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Abstract 

Owing to the importance of rolling bearings in rotating machines, there has been great interest in 

the development of computational methods for rolling bearings condition monitoring over the last few 

decades. The aim of these methods is to determine early and automatically the occurrence of a fault condition 

in rolling bearings to avoid machine breakdowns that may lead to downtime, possibly safety incidents, 

production lost, and higher costs of repairs. Vibration-based methods are commonly used and have become 

well-accepted techniques of many condition-based maintenance (CBM) management. However, the vast 

amount of the collected vibration data requires large storage and time for signal processing and this also may 

limit the number of machines that can be monitored remotely across wireless sensor networks (WSNs) due 

to bandwidth and power constraints. To avoid the burden of much storage requirements and processing time 

of a tremendously large amount of vibration data, the scope of this thesis is the development and application 

of vibration analysis methods of a large amount of acquired vibration dataset for condition monitoring of 

rolling bearings. The main aim of this analysis is to obtain compressively-sampled dataset which possesses 

the quality of the original vibration dataset and then learn fewer features from these compressively-sampled 

signals directly without reconstructing the original signal. Regardless of its importance in addressing the 

challenge of learning from a large amount of vibration dataset, no existing method possesses the ability to 

learn directly from low-rate of compressed measurements.  

This thesis presents new and tested vibration condition monitoring methods for roller bearings that 

can greatly compress the amount of the original vibration and further learn features from this compressed 

amount of data to increase the identifying power of the compressed measurements in rolling bearing faults 

diagnosis. There are two most important contributions in this thesis. The first one is the formulation of a 

three-stage method, Compressive Sampling with Correlated Principal and Discriminant Components (CS-

CPDC) for classification of bearing faults. This method applies CS to obtain compressively-sampled signals 

from the raw vibration data and then adopts a multi-step feature learning algorithm to learn fewer features 

from the compressively-sampled signals. Finally, it employs a multi-class support vector machine (SVM) to 

classify bearing health conditions using these learned features. The second one is the design of intelligent 

condition monitoring method for bearing faults from highly compressed measurements using sparse over-

complete features. This method applies CS to produce highly compressed measurements of the original 

bearing vibration dataset and then it uses an effective deep neural network (DNN) with unsupervised feature 

learning algorithm based on sparse autoencoder to learn over-complete sparse representations of these 

compressed measurements. Finally, it employs two techniques to deal with the classification problem, 

namely, pre-training classification based on stacked autoencoder and softmax regression layer, and re-

training classification based on backpropagation algorithm. These methods and other less performance 

methods proposed in this thesis have been validated and applied to several real vibration datasets of roller 

bearings. The experimental validation demonstrates improved bearing health condition classification 

accuracy, with highly reduced feature dimension, and much lower computational complexity, compared to 

state-of-the-art methods.    
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Chapter 1 

Introduction 
 

1.1 Background 

The need for an effective condition monitoring and machinery maintenance program exists 

wherever complex and expensive machinery is used to deliver critical functions of businesses. For 

example, manufacturing companies in today’s global marketplace race, use their best endeavours to cut 

costs and improve product quality to maintain their competitiveness. Rotating machine is a central part 

of the manufacturing procedure, and its health and availability have their direct effects on production 

schedules, production quality, and production costs. Unforeseen machine failures may lead to 

unexpected machine downtime, accidents, and injuries. In reality, rotating machine components 

including motors, bearings, gearboxes, etc. are engaged to operate effectively to keep a stable and 

healthy condition of the rotating machine. For that reason, maintenance is performed in order to ensure 

that machines remain in a healthy condition by repairing, modifying, or replacing these components.  

Maintenance can be accomplished using two main approaches, namely, corrective and 

preventive maintenance (Wang et al., 2007). Corrective maintenance is the most basic maintenance 

technique that performs after machine failure and can be very expensive particularly for large-scale 

applications of rotating machines. Preventive maintenance can be applied to prevent a failure using 

either time-based maintenance (TBM) or condition-based maintenance (CBM), which can be Localised 

CBM, or Remote CBM (Higgs et al., 2004; Ahmad et al., 2012). TBM uses a calendar schedule that 

sets in advance to perform the maintenance regardless of the health condition of the machine, which 

makes this approach also expensive in some large and complex machines. In addition, TBM may not 

prevent machines from failures.  

It has been reported that 99% of rotating equipment failures are preceded by non-specific 

conditions indicating such a failure is going to happen (Bloch et al., 2012). CBM is an efficient 

maintenance approach that can help in avoiding unnecessary maintenance tasks of TBM approach. 

Numerous studies have shown the economic advantages of CBM in several applications of rotating 

machine (for example, McMillan et al., 2007; Verma et al., 2013; Van Dam and Bond, 2015; Kim et 

al., 2016). In CBM, the decision of maintenance is made based on the current machine health condition 

that can be identified through the Condition Monitoring (CM) system. Once a fault occurs, the accurate 

CM technique allows early detection of faults and correct identification of the type of faults. Thus, the 

more accurate and sensitive CM system, the more correct maintenance decision is made and more time 

available to plan and perform maintenance before machine breakdowns.     
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  Condition monitoring of rotating machine components can minimize the risk of failure by 

identifying machine health condition via early fault detection. The aim of CM is to avoid catastrophic 

machine failure that may cause secondary damage, downtime, potentially safety incidents, production 

lost, and higher costs associated with repairs. CM techniques in rotating machinery encompass the 

practice of monitoring measurable data (e.g., vibration, acoustic, etc.), that can be used individually or 

in a  mixture to identify changes in machine condition. This allows the CBM program to be arranged, 

or other actions to be taken to prevent machine breakdowns (Jardine et al., 2006). Based on types of 

sensor data acquired from rotating machines, bearing condition monitoring techniques can be grouped 

into the following: vibration monitoring, acoustic emission monitoring, electric current monitoring, 

temperature monitoring, chemical monitoring, and laser monitoring. Of these techniques, vibration-

based bearing condition monitoring has been widely studied and has become a well-accepted technique 

of many planned maintenance managements (Lacey, 2008; Randall and Antoni, 2011). In reality, 

different fault conditions generate different patterns of vibration spectrums. Thus, vibration analysis in 

principle allows us to examine the inner parts of the machine and analyse the health conditions of the 

operating machine without physically opening it (Nandi et al., 2013). Moreover, various characteristic 

features can be observed from vibration signals that make it one of the best selections for machine CM. 

 In vibration-based condition monitoring by analysing the physical features of the acquired 

vibration signals, one is able to categorise the acquired vibration signal into the corresponding condition 

correctly, which is generally a multi-class classification problem. A simple vibration based CM system 

consists of three key steps as shown in Figure 1.1. First, data acquisition step; in which a sensor (e.g., 

velocity sensors and accelerometers) is mounted to the component of interest to collect input vibration 

measurements, i.e., raw data, that can be transmitted, stored, and processed. Second, the vibration data 

analysis step, include pre-processing, filtering, feature extraction and selection of the vibration data 

acquired in the first step. Finally, machine health diagnosis that involves detection and identification of 

a fault uses a classifier to discriminate the data signals into different classes utilising the extracted 

features, while prognosis aims to predict the residual life of a machine before breakdown takes place 

(Nandi and Jack, 2004; Worden et al., 2011).  

                 Figure 1.1. The overall framework of vibration based machine condition monitoring. 

The sampling theorems including the Shannon-Nyquist theorem are in the core of the current 

sensing systems. However, Nyquist sampling rate which is at least twice the highest frequency 

contained in the signal is high for some modern developing applications, e.g., industrial rotating 

machine (Eldar et al., 2015). One aspect of much of the literature on using Nyquist sampling rate is that 

it may result in measuring a large amount of data that need to be transmitted, stored, and processed. 
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Moreover, some applications that include wideband it is often very costly to collect samples at the 

necessary rate. It is clear that acquiring a large amount of data requires large storage and time for signal 

processing and this also may limit the number of machines that can be monitored remotely across 

Wireless Sensor Network (WSNs) due to bandwidth and power constraints.  

For this reason, it is currently becoming of essential importance to develop new CM methods 

that not only have the ability to achieve accurate detection and identification of machine health 

conditions but are also have the capability to address two main challenges: (1) costs of learning from a 

large amount of vibration data, i.e., transmission costs, computation costs, and power needed for 

computations, and (2) the demand for early detection of fault.  

1.2 Rolling bearings condition monitoring  

Considering their role in maintaining motion between static and moving parts in rotating 

machinery, rolling bearings are critical components of the whole system of rotating machines. In 

practice, rolling bearings failures may lead to more major failures in machines. It is stated that 

approximately 40 – 90% of rotating machine failures are related to bearing faults (Immovilli et al., 

2010) based on the machine size. Thus, in most production processes in the industry, roller bearings 

need to be kept in healthy condition to guarantee continuity of production. Therefore, it is very 

important to monitor roller bearings to avoid machine breakdowns. There are two types of bearings: (1) 

plain (sliding) bearings that maintain motion through sliding contact, and (2) rolling element bearings 

that maintain motion through rolling contact (Collins et al., 2010). The latter is widely used in most 

applications of rotating machinery and can be categorised into two main groups, ball bearings (spherical 

rolling elements) and roller bearings (nominally cylindrical rolling elements). As shown in Figure 1.2, 

a roller bearings consists of several components: (1) the inner race in which the shaft drives, (2) the 

outer race that normally positioned into a hole or housing, (3) the rolling elements that is normally 

placed between the inner race and the outer race, and (4) the cage that also called retainer, can be made 

of plastic or metal, and is used to keep the rolling elements separated equally.  

Figure 1.2. A typical roller bearing. 
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Bearings defects can occur for many reasons including (1) Fatigue, which happens when there 

is too much load on the bearing; (2) Incorrect lubrication, which can be over-lubrication or under-

lubrication; (3) Contamination and corrosion; and (4) Wrong bearing installation (Harris, 2001; Nandi 

et al., 2005). The literature on vibration-based bearings CM identifies numerous computational methods 

for fault diagnosis that achieved many interesting results. However, the performance of these methods 

is limited by the large amounts of Nyquist rate-based sampled vibration data need to be acquired from 

rotating machines to achieve the anticipated accuracy of bearing fault detection and classification.  

A reasonable approach to tackle the challenges involved in dealing with too many samples 

could be to compress the data. One of the most well-known advanced and recent techniques for signal 

compression is transform coding that depends on mapping the signal samples into bases that provide 

sparse or compressible representations of the signal of interest (Rao et al., 2000). Recent advances in 

techniques beyond bandlimited sampling offer lower sampling rates and a reduced amount of data 

(Eldar et al., 2015). New advances in transform coding techniques have facilitated investigation of 

Compressive sampling (CS) framework (Donoho, 2006; Candès and Wakin, 2008) that relies on linear 

dimensionality reduction. CS supports sampling below the Nyquist rate for signals that have a sparse 

or compressible description. Accordingly, if the signal has a sparse representation in a known basis then 

one is able to reduce the number of measurements that need to be stored, transmitted, and processed. 

CS is being considered in a large diversity of applications including medical imaging, seismic imaging, 

and radio detection and ranging, and communications and networks (Holland et al., 2010; Qaisar et al., 

2013; Merlet et al. 2013; Rossi et al., 2014). The basic idea of CS is that a finite-dimensional signal 

having sparse or compressible representation can be reconstructed from fewer linear measurements far 

below than the Nyquist sampling rate. In the last few years, there has been a growing interest in the 

application of CS in machine fault diagnosis since machine vibration signals have a compressible 

representation in several domains, e.g., frequency domain. Previous studies investigating CS-based 

compressive signal processing and its application in machine fault diagnosis can be categorised into 

two types:  

(1) CS-based vibration signal recovery for machine fault diagnosis 

The possibility to diagnosis machine faults from reconstructed signals based on CS has been 

validated by (Li et al., 2012; Wong et al., 2015) where the CS-based compressively sampled signals are 

used and then followed by signal reconstruction. The literature on compressive sensing shows a variety 

of approaches to reconstruct original signals from compressive signals (Needell et al., 2009; Dai et al. 

2009; Renna et al., 2014; Stanković et al., 2014). However, signal reconstruction techniques may not 

be practical in all applications and make no attempt to address the question of whether or not it is 

possible to learn in the compressed domain rather than having to recover the original signals. For 

instance, bearing vibration signal is always acquired for faults detection and estimation, and as long as 
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it is possible to detect faulty signals in the measurement domain, then it is not necessary to recover the 

original signal to identify faults. 

(2) CS-based fault diagnosis using compressed measurements and incomplete signal reconstruction 

 Most research in compressive sensing based methods has emphasized the use of sparse 

representations, compressed measurements, and incomplete signal reconstruction for the bearing fault 

diagnosis. For example, Tang and colleagues (Tang, et al., 2015) developed a sparse classification 

strategy based on compressive sensing by extracting and classifying fault features through sparse 

representation combined with random dimensionality reduction. In this strategy, the original vibration 

data is sampled and preserved by using a small number of random projection and a redundant dictionary 

then constructed to sparse representation. Zhang and colleagues suggest a bearing fault diagnosis 

method based on the low-dimensional compressed vibration signal by training several over-complete 

dictionaries that can be effective in signal sparse decomposition for each vibration signal state (Zhang, 

et al. 2015). Another learning dictionary basis for extracting impulse components is described by Chen 

and colleagues (Chen, et al., 2014). An interesting approach is proposed in (Tang et al., 2015) where 

authors attempted to observe the characteristic harmonics from sparse measurements through a 

compressive matching pursuit strategy during the process of incomplete reconstruction. Recently, Shao 

and colleagues (Shao et al, 2018) proposed an improved convolutional deep belief network (CDBN) 

with CS for rolling bearing. In this method, CS is used for reducing the vibration data amount to improve 

analysis efficiency. Then, a CDBN with Gaussian visible units is constructed to enhance the feature 

learning ability for the compressed data. Finally, the exponential moving average (EMA) method is 

used to improve the generalization performance of CDBN. In general, a significant analysis and 

discussion on the subject of how to solve a range of signal detection and estimation problems given 

compressed measurements without reconstructing the original signal can be found in (Davenport et al., 

2006). 

Even though the efficiency of CS in machine fault diagnosis has been validated in these studies, 

there are two main problems with these studies: (1) CS-based sparse signal reconstruction is a complex 

computational problem that depends on the sparsity of the measured vibration signal. Therefore, CS-

based signal recovery methods may not be useful in reducing computational complexity for condition 

monitoring of rolling bearings, and (2) most of the methods that are based on learning directly from the 

compressed measurements achieved good classification accuracy by only increasing the sampling rate, 

thereby requiring higher computational complexity. Consequently, two practical questions arise when 

dealing with the compressively-sampled signals. 1) Is it important to identify the ideal compressible 

representations of vibration signals that can be used within the CS framework to generate 

compressively-sampled signals that possess the quality of the original signals? and 2) How does one 

identify what type of features can be learned from the compressively-sampled signals that have the 
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ability to achieve high classification accuracy using low-rate of compressed measurements? The 

advantages of compressed measurements with low-rate, i.e., highly compressed measurements can be 

summarised as follows:  

1. Reduced computations: CS is able to reduce a large amount of the acquired vibration data. 

The larger the reduction in the amount of vibration data results in much reduction in the 

computation. 

2. Reduced transmission costs: In the cases of having to send vibration data from remote 

places by wireless (e.g. in the case of off-shore wind turbines) or wired transmission, the 

cost of transmission will be less as CS reduces the amount of vibration data. 

3. Benefits to the environment: As the application of CS results in reduced computations, it 

helps to reduce the amount of power needed for both computations and transmission. In 

consequence, CS offers much benefit to the environment. 

4. Increase the number of machines that can be monitored remotely across WSNs: It is clear 

that acquiring a large amount of data limit the number of machines that can be monitored 

remotely across WSNs due to bandwidth and power constraints. Therefore, the large 

reduction in the amount of data will increase the number of machines that can be monitored 

remotely.  

The scope of this thesis is the development and application of vibration analysis methods of a 

large amount of acquired vibration dataset for condition monitoring of rolling bearing. The main aim 

of this analysis is to obtain compressively-sampled dataset which possesses the quality of the original 

vibration dataset and then learn the features of rolling bearing health condition from these 

compressively-sampled signals directly without reconstructing the original signal. The generation of 

the compressively-sampled signals serves as a first dimensionality reduction step. Regardless of its 

importance in addressing the challenge of learning from a large amount of vibration dataset, no existing 

method possesses the ability to learn directly from low-rate of compressed measurements.  

This thesis presents new and tested vibration condition monitoring methods for roller bearings 

that can receive a large amount of vibration dataset as input and produces fewer features that can 

sufficiently represent the original input vibration signals. These methods use CS to reduce a large 

amount of the original vibration signal by obtaining compressively-sampled signals that possess the 

quality of the original signal. Then, they can further learn features from these compressively-sampled 

signals that have the ability to increase the identifying power of the compressed measurements in rolling 

bearing faults diagnosis.   
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1.3 Structure of the thesis 

The remaining part of this chapter describes the contributions of this thesis and lists my 

publications. Chapter 2 provides a literature review of vibration-based rolling bearings condition 

monitoring. Of the large volume of published studies in the area of vibration-based condition 

monitoring, this chapter discusses the time domain, frequency domain, and time-frequency 

domain vibration analysis methods. Various commonly used techniques and their application 

in roller bearing fault diagnosis are presented. This chapter is summarised in section 2.8 while 

Itemising existing issues and challenges in vibration signal analysis for bearing fault diagnosis 

that being effectively addressed in this thesis compared to the existing methods. Chapter 3 

discusses the sources, data acquisition, and compression of the different bearing vibration datasets used 

in the experiments conducted in this thesis. In addition, a brief description of some of the characteristics 

of the different datasets and their corresponding compressed data matrices sizes were also given. 

Chapter 4 is concerned with the methods and techniques that are used in this thesis. These include the 

new methods that represent the original contribution of this thesis in designing new methods for 

vibration-based rolling bearing condition monitoring.  

Chapter 5, Chapter 6, and Chapter 7 details numerous experiments that have been conducted 

to assess the newly proposed methods and demonstrate their validity in roller bearing condition 

monitoring using vibration signals. Chapter 8, concludes the thesis and provides insights into future 

work. Finally, Appendix I presents the list of references and Appendix II is an index. 

1.4 Summary of contributions 

The work presented in chapters 4, 5, 6, 7, and 8 discuss intelligent vibration-based methods and 

their validation in rolling bearings condition monitoring. These methods have been presented in five 

accepted and published conference papers and three accepted and published journal papers. The original 

contributions of this thesis can be summarized as follows:  

1. CSFR framework: the compressive sampling and feature ranking framework combines CS based 

on multiple measurement vectors (MMV) and feature ranking and selection techniques to learn 

optimally fewer features from a large amount of vibration data. With these learned features, bearing 

health condition can be classified using a machine learning classifier. To apply the proposed 

framework to bearing vibration dataset, we investigate the combination of CS and several feature 

ranking techniques, namely, Fisher score (FS), Laplacian score (LS), Relief-F, Pearson correlation 

coefficients (PCC), and Chi-square (Chi-2) to reduce a large amount of bearing vibration signals 

and select fewer representative features for fault classification. Multinomial Logistic regression 

(LRC), artificial neural network (ANN), and support vector machine (SVM) classifiers are then 
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used to produce the final results of bearing health condition. In spite of that, the CSFR framework 

has the capability to make use of existing feature selection and classification methods in addition 

to the new developing methods. The CSFR framework for rolling bearings is described in Section 

4.2 and its application to rolling bearings condition monitoring was published in (Ahmed et al., 

2017a; Ahmed and Nandi, 2017; Ahmed and Nandi, 2018b). 

2. CSLSL based techniques: the combination of compressive sampling and linear subspace learning 

techniques is introduced to learn fewer features from the raw vibration data. These learned features 

can be successfully used for rolling bearing fault diagnosis. Based on this combination we 

introduced three methods, compressive sampling with principal component analysis (CS-PCA), 

compressive sampling with linear discriminant analysis (CS-LDA), and compressive sampling with 

correlated principal and discriminant components (CS-CPDC), which have been tested for rolling 

bearing fault diagnosis.  These methods are described in Section 4.3 and were published in (Ahmed 

et al., 2017b; Ahmed and Nandi, 2018c; Ahmed and Nandi, 2018a) 

3. The design of an intelligent classification method for bearing faults from highly compressed 

measurements using sparse-over-complete features and training DNN through SAE (CS-SAE-

DNN). This method includes the extraction of over-complete sparse representations from highly 

compressed measurements. It involves the unsupervised feature learning algorithm sparse 

autoencoder (SAE) for learning feature representations in multi-stages of non-linear feature 

transformation based on deep neural network (DNN). The accuracy of the proposed method is 

verified using highly compressed datasets of rolling element bearings signals obtained using 

different compressed sampling rates. These compressed datasets contain fewer samples for each 

bearing condition. This method is described in Section 4.4 and was published in (Ahmed et al., 

2018).  

4. Two compressible representations of bearing vibration signals that can be used within CS 

framework to generate compressively-sampled signals, namely, Fast Fourier Transform (FFT) 

based coefficients and thresholded Wavelet Transform (WT) based coefficients, were investigated.  
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Chapter 2 

Review of Vibration-Based Rolling Bearings 

Condition Monitoring 
 

This chapter reviews the literature of condition monitoring using vibration signals and their 

applications in roller bearings condition monitoring. To start with, Section 2.1 is an introduction to 

vibration-based condition monitoring. Section 2.2 is concerned with time domain analysis of vibration 

signals. Section 2.3, is devoted to an explanation of different techniques that can be used to extract 

various frequency spectrum features. Section 2.4 gives a description of several techniques that can be 

used to examine time-frequency characteristics of the time indexed series signal. Section 2.5 presents 

commonly appropriate linear dimensionality reduction methods that can be used for vibration signal. 

Section 2.6 introduces generally applicable methods that can be used for features selections. Section 

2.7 provides an explanation of three commonly used classification algorithms for fault diagnosis. Some 

of these sections include some demonstrative examples that not meant to be complete. Section 2.8 

summarises the chapter.  

2.1 Introduction   

Machine condition monitoring (MCM) is an essential part of Condition-based maintenance 

(CBM). The key motive for applying MCM is to produce useful and accurate information on the current 

health condition of the machine. In consequence, with this type of dependable information, the correct 

decision of maintenance activities (if any) are required can be made to avoid machines breakdowns. 

Owing to the importance of rolling bearings in rotating machines, condition monitoring of rolling 

element bearings have been studied extensively over the past decades. Based on types of sensor data 

acquired from rotating machines, bearing condition monitoring techniques can be grouped into the 

following: vibration monitoring, acoustic emission monitoring, electric current monitoring, temperature 

monitoring, chemical monitoring, and laser monitoring. The advantages and limitations of these 

methods can be found in (Zhou et al., 2007). Of these methods, vibration-based bearing condition 

monitoring has been widely studied and has become a well-accepted technique of many planned 

maintenance management (Lacey, 2008; Randall et al., 2011). In vibration-based condition monitoring 

by analysing the physical features of the acquired vibration signals, one is able to categorise the acquired 

vibration signal into the corresponding condition correctly, which is generally a multi-class 

classification problem.  
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As was mentioned in the previous chapter, in vibration-based CM system, first, vibration data 

are acquired at specific time series using a sensor, e.g., velocity sensors and accelerometers that 

mounted to the component of interest. Then, the collected vibration data set is analysed for the purpose 

of machine health diagnosis and prognosis. 

Faults in rolling bearing generate a series of impulses that repeat periodically at a rate called as 

bearing fundamental defect frequency (BFDF), which relies on the shaft speed, the geometry of the 

bearing (Figure 2.1), and the site of faults. Based on the damaged part, BFDFs can be categorized into 

four types, bearing pass frequency of outer race (BPFO), bearing pass frequency of inner race (BPFI), 

ball spin frequency (BSF), and fundamental train frequency (FTF), which relates to the fault at the outer 

race, the inner race, the rolling element, and the cage, respectively (McFadden and Smith, 1985; Rai et 

al., 2016). The BFDFs can be computed using the following formulas:  
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Here 𝑁 is the number of rolling elements, 𝑆௦ is the shaft speed, 𝑑 is the rolling element 

diameter, 𝐷 is the pitch diameter, and 𝜑 is the angle of the load from the radial plane. Based on these 

BFDFs, the frequency of the collected bearing vibration signal indicates the source of the fault and the 

amplitude indicates the fault severity. However, the extraction of features from the collected bearing 

vibration signal that contains noise due to environmental conditions is quite difficult as it makes the 

interpretations of spectrum quite complex (Rai et al., 2016). For integrative fault diagnosis, several 

types of methods need to be adopted in a cascade of steps starting from raw vibration datasets and 

ending at final mature sets of results. These include vibration analysis techniques that have the ability 

to obtain useful information of machine condition from the raw vibration datasets, which can be 

successfully used for fault diagnosis. Vibration signal analysis can be performed in three main groups 

of waveform data analysis – time domain, frequency domain, and time-frequency domain.  

2.2 Time domain analysis   

The vibration signal collected from the rotating machine using vibration transducers is often in 

the time domain. It is a collection of time-indexed data points that collected over historical time, 

representing acceleration, velocity, or proximity based on the type of transducer used to collect the 
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signal. In practice, the collected vibration signal usually contains a large collection of responses from 

several sources in the rotating machine and some background noise. These make the direct usage of the 

acquired vibration signal in rotating machine fault diagnosis either manual inspection or automatic 

monitoring is challenging. As an alternative to processing the raw vibration signals, the common 

method is to compute certain features of the raw vibration signal that can describe the signal in essence 

(Nandi et al., 2013). In the machine learning community, these features are also called characteristics, 

signatures or attributes. The manual inspection of the vibration signal in the time domain fault diagnosis 

may be divided into two main types, namely, visual inspection and feature-based inspection.  

In the visual inspection type, the machine condition can be assessed by using a measured 

vibration signal and compare it to a previously measured vibration signal of a machine in a normal 

condition, i.e., measured from a new or healthy machine. In this case, both signals should be measured 

on the same frequency range. A higher than normal level of vibration measurements indicates that the 

machine is in a fault condition, which causes the machine to produce more vibration. For instance, 

Figure 2.2 (a) shows a typical time domain vibration signal of a brand new condition of roller bearings 

and Figure 2.2 (b) represents the inner race fault condition of roller bearings. Obviously, in the case 

shown in this Figure, the time waveform in Figure 2.2 (b) shows spikes with high levels of amplitude 

in some locations of the vibration signal while other locations of the vibration remain in the lower 

amplitude level compared to the normal condition vibration signal in Figure 2.2 (a). This can exactly 

tell us that the machine is in an abnormal condition. This technique is a simple and cost-effective method 

of condition monitoring, which uses an oscilloscope to view the vibration signal or computer based-

aids to collect data, record or display information. Readers who are interested in more details of visual 

inspection systems may be referred to (Davies, 1998). Nevertheless, this type of inspection is not 

dependable in the rotating machine condition monitoring field, because of the following four reasons: 

the first is that not all time waveform signals of rotating machines provide clear visual differences (Guo 

et al, 2005). For example, Figure 2.3 presents two typical vibration signals of roller bearing for a worn 

but undamaged condition (Figure 2.3 (a)) and an outer race fault condition (Figure 2.3 (b)), in this case, 

it is difficult to depend on visual inspection to analyse the waveforms and identify whether or not a 

Figure 2.1. Rolling element bearing geometry. 
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machine is in a fault condition; the second is that in practice we deal with a large collection of vibration 

signals that usually contain some background noise; the third is that we sometimes deal with low 

amplitude signals measured in noisy background, and the fourth is the demand for early detection of 

fault makes the manual inspection for all the collected signals impractical. 

 

 

In the feature-based type, the machine condition can be evaluated by computing certain features 

of the raw vibration signal. These features can be used to identify the difference between the two 

vibration signals.  

In the case of the automatic monitoring of rotating machine, we use machine learning classifiers 

to classify the signal to its correct condition type using either the raw vibration signal or computed 

features of it in the time domain. For a complete view of the field, this section introduces vibration 

signal processing in the time domain, by giving an explanation of statistical functions and other 

advanced techniques that can be used to extract features, i.e., basic signal information, from time 

indexed raw vibration dataset, which can represent sufficiently machine health conditions. This will 

position time domain - based features in its place within the wider context of machine fault diagnosis. 

The other two types of vibration signal analysis, i.e., frequency domain and time-frequency domain 

analysis, will be covered in details in section 2.3 and section 2.4 respectively. 

Figure 2.2 Time domain vibration signal of roller bearing (a) brand new condition and (b) inner 
race fault condition. 

Figure 2.3 Time domain vibration signal of roller bearing (a) a worn but undamaged condition 
and (b) outer race fault condition. 
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Various time domain based techniques are used for vibration signal analysis. They are 

summarised in Figure 2.4. 

 

2.2.1. Statistical Functions 

The acquired vibration signals are usually obtained from several sources in a rotating machine 

with random behaviour. With their randomness characteristics, these vibration signals cannot be defined 

by a direct mathematical formula and can be analysed only using statistical techniques with respect to 

time. Therefore, it is not surprising to find earlier works in this area focus on time domain descriptive 

statistics - based features that can be used either for manual inspection or automatic monitoring 

(Randall, 2011; Nandi et al, 2013). Numerous types of statistical functions have been heavily used to 

extract features from vibration signals in the time domain based on the signal amplitude. The subsequent 

subsections discuss these statistical functions in more detail. 

