Z = 3.877, p 

=.0001. For the rTVA: perceived similarity: mean r = .06, Z = 3.754, p =.0002; 
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gender: mean r = .05, Z = 3.610, p =.0003; f0: mean r = .08, Z = 3.363, p =.0008; 

AVTL: mean r = .07, Z = 3.240, p =.0012.For the lSTS/STG: perceived similarity: 

mean r = .05, Z = 3.445, p =.0006; gender: mean r = .08, Z = 4.309, p <.0001; f0: 

mean r = .10, Z = 4.289, p <.0001; AVTL: mean r = .11, Z = 4.042, p <.0001.For the 

lTVA: gender: mean r = .04, Z = 3.209, p =.0013; f0: mean r = .06, Z = 2.962, p 

=.0031; AVTL: mean r = .04, Z = 2.447, p =.0144. There was also a correlation with 

perceived pairwise auditory similarity in the multimodal rTP-aIT (mean r = .06, Z = 

3.672, p =.0002). Similar to the faces, the noise ceiling was low for all ROIs. Only the 

average correlation with perceived similarity in rTP-aIT, and the correlation with f0 in 

the lTVA surpassed the noise ceiling (rTP-aIT: τ = 02, lTVA: τ = 05), whereas the 

correlation with AVTL in the lTVA approached the ceiling but did not surpass it.  
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A. Faces 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 

152 

B. Voices 

 

 

Figure 4.6: Correlations between brain RDMs for faces (A) and voices (B) and 

candidate model RDMs. The candidate model RDMs are trustworthiness (Tru), 

dominance (Dom), attractiveness (Att), pairwise visual/auditory similarity (Sim), 

stimulus gender (Gen), OpenFace similarity (OF) and Gabor-Jet similarity (GJ) for 

faces, and fundamental frequency (f0) and apparent vocal tract length (AVTL) for 

voices. Bars show average correlations across participants, and circles show 

individual participants. Stars indicate statistical significance at q≤.05. Horizontal 

dashed lines show the lower bound of the estimated noise ceiling (i.e. inter-subject 

reliability of brain RDMs). Different ROIs are colour-coded based on whether they 
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were originally defined as face-selective (magenta), voice-selective (green), 

multimodal (purple), or based on anatomical masks (orange). Note that the rpSTS 

was originally defined as face-selective, but was found to demonstrate multimodal 

properties (see Chapter 3). 

 

Although the candidate model RDMs describe different information extracted from 

faces and voices, it is likely that some of these types of information are associated 

with each other. For example, voice gender discrimination has previously been 

associated with voice pitch (Pernet & Belin, 2012). To determine to what extent the 

different candidate RDMs shared information with each other, we computed Kendall 

tau a correlations between all of the face models and all of the voice models. 

Correlations were computed separately for each participant. We then averaged the 

correlations across participants (we computed the average across participants after 

Fisher transforming the single-subject correlations, and reverse transformed the 

resulting values). Correlations between models that were based on stimulus 

properties, rather than on participant ratings, were the same for all participants, and 

were thus excluded from inference testing. For all other comparisons, we compared 

the single-subject correlations against zero using one-sample Wilcoxon signed-rank 

tests, and corrected for multiple comparisons using FDR with q≤.05.  

 

Figure 4.7 shows that the candidate RDMs that explained the brain RDM for faces in 

the rFFA, namely perceived similarity, gender, and OpenFace, were also correlated 

with each other, suggesting that these models capture similar information about 

faces. For candidate RDMs that explained the brain RDM for faces in the OFA, apart 

from the correlation between gender and OpenFace distance, there do not appear to 

be strong associations for the other models, i.e. there is not a significant correlation 

between dominance and Gabor-Jet similarity. Therefore, it is likely that the RDMs for 

dominance and Gabor-Jet similarity capture distinct types of face information in the 

OFA. Finally, Figure 4.7 shows that the models that were associated with responses 

to voices in the voice-selective regions, i.e. perceived similarity, gender, f0, and 

AVTL, were correlated with each other, suggesting that they explain similar 

information about voice representations in these regions. 
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Figure 4.7: Correlations between candidate RDMs for faces and for voices. The 

matrix is symmetric around a diagonal of zeros, and each cell shows the correlation 

between the models stated in the corresponding row and column. Correlations have 

been averaged across participants in all cells except for those enclosed in white 

dashed lines, for which the RDMs were the same for all participants. Stars in the 

upper triangle indicate correlations that survived correction for multiple comparisons 

(FDR corrected p value for faces: p≤.0256, and for voices: p≤.0148).  

 

 

 

To summarise, our results show that the face-selective rFFA and rOFA represent 

information relating to facial appearance, and voice-selective regions represent 

information relating to vocal appearance, as described by both perceived and 

objective measures of similarity. From the multimodal regions, only the rTPo-aIT 

showed a significant correlation with perceived similarity for voices, and this is likely 

to be due to the overlap between this region and the voice-selective regions in the 

right hemisphere. Our results also show that the rOFA represents information about 

perceived facial dominance. However, we find no significant correlations between 

face or voice brain RDMs with candidate RDMs for perceived trustworthiness, 

attractiveness, and valence in any of our ROIs after correcting for multiple 

comparisons.  
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4.2.2 RSA comparing brain RDMs across different ROIs 

Figure 4.8 shows the Spearman correlations between face RDMs and voice RDMs in 

different ROIs, averaged across participants. The upper triangle shows correlations 

with p-values that survived FDR correction for multiple comparisons at p≤.0115. Note 

that some ROIs showed large spatial overlap (rTPo-aIT, rpSTS, rSTS/STG, and 

rTVA with each other, and lTPo-aIT, lSTS/STG and the lTVA with each other), and 

the correlations between them are likely due to overlapping voxels. The results show 

significant correlations between face RDMs in face-selective regions, and between 

voice RDMs in voice-selective regions across different hemispheres, suggesting that 

these regions share information in the respective modality. Within each modality, 

there were also significant correlations across face-selective, voice-selective, and 

multimodal brain regions, demonstrating that information may be shared across 

these different regions. In addition, the results show low, but significant correlations 

between voice RDMs in face-selective regions, and between face RDMs in voice-

selective regions. These findings suggest that face- and voice-selective regions may 

process and share some information relating to the other modality.  

 

In the amygdala ROIs, which were anatomically defined, we show correlations of the 

face RDMs with face RDMs for face-selective and multimodal regions, and of the 

voice RDMs with voice RDMs for multimodal regions and the voice-selective 

rSTS/STG. Even though we did not find correlations of face or voice RDMs in the 

amygdala with any of our candidate models in the previous analysis, these results 

suggest that representations of faces and voices in this region share information with 

representations in both unimodal and multimodal (face- and voice-responsive) 

regions.  

 

Finally, a small number of correlations between RDMs across modalities survived 

multiple comparisons correction. A correlation between the face and voice RDM was 

found in the rTVA (mean r =.09, Z = 2.561, p =.0104). In Chapter 3, there were no 

significant correlations between face and voice RDMs in any of the ROIs when 

comparing RDMs across different scanning sessions. The difference here is that the 

RDMs were averaged across scanning sessions before being compared between 

the two modalities. Correlations between face and voice RDMs were also found 
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across different brain regions. However, given the small size of the correlations and 

the high number of comparisons across regions and modalities, these results should 

be interpreted cautiously. 

 

 

 

Figure 4.8: Correlations between face and voice RDMs in face-selective, 

multimodal, voice-selective, and anatomically defined ROIs, averaged across 

all participants.  Each cell shows the average correlation between the ROIs in the 

corresponding row and column. The lower triangle shows all correlations, and the 

upper triangle only shows correlations that survived correction for multiple 

comparisons (FDR corrected p value: p≤.0115). Grey outlines around cells in the 

upper triangle show correlations between brain regions that are likely due to large 

overlap. Different ROIs are colour-coded based on whether they were originally 

defined as face-selective (magenta), voice-selective (green), multimodal (purple), or 

based on anatomical masks (orange). Note that the rpSTS was originally defined as 

face-selective, but was found to demonstrate multimodal properties. 
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Finally, we used multidimensional scaling (MDS) to visualise the similarity between 

face and voice RDMs in different ROIs. The Spearman correlations were first 

transformed into correlation distances using 1-correlation. Two-dimensional MDS 

was computed in Matlab using the metric stress criterion and 1000 iterations.  Figure 

4.9A shows the relationship between face RDMs in each ROI (red) and voice RDMs 

in each ROI (blue), and demonstrates a clear distinction between the two modalities. 

Figure 4.9B shows the relationship between face RDMs only, and Figure 4.9C shows 

the relationship between voice RDMs only. Both of these plots show a distinction 

between face-selective and voice-selective brain regions, and a similar organisation 

of these regions in both modalities. For face-selective regions, both plots show a 

posterior to anterior organisation of face-selective regions (rOFA-rFFA-rpSTS).  

 

 

 

A) Faces & Voices 
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                      B) Faces                                              C) Voices 

 

     

 

Figure 4.9: Similarity of face RDM and voice RDMs across different ROIs. The 

plots show the results of 2D MDS performed on the dissimilarities between face and 

voice RDMs (A), on the dissimilarities between face RDMs only (B), and on the 

dissimilarities for voice RDMs only (C). Regions that are close together (or even 

overlap) show similar representational geometries, and regions that are further apart 

show dissimilar representational geometries. A shows clustering of RDMs based on 

modality, with voice RDMs in blue and face RDMs in red, with a clear distinction 

between the two modalities along the first dimension (x axis). In B and C different 

ROIs are colour-coded based on whether they were originally defined as face-

selective (magenta), voice-selective (green), multimodal (purple), or based on 

anatomical masks (orange). Note that the rpSTS was originally defined as face-

selective, but was found to demonstrate multimodal properties. Both B and C show a 

distinction between face-selective and voice-selective regions across the second 

dimension (y axis), and a posterior to anterior organisation of face-selective regions. 

 

 

4.3 Discussion 

The study presented in this chapter showed that brain representations of face 

identities in the rFFA and rOFA were associated with information relating to the 

objective visual similarity and gender of these identities, and brain representations of 

face identities in the rFFA were also associated with information about the perceived 

visual similarity of faces. In addition, brain representations of voice identities in voice-
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selective regions (bilateral TVAs and STS/STG) were associated with information 

relating to the perceived and the objective auditory similarity and gender of these 

identities. These findings supported the hypothesis that face-selective and voice-

selective regions would process information relating to physical stimulus properties. 

In contrast, the findings did not provide support for the hypotheses that social 

information from faces and voices would be represented in multimodal brain regions, 

and that the amygdala would represent both social and physical information in faces. 

Instead, a model of perceived facial dominance correlated with brain representations 

in the face-selective rOFA, and no other models of social information in faces or 

voices correlated with brain representations in any other ROIs. No significant 

correlations with any of the candidate models were found in the amygdala or in 

multimodal regions, with the exception of auditory similarity for voices in the rTPo-

aIT.  

 

Finally, a further analysis comparing brain representational geometries across 

different brain regions showed similarities in face representations across different 

face-selective regions (rFFA, rOFA, and rpSTS), and similarities in voice 

representations across voice-selective regions, within and across both hemispheres, 

suggesting commonalities in the informational content of these regions. 

 

Informational content of brain representations of faces 

Information about the perceived similarity of face identities, i.e. their subjective visual 

appearance, was associated with brain representations of these identities in the 

rFFA, and in the voice-selective rSTS/STG. Specifically, pairs of identities that were 

rated as being similar in terms of their visual appearance also elicited similar 

multivoxel response patterns in these regions. It is particularly interesting that such a 

representation was found in the rFFA. While many studies had shown that the rFFA 

contributes to discriminating between different face identities (Anzellotti et al., 2014; 

Axelrod & Yovel, 2015; Nestor et al., 2011; Verosky et al., 2013; Visconti Di Oleggio 

Castello et al., 2017), the current findings further show that brain representations in 

this region are also related to the subjective judgment of visual similarity. While 

previous studies have compared brain responses with perceived visual similarity of 

objects (Charest & Kriegeskorte, 2015; Mur et al., 2013), with perceived similarity of 
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animals from different biological classes (Connolly et al., 2012), and with perceived 

similarity of different emotional facial expressions (Said et al., 2010; Sormaz et al., 

2016) or emotional concepts (Saarimaki et al., 2015; Saarimäki et al., 2018), to the 

best of my knowledge this is the first study to show correlations between brain 

responses and the perceived similarity of different face identities. This is important 

given that, although a great deal is known about the selective responses to faces in 

FFA, much less is known about the computations in this region. The results of the 

present study suggest that these computations may be related to the perceived 

visual similarity of faces. 

 

The correlation with perceived visual similarity in the voice-selective rSTS/STG could 

be due to the presence of a face-selective region (or regions) contained within this 

relatively large ROI. One possibility could be that the overlap of the rSTS/STG with 

the rpSTS contributed to these results, but the results showed no significant 

correlations with perceived similarity in the rpSTS. However, face-selective regions 

have been identified in other regions of the STS, such as the anterior part (Fox et al., 

2009; Pinsk et al., 2008; Pitcher et al., 2011), and it is possible that these regions 

could be driving the correlation with perceived visual similarity in the rSTS/STG.  

 

The brain representations of faces in both the rFFA and the rOFA were also related 

to objective models of similarity that were computed based on visual image 

properties. Whereas the brain representations in rFFA and rOFA related to visual 

similarity computed using the OpenFace program, only the rOFA showed a 

significant correlation with visual similarity based on the Gabor-Jet model. The 

absence of a significant correlation in the rFFA is in contrast with studies showing 

that the Gabor-Jet similarity of pairs of faces is associated with the magnitude of the 

adaptation to the faces in the FFA (Xu & Biederman, 2010; Xu et al., 2009). 

However, in contrast to these studies, the present study used stimuli that were 

naturalistically variable, even within the same individuals, and this may have 

contributed to the differences in findings. The present results suggest that the Gabor-

Jet model does not generalise well to different tokens of the same identity, and this 

may account for why this model can better explain the brain representations in the 

rOFA compared to the rFFA.  
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The analysis looking at the relationship between the different models showed that 

whereas OpenFace similarity was associated with face gender and perceived 

similarity, Gabor-Jet similarity was not associated with any of the other candidate 

models (with the exception of perceived attractiveness). Therefore, it appears that 

these two models capture different types of visual information that distinguishes 

different face identities. Based on the RDMs computed at the stimulus level, prior to 

averaging across different stimuli for the same identities, it seems that the OpenFace 

program performed much better than the Gabor-Jet model at ‘telling together’ 

different stimuli that belonged to the same identity. Thus, the OpenFace similarity 

model may be related to facial characteristics that are used to distinguish between 

different face identities, but can also ‘tell together’ images of the same person. 

However, the characteristics used by the OpenFace neural network to create face 

descriptors are not defined, and therefore any interpretation of its computations is 

largely speculative. In contrast, the Gabor-Jet model was designed to simulate 

response properties of cells in the primary visual cortex, and therefore describes low-

level image properties. The correlation of the Gabor-Jet model with activity in the 

OFA suggests that the OFA may process primarily low-level characteristics of 

images. This would explain why no correlation was found between the OFA and 

perceived visual similarity, which is most likely based on higher-level face properties 

such as gender, age, or race. 

 

Brain representations in both the rFFA and rOFA were also related to face gender. 

Specifically, the results showed that different-gender face identities were associated 

with more dissimilar response patterns compared with same-gender face identities. 

These findings support previous studies showing representations of face gender in 

the FFA (Contreras et al., 2013; Freeman et al., 2010; Kaul et al., 2011) and in the 

OFA (Kaul et al., 2011). However, whereas Kaul et al. (2011) also found 

representations of gender in the STS and OFC, there was no evidence of gender 

representations in these regions.  

