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Abstract 

The huge appreciation received by the Software Defined Networking (SDN), Network 

Functions Virtualization, and Cloud Computing in latest years pushed researchers, 

vendors, and mobile network operators to investigate the possibility of innovative 

design that integrates these technologies in cellular network aiming to overcome the 

limitations posed by currently deployed mobile networks and cope with the increasing 

demands of mobile customers.  

This thesis describes an experimental investigation, design, implementation and 

evaluation of three different solutions to integrate SDN with mobile network. 

The first two approaches exploit the evolution of SDN where the control plane of the 

current LTE entities like the Mobility Management Entity, Serving Gateway and 

Packet Data Network Gateway are running as packages in an SDN controller or as 

VMs running in a cloud environment, while the data plane entities are represented by 

Openflow switches and eNodeBs.  

The third approach uses SDN as an add-on to the backhaul of the existing cellular 

network to introduce variety of new services, selective traffic offloading to cloud-

based infrastructure is used to demonstrate the advantage and disadvantage of 

different solution to implement this approach. 

Whereas all the proposed solutions have been proven to provide enhancement to the 

system performance. The first solution shows that utilizing SDN helps to reduce the 

signalling load, provides faster recovery time and better resource utilization. 

Extending Openflow protocol plugin to support mobile network operations reduce the 

initial attachment signalling loads by 66% and serving gateway failover by 40%. 

In the Second solution, utilizing SDN enhanced the core network links utilization by 

25% compared to the current mobile network implementation. Also, it reduced 

queuing time and the packet loss by up to 4% when the network is congested, which 

contributes to reduce the end-to-end delay by up to 27.9%. 

In the last solution, SDN is utilized to move the content near to the mobile users, which 

contributes to reduce the end-to-end delay of the delay sensitive traffic. The packet 

processing time in the third approach is much less that the first two approaches which 

contributes to provide better performance in term of end-to-end delay.   
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1 Introduction 

1.1 Introduction 

This chapter briefly describes motivation behind the research, followed by an 

explanation of some challenges of the Evolved Packet System (EPS) along with 

description of the open challenges facing the Software Defined Network-Evolved 

Packet Core (SDN-EPC) integration. It briefly describes the main contributions of the 

research and shows the used research methodology. Finally, it summarizes the other 

chapters of this thesis. 

1.2 Motivations 

In the recent years, the world has witnessed a massive growth in mobile broadband 

traffic, due to increasing numbers of connected devices, such as smartphones and 

tablets. Customers’ expectations for high speed mobile broadband are on the rise as 

people rely more and more on real-time mobile applications, high quality video content, 

cloud-based services and expect to stay connected anytime, anywhere. Consider that 

the existing cellular network suffers from inflexible and expensive equipment, complex 

control plane protocols, vendor-specific configuration interfaces [1] and inefficient 

routing due to the centralized gateway, which has defects of long latency, data 

forwarding inefficiency, and user plane congestion.  

The massive growth of mobile users’ data traffic requires a significant re-design of the 

network’s data and control plane infrastructures. In fact, now it is widely accepted that 

future cellular networks will require a greater degree of service awareness and optimum 

use of network resources. The motivation is to simplify the mobile network deployment 
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and operations by providing a programmable system that allows operators to deploy a 

new service or tune an existing one in a simple, flexible manner.  

Mobile core network is a crucial part of the wireless network, and for this reason its 

virtualization/softwarization represents a challenging issue in the emerging mobile 

networks.  

In the meantime, SDN continues to be the dominant topic of interest in networking 

today. It is proposed as a way to provide a centralized view and programmatically 

controlled networks, making it easier to deploy new applications and services, as well 

as tuning network policy and performance. This will make networks more adaptable 

and easily configurable in order to meet changing demands and operating 

environments. Open standards, such as OpenFlow, transform networking architecture 

and turn individual network elements into programmable entities. By decoupling the 

control and data planes, network intelligence and state are logically centralized, and the 

underlying network infrastructure is abstracted from the applications. As a result, 

highly adaptive, flexible, and scalable networks can be built [2]. SDN has been 

successfully implemented in data centres, Wide Area Network (WAN), and campus 

networks. The results have been promising but have as yet had little impact on cellular 

networks. Only recently, 

SDN has attracted attention in the area of mobile communications networks. Extensive 

studies and research have been conducted in an effort to simplify the design and 

management of the existing cellular networks by introducing Control Plane User Plane 

separation (CUPS) and running the functions as applications on a logically centralized 

controller. This flexibility makes it possible to build network applications that are not 

only 3GPP compliant, but also implement innovative schemes from third party 

providers, such as location-based services and optimized content distribution and 

content caching. 