2.2.1.1. Peak Amplitude 

Peak amplitude, 𝑥 is the maximum positive amplitude of the vibration signal 𝑥ሺ𝑡ሻ that also 

can be defined as half the difference between the maximum and minimum vibration amplitude, i.e., the 

maximum positive peak amplitude and the maximum negative peak amplitude. This can be 

mathematically given by Equation (2.5), 

                                         𝑥 ൌ  
ଵ

ଶ
ሾ𝑥௫ሺ𝑡ሻ െ 𝑥ሺ𝑡ሻሿ                                                     ሺ2.5ሻ 

2.2.1.2. Mean Amplitude 

Mean amplitude, 𝑥 ഥ  is the average of the vibration signal 𝑥ሺ𝑡ሻ over a sampled interval, which 

can be computed using the following Equation (2.6), 

                                        �̅� ൌ  
ଵ

்
 𝑥ሺ𝑡ሻ 𝑑𝑡                                                                             ሺ2.6ሻ 

Figure 2.4 Vibration signal time domain analysis techniques 
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where T is the sampled signal duration. For the discrete sampled signal Equation (2.6) can be rewritten 

as Equation (2.7), 

                                         �̅� ൌ  
ଵ

ே
∑ 𝑥

ே
ୀଵ                                                                                 ሺ2.7ሻ 

where N is the number of sampled points and 𝑥 is an element of signal 𝑥. 

2.2.1.3. Root Mean Square Amplitude 

The root mean square (RMS) amplitude, 𝑥ோெௌ  is the variance of the vibration signal magnitude. 

The mathematical expression of 𝑥ோெௌ is shown in Equation (2.8),  

                                         𝑥ோெௌ  ൌ  ටଵ

்
𝑥ሺ𝑡ሻ|ଶ𝑑𝑡|                                                              ሺ2.8ሻ 

where T is the sampled signal duration and 𝑥ሺ𝑡ሻ is the vibration signal. RMS amplitude is resilient to 

spurious peaks in the steady state operating condition. If the vibration signal is in discrete form, 

Equation (2.8) can be rewritten as Equation (2.9.) 

                                         𝑥ோெௌ  ൌ  ටଵ

ே
 ∑ |𝑥|ଶே

ୀଵ                                                               ሺ2.9ሻ 

2.2.1.4. Peak to Peak Amplitude 

The peak to peak amplitude that also called range, 𝑥ି  is the range of the vibration 

signal, 𝑥௫ሺ𝑡ሻ െ 𝑥ሺ𝑡ሻ which denotes the difference between the maximum positive peak amplitude 

and the maximum negative peak amplitude.  

2.2.1.5. Crest Factor (CF) 

The crest factor, 𝑥ி  is defined as the ratio of peak amplitude value,𝑥 and the root mean square 

amplitude,𝑥ோெௌ of the vibration signal. This can be computed using the following Equation (2.10),  

                                          𝑥ி  ൌ  
௫

௫ೃಾೄ
                                                                             ሺ2.10ሻ 

The crest factor is useful in detecting early stages of a fault condition and is used in on-line 

monitoring (Nandi et al, 2013). It is often utilised as a measure of the impulsive nature of a vibration 

signal that will give basic information of how much changing is occurring in a normal condition 

vibration waveform. For instance, in a fixed period of a pure sine wave ሺ𝑥ሻ (Figure 2.5), with 100 

samples, a maximum positive amplitude of 1, and a maximum negative amplitude of -1, the 𝑥ோெௌ value 

is equal to 0.707 and 𝑥ி is 1.414. Hence, a signal with a value of 𝑥ி higher than 1.414 indicates an 

abnormal state in the signal.     
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2.2.1.6. Variance and Standard Deviation  

The variance, 𝜎௫
ଶ defines deviations of the vibration signal energy from the mean value, which 

can be mathematically given by Equation (2.11), 

                                     𝜎௫
ଶ  ൌ  

∑ሺ௫ି ௫̅ሻమ

ேିଵ
                                                                                ሺ2.11ሻ 

The square root of the variance, i.e., 𝜎௫ is called the standard deviation of the signal 𝑥, and is 

expressed as shown in Equation (2.12), 

                                    𝜎௫  ൌ  ට∑ሺ௫ି ௫̅ሻమ

ேିଵ
                                                                              ሺ2.12ሻ 

here 𝑥 represents an element of 𝑥, �̅� is the mean of 𝑥 and N is the number of sampled points. 

2.2.1.7. Standard Error 

The standard error of a predicted y for an individual 𝑥 in the regression, 𝑦ௌ்ா  can be expressed 

in the following Equation (2.13), 

                                 𝑦ௌ்ா  ൌ   ට
ଵ

ିଵ
ቂ∑ሺ𝑦 െ 𝑦തሻଶ െ  

ሾ∑ሺ௫ି ௫̅ሻሺ௬ି ௬തሻሿమ

∑ሺ௫ି ௫̅ሻమ ቃ                          ሺ2.13ሻ 

here n is the sample size,  �̅� and 𝑦ത are the sample means. 

2.2.1.8. Zero Crossing  

The digitized vibration signal has a portion above the zero and a portion below the zero 

therefore when the signal crosses the x-axis the amplitude value is equal to zero. This location of the 

signal crosses the x-axis is called a zero crossing. Hence, the zero crossing,𝑥  can be identified as the 

number of times the signal crosses the x-axis if it satisfies the following criteria in Equation (2.14), 

                                                   𝑥  0 𝑎𝑛𝑑  𝑥ିଵ ൏ 0  

Figure 2.5. A pure sine wave with amplitude of 1 and 100 sample points. 
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                                               𝑥 ൏ 0 𝑎𝑛𝑑  𝑥ିଵ  0                                                          ሺ2.14ሻ 

where  𝑥 is the current signal value and  𝑥ିଵ is the previous signal value. To avoid background noise 

contained in the vibration signal, a threshold 𝜏 may be used instead of the amplitude value of zero, i.e., 

instead of counting the number of crossing when the amplitude value equal zero, the number of crossing 

may be counted for the amplitude of value 𝜏 (Figure 2.6) such that  

                                            | 𝑥 െ  𝑥ିଵ|  𝜏                                                                     ሺ2.15ሻ 

 

In ZC-based feature extraction, the density of the time intervals between successive ZC and the 

excess threshold measurement, are the two commonly used measurements for representing the 

information enclosed in the ZC features. William and Hoffman empirically demonstrated that ZC 

features extracted from time domain vibrations using the duration between successive ZC are useful in 

the early detection and identification of bearing faults (William and Hoffman, 2011). 

2.2.1.9. Wavelength  

The wavelength,𝑥ௐ is a measure of distance between two consecutive positive peaks or 

negative peaks of the vibration signal that can be computed using Equation (2.16),   

                                    𝑥ௐ ൌ ∑ |𝑥 െ  𝑥ିଵ|ே
ୀଵ                                                                ሺ2.16ሻ 

The value of 𝑥ௐ decreases as the frequency of the vibration signal increases.   

2.2.1.10. Willison Amplitude 

The Willison amplitude,𝑥ௐ is defined as the number of times that the difference between a 

vibration signal amplitude amongst two adjacent samples exceeds a predefined threshold 𝜏. This can be 

computed using the following Equation (2.17) 

                                    𝑥ௐ ൌ ∑ 𝑓ሺ|𝑥 െ  𝑥ାଵ|ሻே
ୀଵ      

Figure 2.6 Crossing locations of amplitude equal to zero and a 𝝉 thresholded amplitude. 
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                         𝑠. 𝑡       𝑓ሺ𝑥ሻ ൌ  ቄ 1        𝑖𝑓 𝑥    𝜏
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                          ሺ2.17ሻ 

2.2.1.11. Slope Sign Change 

The slope sign change, 𝑥௦௦ is defined as the number of times that the slope of the vibration 

signal changes sign. Similarly to 𝑥 ,  𝑥௦௦  needs to introduce a threshold 𝜏 to reduce the background 

noise made at slope sign changes. Given three continuous data points, 𝑥ିଵ, 𝑥 and 𝑥ାଵ, 𝑥௦௦ can be 

computed using Equation (2.18) 

                         𝑥௦௦ ൌ ∑ ሾ𝑔ሺሺ𝑥 െ  𝑥ିଵሻே
ୀଵ ሺ𝑥 െ  𝑥ାଵሻሻሿ    

                       𝑠. 𝑡       𝑔ሺ𝑥ሻ ൌ  ቄ 1        𝑖𝑓 𝑥    𝜏
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                            ሺ2.18ሻ 

 

2.2.1.12. Impulse Factor 

The impulse factor, 𝑥ூி, is defined as the ration of the peak value to the average of the absolute 

value of the vibration signal that can be expressed as in Equation (2.19), 

                                 𝑥ூி ൌ
௫ೌೖ

భ
ಿ

∑ |௫|ಿ
సభ

                                                                                   ሺ2.19ሻ 

The impulse factor is useful in measuring the impact of a fault generated in the vibration signal.   

2.2.1.13. Margin Factor 

The margin factor,𝑥ெி  can be calculated using the following Equation (2.20), 

                               𝑥ெி ൌ
௫ೌೖ

ሺ
భ
ಿ

∑ ඥ|௫|ಿ
సభ ሻమ

                                                                             ሺ2.20ሻ 

The margin factor value changes significantly with the change in the peak value, which makes 

it very sensitive to impulse fault especially.  

2.2.1.14. Shape Factor 

The shape factor, 𝑥ௌி, is defined as the ration of the root mean square value to the average of 

the absolute value of the vibration signal that can be expressed as in Equation (2.21), 

                               𝑥ௌி ൌ
௫ೃಾೄ

భ
ಿ

∑ |௫|ಿ
సభ

                                                                                     ሺ2.21ሻ 

The shape factor is useful in measuring the change resulted in the vibration signal under defects 

of unbalance and misalignment.  
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2.2.1.15. Clearance Factor 

The clearance factor, 𝑥ி, is defined as the ration of the maximum value of the input vibration 

signal to the mean square root of the absolute value of the vibration signal that can be expressed as in 

Equation (2.12), 

                            𝑥ி ൌ
௫ೌೣ

ሺ
భ
ಿ

∑ ඥ|௫|ሻಿ
సభ

మ                                                                                 ሺ2.22ሻ 

2.2.1.16. Skewness 

The skewness that also called the third normalized central statistical moment, 𝑥ௌ, is a measure 

of the asymmetry behaviour of the vibration signal through its probability density function (PDF), i.e., 

it measure whether the vibration signal is skewed to the left or to the right side of the distribution of the 

normal state of the vibration signal. For a signal with N sample points, 𝑥ௌ can be presented by Equation 

(2.23), 

                             𝑥ௌ ൌ
∑ ሺ௫ି ௫̅ሻయಿ

సభ

ே ఙೣ
య                                                                                     ሺ2.23ሻ 

The value of  𝑥ௌ for the normal condition is often equal to zero.  

2.2.1.17. Kurtosis 

The kurtosis that also called the fourth normalized central statistical moment, 𝑥ோ், is a 

measure of the peak value of the vibration signal through its probability density function (PDF), i.e., it 

measure whether the peak is higher or lower than the peak of the distribution corresponding to a normal 

condition of the vibration signal. For a signal with N sample points, 𝑥ோ் can be formulated as shown 

in Equation (2.24), 

                                𝑥ோ் ൌ
∑ ሺ௫ି ௫̅ሻరಿ

సభ

ே ఙೣ
ర                                                                            ሺ2.24ሻ 

Other higher moments from fifth (HOM5) to ninth central statistical moments (HOM9) can be 

calculated by raising the power expression in Equation (2.24) correspondingly. These can be 

represented by the following Equations (2.25), (2.26), (2.27), (2.28), and (2.29). 

                               𝐻𝑂𝑀5 ൌ
∑ ሺ௫ି ௫̅ሻఱಿ

సభ

ே ఙೣ
ఱ                                                                           ሺ2.25ሻ 

                              𝐻𝑂𝑀6 ൌ
∑ ሺ௫ି ௫̅ሻలಿ

సభ

ே ఙೣ
ల                                                                            ሺ2.26ሻ 

                              𝐻𝑂𝑀7 ൌ
∑ ሺ௫ି ௫̅ሻళಿ

సభ

ே ఙೣ
ళ                                                                            ሺ2.27ሻ 
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                              𝐻𝑂𝑀8 ൌ
∑ ሺ௫ି ௫̅ሻఴಿ

సభ

ே ఙೣ
ఴ                                                                            ሺ2.28ሻ 

                              𝐻𝑂𝑀9 ൌ
∑ ሺ௫ି ௫̅ሻవಿ

సభ

ே ఙೣ
వ                                                                           ሺ2.29ሻ 

2.2.1.18. Histogram 

The histograms can be assumed as a discrete PDF of the vibration signal. Two types of features 

can be obtained from the histogram, namely, lower bound of the histogram (LB) and upper bound 

histogram, which can be expressed using the following Equation (2.30) and (2.31), 

                             𝐿𝐵 ൌ 𝑥 െ 0.5 ሺ
௫ೌೣି ௫

ேିଵ
ሻ                                                            ሺ2.30ሻ 

                             𝑈𝐵 ൌ 𝑥௫ െ 0.5 ሺ
௫ೌೣି ௫

ேିଵ
ሻ                                                          ሺ2.31ሻ 

2.2.19 Normal/Weibull Negative log-likelihood value 

The negative log-likelihood of the time domain vibration signal (x) can be expressed using the 

following Equation (2.32), 

                            െ𝑙𝑜𝑔𝐿 ൌ െ ∑ 𝑙𝑜𝑔ሾ𝑓ሺ𝑎, 𝑏\𝑥ሻሿே
ୀଵ                                                        ሺ2.32ሻ 

where 𝑓ሺ𝑎, 𝑏\𝑥ሻ is the PDF of the vibration signal. The normal negative log-likelihood (Nnl) and the 

Weibull negative log-likelihood (Wnl) can be used as features of the time domain vibration signals. Nnl 

and Wnl can be computed using Equation (2.32) where their PDFs can be expressed using Equations 

(2.33) and (2.34),   

                            𝑁𝑜𝑟𝑚𝑎𝑙 𝑃𝐷𝐹 ൌ
ଵ

ఙ√ଶగ
 𝑒𝑥𝑝ିሺ௫ି

ഋ
మమሻమ

                                                 ሺ2.33ሻ 

                            𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑃𝐷𝐹 ൌ



 ሺ

௫


ሻିଵ𝑒𝑥𝑝ିሺ

ೣ
ೌ

ሻ                                                   ሺ2.34ሻ 

here 𝜇 is the signal mean and 𝜎 is the standard deviation.  

A considerable amount of literature has been published on rolling bearing vibration monitoring 

using statistical time domain techniques to pre-process the vibration signals as input features 

individually or in a combination with other techniques. These studies are summarised in Table 2.1. As 

can be seen from this table, all the listed studies used more than one-time domain statistical techniques 

to extract features from the raw vibration data. Each study, at most, used six techniques and some used 

more than ten techniques to extract features from the raw vibration data. Of these techniques, kurtosis 

technique is used in all the mentioned studies.  Moreover, skewness, shape factor, impulse factor, 

variance, crest factor, peak-to-peak, root mean square, and mean are among the most used techniques 

in these studies.             
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Table 3.1. Summary of the time domain statistical features that have been used in different studies of machine condition monitoring. 
Studies P

E
A
K 

M 
E 
A
N 

R
M
S 

M 
A 
X 

M 
I 
N 

S 
U 
M 

P-P CF 
 

VR 
 

S
T
D 

ZC WL W
A 

S 
S 
C 

IF MF SF C
L
F 

SK K
U
R
T 

H 
I 
S 
T 

N
n
L 

W
nL 

S 
T 
E 

LF 
 

HO5 
to 
HO9 

McCormick and Nandi, 1996.                           
McCormick and Nandi, 1997.                           
McCormick and Nandi, 1998.                           
Jack and Nandi, 2000.                           
Samanta et al, 2003.                           
Sun et al, 2004.                           
Guo et al, 2005.                           
Zhang, et al., 2005                           
Rojas and Nandi, 2006.                           
Saxena and Saad, 2006.                           
Yang et al, 2007                           
Sugumaran et al, 2007.                           
Sassi et al, 2007.                           
Sreejith et al, 2008.                           
Chebil et al, 2011.                           
Kankar et al, 2011.                           
Saimurugan et al, 2011                           
Yiakopoulos et al, 2011                           
Sugumaran et al, 2011                           
Prieto et al, 2013.                           
Lakshmi et al, 2014.                           
Ali et al, 2015.                           
Rauber et al, 2015                           
Nayana et al, 2017.                           
Tahir et al, 2017                           

VR, Variance; STD, Standard deviation; HIST, Histogram; STE, Standard error; HO5 – HO9, Fifth higher order moment to ninth higher order moment.  
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2.2.2 Time Synchronous Averaging (TSA) Method 

The time synchronous averaging, 𝑥்ௌ can be defined as a periodicity feature of the vibration 

signal. It extracts periodic waveform from noisy vibration data, which was first introduced by Braun 

(Braun, 1975) and is still of interest to rotating machine condition monitoring research especially 

gearbox condition monitoring (Wegerich, 2004; Combet and Gelman, 2007; Bechhoefer and Kingsley, 

2009; Ha et al, 2016). Also, it has been used for bearing fault diagnosis (McFadden and Toozhy, 2000; 

Christian et al, 2007; Ahamed et al, 2014). This technique can be performed by averaging the time 

domain vibration signal in synchronization with the sampling frequency or sampling time used to 

acquire vibration signals from the rotating machine of interest. The mathematical expression of 𝑥்ௌ is 

shown in Equation (2.35),   

                             𝑥்ௌ ൌ  
ଵ

ே
   ∑ 𝑥ሺ𝑡  𝑛𝑇ሻேିଵ

 ୀ                                                                ሺ2.35ሻ 

where T is the period of averaging and N is the number of sample points.  

This technique considered one of the most useful techniques for vibration signal analysis that 

remove any periodic events not certainly synchronous with specific sampling frequency or sampling 

time of a vibration signal. This also may allow time domain vibration signals concealed in noise to be 

viewed. For example, Figure 2.7 (a) presents a typical vibration signal of a roller bearing for inner race 

fault condition and Figure 2.7 (b) shows its 12 kHz corresponding synchronized signal in red and time-

synchronous averaging signal in blue. 

 

 

Figure 2.7. Example of (a) Time domain vibration signal of roller bearing with inner race fault 

condition, and (b) its time-synchronous average signal. 
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2.2.3 Time Series Regressive Models 

Model-based techniques for vibration monitoring can provide a means of detection machine 

faults even if data are only available from machine in its normal condition (McCormick et al, 1998). In 

regressive model-based vibration monitoring, autoregressive (AR), autoregressive moving average 

(ARMA) which is also known as the mixture of AR and moving average (MA), and autoregressive 

integrated moving average (ARIMA) have been the most used techniques. The subsequent subsections 

discuss those types of models in more detail.  

2.2.3.1 AR model 

The autoregressive model (AR), AR (p), is basically a linear regression analysis of the current 

signal values, i.e., the estimated signal values, of the vibration time series against previous values of the 

time series, i.e., the values of the measured time series signal. This can be expressed mathematically as 

in Equation (2.36), 

 𝑥௧ ൌ 𝑎ଵ𝑥௧ିଵ   𝑎ଶ𝑥௧ିଶ  ⋯  𝑎𝑥௧ି  𝜇௧ ൌ  𝜇௧   𝑎



ୀଵ

𝑥௧ି                                    ሺ2.36ሻ 

here 𝑎ଵ to 𝑎 are the model parameters, 𝜇௧is the white noise that also called random shock or innovation, 

and p is the model order. Usually, the Yule-Walker equations can be used to estimate the parameters of 

AR model for a given vibration signal, and the model order can be chosen using Akaike’s Information 

Criterion (AIC) (McCormick et al, 1998; Ayaz, 2012). Figures 2.8 (a) to 2.8 (d) show examples of the 

original Autogressive signal and the linear predictor-based estimated signal of a brand new condition 

bearing vibration signal (see Figure 2.2(a)) using different values of p.  

 
Figure 2.8. Examples of The original Autogressive signal and the linear predictor-based estimated 

signal of a brand new condition bearing vibration signal using different values of p. 
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2.2.3.2 MA model 

The moving average (MA) model, MA (q), is basically a linear regression analysis where the 

current signal series is modelled based on the weighted sum of values of the time series. This can be 

expressed as in Equation (2.37), 

 𝑥௧ ൌ 𝑏ଵ𝜇௧ିଵ   𝑏ଶ𝜇௧ିଶ  ⋯  𝑏𝜇௧ି  𝜇௧ ൌ  𝜇௧   𝑏



ୀଵ

𝜇௧ି                                     ሺ2.37ሻ 

here 𝑏ଵ to 𝑏 are the model parameters, 𝜇 is the white noise, and 𝑞 is the model order  

2.2.3.3 ARMA model 

The autoregressive moving average (ARMA) model, ARMA (p, q), is a combination of AR (p) 

and MA (q) to achieve better flexibility in fitting of actual time series (Box et al., 2015). This can be 

expressed mathematically in Equation (2.38), 

                                                𝑥௧ ൌ 𝑎ଵ𝑥௧ିଵ   …  𝑎𝑥௧ି  𝜇௧  𝑏ଵ𝜇௧ିଵ   …  𝑏𝜇௧ି 

                                                     ൌ  𝜇௧  ∑ 𝑎

ୀଵ 𝑥௧ି   ∑ 𝑏


ୀଵ 𝜇௧ି                                     ሺ2.38ሻ 

where  𝑎ଵ to 𝑎 and 𝑏ଵ to 𝑏 are the model parameters, 𝜇 is the white noise, and p and q are the model 

orders for AR and MA respectively. 

2.2.3.4 ARIMA model 

The AR and ARMA models, which we discussed above can be used for stationary time series 

vibration data. Box and colleagues (Box et al., 2015) brought the idea of using ARMA model for 

applications of non-stationary time series by applying the differencing technique, is done by computing 

the difference between consecutive observations, on the non-stationary time series to become stationary. 

This developed model is normally called autoregressive integrated moving average, ARIMA (p, D, q), 

which is a combination AR (P), integration (I), and MA (q), where p and q are the model orders for AR 

and MA respectively, and D is the number of differencing operators. This can be represented  in 

Equation (2.39), 

                 ∆𝑥௧ ൌ 𝑎ଵ∆𝑥௧ିଵ   …  𝑎∆𝑥௧ି  𝜇௧  𝑏ଵ𝜇௧ିଵ   …  𝑏𝜇௧ି                      ሺ2.39ሻ 

where ∆ is the difference, 𝑎ଵ to 𝑎 and 𝑏ଵ to 𝑏 are the model parameters, 𝜇 is the white noise, and p 

and q are the model orders for AR and MA respectively.   

There are also many other types of regressive models. Readers who are interested in more 

details of the above-introduced algorithms and other types of algorithms may be referred to (Palit and 

Popovic, 2006; Box et al., 2015). 
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Numerous studies have used autoregressive models for bearing fault diagnosis. For instance, 

Baillie and Mathew compared three techniques of AR modeling for their performance and reliability 

under conditions of several vibration signal lengths of induced faults in a rolling element bearing 

(Baillie and Mathew, 1996). McCormick and colleagues (McCormick et al., 1998) demonstrated the 

application of periodic time-variant AR models to the problems of fault detection and diagnosis in 

machinery. Poulimenos and Fassois (Poulimenos and Fassois, 2006) presented a survey and 

comparisons of time-dependent ARMA-based methods for non-stationary random vibration modeling 

and analysis. Furthermore, Li and colleagues (Li et al., 2007) proposed a higher-order-statistics based 

ARMA model for bearing fault detection that has the ability to eliminate the effects of noise and obtain 

clearer information of bearing fault. Recently, Ayaz (Ayaz, 2014) investigated the effectiveness of AR 

modeling with the order in the range of 1 to 200 for extracting bearing fault characteristics from the 

vibration signal.  

2.2.4 Filter-based Methods 

 The acquired vibration signal often contains some background noise and interferences with 

unknown frequency contents. Many researchers have utilised filter-based methods to remove noise and 

isolate signals from raw signals. These include demodulation, Prony model, and adaptive noise 

cancellation (ANC).  The subsequent subsections discuss those types of methods in more detail.  

2.2.4.1 Demodulation  

The demodulation process is the inverse of the modulation process, which can be amplitude 

demodulation or phase demodulation. That amplitude demodulation process that also goes by the name 

“high-frequency resonance”, “resonance demodulation”, or “envelop analysis” separates low-level 

frequency from high-frequency background noise (Singh and Vishwakarma, 2015). The demodulation 

process consists of three steps, first the raw vibration signal is band-pass filtered, then rectified or 

enveloped by folding the bottom part of the time waveform on the top part, this usually done using 

Hilbert-Huang Transform (HHT), and finally transformed utilising Fast Fourier Transform (FFT). 

Many researchers have utilised envelop analysis for bearing fault diagnosis (Toersen, 1998; Randall et 

al., 2000; Konstantin-Hansen, 2003; Patidar and Soni, 2013).  

2.2.4.2 Prony model 

Similar to AR, ARMA, and ARIMA models, Prony model attempts to fit a model to the sampled 

data. It computes the modal information such as amplitude, damping, frequency, and phase shift, which 

can be utilised for fault diagnosis or to recover the original signal. Given a time series signal x (t), its 

Prony model can be computed using the following Equation (2.40),   

                                             𝑥ሺ𝑡ሻ ൌ ∑ 𝐴𝑒ିఙ௧
ୀଵ cos ሺ𝑤𝑡  𝜙ሻ                                            ሺ2.40ሻ 
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where 𝐴 is the amplitude, 𝑤 is the angular frequency, 𝜎 is the damping coefficients, and 𝜙 is the 

phase shift of the i-th sample (Tawfik and Morcos, 2001).  

This method formed the central focus of a study by Chen and Mechefske in (Chen and 

Mechefske, 2002) in which the authors found that the Prony model-based method is able to be an 

efficient machine fault diagnosis technique using short duration transient vibration signals. 

2.2.4.3 Adaptive Noise Cancellation (ANC) 

The adaptive noise cancellation (ANC) is a technique to eliminate the background noise or 

interference contained in the time waveform. This technique utilises a primary input signal that contains 

the background noise and a reference input signal that contains noise related to the main input. To obtain 

the estimated signal, the reference signal is adaptively filtered and subtracted from the primary input 

signal (Widrow et al., 1975). This reference signal is often acquired from one or more sensors located 

at points in the noise field where the signal of interest is weak or undetectable (Benesty and Huang, 

2013). ANC has been used for roller bearing fault diagnosis by many studies (Chaturvedi and Thomas, 

1982; LI and FU, 1990; Lu et al., 2009; Elasha et al., 2016). 

2.2.5 Stochastic parameter techniques 

Stochastic parameters such as Chaos, correlation dimension, and thresholding methods, i.e., 

soft threshold and hard threshold, have been considered as effective techniques to analyse time series 

vibration signal. For instance, Jiang and Shao proposed a fault diagnosis method for rolling bearings 

using chaos theory (Jiang and Shao, 2014). Logan and Mathew introduced the correlation dimension 

technique for vibration fault diagnosis of rolling bearings (Logan and Mathew, 1996). Yang and 

colleagues applied the capacity dimension, information dimension, and correlation dimension to 

classify fault conditions of rolling bearings (Yang, et al., 2007). Moreover, the application of 

thresholding methods for rolling bearings is studied in (Lin and Qu, 2000).  

2.2.6 Blind Source Separation (BSS)  

The blind source separation (BSS) is a signal processing method that recovers the unobserved 

signals from a set of observations of numerous combinations of them (Gelle et al., 2003). This technique 

is useful in cases where there is a lack of knowledge about the different combinations of signals received 

by each sensor. The BSS model assumes the presence of L statistically independent signals 𝑋ሺ𝑛ሻ ൌ

 ሾ𝑥ଵሺ𝑛ሻ, … , 𝑥ሺ𝑛ሻሿ and the observations of L signals 𝑌ሺ𝑛ሻ ൌ  ሾ𝑦ଵሺ𝑛ሻ, … , 𝑦ሺ𝑛ሻሿ and this can be 

expressed by the following Equation (2.41),  

                      𝑌ሺ𝑛ሻ ൌ 𝑓ሺ𝑋ሺ𝑛ሻ, 𝑋ሺ𝑛 െ 1ሻ, … , 𝑋ሺ0ሻ  ℵሺ𝑛ሻ                                         ሺ2.41ሻ 
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where 𝑓 is a nonlinear and time dependent function and ℵሺ𝑛ሻ is an additive noise. More details of the 

mathematical formulation of BSS can be found in (Yu et al., 2013). 

Many researchers considered BSS-based techniques for machine fault diagnosis. For example, 

Gelle and colleagues in (Gelle et al., 2003) examined the recovery of the vibration information acquired 

from a single rotating machine working in a noisy environment by separating the sensor signal from the 

influence of another working machine. Thus, they demonstrated that BSS can be employed as a pre-

processing step for fault diagnosis of rotating machine using vibration signals. A BSS-based technique 

that involves a signal separation in a context of spatially correlated noise is proposed in (Serviere and 

Fabry, 2005). Chen et al., presented a fault diagnosis method for rolling bearings based on BSS to 

separate signals collected from rolling bearings and gearbox (Chen, et al., 2012). 

2.3 Frequency domain analysis 

The frequency domain analysis techniques have the ability to divulge some information based 

on the frequency characteristics that are not easily observed in time-domain. In practice, the time-

domain signal is transformed into frequency-domain representation by using Fourier Transform (FT). 