 

The analysis comparing different models showed that the OpenFace, perceived 

similarity, and gender models capture similar information about faces. This is 
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unsurprising, given that behavioural judgements of similarity are likely to be based 

on physical facial features. Moreover, given that facial features are used to 

distinguish between faces of different genders (Bruce et al., 1993), it is likely that the 

gender model also reflects differences between faces in terms of visual features. 

Due to the similarities between the OpenFace, perceived similarity, and gender 

models, it is not possible to draw conclusions regarding the independent 

contributions of these models in explaining brain representations in the present 

study. 

 

The only representation of social trait information was found in the rOFA for 

perceived dominance. Dominance, sometimes referred to as power, has been shown 

to be one of the main dimensions that describe first impressions of faces, and has 

been associated with facial masculinity (Oosterhof & Todorov, 2008; Sutherland et 

al., 2013). Todorov et al. (2011) have previously shown a relationship between the 

level of perceived facial power and the magnitude of response in a region of the right 

occipital cortex, the peak of which overlaps with a probabilistic map of the rOFA in 

the present study.  Specifically, Todorov et al. (2011) found that this region showed 

stronger responses to faces perceived as very high or very low in power, compared 

with faces perceived to have a medium level of power. However, they failed to 

replicate this effect in a second experiment that used an orthogonal task, as opposed 

to an approach-avoidance decision task, suggesting that responses to dominance in 

the right occipital regions may be task-dependent. The current study, using a task 

unrelated to social judgements, showed that the representation of face identities in 

the rOFA contains some information about the perceived dominance of the faces. 

The facial dominance model was not correlated with any of the other models that 

were correlated with the brain RDM in the rOFA. This suggests that the dominance 

information in the rOFA could not be explained by our models of visual appearance, 

such as OpenFace and Gabor-Jet similarity, or by differences in the gender of the 

faces. Therefore, it seems that the rOFA may represent both perceptual and social 

information about faces. 

 

To summarise, Chapter 3 showed that both the rFFA and rOFA could discriminate 

between different face identities. The current findings suggest that the rFFA may use 
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information related to both the perceived and objective visual similarity between 

faces to distinguish between the faces of different people, whereas the rOFA may 

rely more on the objective image-based similarity between faces. Moreover, both the 

rFFA and rOFA may use gender information to distinguish between different 

identities, and the rOFA may additionally process information about facial 

dominance. Models that correlated with brain representations of faces in the rFFA, 

namely perceived similarity, gender and OpenFace similarity, were correlated with 

each other, suggesting that they describe similar information. In contrast, low 

correlations were found between the models that correlated with brain 

representations in the rOFA, namely perceived dominance, gender, OpenFace 

similarity, and Gabor-Jet similarity (with the exception of gender and OpenFace 

similarity), suggesting that these models describe distinct information. Although 

Chapter 3 also revealed representations of face identity in the rpSTS, none of the 

models described in the present chapter explained the representational geometry of 

face identities in this region.  

 

Informational content of brain representations of voices 

Brain representations in the rTVA and the bilateral voice-selective STS/STG were 

associated with information about the perceived auditory similarity of voice identities, 

and brain representations in all voice-selective regions were associated with 

information about voice gender, f0, and AVTL. The multimodal rTP-aIT, which 

overlaps with the voice-selective regions in the right temporal lobe, showed a 

significant correlation with perceived similarity only. Given the extremely low noise 

ceiling in this region, these results are interpreted with caution. In addition, the 

observed correlation in this region is most likely due to the overlap with the voice-

selective regions. No significant correlations were found between brain 

representations and candidate models in any other multimodal RDMs. Moreover, 

none of the ROIs represented social trait information in voices. 

 

For measures of objective similarity, the finding that the bilateral STS/STG and the 

TVAs represent information about f0 is in line with Formisano et al. (2008), who 

showed that the distances between the brain representations of individual voice 

identities in the STS/STG were correlated with the distances between the f0 of the 
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voices. While Formisano et al. (2008) used vowel sounds as stimuli, the present 

work extends this finding to representations of longer, naturalistically varying speech 

stimuli. Moreover, in contrast to Formisano et al. (2008), this chapter showed that f0 

information is used to distinguish between voices within independently localised 

voice-selective regions. The finding that the bilateral STS/STG and the TVAs 

represent information about AVTL is in agreement with previous studies showing that 

the left STS/STG is sensitive to VTL information in voices (von Kriegstein et al., 

2007, 2010), and extends this finding to include the right hemisphere. Lastly, a 

previous study found that a region in the aSTS that overlapped with the right TVA, 

but not the right TVA itself, responded more to very masculine and very feminine 

voices than to gender-ambiguous voices, suggesting that only a sub-region of the 

right TVA processes information about voice gender (Charest et al., 2013). In 

contrast, the present study showed that both the right and left TVAs use gender 

information to discriminate between individual voices.  

 

To the best of my knowledge, this is the first time that activity in voice-selective 

regions has been associated with perceived vocal similarity. The present findings 

showed that pairs of identities that were rated as being similar in terms of the way 

that they sound also elicited similar multivoxel response patterns in voice-selective 

regions.  

 

The analysis comparing the similarity between different candidate models showed 

that perceived auditory similarity, voice gender, f0, and AVTL were correlated with 

each other, suggesting that they capture similar information from voices. This finding 

is in line with studies comparing MDS of perceived similarity ratings of voices with 

different acoustic measures, which have shown that perceptual judgements are 

associated with f0 and with formant frequencies, which are used to calculate AVTL 

(Baumann & Belin, 2009; Nolan, Mcdougall, & Hudson, 2011). As with faces, it is not 

surprising that judgements of perceived similarity of voices are likely to be based on 

acoustic features of the voice. Moreover, voice gender discrimination has been 

previously associated with both f0 and formant frequencies (Fitch & Giedd, 1999; 

Hillenbrand & Clark, 2009; Pernet & Belin, 2012; Poon & Ng, 2011; Titze, 1989). 

Ultimately, the similarities between the different models make it almost impossible to 
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disentangle the contributions of each of the models to the brain representations of 

voices.  

 

To summarise, Chapter 3 showed that the bilateral STS/STG and TVAs could 

discriminate between individual voice identities, and the present study suggests that 

these regions may use information about the subjectively and objectively defined 

similarity between voice identities, as well as voice gender, to discriminate between 

different identities.  

 

Multimodal regions and the amygdala 

It was predicted that social information could be represented in multimodal regions, 

but no evidence was found to support this prediction. With the exception of the 

association between perceived dominance and brain representations of faces in the 

rOFA, there was no evidence of representations of social information from faces and 

voices in any other ROIs. Furthermore, no correlations were found between brain 

representations for faces and voices in the rpSTS and any of the candidate models. 

Therefore, while the previous chapter showed that the rpSTS could discriminate 

between face identities, voice identities, and person identities, it is not known what 

type of information is used by this region to distinguish between the different 

identities. It has been proposed that the STS may integrate dynamic information that 

is extracted from the faces and voices of familiar people and that is unique to each 

individual (Yovel & O’Toole, 2016). Exposure to faces and voices during social 

interactions is usually concurrent, and it is likely that dynamic aspects of person’s 

face would be automatically associated with their voice and manner of speech (Yovel 

& O’Toole, 2016). Given that the pSTS has been shown to be sensitive to dynamic 

information in faces (Bernstein, Erez, Blank, & Yovel, 2018; Fox et al., 2009; Pitcher 

et al., 2011), it is possible that it also integrates dynamic information from faces and 

voices at a person identity level. A second possibility is that the pSTS represents the 

degree of familiarity with different identities (Parkinson, Liu, & Wheatley, 2014), 

which may be idiosyncratic for each participant. Parkinson et al. (2014) have shown 

that the pSTS represents the ‘social distance’ between faces in terms of familiarity, 

according to which highly familiar faces are perceived as being ‘closer’ to a person 

whereas less familiar faces are perceived as being ‘further away’ (Parkinson et al., 
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2014). It is likely that participants in the present study would have had different levels 

of exposure to different identities, resulting in different levels of perceived familiarity. 

Thus, it is possible that the observed person identity representation in the pSTS 

reflects the different degrees of familiarity between different identities, regardless of 

whether this information is extracted from the face or from the voice. Future work 

should attempt to compare brain representations of faces and voices in the pSTS 

with models of dynamic face and voice properties and of face and voice familiarity.    

 

No evidence was found to support the prediction that the amygdala would represent 

both physical and social characteristics of faces. This prediction was based on 

univariate studies showing sensitivity to both social and non-social facial 

characteristics in the amygdala (Bzdok et al., 2011; Mende-Siedlecki et al., 2013). It 

may be that while this sensitivity is evident when examining at the magnitude of 

response in the amygdala, it is not evident when distinguishing between multivoxel 

activity patterns in response to individual face identities. It is also possible that 

familiar faces and voices do not automatically engage social processing in the 

amygdala. Gobbini et al. (2004) showed that the amygdala responded more to 

unfamiliar faces compared to familiar faces during a one-back task that did not 

explicitly encourage the processing of social information. It may be that using an 

experimental task that encourages social processing would activate representations 

of social information from familiar faces and voices, and future studies should 

investigate this possibility.  

 

Shared information between face-selective, voice-selective, and multimodal regions 

This study presented a further exploratory analysis comparing representational 

geometries for face identities and for voice identities across different brain regions, 

which revealed that face-selective regions share face information with each other, 

and voice-selective regions share voice information with each other even across 

hemispheres. These findings support the results of the analysis comparing brain 

RDMs to candidate models RDMs within each of these regions, which showed that 

brain representations in both the rFFA and rOFA are associated with face gender 

and objective facial similarity (computed from the OpenFace program), and that brain 

representations in all voice-selective regions are associated with information about 
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voice gender, perceived similarity (except for the lTVA), f0, and AVTL. Despite 

finding no correlations between representations of faces and voices in the rpSTS 

and models of informational content in the previous analysis, the present analysis 

suggested that the rpSTS shares some (undefined) information with the rFFA and 

the rOFA. The finding of similar representational geometries between the FFA and 

OFA is also in agreement with studies showing white matter structural connections 

(Gschwind, Pourtois, Schwartz, Van De Ville, & Vuilleumier, 2012; Pyles, Verstynen, 

Schneider, & Tarr, 2013) and functional connectivity between the two regions 

(Davies-Thompson & Andrews, 2012; O’Neil, Hutchison, McLean, & Köhler, 2014). 

Moreover, two effective connectivity studies showed feed-forward connections from 

the OFA to the FFA and STS (Fairhall & Ishai, 2007), and from the FFA and TVA to 

the pSTS (Davies-Thompson et al., 2018). Finally, one study showed functional 

connectivity between the pSTS and FFA (Turk-Browne, Norman-Haignere, & 

McCarthy, 2010). 

 

This analysis also showed that face-selective regions, voice-selective regions, 

multimodal regions, and the amygdala share information from both faces and voices 

within each modality. This suggests that these regions may exchange information, 

and future work should further investigate the nature of the information shared 

across the different regions. 

 

Finally, in terms of the organisation of representations in different regions, a two-

dimensional MDS solution for face and voice RDMs across all ROIs revealed a 

distinction, in both modalities, between representations in face-selective and voice-

selective brain regions. This suggests that the face and voice representations across 

different brain regions are more similar to each other within the same modality than 

across modalities regardless of the type of brain region (face-selective, voice-

selective, or multimodal). Moreover, MDS solutions computed separately for face 

and voice representations showed a posterior to anterior organisation of face-

selective regions from the rOFA to the rFFA and the pSTS for representations in 

both modalities, which mirrors their location in the brain. In other words, regions that 

are closer to each other in the brain had more similar brain representations than 

regions that are farther apart.  
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Limitations and future directions 

An important limitation of this study is the low noise ceiling, computed as inter-

subject reliability, in the ROIs. The current results showed that the mean inter-

subject reliability of brain RDMs was in fact low (varying between -.07 and .22), and 

therefore future studies should consider ways to improve inter-subject reliability. On 

the other hand, it is possible that this measure of noise ceiling is not entirely suitable 

for the current analysis. Specifically, it is possible that the variability in face and voice 

representations across different participants was due to the idiosyncratic nature of 

the representations, which could be influenced by the level of familiarity and degree 

of exposure of each participant with the presented face and voice identities. If there 

is indeed a strong unique component to the representations, then inter-subject 

reliability may not be an ideal measure of the noise ceiling. This could be particularly 

relevant given that individual behavioural RDMs were correlated with individual brain 

RDMs. Another possibility is that the use of brain RDMs to compute inter-subject 

reliability does not reflect the reliability of the brain activity patterns themselves. An 

analysis reported in Chapter 3, which investigated the intra-subject reliability of brain 

activity patterns elicited by individual face and voice identities across the two 

scanning sessions, showed that activity patterns for faces in face-selective regions, 

and for voices in voice-selective regions were highly reliable. In contrast, the 

correlations between the RDMs that were computed based on these activity patterns 

across the two scanning sessions were very low. This raises the possibility that there 

was insufficient variability in the representational distances between the 12 identities 

within each modality, which resulted in the 12 identities being similarly distinct from 

each other. This would make any similarities between these RDMs difficult to detect 

using correlation. If this is the case, it is possible that similarities between brain 

activity patterns across different participants would also be underestimated when 

comparisons are made at the RDM level. However, due to the use of participant-

specific ROIs (with different numbers of voxels) it is not possible to test the inter-

subject reliability of the activity patterns themselves. Future studies could focus on 

optimising protocols for more reliable (intra-subject and inter-subject) RDMs. 
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Lastly, it should be noted that many of the candidate models that showed significant 

correlations in the ROIs failed to approach the noise ceiling for those ROIs. This 

highlights the need to develop models that better explain representational 

geometries for face and voice identities in different brain regions. 

 

Conclusion 

To conclude, this study confirmed the prediction that brain representations of faces 

in face-selective regions would be associated with information about perceived and 

objective visual similarity of faces and face gender, and that brain representations of 

voices in voice-selective regions would be associated with information about 

perceived and objective auditory similarity of voices and voice gender. In contrast, 

the hypothesis that multimodal regions would represent social information from faces 

and voices was not supported by the results. Moreover, no representations of social 

or physical information from faces were found in the amygdala. It is important to note 

that many of the candidate models that were used to explain brain representational 

geometries were correlated with each other, suggesting that they capture similar 

information. Therefore, the independent contribution of these models in explaining 

the brain representational geometries cannot be disentangled in the present study. 

The findings from this chapter complement results from Chapter 3 showing that the 

rFFA and rOFA could discriminate between face identities, and that voice-selective 

regions could discriminate between voice identities, by revealing that these regions 

may use information related to physical properties of the stimuli to distinguish 

between identities in their preferred modality. However, no correlations between face 

and voice representations in the rpSTS and models of face and voice information 

were found in the present chapter. Therefore, the informational content of face and 

voice representations in the rpSTS remains unclear. Finally, an analysis comparing 

representations across different regions showed that face- and voice-selective 

regions share face and voice information, respectively, with each other, and that face 

and voice information is also shared between face-selective, voice-selective, and 

multimodal brain regions within each modality. The next chapter will investigate how 

information extracted from the face relates to information extracted from the voice 

using behavioural judgements of the faces and voices of the same identities. 
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Chapter 5 

The relationship between perceived 
information from faces and voices 
 

Chapter 4 investigated the informational content of face and voice representations in 

different brain regions by comparing these representations to models of objective 

and perceived face and voice characteristics. The current chapter focuses on how 

perceived characteristics, namely trustworthiness, dominance, attractiveness, 

positive-negative valence, and perceived visual/auditory similarity, compare between 

the face and the voice of the same person on a behavioural level. Thus, this chapter 

addresses the third aim of this thesis, which was to determine how information 

extracted from a person’s face relates to the information extracted from their voice. 