1.3 Aims and Objectives 

The aim of this research is provide comprehensive solutions to enhance cellular 

network in term of both design and performance, this includes: i) simplify the design 

and management of the network to reduce the deployment and operating cost; ii)  

increased capacity, improved data rate, decreased latency, and better quality of service. 

This research presents several Open-flow based solutions to simply the mobile network 

design while providing better performance. The adaptation of Software Defined 
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Networking along with the Network Function Virtualization in the proposed solutions 

play a major role to simplify the network design and deployment. Three Objectives are 

described below. 

❖ The first part of this research investigates the signalling loads of several mobile 

procedures such as Initial-Attachment, mobile network entity failover and load 

balancing procedures. The system performance of the current mobile network 

during these procedures is presented and compared with the Openflow-based 

approach, more consideration is given to the structure of the Openflow protocol 

and what kind of extensions are required to improve the performance of 

Openflow-based mobile network. 

❖ The second part focus on the hierarchal design and routing in the mobile 

network. and the inefficient routing. This part addresses the link utilization and 

how to optimize the use of the available reassure by demonstrating a way to 

reduce the overhead coming from using protocol like GTP. 

❖ The third part shows the new services that can be adopted on the mobile network 

by using Openflow-based network. Cloud-based offloading is used to 

demonstrate one of many possible services that can be adopted in both 4G and 

5G mobile network. The part describes in detail several challenges that comes 

with the Cloud-based offloading such as mobility and accounting 

1.4 Challenges 

The continuously increasing demand and expectation of the mobile network users make 

network operators boost their effort to evolve and meet the market demands with a wide 

range of services. This section summarizes the challenges of the current EPS that make 

it difficult to meet the new network requirements, moreover the challenges of the SDN-

EPC integration is discussed. In EPS, the EPC entities are specialized hardware that 

interact between each other through standardized interfaces. They require static 

deployment, provisioning, and configuring. As a consequence, the openness of the 

network architecture is extremely limited, which makes it lack in flexibility, 

dynamicity, or on-demand features. Therefore, it is very difficult to introduce a new 

service by the network operation and very expensive to upgrade the network. In EPS, 

the PGW is responsible for the IP address allocation of the UEs and acts as its gateway 

to the IP networks. The UE gateway is not changed even if a UE moves a long distance, 
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which introduces inefficient routing due to the centralized gateway, since this 

hierarchical design requires the UE traffic to traverses the core network even if some 

data traffic is going to/from local application servers, e.g. enterprise cloud servers [3]. 

Therefore, EPS has defects of long latency, data forwarding inefficiency, and user plane 

congestion. In EPS network entities restoration procedure is not transparent e.g. SGW 

failure procedure requires the release of access bearers of all the UEs served by the 

failed network entity and waits for the UEs to initiate service request procedure to 

restore the service, which causes service interruption and significant amount of 

signalling. Also, a weighting factor is used for traffic distribution, which makes it 

difficult to optimize network resource by considering network conditions and service 

requirements holistically. Researchers in both academia and industry consider SDN-

based solutions for the next mobile network, considering that SDN is a novel approach 

that gained great momentum and interest. It separates the control plane from the data 

plane and uses open interfaces to increase system programmability. There are different 

points of view on where to deploy SDN in the mobile network, but the foremost 

attention goes towards deploying SDN-based core network. This adaptation is still at 

an early stage and different conceptual and technical solutions are proposed by 

researchers. These SDN-EPC integration proposals accommodate many challenges that 

include: 

➢ Ability of the proposed solution to be scalable and handle the communication 

between the data and control planes without introducing a single point of failure 

in the system. Moreover, the ability of the centralized controller to handle a 

large network. 