There are two main types of FT, Continuous Fourier Transform (CFT) and the Discrete Fourier 

Transform (DFT). Of these, DFT is an important tool in the frequency analysis of discrete time signals 

(Van Loan, 1992; Diniz et al., 2010).  

2.3.1 Discrete Fourier transform (DFT) 

The discrete Fourier transform (DFT) of a discrete signal 𝑥ሺ𝑛ሻ can be defined in Equation 

(2.42),  

                                   𝑋ி்ሺ𝑘ሻ ൌ  ∑ 𝑥ሺ𝑛ሻ𝑒ିଶగ/ேேିଵ
ୀ ,        𝑘 ൌ 0, 1, … , 𝑁 െ 1                     ሺ2.42ሻ 

Or more efficiently 

                                   𝑋ி்ሺ𝑘ሻ ൌ  ∑ 𝑥ሺ𝑛ሻ𝑊ே
ேିଵ

ୀ ,               𝑘 ൌ 0, 1, … , 𝑁 െ 1                      ሺ2.43ሻ 

where  

                                    𝑊ே ൌ  𝑒ି
ೕమഏ

ಿ     ൌ cos ቀଶగ

ே
ቁ െ 𝑗 𝑠𝑖𝑛 ቀଶగ

ே
ቁ                                                   ሺ2.44ሻ 

The inverse of DFT that transforms 𝑋ி்ሺ𝑘ሻ back into 𝑥ሺ𝑛ሻ can be expressed using the following 

Equation (2.45), 

                                    𝑥ሺ𝑛ሻ ൌ  
ଵ

ே
∑ 𝑋ி்ሺ𝑘ሻ𝑊ே

ିேିଵ
ୀ ,               𝑛 ൌ 0, 1, … , 𝑁 െ 1              ሺ2.45ሻ 
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To compute the DFT of a signal of length N, one needs 𝑁ଶ complex multiplications that limits its 

practical use for signals with a large number of samples (Diniz et al., 2010).  

2.3.2 Fast Fourier Transform (FFT) 

The Fast Fourier Transform (FFT) is an efficient algorithm that computes the DFT and its 

inverse of stationary time series signal with a significant reduction in the complexity. In fact, FFT 

computes the DFT of a signal of length N using 𝑁 𝑙𝑜𝑔ଶ 𝑁 complex multiplications instead of 𝑁ଶ 

complex multiplications. FFT technique was first proposed by Cooley and Tukey (Cooley and Tukey, 

1965) based upon sparse factorization of the Discrete Fourier Transform (DFT) (Van Loan, 1992). 

Briefly, we present the simplified FFT form as follows: 

Suppose a discrete time series signal x with length N sample points is separated into two parts, 

𝑥௩ that composed of even-numbered points and 𝑥ௗௗ that composed of the odd-numbered points, 

each of which has half of the total sampled points (N/2). Based on 𝑥ି௩ and 𝑥ିௗௗ the DFT of 

signal x (n) can be given by the following Equation (2.46), 

      𝑋ி்ሺ𝑘ሻ ൌ  ∑ 𝑥ି௩𝑊ே
ሺ

ಿ
మ

ሻିଵ

ି௩ୀ  ∑ 𝑥ିௗௗ𝑊ே
ሺ

ಿ
మ

ሻିଵ

ିௗௗୀ  ,    𝑘 ൌ 0, 1, … , 𝑁 െ 1   ሺ2.46ሻ 

More details of the mathematical formulation of FFT for DFT calculation can be found in 

(Cochran et al., 1967; Van Loan, 1992; Diniz et al., 2010).  

2.3.3 Frequency spectrum statistical features  

Various statistical features can be computed from the transformed signal in the frequency 

domain. Of these features, spectral kurtosis has been investigated in many studies of rolling bearings 

fault diagnosis. For example, Vrabie et al., studied the application of spectral kurtosis to rolling bearings 

fault detection (Vrabie et al., 2004). Tian and colleagues (Tian et al., 2016) proposed a method for fault 

detection and degradation of bearings in electric motors. This method first extracts fault features using 

spectral kurtosis and cross-correlation and then combined these features using principal component 

analysis (PCA) and a semi-supervised k-nearest neighbor (KNN). Furthermore, a good review of the 

application of spectral kurtosis for fault detection, diagnosis, and prognostics of rotating machines can 

be found in (Wang, et al., 2016). Moreover, higher-order spectra, bispectral, and trispectral have been 

applied successfully for machine condition monitoring (McCormick et al., 1998; McCormick and 

Nandi, 1999). 

2.4 Time-frequency domain analysis 

The time-frequency domain has been used for non-stationary waveform signals which are very 

common when machinery fault occurs. Thus far, several time-frequency analysis techniques have been 
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developed and applied to machinery fault diagnosis, e.g., Wavelet Transform (WT), Short Time Fourier 

Transform (STFT), Hilbert-Huang Transform (HHT), Empirical Mode Decomposition (EMD), and 

Local Mean Decomposition (LMD) etc. The subsequent Subsections describe these techniques in more 

details. 

2.4.1 Wavelet analysis  

Wavelet analysis is a tool for the analysis of non-stationary waveform signal. There are several 

types of wavelet families that are widely utilised in signal analysis, e.g., Haar wavelets, Coiflets, Morlet 

wavelet, Biorthogonal wavelets, etc. The mother wavelet 𝜓ሺ𝑡ሻ can be expressed mathematically by the 

following Equation (2.47), 

                                               𝜓௦,ఛሺ𝑡ሻ ൌ
ଵ

√௦
 𝜓 ቀ௧ି ఛ

௦
ቁ,                                                      ሺ2.47ሻ 

where 𝑠  0 and represent the scaling parameter, 𝜏 is the transformation parameter, and t is the time. 

The three main transforms in wavelets analysis are Continuous Wavelet Transform (CWT), Discrete 

Wavelet Transform (DWT), and Wavelet Packet Transform (WPT) (Burrus et al., 1998).    

2.4.1.1 Continuous Wavelet Transform (CWT)  

The continuous wavelet transform (CWT) of the time domain vibration signal (x), 𝑊௫ሺ௧ሻሺ𝑠, 𝜏ሻ can be 

expressed using the following Equation (2.48), 

                                                𝑊௫ሺ௧ሻሺ𝑠, 𝜏ሻ ൌ
ଵ

√௦
  𝑥ሺ𝑡ሻ 𝜓∗ ቀ௧ି ఛ

௦
ቁ 𝑑𝑡                                        ሺ2.48ሻ 

here 𝜓∗ ቀ௧ି ఛ

௦
ቁ represents the complex conjugate of 𝜓ሺ𝑡ሻ that scaled and shifted using 𝑠 and 𝜏 parameters 

respectively.  

2.4.1.1 Discrete Wavelet Transform (DWT)  

The discrete wavelet transform (DWT) of the time domain vibration signal (x), 𝑊௫ሺ௧ሻሺ𝑠, 𝜏ሻ can be 

expressed using the following Equation (2.49), 

                                           𝑊௫ሺ௧ሻሺ𝑠, 𝜏ሻ ൌ
ଵ

ඥଶೕ
  𝑥ሺ𝑡ሻ 𝜓∗ ቀ௧ି ଶೕ

ଶೕ ቁ 𝑑𝑡,                                         ሺ2.49ሻ 

Here DWT represents the discrete form of CWT where 𝜓௦,ఛሺ𝑡ሻdiscretised using dyadic scales, i.e., is 

𝑠 ൌ  2 and 𝜏 ൌ 𝑘2, where j and k are integers (Yan et al., 2014). 

In practice, the DWT can be implemented by low-pass scaling filter ℎሺ𝑘ሻ and high-pass wavelet 

filter𝑔 ሺ𝑘ሻ ൌ ሺെ1ሻℎሺ1 െ 𝑘ሻ. These filters are created from 𝜓ሺ𝑡ሻ and scaling function 𝜙ሺ𝑡ሻ that can 

represented by the following Equations (2.50) and (2.51). 
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                                                           𝜙ሺ𝑡ሻ ൌ √2 ∑ ℎሺ𝑘ሻ𝜙ሺ2𝑡 െ 𝑘ሻ                                        ሺ2.50ሻ 

                                                          𝜓ሺ𝑡ሻ ൌ √2 ∑ 𝑔ሺ𝑘ሻ 𝜓ሺ2𝑡 െ 𝑘ሻ                                        ሺ2.51ሻ 

 

2.4.1.1 Wavelet Packet Transform (WPT)  

The wavelet packet transform (WPT) is an improvement of DWT, in which every detail signal 

obtained by DWT is further decomposed into an approximation signal and a detail signal (Shen et al., 

2013).  Accordingly, the time domain vibration signal 𝑥ሺ𝑡ሻ can be decomposed using the following 

Equations (2.52) and (2.53), 

                                                𝑑ାଵ,ଶ ൌ ∑ ℎሺ𝑚 െ 2𝑘ሻ𝑑,                                                       ሺ2.52ሻ 

                                                𝑑ାଵ,ଶାଵ ൌ ∑ 𝑔ሺ𝑚 െ 2𝑘ሻ𝑑,                                                  ሺ2.53ሻ 

here m is the number of coefficients, 𝑑,  𝑑ାଵ,ଶ, and 𝑑ାଵ,ଶାଵare the wavelet coefficients at sub-band 

n, 2n, and 2n+1 respectively.  

2.4.2 Short Time Fourier Transform (STFT) 

The short time Fourier transform (STFT) of a time domain vibration signal 𝑥ሺ𝑡ሻ,𝑆𝑇𝐹𝑇௫ሺ௧ሻሺ𝑡, 𝑓ሻ 

can be expressed using the following Equation (2.54), 

                                       𝑆𝑇𝐹𝑇௫ሺ௧ሻሺ𝑡, 𝑓ሻ ൌ  𝑥ሺ𝜏ሻ𝑤ሺ𝜏 െ 𝑡ሻ expሺെ𝑗2𝜋𝑓𝜏ሻ 𝑑𝜏
ାஶ

ିஶ                     ሺ2.54ሻ 

where  𝑤ሺ𝜏 െ 𝑡ሻ is a window function, 𝜏 is a time variable 

2.4.3 Hilbert-Huang Transform (HHT) 

The Hilbert-Huang transform (HHT) is defined as the convolution of signal 𝑥ሺ𝑡ሻ with 1/t and 

can emphasise the local properties of 𝑥ሺ𝑡ሻ (Peng et al., 2005) such that, 

                                   𝑦ሺ𝑡ሻ ൌ


గ


௫ሺఛሻ

௧ିఛ
𝑑𝜏

ାஶ
ିஶ                                                                      ሺ2.55ሻ 

here P is the Cauchy principal value. The analytic signal 𝑧ሺ𝑡ሻ of 𝑥ሺ𝑡ሻ can be expressed as follows, 

                                 𝑧ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ  𝑖𝑦ሺ𝑡ሻ ൌ 𝑎ሺ𝑡ሻ𝑒ఝሺ௧ሻ                                                ሺ2.56ሻ 

where 𝑎ሺ𝑡ሻ is the instantaneous amplitude of 𝑥ሺ𝑡ሻ and can be computed using Equation (2.57), 

                                             𝑎ሺ𝑡ሻ ൌ ሾ𝑥ଶሺ𝑡ሻ  𝑦ଶሺ𝑡ሻሿ
భ
మ                                                                 ሺ2.57ሻ   

𝜑ሺ𝑡ሻ is the instantaneous phase of 𝑥ሺ𝑡ሻ and can be calculated by Equation (2.54), 
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                                             𝜑ሺ𝑡ሻ ൌ arctan ሺ
୷ሺ୲ሻ

୶ሺ୲ሻ
ሻ                                                               ሺ2.58ሻ 

2.4.4 Empirical Mode Decomposition (EMD) 

The empirical mode decomposition (EMD) is a nonlinear and adaptive data analysis technique 

that decomposes the time domain signal 𝑥ሺ𝑡ሻ into different scales or intrinsic mode functions (IMFs) 

(Huang et al., 1998; Wu and Huang, 2009) such that,  

                                     𝑥ሺ𝑡ሻ ൌ ∑ 𝑐

ୀଵ  𝑟 ,                                                                    ሺ2.59ሻ 

where 𝑐 is the j-th IMF and 𝑟 is the residue of data 𝑥ሺ𝑡ሻ after the extraction of the n IMFs.  

2.4.5 Wigner-Ville Distribution (WVD) 

The Wigner distribution (WD) for a signal 𝑥ሺ𝑡ሻ can be expressed mathematically by the 

following Equation (2.60) (Staszewski et al., 1997),  

                  𝑊௫ሺ𝑡, 𝑓ሻ ൌ   𝑥 ቀ𝑡 
ఛ

ଶ
ቁ 𝑥∗ ቀ𝑡 

ఛ

ଶ
ቁ 𝑒ିଶగ௧𝑑𝜏

ାஶ
ିஶ                                          ሺ2.60ሻ 

where 𝑥∗ሺ𝑡ሻ is the complex conjugate of 𝑥ሺ𝑡ሻ. 

The Wigner-Ville Distribution (WVD) is defined as the Wigner distribution (WD) for the 

analytic signal 𝑧ሺ𝑡ሻ. Here 𝑧ሺ𝑡ሻ can be represented mathematically by the following Equation (2.61),  

                 𝑧ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ  𝑗𝑥ොሺ𝑡ሻ                                                                                           ሺ2.61ሻ 

where 𝑥ොሺ𝑡ሻ is the Hilbert transform of 𝑥ሺ𝑡ሻ.  

2.4.6 Local Mean Decomposition  

The local mean decomposition (LMD) is an adaptive analysis technique that decomposes a 

complicated signal into a set of product functions (PFs) that composed of frequency modulated signal 

and an amplitude envelop signal. The LMD procedure for a time domain signal 𝑥ሺ𝑡ሻ can be described 

as follows (Smith, 2005): 

 Compute the mean value and the envelop estimate of the maximum and minimum points 

of each half-wave oscillation of the signal. Thus the i-th mean value (𝑚) is given by 

Equation (2.62),  

                                𝑚 ൌ   
ሺାశభሻ

ଶ
                                                                            ሺ2.62ሻ 

and the i-th envelop estimate (𝑎) is given by Equation (2.63), 

                         𝑎 ൌ   
|ିశభ|

ଶ
                                                                              ሺ2.63ሻ 
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 Obtain the smoothed varying continuous local mean function 𝑚ଵଵሺ𝑡ሻ and the smoothed 

varying continuous envelop function 𝑎ଵଵሺ𝑡ሻ using MA. 

 Subtract 𝑚ଵଵሺ𝑡ሻ from 𝑥ሺ𝑡ሻ to obtain the residual signal ℎଵଵሺ𝑡ሻ such that, 

                                ℎଵଵሺ𝑡ሻ ൌ  𝑥ሺ𝑡ሻ െ 𝑚ଵଵሺ𝑡ሻ                                                                  ሺ2.64ሻ 

 Divide ℎଵଵሺ𝑡ሻ by 𝑎ଵଵሺ𝑡ሻ to obtain 𝑠ଵଵሺ𝑡ሻ such that, 

                                𝑠ଵଵሺ𝑡ሻ ൌ  ℎଵଵሺ𝑡ሻ/𝑎ଵଵሺ𝑡ሻ                                                                   ሺ2.65ሻ 

 

 Compute envelop 𝑎ଵଶሺ𝑡ሻ of 𝑠ଵଵሺ𝑡ሻ. If 𝑎ଵଶሺ𝑡ሻ ് 1 the process needs to be repeated 

for 𝑠ଵଵሺ𝑡ሻ.  

 Compute a smoothed local mean 𝑚ଵଶሺ𝑡ሻ for 𝑠ଵଵሺ𝑡ሻ, subtract it from 𝑠ଵଵሺ𝑡ሻ to obtain ℎଵଶሺ𝑡ሻ, 

and divide ℎଵଶሺ𝑡ሻ by 𝑎ଵଶሺ𝑡ሻ to obtain 𝑠ଵଶሺ𝑡ሻ. Repeat this process n times until a purely 

frequency modulated signal  𝑠ଵሺ𝑡ሻ is obtained.  

2.4.7 Spectral Kurtosis and Kurtogram 

To compute the spectral kurtosis (SK) the signal is first decomposed into the time-frequency 

domain where the kurtosis values are defined for each frequency group. The SK of a signal 𝑥ሺ𝑡ሻ, 𝐾௫ሺ𝑓ሻ 

is defined as the fourth-order normalised cumulant. This can be computed using the following Equation 

(2.62) (Antoni and Randall, 2006),  

                                                         𝐾௫ሺ𝑓ሻ ൌ
〈|ுሺ௧,ሻ|ర〉

〈|ுሺ௧,ሻ|మ〉మ   െ 2                                                      ሺ2.66ሻ 

where 𝐻ሺ𝑡, 𝑓ሻ is the complex envelop function of 𝑥ሺ𝑡ሻ at frequency 𝑓 that obtained using STFT 

algorithm such that, 

                                                      𝐻ሺ𝑡, 𝑓ሻ ൌ  𝑥ሺ𝜏ሻ𝑤ሺ𝜏 െ 𝑡ሻ𝑒ିଶగఛ𝑑𝜏
ାஶ

ିஶ                               ሺ2.67ሻ 

The Kurtogram algorithm (KUR) computes SK for several window size using a bandpass filter 

and the fast Kurtogram algorithm uses a series of digital filters rather than STFT (Antoni, 2007; Randall, 

2011). 

A considerable amount of literature has been published on the use of frequency domain and 

time-frequency domain techniques for bearing fault diagnosis. Table 2.2 presents a summary of the 

frequency and time-frequency domain vibration analysis techniques that have been used in different 

studies of rolling bearings condition monitoring. According to these studies, these techniques can be 

used individually or in a mixture of several techniques to extract features from the raw vibration data.   
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Table 2.2. Summary of the frequency and time-frequency domain analysis techniques that have been used in different studies of rolling bearing condition monitoring. 

          Studies FFT CWT DWT WPT STFT HHT EMD LMD WVD SK KUR 
Lin and Qu, 2000; Peng et al, 2005.            
Peter et al, 2001; Paliwal et al., 2014.            
Sun and Tang, 2002; Luo et al., 2003; Hong and Liang, 2007; 
Li et al, 2007; Zhu et al., 2009; Su et al, 2010; Kankar et al, 
2011; Li et al, 2011. 

           

Nikolaou et al, 2002; Ocak et al, 2007; Wang et al, 2015.            
Prabhakar et al, 2002; Lou and Loparo, 2004; Purushotham, et 
al., 2005; Tyagi, 2008; Djebala et al., 2008; Xian, 2010; Kumar 
and Singh, 2013.   

           

Yu et al, 2005.            
Junsheng et al, 2006; Yu et al, 2006; Zhao et al, 2013; Dybala 
and Zimroz, 2014. 

           

Li and Zhang, 2006; Li et al, 2006.            
Antoni and Randall, 2006.            
Sawalhi et al, 2007.            
Rai et al, 2007; Pang et al., 2018.            
Li et al., 2008.            
Zhang et al., 2009.            
Immovilli et al., 2009; Wang et al, 2011.            
Wensheng et al, 2010.            
Lei et al, 2011; Wang et al, 2013.            
Zhou et al., 2011.            
Linsuo et al., 2011.            
Cheng et al, 2012; Liu and Han, 2014; Tian et al, 2015; Li et al, 
2016.  

           

Cozorici et al., 2012.            
Jiang et al, 2013.            
Singhal and Khandekar, 2013; Lin et al., 2016.            
Liu et al, 2014.            
Liu et al, 2016.            
Jacop et al., 2017.            
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2.5 Linear subspace learning 

Linear subspace learning techniques can be used to extract a new low dimensional feature space 

that is usually a linear combination of the original high dimensional feature space. Of these techniques, 

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Independent 

Component Analysis (ICA) are amongst the most common techniques that have been used in machine 

fault diagnosis.  The subsequent subsections discuss those types of techniques in more detail.  

  

2.5.1 Principal Component Analysis (PCA) 

PCA is an orthogonal linear feature projection algorithm which aims to find all the components 

(eigenvectors) in descending order of significance. The procedure of PCA involves the following steps. 

 Calculate the mean vector of the data. 

 Compute the covariance matrix of the data. 

 Obtain the eigenvalues and eigenvectors of the covariance matrix. 

PCA can be used to form a low-dimensional feature vector (Wold et al., 1987). To reduce the 

dimensionality of the data by means of PCA, one ignores the least significant components from the 

PCA. Suppose that the input dataset  𝑋 ൌ   ሾ𝑥ଵ𝑥ଶ … 𝑥ሿ has L observations and n-dimensional space. 

PCA transforms X to 𝑋 ൌ ሾ 𝑥ොଵ, 𝑥ොଶ, … , 𝑥ොሿ in a new 𝑛1-dimensional space such that  

                                   𝑋 ൌ  𝑊்X             (2.68) 

where 𝑊 is the projection matrix in which each column vector is composed of the corresponding 

eigenvectors of 𝑛1 largest eigenvalues (𝑛1 ≪ 𝑛) of the covariance matrix C that can be computed as 

follows  

                                       𝐶 ൌ
ଵ


 ∑ ሺ

ୀଵ 𝑥 െ �̅�ሻሺ𝑥 െ �̅�ሻ்           (2.69) 

Here �̅� ൌ  
ଵ


 ∑ 𝑥


ୀଵ . 

2.5.2 Independent Component Analysis (ICA) 

The basic assumption in the standard ICA model is that the observed data X is a mix of sources 

or a vector of independent components (𝑠) (Comon, 1994) such that,  

                         𝑋 ൌ 𝐴𝑆                                       (2.70) 

where 𝑋 ൌ   ሾ𝑥ଵ𝑥ଶ … 𝑥ሿ ∈ 𝑅ൈ, 𝑆 ൌ   ሾ𝑠ଵ𝑠ଶ … 𝑠ሿ ∈ 𝑅ൈ is the independent components matrix 

(𝑘  𝑛), and 𝐴 ∈ 𝑅ൈ is a mixing matrix that is invertible and square in the simplest case. The 



36 
 

independent components can be recovered from the data by using the inverse matrix W of the mixing 

matrix A such that 

  𝑆መ ൌ 𝐴ିଵ𝑋 ൌ 𝑊𝑋      (2.71) 

The estimation of W is based on cost functions, also called objective functions or contrast 

functions. Solutions W are found at the minima or maxima of these functions. The estimation of the 

generative model in (2.70) can be done using the non-normalized likelihood and this can be represented 

by the following equation, 

                       𝑙𝑜𝑔 𝑝ሺ𝑥ሻ ൌ  ∑ 𝐺൫𝑊
்𝑋൯  𝑍ሺ𝑊ଵ, … , 𝑊


ୀଵ ሻ                 (2.72) 

where Z is the normalization constant that is equal to െ𝑙𝑜𝑔 |𝑑𝑒𝑡𝑊|, 𝑊 is one row in W matrix, and the 

distribution of the sources S is selected to be logistic, we define, 

                      𝐺ሺ𝑆ሻ ൌ  െ2 𝑙𝑜𝑔 𝑐𝑜𝑠ℎ ቀ గ

ଶ √ଷ
 𝑆ቁ െ 𝑙𝑜𝑔4   (2.73) 

 

2.5.3 Linear Discriminant Analysis (LDA) 

Different from PCA, searching for the most important components of samples, LDA aims to 

find discriminant components that distinguish different class samples (Balakrishnama and 

Ganapathiraju, 1998). In fact, LDA collects the samples from the same class and expand the margin of 

samples from different classes. Fisher LDA analysis method (Sugiyama, 2006) considers maximizing 

the Fisher criterion function J (W), i.e., the ratio of the between the class scatter ሺ𝑆ሻ to the within class 

scatter (𝑆௪ሻ such that  

                𝐽ሺ𝑊ሻ ൌ
หௐௌಳ ௐ|

หௐௌೢ ௐ|
                                                           (2.74) 

 

where   

             𝑆 ൌ
ଵ


∑ 𝑙


ୀଵ ൫𝜇 െ 𝜇൯ሺ𝜇 െ 𝜇ሻ்     (2.75) 

                𝑆௪ ൌ
ଵ


∑ ∑ ሺ𝑥

 െ
ୀଵ 𝜇ሻሺ𝑥

 െ 𝜇ሻ்
ୀଵ                  (2.76) 

where L is the total number of observations, c is the number of classes, and 𝜇 is the mean vector of 

class i. x ϵ R n x L is the training dataset, 𝑥ଵ
  represents the dataset belong to the c-th class, 𝑛 is the number 

of measurements of the i-th class,  𝜇 is the mean vector of class i, and 𝜇 is the mean vector of all 

training dataset. LDA projects the space of the original data onto a (c – 1) – dimension space by finding 

the optimal projection matrix W that maximizes the J (W) in equation (2.74) such that,  

                     𝑊 = 𝑎𝑟𝑔 𝑚𝑎𝑥
ௐ

𝐽ሺ𝑊ሻ                                                     (2.77) 

Here 𝑊  is composed of the selected eigenvectors (𝑤ෝଵ, … , 𝑤ෝଶ) with the first n2 largest 

eigenvalues (n2 = c - 1). 
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Many researchers have used linear subspace learning-based methods to extract features from a 

large amount of collected vibration data for the purpose of roller bearings fault diagnosis. For instance, 

a PCA-based approach to select the most representative features for the classification bearing faults is 

proposed by (Malhi and Gao, 2004) and showed improvements in the classification accuracy for both 

NN and Radial Basis Function Network (RBFN). Widodo and colleagues developed a method that 

combined ICA and SVM for fault diagnosis of induction motors (Widodo, et al., 2007). Shuang and 

Meng proposed a method based on PCA and SVM and showed its efficiency in bearing fault diagnosis 

(Shuang and Meng, 2007). In a similar way, the combination of Neural Network (NN) and ICA is 

proposed by Chang and Jiao and they found that it can achieve a considerable classification accuracy 

of rotating machinery fault diagnosis (Chang and Jiao, 2012). Jiang and colleagues proposed a method 

for condition monitoring for rolling element bearing based on PCA and Phase Space Reconstruction 

(PSR) that can effectively identify different conditions of rolling element bearings (Jiang et al., 2013).  

Likewise, a PCA-based technique on defined time-frequency statistical features is proposed in (Wang 

et al., 2015) and the effectiveness of the proposed method in rolling bearing faults diagnosis was 

evaluated using a fuzzy C-means (FCM) model. Also, Ciabattoni and colleagues set up a series of 

experiments using LDA-based method and show that the proposed algorithm improves the classification 

accuracy when the classes of the motor bearing are overlapped (Ciabattoni et al., 2015). Overall, these 

studies highlight the need for feature extraction to improve the efficiency of diagnosis methods and 

decrease the computational time. 

2.6 Feature selection 

Feature selection techniques are used to select a subset of features that can sufficiently represent 

the characteristic of the original features. In view of that, this will reduce the computational cost and 

may remove irrelevant and redundant features. Feature selection methods can be categorised into three 

groups, supervised, unsupervised, and semi-supervised feature selection techniques. Also, it can be 

further grouped into filter models, wrapper models, and embedded models. The subsequent subsections 

discuss those types of methods in more detail.  

2.6.1 Filter model-based feature selection 

The filter model-based feature selection is based on measures of various characteristics of the 

training data such as similarity, dependency, information, and correlation. Therefore, it is fast and 

requires low computational complexity compared to other methods. The filtering can be performed 

using univariate feature filters that rank every single feature or using multivariate feature filters which 

evaluate a feature subset (Tang et al., 2014; Chandrashekar et al., 2014). This section gives brief 

descriptions of several feature ranking (FR) methods that can be used to rank the features of a vibration 

signal.  
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2.6.1.1 Fisher Score (FS)  

Fisher score (FS) is a filter-based feature selection method and one of the commonly used 

supervised feature selection methods (Duda et al., 2001; Gu et al., 2012). The main idea of FS is to 

compute a subset of features with a large distance between data points in different classes and small 

distance between data points in the same class. To describe briefly FS method, assume the input matrix 

𝑋 ∈ 𝑅 ௫  reduces to 𝑍 ∈ 𝑅 ௫  matrix. The FS feature of the i-th can be computed by the following 

equation:  

  
                            FS(𝑋) = 

∑ 𝐿

ୀଵ (𝜇

 - 𝜇)
ଶ

ሺ𝜎ሻଶ  
              (2.78) 

where 𝑋 ∈ 𝑅ଵ ௫ , 𝐿 is the size of the c-th class, ሺ𝜎ሻଶ ൌ  ∑ 𝐿

ୀଵ ሺ𝜎

ሻଶ , 𝜇
  and 𝜎

 are the mean and 

standard deviation of c-th class corresponding to the i-th feature; 𝜇 and 𝜎 are the mean and standard 

deviation of the entire dataset corresponding to the i-th feature. Usually, the FS of each feature is 

computed independently.  

2.6.1.2 Laplacian Score (LS)  

Laplacian Score (LS) is an unsupervised filter based technique that rank features depending on 

their locality preserving power. In fact, LS is mainly based on Laplacian Eigenmaps and Locality 

Preserving Projection, and can be briefly described as follows (He et al., 2006). Given a dataset 𝑋 ൌ

 ሾ𝑥ଵ, 𝑥ଶ, … , 𝑥ሿ, where 𝑋 ∈  𝑅 ௫ , suppose the Laplacian Score of the r-th feature is 𝐿 and 

𝑓 represent the i-th sample of the r-th feature where 𝑖 ൌ  1, … , 𝑛 and 𝑟 ൌ  1, … , 𝐿. First the LS 

algorithm constructs the nearest neighbour graph G with n nodes, where the i-th node corresponds to xi. 