The extent to which person-related information is consistent across faces and voices 

may influence the way that it is represented in the brain, i.e. separately for each 

modality or independently from modality. Although none of the brain regions tested in 

Chapter 4 showed representations of the same type of information from both faces 

and voices, it is possible that these representations may exist in brain regions not 

included in this analysis. 

 

While there is some evidence showing the face and the voice of the same person 

convey concordant information about perceived physical characteristics, such as 

masculinity-femininity, health, and height (Smith et al., 2016a), it is not clear whether 

faces and voices also convey concordant information about social characteristics. 

Specifically, while studies have shown that faces and voices convey similar 

information regarding social traits such a trustworthiness, dominance, and 

attractiveness (McAleer et al., 2014; Oosterhof & Todorov, 2008; Sutherland et al., 

2013; Zuckerman & Driver, 1989), the majority of studies have focused on one 

modality, and less is known regarding the relationship between the social evaluation 

of a person’s face and the evaluation of their voice. Studies that have compared 

ratings of faces to ratings of voices of unfamiliar people have shown inconsistent 

results in regard to attractiveness and dominance. Correlations between face and 

voice attractiveness were often dependent on stimulus and/or participant gender, in 
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that correlations were found only when rating opposite-sex stimuli (Lander, 2008), 

only for male participants rating female stimuli (Abend et al., 2015; Valentova et al., 

2017; Wells et al., 2013), or only when considering male and female stimuli together, 

rather than separately (Rezlescu et al., 2015; Saxton et al., 2009). Moreover, one 

study found no correlation between facial and vocal attractiveness (Oguchi & 

Kikuchi, 1997). For dominance, one study showed a negative correlation between 

face and voice ratings (Rezlescu et al., 2015), while another showed a positive 

correlation (Han et al., 2017). Finally, one study showed a correlation between facial 

and vocal trustworthiness only when male and female stimuli were analysed 

together, but not when they were analysed separately (Rezlescu et al., 2015).  

 

The inconsistencies in the findings of studies comparing ratings of faces and voices 

on social judgements may be due to these studies relying on ratings of a single 

token of the face and voice of each person. It has been shown that there is large 

variability in social judgements for different face images of the same person 

(Sutherland et al., 2017; Todorov & Porter, 2014), which may be influenced by cues 

extracted from changeable aspects of the face, such as emotional expression and 

face viewpoint (Sutherland et al., 2017). Given the variability in ratings of different 

images of the same face within modality, it is likely that variability in ratings of 

different face and voice tokens from the same person across modalities would be 

even greater.  

 

Previous studies that compared ratings of faces and voices on physical (Smith et al., 

2016a) or social information (Rezlescu et al., 2015) used unfamiliar faces and 

voices. Therefore, virtually nothing is known regarding the relationship between 

information perceived from the face and information perceived from the voice of 

familiar people. Moreover, the influence of familiarity on the relationship between 

information extracted from a person’s face and information extracted from a person’s 

voice has not yet, to the best of my knowledge, been investigated. For unfamiliar 

people, it is possible that the different nature of the cues extracted for social 

evaluation results in independent judgements of faces and voices. However, it is also 

possible that face and voice characteristics that tend to co-occur across different 

people are jointly associated with certain social traits through experience. This is 
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particularly likely to be the case for social traits that are associated with physical 

characteristics that are conveyed consistently by the face and the voice, such as 

masculinity-femininity (Smith et al., 2016a). For familiar people, given that the faces 

and voices are naturally associated through experience (Yovel & Belin, 2013) and 

convey semantic information (Damjanovic & Hanley, 2007), it is likely that prior 

knowledge of a familiar person would result in similar judgements of their face and 

voice.  

 

The present study compared ratings of faces and voices on trustworthiness, 

dominance, attractiveness, positive-negative valence, and perceived visual/auditory 

similarity for familiar people (Experiment 1 – presented in Chapter 4) and unfamiliar 

people (Experiment 2 – presented here). Unfamiliar identities in Experiment 2 were 

matched to the familiar identities in Experiment 1 in terms of demographic 

characteristics and facial and vocal appearance. The relationship between face and 

voice ratings in each experiment was compared between experiments to determine 

the influence of familiarity. The experimental paradigms used to test judgements of 

the faces and voices (presented in Chapter 4) attempted to address the issue of 

variability in the evaluation of different tokens of the face and voice of the same 

person by collecting ratings based on multiple different tokens of each face or voice, 

as opposed to a single face or voice stimulus. The aim of these paradigms was to 

encourage participants to make face and voice judgements by generalising across 

different tokens of the face and voice of each person, as opposed to making 

judgements based on a single token of the face or voice. Moreover, the different face 

videos and voice recordings of each identity, for both familiar and unfamiliar people, 

were highly variable in terms of changeable face and voice characteristics such as 

facial expression and vocal intonation, and were obtained from different original 

videos, with the aim to sample the variability of visual and auditory appearance 

encountered in everyday life (Burton, 2013; Lavan, Burton, et al., 2018).  

 

It was predicted that judgements of the face and voice of the same person would be 

more similar for familiar people compared with unfamiliar people, due to prior 

knowledge of the person’s character. An additional, exploratory analysis was 

performed, in which ratings of different judgements were compared with each other 
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within modality to determine how any relationships between different judgements 

compare between faces and voices. Lastly, ratings of faces and voices on the social 

judgements were compared with perceived similarity, to determine to what extent 

different judgements are influenced by perceptual face and voice features.  

 

5.1 Methods 

Throughout this chapter, the experiment involving ratings of the faces and voices of 

familiar people, which was presented in Chapter 4, will be referred to as ‘Experiment 

1’. Given that this experiment was described in detail in Chapter 4, this section 

focuses on the experiment involving ratings of the faces and voices of unfamiliar 

people, which will be referred to as ‘Experiment 2’. 

 

5.1.1 Participants 

Participants were recruited at Brunel University London. The study was approved by 

the Ethics Committee of Brunel University London (see Appendix B). All participants 

were required to be native English speakers aged between 18 and 30, and to have 

been resident in the UK for a minimum of 10 years. These requirements were set to 

match the participant sample in Experiment 1. Thirty-six participants were recruited 

to take part in the study.  Participants completed a Recognition Task (see below) to 

determine whether they recognised the identities whose faces and voices were 

presented in the experiment. Six participants were excluded because they 

recognised one or more of the 12 identities. The final sample consisted of 30 

participants (six males) with mean age of 18.63 (SD=1, range=18-22). Participants 

provided written informed consent and received course credit for their participation.  

 

Participants completed a face and voice Recognition Task to determine whether they 

recognised any of the 12 individuals whose faces and voices were included in the 

study. The task took place at the start of the experiment, immediately prior to the 

Familiarity task. Face and voice stimuli for this task were created using the same 

procedure that was described in Experiment 1, and were different from the stimuli 

used in main experiment. Stimuli were presented using Microsoft PowerPoint. For 

each stimulus participants were asked to verbally identify the person shown in the 
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picture or the person speaking (by providing their name or other uniquely identifying 

biographical information).  

 

5.1.2 Stimuli 

Silent, non-speaking videos of moving faces, and recordings of voices belonging to 

12 people (six female, six male) were obtained from videos on YouTube. These 12 

people were selected to approximately match the 12 famous people whose faces 

and voices were presented in Experiment 1 on gender, age, race, general facial and 

vocal appearance, and accent. These individuals appear in multiple videos on 

YouTube but are not widely featured in British popular culture. The set of people 

included video bloggers, a video blogger guest, a creator of a make-up brand for 

women over sixties, a YouTube film actor, a businessman, a professional 

bodybuilder, and a comedian: Jessica Pettway, Suzie Bonaldi, Hollie Wakeham, 

Tricia Cusden, Daniel Trevenna, Robert F. Smith, Lawrence Brown, Dennis Wolf, 

Andrew Maxwell, John Adams, Crystal Conte, Amanda Deyes.  

 

Six videos of the face of each person and six recordings of their voice were created 

using the same methods that were used to create the stimuli for Experiment 1 (for 

details please refer to Chapters 3 & 4). The duration of the face videos and the voice 

recordings was 1500ms. There were 72 face stimuli and 72 voice stimuli in total.  

 

5.1.3 Procedure 

The main experimental tasks took place over two days. On the first day, prior to the 

main experiment participants completed a Familiarity task in which they rated all face 

and voice stimuli on perceived familiarity. Then participants completed the 

trustworthiness, dominance, attractiveness, and positive-negative valence rating 

tasks. On the second day participants completed the pairwise visual and auditory 

similarity tasks.  

 

In the Familiarity Task, Participants rated each individual face and voice stimulus on 

perceived familiarity. This task aimed to familiarise participants with the stimuli prior 

to the main experiment, and to confirm that participants were unfamiliar with the 
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presented identities. The procedure for this task was the same as described in 

Chapter 4 for Experiment 1. The design and procedure for the trustworthiness, 

dominance, attractiveness, valence, and pairwise visual/auditory similarity tasks was 

the same as described in Chapter 4 for Experiment 1. The order of the tasks in was 

counterbalanced across participants.  

 

5.2 Results 

For all analyses, except for the within-subject reliability analysis, ratings were 

averaged across the two trials in which each identity/identity pair was presented. 

When averaging ratings across participants, comparing ratings across modalities, or 

computing between-subject reliability, ratings were first z-scored for each participant. 

Mean correlations were calculated by Fisher-transforming the single-subject 

correlations, averaging them, and then reverse-transforming the resulting values. 

 

5.2.1 Analyses of differences in the stimuli across both experiments 

First, we wanted to confirm that the familiar faces and voices in Experiment 1 were 

rated as more familiar than the unfamiliar faces and voices presented in Experiment 

2. For each identity we averaged each participant’s ratings of the six different tokens 

of the face, and the six different tokens of the voice, and then averaged the mean 

ratings for the face and the mean ratings for the voice across all participants. We 

compared average ratings of familiar face and voice identities with ratings of their 

corresponding matched unfamiliar identities using independent-sample t-tests. 

Familiarity ratings for familiar people (Exp.1) were significantly higher than for 

unfamiliar people (Exp.2) for their faces (t(22) = 16.34, p<.0001) and for their voices 

(t(22) = 15.55, p<.0001) (Figure 5.1), demonstrating that stimuli in Experiment 1 

were indeed more familiar to participants than stimuli in Experiment 2. 
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Figure 5.1: Familiarity ratings of the faces and voices of familiar people and 

matched unfamiliar people. Ratings were averaged across all 30 participants. Bars 

show ratings averaged across the six tokens of each face/voice, and circles show 

ratings of individual tokens.  

 

 

Second, we investigated whether the unfamiliar identities that were presented in 

experiment 2 were well matched to the familiar identities presented in experiment 1, 

in terms of the perceived visual appearance of their faces, and the perceived 

auditory appearance of their voices. In each experiment, visual and auditory 

similarity ratings of faces and voices were averaged across all participants. We then 

compared the average visual and auditory similarity ratings of familiar identity pairs 

in experiment 1 with their corresponding matched unfamiliar identity pairs in 

experiment 2 using Spearman correlation. If two familiar faces in a pair both look 

similar to their matched pair of unfamiliar faces, the rating of perceived similarity of 

the faces within each pair should be similar between the familiar and the unfamiliar 

pair. The results showed high correlations between experiment 1 (familiar people) 

and experiment 2 (unfamiliar people) for ratings of face identities on visual similarity 

(rho=.72, p<.0001; Figure 5.2) and for ratings of voice identities on auditory similarity 

(rho=.76, p<.0001; Figure 5.2). Therefore, familiar and unfamiliar identities were well 

matched in terms of their perceived facial and vocal appearance.  
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Figure 5.2: Representational similarity matrices showing average ratings of 

faces on visual similarity and ratings of voices on auditory similarity for 

familiar people and unfamiliar people. Ratings were averaged across all 30 

participants. Matrices are symmetric around a diagonal of 7s (for illustration 

purposes – same-identity pairs were not rated in the task). Each cell represents the 

average similarity ratings between the identities in the corresponding row and 

column. Correlations between matrices were significant at p<.0001. 

 

 

5.2.2 Comparison between ratings of faces and voices on social judgements 

We compared ratings of faces and voices on trustworthiness, dominance, 

attractiveness, and positive-negative valence for familiar people (Experiment 1) and 

unfamiliar people (Experiment 2). For each participant and for each task, we 

calculated the Spearman correlations between the ratings of the faces and the 

ratings of the voices of the 12 identities (Figure 5.3). To test whether the single-

subject correlations between face and voice ratings were significantly greater than 

zero, for each task we computed one-sample Wilcoxon sign-rank tests across all 30 
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participants (a non-parametric test was chosen due to correlation values not being 

normally distributed). The results showed that correlations between face and voice 

ratings were significantly greater than zero for all judgements, and for both familiar 

and unfamiliar people (Table 5.1). 

 

Next, we tested whether familiarity influences the strength of the correlations 

between face and voice ratings, by comparing face-voice correlations across 

experiments, using Wilcoxon rank-sum tests. The results showed that for all tasks 

(trustworthiness, dominance, attractiveness, and valence) face-voice rating 

correlations were significantly higher for familiar people compared with unfamiliar 

people, confirming the hypothesis (Table 5.2). Finally, to visualise the relationship 

between the ratings of the face and voice of each identity, for each experiment we 

averaged ratings across participants and plotted the ratings of the faces against the 

ratings of the voices (Figure 5.4).  

 

 

 

       

Figure 5.3: Correlations between face and voice ratings on trustworthiness, 

dominance, attractiveness, and positive-negative valence for familiar people 

and unfamiliar people. Bars show mean Spearman correlations across participants, 

error bars show standard error, and circles show individual participants. Stars show 

correlations that were significantly greater than zero at p≤.0256 (FDR corrected for 

all 8 comparisons). Horizontal lines above the bars show correlations that were 
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significantly different between familiar people and unfamiliar people at p≤.0009 (FDR 

corrected for all 4 comparisons).  

 

 

Table 5.1: Average correlations between face and voice ratings on 

trustworthiness, dominance, attractiveness, and positive-negative valence, 

and one-sample Wilcoxon sign-rank test results for familiar people and 

unfamiliar people. Stars indicate correlations that were significantly greater than 

zero at p≤.0256 (FDR corrected for all 8 comparisons).  

 Exp.1: Familiar Exp.2: Unfamiliar 

 Mean 

rho 

SD Z p Mean 

rho 

SD Z p 

Trustworthiness .71 .26 4.782 .0001* .24 .32 3.301 .0010* 

Dominance .67 .22 4.782 .0001* .26 .32 3.260 .0011* 

Attractiveness .63 .24 4.660 .0001* .35 .33 3.774 .0002* 

Valence .76 .32 4.679 .0001* .21 .39 2.232 .0256* 

 

 

 

Table 5.2: Wilcoxon rank-sum test results for the comparison of the face-voice 

correlations between familiar people and unfamiliar people for each task. Stars 

indicate correlations that were significantly greater than zero at p≤.0009 (FDR 

corrected for all 4 comparisons). 

Exp.1: Familiar VS. Exp.2 Unfamiliar 

 Z p 

Trustworthiness 4.827 .0001* 

Dominance 4.753 .0001* 

Attractiveness 3.328 .0009* 

Valence 4.339 .0001* 
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             A. Exp.1: Familiar people                     B. Exp.2: Unfamiliar people 

              

Figure 5.4: Relationships between the average ratings of the face and the voice 

of each of the 12 identities for familiar people and unfamiliar people. Ratings 

were averaged across all 30 participants. Triangles show female identities and 

circles show male identities. On the rating scale 1=very untrustworthy/non-

dominant/unattractive/negative) and 7=very trustworthy/dominant/attractive/positive. 

 

 

5.2.3 Comparison between ratings of faces and voices on pairwise perceptual 

similarity 

We next compared ratings of face pairs on perceived visual similarity and ratings of 

voice pairs on perceived auditory similarity. For each participant and for each task, 

we calculated the Spearman correlations between the similarity ratings of the 66 face 

identity pairs and the 66  pairs (Figure 5.5). We used one-sample Wilcoxon sign-rank 

tests to test whether the single-subject correlations between face identity pair ratings 

and  pair ratings in each experiment were significantly greater than zero. The results 

showed that correlations between face and voice ratings were significantly greater 

than zero for familiar people (mean rho=.42, Z=4.782, p<.0001) and for unfamiliar 

people (mean rho=.23, Z=4.432, p<.0001). 

 

To test whether familiarity influences the strength of the correlations between visual 

similarity and auditory similarity ratings, we compared the correlations across 

experiments using Wilcoxon rank-sum tests. We found that correlations were 

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Trustworthiness

Face

V
o

ic
e

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Dominance

Face
V

o
ic

e

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Attractiveness

Face

V
o

ic
e

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Valence

Face

V
o

ic
e

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Trustworthiness

Face

V
o

ic
e

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Dominance

Face

V
o

ic
e

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Attractiveness

Face

V
o

ic
e

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Valence

Face

V
o

ic
e



 
 
 
 
 

181 

significantly higher for familiar people compared with unfamiliar people (Z= 3.408, 

p=.0007). Finally, we visualised the relationship between average ratings (across 

participants) of visual similarity and ratings of the auditory similarity for each of the 

66 identity pairs in experiments 1 and 2 (Figure 5.6).  

 

                      

                                        

Figure 5.5: Correlations between ratings of faces on visual similarity and 

ratings of voices on auditory similarity for familiar people and unfamiliar 

people. Bars show mean Spearman correlations across participants, error bars 

show standard error, and circles show individual participants. Stars show that 

correlations were significantly greater than zero (both p<.0001). The horizontal line 

above the bars indicated that the correlations for familiar people were significantly 

higher than the correlations for unfamiliar people (p=.0007). 
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Figure 5.6: Relationships between the average visual similarity ratings of face 

pairs and the average auditory similarity ratings of voice pairs of each of the 

66 identity pairs for familiar people and unfamiliar people. Ratings were 

averaged across all 30 participants. Female identity pairs are shown in red, male 

identity pairs are shown in blue, and male-female identity pairs are shown in purple. 

On the ratings scale 1=very dissimilar to 7=very similar. 

 

 

5.2.4 Reliability of face and voice ratings  

We next investigated the reliability of face and voice ratings both within-subjects and 

across-subjects, for familiar people (Experiment 1) and unfamiliar people 

(Experiment 2). Reliabilities were calculated for each task and each modality. This 

analysis is not only important to understand the consistency in ratings within and 

across participants, but also to provide upper bounds for the expected correlations 

we could find across faces and voices in the previous analyses. 

 

To calculate the within-subject reliability, for each participant, we compared the 

ratings between the two trials in which each identity, or identity-pair, was presented. 

For the judgment tasks, the two trials featured different stimuli for each identity. For 

the similarity tasks, the two trials presented the same identity-pair, but did not 

necessarily present different stimuli. We computed the Spearman correlation 

between the ratings in the two trials, and the single-subject correlations were then 

averaged across all 30 participants. The results are shown in Table 5.3, and show 

high within-subject reliabilities for all judgements, especially for familiar stimuli, but 

also unfamiliar faces. The ratings of pairwise similarity were less consistent, and 

perhaps more dependent on the individual stimuli that were presented in each trial. 

 

To calculate the between-subject reliability we calculated inter-rater agreements. For 

each participant, we calculated the Spearman correlation between their ratings and 

the average of the ratings of all other (29) participants. Finally, the single-subject 

correlations were averaged across all 30 participants. The results are shown in Table 

5.4. 
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Table 5.3: Correlations of face and voice ratings between the two trials in 

which each identity was featured for familiar people and unfamiliar people. 

Values show Spearman correlations averaged across participants. 

 Exp.1: Familiar Exp.2: Unfamiliar 

 Faces Voices Faces Voices 

Trustworthiness .79 .87 .81 .63 

Dominance .86 .79 .78 .67 

Attractiveness .93 .91 .92 .71 

Valence .85 .88 .76 .53 

Pairwise similarity .55 .53 .54 .42 

 

 

 

Table 5.4: Inter-rater agreement of face and voice ratings for familiar people 

and unfamiliar people. Values show Spearman correlations averaged across 

participants. 

 Exp.1: Familiar Exp.2: Unfamiliar 

 Faces Voices Faces Voices 

Trustworthiness .56 .57 .65 .44 

Dominance .70 .55 .67 .76 

Attractiveness .82 .74 .79 .39 

Valence .50 .59 .60 .44 

Pairwise similarity .61 .64 .60 .55 

 

 

5.2.5 Relationship between ratings of different social judgements within 

modality 

We next conducted a number of exploratory analyses to investigate the relationships 

between the ratings of different judgements within each modality (i.e. separately for 

faces and voices), for familiar people (Experiment 1) and unfamiliar people 

(Experiment 2), and how they differ between faces and voices. For each participant 

we compared the ratings of the 12 identities (in each modality) between all pairwise 
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combinations of the four judgements (6 comparisons). Comparisons were made 

using Spearman correlation. At the group level, for each comparison between tasks, 

we tested whether the single-subject correlations were significantly greater than zero 

using one-sample Wilcoxon sign-rank tests across all 30 participants.  

 

Figure 5.7 shows the correlations between each pair of judgements, averaged 

across participants. The results showed that, in both experiments, and for both faces 

and voices, correlations between different judgements were significantly greater than 

zero (FDR corrected p≤.0428), except for the correlations between ratings of familiar 

faces on dominance and each of the other judgements (Table 5.5).  

 

 

Figure 5.7: Average correlations between different judgements within each 

modality for familiar people and unfamiliar people. Matrices are symmetric 

around a diagonal of 1s. Each cell shows the Spearman correlation (averaged 

across all 30 participants) between the judgements in the corresponding row and 

column. 
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Table 5.5: Wilcoxon sign-rank test results of analysis comparing the 

correlations between different judgements within-modality against zero, for 

familiar people and matched unfamiliar people. Stars indicate correlations that 

were significantly greater than zero at p≤.0428 (FDR corrected for all 24 

comparisons). 

 Exp.1: Familiar people Exp.1: Unfamiliar people 

 Faces Voices Faces Voices 

 Z p Z p Z p Z p 

Trust-Dom 1.409 .1589 3.363 .0008* 2.581 .0098* 3.013 .0026* 

Trust-Attr 4.703 .0001* 4.782 .0001* 4.494 .0001* 4.350 .0001* 

Trust-Val 4.638 .0001* 4.679 .0001* 4.741 .0001* 4.700 .0001* 

Dom-Attr 0.596 .5521 3.898 .0001* 2.499 .0125* 2.293 .0218* 

Dom-Val 0.586 .5577 4.083 .0001* 2.026 .0428* 2.293 .0218* 

Attr-Val 4.703 .0001* 4.782 .0001* 4.782 .0001* 4.165 .0001* 

 

Figure 5.7 shows a tendency for trustworthiness, attractiveness, and valence ratings 

to be more correlated with each other than with dominance, for both faces and 

voices, and for both familiar and unfamiliar people. To investigate this further, we 

tested whether correlations between different pairs of judgements were significantly 

different from each other using Wilcoxon sign-rank tests. Figure 5.8 shows the 

correlations for each experiment and modality, sorted from highest to lowest, and 

indicates which correlations were significantly different. For both familiar and 

unfamiliar people, and for both modalities, the three pairwise correlations between 

dominance and the other judgments were significantly lower than the three pairwise 

correlations between trustworthiness, attractiveness, and valence (with the exception 

of the comparison between attractiveness-valence and trustworthiness-dominance in 

unfamiliar voices) at p≤.0207 (FDR corrected for all 60 comparisons). Furthermore, 

the ranking of the correlations is highly consistent across experiments and 

modalities, with the correlation between trustworthiness and valence being the 

highest, and the correlations between dominance and attractiveness/trustworthiness 

being the lowest.  
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Figure 5.8: Pairwise correlations between ratings of trustworthiness, 

dominance, attractiveness, and positive-negative valence from faces and 

voices, in familiar people and unfamiliar people, sorted from highest to lowest. 

Bars show mean Spearman correlations across participants, error bars show 

standard error, and circles show individual participants. Correlations are presented 

sorted from highest to lowest in each modality. Horizontal lines above the bars show 

correlations that were significantly different from each other at p≤.0.0207 (FDR 

corrected for all 60 comparisons).  

 

 

 

5.2.6 Comparison between ratings of faces and voices on pairwise perceptual 

similarity and their social evaluation 

We also investigated the relationship between ratings of faces/voices on pairwise 

visual/auditory similarity, and the ratings of faces/voices on trustworthiness, 

dominance, attractiveness, and valence. In each experiment, for each participant 

and for each task, we calculated the Euclidean distance between their ratings of 

each possible pair of identities, separately for faces and voices. Thus, for each 

judgement we obtained a vector of rating distances between 66 identity pairs, which 

were compared to perceptual similarity ratings of the same 66 identity pairs using 

Spearman correlation, separately for faces and voices.  

 

For each judgement, in each modality, we then tested whether the correlation with 

perceptual similarity was significantly greater than zero using Wilcoxon sign-rank 

tests across all 30 participants. The results showed low, but significantly greater than 

zero, correlations between all four judgements and perceptual similarity for both 

faces and voices, and for both familiar and unfamiliar people (with the exception of 

valence for unfamiliar voices; Figure 5.9, Table 5.6). 

 

Finally, we tested whether some judgements were more correlated with perceptual 

similarity than others using Wilcoxon sign-rank tests, separately for faces and voices 

and for familiar and unfamiliar people. Attractiveness in familiar faces was 

significantly more correlated with perceptual similarity compared with trustworthiness 
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(Z=3.060, p=.0022) and dominance (Z=2.714, p=.0067). Valence in unfamiliar voices 

was significantly less correlated with perceptual similarity compared with dominance 

(Z=-2.705, p=.0068) and attractiveness (Z=-2.746, p=.0060).  

 

 

 

 

Figure 5.9: Correlations between ratings of face or voice identity pairs on 

perceptual similarity and the Euclidean distances between their ratings on 

trustworthiness, dominance, attractiveness, and valence, for familiar people 

and unfamiliar people. The direction of the correlations is reversed for ease of 

interpretation. Bars show mean Spearman correlations across participants, error 

bars show standard error, and circles show individual participants. Stars show 

significant tests at p<.0039 (FDR corrected for all 16 comparisons).  

 

Table 5.6: Average correlations between ratings of face or voice identity pairs 

on perceptual similarity and the Euclidean distances between their ratings on 

trustworthiness, dominance, attractiveness, and valence, and one-sample 

Wilcoxon sign-rank test results for familiar people and matched unfamiliar 

people. The direction of the correlations is reversed for ease of interpretation. Stars 

indicate correlations that were significantly greater than zero at p<.0039 (FDR 

corrected for all 16 comparisons). 

 

Faces 
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 Exp.1: Familiar Exp.2: Unfamiliar 

 Mean 

rho 

SD Z p Mean 

rho 

SD Z p 

Trustworthiness .11 .16 2.890 .0039* .14 .18 3.692 .0002* 

Dominance .11 .14 3.548 .0004* .13 .14 3.815 .0001* 

Attractiveness .23 .15 4.638 .0001* .11 .18 2.972 .0030* 

Valence .14 .15 4.062 .0001* .14 .18 3.260 .0011* 

 

Voices 

 Exp.1: Familiar Exp.2: Unfamiliar 

 Mean 

rho 

SD Z p Mean 

rho 

SD Z p 

Trustworthiness .15 .15 3.857 .0001* .12 .12 4.309 .0001* 

Dominance .21 .21 3.836 .0001* .20 .15 4.597 .0001* 

Attractiveness .22 .15 4.556 .0001* .20 .17 4.289 .0001* 

Valence .20 .15 4.371 .0001* .07 .18 1.923 .0545 

 

 

5.3 Discussion 

The study in this chapter showed that judgements of trustworthiness, dominance, 

attractiveness, positive-negative valence, and perceived visual/auditory similarity 

were more similar between faces and voices for familiar people compared with 

unfamiliar people. This finding confirms the hypothesis that the relationship between 

judgements of the face and voice would be stronger for familiar people, compared 

with unfamiliar people, due to prior knowledge of a person’s character. However, 

despite correlations across modalities being lower for unfamiliar people, significant 

correlations were observed for all judgements. This suggests that prior knowledge of 

a person may not be the only reason for similar face-voice evaluation.  

 

This chapter also showed that, within modality, the correlations between the different 

judgements were similar for both faces and voices, and for both familiar and 

unfamiliar people. Specifically, the results showed moderate to high correlations 
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between ratings of trustworthiness, attractiveness, and valence, but low or non-

significant correlations between dominance and the other judgements, suggesting 

that these judgements are conceptualised in a similar way regardless of modality 

and familiarity level. Finally, this chapter showed that the perceptual similarity of 

faces and voices explained only a small amount of the variance in social judgements 

for both familiar and unfamiliar people. 

 

Similar social evaluation of faces and voices, for familiar and unfamiliar people 

For familiar people, the highly similar evaluation of faces and voices is likely to be 

due to the prior knowledge of the person having a major influence on the evaluation 

of their face and voice. This semantic knowledge most likely overrides the influence 

of perceptual cues in faces and voices, which have been shown to influence face 

and voice judgements in unfamiliar people (McAleer et al., 2014; Sutherland et al., 

2017; Todorov & Oosterhof, 2011). However, similar evaluations of faces and their 

corresponding voices were also observed for unfamiliar people (although 

correlations were much lower compared to familiar people), suggesting that semantic 

knowledge may not be the only factor that drives similar evaluations in faces and 

voices.  

 

The finding of similar evaluations of faces and voices of unfamiliar people is in 

agreement with studies showing low to moderate correlations between ratings of 

faces and voices in terms of attractiveness (Abend et al., 2015; Lander, 2008; 

Rezlescu et al., 2015; Saxton et al., 2009; Valentova et al., 2017; Wells et al., 2013), 

dominance (Han et al., 2017), and trustworthiness (Rezlescu et al., 2015). Some 

studies have shown that ratings of faces and voices on attractiveness and 

trustworthiness were no longer associated when male and female stimuli were 

analysed separately (Rezlescu et al., 2015; Saxton et al., 2009). However, given the 

relatively small number of identities presented in the current experiments (six male 

and six female), it was not possible to conduct separate analyses for male and 

female identities.  

 

An important difference between the present study and previous studies is the use of 

an experimental paradigm that aimed to encourage participants to base their 
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judgements on multiple, naturalistically varying tokens of the face/voice of each 

identity. Correlations between ratings of trials featuring different tokens of the same 

identity were high across participants, for both faces and voices, and for both familiar 

and unfamiliar people (although correlations were slightly lower for unfamiliar 

voices). This suggests that this paradigm encouraged participants to base their 

ratings on cues that are largely consistent across different images of the face, or 

recordings of the voice, of the same person, rather than on changeable aspects of 

the face and voice that are specific to an image or recording.  