Next, an edge between nodes i and j is placed, if xi is among k nearest neighbors of 𝑥 or vice versa, 

then i and j are connected. The elements of the weight matrix of graph G is 𝑆 and can be defined as 

follows: 

                                     𝑆 ൌ ൝𝑒ି
ቛೣష ೣೕ ቛ

మ

 , 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                           (2.79)        

where t is an appropriate constant. The Laplacian score  𝐿 for each sample can be computed as follows: 

                                   𝐿 ൌ  
ೝ෩


ೝ෩

ೝ෩


ೝ෩
                                                                             (2.80) 

Here  𝐷 ൌ 𝑑𝑖𝑎𝑔ሺ𝑆𝟏ሻ is the identity matrix, 𝟏 ൌ ሾ1, … , 1ሿ், 𝐿 ൌ 𝐷 െ 𝑆 is the graph Laplacian matrix, 

and 𝑓
෩  can be calculated using the following equation: 

                                𝑓
෩ ൌ  𝑓 െ  

ೝ
 𝟏

𝟏 𝟏
                                                                         (2.81) 

where 𝑓 ൌ  ሾ𝑓ଵ, 𝑓ଶ, … , 𝑓 ሿ். 



39 
 

2.6.1.3 Relief-F  

Relief-F is a supervised feature ranking algorithm that commonly used as a pre-processing 

technique for a feature subset selection. Relief-F is an extension of the traditional Relief algorithm (Liu 

et al., 2007) that has the ability to deal with noisy, incomplete, and multi-class datasets. It uses a 

statistical approach to select the important features based on their weight W. The main idea of Relief-F 

is to randomly compute examples from the training data and then calculate their nearest neighbours 

from the same class, also called the nearest hit, and the other nearest neighbours from different class, 

also called the nearest miss. The function diff (Attribute, Instance1, and Instance2) is used to compute 

the distance between instances to find the nearest neighbours. The good attribute should have the same 

value of weights for instances from the same class and discriminate between instances from different 

classes (Kononenko et al., 1997). The procedure of Relief-F algorithm is summarized below in 

algorithm 1(Liu et al., 2007). 

Algorithm 1 Relief-F 
Input: l learning instances, n features and c classes; 
Probabilities of classes py; Sampling parameter a; Number of nearest instances from each class d;  
Output: for each feature fi a feature weight -1 ≤ W[i] ≤ 1; 
1 for i = 1 to n do W[i] = 0.0; end for; 
2 for h = 1 to a do  
3 randomly compute an instance xk with class yk; 
4 for y = 1 to c do 
5 find d nearest instances x[j, y] from class y, j = 1 . . . d; 
6 for i = 1 to n do  
7 for j = 1 to d do 
8 if y = yk {nearest hit} 
9  then W[i] = W[i] – diff (i, xk, x[j, y])/ (a*d); 
10  else W[i] = W[i]+ py / (1 - pyk) * diff(i, xk, x[j, y])/ (a*d); 
11 end if; 
12 end for; {j} end for; {i} 
13 end for; {y} end for ; {h} 
14 return (W); 

 

2.6.1.4 Pearson Correlation Coefficient (PCC)  

Pearson Correlation Coefficient (PCC) (Liu et al., 2007) is a supervised filter-based ranking 

technique that examines the relationship between two variables according to their correlation coefficient 

(r), -1 ≤ r ≤ 1. Here the negative values indicate inverse relations, the positive values indicate a 

correlated relation, and the value 0 indicates no relation. PCC can be computed as follows: 

                                                  𝑟ሺ𝑖ሻ ൌ  
௩ሺ௫,௬ሻ

ඥ௩ሺ௫ሻ∗௩ሺ௬ሻ
                                             (2.82) 

Here 𝑥 is the 𝑖௧ variable, y is the class labels.  
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2.6.1.5 Chi-Squared (Chi-2)  

Feature ranking and selection using chi-square (chi-2) is based on the χ² test statistics (Yang et 

al., 1997). Chi-2 evaluate the importance of a feature by calculating the χ² test with respect to the class 

labels. The χ² value for each feature f in a class labels group c can be computed using the following 

equation: 

                                      χ²ሺ𝑓, 𝑐ሻ ൌ  
ሺா,ாିாாሻమ

ሺா,ାாሻሺாାாሻሺா,ାாሻሺாାாሻ
                              (2.83) 

where L is the total number of examples, 𝐸, is the number of times f and c co-occur, 𝐸 is the number 

of time the feature f occurs without c, 𝐸 is the number of times c occurs without f, and E is the number 

of times neither f nor c occurs. The bigger value of χ² indicates that the features are highly related.  

There are many other filter-based feature selection methods available for vibration-based fault 

diagnosis. These include Mutual Information (MI), Information Gain (IG), the Gain ratio (GR), and 

Minimum Redundancy Maximum Relevance (mRmR) (Peng et al., 2005; Kappaganthu and Nataraj, 

2011; Zhang et al., 2011; Liu et al., 2014). 

The use of filter model-based techniques as feature selection for diagnosis bearing faults was 

investigated by several researchers. For example, Tian and colleagues (Tian et al., 2012) combines 

wavelet packet transform (WPT), PCC, and envelop analysis to extract the bearing signals from the 

masking background. A multi-scale analysis technique is employed to extract the possible fault-related 

features in different scales, such as the multi-scale entropy (MSE), multi-scale permutation entropy 

(MPE), multi-scale root-mean-square (MSRMS) and multi-band spectrum entropy (MBSE). Some of 

the features are then selected as the inputs of the support vector machine (SVM) classifier through the 

Fisher score (FS) as well as the Mahalanobis distance (MD) evaluations (Wu et al., 2013). Zheng and 

colleagues (Zheng et al., 2014) proposed a method for rolling bearing fault diagnosis based on multi-

scale fuzzy entropy (MFE), Laplacian Score (LS) and variable predictive model-based class 

discrimination (VPMCD). The application of chi-2 feature ranking technique and random forest 

classifier for fault classification of bearing faults was presented in (Vinay et al., 2015). Vakharia and 

colleagues (Vakharia, et al., 2016) extracted various features from the time domain, frequency domain, 

and discrete wavelet transform (DWT). Then, Chi-2 and Relief-F methods are used to select the most 

informative feature to reduce the size of the feature vector for bearing fault diagnosis. Saucedo Dorantes 

and colleagues (Saucedo Dorantes et al., 2016) proposed a fault diagnosis method based on hybrid 

feature reduction using EMD, time-domain statistical features, genetic algorithm (GA), FS, and LDA 

is proposed to learn a reduced set of features. With these reduced features NN is used to classify multiple 

faults of the induction motor.  

Recently, Haroun et al., utilised multiple features extraction techniques from time, frequency, 

and time-frequency domain to extract features from the bearing vibration signal. Then, Relief-F and 
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mRmR feature selection techniques are used to select the optimal features. Finally, the self-organising 

map (SOM) is used for the classification of bearing faults (Haroun, et al., 2017). Li and colleagues (Li, 

et al., 2017) proposed a strategy for rolling bearing fault diagnosis based on multiscale permutation 

entropy (MPE), LS, and least squares support vector machine-Quantum behaved particle swarm 

optimization (QPSO-LSSVM) classifier. 

2.6.2 Wrapper model-based feature selection 

The wrapper-based feature selection is based on the predictive performance of a predefined 

predictor. It is usually expensive compared to filter-based feature selection. Wrapper methods can be 

categorized into sequential selection algorithms and heuristic search algorithms (Chandrashekar et al., 

2014). 

2.6.2.1 Sequential selection algorithms 

There are two types of sequential selection algorithms. The first one is the sequential forward 

selection (SFS), which start with an empty set and sequentially adding features, evaluate the selected 

features, and repeat until there is no improvement in the prediction. The second one is the sequential 

backward selection (SBS), which start with the complete set of features and sequentially removing 

features, evaluate the selected features, and repeat until there is no improvement in the prediction 

(Devijver and Kittler, 1982). Moreover, Pudil and colleagues (Pudil et al., 1994) suggested floating 

search methods in feature selection where a dynamically changing number of features added or removed 

at each step of sequential search methods. These are the sequential forward floating selection (SFF) and 

the sequential backward floating selection (SBFS).  

Many researchers have utilised sequential selection algorithms to select features from the high 

dimensional feature space of vibration data for roller bearing fault diagnosis. For instance, Zhang and 

colleagues (Zhang et al., 2011) proposed a hybrid model for machinery fault diagnosis. The proposed 

model combines multiple feature selection models including eight filter models and two wrapper 

models to select the most significant features from all potentially relevant features. These are data 

variance, PCC, Relief, FS, class separability, Chi-2, IG, GR, a Binary Search (BS) model, and an SBS 

model respectively. Rauber and colleagues (Rauber et al., 2015) proposed different feature models that 

utilised in a single pool. These models rely on statistical time parameters, complex envelope spectrum, 

and wavelet packet analysis. Furthermore, the most significant features are selected using PCA, SFS, 

SBS, SFFS, and SBFS. Islam and colleagues (Islam et al., 2016) proposed a hybrid fault diagnosis 

model for bearing, which extracts features from the acoustic emission signal. They investigated the 

feature selection approaches including SFS, SFFS, and genetic algorithm (GA) for selecting optimal 

features that can be used for fault diagnosis.   
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 2.6.2.2 Heuristic -based selection algorithms 

In the wrapper approach, the size of the search space for n features is (𝑂ሺ2ሻ that makes it 

impractical for high dimensional feature space. The heuristic and meta-heuristic search-based feature 

selection algorithms was proposed to improve the searching performance (Kohavi and John, 1997; 

Bozorg-Haddad, et al., 2017). Of these algorithms, meta-heuristic-based algorithms are amongst the 

most common algorithms used for feature selection in bearing fault diagnosis. These include, Ant 

Colony Optimization (ACO), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). For 

example, ACO is used by many researchers to select the parameters of SVM to improve the 

classification performance of roller bearing faults (Li et al., 2013 and Zhang et al., 2015).  Yuan and 

Chu proposed a method that jointly optimises the feature selection and the SVM parameters with a 

modified discrete PSO for fault diagnosis (Yuan and Chu, 2007). Kanović and colleagues presented a 

detailed theoretical and empirical analysis of PSO and generalised PSO with application in fault 

diagnosis (Kanović et al., 2011). Liu and colleagues (Liu, et al., 2013) proposed a multi-fault 

classification model based on the wavelet kernel method of SVM and PSO is used to seek the optimal 

parameters of the proposed method. In the same vein, Van and Kang (Van and Kang, 2015) proposed 

method based on a wavelet kernel function and linear local fisher discriminant analysis (LFDA) and 

PSO is used to seek the optimal parameters of the proposed method. Zhu and colleagues (Zhu et al., 

2014) proposed a fault feature extraction method based on hierarchical entropy and SVM with PSO.  

Furthermore, Jack and Nandi (Jack and Nandi, 2000) examined the use of GA to select the most 

important features from a large number of input features in machine fault classification using Artificial 

Neural Network (ANN). Similarly, Samanta and colleagues (Samanta, et al., 2006) compared the 

performance of MLP, RBF, and PNN for bearing fault detection. GA is applied to select the parameters 

and the input features of the classifiers. Genetic programming (GP) was also demonstrated effective in 

selecting the best features in machine fault classification (Zhang et al., 2005; Zhang and Nandi, 2007). 

2.6.3 Embedded model-based feature selection 

 The embedded model-based feature selection methods are built in the classification algorithm 

to accomplish the feature selection. LASSO, Elastic Net, the Classification and Regression Tree 

(CART), C4.5, and SVM–Recursive Feature Elimination (SVM-RFE) are amongst common used 

embedded methods. Several researchers utilised embedded model-based feature selection for bearing 

fault diagnosis.  For example, Rajeswari and colleagues (Rajeswari et al., 2015) examined the 

performance of Multiclass Support Vector Machines (MSVM) for bearing fault classification using 

different feature selection techniques. In the data pre-processing step, the wavelet transform is used to 

extract the features from bearing vibration signal. To reduce the dimensionality of the feature SVM-

RFE, Wrapper subset method, Relief-F method, and PCA feature selection techniques are used. Peng 

and Chiang employed a C4.5 decision tree and random forest algorithm for bearing fault diagnosis 
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(Peng and Chiang, 2011). Seera and colleagues (Seera, et al., 2016) proposed a hybrid online learning 

model that combines the fuzzy min-max (FMM) neural network and the CART for motor fault 

diagnosis. Duque-Perez et al. used the LASSO technique to improve the performance of a logistic 

regression classifier (LRC) to diagnosis bearing health conditions.  

2.7 Classification algorithms 

2.7.1 Multinomial Logistic Regression Classifier (LRC)  

Multinomial logistic regression (Hosmer et al., 2013), also called Softmax regression in ANN, 

is a linear supervised regression model that generalizes the logistic regression where labels are binary, 

i.e., 𝑐ሺሻ  ∈ ሼ0,1ሽ to multi-classification problems that have labels {1… c} where c is the number of 

classes. Briefly, we present the simplified multinomial logistic regression model as follows: 

Let there be a training set {(𝑥ሺଵሻ, 𝑐ሺଵሻሻ, … , ሺ𝑥ሺሻ, 𝑐ሺሻሻ} of L labeled examples and input features 𝑥ሺሻ  ∈

 𝑅. In logistic regression with binary labels,𝑐ሺሻ  ∈ ሼ0,1ሽ our hypothesis can be written as follows: 

                                            ℎሺ𝑥ሻ ൌ  
ଵ

ଵା௫ ሺିఏ௫ሻ
                                                        (2.84) 

Here 𝜃 are model parameters that are trained to minimize the cost function 𝐽ሺ𝜃ሻ defined by the following 

equation   

                     𝐽ሺ𝜃ሻ ൌ  െ ൣ∑ 𝑐ሺሻ log ℎఏ൫𝑥൯  ൫1 െ 𝑐ሺሻ൯
ୀଵ   log ቀ1 െ  ℎఏ൫𝑥൯ቁቃ                   (2.85) 

In multinomial logistic regression with multi-labels 𝑐ሺሻ  ∈ ሼ1, … , 𝑐ሽ the aim is to estimate the 

probability 𝑃ሺ𝑐 ൌ 𝑐ሺሻ|𝑥ሻ  for each value of 𝑐ሺሻ = 1 to c, such that 
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       (2.86) 

 

where 𝜃ሺଵሻ, 𝜃ሺଶሻ , … , 𝜃ሺሻ  ∈  𝑅 are the parameters of the multinomial logistic regression model.  

 LRC has been adopted for rolling bearings fault diagnosis in many studies, e.g., (Widodo et al., 

2009; Caesarendra et al., 2010; Pandya et al., 2014).   

2.7.2 Artificial Neural Network 

Artificial neural network (ANN) is a supervised learning algorithm that has the ability to learn 

real, discrete, and vector-valued target function (Nandi et al, 2013). It has been used successfully in 

bearing fault diagnosis, e.g., (McCormick and Nandi, 1997; Jack et al., 1999; Jack and Nandi, 2002; 
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Guo et al., 2008; Chang and Jiao, 2012). There are different types of ANN, e.g., Radial Basis Function 

(RBF), Probabilistic Neural Network (PNN), Multi-Layer Perceptron (MLP), etc. The MLP ANN 

(Figure 2.9) is one of the most commonly used methods. As shown in Figure 2.9, it involves an input 

layer, one to several hidden layers, and an output layer. Each layer consists of a number of neurons. The 

neuron receive inputs, multiply it by the weights of each input and combine the results of the 

multiplication. Then, the combined multiplications of the signals and weights are then passed to a 

transfer function to generate the output of the neuron (Figure 2.10). 

In this study, we have tested that pattern recognition networks that are feedforward networks 

with one hidden layer and 10 neurons that trained using Scaled Conjugate Gradient (SCG) 

backpropagation function (Møller, 1993) are sufficient to deliver high classification accuracy. 

 
Figure 2.9. A Multilayer Perceptron Model for ANN. 

 
Figure 2.10  Model of an artificial neuron. 

      

2.7.3 Deep Neural Network (DNN) 

Although, supervised learning based artificial neural network (ANN) with many hidden layers 

are found to be difficult in practice, DNNs have been well developed as a research topic and have been 

made practically feasible with the assistance of unsupervised learning. Moreover, DNNs have attracted 
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extensive attention by outperforming other machine learning methods. Each layer of DNN performs a 

non-linear transformation of the input samples in the preceding layer to the following one. A good 

overview of DNNs can be found in (Schmidhuber, 2015). Different from ANN, DNNs can be trained 

in a supervised or unsupervised manner (Bengio, et al., 2007; Erhan, et al., 2010)  and they are also 

appropriate in the general area of Reinforcement Learning (RL) (Lange and Riedmiller, 2010; Salimans 

and Kingma, 2016). The basic idea of training DNN is that we first train the network layer by layer 

using an unsupervised learning algorithm, e.g. autoencoder; this process is called DNN pre-training. In 

this process, the output from each layer will be the input to the succeeding layer. Then the DNN is 

retrained in a supervised way with backpropagation algorithm for classification. 

2.7.3.1 Sparse Autoencoder 

An autoencoder neural network provides a means of an unsupervised learning algorithm that 

sets the target values, i.e., the outputs to be equal to the inputs and applies backpropagation (Ng, 2011). 

As shown in Figure 2.11, like many unsupervised feature learning methods the design of an autoencoder 

relies on an encoder-decoder architecture, where the encoder produces a feature vector from the input 

samples and the decoder recovers the input from this feature vector. The encoder part is a feature 

extraction function fθ that computes a feature vector h (xi) from an input 𝑥, we define  

                                                   hሺxiሻ = fθሺxiሻ                                                        (2.87) 

where hሺxiሻ is the feature representation. The decoder part is a recovery function gθ that reconstructs 

the input space 𝑥ప   from the feature space ℎሺ𝑥ሻ such that 

                                              xi෦ = gθ (hሺxiሻ)                                                   (2.88) 

The autoencoder is attempting to learn an approximation such that 𝑥 is similar to 𝑥ప෦, i.e., is 

trying to attain the lowest possible reconstruction error E (xi, xi) that measure the discrepancy between 

𝑥 and xi . Hence the following equation is obtained 

                                                    𝐸ሺ𝑥, 𝑥ప ሻ  ൌ  ‖𝑥 െ 𝑥ప ‖ଶ                                             (2.89) 

In fact, autoencoders were mainly developed as a multi-layer perceptron (MLP) and the most 

commonly used forms for the encoder and decoder are affine transformations that keep collinearity 

followed by a nonlinearity: 

                                             fθሺxiሻ = sf ሺb+xiWሻ                                           (2.90) 
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                                            gθ൫h(xi)൯ = sg (c+xiW෪)                                       (2.91) 

where, 𝑠 and 𝑠 are the encoder and decoder activation function, e.g. sigmoid and hyperbolic tangent, 

b and c are the encoder and decoder bias vectors, W and W෪ are the encoder and decoder weight matrices. 

The autoencoder is one of the more practical ways of reinforcement learning. For instance, by 

forcing some constraints on the autoencoder network such as limiting the number of hidden units and 

imposing some regularizers, Autoencoder may learn interesting feature structure about the data. 

Therefore, different constraints give different forms of autoencoders. Sparse Autoencoder (SAE) is an 

autoencoder that contains sparsity constraint on the hidden unit’s activation that must typically be near 

0. This may be accomplished by adding Kullback-Leibler (KL) divergence penalty term  

     ∑ KLd
j=1 ሺρ‖ρොሻ                                                                (2.92) 

where, 

    KLሺρ‖ρොሻ = ρ log
ρ

ρjෝ
+ሺ1- ρሻ log

1-ρ

1- ρjෝ
                (2.93) 

and ρ is a sparsity parameter, normally its value can be small and close to zero, e.g., ρ = 0.2, while ρො is 

the average threshold activation of hidden units and can be calculated by the following equation: 

    ρොj = 
1

n
∑ ൣaj

2(xi)൧
n
i=1                                           (2.94) 

where 𝑎
ଶ represents the activation of hidden unit j. By minimizing this penalty term ρො would be close 

to ρ, and the overall cost function (CF) can be calculated by the following equation 

Figure 2.11. Autoencoder architecture. 
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                       CFsparseሺW, bሻ = 
1

2n
∑ ‖xi-xi‖2+λ‖W‖2+βn

i=1 ∑ KLd
j=1 ሺρ‖ρොሻ               (2.95) 

where 𝑛 is the input size, 𝑑 is the hidden layer size, λ represents the weight decay parameter, and β is 

the weight of the sparsity penalty term.  

Several studies have been undertaken to use deep neural network using an autoencoder 

algorithm for the purpose of machinery fault diagnosis. For example, Tao and colleagues (Tao et al., 

2015) proposed a deep neural network algorithm framework for bearing fault diagnosis based on 

stacked Autoencoder and softmax regression. Jia et al. in (Jia, et al., 2016) shown the effectiveness of 

a proposed DNN-based intelligent method in the classification of different datasets from rolling element 

bearings and planetary gearboxes with massive samples using Autoencoder as a learning algorithm. In 

a recent paper by Sun et al., a sparse Autoencoder-based deep neural network approach with the help 

of the denoising coding and dropout method using one hidden layer was proposed for induction motor 

fault classification with 600 data samples and 2000 features from each induction motor working 

condition (Sun, et al., 2016.). The results of these investigations validate the effectiveness of DNN 

based on autoencoder learning algorithm in machinery fault classification.  

Moving on now to consider other types of deep learning architectures, e.g., convolution deep 

neural networks (CNNs), deep belief networks (DBNs), and recurrent neural networks (RNNs), that 

have been used for machine fault diagnosis. For example, unlike the standard Neural Network (NN), 

the architecture of CNN is usually composed of a convolutional layer and a sub-sampling layer also 

called a pooling layer. CNN learns abstract features from alternating and stacking convolutional layers 

and pooling operation. The convolution layers convolve multiple local filters with raw input data and 

generate invariant local features and the pooling layers extract most significant features (Ahmed et al., 

2018). Many studies have used CNN for bearing fault diagnosis (Guo et al., 2016; Fuan et al., 2017; 

Zhang et al., 2018; and Shao et al., 2018).  

DBNs are generative neural networks that stack multiple restricted Boltzmann machines 

(RBM) that can be trained in a greedy layer-wise unsupervised way, then it can be further fine-tuned 

with respect to labels of training data by adding a softmax layer in the top layer. Many researchers have 

used DBN for bearing fault diagnosis (Shao et al., 2015; Ma et al., 2016; Tao et al, 2016). RNN builds 

connections between units from a direct cycle and map form the entire history of previous inputs to 

target vectors in principal and allows a memory of previous inputs to be kept in the network state. As 

is the case with DBNs, RNNs can be trained via backpropagation through time for supervised tasks 

with sequential input data and target outputs. Examples of studies that used RNN for bearing fault 

diagnosis can be found in (Lu et al., 2017; Jiang et al., 2018). A good overview of these deep learning 

architectures can be found in (Zhao et al, 2016; Khan et al., 2018). 
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2.7.4 Support vector machine classifier 

Support vector machine (SVM) is another classification algorithm that can be employed to 

classify machine health condition using the selected feature space. It has been used for bearing fault 

classification in many different studies (Jack and Nandi, 2001; Rojas and Nandi, 2006; Yang et al., 

2007; Zhang et al., 2013; Zhu et al., 2014; Soualhi et al., 2015; Zheng et al., 2017). It is a supervised 

machine learning method that was first proposed for binary classification problem (Cortes et al., 1995). 

The basic idea of SVM is that it can find the best hyperplane(s) to separate data from two different 

classes such that the distance between the two classes, i.e., the margin, is maximized. Based on the 

features of the data, SVM can make linear or non-linear classifications by using different kernel 

functions. The linear hyperplane can be designed using the following function. 

  g(x) = 𝑤்𝑥   𝑤  (2.96) 

Here 𝑥 ൌ ሾ𝑥ଵ, 𝑥ଶ, … 𝑥ሿ is the input feature vector. Each hyperplane is described by: (1) its 

direction which is determined by 𝑤, and (2) its position that determined by 𝑤. To calculate the 

parameters 𝑤 and  𝑤 of the hyperplane, the following optimization problem is performed 

  
maximize J(𝑤, 𝑤ሻ ൌ  

2
‖w‖ଶ  

   

      (2.97) 

  subject to  𝑦ሺ𝑤்𝑥   𝑤ሻ  1, 𝑖 ൌ 1,2, … , 𝑘       (2.98) 

Here 𝑦 is the class indicator. Figure 2.12 shows an illustration of a linear SVM for a two-class 

classification problem.  

 Figure. 2.12. An example of linear classifier for a two class problem. 
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The non-linear SVM classifier uses a non-linear kernel e.g., Radial basis function (RBF), 

Polynomial function (PF), and Sigmoid function (SF) (Theodoridis et al., 2010). For multiclass 

classification problems, several SVM classifiers can together deal with the multiclass problems. There 

are various methods based on the binary classification used in multiclass problems, e.g., one-against-

all, one-against-one, error-correcting output codes (ECOC), etc. (Hsu et al., 2002; Abe, 2005). In this 

research, we have tested that SVMs with ECOC is sufficient to deliver high classification accuracy. The 

implementation of SVM with ECOC is from “fitcecoc” function in Statistics and Machine Learning 

Toolbox in MATLAB, which fit multiclass models for SVMs. It uses c(c-1)/2 binary SVM models 

using one-versus-one coding design, where c is the number of unique class labels. This will return a 

fully trained error-correcting output code (ECOC), multiclass model.  

2.8 Discussion and Summary 

This chapter has provided a review of vibration-based rolling bearings condition monitoring, 

which covered several topics of vibration analysis techniques that have been used for rolling bearings 

fault diagnosis. Numerous techniques have been proposed using features extracted in the time domain, 

frequency domain, time-frequency domain or a mixture of them. Time domain techniques extract 

features from the raw vibration signals using some statistical parameters, e.g., peak-to-peak value, root 

mean square, Crest Factor, skewness, and kurtosis, and other advanced techniques such as TSA, AR, 

ARIMA, and filter-based methods. The frequency domain analysis techniques have the ability to 

divulge some information based on the frequency characteristics that are not easily observed in time-

domain. In practice, the time-domain signal is transformed into frequency domain by using FFT. The 

time-frequency domain has been used for non-stationary waveform signals which are very common 

when machinery fault occurs. Thus far, several time-frequency analysis techniques have been developed 

and applied to machinery fault diagnosis, e.g., WT, STFT, HHT, LMD, and EMD. 

To reduce the high dimension of the extracted features one may use linear subspace learning 

techniques, e.g., PCA, LDA, and ICA, to extract a new low dimensional feature space that is usually a 

linear combination of the original high dimensional feature space. Furthermore, feature selection 

techniques can be used to select a subset of features that can sufficiently represent the characteristic of 

the original features. In addition, there are several types of fault classification methods, e.g., SVM, 

ANN, and LRC, to process the extracted features. The following conclusions were drawn from the 

literature review: 

 The literature on vibration-based bearings CM identifies numerous computational methods for 

fault diagnosis that achieved many interesting results. However, the performance of these 

methods is limited by the large amounts of Nyquist rate-based sampled vibration data need to be 
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acquired from rotating machines to achieve the anticipated accuracy of bearing fault detection 

and classification. 

 In order to learn more useful features for rolling bearings fault diagnosis, most of the proposed 

methods combine two or more of the various analysis techniques. For example, linear subspace 

learning techniques such as PCA and LDA have been used in different combinations with other 

methods of feature extraction or feature selection in the time domain, frequency domain or time-

frequency domain. Hence, the challenge will always remain of producing possible approaches to 

machine condition monitoring capable of improving fault diagnosis accuracy and reduce 

computations.  

 Several studies have been undertaken to use deep neural network using an autoencoder algorithm 

for the purpose of machinery fault diagnosis. However, their focus was mainly on using 

autoencoder as a dimensionality reduction technique, i.e., the number of hidden nodes in each 

hidden layer is less than the number of input samples for the purpose of fault diagnosis with a 

large amount of input data. 
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Chapter 3 

Datasets, Acquisition and Compression 

 

This chapter provides a summary of the datasets utilised in the experiments in this thesis. Two 

sets of bearing vibration data are used to evaluate the proposed methods in this thesis. In section 3.1, 

the description of the data acquisition of the first bearings vibration data is presented, together with an 

overview of different faults features. Section 3.2 describes the second bearings vibration data provided 

by Case Western Reserve University (CWRU). Section 3.3 outlines the compression of the acquired 

vibration data using the CS framework. 

3.1 The first bearing vibration data 

The first bearing vibration dataset is acquired from experiments on a test rig that simulates 

running roller bearings’ environment. In these experiments, several interchangeable faulty roller 

bearings are inserted in the test rig to symbolise the type of faults that can normally happen in roller 

bearings. The test rig (Figure 3.1) used to acquire the first vibration dataset of bearings consists of a 

12V DC electric motor driving the shaft through a flexible coupling. The shaft supported by two 

Plummer bearing blocks where a series of damaged bearing were inserted. Two accelerometers were 

used to measure the resultant vibrations in the horizontal and vertical planes. The output from the 

accelerometers was fed back via a charge amplifier to a Loughborough Sound Images DSP32 ADC 

card utilising a low-pass filter by means of a cut-off of 18 kHz. The sampling rate was 48 kHz, giving 

slight oversampling. Six health conditions of roller bearings have been recorded with two normal 

conditions, i.e., brand new condition (NO) and worn but undamaged condition (NW), and four faulty 

condition including, inner race fault (IR), an outer race fault (OR), rolling element fault (RE), and cage 

fault (CA). Table 3.1 presents an explanation of the corresponding characteristics of these bearing health 

conditions.  