 

It has been suggested that people form consistent associations between faces and 

social traits that are driven by similar cultural experiences and exposure to 

stereotypes (Freeman & Johnson, 2016; Over & Cook, 2018; Stolier et al., 2018). 

However, there is evidence that the personal attitudes and experiences of each 

individual also play a part in shaping judgements of social traits in faces (Hehman, 

Sutherland, Flake, & Slepian, 2017; Kramer, Mileva, & Ritchie, 2018; Stanley, Sokol-

Hessner, Banaji, & Phelps, 2011; Watkins, Jones, & DeBruine, 2010). Unlike the 

majority of previous studies examining social judgements of faces and voices, in the 

present study all analyses were performed at the level of each individual participant, 

rather than at the stimulus level. Specifically, correlations across ratings of all faces 

and ratings of all voices were computed for each participant, as opposed to 

computing correlations between each individual face and voice across all 

participants. Thus, this approach takes into account individual differences across 

participants in their ratings of the face and the voice of each identity. The lack of 

such an approach in previous studies comparing rating of faces and voices may 

have contributed to their inconsistent results 

 

A possible explanation for the finding of similar evaluations of the faces and voices of 

unfamiliar people is the formation of joint associations between specific facial and 

vocal features and certain social traits that appear to co-occur across different 

people (Over & Cook, 2018). Specifically, it is possible that multisensory 

representations of social traits that include information about what a person looks 

like and sounds like are formed through experience. This is particularly likely to be 

the case for social judgements that are associated with physical characteristics that 
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are conveyed by both the face and the voice, such as masculinity and health (Smith 

et al., 2016). For example, dominance has been associated with masculinity 

(McAleer et al., 2014; Oosterhof & Todorov, 2008; Sutherland et al., 2013), and 

attractiveness has been associated with measures of health (Gangestad et al., 1994; 

Hughes et al., 2002) in both faces and voices. Thus, if people that are perceived as 

dominant typically have masculine-looking faces and masculine-sounding voices, 

then facial and vocal cues that signal masculinity will be associated with dominance, 

and a multisensory representation of dominance may be formed. Therefore, if a 

newly encountered unfamiliar person conforms to this stored representation of 

dominance, both their face and their voice will be judged as dominant even if the 

face and voice are judged independently.  

 

Similar relationship between social judgements for faces and voices in familiar and 

unfamiliar people 

A comparison of the ratings of faces and voices on trustworthiness, dominance, 

attractiveness, and positive-negative valence within each modality showed that the 

relationships between the different judgements were strikingly similar for both faces 

and voices, in familiar and unfamiliar people. Specifically, while trustworthiness, 

attractiveness, and valence were well correlated with each other, correlations 

between dominance and the other three judgements were significantly lower, for 

both faces and voices, and for both familiar and unfamiliar people. These findings 

are in line with those of previous studies that have used dimensionality-reduction 

techniques for ratings of unfamiliar faces and voices on multiple judgements, and 

have shown that valence/trustworthiness and dominance form orthogonal 

dimensions for faces (Oosterhof & Todorov, 2008; Sutherland et al., 2013) and for 

voices (McAleer et al., 2014). Previous studies have also shown a relationship 

between valence/trustworthiness and attractiveness in faces (Oosterhof & Todorov, 

2008; Rezlescu et al., 2015), although in one study this was only found for male 

faces (Rezlescu et al., 2015). In voices, the finding is in agreement with Rezlescu et 

al. (2015), who found a high correlation between attractiveness and trustworthiness.  

McAleer et al. (2014) also showed that attractiveness was strongly correlated with 

trustworthiness, but only in female voices.  
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The finding of similar relationships between the different judgements across faces 

and voices suggests that these judgements may be conceptualised in a similar way 

for faces and voices. It has previously been shown that concepts for different 

emotions are also similar across faces and voices (Kuhn et al., 2017), suggesting 

that representations of high-level information that is conveyed by both faces and 

voices are modality-general. Furthermore, the present study showed that the 

relationships between different judgements are not influenced by familiarity, and 

contradict the idea that trait space varies based on familiarity (Stolier et al., 2018). 

For example, a person perceived as attractive will also tend to be perceived as 

trustworthy and likeable, regardless of whether the person is familiar or not, and 

regardless of whether judgements are based on the face or the voice.  

 

Perceptual similarity ratings and relationship with social judgements 

Significant correlations were found between ratings of the perceptual similarity of 

faces and voices, for both familiar and unfamiliar people. In line with the social 

judgements, these correlations were significantly higher for familiar people, 

compared with unfamiliar people. For familiar people, these correlations could be 

due to participants being influenced by their knowledge of the people’s character, 

despite being instructed to base their judgements solely on the similarity of the 

physical appearance of the face and voice. For unfamiliar people, the correlations 

between faces and voices may be explained by redundant information in faces and 

voices about certain physical characteristics, such as age, gender, race, nationality, 

and masculinity/femininity. This would be in line with the findings of Smith et al. 

(2016) showing concordant cues in faces and voices for masculinity/femininity and 

age.  

 

Finally, this study showed that although perceptual similarity of faces and voices was 

significantly correlated with the Euclidean distance between ratings of faces and 

voices on social judgements (with the exception of valence in unfamiliar voices), all 

correlations were very low. This suggests that perceived visual/auditory similarity 

explains a small amount of the variance in social judgements of faces and voices. 

However, it is possible that social judgements are influenced by more subtle 
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variations in facial or vocal features that were not used as cues for judging the 

similarity between two different faces/voices in the perceptual similarity task. 

 

Limitations and future directions 

One potential limitation of the current study concerns the large variability across the 

different identities due to differences in gender, age, accent, race, and nationality. 

For the unfamiliar identities, which were matched to the familiar identities in regard to 

these properties, this variability may have lead participants to realise that the faces 

and voices belonged to the same people (this was not mentioned in the instructions). 

In this case, participants may have attempted to predict which face corresponded to 

which voice, and as a consequence may have given similar ratings to faces and 

voices that they thought corresponded to the same people. This may, at least in part, 

account the observed similarity in the ratings of the faces and voices of unfamiliar 

people. Future studies should attempt to replicate the current findings using a more 

homogenous set of unfamiliar identities.  

 

A further potential limitation concerns the use of famous-familiar identities, as 

opposed to personally-familiar identities. Although participants reported being highly 

familiar with the famous people from both their faces and voices, it is unlikely that 

participants ever interacted with these people personally in a social context. Thus, 

any knowledge of their personality will have been obtained from third-parties, and 

most likely through the media. This level of familiarity with a person may not be 

sufficient to challenge potential stereotypes regarding the relationships between 

different social traits, e.g. that an attractive person is also trustworthy (Stolier et al., 

2018), and may have contributed to the finding of similar relationships between the 

different social judgements for familiar and unfamiliar people. It is possible that 

personal familiarity with an individual would have stronger influence on the 

relationships between the different judgements (Stolier et al., 2018). For example, a 

personally familiar individual could be perceived as attractive but also as 

untrustworthy (e.g. in a romantic relationship situation). In future, it would be 

interesting to investigate the evaluation of people who are perceived as attractive but 

have been experimentally associated with behaviour that indicates 

untrustworthiness. 
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Finally, although an analysis comparing perceived visual and auditory similarity of 

faces and voices, respectively, between familiar and unfamiliar people showed that 

these people were well matched based on physical characteristics, the possibility 

that variables other than familiarity could have influenced the differences between 

familiar and unfamiliar people cannot be excluded. Therefore, this chapter cannot 

conclusively claim that gaining familiarity with a person through experience will result 

in the judgements of their face and voice becoming more similar. To overcome this 

limitation, future work could experimentally familiarise participants with the faces and 

voices of a set of identities, and investigate the evaluation of these faces and voices 

before and after familiarisation.  

 

Conclusion 

This chapter showed that judgements of perceived trustworthiness, dominance, 

attractiveness, positive-negative valence, and perceived visual/auditory similarity 

were more similar between faces and voices for familiar people compared with 

unfamiliar people. This was attributed to the influence of prior semantic and 

biographical knowledge of the person, and suggests that this information is 

represented largely independently from modality for familiar people. Therefore, 

although the previous chapter failed to identify representations of social information 

from familiar faces and voices in multimodal person-selective brain regions, it is 

possible that this information is represented independently from modality in a brain 

region that was not included as a ROI in this study, and future studies should further 

investigate this possibility. For unfamiliar people, although correlations were lower, 

similarities were also observed between judgements of the face and the voice. It was 

speculated that these similarities may be due to the learning of joint associations 

between frequently co-occurring face and voice features, on the one hand, and 

social traits, on the other hand. Finally, this chapter showed that the perceived visual 

similarity of faces and the perceived auditory similarity of voices explained very little 

variance in the judgements of social traits.  
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Chapter 6 

General Discussion 

 

6.1 Summary of main findings 

Faces and voices both serve as sources of person identification, and they convey a 

wealth of information about a person, such as their gender, age, and whether they 

can be trusted (McAleer et al., 2014; Oosterhof & Todorov, 2008; Yovel & Belin, 

2013). The first main aim of this thesis was to determine how the brain integrates 

information from the faces and voices of familiar people to represent person identity. 

This aim was addressed in the study described in Chapter 3, which used RSA to 

compare multivoxel activity patterns in response to the faces and voices of familiar 

people in face-selective, voice-selective, and multimodal regions. This chapter 

identified a multimodal region in the pSTS that integrates information from faces and 

voices in a crossmodal representation of person identity, providing support for the 

Multimodal Processing (MP) model of face and voice integration. Furthermore, 

stimulus-invariant representations of face identity and voice identity were identified in 

face-selective and voice-selective regions, respectively.  

 

The second main aim of the thesis was to determine the informational content of 

face and voice representations in face-selective, voice-selective, and multimodal 

brain regions. To address this aim, the study described in Chapter 4 used RSA to 

compare brain representations to models of face and voice properties, and showed 

that brain representations in face- and voice-selective regions are associated with 

information about both the perceived and objective physical similarity between 

individual faces and voices. These findings suggest that face- and voice-selective 

regions primarily process visual face properties and auditory voice properties, 

respectively. No evidence was found of representations of social properties from 

faces and voices in multimodal brain regions.   
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The final main aim of this thesis was to determine how perceived information 

extracted from a person’s face relates to the information extracted from their voice, 

and how this relationship is influenced by familiarity. Therefore, the study in Chapter 

5 compared ratings of faces and voices on social judgements, namely 

trustworthiness, dominance, attractiveness, and positive-negative valence, and 

ratings on perceived visual/auditory similarity, for familiar and unfamiliar people. This 

chapter showed that similar information is extracted from a person’s face and voice 

when the person is familiar and to a lesser extent when the person is unfamiliar. This 

suggests that having prior semantic knowledge about a person leads to similar 

judgements of their face and voice. Moreover, it suggests that some concordant 

information relating to social judgements may be available even in the faces and 

voices of unfamiliar people. 

 

6.2 The integration of face and voice information in the brain 

Previous work had largely investigated face and voice identity representations 

separately, and a consequence little is known regarding the integration of face and 

voice information in the brain to form representations of person identity that are 

independent from modality. As explained in the Introduction, two theoretical models 

of face and voice integration have been put forward (Blank et al., 2011; Campanella 

& Belin, 2007; Yovel & O’Toole, 2016). The Multimodal Processing (MP) model 

proposes that face and voice information is integrated in multimodal brain regions 

(e.g. A. W. Ellis et al., 1989; Shah et al., 2001), whereas the Coupling of Face and 

Voice Processing (CFVP) model proposes that face and voice information is also 

integrated though direct coupling between face- and voice-responsive regions (e.g. 

Blank et al., 2011; von Kriegstein et al., 2005). These two models are not mutually 

exclusive, and Chapter 3 tested the predictions of both models by using fMRI and 

RSA to compare multivoxel activity patterns in response to the faces and voices of 

the same identities in face-selective, voice-selective, and multimodal (both face-

selective and voice-selective) brain regions. Based on the MP model, the hypothesis 

was that crossmodal person identity representations would be found in multimodal 

regions, whereas based on the CFVP, the prediction was that crossmodal person 

identity representations would be found in face-selective or voice-selective brain 

regions.  
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The results from the study described in Chapter 3 revealed a representation of 

person identity in the multimodal rpSTS, providing support for the MP model. 

Specifically, this study demonstrated that a region of the pSTS that selectively 

responded to both faces and voices could discriminate between different identities 

based on crossmodal information in the face and voice. Importantly, the rpSTS not 

only contained representations of person identity, but also showed stimulus-invariant 

representations of face and voice identity that were robust to within-person variability 

across different, naturalistically varying face videos and voice recordings of the same 

person.  

 

The role of the pSTS may be equivalent to the person identity node (PIN) in cognitive 

models of face and voice recognition, in that it receives and integrates identity 

information from face recognition units (FRUs) and voice recognition units (VRUs) 

(Belin et al., 2004; Bruce & Young, 1986; Burton et al., 1990; Campanella & Belin, 

2007). Chapter 3 showed that the rFFA and rOFA and the voice-selective regions in 

the temporal lobes distinguish between identities in their respective modality, but not 

across modalities, in line with the proposed role of the FRUs and VRUs in cognitive 

models (Belin et al., 2004; Bruce & Young, 1986; Burton et al., 1990; Campanella & 

Belin, 2007). Furthermore, Chapter 4 showed “representational connectivity”, i.e. 

similar representational geometries, between face representations in the pSTS and 

the FFA and OFA, and between voice representations in the pSTS and voice-

selective regions, suggesting that these regions share informational content. 

Therefore, one possibility is that the pSTS receives and integrates information from 

face-selective regions, such as the FFA and OFA, and voice-selective regions, such 

as the TVAs. Previous studies using effective connectivity analyses have shown 

feed-forward connections between the FFA and TVA, on the one hand, and the 

multimodal pSTS, on the other hand (Davies-Thompson et al., 2018), and between 

the OFA and pSTS (Fairhall & Ishai, 2007). Moreover, one study showed evidence of 

functional connectivity between the FFA and the pSTS (Turk-Browne et al., 2010). 

However, other studies investigating the connectivity between the pSTS, on the one 

hand, and the FFA and OFA, on the other hand, have shown limited structural 

connectivity (Blank et al., 2011; Gschwind et al., 2012; Pyles et al., 2013) and 
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functional connectivity (Davies-Thompson & Andrews, 2012; O’Neil et al., 2014) 

between these regions. Future work should focus on identifying possible functional 

and structural pathways in the brain through which visual and auditory information 

may be conveyed to the pSTS.  

 

A second possibility is that face and voice information is both processed and 

integrated within the pSTS. Previous work has shown that the pSTS contains distinct 

cortical patches that respond preferentially to faces, voices, and audiovisual face-

voice stimuli (Beauchamp et al., 2004). Moreover, it has been shown that the part of 

the pSTS that responds preferentially to audiovisual face-voice stimuli is located in 

between regions of the STS that are primarily face-selective (in the posterior pSTS) 

and primarily voice-selective (towards the mid STS) (Kreifelts et al., 2009). Based on 

these findings, it is possible that the pSTS contains sub-regions that are face-

selective only, voice-selective only, or both face- and voice-selective (i.e. 

multimodal). Relating back to cognitive models of face and voice recognition, the 

pSTS may initially process face and voice information independently in face- and 

voice-selective sub-regions, corresponding to the FRUs and VRUs, and 

subsequently integrate that information in person-selective multimodal sub-regions, 

corresponding to the PIN. This mechanism does not require information to be 

conveyed to the pSTS from other brain regions. Duchaine & Yovel (2015) proposed 

that the pSTS may receive face input directly from early visual cortex, which would 

be consistent with this view. Future studies should use high-resolution brain imaging 

methods to investigate modality-specific and modality-general representations in 

sub-regions of the pSTS. 

 

The involvement of the rpSTS in integrating face and voice information in a person 

identity representation has been suggested by two previous studies (Anzellotti & 

Caramazza, 2017; Hölig et al., 2017). Hölig et al. (2017) compared responses to 

voices that had been primed by faces of the same identity or faces of a different 

identity, and showed that the pSTS responded more to voices primed by identity-

incongruent faces. Hölig et al. (2017) proposed that viewing a familiar person’s face 

automatically activates a representation of the person’s voice in the pSTS, and 

creates a prediction regarding the identity of the voice. The increased activation of 
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the pSTS to incongurent face-voice pairings is thus attributed to a violation of 

expectations regarding the identity of the subsequently presented voice. The main 

limitation of this study was that, given that the authors trained participants to 

associate unfamiliar faces with their corresponding voices, rather than presenting 

identities that were familiar to participants, the pSTS may have been responding to 

the incongruence due to the violation of expectations derived from learned 

associations between faces and voices that could be entirely arbitatry and unrelated 

to person identity processing. However, the finding of a crossmodal person identity 

representation in the pSTS in Chapter 3 suggests that the pSTS may indeed have 

the capacity to engage identity representations from one modality after exposure to 

the other modality.   

 

A crossmodal representation of person identity in the rpSTS was also identified by a 

previous MVPA study using crossmodal classification (Anzellotti & Caramazza, 

2017). This study showed that the pSTS could discriminate between response 

patterns to a pair of familiar face identities based on the response patterns to their 

corresponding voices, and vice versa. Moreover, the authors demonstrated that this 

pSTS region responded selectively to both faces and voices, similar to the pSTS 

region described in Chapter 3. However, in contrast to the study presented here, in 

their study Anzellotti & Caramazza (2017) showed limited evidence that 

representations of faces and voices in the pSTS generalise to novel tokens of the 

face and voice of the same person. Moreover, the authors presented only two tokens 

of the face and voice of each of two identities, which were also constrained in terms 

of their natural variability. Therefore, the findings of the present thesis substantially 

extend the evidence of a person identity representation in the pSTS by showing that 

this region can distinguish between a much larger set of identities based on multiple, 

naturalistically varying tokens of their face and voice.  

 

The current thesis did not show any evidence of representations of person identity in 

the ATL. The involvement of the ATL in representing person identity independently 

from modality has been proposed mainly by studies involving patients with lesions to 

this region who showed impairments in both face and voice recognition (A. W. Ellis 

et al., 1989; Gainotti, 2011). However, a meta-analysis of neuroimaging studies in 
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healthy participants that tested responses to face and voice familiarity and 

recognition showed that the ATL was consistently involved in the processing of 

familiarity, but not recognition (Blank et al., 2014). Therefore, it is possible that the 

ATL is involved in the processing of person familiarity, rather than person identity. 

This notion is supported by a meta-analysis of studies involving patients with ATL 

lesions, and which showed that patients who showed deficits in face and voice 

recognition also showed impairments in face familiarity tasks (Gainotti, 2011). Thus, 

it is likely that intact familiarity processing is a necessary pre-requisite for person 

identity recognition, and that the ATL primarily engages in familiarity processing. 

Although multiple studies have shown evidence of representations of face identity in 

the ATL (Anzellotti & Caramazza, 2016; Anzellotti et al., 2014; Collins et al., 2016; 

Guntupalli et al., 2017; Verosky et al., 2013), it is notable that none of the fMRI 

studies investigating representations of person identity, which were reviewed in the 

Introduction chapter, found evidence of such representations in the ATL (Anzellotti & 

Caramazza, 2017; Hasan et al., 2016; Hölig et al., 2017; Joassin et al., 2011; Shah 

et al., 2001). Therefore, another possibility is that the ATL may contain 

representations of face identity, but not of voice identity or person identity. However, 

it is also possible that identity representations in the ATL were not identified in the 

present study and in previous fMRI studies due to the low signal-to-noise ratio that 

has been observed in this region when using standard fMRI sequences (Axelrod & 

Yovel, 2013). Future studies aiming to investigate person identity representations 

should attempt to optimise their scanning parameters to minimise the signal-to-noise 

ratio in the ATL, for example by using coronal slice orientation, as opposed to the 

standard axial slice orientation (Axelrod & Yovel, 2013).  

 

An exploratory whole-brain searchlight analysis conducted in Chapter 3 with the aim 

of identifying brain regions outside the selected ROIs that may contain crossmodal 

representations of person identity revealed, among other regions, a cluster in the left 

hippocampus. Neurophysiological studies that conducted single-cell recordings in 

human brains have shown that the bilateral hippocampus contains multisensory 

neurons that respond to both the face and the name of a person (Quiroga et al., 

2009, 2005). However, responses to voices were not tested in these studies. The 

current thesis suggests that the left hippocampus may contain representations of 
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person identity that integrate information from faces and voices. An fMRI study 

previously showed that the right hippocampus responded more to newly-learned 

faces and voices that were presented simultaneously, than to the same faces and 

voices presented in isolation (Joassin et al., 2011). Although only the left 

hippocampus showed significant results in searchlight analysis presented in Chapter 

3, it is possible that both the right and left hippocampus play a role in integrating face 

and voice information. Future studies investigating person identity representations 

should therefore include ROIs for both the right and left hippocampus to further 

probe person identity representations in this region.  

 

Previous studies using fMRI have shown that the retrosplenial cortex (Shah et al., 

2001) and the angular gyrus (Hölig et al., 2017; Joassin et al., 2011) may contain 

person identity representations. The multimodal precuneus ROI that was used in the 

study presented in Chapter 3 included the retrosplenial cortex, but did not show 

representations of person identity, despite being able to distinguish between both 

face and voice identities. Therefore, it is likely that this region represents face and 

voice identity independently without integrating information across the two 

modalities. The angular gyrus was not found to be face-selective or voice-selective, 

and was therefore not included as a ROI. However, the exploratory whole-brain 

searchlight analysis did not show crossmodal person identity representations in this 

region. The two studies implicating the angular gyrus in face and voice identity 

integration (Hölig et al., 2017; Joassin et al., 2011) both trained their participants to 

associate initially unfamiliar faces with their corresponding voices, and therefore 

could not rule out the possibility that the observed results were due to learned 

associations between faces and voices, which could be completely arbitrary and 

unrelated to identity processing. Therefore, it is possible that the angular gyrus 

engages in associative memory processing, rather than identity processing. 

 

Finally, this thesis showed no supporting evidence for the CFVP model, which 

proposes that face-responsive and voice-responsive brain regions directly exchange 

crossmodal information (e.g. Blank et al., 2011; von Kriegstein et al., 2005). 

Specifically, there was no evidence of crossmodal discrimination of person identities 

in face-selective or voice-selective brain regions. Previous studies showed activation 
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of the FFA during voice recognition and described functional connectivity between 

the FFA and the voice-selective STS/STG (Schall et al., 2013; von Kriegstein et al., 

2008, 2006, 2005; von Kriegstein & Giraud, 2006). However, in contrast to the study 

described in Chapter 3, these studies used an explicit voice recognition task. It is 

possible that the crossmodal coupling between the FFA and voice-selective regions 

that was observed in these previous studies is contingent on explicit voice 

recognition, rather than automatic process. Moroever, given the absence of evidence 

of the activation of voice-selective regions during face recognition, crossmodal 

coupling between face and voice regions may be specific to voice recognition. It has 

been shown that voice recognition is facilitated by prior exposure to a face to a 

greater extent than face recognition is facilitated by prior exposure to a voice 

(Stevenage et al., 2012). Moreover, studies have shown that recognising a familiar 

person from their face is easier than recognising the person from their voice 

(Damjanovic & Hanley, 2007; Hanley & Damjanovic, 2009; Hanley et al., 1998). 

Thus, the coupling between the FFA and voice-selective regions during voice 

recognition may serve the purpose of enhancing voice recognition by activating a 

representation of a person’s face, but this coupling may only be observable during 

explicit voice recognition tasks.  

 

6.3 The informational content of the person identity representation 

in rpSTS 

Although the work in this thesis showed that the rpSTS contains crossmodal 

representations of faces and voices, the type of face and voice information that is 

processed and integrated in the rpSTS is unfortunately still unclear. Chapter 4 failed 

to show any correlations between face and voice representations in the rpSTS and 

the candidate models used in this study. Therefore, brain representations in the 

rpSTS did not correlate with representations of any of the perceived face or voice 

characteristics that were tested, such as social traits or perceived similarity, nor did 

they correlate with representations of objective face or voice characteristics that 

reflected image-based and acoustic-based similarity, respectively.  

 

Future studies should investigate alternative possible models for the type of 

information that is represented in rpSTS. One possibility is that the STS integrates 
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person-specific patterns of movement from faces, voices, and bodies to assist in 

person identity recognition (Yovel & O’Toole, 2016). Specifically, Yovel and O’Toole 

(2016) proposed that the STS extracts an idiosyncratic multisensory “dynamic 

signature” for every known familiar person. In contrast to voices, faces do not need 

to be dynamic to convey information. However, during social interactions faces are 

rarely static, and display both rigid facial movements, such as nodding and turnings 

of the head, and non-rigid movements, such as facial expressions and eye gaze 

direction (Yovel & O’Toole, 2016). Moreover, facial movements, and mouth 

movements in particular, are intrinsically associated with speech. Given that both 

faces and voices play a fundamental role in social interactions, it seems plausible 

that dynamic aspects of person’s face would be automatically associated with their 

voice and manner of speech, and may be integrated in a crossmodal person identity 

representation in the brain. The pSTS has been shown to be particularly sensitive to 

dynamic information in faces (Bernstein et al., 2018; Fox et al., 2009; Pitcher et al., 

2011) and to respond more to combined face-voice stimuli than to faces and voices 

presented in isolation (Kreifelts et al., 2007; Robins et al., 2009; Watson, Latinus, 

Charest, et al., 2014),  and is therefore a good candidate region for the processing 

and integration of dynamic identity information from faces and voices.  Moreover, 

findings showing that the pSTS is involved in the processing of visually presented 

social interactions (Isik, Koldewyn, Beeler, & Kanwisher, 2018; Walbrin, Downing, & 

Koldewyn, 2018) suggest that any dynamic identity information represented in the 

pSTS is likely to be associated with social interactions. Future studies should attempt 

to compare brain representations of faces and voices in the pSTS with models 

describing facial movement and speech patterns. Descriptions of facial movement 

could be obtained from face videos using facial motion tracking software, and 

descriptions of speech patterns could be obtained from speech recordings using 

speech analysis software.  

 

A second possibility is that the pSTS represents the degree of familiarity with 

different identities (Parkinson et al., 2014), which may be idiosyncratic for each 

participant. It has been shown that the pSTS represents the perceived ‘social 

distance’ between faces in terms of familiarity, according to which highly familiar 

faces are perceived as being ‘closer’ to a person whereas less familiar faces are 
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perceived as being ‘further away’, in a similar way that objects can be closer or 

further away in space, and a verbally described time point can be closer or further 

away in time (Parkinson et al., 2014). Although participants reported being highly 

familiar with the presented identities, it is likely that each participant was more 

familiar with some identities than others. Specifically, given that the presented 

identities were famous-familiar people, participants were likely to have had different 

degrees of exposure to these people through the media based on personal 

preferences. For example, a participant who is interested in international politics but 

is not a fan of the Harry Potter films would have had more exposure to the face and 

the voice of Barack Obama than to the face and voice of Emma Watson and Daniel 

Radcliffe, despite being able to recognise the faces and the voices of all three 

people. Therefore, it is possible that the pSTS of each participant may code their 

level of familiarity with different people, regardless of whether familiarity is judged 

from a person’s face or voice. If this is the case, identities with similar levels of 

familiarity should be less discriminable that identities with different levels of 

familiarity. For example, identities such as Emma Watson and Daniel Radcliffe are 

likely to elicit similar levels of familiarity due to appearing in the same films. Similar 

levels of familiarity across multiple identities could be also elicited due to identities 

sharing the same occupation or nationality. For example, a participant may watch a 

lot of talk shows, but not a lot of interviews of singers. Future work could investigate 

the possibility that some identities are more discriminable that others in the pSTS 

due to different levels of familiarity with the different identities at the level of each 

individual participant. This could be possible by designing a comprehensive form of 

familiarity assessment that would include a measure of the degree of each 

participant’s exposure to the different identities, as well as their personal interest and 

engagement with each identity.  

 

6.4 Stimulus-invariant representations of face and voice identity  

Although the current thesis did not have this specific aim, the study described in 

Chapter 3 also allowed the investigation of representations of face and voice identity 

that are invariant to different, naturalistically varying tokens of the face and voice. 

These results provided novel and interesting insights that add to the considerable 

literature on this topic. In fact, a multitude of studies have found that face identity 
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representations in face-responsive regions are invariant to different viewpoints of the 

same face (Anzellotti et al., 2014; Collins et al., 2016; Guntupalli et al., 2017; Natu et 

al., 2010; Verosky et al., 2013; Visconti Di Oleggio Castello et al., 2017), different 

emotional expressions (Nestor et al., 2011), different parts of the face (Anzellotti & 

Caramazza, 2016), or different photographs taken on separate occasions (Axelrod & 

Yovel, 2015), and that voice identity representations in voice-responsive regions are 

invariant to different recordings of the same persons’ voice (Bonte et al., 2014; 

Formisano et al., 2008). However, in the Introduction chapter it was argued that 

these studies showed three main limitations. First, with the exception of Anzellotti et 

al. (2014), Anzellotti & Caramazza (2016), Guntupalli et al. (2017), and Formisano et 

al. (2008), the majority of studies did not test whether identity representations 

generalised to different tokens of the face or voice of the same identities. Therefore, 

these studies were not able to show that the observed identity representations were 

not specific to the selection of face images/voice recordings that were presented. 

Second, most studies presented the faces and voices of unfamiliar identities that 

participants were experimentally familarised with to different extents (but see Axelrod 

& Yovel, 2015 and Visconti Di Oleggio Castello et al., 2017). Behavioural studies 

have shown that categorising different tokens of the face and the voice of the same 

person as belonging to the same identity, i.e. ‘telling people together’, which is an 

essential component of identification (Burton, 2013), is largely contingent on being 

familiar with that person (Jenkins et al., 2011; Lavan, Burston, & Garrido, 2018). 

Third, and related to the previous limitation, the vast majority of studies presented 

face and voice stimuli that were highly controlled in terms of their low-level 

properties, were often artificially-generated, and showed low variability across 

different tokens of the face and voice of the same person. Familiar identity 

recognition involves abstracting the variability that is present in different exposures to 

the same person’s face or voice in everyday life (Burton et al., 2016; Lavan, Burton, 

et al., 2018), and in the behavioural literature there has been a move towards using 

more naturalistic and variable face stimuli to study face recognition (Burton et al., 

2016; Burton, 2013; Jenkins et al., 2011) and voice recognition (Lavan, Burton, et al., 

2018).  In contrast, in neuroimaging experiments the ability to ‘tell people together’ 

based on different, naturalistically varying presentations of their face and voice has 

either being ignored or it has not being adequately captured because of the use of 
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highly-controlled and sometimes artificial face or voice stimuli (Lavan et al., 2018; 

Burton, 2013). 