The data recorded using 16 different speeds in the range 25 – 75 rev/s. In each speed, ten-time 

series were recorded for each condition, i.e., 160 examples per condition. This resulted in a total of 960 

examples with 6000 data points to work with. Figure 3.2 illustrates some typical time series plots for 

the six different aforementioned conditions.  

As shown in Figure 3.2, each fault modulates the vibration signals with their own unique 

patterns. For instance, based on the level of damage to the rolling element and the loading of the bearing, 
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IR and OR fault conditions have a fairly periodic signal, RE fault condition may or may not be periodic, 

and CA fault condition generates a random distortion. 

Table 3.1. The characteristics of bearings health conditions in the first bearing dataset. 

Condition Characteristic 

NO The bearing is a brand new and in perfect condition. 

NW The bearing is in service for some period of time but in good condition. 

IR Inner race fault. This fault is created by cutting a small groove in the raceway of the inner 

race.  

OR Outer race fault. This fault is created by cutting a small groove in the raceway of the 

outer race. 

RE Roller element fault. This fault created by using electrical etcher to mark the surface of 

the balls, simulating corrosion. 

CA Cage fault. This fault is created by removing the plastic cage from one of the bearings, 

cutting away a section of the cage so that two of the balls were not held at a regular space 

and free to move.  

Figure 3.1. The test rig used to collect the first vibration data of bearings. 

Figure 3.2. Typical time – domain vibration signals for the six different conditions 
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3.2 The second bearing vibration data 

The second bearing vibration data is provided by the Case Western Reserve University 

(CWRU) Bearing Data Center (http://csegroups.case.edu/bearingdatacenter/home). This data is freely 

available and commonly used in roller bearings fault diagnosis field. Figure 3.3 shows the test rig that 

is used to acquire this vibration data. It is comprised of a 2 horsepower electric motor driving a shaft 

that contains a torque transducer and encoder. A dynamometer and electronic control system are used 

to apply torque to the shaft. A series of faults with width ranging from 0.18 to 0.71 mm (0.007 to 0.028 

in) were seeded on the drive end bearing (in this case SKF deep-groove ball bearings 6205-2RS JEM 

were used) of the electric motor utilising electro-discharger machining. 

The seeded faults include rolling elements, inner race, and outer race faults, and each faulty 

bearing was run for motor loads 0 – 3 horsepower at a constant speed in the range 1720 – 1797 rev/m. 

The sampling rates used were 12 kHz for some of the sampled data and 48 kHz for the rest of the 

sampled data. The bearing vibration signals were acquired under normal NO, IR, OR, and RE conditions 

for four different speeds. In each speed, 100 time-series were taken for each condition per load. For IR, 

OR, and RE condition, vibration signals for four different fault widths (0.18, 0.36, 0.53, and 0.71 mm) 

were separately recorded.  

In this thesis, of these acquired vibration signals, three groups of datasets were organised to be 

used in the evaluation of the methods proposed. The first group of datasets is chosen from the data files 

of the vibration signals that sampled at 48 kHz with fault width (0.18, 0.36, and 0.53), fixed load 

including 1, 2, and 3 horsepower, and the number of examples chosen is 200 examples per condition. 

This gave three different datasets A, B, and C with 2000 total number of examples and 2400 data points 

Figure 3.3. The test rig used to collect the first vibration data of bearings (CWRU Bearing Data Center).
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for each signal. The description of this three dataset is shown in Table 3.2. The second group of datasets 

is chosen from the vibration signals that sampled at 12 kHz with fault width (0.18, 0.36, and 0.53), fixed 

load including 0 and 3 horsepower, variable loads motor operating conditions including 0, 1, 2, and 3, 

and the number of examples chosen is 400 per condition. This gave three different datasets D, E, and F 

with 4000 total number of examples and 1200 data points for each signal. Table 3.3 shows a description 

of these datasets. A summary of the bearing health conditions included in A, B, and C is shown in Table 

3.4, and for D, E, and F is presented in Table 3.5. 

Table 3.2. Description of the first group of bearing datasets. 

Datasets Load Number of samples 

in each condition 

A 1 200 

B 2 200 

C 3 200 

 

Table 3.3. Description of the second group of bearing datasets. 

Datasets Load Number of samples 

in each condition 

D 0 400 

E 3 400 

F 0, 1, 2, and 3 400 

 

                     Table 3.4. Description of the bearing health conditions for A, B, and C datasets. 

Fault type Fault width in (mm) Classification label 

NO 0 1 

IR1 0.18 2 

IR2 0.36 3 

IR3 0.53 4 

RE1 0.18 5 

RE2 0.36 6 

RE3 0.53 7 

OR1 0.18 8 

OR2 0.36 9 

OR3 0.53      10 
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        Table 3.5. Description of the bearing health conditions for D, E and F datasets. 

Fault type Fault width in (mm) Classification label 

NO 0 1 

OR1 0.18 2 

OR2 0.36 3 

OR3 0.53 4 

IR1 0.18 5 

IR2 0.36 6 

IR3 0.53 7 

RE1 0.18 8 

RE2 0.36 9 

RE3 0.53              10 

 

The third type of bearing dataset is chosen from the data files of vibration signals that sampled 

at 12 kHz with fault size (0.18, 0.36, 0.53, and 0.71), load 2 horsepower, and the number of examples 

chosen is 60 examples per condition. This gave a dataset G with 720 total number of examples with 

2000 data points for each signal. The description of this dataset is presented in Table 3.6. Some typical 

time series plots for the different health conditions of datasets A, B, and C are shown in Figure 3.4 – 

3.6.  

               Table 3.6. Description of the bearing health conditions for dataset G. 

Fault type Fault width in (mm) Classification label 

NO 0 1 

IR1 0.18 2 

IR2 0.36 3 

IR3 0.53 4 

IR4 0.71 5 

RE1 0.18 6 

RE2 0.36 7 

RE3 0.53 8 

RE4 0.71 9 

OR1 0.18              10 

OR2 0.36              11 

OR3 0.53              12 
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Fig. 3.4. Typical time – domain vibration signals for the ten different health conditions of dataset A 

Fig. 3.5. Typical time – domain vibration signals for the ten different health conditions of dataset B 
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3.3 Vibration data compression 

Processing a large amount of data requires a large training time and large storage and this also 

may limit the number of machines that can be monitored remotely across wireless sensor network 

(WSNs) due to bandwidth and power constraints. Instead of processing a large amount of the collected 

vibration data, we often depend on reducing the amount of the collected data without weakening the 

characteristics existing in the data. Transfer-coding that depends on finding a frame that delivers sparse 

or compressible representations with k nonzero coefficients of a signal of length n where k << n, is one 

of the most commonly used techniques. CS framework, which based on linear dimensionality reduction, 

allows a large reduction in sampling for signals that have sparse or compressible representation. Based 

on the CS framework, the data compression can be achieved using a sparse representation of the 

vibration data, measurement matrix, and compressive sampling rate. This will be described in more 

detail in chapter 4. Having the sampled vibration datasets as described in 3.1 and 3.2, CS framework 

with different values of compression sampling rate was used to compress these datasets and the resultant 

compressed data matrices of the first bearing vibration data and the second bearing vibration data are 

listed in Table 3.7 and Table 3.8 respectively. 

 

Fig. 3.6. Typical time – domain vibration signals for the ten different health conditions of dataset C 
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Table 3.7. Description of the compressed data matrices of the first bearing vibration data using 

different values of α. 

Data Original 

data matrix size 

Compressive 

sampling rate (α) 

Compressed data    

matrix size 

First bearing vibration data            6000 x 960 0.002 12 x 960 

  0.003 18 x 960 

  0.006 36 x 960 

  0.01 60 x 960 

  0.02 120 x 960 

  0.03 180 x 960 

  0.04 240 x 960 

  0.05 300 x 960 

  0.1 600 x 960 

  0.2 1200 x 960 

  0.3 1800 x 960 

  0.4 2400 x 960 
 

Table 3.8. Description of the compressed data matrices of the second bearing vibration datasets using 

different values of α. 

Data Original 

 data matrix size 

Compressive 

 sampling rate (α) 

Compressed data  

matrix size 

     A, B, and C 2400 x 2000 0.01 24 x 2000 

  0.02 48 x 2000 

  0.025 60 x 2000 

  0.03 72 x 2000 

  0.04 96 x 2000 

  0.05 120 x 2000 

  0.1 240 x 2000 

  0.2 480 x 2000 

  0.3 720 x 2000 

  0.4 960 x 2000 

     D, E, and C 1200 x 4000 0.03 36 x 4000 

  0.04 48 x 4000 

  0.05 60 x 4000 

  0.06 72 x 4000 

  0.07 84 x 4000 

  0.08 96 x 4000 

  0.09 108 x 4000 

  0.1 120 x 4000 
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               G 2000 x 720 0.02 40 x 720 

  0.04 80 x 720 

  0.06 120 x 720 

  0.08 160 x 720 

  0.1 200 x 720 

  0.2 400 x 720 

  0.3 600 x 720 

  0.4 800 x 720 

 

3.4 Summary  

This chapter has discussed the sources, data acquisition, and compression of the different 

bearing vibration datasets used in the experiments conducted in this thesis. In addition, a brief 

description of some of the characteristics of the different dataset and their corresponding compressed 

data matrices sizes were also given.    
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Chapter 4 

Compressive Sampling Methodology 

 

This chapter introduces the methods and techniques that have been used to produce the results 

presented and discussed in the following chapters. The sections 4.2, 4.3, and 4.4 present novel methods, 

namely the compressive sampling and feature learning (CSFR) framework based methods, the 

compressive sampling and subspace learning (CSLSL) based methods, and the compressive sampling 

and sparse autoencoder based deep neural network (CS-SAE-DNN) method. These methods represent 

the original contribution of this thesis in designing new methods for vibration-based rolling bearing 

condition monitoring. The majority of these methods have been published in (Ahmed et al., 2016; 

Ahmed et al., 2017; Ahmed and Nandi, 2017; Ahmed and Nandi, 2017b; Ahmed et al., 2018; Ahmed 

and Nandi, 2018a; Ahmed and Nandi, 2018b; Ahmed and Nandi, 2018c).  

4.1 Compressive sampling (CS)  

In place of processing the high dimensional of the collected vibration data, the common 

methodology is to identify a lower – dimensional features space that can represent the acquired large 

amount of vibration signals while retaining the important information of the machine conditions. Quite 

recently, considerable attention has been paid to CS for its ability to allow one to sample far below the 

Nyquist sampling rate and yet be able to reconstruct the original signal when needed. CS (Donoho, 

2006; Candès and Wakin, 2008) is an extension of sparse representations and special case of it. The 

simple idea of CS is that many real-world signals have sparse or compressible representations in some 

domain, e.g., Fourier Transform (FT), can be recovered from fewer measurements under certain 

conditions. In fact, CS is based on two principles: (1) sparsity of the signal of interest, and (2) the 

measurements matrix that satisfies the data minimal information loss, i.e., fulfill Restricted Isometry 

Property (RIP) (Candes and Tao, 2006). Concisely, we describe the sparsity as follows:  

Assume that x∈ 𝑅 ௫ ଵ be an original time indexed signal. Given a sparsifying transform matrix 

𝜓 𝜖 𝑅 ௫  whose columns are the basis elementsሼ𝜓ሽୀଵ
 . Based on this basis, x can be represented as 

follows: 

𝑥 ൌ   𝜓



ୀଵ

𝑠 
  

          (4.1) 

Or more efficiently,   
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                               𝑥 ൌ  𝜓𝑠                (4.2) 

Here 𝑠 is an n*1 column vector of coefficients. If the basis 𝜓 produces q-sparse representations, 

of x, i.e., x of length n can be represented with q << n nonzero coefficients, then equation (1) can be 

rewritten as follows:  

                                𝑥 ൌ  ∑ 𝜓

ୀଵ 𝑠     (4.3) 

here ni is the index of the basis elements and the coefficients corresponding to the q non-zero elements. 

So, 𝑠 𝜖 𝑅 ௫ ଵ is a vector column with only q non-zero elements and represents the sparse representation 

vector of x.  

Based on the CS framework, m << n projections of the vector x with a group of measurement 

vectors ሼ∅ሽୀଵ
  and the sparse representations s of x can be produced from, 

𝑦 ൌ ∅𝜓𝑠 ൌ  𝜃𝑠          (4.4) 

where y is an m*1 column vector of the compressed measurements and 𝜃 ൌ  ∅𝜓 is the measurement 

matrix. To produce good compressed measurements that possess the quality of the original signal, i.e., 

the original signal can be reconstructed using these compressed measurements, the measurement matrix 

𝜃 has to satisfy the data minimal information loss, i.e., satisfy the Restricted Isometry Property (RIP).  

Definition 1.1: The measurement matrix 𝜃 satisfies the Restricted Isometry Property (RIP) if 

there exists a parameter 𝛿 ∈ ሺ0,1ሻ such that  

                                  ሺ1 െ  𝛿ሻ‖𝑠‖మ
ଶ    ‖𝜃s‖మ

ଶ   ሺ1   𝛿ሻ‖𝑠‖మ
ଶ              (4.5) 

Founded along the idea of compressive sensing, when Φ and Ψ are incoherent, the original 

signal can be recovered from m = O (q log (n)) Gaussian measurements or q ≤ C.m/log (n/m) Bernoulli 

measurements (Baraniuk et al., 2008), here, C is constant and q is the sparsity level. Random matrix 

with i.i.d. Gaussian entries or Bernoulli (±1) matrix are both satisfy Restricted Isometry Property (RIP). 

The size of the measurement matrix (m*n) depends on the compressive sampling rate (α) (i.e., m = 

α*n). Fig. 1, shows an illustration of the CS framework. To estimate the vector s, the following 

optimization problem is solved: 

                            min
s∈RN

ଵ

ଶ
‖Ө�̂� - y‖ଶ

ଶ +  γ‖�̂�‖ଵ                  (4.6) 

 Figure 4.1. Compressive sampling framework. 
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Here ‖Өs - y‖ଶ
ଶ    𝜀 for a chosen 𝜀  0, and a particular regularization parameter γ > 0 that 

controls the relative importance applied to the sparseness ℓ1 and the ℓ2 norms. Therefore, the original 

vector x can be reconstructed using the inverse of the sparsifying transform ψ and ŝ such that 

𝑥ො ൌ  ψିଵŝ               (4.7) 

The model described above is meant to be Single Measurement Vector Compressive sampling 

(SMV-CS) that recovers one vector from its corresponding compressed measurement vector. But, 

Multiple Measurement Vectors Compressive Sampling (MMV-CS) is considered for signals that are 

represented as a matrix with a set of jointly sparse vectors such that   

𝑌 ൌ  ӨS                  (4.8) 

where 𝑌 ∈ 𝑅 ௫ , m is the number of compressed measurements and L is the number of observations, 

Ө ∈ 𝑅 ௫  is a dictionary, and 𝑆 ∈ 𝑅 ௫  is a sparse representation matrix. Several studies have been 

conducted to reconstruct jointly sparse signals (S) given multiple compressed measurement vector 

(Chen, et al., 2006; Sun, et al., 2009). Then, the original signal matrix X can be recovered using the 

inverse of the sparsifying transform and S such that 

𝑋 ൌ  ψିଵS           (4.9) 

Here X and S is the estimation of X and S respectively. The better signal reconstruction indicates 

that the compressed samples possess the quality of the original signal. In this thesis, MMV-CS has been 

used to obtain compressively sampled signals since the dataset consists of a matrix of multiple 

measurements. Also, since it is possible to recover the original signal (X) from the compressed data (Y) 

this indicates that Y possesses the quality of the original signal (X). Hence, we use the compressed 

measurements directly without recovering the original data. 

4.1.1 CS for compressible frequency representation 

The CS framework requires that the signal of interest have a sparse or compressible 

representation in a known transform domain. A commonly utilised sparse basis for vibration signal is 

Fast Fourier Transform (FFT) matrix (Rudelson and Vershynin, 2008; Zhang et al., 2015; Wong et al., 

2015; Yuan et al., 2017). We assume the time domain vibration signal of the rolling bearing is 

compressible in the frequency domain and that the FFT-based frequency representation of vibration 

signal preserves a compressible structure. Given an acquired vibration dataset 𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ሽ ∈

𝑅 the process to obtain compressively sampled dataset using MMV-CS framework in (4.8). First the 

compressible representations (𝑆 ∈ 𝑅௫) that consists of only a small number of 𝑞 ≪ 𝑛 of nonzero 

coefficients are obtained from the raw vibration signals (𝑋 ∈ 𝑅௫) using the FFT algorithm, which 

computes n-point complex discrete Fourier transform (DFT) of signal X.  In our case we used the 

magnitude of the DFT, i.e., the absolute value of DFT of signal X, to obtain S. Then, the obtained (S) is 

projected into a suitable measurement matrix (Ө ∈ 𝑅௫) that satisfy the RIP. In this thesis, a random 
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matrix with i.i.d. Gaussian entries matrix and a compressed sampling rate (α) is used to generate the 

compressively-sampled signals (𝑌 ∈ 𝑅௫) where m is the number of compressed signal elements (i.e., 

m = α*n). These procedures are summarized below in Algorithm 1. 

 

Figure 4.2 shows an example of an obtained compressively-sampled signal of bearing outer 

race fault signal 𝑥ைோ using Algorithm 1with α = 0.1.  

 

 

In this study, the implementation of FFT is from the fft function in Fourier analysis and Filtering 

Toolbox in MATLAB. 

4.1.2 CS for sparse time-frequency representation 

The Wavelet transform that decomposes the signal into low and high-frequency levels is used 

to obtain the sparse components of the vibration signal that are demanded by the compressive sensing 

framework. One of the choices is the Haar wavelet basis that has been used as sparse representations 

for vibration signals in (Bao, et al., 2011). Given an acquired vibration dataset 𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ሽ ∈

𝑅 the process to obtain compressively sampled dataset using MMV-CS framework in (4.8). First the 

compressible representations (𝑆 ∈ 𝑅௫) that consists of only a small number of 𝑞 ≪ 𝑛 of nonzero 

coefficients are obtained from raw vibration signals (𝑋 ∈ 𝑅௫) using thresholded Haar wavelet basis 

with five decomposition levels as a sparsifying transform. For example, the wavelet coefficients of the 

bearing outer race vibration signal  𝑥ைோ is displayed in Figure 4.3 (b). After applying the hard threshold, 

which preserves the input if it is bigger than the threshold 𝜏; else, it is set to zero (Chang et al., 2000), 

Algorithm 1: Compressive sampling with FFT 

Input: 𝑋 ∈ 𝑅 ௫ ;  Ө ∈ 𝑅௫; and α  

Output: 𝑌 ∈ 𝑅 ௫  

  1: abs (FFT(X))            𝑆 ∈ 𝑅 ௫  

  2: Project S into Ө with compressed sampling rate α to obtain compressively-sampled signal 𝑌 ∈ 𝑅 ௫  

Figure. 4.2 An example of (a) an outer race fault time domain signal 𝒙𝑶𝑹, (b) the corresponding absolute 

values of Fourier coefficients for 𝒙𝑶𝑹, and (c) the obtained compressively-sampled signal of 𝒙𝑶𝑹. 
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the wavelet coefficients is sparse in the Haar wavelet domain as shown in Figure 4.3 (c). Then, the 

obtained (S) is projected into a random matrix with i.i.d. Gaussian entries matrix, with the compressed 

sampling rate (α), is used to generate the compressively-sampled signals (𝑌 ∈ 𝑅௫) where m is the 

number of compressed signal elements. These procedures are summarized below in Algorithm 2.  

 

Figure 4.3 (d) shows an example of an obtained compressively-sampled signal of bearing outer 

race fault signal 𝑥ைோ using Algorithm 2 with α = 0.1.  

 

 

In this study, the implementation of Haar WT is from the Wavelet Toolbox in MATLAB. 

4.2  Compressive sampling and feature ranking (CSFR) framework  

Despite the fact that the obtained CS-based compressed measurements are able to recover the 

original signal, they may not provide the best bearing fault classification. Moreover, these compressed 

measurements may still represent a large amount of data collected in real operating condition.The 

compressive sampling and feature ranking framework (CSFR) combines CS based on multiple 

measurement vectors (MMV) and feature ranking and selection techniques to learn optimally fewer 

features from a large amount of vibration data. With these learned features, bearing health condition 

can be classified using a machine learning classifier. CSFR receive a large amount of vibration data as 

Figure. 4.3 An example of (a) an outer race fault time domain signal 𝒙𝑶𝑹, (b) the corresponding Haar 

WT coefficients of 𝒙𝑶𝑹, (c) the corresponding thresholded Haar WT coefficients of 𝒙𝑶𝑹, and (d) the 

obtained compressively-sampled signal of 𝒙𝑶𝑹. 

Algorithm 2: Compressive sampling with thresholded Haar WT 

Input: 𝑋 ∈ 𝑅 ௫ ;  Ө ∈ 𝑅௫; and α  

Output: 𝑌 ∈ 𝑅 ௫  

  1: thresholded Haar WT(X))            𝑆 ∈ 𝑅 ௫  

  2: Project S into Ө with compressed sampling rate α to obtain compressively-sampled signal 𝑌 ∈ 𝑅 ௫  
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input and produce fewer features as output, which can be used for fault diagnosis. As shown in Figure 

4.4, the proposed framework first compress the vibration data and then rank the features of the 

compressed data from which the most significant features can be selected to be used for classification. 

The details are as follows:  

(1) Vibration data compression: With the aim to reduce computations, transmission costs, and 

reduce demands on the environment compared to other techniques. CSFR employs MMV-CS 

model to produce compressively-sampled signals, i.e., compressed data 𝑌 ൌ ሼ𝑦ଵ, 𝑦ଶ, … , 𝑦ሽ  ∈

𝑅 that have enough information of the original bearing raw data   𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ሽ ∈ 𝑅 . 

Here m << n. 

(2) Feature ranking and selection: as long as the compressively-sampled signals produced by CS 

model have enough information about the original vibration signals, we may further filter the 

compressively-sampled signals using feature ranking and selection techniques to rank and 

select fewer features from the compressively-sampled signals that can sufficiently represent 

characteristics of bearing health conditions.   

(3) Fault classification: with these fewer selected features a classifier is used to classify bearing 

health condition. 

      Figure 4.5 shows an illustration of the data compression and feature selection process in the 

proposed framework. 

Figure. 4.4 Flowchart summarizing the steps of the CSFR framework.
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Based on our proposed framework, we considered two techniques of feature selection to select 

fewer features of the compressively sampled signals. These are: 

(1) Similarity-based methods: that assign similar values to the compressively sampled signals that 

are close to each other.  Three algorithms (LS, FS, and Relief-F algorithms) were investigated 

to select fewer features based on similarity.   

(2) Statistical-based methods: that measure the importance of feature of the compressively sampled 

signals using different statistical measures. Two algorithms, PCC and Chi-2 were investigated 

to select fewer features based on correlation and independence test respectively.  

4.2.1 CS-LS 

The compressive sampling and the Laplacian score feature selection (CS-LS) method receive a 

large amount of vibration data as input and produce fewer features with the smaller Laplacian scores as 

output, which can be used for fault classification of roller bearings (Ahmed, et al., 2017a). CS-LS first 

obtain the compressively-sampled data (Y) and then uses LS to rank the features of the compressively-

sampled data. The LS rank the features depending on their locality preserving power. Given a 

Figure. 4.5 Illustration of the data compression and feature selection. 
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dataset 𝑌 ൌ  ሾ𝑦ଵ, 𝑦ଶ, … , 𝑦ሿ, where 𝑌 ∈  𝑅 ௫ , suppose the Laplacian Score of the r-th feature is 𝐿 

and 𝑓 represent the i-th sample of the r-th feature where 𝑖 ൌ  1, … , 𝑚 and 𝑟 ൌ  1, … , 𝐿. First LS 

algorithm constructs the nearest neighbour graph G with m nodes, where the i-th node corresponds to 

yi. Next, an edge between nodes i and j is placed, if yi is among k nearest neighbors of 𝑦 or vice versa, 

then i and j are connected. The elements of the weight matrix of graph G is 𝑆 and can be defined as 

follows: 

                               𝑆 ൌ ൝𝑒ି
ቛష ೕ ቛ

మ

 , 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                              (4.10)        

Here t is a suitable constant. The Laplacian score  𝐿 for each sample can be computed as 

follows: 

                                          𝐿 ൌ  
ೝ෩


ೝ෩

ೝ෩


ೝ෩
                                                                     (4.11) 

where  𝐷 ൌ 𝑑𝑖𝑎𝑔ሺ𝑆𝟏ሻ is the identity matrix, 𝟏 ൌ ሾ1, … , 1ሿ், 𝐿 ൌ 𝐷 െ 𝑆 is the graph Laplacian matrix, 

and 𝑓
෩  can be calculated using the following equation: 

                                         𝑓
෩ ൌ  𝑓 െ  

ೝ
 𝟏

𝟏 𝟏
                                                                (4.12) 

here 𝑓 ൌ  ሾ𝑓ଵ, 𝑓ଶ, … , 𝑓 ሿ். 

CS-FR selects the k features with the smaller Laplacian scores (𝐿) that can be used for fault 

classification of roller bearings (k < m). 

4.2.2 CS-FS 

The compressive sampling and Fisher score feature selection (CS-FS) method receive a large 

amount of vibration data as input and produce fewer features with the larger fisher scores as output, 

which can be used for fault classification of roller bearings (Ahmed and Nandi, 2017). Given a dataset 

of bearings vibration 𝑋 ∈ 𝑅௫ , CS-FS first uses CS based on MMV model to produce compressively-

sampled signals, i.e., compressed data 𝑌 ൌ ሼ𝑦ଵ, 𝑦ଶ, … , 𝑦ሽ  ∈ 𝑅 that have enough information of the 

original bearing raw data 𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ሽ ∈ 𝑅 where m << n. Then, it employs FS to rank the 

features of the compressively-sampled data (Y). The main idea of FS is to compute a subset of features 

with a large distance between the compressively-sampled data points in different classes and small 

distance between data points in the same class. The fisher score of the i-th feature can be computed by 

the following equation:  

  
FS(𝑌) = 

∑ 𝐿

ୀଵ (𝜇

 - 𝜇)
ଶ

ሺ𝜎ሻଶ  
   (4.13) 
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Here 𝑌 ∈ 𝑅ଵ ௫ , 𝐿 is the size of the c-th class, ሺ𝜎ሻଶ ൌ  ∑ 𝐿

ୀଵ ሺ𝜎

ሻଶ , 𝜇
  and 𝜎

 are the 

mean and standard deviation of c-th class corresponding to the i-th feature; 𝜇 and 𝜎 are the mean and 

standard deviation of the entire dataset corresponding to the i-th feature. Finally, CS-FR selects the k 

features with the larger fisher scores that can be used for fault classification of roller bearings (k < m). 

4.2.3 CS-Relief-F 

 The compressive sampling and Relief-F feature selection (CS-Relief-F) method receive a large 

amount of vibration data as input and produce fewer features as output, which can be used for fault 

classification of roller bearings. Similar to CS-FS and CS-LS methods described above, CS-Relief-F 

first obtain the compressively-sampled data (𝑌 ∈  𝑅 ௫ ) and then uses Relief-F to rank the features 

of the compressively-sampled data. The Relief-F technique uses a statistical approach to select the 

important features from the compressively-sampled data based on their weight W. The main idea of 

Relief-F is to randomly compute examples from Y and then calculate their nearest neighbours from the 

same class, also called the nearest hit, and the other nearest neighbours from different class, also called 

the nearest miss. The procedure of CS-Relief-F algorithm for feature ranking of the compressively-

sampled signals is summarized below in algorithm 3. 

Algorithm 3 Relief-F 

Input: l learning instances, m features and c classes; Probabilities of classes py; Sampling parameter a; 
Number of nearest instances from each class d;  

Output: for each feature fi a feature weight -1 ≤ W[i] ≤ 1; 

1 for i = 1 to m do W[i] = 0.0; end for; 

2 for h = 1 to a do  

3 randomly compute an instance yk with class yk; 

4 for y = 1 to c do 

5 find d nearest instances y[j, c] from class c, j = 1 . . . d; 

6 for i = 1 to m do  

7 for j = 1 to d do 

8 if y = yk {nearest hit} 

9   then W[i] = W[i] – diff (i, yk, y[j, c])/ (a*d); 

10  else W[i] = W[i]+ py / (1 - pyk) * diff(i, yk, y[j, y])/ (a*d); 

11 end if; 

12 end for; {j} end for; {i} 

13 end for; {y} end for ; {h} 

14 return (W); 
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In this study, we applied relieff function in Statistics and Machine Learning Toolbox in 

MATLAB. This function returns the ranks and weights of features of the input matrix data and class 

labels vector c with d nearest neighbours. CS-Relief-F selects the k most important features, which can 

be used for fault classification of roller bearings (k < m). 

4.2.4 CS-PCC 

The compressive sampling and Pearson correlation coefficients feature selection (CS-PCC) 

method receive a large amount of vibration data as input and produce fewer features as output, which 

can be used for fault classification of roller bearings. Similar to CS-FS, CS-LS, CS-Relief-F methods 

described above, CS-PCC first obtains the compressively-sampled data (Y) and then uses PCC to rank 

the features of the compressively-sampled data. PCC examines the relationship between two variables 

according to their correlation coefficient (r), -1 ≤ r ≤ 1. Here the negative values indicate inverse 

relations, the positive values indicate a correlated relation, and the value 0 indicates no relation. PCC 

can be computed as follows: 

                  𝑟ሺ𝑖ሻ ൌ  
௩ሺ௬,ሻ

ඥ௩ሺ௬ሻ∗௩ሺሻ
                                                     (4.14) 

Here 𝒚𝒊 is the 𝒊𝒕𝒉 variable, c is the class labels. CS-PCC selects the k features that are correlated 

with the class labels, which can be used for fault classification of roller bearings (k < m). 