 

The study described in Chapter 3 addressed the first limitation of previous studies, 

relating to the generalisability of identity representations to novel tokens of the face 

and voice, by presenting multiple tokens of the face and voice of each identity, and 

using different tokens to obtain and test pattern discriminants. This approach is 

comparable to studies that trained and tested pattern classifiers using different 

tokens of the face or voice of each identity (Anzellotti et al., 2014; Anzellotti & 

Caramazza, 2016; Formisano et al., 2008; Guntupalli et al., 2017). However, in 

contrast to these studies, the present thesis also addressed the second limitation, 

which related to the use of initially unfamiliar face and voice identities, by presenting 

identities that were highly familiar to participants from both their face and their voice. 

This practice ensured that participants were able to ‘tell together’ different tokens of 

the same person’s face and voice (Burton, 2013; Lavan, Burton, et al., 2018). 

Although two previous studies investigated face identity representations using 

familiar faces (Axelrod & Yovel, 2015; Visconti Di Oleggio Castello et al., 2017), 

these studies did not demonstrate that representations generalise to novel tokens of 

the face. Lastly, the current thesis addressed the third limitation of previous studies, 

relating to the lack of natural variability across different images and recordings of the 

same person’s face and voice, by presenting naturalistically varying face videos and 

voice recordings that were highly variable across different tokens of the same 

identity. Thus, the observed face and voice representations were robust to the 

natural variability that is present in the faces and voices encountered in everyday life 

(Burton, 2013). Although one study presented different face photographs for each 

identity that were taken on separate occasions (Axelrod & Yovel, 2015), these 

images were selected to have neutral facial expressions, were converted to grey-

scale, and equated in terms of luminance and colour, and cannot therefore be 

considered naturalistically varying.   

 

Representations of face identity were found in the face-selective rFFA and rOFA, in 

the voice-selective bilateral TVAs, and in the multimodal rpSTS and 

precuneus/posterior cingulate. Multiple studies have previously shown identity 
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representations in the FFA that generalise across different face images (Axelrod & 

Yovel, 2015), different emotional expressions (Nestor et al., 2011), and different 

viewpoints of the face (Verosky et al., 2013; Visconti Di Oleggio Castello et al., 

2017), with two studies showing that identity representations also generalise to novel 

viewpoints of the face (Anzellotti et al., 2014; Guntupalli et al., 2017). In contrast, 

only one study showed evidence of invariant face identity representations in the 

OFA, for faces presented from different viewpoints (Anzellotti et al., 2014), and two 

studies shown viewpoint-invariant representations of face identity in the pSTS 

(Anzellotti & Caramazza, 2017; Visconti Di Oleggio Castello et al., 2017). It is 

possible that representations in the OFA and pSTS are easier to detect when using 

familiar faces that are also naturalistically varying. Lastly, one study found evidence 

of face identity representations in the precuneus (Visconti Di Oleggio Castello et al., 

2017), but discrimination of face identities in the TVAs has not been shown before, to 

the best of my knowledge. Given that the TVAs cover a broad area of the temporal 

lobe, including regions of the anterior, mid, and posterior STS, it is likely that the 

observed face identity representations were due to the overlap with one or more 

face-selective regions, such as the rpSTS, or the mid and anterior STS (Fox et al., 

2009; Pitcher et al., 2011), which were not localised in this study. In sum, the current 

thesis extends previous findings of face identity representations to show that these 

representations generalise to novel, naturalistically varying videos of the face. 

 

Representations of voice identity were identified in the voice-selective TVAs and 

STS/STG and in the multimodal rpSTS, OFC, FP, and rTP-aIT. A previous study 

showed some evidence of representations of voice identity that generalised across 

different vowel sounds in the TVAs, but did not test whether these representations 

generalise to novel tokens of the same voice (Bonte et al., 2014). An earlier study 

from the same group showed voice identity representations in the STS/STG that 

generalise to novel voice tokens, but did not explicitly localise voice-selective regions 

(Formisano et al., 2008). The present study demonstrated that voice identity 

representations within voice-selective regions generalise to novel and naturalistically 

varying sentences spoken by the same identity. The ROIs for the rpSTS and rTP-aIT 

showed a large degree of overlap with the voice-selective ROIs in the right 

hemisphere, and this may account for the observed voice identity representations in 
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these regions. Finally, to the best of my knowledge, invariant representations of 

voice identity have not been found previously in OFC and FP. This may be due 

previous studies presenting initially unfamiliar voice identities (Bonte et al., 2014; 

Formisano et al., 2008), in contrast to the present work.  

 

To conclude, Chapter 3 aimed to identify brain regions that were able to both ‘tell 

people together’, i.e. categorise different, variable images of the same face, or 

recordings of the same voice, as being of the same identity, as well as ‘tell people 

apart’, i.e. distinguish between faces or voices belonging to different identities 

(Burton, 2013; Lavan, Burton, et al., 2018). Stimulus-invariant representations were 

found for face identity in the face-selective rFFA and rOFA, and for voice identity in 

the voice-selective bilateral TVAs and STS/STG, and in the multimodal OFC, FP, 

and rTP-aIT. Invariant representations of both face and voice identity were found in 

the rpSTS and in the precuneus/posterior cingulate. This work was able to 

demonstrate for the first time that identity representations in these regions generalise 

across multiple, naturalistically varying videos of the face/recordings of the voice of 

the same identity, simulating the recognition of familiar people in everyday life 

(Burton, 2013; Lavan, Burton, et al., 2018. 

 

6.5 The informational content of face and voice identity 

representations 

After identifying representations of face and voice identity in face-selective and 

voice-selective regions, the next question was what type of information is used by 

the different regions to distinguish between identities in their preferred modality. 

Previous work has associated face-responsive regions with the processing of visual 

information (Carlin & Kriegeskorte, 2017; Loffler et al., 2005; Weibert et al., 2018; Xu 

& Biederman, 2010; Xu et al., 2009), face gender (Contrereas et al., 2013; Freeman 

et al., 2010; Kaul et al., 2011; Mattavelli et al., 2012), and social traits (Engell et al., 

2007; Freeman et al., 2014; Mattavelli et al., 2012; Said et al., 2009, 2011; Todorov 

et al., 2008; Todorov & Oosterhof, 2011; Winston et al., 2002). Voice-responsive 

regions have been associated with the processing of auditory information 

(Formisano et al., 2008; Latinus et al., 2013; von Kriegstein et al., 2007, 2010), voice 

gender (Charest et al., 2013; Lattner et al., 2005; Sokhi et al., 2005; Weston et al., 
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2015), and social traits (Bestelmeyer et al., 2012). However, as discussed in the 

Introduction chapter, the interpretation of these previous results is constrained by 

five main limitations. First, the majority of studies focused on identifying the neural 

correlates of one type of face or voice information, and there is a lack of studies 

using the same paradigm and stimuli to investigate multiple types of information. 

Therefore, with the exception of Mattavelli et al. (2012) and Said et al. (2011), these 

studies were not able to directly compare different types of information. Second, 

although many findings concern regions that overlap with the estimated location of 

face- or voice-selective regions, many studies did not explicitly investigate properties 

of independently defined face- and voice-selective regions. This is particularly the 

case for the TVAs, and as a result very little is known regarding the information 

content of voice representations in these regions (Charest et al., 2013; Latinus et al., 

2013). A third limitation concerns the use of stimuli that were controlled in terms of 

their low-level visual and auditory features, primarily in studies investigating the 

processing of physical face or voice properties, and which appeared artificial 

compared with the natural variability in the faces and voices encountered in 

everyday life. As a consequence, findings from these studies may not apply to more 

naturalistically varying faces and voices. Fourth, very few studies used multivariate 

fMRI methods to investigate the information used by face-selective and voice-

selective regions to distinguish between individual face identities (Carlin & 

Kriegeskorte, 2017; Contreras et al., 2013; Kaul et al., 2011; Weibert et al., 2018) or 

voice identities (Formisano et al., 2008). Finally, there is a lack of research on the 

informational content of face and voice representations in multimodal brain regions 

that respond selectively to both faces and voices.   

 

Chapter 4 aimed to overcome the limitations of previous studies by comparing face 

and voice representations in face-selective, voice-selective, and multimodal (face-

selective and voice-selective) regions to multiple models of both perceived and 

objective face and voice characteristics. Specifically, brain representations of 

individual face and voice stimuli were compared with models that captured both 

perceived and objective physical properties of the stimuli, face and voice gender, 

and perceived social traits. Models of perceived visual/auditory properties were 

computed based on ratings on visual/auditory pairwise similarity tasks, and models 
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of objective visual/auditory properties were computed based on measures of 

stimulus similarity obtained using the OpenFace and Gabor-Jet programs for faces, 

and using f0 and AVTL for voices. A model of gender predicted that response 

patterns would be more similar between same-gender faces/voices than between 

different-gender faces/voices. Models of perceived social traits were computed 

based on ratings of the stimuli on trustworthiness, dominance, attractiveness, and 

positive-negative valence. In addition to face-selective, voice-selective, and 

multimodal brain regions, the informational content of the amygdala, which was 

anatomically defined, was also investigated. The amygdala was included as a ROI in 

order to test its proposed involvement in the processing of both social and non-social 

information in faces (Engell et al., 2007; Freeman et al., 2014; Mattavelli et al., 2012; 

Said et al., 2009, 2011; Todorov et al., 2008; Todorov & Oosterhof, 2011; Winston et 

al., 2002).  

 

A review of the literature investigating the information processed in face-selective 

regions, presented in the Introduction chapter, suggested that these regions were 

most likely to process the visual properties of faces, including those used to 

categorise face gender (Carlin & Kriegeskorte, 2017; Loffler et al., 2005; Mattavelli et 

al., 2012; Said et al., 2011; Weibert et al., 2018; Xu & Biederman, 2010; Xu et al., 

2009). This was confirmed by the results, which showed that brain representations of 

faces in the rFFA and rOFA are associated with information about the objective 

similarity between faces and face gender, and that brain representations of faces in 

the rFFA are also associated with information about the perceived visual similarity 

between faces. Relating back to Chapter 3, which showed that the rFFA and the 

rOFA could discriminate between different face identities, these findings suggest that 

these regions may use information relating to the visual similarity between faces and 

face gender to distinguish between different identities. However, the models for 

perceived and objective visual similarity and gender were correlated with each other, 

suggesting that they describe similar information, and their independent contributions 

could be disentangled in the present analysis. Brain representations in the rOFA, but 

not the rFFA, correlated with the Gabor-Jet similarity model, and therefore 

computations in this region are likely to rely more on low-level visual information to 

distinguish between different identities. In contrast, the rFFA, but not the rOFA, was 
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associated with the perceived similarity between faces, and may therefore rely more 

on higher-level visual information, such as gender and age, to distinguish between 

different identities. Correlations between the Gabor-Jet model and other models, 

including perceived similarity, were low, suggesting that this model captures distinct 

information. Lastly, an exploratory analysis comparing face representations across 

different regions showed that representations in the rFFA and rOFA were correlated, 

suggesting that information in these regions is at least partially shared. It should be 

noted that the results also showed a correlation between representations in the rOFA 

and perceived dominance. Although this finding suggests that the rOFA may also 

process high level social information from faces, the correlation with dominance was 

very low and well below the noise-ceiling, and thus should be interpreted with 

caution. 

 

Previous findings showed that voice-responsive regions process information about 

acoustic properties of voices (Formisano et al., 2008; Latinus et al., 2013; von 

Kriegstein et al., 2007, 2010), and that sub-regions of the TVAs may be sensitive to 

gender information in voices (Charest et al., 2013), These findings were supported 

by the results of Chapter 4 showing that brain representations of voices in the 

bilateral TVAs and STS/STG were associated with perceived auditory similarity (with 

the exception of the lTVA), with objective stimulus similarity as defined by f0 and 

AVTL, and with voice gender. Chapter 3 demonstrated that all four of these regions 

could distinguish between individual voice identities, and it is likely that this 

discrimination is based on auditory similarity and voice gender. The models for 

auditory similarity and gender were correlated with each other, suggesting that they 

describe similar information. However, the independent contribution of each model 

could not be defined in the present analysis, and in future it would be interesting to 

test the contributions of the different models to explaining the variance in the brain 

RDMs using multiple regression analysis. Lastly, an exploratory analysis presented 

in Chapter 4 showed similar voice representations across the bilateral TVAs and 

STS/STG, supporting the findings that these regions process similar information. 

Taken together, these findings substantially extend the current knowledge of the 

informational content of voice representations in the TVA by suggesting that they use 
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acoustic information, and information associated with voice gender, to distinguish 

between individual voice identities. 

 

Little is known regarding the informational content of multimodal people-selective 

brain regions. However, it has been shown that regions such as the pSTS and the 

OFC, which were found to selectively respond to both faces and voices in Chapter 3, 

represent similar information from multiple modalities (Chikazoe et al., 2014; Peelen 

et al., 2010). Thus, it was speculated that multimodal regions may represent 

information that is available through both modalities, such as information regarding 

social traits (McAleer et al., 2014; Oosterhof & Todorov, 2008). Moreover, based on 

evidence from univariate fMRI studies that the amygdala processes both social and 

non-social information in faces (Bzdok et al., 2011; Mende-Siedlecki et al., 2013), it 

was predicted that the amygdala would represent both social and physical face 

information. However, Chapter 3 showed no evidence of correlations between face 

or voice representations in multimodal regions and models of perceived 

trustworthiness, dominance, attractiveness, and positive-negative valence, or any of 

the other models that were tested. Moreover, face representations in the amygdala 

did not correlate with any of the face models. One possible reason for this is that 

RDMs for multimodal regions and the amygdala showed very low inter-subject 

reliability, suggesting that a high level of noise was present in the activity patterns. 

For multimodal regions, a second possibility is that, given that these regions are not 

exclusively face-selective and voice-selective, they may code higher-level 

information that is highly abstracted from the input modalities. This may involve 

cognitive processes such as attention (Downar, Crawley, Mikulis, & Davis, 2000), 

reward processing (O’Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001), 

retrieval of general social knowledge about people (Olson, McCoy, Klobusicky, & 

Ross, 2013; Wang et al., 2017), social distance based on degrees of familiarity 

(Parkinson, Kleinbaum, & Wheatley, 2017; Parkinson et al., 2014), and episodic 

memory (Lundstrom et al., 2003). As mentioned previously in relation to the pSTS, 

future work may benefit from comparing brain representations of faces and voices in 

multimodal regions with more complex models based on the level of familiarity of 

each individual participant with each identity, including their level of exposure and 

engagement with each identity. For the amygdala, it is possible that its sensitivity to 
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information in faces is confined to modulations in magnitude, and that this 

information is not used to distinguish between individual identities. Lastly, an 

exploratory analysis showed that face and voice representations in multimodal 

regions and the amygdala were correlated with representations in face-selective and 

voice-selective brain regions, suggesting that that they share some informational 

content; however, these correlations were very low, and should be interpreted with 

caution.  

 

6.6 The relationship between perceived information in the face and 

voice  

Although Chapter 4 found no evidence of multimodal brain regions that represent 

similar types of information from faces and voices, the study presented in Chapter 5 

showed that, on a behavioural level, similar information is perceived from a familiar 

person’s face and their voice in relation to both social traits and perceived physical 

similarity. Specifically, high correlations were observed between ratings of familiar 

faces and voices on trustworthiness, dominance, attractiveness, and positive-

negative valence. These findings suggest that social and physical person-related 

information that is extracted from the faces and voices of familiar people is highly 

consistent across modalities. In addition to familiar people, Chapter 5 also showed 

correlations between ratings of the faces and voices of unfamiliar people on 

trustworthiness, dominance, attractiveness, valence, and perceived similarity. 