4.2.5 CS-Chi-2 

The compressive sampling and Chi-square feature selection (CS-Chi-2) method receive a large 

amount of vibration data as input and produce fewer features as output, which can be used for fault 

classification of roller bearings. Similar to CS-FS and CS-LS methods described above, CS-Chi-2 first 

obtain the compressively-sampled data (Y) and then uses Chi-2 to rank the features of the 

compressively-sampled data. The χ² value for each feature f in a class labels group c of Y can be 

computed using the following equation: 

        χ²ሺ𝑓, 𝑐ሻ ൌ  
ሺா,ாିாாሻమ

ሺா,ାாሻሺாାாሻሺா,ାாሻሺாାாሻ
                                 (4.15) 

where L is the total number of examples in Y, 𝐸, is the number of times f and c co-occur, 𝐸 is the 

number of time the feature f occurs without c, 𝐸 is the number of times c occurs without f, and E is the 

number of times neither f nor c occurs. The bigger value of χ² indicates that the features are highly 

related.  

In this study, we applied cross-tabulation function in Statistics and Machine Learning Toolbox 

in MATLAB. The cross-tabulation function returns the chi-square statistic and the obtained values of 

chi-2 are sorted in descending order to create a new feature vector with ranked features. CS-Chi-2 select 
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the k features with the bigger value of χ² that can be used for fault classification of roller bearings (k < 

m). 

4.3 Compressive sampling and linear subspace learning (CSLSL) 

framework 

The compressive sampling and linear subspace learning (CSLSL) based techniques receive a 

large amount of bearing vibration data and produce a fewer feature that can be used for fault 

classification of roller bearings. CSLSL based techniques first use MMV-CS model to produce 

compressively-sampled signals, i.e., compressed data 𝑌 ൌ ሼ𝑦ଵ, 𝑦ଶ, … , 𝑦ሽ  ∈ 𝑅 that have enough 

information of the original bearing raw data 𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ሽ ∈ 𝑅 . To extract feature 

representations of these signals, CSLSL based techniques perform a linear transformation to map the 

m-dimensional space of the compressively sampled vibration to a lower dimensional feature space, 

using the following equation: 

                                     𝑦ො ൌ 𝑊்𝑦                           (4.16) 

Here r = 1, 2 … L, 𝑦ො is the transformed feature vector with reduced dimension, and W is a 

transformation matrix. There are three techniques based on CSLSL that have been proposed and tested 

in this thesis. 

4.3.1 CS-PCA 

 The compressive sampling and Principal component analysis (CS-PCA) method receive a large 

amount of vibration data as input and produce fewer features as output, which can be used for fault 

classification of roller bearings (Ahmed, et al., 2017b). Given a dataset of bearings vibration 𝑋 ∈ 𝑅௫ 

, CS-PCA first uses CS based on MMV model to produce compressively-sampled signals, i.e., 

compressed data 𝑌 ൌ ሼ𝑦ଵ, 𝑦ଶ, … , 𝑦ሽ  ∈ 𝑅  where1  𝑙  𝐿, m << n and let each of these signals fit 

in with one of the c classes of roller bearings conditions. To find the larger attributes of the 

compressively-sampled vibration signals, CS-PCA uses PCA to compute W projection matrix using the 

scatter matrix, i.e., the covariance matrix C of the compressively-sampled data, which can be computed 

as follows: 

                                  𝐶 ൌ
ଵ


 ∑ ሺ

ୀଵ 𝑦 െ 𝑦തሻሺ𝑦 െ 𝑦തሻ்                       (4.17) 

Here 𝑦ത is the mean of all samples. In the produced projection matrix W, successive column 

vectors from left to right correspond to decreasing eigenvalues. We select the m1 eigenvectors 

corresponding to the m1 largest eigenvalues. Hence, a new m1-dimensional space 𝑌1 ∈ 𝑅 ଵ ௫  is 

produced from 𝑌 ∈ 𝑅௫, where m1 << m.  
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4.3.2 CS-LDA 

The compressive sampling and Linear discriminant analysis (CS-LDA) method receive a large 

amount of roller bearings vibration data as input and produce fewer features as output, which can be 

used for fault classification of roller bearings (Ahmed et al., 2017b). CS-LDA produce a set of 

compressively-sampled signals 𝑌 ∈ 𝑅௫, here Y can be presented as 𝑌 ൌ ሾ𝑦ଵ, 𝑦ଶ, … , 𝑦ሿ where1 

𝑙  𝐿, and let each of these signals fit in with one of the c classes of roller bearings conditions. To 

compute discriminant attributes from the compressively-sampled signals, CS-LDA method adopts LDA 

that considers maximizing the Fisher criterion function J (W), i.e., the ratio of the between the class 

scatter ሺ𝑆ሻ to the within class scatter (𝑆௪ሻ such that  

                         𝐽ሺ𝑊ሻ ൌ
หௐௌಳ ௐ|

หௐௌೢ ௐ|
                             (4.18) 

where  

            𝑆 ൌ
ଵ


∑ 𝑙


ୀଵ ൫𝜇 െ 𝜇൯ሺ𝜇 െ 𝜇ሻ்                    (4.19) 

 

                 𝑆௪ ൌ
ଵ


∑ ∑ ሺ𝑦

 െ
ୀଵ 𝜇ሻሺ𝑦

 െ 𝜇ሻ்
ୀଵ               (4.20) 

Here 𝜇 is the mean vector of class i, y ϵ R of size L*m is the training dataset, 𝑦ଵ
  represents the 

dataset belong to the c-th class, 𝑛 is the number of measurements of the i-th class,  𝜇 is the mean 

vector of class i, and 𝜇 is the mean vector of all training dataset. LDA projects the space of the 

compressively-sampled data onto a (c – 1)–dimension space by finding the optimal projection matrix 

W by maximizing J (W). Now W is composed of the selected eigenvectors (𝑤ෝଵ, … , 𝑤ෝଶ) with the first 

m2 largest eigenvalues (m2 = c - 1). Consequently, a new m2-dimensional space of discriminant 

attributes 𝑌 2 ∈ 𝑅 ଶ ௫  is produced from 𝑌 ∈ 𝑅௫, where m2 << m.  

With the fewer learned features, both CS-PCA and CS-LDA utilise Multinomial Logistic 

Regression classifier (LRC) described in section 2.7.1 to classify roller bearings health conditions.  

4.3.3 CS with correlated principal and discriminant components (CS-CPDC)  

The compressive sampling with Correlated Principal and Discriminant Components (CS-

CPDC) is a three-stage hybrid method for classification of bearing faults (Ahmed and Nandi, 2018a, 

2018c). In the first stage (Figure 4.6(a)), CS-CPDC uses MMV-CS to obtain compressively sampled 

raw vibration signals. In the second stage (Figure 4.6 (b)), it employs a multi-step approach of PCA, 

LDA, and Canonical correlation analysis (CCA) to extract features from the obtained compressively 

sampled signals. In the third stage (Figure 4.6 (c)), it applies SVM to classify bearing health condition 

using the learned features from the previous stage. 
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In the first stage, with the intention of reducing the amount of data and improving analysis 

effectiveness, CS-CPDC acquires compressively sampled signals using MMV-CS framework described 

in Algorithm 1. While the CS projections obtained in the first stage help to recover the original signal 

from low dimensional features, they may not be the best from a discriminant point of view. Furthermore, 

the size of the CS projections may still represent a large amount of data collected in real operating 

condition. Consequently, techniques to extract fewer features of the CS projections are required. 

Accordingly, PCA and LDA are commonly used. However, while an individual set of features (e.g., 

either PCA or LDA) can be good for representations, it may not be good for classifications. Thus, the 

aim of the second stage is to generate features for superior classification accuracy. The second stage 

consists of three steps as shown in Figure 4.6 (b). 

In the first step, CS-CPDC finds two feature representations from the compressively sampled 

signals using PCA and LDA respectively. Hence, we transform the characteristic space of the 

compressively sampled signal into a low dimensional space defined by those basis vectors 

corresponding to larger eigenvalue components (PCA). Furthermore, we augment these basis vectors 

with discriminant attributes learned through supervised learning (LDA). Let us consider a set of 

compressively-sampled signals 𝑌 ∈ 𝑅௫, here Y can be presented as 𝑌 ൌ ሾ𝑦ଵ, 𝑦ଶ, … , 𝑦ሿ where1 

𝑙  𝐿, and let each of these signals fit in with one of the c classes of machine conditions. To extract 

feature representations of these signals, CS-CPDC performs a linear transformation to map the m-

Figure. 4.6 Training of CS-CPDC method:  (a) The first stage, (b) The second stage (c) The third stage  
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dimensional space of the compressively sampled vibration to a lower dimensional feature space, using 

Equation (4.16) above.  

To find the larger attributes of the compressively-sampled vibration signals, CS-CPDC uses 

PCA to compute W projection matrix as described above in subsection 4.3.1. Hence, a new m1-

dimensional space 𝑌1 ∈ 𝑅 ଵ ௫  is produced from 𝑌 ∈ 𝑅௫, where m1 << m. Furthermore, we 

employed LDA to compute discriminant attributes from the compressively-sampled signals as 

described above in subsection 4.3.2. Consequently, a new m2-dimensional space of discriminant 

attributes 𝑌 2 ∈ 𝑅 ଶ ௫  is produced from 𝑌 ∈ 𝑅௫, where m2 << m.  

These different feature representations extracted from the same dataset always reflect different 

characteristics of the original signals. The best combination of them retains the multiple features of the 

integration that can be used effectively for classification. We propose CCA (Hardoon, et al., 2004) to 

combine PCA and LDA features to obtain superior classification.  

The second step of the multi-step procedure of CS-CPDC utilises CCA to combine the different 

feature representations  𝑌 1 and  𝑌 2 by forming the relationship between them, i.e., maximising the 

overlapping variance between 𝑌 1 and  𝑌 2. The main idea is to find linear combinations of  𝑌1 and 𝑌2 

that can maximize the correlation between them based on the following objective function 

                            ሺ𝑊ଵ, 𝑊ଶ) = 𝑎𝑟𝑔 𝑚𝑎𝑥
ௐభ,ௐమ  

𝑊ଵሖ 𝐶ଵଶ         

                    s.t     𝑊ଵሖ 𝐶ଵଵ𝑊ଵ ൌ 1, 𝑊ଶሖ 𝐶ଶଶ𝑊ଶ ൌ 1.                     

            (4.21) 

where 𝐶ଵଶ is the cross-covariance matrix of 𝑌1 and 𝑌2 that can be computed using the following 

Equation (4.22), 

            𝐶൫𝑌1, 𝑌2൯ ൌ 𝐸 ൬𝑌1
𝑌2

൰ ൬𝑌1
𝑌2

൰
ᇱ

൨ ൌ  
𝐶ଵଵ 𝐶ଵଶ
𝐶ଶଵ 𝐶ଶଶ

൨   
    (4.22) 

 

The resulting linear combinations of 𝑌1 (𝑌1 ൌ 𝑊ଵ ∗ 𝑌1ሻ and the 𝑌2 (𝑌2 ൌ 𝑊ଶ ∗ 𝑌2) 

will maximize their correlation. Finally, in the third step, the learned features 𝑌1 and  𝑌2 are 

concatenated to obtain a vector (𝑌ି, ∈ 𝑅 ௫ ଶ) that comprises highly correlated representations 

of principal and discriminative components where 𝑘 is equal to the minimal dimension size of 𝑚1 

and 𝑚2. These procedures are summarised in Algorithm 4. Figure 4.7 shows an illustration of the 

training process of the first and second stage of our proposed method.  

In the third stage, CS-CPDC utilises Multi-class Support Vector Machine (SVM) classifier 

described in section 2.7.4 to classify roller bearings health conditions.  
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4.4 CS and sparse autoencoder based deep neural network (CS-

SAE-DNN) method 

This section presents a novel intelligent classification method for bearing faults from highly 

compressed measurements using sparse-over-complete features and training DNN through SAE 

(Ahmed, et al., 2018). In this method, we impose some flexible constraints for regularization on the 

hidden units of the sparse-Autoencoder. These include sparsity constraint that can be controlled by 

   Figure. 4.7 Illustration of the training process of the first and second stage of the proposed method. 

Algorithm 4: Feature learning stage 

Input: 𝑌 ∈ 𝑅 ௫ , 𝑦 ∈ 𝑅ଵ ௫ : label information vector for each data points, c: number of classes, 𝑚1: selected 

number of principal components  

Output: 𝑌ି, ∈ 𝑅 ௫ ଶ 

   1: PCA(Y)               E1∈ 𝑅 ௫ଵ 

   2:  𝑌1 ൌ 𝑌் ∗ 𝐸1     

   3: LDA(Y, y)                E2 ∈ 𝑅 ௫ ଶ;   𝑚2 ൌ 𝑐 െ 1. 

   4:  𝑌2 ൌ 𝑌் ∗ 𝐸2   

   5: CCA (𝑌1, 𝑌2)                𝑤ଵ, 𝑤ଶ ∈ 𝑅 ௫ ; k =min (m1,𝑚2). 

   6: 𝑌1 ൌ 𝑤ଵ ∗ 𝑌1, 𝑌2 ൌ 𝑤ଶ ∗ 𝑌2 

   7: 𝑌ି, ൌ ሾ𝑌1 𝑌2ሿ 
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different parameters such as, sparsity parameter, weight decay parameter and the weight of the sparsity 

penalty parameter. For the intent of learning sparse over-complete representations of our highly 

compressed measurements, the number of hidden units in each hidden layer is set to be greater than the 

number of input samples, and we used the encoder part of our unsupervised learning algorithm (i.e. The 

SAE). One important aspect in this proposed method is to pre-train the DNNs in an unsupervised 

manner using SAE that described in Subsection 2.7.3.1and then to fine-tune it with back-propagation 

(BP) algorithm for classification. The difficulty of multilayer training can be overcome with an 

appropriate set of features. One of the advantages of pre-training and fine-tuning in this approach is the 

power to mine flexibly fault features from highly compressed signals. Thus, the proposed approach is 

expected to achieve better classification accuracy compared with methods based on under-complete 

feature representations. Consequently, the efficiency of compressive sensing in machine faults 

classification is expected to be improved.  

Previous research has shown that sparse representations of signals are able to signify the 

diagnosis features for machinery fault (Liu et al., 2011; Tang et al., 2014; Zhu et al., 2015; Fan et al., 

2015; Ren et al., 2016). The advantages of sparse over-complete representations i.e. the number of 

obtained features is greater than the number of input samples have been studied Lewicki and Sejnowski, 

who concluded that over-complete bases can produce a better approximation of the underlying 

statistical distribution of the data (Lewicki and Sejnowski, 2000). Olshausen and Field (Olshausen and 

Field, 1997) and Doi et al. (Doi, et al., 2006) identify several advantages of over-complete basis set, for 

example, their robustness to noise and their ability to improve classification performance. Sparse feature 

learning methods normally contain two stages: (1) produce a dictionary W that represents the data 

ሼ𝑥ሽ ே
ୀଵ sparsely using a learning algorithm, e.g. training artificial neural network (ANN) with sparsity 

penalties; and (2) obtain a feature vector from a new input vector using encoding algorithm.  

Various recent studies investigating sparse feature representation have been carried out. These 

include Sparse Autoencoder (SAE), Sparse Coding (Liu et al., 2011), and Restricted Boltzmann 

machines (RBMs) (Lee et al., 2008). SAE approach has a number of attractive features: (1) simple to 

train, (2) the encoding stage is very fast, and (3) the ability to learn features when the number of hidden 

units is greater than the number of input samples. Therefore it was decided that SAE is an appropriate 

method to adopt for our investigation. In an analysis of Autoencoder (AE), Bengio and colleagues in 

(Bengio et al., 2007) found that AE can be used as a building block of a deep neural network (DNN), 

using greedy layer-wise pre-training.  

CS-SAE-DNN applies a learning algorithm in multi-stages of non-linear feature 

transformation, each stage is a kind of feature transformation. One way to do this is by using DNN with 

multiple hidden layers and each layer is connected to the layers below it in a non-linear combination. 
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In the pre-training stage, sparse-autoencoder is used to train the DNN, the encoder part of the sparse-

autoencoder with sigmoid activation function is used to learn the over-complete feature representations.  

As expressed in Figure 4.8, the proposed method produces over-complete representations from 

the input compressed measurements (obtained using the CS model described in Algorithm 2 above) by 

setting the number of hidden units ሺ𝑑ሻ to be greater than the number of input samplesሺ𝑚ሻ, i.e., 𝑑  𝑚 

in each hidden layer (𝑖ሻ, where  𝑑ାଵ  𝑑 for i =1, 2, 3, …, n. and Input (n) represent the output of 

Encoder (n-1), and 𝑑 is the number of hidden layers in Encoder (n). As drawn in section 3, DNN 

training includes two levels of training, namely, pre-training using unsupervised learning algorithm and 

re-training using backpropagation algorithm. In the pre-training stage, the unlabelled bearing 

compressed measurements (y) are first used to train DNN by setting the parameters in each hidden layer 

and compute the sparse-over-complete feature representations. In fact, in the DNN based on sparse 

autoencoder, we are making use of the SAE algorithm applied multiple times through the network.  

Therefore, the output over-complete feature vector from the first encoder is the input of the second 

encoder. 

Finally, the fault classification is achieved using two stages, namely, (1) pre-training 

classification based on stacked autoencoder and softmax regression layer which is the deep net stage 

(the first stage), and (2) re-training classification based on backpropagation (BP) algorithm and that is 

the fine-tuning stage (the second stage). Figure 4.9 shows an illustration of the pre-training process 

using two hidden layers. With enforcement of sparsity constraints and by setting the number of units in 

each hidden layer to be greater than input samples, each autoencoder learns useful features of the 

compressed unlabelled training samples. The training process is performed by optimizing the cost 

function CFsparseሺW, bሻ in the following equation. 

                           CFsparseሺW, bሻ = 
1

2m
∑ ฮyi-yiฮ

2
+λ‖W‖2+βm

i=1 ∑ KLd
j=1 ሺρ‖ρොሻ     (4.23) 

where 𝑚 is the input size, i.e., the highly compressed measurements size, 𝑑 is the hidden layer size, λ 

is the weight decay parameter, and β is the weight of the sparsity penalty term,  ρ is a sparsity parameter, 

and  ρො is the average threshold activation of hidden units.   

 The optimization is performed using the Scaled Conjugate Gradient (SCG) which is a member 

of the Conjugate Gradient (CG) methods (Møller, 1993). In the first learning stage, the encoder part of 

the first SAE with sigmoid functions of the range of unit activation function values [0, 1] is used to 

learn features from compressed vibration signals of length m, where the number of hidden units 𝑑ଵ 

𝑚 and the extracted over-complete features (𝑣ଵሻ are used as the input signals for the second learning 

stage. Then Encoder 2 of the second SAE with a number of hidden units 𝑑ଶ is used to extract over-
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complete features (𝑣ଶሻ from (𝑣ଵሻ. Finally, softmax regression is trained using (𝑣ଶሻ to classify bearings 

health conditions. 

Figure. 4.8 Training of our proposed method. 
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Figure. 4.9 Illustration of the proposed method using two hidden layers. Data flow from the 

bottom to the top. 
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The pre-training process can be described in the following steps: 

 

 

 

 

 

 

 

 

 

 

 

Given a DNN of n hidden layers, the pre-training process using sparse autoencoder to learn over-

complete features will be conducted on each layer. 

(1) Initialization, 𝑚 is the number of input samples, 𝑛  is the number of hidden layers, 

 𝑑 ൌ 𝑚, 𝑖 ൌ 1, 2, … , 𝑛 

(2) For 𝑖 ൌ 1 𝑡𝑜 𝑛, 

(3) Set up the number of hidden units (𝑑) to be greater than the input samples (𝑚), i.e. 𝑑  𝑑ିଵ. 

(4) Set up sparsity parameter, weight decay parameter, weight of the sparsity penalty term and the 

maximum training epoch that achieve the lowest possible reconstruction error E (𝑥, 𝑥ప ሻ. 

(5) Use scale conjugate gradient training (SCG) algorithm for network training. By utilizing SCG, 

the learning rate is automatically adopted at each epoch and the average threshold activation of 

hidden units (𝜌ොሻ can be computed using Eq. (2.94). 

(6) Based on Eq. (4.23), compute the cost function. 

(7) Using the encoder part of the sparse autoencoder calculate the output over-complete feature 

vector 𝑣 and use it as the input of the following hidden layer. 

(8) 𝑖 ൌ 𝑖  1. 

(9) Repeat steps 2, to 8 until 𝑖 ൌ 𝑛. 

(10) Use the over-complete feature vector of the last hidden layer 𝑣 to be the input of the softmax 

regression layer. 
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Chapter 5 

CSFR framework Assessment and Validation  

 

In this chapter, we present several experiments that we have conducted to verify the capability 

of the CSFR framework, which described in Section 4.2, for rolling bearing health conditions diagnosis. 

This achieved by investigating the combination of MMV-CS and several feature ranking techniques – 

i.e., FS, LS, Relief-F, PCC, and Chi-2 – to learn fewer features from a large amount of vibration data 

from which bearing health conditions are classified . Three classification algorithms, LRC, ANN, and 

SVM are used to classify bearing health conditions. Two case studies of bearing health conditions 

diagnosis are used in this investigation with the aims to (1) validate the proposed framework for bearing 

health conditions diagnosis, and (2) observe the best combinations of MMV-CS, feature selection 

techniques, and classifiers with reduced complexity and improved classification accuracy. This work 

has been published in (Ahmed et al., 2017a; Ahmed and Nandi, 2017; Ahmed and Nandi, 2018b).  

In an attempt to validate the proposed framework, various experiments were conducted using 

two of the bearing vibration datasets that were discussed in chapter 3. These are the first bearing 

vibration data and dataset G of the second bearing vibration data. Each of these datasets was applied to 

our proposed framework using different combinations of techniques detailed in Section 4.2.  

5.1 The first bearing vibration data 

5.1.1 Experimental setup 

To apply our proposed framework in this dataset, 50% of the vibration data are randomly 

selected for training and the other 50% are used for testing. To obtain compressively sampled signals 

from the original vibration signals of roller bearings, MMV-CS model with two different sparse 

representations techniques, i.e., thresholded Haar WT and FFT, which described in Subsection 4.1, are 

used. First, we used the Haar wavelet basis with five decomposition levels as sparsifying transform 

where the wavelet coefficients are thresholded using the penalized hard threshold to obtain sparse 

representations of the original vibration signals. Second, we used FFT to obtain the sparse components. 

Then we utilised compressive sampling framework with different sampling rates (α) (0.1, 0.2, 0.3 and 

0.4) with 600, 1200, 1800, and 2400 compressed measurements from our original vibration signals 

using a random matrix with i.i.d. Gaussian entries which satisfy the RIP.   

To ensure that our CS model generates enough samples for fault classification, we used the 

generated compressively sampled signals in each of the sparse representation methods to reconstruct 
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the original signal X using the Compressive Sampling Matching Pursuit (CoSaMP) algorithm (Needell, 

et al., 2010). The reconstruction errors are measured by Root Mean Squared Error (RMSE). By using 

thresholded WT based CS with α = 0.1, the RMSE for the six conditions of bearings are 8.5% (NO), 

24.6% (NW), 15.23% (IR), 12.71% (OR), 11.87 % (RE), and 5.29% (CA). This has been studied in 

details in (Ahmed et al., 2018a). While for FFT based CS using the same sampling rate α = 0.1, the 

RMSE values are 4.8% (NO), 8.9% (NW), 6.3% (IR), 5.6% (OR), 4.7 % (RE), and 3.6% (CA), which 

indicate good signal reconstruction. 

      Based on the theory of CS, these compressively sampled signals possess the quality of the 

original signals. For further filtering, we applied FS, LS, Relief-F, PCC, and Chi-2 to select fewer 

features (k) from these compressively-sampled signals. Finally, with these selected features, we applied 

multinomial LRC, ANN, and SVM with ten-fold cross-validation to deal with the classification 

problem. Classification accuracies are obtained by averaging the results of twenty trials for each 

classifier and for each experiment.  

5.1.2 Results 

Table 5.1, Table 5.2, and Table 5.3 present testing classification results for LRC, ANN, and 

SVM respectively using two different sparsifying transforms, i.e., FFT and thresholded Haar WT, to 

obtain the compressively-sampled signals using the aforementioned compressive sampling rates. The 

results in Table 5.1, Table 5.2, and Table 5.3 show that among the various proposed combinations of 

CS with FFT, feature selection techniques, and classifiers, most of the combinations with LRC and 

ANN achieved better results than with SVM with “fitcecoc” function. In particular, results from CS-

Chi-2 and CS-Relief-F for all values of the sampling rate (α) and the number of selected features (k) 

with both LRC and ANN are better than with SVM. Also, all the combinations of CS with FFT and the 

considered feature selection techniques with LRC and ANN achieved very high classification 

accuracies (all above 99%) for all values of α with k = 120.  

Also, CS-FS, CS-LS, and CS-PCC with LRC and ANN achieved better results than with SVM 

for all values of α with k = 60 and 120. Moreover, all classification accuracies are above 99% for all 

the classifiers considered with CS-FS, CS-Relief-F, CS-PCC, and CS-Chi-2 with both WT and FFT 

sparse representations techniques using α = 0.4 and k =180. For CS-LS all considered classifiers 

achieved accuracy results above 99% using α = 0.4 and k =180 with FFT only. SVM achieved good 

results in several scenarios with the larger number of selected features, i.e., k =180: (1) using CS-FS 

with FFT, α = 0.2, 0.3, and 0.4, and with thresholded WT and α = 0.4, (2) using CS-LS with FFT and 

all values of α, (3) using CS-Relief-F with WT and α = 0.3 and 0.4, (4) CS-PCC with FFT, and with 

WT for α = 0.4, (5) using CS-Chi-2 with WT and all values of α.    

 



82 
 

Table 5.1. Classification accuracy of roller bearings health conditions for LRC with different 

combinations of MMV-CS and feature ranking and selection techniques (all classification accuracies ≥ 

99% in bold). 

 

Table 5.2. Classification accuracy of roller bearings health conditions for ANN with different 

combinations of MMV-CS and feature ranking and selection techniques (all classification accuracies ≥ 

99% in bold). 
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Table 5.3. Classification accuracy of roller bearings health conditions for SVM with different 

combinations of MMV-CS and feature ranking and selection techniques (all classification accuracies ≥ 

99% in bold). 

 

Generally, the classification accuracies of all the proposed methods, i.e., CS-FS, CS-LS, CS-

Relief-F, CS-PCC, and CS-Chi-2 are based on the compressed sampling rate (α), the feature selection 

method, and the number of the selected features (k). However, the features are selected from random 

compressed projections of length (m) that do not include representations of all the attributes in the 

original data of length (n), i.e., m ≠ n. Therefore, the assumption that when α gets larger the accuracy 

gets better may not apply in every set of selected features. For example, it can be clearly seen from the 

results in Table 5.1 that the classification accuracy of all the proposed methods with FFT sparsifying 

method becomes better when α becomes larger with k = 180. While with k = 120, only one variation 

was found using CS-PCC with accuracy 99.8% and 99.5% for α equal to 0.1 and 0.2 respectively. With 

k = 60, five variations were found; one variation using CS-FS with accuracy 98.8% and 98.1% for α 

equal to 0.3 and 0.4 respectively; one variation using CS-LS with accuracy 95.8% and 93.4% for α 

equal to 0.1 and 0.2 respectively; two variations using CS-Relief-F, first with accuracy 99.5%, 99.3% 

for α equal to 0.1 and 0.2, and second with 99.5% and 99.4% accuracy for 0.3, and 0.4 respectively; 

one variation using CS-PCC with 98.8% and 98.4% for 0.3, and 0.4 respectively.   

    Taken together, these results show that the proposed framework with various methods 

studied here has the ability to classify bearing health conditions with a high classification accuracy with 

the following comments: 
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1) FFT as a sparsifying transform method for our proposed MMV based CS model can achieve 

better results than thresholded WT. 

2) LRC and ANN have the ability to achieve high classification accuracy with different values 

of the sampling rate (α) and a number of selected features (k) for all the considered CS and feature 

selection techniques combinations.  

3) SVM has the ability to achieve good classification accuracy with the larger number of 

selected features, i.e., k =180, and larger values of α, e.g., α = 0.4, for certain combinations.  

4) With the larger number of selected features, all the proposed methods achieved high 

classification accuracy. Thus, for the application of the proposed methods in fault diagnosis, we 

recommend selecting a larger number of features from the compressively-sampled signals. 

 

5.1.3 Comparisons of results 

For further verification of the efficiency of the proposed framework, complete comparison 

results of the classification accuracy using the different combinations based on the proposed framework 

compared with some recently published results using the same vibration dataset, for instance in (Wong 

et al., 2015) results reported for three methods, one method uses all the original vibration data from 

which entropic features are extracted, and the other two uses compressed measurements to recover the 

original vibration signals and from the recovered signals entropic features are extracted. With the 

extracted features SVM used to classify bearing health conditions. Moreover, a hybrid model consisting 

of the Fuzzy Min-Max (FMM) neural network and Random Forest (RF) with Sample Entropy (SampEn) 

and Power Spectrum (PS) features is used to classify bearing health conditions and the results reported 

in (Seera et al., 2017). In (Guo et al., 2005), a Genetic Programming (GP) based approach is proposed 

for feature extraction from raw vibration data and with extracted features SVM and ANN are used to 

classify bearing health conditions. Table 5.4, presents classification results of bearing health conditions 

using our proposed methods with α = 0.4, 0.3, and 0.1 and the reported results in the above-mentioned 

studies using the same dataset used in this case study.  

     It can be clearly seen that classification results of our proposed methods are better than those 

reported in (Wong et al., 2015) and (Guo et al., 2005). Also, our results are as good as, if not better than 

results reported in (Seera et al., 2017) although we are using only 10% (α = 0.1) of the original vibration 

data that is not matched by the method in (Seera et al., 2017) using all the raw vibration data.   
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Table 5.4. A comparison with the classification results from literature on the first bearing dataset. 

 Classification accuracy (%) 

Raw Vibration with entropic features (Wong et al., 2015) 98.9 ± 1.2 

Compressed sampled with α = 0.5 followed by signals reconstruction 

(Wong et al., 2015)  

92.4 ± 0.5 

 

  Compressed sampled with α = 0.25 followed by signals reconstruction 

(Wong et al., 2015)   

84.6 ± 3.4 

FMM-RF (SampEn + PS) (Seera et al., 2017) 99.81± 0.41 

GP generated feature sets (un-normalised) (Guo et al., 2005) 

                                                            ANN 

                                                            SVM 

 

96. 5 

97.1 

Our proposed framework with FFT, α = 0.1, k = 120  

                                CS-FS                  LRC 

                                                            ANN 

                                CS-LS                  LRC 

                                                            ANN 

                                CS-Relief-F         LRC 

                                                            ANN 

                                CS-PCC              LRC 

                                                           ANN 

                                CS-Chi-2            LRC 

                                                           ANN                   
 

 

99.7 ± 0.4 

99.2 ± 1.3 

99.5 ± 0.3 

99.9± 0.2 

99.8 ± 0.3 

99.9 ± 0.2 

99.8 ± 0.3 

99.8 ± 0.3 

99.5 ± 0.5 

99.2 ± 0.9 

 

This section has validated the proposed framework and has shown that the many combinations of CS and 

feature ranking methods achieved high classification accuracies of bearing faults. The next section of this paper 

will validate the usage of our proposed framework using publicly available bearing vibration dataset. The 

advantage of the shared dataset is that we can compare the results of other researchers easily. 

5.2 Dataset G: The second bearing vibration data 

5.2.1 Experimental setup 

To apply our proposed framework in this dataset, 240 examples are randomly selected for 

training and 480 examples are used for testing. We applied the MMV-CS model with FFT to obtain 

compressively-sampled signals from the raw vibration signals using α equal to 0.1 and the same feature 
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selections methods as in the first bearing vibration data to select fewer features of these compressively-

sampled signals. With these fewer selected features, we employed LRC, ANN, and SVM to deal with 

the classification problem. The classification accuracies are achieved by averaging the results of twenty 

trials for each classifier and for each experiment.  

5.2.2 Results 

Table 5.5 shows the accuracy of all experiments with a different number of selected features (k 

= 25 and 50). Figure 5.1 and Figure 5.2 show a column chart representations of the classification results 

presented in Table 5.5. 

Table 5.5. Classification accuracy of roller bearings health conditions of bearing dataset G of the 

second machine with different Combinations of MMV-CS and Feature Ranking and Selection Techniques 

(all classification accuracies ≥ 99% in bold) 

Method LRC ANN SVM 

CS-FS   

            (k = 25) 

             (k = 50) 

 

98.4 ± 1.6 

99.9 ± 0.1 

 

99.6 ± 0.5 

100 ± 0.0 

 

97.4 ± 2.7 

99.9 ± 0.1 

CS-LS  

              (k = 25) 

             (k = 50) 

 

99.1 ± 0.8 

97.5 ± 2.6 

 

99.2 ± 0.8 

99.4 ± 0.7 

 

98.5 ± 1.6 

98.3 ± 1.7 

CS-Relief-F 

             (k = 25) 

             (k = 50) 

 

99.3 ± 0.6 

99.4 ± 0.5 

 

99.2 ± 0.8 

100 ± 0.0 

 

97.8 ± 2.4 

99.5 ± 0.5 

CS-PCC 

             (k = 25) 

             (k = 50) 

 

99.2 ± 0.8 

99.3 ± 0.7 

 

99.5 ± 0.6 

99.9 ± 0.1 

 

97.9 ± 1.9 

97.5 ± 2.4 

CS-Chi-2 

              (k = 25) 

             (k = 50) 

 

97.5 ± 2.6 

99.1 ± 0.9 

 

99.9 ± 0.1 

100 ± 0.0 

 

94.7 ± 5.4 

99.9 ± 0.1 

 

As follows from the Table 5.5, all combinations of CS and feature ranking and selection 

techniques with ANN and a different number of selected features, i.e., k = 25 and 50 achieved high 

classification accuracies (all over 99%). As well as achieving high classification accuracy with ANN 

using 25 features, all combinations with ANN and 50 selected features are able to achieve even higher 
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classification accuracy. In particular, results of CS-FS, CS-Relief-F, and CS-Chi-2 with ANN and 50 

selected features achieved 100% classification accuracy for every single run in our investigations.  

The average classification accuracies of LRC obtained using 50 selected features using CS-FS, 

CS-Relief-F, CS-PCC, and CS-Chi-2 are above 99%. Also, with 25 selected features based on CS-LS, 

CS-Relief-F, and CS-PCC, LRC is able to achieve over 99% classification accuracy. In addition, with 

SVM and 50 selected features based on CS-FS, CS-Relief-F, and CS-Chi-2, the average classification 

accuracy rates are generally above 99%. These observations can be clearly seen in Fig. 5.1 and 5.2 

below. However, from Table VII it can be clearly seen that for k = 25, the classification accuracies of 

CS-LS-LRC, CS-LS-SVM, and CS-PCC-SVM methods are 99.9%, 98.5%, and 97.9% respectively; 

while for k=50, the classification accuracies for the same methods are 97.5%, 98.3%, and 97.5% 

respectively. Therefore, for a fixed compressed signal size m, there is an optimal number of features k 

that makes the classification accuracy higher than other classification accuracies achieved using a 

different number of features that may be bigger or smaller than k. 

 

 

5.2.3 Comparisons of results 

For further evaluation of the efficiency of the proposed MMV-CS and feature ranking analysis-

based framework. Table 5.6 presents the comparisons with some recently published results in (Yu et 

al., 2018) with the same bearing dataset used in this case study. One method uses Feature Selection by 

Figure. 5.1. Classification accuracy rates of 25 selected features 

Figure. 5.2. Classification accuracy rates of 50 selected features 
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Adjunct Rand Index and Standard Deviation Ratio (FSAR) to select features from the original feature 

set (OFS). Other methods, use PCA, LDA, Local Fisher Discriminant Analysis (LFDA), and Support 

Margin LFDA (SM-LFDA) to reduce the dimension of selected features using FSAR. With the selected 

features, SVM is used for the purpose of classification. It is clear that all the results from our proposed 

framework outperforms results reported in (Yu et al., 2018). 

Table 5.6. A comparison with the classification results from literature on bearing dataset G collected 

from the second machine. 

               Methods Classification accuracy (%) 

OFS-FSAR-SVM   (Yu et al., 2018)  

                          (25 selected features) 

                          (50 selected features) 

 

91.46 

69.58 

OFS-FSAR-PCA-SVM   (Yu et al., 2018)  

                          (25 selected features) 

                          (50 selected features) 

 

 91.67 

69.79 

OFS-FSAR-LDA-SVM   (Yu et al., 2018)  

                          (25 selected features) 

                          (50 selected features) 

 

86.25 

92.7 

OFS-FSAR-LFDA-SVM   (Yu et al., 2018)   

                          (25 selected features) 

                          (50 selected features) 

 

93.75 

94.38 

FS-FSAR-(SM-LFDA)-SVM  (Yu et al., 2018)   

                      (25 selected features) 

                      (50 selected features) 

 

       94.58 

       95.63 

Our proposed framework with FFT, α = 0.1, k = 25  

CS-FS                   LRC 

                             ANN 

                             SVM 

CS-LS                  LRC 

                             ANN 

                             SVM 

              CS-Relief-F         LRC 

                             ANN 

                             SVM 

CS-PCC                LRC 

                             ANN 

                             SVM 

CS-Chi-2              LRC 

                             ANN 

                             SVM                        

 

 

     98.4 ± 1.6 

     99.6 ± 0.5 

     97.4 ± 2.7 

     99.1 ± 0.8 

     99.2 ± 0.8 

     98.5 ± 1.6 

     99.3 ± 0.6 

     99.2 ± 0.8 

     97.8 ± 2.4 

     99.2 ± 0.8 

     99.5 ± 0.6 

     97.9 ± 1.9 

     97.5 ± 2.6 

     99.9 ± 0.1 

     94.7 ± 5.4 
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5.3 Summary and conclusions 

Two rolling bearings vibration datasets were analysed by five different techniques based on the 

CSFR framework to classify rolling bearings health condition. The CS-LS, CS-FS, CS-Relief-F, CS-

PCC, and CS-Chi-2 methods were used to learn fewer features from a large amount of vibration data 

from which bearing health conditions were classified. Two different sparse representations techniques, 

i.e., thresholded Haar WT and FFT were used to obtain the compressible representations of the two 

rolling bearings vibration datasets. Moreover, three classification algorithms, LRC, ANN, and SVM 

were used to classify bearing health conditions. Interestingly, our validation experiments have 

demonstrated that the various combinations of CS and feature ranking techniques investigated in this 

study offer higher classification accuracies in all of the faults studied in this chapter. Having said that, 

CS-FR has the capability of answering two research questions with its various combinations of MMV-

CS and feature ranking techniques with the following comments: 

1) FFT as a sparsifying transform method for our proposed MMV based CS model can achieve 

better results than thresholded WT. 

2) LRC and ANN have the ability to achieve high classification accuracy with different values 

of the sampling rate (α) and a number of selected features (k) for all the considered CS and feature 

selection techniques combinations.  

3) SVM has the ability to achieve good classification accuracy with the larger number of 

selected features, i.e., k =180, and larger values of α, e.g., α = 0.4, for certain combinations.  

4) With the larger number of selected features, all the proposed methods achieved high 

classification accuracy. Thus, for the application of the proposed methods in fault diagnosis, we 

recommend selecting a larger number of features from the compressively-sampled signals. 
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Chapter 6 

Assessment and Validation of CSLSL based 
techniques for bearing health condition diagnosis 

 

In this chapter, we describe various experiments that we have conducted to verify the ability of 

CSLSL framework, which described in Subsection 4.3, for rolling bearing health conditions diagnosis. 

This achieved by investigating the combination of MMV-CS and two linear feature extraction methods, 

namely, unsupervised PCA and supervised LDA, to extract fewer features from a large amount of 

vibration data. With this fewer features, LRC is used to classify bearing health conditions. Furthermore, 

the CS-CPDC method that described in Subsection 4.3.3, is assessed and validated for bearing health 

condition diagnosis. This work has been published in (Ahmed et al., 2017b; Ahmed and Nandi, 2018c; 

Ahmed and Nandi, 2018a) 

6.1 Experimental setup 

CS-PCA and CS-LDA have been applied to the first bearing vibration dataset that was 

described in Subsection 3.1. Half of the data is used for training and the other half is used to access the 

generalization of the classification performance. The classification performance evaluated using LRC 

with regularization parameter value ሺ 𝜆 ൌ 0.1ሻ  and by averaging the results of classification accuracy 

from ten experiments. CS-CPDC has been applied to four datasets of bearing vibration that described 

in chapter 3. These are, the first bearing vibration data, dataset D, dataset E, and dataset F. For the first 

bearing vibration data, fifty percent of the total observations were randomly selected for training and 

the other 50% for testing. While various training size were used for datasets D, E, and F. The 

classification performance evaluated using Multi-class SVM with “fitcecoc” function.  

 

6.2 Validation of CS-PCA and CS-LDA  

First, we obtain the bearing compressed vibration signals using different compressed sampling 

rate (𝛼) ranging from 0.05 up to 0.4 with 256, 512, 1024 and 2048 compressed measurements of the 

bearings original vibration signal. These different sets of compressed measurements used for the fault 

diagnosis purpose. Half of this data is used for training and the other half is used to assess the 

generalization of classification performance. To apply our proposed framework in the vibration dataset 



91 
 

of the first machine, 50% of the vibration data are randomly selected for training and the other 50% are 

used for testing. To obtain compressively sampled signals from the original vibration signals of roller 

bearings, MMV-CS model with thresholded Haar WT that described in section 4.1.2.  Here, we used 

the Haar wavelet basis with five decomposition levels as sparsifying transform where the wavelet 

coefficients are thresholded using the hard threshold to obtain sparse representations of the original 

vibration signals. Then we employed the CS framework with different sampling rates (α) (0.05, 0.1, 0.2 

and 0.4) and a random matrix with i.i.d. Gaussian entries which satisfy the RIP to obtain the 

compressively sampled data.  

For further filtering, PCA with 64 principal components and LDA with 5 discriminant 

components, i.e., (c-1) where c = 6 is the number of classes, were used to extract low dimensional 

spaces of features from the obtained CS-based compressed measurements. With these extracted features 

LRC with the regularization parameter (λ = 0.1) were employed to deal the classification problem. Table 

6.1 summarizes the classification results for all experiments, where the classification accuracy is the 

average of ten trials for each experiment.  

Table 6.1. Classification accuracies (%) and related standard deviations (in brackets) for compressed 

sensed datasets. 

 Compressed Sensed data sets 

Sampling rates (α) / Number of measurements (M) 

0.05 

M=256 

0.1 

M=512 

 0.2  

M=1024 

0.4 

M=2048 

 

CS 

98.2 

(0.3) 

98.6 

(0.3) 

98.9 

(0.2) 

99.0 

(0.3) 

 

CS-PCA 

98.8 

(0.7) 

98.5 

(0.4) 

98.7 

(0.6) 

98.8 

(0.7) 

 

CS-LDA 

72.5 

(1.5) 

89.8 

(3.5) 

100 

(0.0) 

100 

(0.0) 

 

It can be clearly seen from Table 6.1 that choices of small values α (0.05 and 0.1) can lead to 

high classification accuracies in both CS and CS-PCA, unlike CS-LDA that achieved low classification 

results although it obtained 100% classification accuracy for α = 0.2 and 0.4. For further evaluation of 

the proposed method, we conducted several experiments using two well-known dimensionality 

reduction techniques, namely PCA and LDA to extract features from the raw vibration data. For the 

classification purpose, we used the same classifier LRC that used to obtain the results in Table 6.1. The 

classification results of these methods are shown in Table 6.2 and can be compared to the classification 

results of our proposed approach in Table 6.1 which shows the possibility to achieve high classification 
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performance with only a few compressed measurements comparable to the classification performance 

obtained using the high dimensional vibration signal. 

Table 6.2. Summary of classification accuracies (%) and their related standard deviations for the raw 

vibration using PCA and LDA feature extraction methods. 

 

 

                       Feature Extraction method 

PCA LDA 

Raw Vibration        99.6 ± 0.4                    100 ± 0.0 

 

Taken together, these results show the possibility to reduce the bandwidth consumption by up 

to 95% for remote machine condition monitoring while achieving good fault diagnosis performance 

comparable to fault classification performance from high dimensional vibration signal. 

6.3 Validation of CS-CPDC using the first bearing vibration data 

First, fifty percent of the total observations were randomly selected for training and the other 

50% for testing. Then, we examined the selection of the compressed sampling rate (α) using different 

values (0.01, 0.02, 0.03, 0.04, 0.5, 0.1 and 0.2) to generate compressively-sampled vibration signals. 

To ensure that our CS model generates enough samples for the purpose of bearing fault classification, 

we used the generated compressively-sampled signals in the first stage to reconstruct the original signal 

X by applying the CoSaMP algorithm (Needell et al., 2010). For example, with α = 0.1 the average 

percentage reconstruction errors for the six conditions of bearings are 1.8% (NO), 0.9% (NW), 3.3% 

(IR), 1.6% (OR), 0.7 % (RE), and 2.6% (CA), which indicate good signal reconstruction.  

To learn features from the training set with compressed measurements, we proposed a multi-

step approach, i.e., the second stage of our proposed method described in Figure 4.6 (b) using (c – 1) 

components for LDA and 40 principal components for PCA for each of the α values described above. 

These learned features from the second stage were used to train the multi-class SVM. To achieve better 

evaluations of the trained error-correcting output codes (ECOC) multiclass model, we applied 10-fold 

cross-validation in all our experiments. The training dataset is randomly subdivided into ten subsets. 

Each sub-set is validated on the classifier that is trained using the other nine subsets. The process is 

repeated 20 times and the training classification accuracy is the average taken from these 20 trials.  

To evaluate the performance of the proposed method, we first compressively sampled each 

testing signal using the same values of α used to sample training set, and then the trained multi-step 

algorithm is used to obtain the learned features of the testing set. Once the features were learned, the 

trained SVM is used to classify the testing signals. The overall results are shown in Table 6.3, where 

the classification accuracy is the average of 20 trials for each experiment, and the time is obtained by 
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averaging the testing time of these 20 trials. Table 6.3 shows that the value of α affects not only the 

classification accuracy results but also the time required by the CS-CPDC method to complete the 

classification task. It can be clearly seen that the larger the value of α is, the better is the classification 

accuracy and the more time the method requires. However, high levels of classification accuracy 

achieved with less than 25% of the original data samples. In particular, accuracies from our proposed 

method are 99.9%, 99.8%, and 99.3 for only 20%, 10%, and 5% of the whole data respectively.  

6.3.1 Effect of Numbers of Principal Components on Classification Accuracy 

To determine the effect of the number of PCs on classification accuracy of CS-CPDC, we tested 

it with α = 0.2, 0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 using a different number of PCs in the range 10–50. 

Figure 6.1 shows the classification accuracies versus the number of PCs for each value of α. It is clear 

that most of the compressively-sampled signals require no more than 40 PCs to achieve high 

classification accuracy.  

6.3.2 Comparison of Classification performance using Individual and 

Combined Features 

In the second stage of the proposed multi-step features learning approach, four groups of 

features were extracted individually before the features concatenation step. These include PCA based 

Table 6.3 Classification Results with Their Corresponding Root Mean Square Error (RMSE) and 

Computational time Using Various Compressed Sampling Rates  

Compressed Sampling 
rate (α) 

The cross-validated 
accuracy (%) 

         Testing Classification 
Accuracy (%) 

Testing 
time (s) 

   
α = 0.2 

(1200 samples) 

            100.0 ± 0.0 99.9 ± 0.1        7.8± 0.01 

α = 0.1 

(600 samples) 

            100.0 ± 0.0 99.8 ± 0.2        6.7± 0.07 

α = 0.05 

(300 samples) 

99.8 ± 0.2 99.3 ± 0.6        4.9 ± 0.03 

α = 0.04 

(240 samples) 

99.4 ± 0.6 98.8 ± 1.2        4.3 ± 0.11 

α = 0.03 

(180 samples) 

99.1 ± 0.8 98.4 ± 1.4        3.8 ± 0.03 

α = 0.02 

(120 samples) 

99.1 ± 0.9 97.8 ± 1.3        3.2 ± 0.09 

α = 0.01 

(60 samples) 

98.3 ± 1.6 96.4 ± 0.6        3.1 ± 0.16 
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featuresሺ 𝑌 1ሻ, LDA based featuresሺ 𝑌 2ሻ, and the linear combinations features 𝑌1 and 𝑌2 of  𝑌 1 

and  𝑌 2 these features will be referred as PCA' and LDA' respectively. Experiments are conducted using 

these features based on PCA, LDA, PCA', LDA' and concatenated features of PCA and LDA 

(PCA+LDA) with CS-CPDC to classify bearing faults. The test classification results are displayed in 

Fig. 5 and achieved by averaging the results of 20 trials for each experiment. Closer inspection of Figure 

6.2 shows significant improvements in the classification accuracy achieved by PCA' and LDA' 

compared to PCA and LDA respectively. However, classification results from CS-CPDC method 

achieved best classification results for each value of α.  

 

Figure 6.2 Comparison of Classification performance using Individual and Combined Features 

Fig. 6.1 Classification accuracies for different compressively-sampled signals versus the number of PCs
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6.3.3 Comparison of results 

Different from the methods in (Wong, et al., 2015) that recovered the original signals from the 

compressively-sampled signals, CS-CPDC learns features directly from the compressed measurements. 

To show the superiority of CS-CPDC over the methods in (Wong, et al., 2015), Table 6.4 shows 

classification results of bearing faults using the same dataset used in the first case study of this work. It 

is clear that all results from CS-CPDC are better than those in (Wong, et al., 2015). For further 

verification of the efficiency of the CS-CPDC method, Table 6.5 presents the comparisons with the 

results of CS, CS-PCA, and CS-LDA presented in Table 6.1. It is clear that results from CS-CPDC are 

better than the results reported in (Ahmed, et al., 2017d) and the improvement is statistically significant. 

In particular, results from (Ahmed, et al., 2017d) are 98.6, 98.5, and 89.8 for CS, CS-PCA, and CS-

LDA, while CS-CPDC method achieved 99.8%.  Additionally, the RMSE of this method (0.2%) is 

smaller than the reported RMSEs in (Ahmed, et al., 2017d) (e.g., 0.3%, 0.4%, and 3.5%).  

 

6.3.4 Need for Compressive Sampling  

In CS-CPDC, CS is employed to obtain compressively sampled signals in the first stage 

motivated by the following. 1) Reduced computations: We used CS to reduce a large amount of the 

Table 6.4 Classification Comparison of Bearing Faults. 

Methods           Sampling rate (α)                Testing Accuracy (%)

Compressed Sensed  followed by signal 

recovery (Wong, et al., 2015) 

0.5 92.4 ± 0.5 

0.25 84.6 ± 3.4 

CS-CPDC 0.2 99.9 ± 0.1 

 0.1 99.8 ± 0.2 

 
Table 6.5 Classification Comparison of Bearing Faults. 

          Methods 
            Testing Accuracy (%)   

                           α = 0.1 

CS (Ahmed, et al., 2017b)                 98.6± 0.3 

                98.5± 0.4 

                89.8± 3.5 

CS-PCA (Ahmed, et al., 2017b) 

CS-LDA (Ahmed, et al., 2017b) 

CS-CPDC                           99.8± 0.2 
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acquired vibration data. This reduction in the amount of vibration data resulted in much-reduced 

computation, i.e., less than 15% of the computation load of not using CS. 2) Reduced transmission 

costs: In the cases of having to send vibration data from remote places by wireless (e.g., in the case of 

off-shore wind turbines) or wired transmissions, the cost of transmission will be less as CS reduces the 

amount of vibration data. 3) Benefits to the environment: As the application of CS results in reduced 

computations, it helps to reduce the amount of power needed for both computations and transmission. 

In consequence, CS offers much benefit to the environment. 

Several experiments were conducted to classify bearing fault using CS-CPDC without the 

compression in the first stage, i.e., with all the 6000 original samples from their sparse (Fourier 

Transform) domain. Table 6.6 contains the results where the classification accuracy is the average of 

20 trials of testing accuracy. Two things are clear from the results presented in Table 6.6. Firstly, CS-

CPDC with compressive sampling is significantly faster than (or requires less than 15% of the time of) 

the proposed method without compressive sampling. Secondly, CS-CPDC achieved better classification 

results with small RMSE. Of the remaining 0.6% (100% - 99.4%) accuracy, our method can make up 

2/3 (= (99.8 – 99.4)/ (100 – 99.4)) of the missed accuracy, and it does so with significantly lower RMSE, 

i.e., 0.2 compared to 0.5. Thus the increase in accuracy of 0.4% with RMSE of 0.2% is practically 

significant.   

Table 6.6. A comparison results to examine the Speed and accuracy performance of our proposed 

method with CS and without CS. 

6.4 Validation of CS-CPDC using datasets D, E, F of the second 

bearing vibration data 

To classify the motor bearing health condition in dataset F, the same steps section 6.1.2 were 

followed to apply CS-CPDC method. Half of the signal examples are selected randomly for training, 

and the rest of the signal examples are utilised for testing performance. Different compressed samples 

with 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and 0.1 sampling rates (α) of the original signals and 10 

selected PCs are used for the overall classification results and their related root means square errors 

    Methods Classification accuracy (%) Time (s) 

CS-CPDC without CS 

(with 6000 inputs from FT) 

99.4 ± 0.5 64.9± 0.3 

CS-CPDC with CS 

α = 0.1 (600 samples) 

99.8± 0.2 6.7± 0.1 
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(RMSEs) of 20 trials as shown in Table 6.7. In Table 6.7 CS-CPDC delivers high classification 

accuracies with small RMSEs. In particular, the classification accuracy for α = 0.1 is 99.9%, and the 

testing time required by CS-CPDC is only 1.62 seconds. In general, the computation time increased 

slightly with the increase in α value. For example, the total time for training and testing with the smallest 

value of α = 0.03 (5.35 s) increased by less than 20% compared with the total time required by the 

largest value of α = 0.1 (6.45 s).  

Table 6.8 (a) and (b) shows some sample confusion matrices of ten types of health condition in 

the classification results for values of α = 0.1 and 0.07 respectively. It can be clearly seen that with α = 

0.1 in Table 3 (a), only two signal examples of IR1 is likely to be estimated as IR3, i.e., the proposed 

method misclassified only 1% of testing examples of IR1 as IR3. With α = 0.07 in Table 6.8 (b), only 

one of IR1 (0.5 of IR1 testing examples) is likely to be confused with IR3, two of IR2 (1% of IR2 testing 

examples) to be classified as IR1, and five of IR3 (2.5% of testing examples) is expected to be classified 

as IR1.   

Table 6.7. Classification results with their corresponding root Mean Square Error (RMSE) and 

computational time using various compressed sampling rates. 

Sampling 

rate (α) 

Training 

accuracy (%) 

Training time (s) Testing 

accuracy (%) 

Testing time (s) 

α = 0.1 

120 samples 

100 4.83 ± 0.01 99.9 ± 0.1 1.62 ± 0.02 

α = 0.09 

108 samples 

100 4.72 ± 0.01 99.8 ± 0.2 1.55 ± 0.04 

α = 0.08 

96 samples 

99.9 ± 0.1 4.62 ± 0.12 99.8 ± 0.1 1.47 ± 0.08 

α = 0.07 

84 samples 

99.9 ± 0.1 4.61 ± 0.01 99.6 ± 0.2 1.41 ± 0.02 

α = 0.06 

72 samples 

99.8 ± 0.2 4.50 ± 0.01 99.6 ± 0.2 1.32 ± 0.07 

α = 0.05 

60 samples 

99.6 ± 0.2 4.36 ± 0.09 99.2 ± 0.3 1.24 ± 0.07 

α = 0.04 

48 samples 

99.3 ± 0.3 4.24 ± 0.07 99.2± 0.5 1.19 ± 0.14 

α = 0.03 

36 samples 

99.1 ± 0.4 4.20 ± 0.10 98.5± 0.8 1.15 ± 0.02 
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Table 6.8. Sample confusion matrix. 

(a) Compressively-sampled data α = 0.1 

 

(b) Compressively-sampled data α = 0.07 

 

For further evaluation of the CS-CPDC method, experiments in datasets D, E, and F were 

conducted for α = 0.1 with a training size of 10% and 40%, and 20 trials for each experiment. The 

results are compared to some recently published results (Li et al., 2013; Jin et al., 2014; Du et al., 2014; 

Zhang et al., 2015; Van et al., 2015; Van et al., 2016; Xia et al., 2017; Xia et al., 2018) in Table 6.9. 

The first column refers to the scenarios of the motor operation and load conditions (fixed load and 

variable loads) in which the bearing samples collected. The second column defines the methods used 

for classification. The third column records the percentage of samples used to train these methods. The 

fourth column defines the related load of the data, and the fifth column records testing accuracies 

obtained using these methods.  

Compared with the methods presented in Table 6.9, CS-CPDC with the smallest percentage 

(10%) of samples of the original data achieved the highest accuracy in both motor operation condition, 

i.e., fixed load and variable load. 

For additional comparison, several experiments were conducted for α = 0.1, 0.09, and 0.08, 

using variable loads bearing dataset (0, 1, 2, 3 loads) with 10 classes to examine the speed and accuracy 
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performances of CS-CPDC compared to the method in (Lei et al., 2016) that used the same data. To 

match the experimental setup in (Lei et al., 2016), only 10% of signal examples are used for training; 

the testing classification accuracies and computation times were obtained by averaging 20 trials in each 

experiment. The results, as shown in Table 6.10, indicate that CS-CPDC method is significantly faster 

than the method in (Lei et al., 2016) and yet our classification accuracies, for all values of α, are better 

than the results reported in (Lei et al., 2016). 

Table 6.9. A comparison with the results from literature on vibration datasets of roller bearings. 