However, as predicted, these correlations were significantly lower than the 

correlations for familiar people. For familiar people, it is highly likely that the greater 

similarity between the judgements of the face and voice, compared with unfamiliar 

people, is due to prior knowledge of the person and multiple experiences of 

concurrent exposure to both their face and their voice. In contrast, for unfamiliar 

people there is no known correspondence between a person’s face and their voice, 

and no prior knowledge of the person. There is, however, some evidence that the 

faces and voices of unfamiliar people convey concordant information regarding 

physical characteristics of a person, such as masculinity-femininity (Smith et al., 

2016a). In regard to information on social traits, as discussed in the Introduction 

chapter, finding from studies that have compared ratings of unfamiliar faces and 

voices on attractiveness (Abend et al., 2015; Lander, 2008; Oguchi & Kikuchi, 1997; 
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Rezlescu et al., 2015; Saxton et al., 2009; Valentova et al., 2017; Wells et al., 2013) 

and dominance (Han et al., 2017; Rezlescu et al., 2015) have been inconsistent in 

regard to the extent to which ratings were similar across modalities, the direction of 

the correlations, and the influence of stimulus and/or participant gender on the 

relationship between face and voice ratings. Only one study compared ratings of 

trustworthiness across faces and voices, and found a correlation when male and 

female stimuli were analysed together, but not when they were analysed separately 

(Rezlescu et al., 2015).  

 

The inconsistencies in the findings of previous studies that compared ratings of 

unfamiliar faces and voices on social judgements may have been due to two main 

factors. First, these studies collected ratings of a single face image or voice 

recording of each identity, and it has been shown that social judgements can be 

different for different face images of the same (unfamiliar) person (Sutherland et al., 

2017; Todorov & Porter, 2014). Therefore, it is likely that the across-modality 

variability in judgements of different tokens of the same person’s face and voice 

would be even greater, and would decrease chances of detecting potential 

similarities in social judgements across modalities. Second, in previous studies 

correlations between faces and voices were assessed at the stimulus level, and did 

not take into account individual differences in ratings of the faces and voices across 

participants. Specifically, correlations were computed between each individual face 

and voice across the ratings of all participants. While studies have shown that ratings 

of faces (Oosterhof & Todorov, 2008; Sutherland et al., 2013) and voices (McAleer et 

al., 2014) are largely consistent across participants, there is also evidence that the 

personal attitudes and experiences of each individual can influence judgements of 

social traits in faces (Hehman et al., 2017; Kramer et al., 2018; Stanley et al., 2011; 

Watkins et al., 2010). Therefore, it is possible that not taking into account these 

potential individual differences in the ratings of faces and voices across participants 

results in less sensitivity to detect consistencies in ratings across the two modalities.  

 

The study presented in Chapter 5 attempted to address the aforementioned issues 

arising from the variability in the ratings of different tokens of the same face and 

voice, and from individual differences across participants in their ratings of faces and 
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voices. The first issue, concerning the within-person variability in ratings, was 

addressed by using a novel experimental paradigm in which ratings were based on 

the consecutive presentation of multiple, naturalistically varying face videos and 

voice recordings of each identity. The aim of this paradigm was to encourage 

participants to base their ratings on face and voice characteristics that remained 

stable across different presentations of the same person’s face and voice. The 

second issue, concerning individual differences in ratings, was addressed by 

conducting all analyses at the individual participant level, in that correlations were 

computed between each participant’s ratings of all faces and voices, as opposed to 

being computed between each individual face and voice based on the ratings of all 

participants. It is possible that both of these approaches contributed to the finding of 

similar ratings of faces and voices of unfamiliar people. However, as discussed in 

Chapter 5, it is also possible that the use of a diverse set of identities in terms of age, 

nationality, gender, and race in the present work may have enabled participants to 

correctly predict which face corresponded to which voice, thus encouraging similar 

ratings of the faces and voices of the same people. Future studies comparing ratings 

of faces and voices should therefore use a larger and more homogenous set of 

unfamiliar identities.  

 

A possible reason for the existence of similarities in the ratings of the faces and 

voices of unfamiliar people is that people form multisensory representations of social 

traits that include information about what a person looks like and sounds like through 

their experience of others in everyday life. Specifically, the presence/absence of 

certain social traits may be associated through experience with certain face and 

voice characteristics that frequently co-occur across different people (Over & Cook, 

2018), possibly as a result of physical and developmental changes that affect both 

the face and the voice. This is particularly likely to be the case for social traits that 

have been associated with physical person characteristics that are conveyed by both 

the face and the voice. For example, dominance has been associated with 

masculinity in both voices (McAleer et al., 2014) and faces (Oosterhof & Todorov, 

2008; Sutherland et al., 2013), and judgements of masculinity-femininity have been 

shown to be consistent across faces and voices (Smith et al., 2016a). These learnt 

associations between face and voice characteristics, on the one hand, and social 
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traits, on the other hand, may influence judgements of the faces and voices of newly 

encountered unfamiliar people, leading to similar social judgements of the face and 

voice.  

 

An exploratory analysis conducted in Chapter 5 showed that the relationships 

between different social judgements were similar for both faces and voices, with 

higher correlations between ratings of trustworthiness, attractiveness, and valence 

than between each of these three judgements and dominance. This was the case for 

both familiar and unfamiliar identities. Previous studies have investigated the 

relationship between multiple social judgements of unfamiliar faces and voices, 

independently for each modality, using dimensionality-reduction techniques, and 

have shown that valence/trustworthiness and dominance form orthogonal 

dimensions for faces (Oosterhof & Todorov, 2008; Sutherland et al., 2013) and for 

voices (McAleer et al., 2014). The present findings suggest that individual traits are 

conceptualised in a similar way for faces and voices for both familiar and unfamiliar 

people. Moreover, given previous findings of similarities between the concepts of 

different emotions across faces and voices (Kuhn et al., 2017), as well as 

crossmodal representations of emotion from faces and voices in the left rpSTS 

(Peelen et al., 2010), it is seems increasingly likely that representations of social 

traits from both faces and voices may also co-exist exist in the same brain regions.   

 

Finally, Chapter 5 also presented an analysis that compared ratings of perceived 

similarity with ratings of social judgements, separately for faces and voices, in order 

to test whether the differences between the ratings of different identities on social 

judgements was related to their degree of perceived similarity. The results of this 

analysis suggested that perceived similarity explained very little of the variance in 

social judgements. For example, if two faces are given similar trustworthiness 

ratings, this does not imply that they look similar. Therefore, it is possible that 

physical face and voice characteristics play a minor role in the formation of social 

impressions. However, the physical features used by participants to judge perceived 

similarity are unknown, and may differ from physical features that could influence 

social judgements. 
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Taken together, the findings regarding the relationship between face and voice 

ratings in familiar and unfamiliar people suggest that gaining familiarity with a person 

may increase the similarity between judgements of their face and voice. To explicitly 

test this possibility, future work should collect ratings of faces and voices before and 

after experimentally familiarising participants with a set of identities. The relationship 

between the ratings of the face and voice of each identity could then be compared 

before and after becoming familiar with the identity, to determine how, and to what 

extent, this relationship is influenced by familiarity.  

 

6.7 General limitations and future directions 

The current thesis used famous-familiar identities to investigate representations of 

face identity, voice identity, and person identity in the brain, and to investigate the 

relationship between information perceived from the face and information perceived 

from the voice. This work presents a significant advancement from previous 

neuroimaging studies that investigated face, voice, and person identity 

representations, the majority of which experimentally familiarised participants with 

the faces and voices of initially unfamiliar identities (e.g. Anzellotti et al., 2014; 

Formisano et al., 2008; Hölig et al., 2017; Joassin et al., 2011). Familiar faces have 

been shown previously to elicit a wider range of brain activation compared with 

recently learned faces, suggesting that they engage different processing systems 

(Leveroni et al., 2000). However, although participants reported being highly familiar 

with both the faces and the voices of the famous individuals, it is unlikely that they 

would have ever interacted with these people on a personal level. Instead, familiarity 

was most likely gained through the media from a third-person perspective. In 

contrast, familiarity with personally-familiar acquaintances is mostly acquired through 

direct social interactions. Personally-familiar faces have been shown to elicit stronger 

brain activation compared with famous-familiar faces in a number of brain regions, 

including the bilateral pSTS, posterior cingulate/precuneus, and fusiform gyrus 

(Gobbini et al., 2004; Sugiura et al., 2011). Therefore, it is possible that brain 

representations of individual face, voice, and person identities may differ between 

famous-familiar identities and personally-familiar identities. Moreover, the 

relationship between perceived information extracted from the face and perceived 

information extracted from the voice, and the way that different social traits are 
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conceptualised in each modality, may differ depending on the level of familiarity. To 

investigate these possibilities, future work could attempt to investigate 

representations of the faces and voices of personally-familiar people. This approach 

is challenging because it would require either identifying people who are personally-

familiar to all of the participants, or creating individual face and voice stimuli for each 

participant. The first approach would be easier to implement, and some researchers 

have used stimuli derived from university lecturers to test undergraduate student 

participant groups (e.g. Lavan et al., 2016), but given that it is unlikely that students 

are highly familiar with their lecturers, this approach also has its limitations. 

Alternatively, a group of participants who are personally familiar with each other 

could be recruited both to take part in the experiment themselves and to provide face 

and voice stimuli to be used for the testing of the other participants in the group. 

Such a group could potentially comprise undergraduate students attending the same 

course module. 

 

A further potential limitation of the famous-familiar identities used in the current 

thesis is the high diversity between the different identities in terms of age, nationality, 

accent, gender, and race. These particular famous individuals were selected 

because they proved to be highly recognisable from both their faces and their voices, 

and therefore are likely to display particularly distinctive facial and vocal features. 

Although the different tokens of the face and the voice of each person were 

unconstrained and naturalistically varying, it is likely that the variability between the 

different identities was higher than the variability between the different tokens of the 

same person’s face and voice. Consequently, this variability in visual and auditory 

appearance may have facilitated the discrimination between the different face 

identities, voice identities, and person identities in the brain. In particular, there is a 

possibility that regions that were found to discriminate between pairs of identities 

could do so, at least in part, due to marked differences in facial features and vocal 

features between the different identities. To address this possibility, future research 

should attempt to replicate the findings of the current thesis using a more 

homogenous set of familiar identities. Specifically, identities could be matched in 

terms of gender, nationality, race, accent, and age group, but different tokens of the 

face and voice of the same person should vary naturalistically in terms of visual and 
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auditory appearance. This approach would limit the between-person variability while 

at the same time maintaining a similar level of within-person variability across 

different tokens of the same person’s face and voice as the present thesis.  

 

A final overall limitation is the low intra-subject and inter-subject reliability of the 

representational dissimilarity matrices (RDMs) for face and voice identities that were 

computed in Chapter 3. Intra-subject reliability was measured for each ROI as the 

correlation between the face or voice RDM computed from data in scanning session 

1 and the face or voice RDM computed from data in scanning session 2, which took 

place on a separate day. Chapter 3 showed very low correlations (mean r < .10) 

between RDMs across sessions in all ROIs for both faces and voices. These 

correlations were not significantly greater than zero across participants for any of the 

comparisons. Given than the brain activity patterns elicited by individual face and 

voice identities were found to be highly reliable across scanning sessions for faces in 

face-selective regions and for voices in voice-selective regions, it is unlikely that the 

low correlations between RDMs across the two sessions were due to inconsistent 

brain activity patterns. A possible explanation is that the individual representations of 

face or voice identities within a certain brain region, i.e. their elicited brain activity 

patterns, may have been equally dissimilar to each other. As a consequence, the 

distances between face or voice representations in the RDMs may have not been 

variable enough to detect similarities in representational geometry between two 

RDMs from different sessions.  

 

Inter-subject reliability was measured for each ROI as the correlation between each 

participant’s RDM (averaged across the two scanning sessions) and the average of 

the RDMs of all other participants. The aim of this analysis was to determine the 

maximum possible correlation between a brain RDM and a candidate model RDM 

given the noise in the data. Low mean correlations (< .25) were observed for all 

ROIs, for both faces and voices. On first thought, computing inter-subject reliability 

as a measure of noise ceiling for the correlations in Chapter 4 may not have been 

ideal, given that the main analysis compared each individual’s brain RDM with 

models based on their own behavioural data. It is possible that representations of 

familiar faces and voices had a strong idiosyncratic component, which could be due 
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to the degree of exposure that each participant had to the different identities, as well 

as their personal attitude and sentiments towards each identity. However, 

idiosyncratic face and voice representations are unlikely to have affected the results 

substantially, given that the intra-subject reliability values were so low. Instead, the 

reason for low inter-subject reliability may be the same as the potential reason for 

low intra-subject reliability: the brain activity patterns elicited by individual identities 

were equally dissimilar to each other, making it difficult to detect similarities between 

RDMs using correlation. In conclusion, future studies should focus on optimising 

experimental designs and protocols to obtain RDMs that are more reliable across 

different sub-sets of data, and across different brains. This practice may increase the 

potential to characterise the informational content of face and voice representations 

by comparing RDMs of faces and voices in the brain to candidate RDMs.  

 

6.8 Conclusions 

The present thesis attempted to answer three main questions: 1) how face and voice 

information is integrated in the brain to form representations of person identity, 2) 

what is the informational content of face and voice representations in face-selective, 

voice-selective, and multimodal brain regions, and 3) how information perceived from 

the face is related to information perceived from the voice in familiar and unfamiliar 

people.  

 

In regard to the first question, it was demonstrated that face and voice information is 

integrated in the rpSTS, a multimodal brain region that responds selectively to both 

faces and voices. This finding provides support for the MP model of face and voice 

integration which proposes that person identity is represented in multimodal brain 

regions. No evidence was found to support the CFVP model, which proposes that 

face-responsive and voice-responsive regions exchange crossmodal information 

related to person identity.  

 

The present thesis additionally showed stimulus-invariant representations of face 

identity in face-selective regions, and stimulus-invariant representations of voice 

identity in voice-selective regions, which generalised across multiple, naturalistically 

varying videos of the face and recordings of the voice of the same person. It was 
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shown that brain representations of faces in the face-selective rFFA and rOFA were 

primarily associated with information relating to the perceived and objective similarity 

of faces and gender, and that brain representations of voices in the voice-selective 

bilateral STS/STG and TVAs were primarily associated with information relating to 

perceived and objective auditory similarity of voices and gender. These findings 

suggest that face-selective and voice-selective regions primarily use physical 

information that is directly related to their preferred modalities to distinguish between 

individual face and voice identities. However, the informational content of multimodal 

brain regions, including the rpSTS, could not be defined in the current thesis, and the 

informational content of face and voice representations in these regions remains an 

open question.  

 

Lastly, in regard to the third question, it was demonstrated that highly consistent 

information regarding social traits and perceived similarity is extracted from the face 

and the voice of familiar people, whereas information extracted from the face and the 

voice of unfamiliar people is less consistent but still similar to an extent. These 

findings suggest that concordant information may be conveyed by the faces and 

voices of familiar people due to prior knowledge of the person, and that some 

concordant information may also be present in the faces and voices of unfamiliar 

people, possibly due to learned associations between social traits and certain face 

and voice features that frequently co-occur across different people.  

 

In sum, this thesis addressed important gaps in the literature regarding 

representations of face, voice, and person identity and their informational content 

though novel applications of RSA, which enabled direct comparisons between brain 

representations across the faces and voices, and between brain representations and 

models of face and voice properties. Finally, this thesis demonstrated that 

representations of face, voice, and person identity in the brain can be detected when 

using naturalistically varying face and voice stimuli, and highlights the need for 

neuroimaging studies to use stimuli that better resemble the faces and voices 

encountered in everyday life.  
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