 
  Methods Training size 

(%) 

No of 

classes 

Load 

(hp) 

Training 

Accuracy (%) 

 

 

Fixed load 

(Jin et al., 2014) 10 10 3 92.5 

(Van et al., 2015)              35 10 3 92.65 

(Van et al., 2016)             N/A 10 0 97.89 

(Du et al., 2014) 75 10 0 88.9 

     CS-CPDC 10 10 3 

0 

99.8 ± 0.2 

99.8 ± 0.1 

 

 

Variable loads 

(Li et al., 2013) 40 4 0,1,2,3 95.8 

(Xia et al., 2017) 75 9 0,1,2,3 97.59 

(Zhang et al., 2015) 40 11 0,1,2,3 97.91±0.09 

(Xia et al., 2018) 70 10 0,1,2,3 99.44 

     CS-CPDC 40 10 0,1,2,3 99.9 ± 0.1 

 

Table 6.10. A comparison results to examine the speed and accuracy performances of CS-CPDC. 

Methods Testing accuracy (%) Time  (s) 

(Lei et al., 2016)         99.66 ± 0.19 12 

            CS-CPDC       

                 α  = 0.1 

                 α  = 0.09 

                 α  = 0.08 

 

99.8 ± 0.1 

99.8 ± 0.1 

99.7 ± 0.2 

 

5.28 

4.92 

4.74 
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6.5  Summary and conclusions 

Our validation experiments have demonstrated that choices of small values α (0.05 and 0.1) can 

lead to high classification accuracies in CS-PCA, unlike CS-LDA that achieved low classification 

results although it obtained 100% classification accuracy for α = 0.2 and 0.4. However, the classification 

accuracy obtained using the CS-CPDC method with 10% of the original data is better than the results 

obtained by CS-PCA and CS-LDA and the improvement is statistically significant.  

The comparison of non-CS-based techniques such as in (Li et al., 2013; Jin et al., 2014; Du et 

al., 2014; Van et al., 2015; Zhang et al., 2015; Van et al., 2016; Xia et al., 2017&2018) with the proposed 

CS-CPDC technique show that the learned features of CS-CPDC achieved better classification results, 

even though we are using only 10% ((α = 0.1) of the original vibration data.  
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Chapter 7 

CS-SAE based DNN technique Assessment and 
Validation  

 

This chapter presents a number of experiments that have been conducted to validate the 

efficiency of CS-SAE-DNN technique, which described in Section 4.4, for rolling bearing health 

conditions diagnosis. This achieved by investigating the application of CS-SAE-DNN in four vibration 

datasets collected for the purpose of bearing health condition monitoring. These are the first bearing 

vibration data and datasets A, B, and C of the second bearing vibration data described in chapter 3. In 

these experiments, we explored computationally, the effects of SAE based over-complete sparse 

representations on the classification performance of CS-based highly compressed measurements of 

bearing vibration signals. For this study, the CS framework was used to produce highly compressed 

measurements of the original bearing dataset. Then, an effective DNN with unsupervised feature 

learning based on SAE is used for learning over-complete sparse representations of the compressed 

measurements. Finally, the fault classification is achieved using two stages, namely, pre-training 

classification based on stacked SAE and softmax regression layer, and re-training classification based 

on the BP algorithm. The experiments results show that the proposed method is able to achieve high 

levels of accuracy even with extremely compressed measurements. This work has been published in 

(Ahmed, et al., 2018). 

7.1 Experimental setup 

CS-SAE-DNN has been applied to four datasets of bearing vibration that described in chapter 

3. These are, the first bearing vibration data, dataset A, dataset B, and dataset C. To obtain the 

compressively-sampled signals, first, we used Haar wavelet basis with five decomposition levels as a 

sparsifying transform. Then we applied compressive sampling with different sampling rates (α) (0.0016, 

0.003, 0.006, 0.013, 0.025, 0.05, 0.1 and 0.2) with 8, 16, 32, 64, 128, 256, 512 and 1024 compressed 

measurements of our original vibration signal using random Gaussian matrix. The size of the Gaussian 

matrix is m by N, where N is the length of the original vibration signal measurements and m is the 

number of compressed signal elements (i.e., m = α*N). Fifty percent of these compressed samples are 

randomly selected for the pre-training stage of DNN, then these samples are used to re-train the deep 

net, the other 50% of samples are used for testing the performance. 
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7.2 The first bearing vibration data 

In order to verify the validity of the proposed method, we carried out several experiments to 

learn over-complete features of various highly compressed bearing data sets obtained using CS 

framework with different compressed sampling rate. Fifty percent of these compressed samples are 

randomly selected for the pre-training stage of DNN, then these samples are used to re-train the deep 

net, the other 50% of samples are used for testing the performance. Then, the obtained over-complete 

features used for classification using different settings of DNN. Finally, we compare our proposed 

method, using our highly compressed datasets, with several existing methods. 

We began by obtaining the compressed vibration signal from the big data of rolling elements 

bearing vibration signal using thresholded Haar WT, which described in Subsection 4.1.2, and random 

Gaussian matrix. First, we used the Haar wavelet basis with five decomposition levels as sparsifying 

transform where the wavelet coefficients are thresholded using the penalized hard threshold to obtain 

sparse representations of the original vibration signals. As shown in Figure 7.1(a), the wavelet 

coefficients of the vibration. After applying the penalized hard threshold the wavelet coefficients are 

sparse in the Haar wavelet domain as shown in Figure 7.1(b) where only 216 are non-zeros (nnz) in NO 

wavelet coefficients that is 95.8% of the 5120 coefficients are zeros. Other conditions NW, IR, OR, RE 

and CA have 276, 209, 298, 199, and 299 non-zero elements respectively; and 94.6%, 95.9, 94.2%, 

96.1 and 94.2% of 5120 coefficients are zeros.  

 

 

Figure 7.1 (a) Wavelet coefficients and (b) corresponding thresholded wavelet coefficients for each 

condition signal (nnz refers to number of non-zero elements). 
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Then we applied compressive sampling with different sampling rates (α) (0.0016, 0.003, 0.006, 

0.013, 0.025, 0.05 and 0.1) with 8, 16, 32, 64, 128, 256, and 512 compressed measurements of our 

original vibration signal using random Gaussian matrix. The size of the Gaussian matrix is m by N, 

where N is the length of the original vibration signal measurements and m is the number of compressed 

signal elements (i.e., m = α*N). Based on compressive sampling framework, multiplying this matrix 

with our signal sparse representations generates different sets of compressed measurements of the 

vibration signal. The obtained compressed measurements must possess the quality of the original signal, 

i.e., have sufficient information of the original signal. Thus, we need to test that our CS model generates 

enough samples for the purpose of bearings fault classification. Roman et al. proposed a generalized 

flip test (Roman, et al., 2014) for CS model that has the ability to test the efficiency of any sparsity 

model, any signal class, any sampling operator, and any recovery algorithm towards accurate CS model. 

The basic idea of this test is to flip sparsity basis coefficients which represent the sparse representations 

and then perform a reconstruction with measurements matrix using the sampling operator and the 

recovery algorithm. If the sparse vector (s) is not recovered within a low tolerance, then decrease the 

thresholding level to obtain a sparse signal and repeat until s recovered exactly. More details of the 

original flip test can be found in (Roman, et al., 2014; Adcock, et al., 2017). 

Following the idea of the generalized flip test, we tried different sampling rates (0.05, 0.1, 0.15, 

and 0.2) and tested the efficiency of our CS model by thresholding the wavelet coefficients to obtain a 

sparse signal (s) and then by reconstructing s from the obtained compressed measurements using 

random Gaussian matrix. The CoSaMP algorithm is used to reconstruct the sparse signal. The 

reconstruction errors measured by Root Mean Squared Error (RMSE) for the six conditions of bearings 

are presented in the following Table 7.1. The second column depicts the reconstruction errors compared 

to the original thresholded coefficients using 5% of the original signal for the six conditions, the third 

column shows the reconstructions errors using 10% of the original signal, the fourth is for 15% of the 

original signal and the fifth column is for 20% of the original signal. 

        Table 7.1. Results of root-mean-square-error (RMSE) for various sampling rates. 

 α = 0.05 α = 0.10 α = 0.15 α = 0.20 

NO 9.37 8.45 0.04 0.03 

NW 11.29 24.64 5.8 0.06 

IR 20.82 15.23 0.16 0.09 

OR 14.38 12,71 8.18 0.07 

RE 17.02 11.87 0.35 0.12 

CA 8.3 5.29 0.14 0.04 
 



104 
 

It is clear that as α increases RMSE decreases, indicating better signal reconstruction. The better 

signal reconstruction indicates that the compressed measurements possess the quality of the original 

signal.  

In order to verify the validity of the proposed method, we carried out several experiments to 

learn over-complete features of various highly compressed bearing datasets obtained by using different 

compressed sampling rate. Fifty percent of these compressed samples are randomly selected for the pre-

training stage of DNN, then these samples are used to re-train the deep net, the other 50% of samples 

are used for testing the performance. Then, the obtained over-complete features used for classification 

using different settings of DNN. Finally, we compare our proposed method, using our highly 

compressed datasets, with several existing methods. 

To learn features from these compressed measurements, by using one layer in the encoder, we 

achieved poor classification results. Then, by using multilayer as in our proposed method we have 

obtained better results. Hence, we used a sparse autoencoder neural network with a limited number of 

hidden layers (2, 3, and 4 hidden layers). The structures of these different hidden layers are chosen to 

be in the form of over-complete feature learning (expansion), where the number of neurons in different 

hidden layers network structure is twice the number of neurons in preceding layer, for example, if the 

number of input samples in the input layer is z then the number of nodes in the first hidden layer is 2z 

and 4z in the second hidden layer and so on. The number of nodes of the output layer is limited by the 

number of bearing conditions (6 conditions). A Bi-directional deep architecture of stacked autoencoders 

has been used for the purpose of deep learning, these include feedforward and backpropagation (BP). 

The parameters that control the effects of using regularizers by sparse autoencoder were set as follows: 

the weight decay (λ) was set to very small 0.002, the weight of the sparsity penalty term (β) was set to 

be 4, and the sparsity parameter (ρ) to 0.1. The maximum training epoch is 200.  

7.2.1 Results 

The previous sections have described the principle structure of our proposed method and the 

experimental setup. Various experiments were conducted to use our method for classifying bearing 

faults from different highly compressed vibration measurements. The overall classification results 

obtained from these experiments are shown in Table 7.2. The first major comment is that the 

classification accuracy after the second stage is better than that after the first stage for every dataset at 

these values of α. The classification in the deep net stage (the first stage) achieved good results for 

larger numbers of measurements, i.e., for values of m equal to 512, 256 and 128, and high accuracy was 

achieved by the two hidden layers DNN using only 64 samples of our signal. Most of the classification 

accuracies for the two, three and four hidden layers DNNs using fine-tuning stage (the second stage) 

are 99% or above and some are 100% for even less than 1% compressed measurements of the original 

vibration signal, i.e., when α = 0.006. The two hidden layers of DNN achieved high classification 
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accuracy (98%) for α equal to 0.003 and 0.0016 with 16 and 8 compressed measurements. Moreover, 

the three hidden layers of DNN achieved 100% with only 16 measurements, i.e., α=0.003. Taken 

together, these results show that the proposed method has the ability to classify the bearing conditions 

with a high accuracy from highly compressed bearing vibration measurements.  

      Table 7.2. Overall classification accuracies and their related standard deviations. 

 

In comparison with DNN based on sparse autoencoder using under-complete representations, 

i.e., when the number of nodes in each hidden layer is less than the number of input samples. 

Classification results from several experiments using under-complete feature representations that also 

deal with the same highly compressed data sets are compared to the results acquired using over-

complete representations as shown in Figure 7.2. From this figure, it can be clearly seen that all the 

scenarios of DNNs that used over-complete feature representations outperform all those utilizing under-

complete sparse features when the input samples are extremely compressed datasets (i.e., with only 8 

and 16 compressed measurements). Evidently, the two hidden layers DNNs in all scenarios achieved 

better results than other network structures, i.e., three hidden layers DNN and four hidden layers DNN.  

Figure 7.2 Classification performance of under-complete and over-complete feature 

representations with two, three and four hidden layers DNN. 
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In order to measure the training performance of the proposed over-complete feature based DNN 

compared to under-complete representations based DNN, a typical value of α = 0.025 and two hidden 

layers DNN has been used in this comparison. Figure 7.3 shows that minimum Mean Squared Error 

(MSE) value which is 0.003 was achieved with the training of three hidden layers DNN using over-

complete features in epoch 200, compared to the same DNN structure using under-complete feature 

representations where MSE was 0.021. 

For further verification of the performance of the proposed method, complete comparison 

results of the classification accuracy using the proposed technique compared with three classifiers, 

namely, logistic regression classifier (LRC), support vector machine (SVM) and neural network (NN) 

were used to classify faults from the same highly compressed measurements sets and the complete 

results are shown in Table 7.3. It is clear that the results from our proposed method with a smaller 

sampling rate as in α = 0.0016, 0.003, and 0.006 are better than those achieved by other classifiers. 

Table 7.3. Complete classification results and their related standard deviations using LRC, SVM, NN and 

the proposed method. 

Figure 7.3 Training performance of over-complete feature based two hidden layers DNN and 

under complete feature based two hidden layers DNN (α = 0.025). 
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7.2.2 Effects of parameterization on the classification accuracy 

To control the effects of parameterization on SAEs, some parameters need to be set, these 

include, sparsity parameter (ρ), weight decay (λ) and the weight of the sparsity penalty term (β). To test 

the influence of these parameters values on bearing fault classification performance, several 

experiments have been carried out using our proposed method with two hidden layers, and different 

values of SAE parameterization. The sampling rate α was set to 0.05 where two hidden layers achieved 

100% classification accuracy for both classification stages, i.e., deep net (the first stage) and fine-tuning 

(the second stage) with the parameters values described in section 7.2. As can be seen from Figure 7.4, 

while the classification accuracy is sensitive to the value of λ, there is a very broad range of values for 

ρ and β for which classification accuracies are very high and stable. 

 

 

7.2.3 Comparison of results 

In this subsection, a comparison of several methods using the same vibration dataset as in 

(Wong, et al., 2015). One method uses all the original samples. Each of the two other methods uses 

compressed measurements (for values of α of 0.5 and 0.25) and then reconstruct the original signals. 

These three have been reported in (Wong, et al., 2015). The remaining three are our proposed methods 

to demonstrate the possibility to sample the vibration data of roller element bearings at less than Nyquist 

rate using CS and to perform fault classification without reconstructing the original signal. Table 7.4 

shows classification results of bearing faults using our proposed method with two hidden layers and a 

sampling rate α of 0.5, 0.25 and 0.1 and the reported results in (Wong, et al., 2015) using the same 

dataset. It is clear that all our results are better than those in (Wong, et al., 2015). 

Figure. 7.4. Effects of parameterization on the classification accuracy. 
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Table 7.4. A comparison with the classification results from literature on bearing dataset 
 

  Accuracy (%) 
Raw Vibration (Wong et al., 2015)  98.9 ± 1.2 
Compressed Sensed (α = 0.5) 
(Wong et al., 2015) followed by 
reconstruction 

 92.4 ± 0.5 

Compressed Sensed (α = 0.25) 
(Wong et al., 2015)followed by 
reconstruction 

 84.6 ± 3.4 

This work (α = 0.5) 
                       (two hidden layers) 

Deep net  
(the first stage) 

99.1 ± 1.7 

Fine – tuning  
(the second stage) 

100 ± 0.0 

This work (α = 0.25) 
                       (two hidden layers) 

Deep net  
(the first stage) 

99.6 ± 1.2 

Fine – tuning  
(the second stage) 

100 ± 0.0 

This work (α = 0.1) 
                        (two hidden layers) 

Deep net  
(the first stage) 

99.8 ± 0.1 

Fine – tuning  
(the second stage) 

99.8 ± 0.1 

 

7.3 Datasets A, B, and C: The second bearing vibration data 

We applied the same data processing steps that described in Section 7.2 to each dataset (i.e., A, 

B and C) to obtain compressed vibration signals with different sampling rates (α) (as 0.025, 0.05 and 

0.1, and 0.2) with 60, 120, 240 and 480 compressed measurements of A, B and C original vibration 

signals. Fifty percent of these compressed samples are randomly selected for the pre-training stage of 

DNN, then these samples are used to re-train the deep net, the other 50% of samples are used for testing 

the performance.  

7.3.1. Results 

The proposed method with two hidden layers is used to process the compressed measurements 

of each dataset. The classification accuracy rates are obtained by averaging the results of ten 

experiments for each compressed datasets obtained using the different sampling rates. The average 

accuracies and their corresponding standard deviations of ten experiments for each dataset are shown 

in Table 7.5. One of the more significant findings to emerge from the results in Table 7.5 is that 

classification results after the fine-tuning stage (the second stage) is better than that after the first stage 

for all datasets A, B, and C with different values of α. Also, it shows that the deep net stage (the first 

stage) achieved good results with 99.6% and 99.5% fora= 0.2 with datasets B and C respectively. Most 

of the classification accuracy results after the second stage are above 99% for values of α in the range 

of 0.05 to 0.2. In particular, results after the second stage of our proposed method for datasets B and C 

with α equal to 0.2 achieved 100% accuracy for every single run in our investigations, and also the 



109 
 

100% accuracy achieved for data C for α equal to 0.1. Overall, these results indicate that the proposed 

method has the ability to classify the bearing conditions with high accuracy from highly compressed 

vibration measurements. 

Table 7.5. Classification results for bearing datasets A, B, and C of the second machine. 

 

7.3.2 Comparison of results 

To evaluate the effectiveness of our proposed method, Table 7.6 presents the comparisons with 

some recently published results in (De et al., 2015, and Jia et al., 2016) with the same roller bearing 

datasets A, B and C. The second left-hand column presents the classification results of DNN based 

method in (Jia et al., 2016) while the third column shows the classification results of back propagation 

neural network (BPNN) based method in (Jia et al., 2016). In (De et al., 2015) a generic multi-layer 

perceptron (MLP) was used for the classification purpose.   

Table 7.6. A comparison with the results from literature on A, B, and C bearing vibration datasets of the 

second bearing vibration data. 

Method 
 
 

(Jia et al., 2016) 
DNN 

(Jia et al., 2016) 
BPNN 

(De et al., 2016) 
MLP 

Our proposed method with 
fine-tuning (the second 

stage) with 2 hidden layers 
α = 0.1 Dataset 

A 99.95 ± 0.06 65.20 ± 18.09 95.7 99.3 ± 0.6 

B 99.61 ± 0.21 61.95 ± 22.09 99.6 99.7 ± 0.5 

C 99.74 ± 0.16 69.82 ± 17.67 99.4 100 ± 0.0 
 

It is clear that the results from our proposed methods with fine-tuning (second stage) are very 

competitive. In particular, results from our fine-tuning method with dataset C achieved 100% accuracy 

for every single run in our investigations, even though we are using a limited amount (only 10%) of the 

original data, which are not matched by any of the other methods using 100% of the data. 
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For further verification of the efficiency of the proposed method, we conducted three 

experiments (all with 2 hidden layers and fine-tuning) to examine the speed and accuracy performances 

in several scenarios. The results are presented in Table 7.7. The first column refers to the three datasets. 

The second and third columns describe accuracies and execution times of using a “traditional” 

autoencoder based DNN of (Jia et al., 2016) with 2400 inputs from Haar Wavelet (with no CS), while 

the fourth and fifth columns describe accuracies and execution times of using our sparse autoencoder 

based DNN with 2400 inputs from Haar Wavelet (with no CS). Two things are clear for each of the 

three datasets – 1) our autoencoder based DNN (even without CS) is much faster than (or requires only 

80% of the time of) the “traditional” autoencoder based DNN, and 2) yet our classification results are 

very competitive. 

Table 7.7. A comparison results to examine the speed and accuracy performances in several scenarios 

 
 
 
 
 
 

Dataset 

WT-DNN with Fine-tuning Our proposed method 
with Fine-tuning  

(the second stage) 

Using DNN implementation 
of (Jia et al., 2016) with 2 

hidden layers  
(with no CS) 

Using DNN implementation 
in this paper with 2 hidden 

layers (with no CS) 

WT - CS- DNN   
      (2 hidden layers) 

 Accuracy 
 (%) 

Time 
(mins) 

Accuracy 
 (%) 

Time 
(mins) 

Accuracy 
(%) 

Time 
(mins) 

A 99.0 ± 0.1 41.5 ± 0.3 99.4 ± 0.5 34.1 ± 0.7 99.3 ± 0.6 5.7 ± 0.1 

B 99.1 ± 0.6 43.3 ± 0.7 99.5 ± 0.8 32.9 ± 0.3 99.7 ± 0.5 5.9 ± 0.4 

C 99.6 ± 0.3 43.1 ± 0.2 99.8 ± 1.1 34.2 ± 0.9 100 5.7 ± 0.2 
 

The sixth and seventh columns describe accuracies and execution times of using our proposed 

sparse autoencoder based DNN with 240 inputs from Haar Wavelet (with CS). Two things are clear for 

each of the three datasets – (1) our autoencoder based DNN (even with CS) is significantly faster than 

(or requires only 15% of the time of) the “traditional” autoencoder based DNN, and (2) yet our 

classification results are as good as, if not better than, the other two scenarios. 

In summary, the significant reduction in computation time comes from two sources – (1) using 

our proposed sparse autoencoder and (2) using CS. Finally, our complete proposal (using sparse 

autoencoder and CS) achieves classification results for all three datasets that are as good as, if not better 

than, the other two scenarios. 

7.4 Summary and conclusions 

In this investigation, the aim was to assess the classification of bearing faults from highly 

compressed measurements based on CS. The proposed method includes the extraction of over-complete 

sparse representations from highly compressed measurements. It involves the unsupervised feature 

learning algorithm SAE for learning feature representations in multi-stages of non-linear feature 
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transformation based on DNN. The accuracy of the proposed method is verified using highly 

compressed datasets of rolling element bearings signals obtained using different compressed sampling 

rates. These compressed datasets contain fewer samples for each bearing condition. The most obvious 

finding to emerge from this study is that, despite achieving fairly high classification accuracy in the 

first stage, the proposed method is able to achieve higher classification accuracy in the second stage 

even from highly compressed measurements compared to the existing methods. Moreover, 

classification results from our proposed method outperform those achieved by reconstructing the 

original signals. Additionally, a significant reduction in computation time is achieved using our 

proposed method compared to another autoencoder based DNN method in (Jia et al., 2016), with better 

classification accuracies. The implication of this is the possibility that the proposed method of 

compressive sensing in machine faults classification will require fewer measurements thus it would 

reduce the computational complexity, storage requirement and the bandwidth for transmitting reduced 

data.  
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Chapter 8 

Conclusions and Future Work 

 

8.1 Conclusions 

There is a growing body of literature that identifies various methods for bearing fault detection 

and classification. However, the performance of these methods is limited by the massive amounts of 

data need to be collected for Machine Condition Monitoring (MCM). It is clear that acquiring a large 

amount of data requires large storage and time for signal processing and this also may limit the number 

of machines that can be monitored remotely across wireless sensor networks (WSNs) due to bandwidth 

and power constraints. 

This thesis includes developments in the vibration-based computational analysis of a large 

amount of acquired vibration dataset for condition monitoring of rolling bearings. Aiming to address 

the challenges of learning from high dimensional data and embrace the efficiency of CS in improving 

rolling bearings condition monitoring, chapter 4 (Methodology) presents novel methods, namely the 

compressive sampling and feature ranking (CSFR) framework based methods, the compressive 

sampling and subspace learning (CSLSL) based methods, and the compressive sampling and sparse 

autoencoder based deep neural network (CS-SAE-DNN) method. These methods represent the original 

contribution of this thesis in designing new methods for vibration-based rolling bearing condition 

monitoring. 

Chapter 5 (CSFR framework Assessment and Validation) presents several experiments that 

we have conducted to verify the capability of the CSFR framework for rolling bearing health condition 

diagnosis. This achieved by investigating the combination of MMV-CS and several feature ranking 

techniques – i.e., FS, LS, Relief-F, PCC, and Chi-2 – to learn fewer features from a large amount of 

vibration data from which bearing health conditions are classified . Three classification algorithms, 

LRC, ANN, and SVM are used to classify bearing health conditions. Two case studies of bearing health 

conditions diagnosis are used in this investigation with the aims to (1) validate the proposed framework 

for bearing health conditions diagnosis, and (2) observe the best combinations of MMV-CS, feature 

selection techniques, and classifiers with reduced complexity and improved classification accuracy. 

Our validation experiments have demonstrated that our proposed framework, CSFR, has the 

ability to achieve high classification accuracy in all of the faults studied in this chapter.  



113 
 

Comparisons of CS-based vibration signal recovery for machine fault diagnosis method in 

(Wong et al., 2015) and non-CS-based techniques in (Guo et al., 2005), (Seera et al., 2017) and (Yu et 

al., 2018) show that the learned features of the proposed CSFR-based techniques achieved better 

classification results although we are using only 10% (α = 0.1) of the original vibration data that not 

matched by the other method mentioned above.  

Chapter 6 (Assessment and Validation of CSLSL based techniques for bearing health 

condition diagnosis) describes various experiments that we have conducted to verify the ability of 

CSLSL framework for rolling bearing health conditions diagnosis. This achieved by investigating the 

combination of MMV-CS and two linear feature extraction methods, namely, unsupervised PCA and 

supervised LDA, to extract fewer features from a large amount of vibration data. With this fewer 

features, LRC is used to classify bearing health conditions. Furthermore, the CS-CPDC method is 

assessed and validated for bearing health condition diagnosis. 

Our validation experiments have demonstrated that choices of small values α (0.05 and 0.1) can 

lead to high classification accuracies in CS-PCA, unlike CS-LDA that achieved low classification 

results although it obtained 100% classification accuracy for α = 0.2 and 0.4. However, the classification 

accuracy obtained using the CS-CPDC method with 10% of the original data is better than the results 

obtained by CS-PCA and CS-LDA and the improvement is statistically significant.  

The comparison of non-CS-based techniques such as in (Li et al., 2013; Jin et al., 2014; Du et 

al., 2014; Van et al., 2015; Zhang et al., 2015; Van et al., 2016; Xia et al., 2017&2018) with the proposed 

CS-CPDC technique show that the learned features of CS-CPDC achieved better classification results, 

even though we are using only 10% (α = 0.1) of the original vibration data.  

Chapter 7 (CS-SAE based DNN technique Assessment and Validation) presents a number 

of experiments that have been conducted to validate the efficiency of CS-SAE-DNN technique, which 

is described in Section 4.4, for rolling bearing health condition diagnosis. This was achieved by the 

application of CS-SAE-DNN in four vibration datasets collected for the purpose of bearing health 

condition monitoring. These are the first bearing vibration data and datasets A, B, and C of the second 

bearing vibration data described in chapter 3. In these experiments, we explored computationally, the 

effects of SAE based over-complete sparse representations on the classification performance of CS-

based highly compressed measurements of bearing vibration signals. 

The most obvious finding to emerge from our validation experiments is that, despite achieving 

fairly high classification accuracy in the first stage, the proposed method is able to achieve even higher 

classification accuracy in the second stage from highly compressed measurements compared to the 

existing methods. In particular, most of the classification accuracies for the two, three and four hidden 

layers DNNs using fine-tuning stage (the second stage) are 99% or above and some are 100% for even 

less than 1% compressed measurements of the original vibration signal, i.e., when α = 0.006. The two 
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hidden layers of DNN achieved high classification accuracy (98%) for α equal to 0.003 and 0.0016 with 

16 and 8 compressed measurements. This provides strong evidence for the advantage of CS-SAE-DNN 

technique in cases where high levels of data compression are required to address the challenges of 

learning from high dimensional data. 

Moreover, classification results from our proposed method outperform those achieved by 

reconstructing the original signals. Additionally, a significant reduction in computation time is achieved 

using our proposed method compared to another autoencoder based DNN method (Jia et al., 2016), with 

better classification accuracies.  

Taken together, these results show that the proposed methods have the ability to classify bearing 

health conditions with a high classification accuracy using fewer measurements. The implication of this 

is the possibility that the proposed methods of compressive sampling in machine faults classification 

will require fewer measurements thus it would reduce the computational complexity, storage 

requirement and the bandwidth for transmitting reduced data.  

8.2 Future work 

These research findings provide the following insights for future work:  

 If the research is to be moved forward, a better understanding of CS in machine fault diagnosis 

needs to be developed. This would be a fruitful area for further work of developing CS with 

respect to classification.    

 With respect to the CSFR framework to bearing vibration dataset, we investigate the combination 

of CS and several feature ranking techniques to reduce a large amount of bearing vibration signals 

and select fewer representative features for fault classification. Three classifiers are then used to 

produce the final results of bearing health condition. In spite of that, the CSFR framework has 

the capability to make use of existing feature selection and classification methods in addition to 

the new developing methods. Hence, other alternative sparse representations, feature selection, 

and classification algorithms need to be investigated.  

 In 2009, Baraniuk and Wakin demonstrated that random linear projections can efficiently 

preserve the structure of manifold (Baraniuk and Wakin, 2009). Hence, further exploration of the 

use of the other nonlinear variants of PCA and LDA like kernel-PCA (KPCA) and other manifold 

learning techniques in combination with CS may be beneficial to be examined. 

 Investigation and experimentation into other alternatives methods for over-complete 

representations in combination with CS are strongly recommended. 

 The future work may also include the application of the proposed method to fault diagnosis for 

other rotating machineries like induction motors, turbines, and gearboxes.  



115 
 

 This research provides a successful study of automatic fault diagnosis of rolling bearings using 

CS and learning algorithms. The proposed methods in this thesis and other methods that will be 

investigated in the future can be integrated into a complete toolbox for fault diagnosis, which will 

benefit the practitioners and researchers involved in the field of vibration-based machine 

condition monitoring.  
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