➢ Backward compatibility with the current LTE standard, and this point looks like 

it is either dismantled or intentionally ignored by the researchers. 

➢ OpenFlow does not support GTP operation and researchers are divided into two 

parties, first extend OpenFlow protocol to support GTP operations and second 

eliminate GTP and reduce the added overhead. 

➢ Ability to provide an efficient and optimized way to handle handover 

considering that UE mobility is an important character of the mobile network. 

➢ Provide effective load balancing by distributing network load efficiently 

between the data plane Forwarding Devices (FDs). 
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It is of critical importance to address these challenges, and although the researchers 

were diligent in this respect, most of them have produced no performance validation of 

their proposed architectures or their findings have not been sufficiently strong to 

provide practical suggestions, whereas other works evaluate their proposals using a 

proprietary testbed or using a platform that is privately owned and created by the 

authors. Thus, there is room for an open, more generic, flexible and powerful tool to 

evaluate these integrated networks. 

1.5 Contributions 

This thesis discusses how SDN, specifically OpenFlow protocol, can play a major role 

in enhancing the existing LTE networks by providing programmability, flexibility and 

ease of network management for operators. The contributions of this research as 

following: 

❖ Extend OpenFlow protocol to support GTP operations and design SDN oriented 

mobile core network called Software Based Mobile Core Network Architecture 

(SBMCNA). SBMCNA discusses the required modifications within the EPC in 

order to overcome some of the limitations of the current EPS. Load balancing 

and resiliency were used to demonstrate the capability of the proposed system 

to reduce the signalling load. The performance of the system using three 

different methods to support GTP operations is compared and evaluated. Then 

presents the benefit of extending OpenFlow plugin to build an intelligent FD 

that can handle new set of messages designed specifically for the mobile 

network. Finally, demonstrate the benefit of using SDN agent in the OpenFlow 

FD to enhance system performance in term of reducing signalling loads and 

offload some of the controller tasks to the FDs. 

❖ Presents new mobile core network architecture, called Software Defined 

Evolved Packet Core (SDEPC), whose inherent SDN characteristics to provide 

an abstraction layer separating the control plane from the underlying user plane. 

The architecture proposes an SDN-based transport network to handle user 

traffic during mobility without implementing a GTP which is used by 3GPP 

standards. SDEPC improves system performance in terms of end-to-end delay, 

packet loss ratio and bandwidth utilization. Removing GTP introduce backward 
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compatibility issue, therefore, a hybrid network that can operate with and 

without GTP is built to keep the interoperability with legacy networks. 

❖ Present three different solutions to implement selective traffic offloading to a 

cloud-based infrastructure assumed to be available in the near proximity from 

the mobile access network, then model the proposed solutions in OMNeT++ 

and compare the performance of these solutions. 

❖ Build OMNeT++ model to simulate software based mobile core network. The 

simulation model has the capability to simulate all the aforementioned networks 

and it is flexible enough to be extended to test new ideas and protocols. 

1.6 Methodology 

The rapid growth of mobile users’ demands and Capital Expenditure (CAPEX) and 

OPerational EXpenditure (OPEX) costs for network operators to innovations in the 

mobile network to cope with their users’ demands represents the biggest motivation for 

this thesis to evaluate the advantages offered by SDN-EPC integration. The hierarchical 

SDN-EPC integration trend in this work starts from overcoming the high signalling 

overhead, load distribution and SGW failover of EPS network as the first challenge, 

then moves towards inefficient data forwarding and interrogability, and ends with 

selective traffic offloading to cloud based infrastructure. In this thesis, the 

aforementioned challenges are discussed in detail, and then illustrations of existing 

solutions are presented, followed by our own solutions to improve the performance and 

avoid the limitations and difficulties that may degrade the system’s performance, as 

well as comparing the performance of our solution with other solutions if required. 

Software Based Mobile Core Network Architecture is proposed to overcome the first 

challenge and SDEPC is used to provide better performance and more efficient routing 

to provide better latency. Finally, three solutions are compared to provide selective 

traffic offloading. Simulation-based experiments are used to evaluate and validate the 

performance of the proposed systems. The proposed systems are modelled in 

OMNeT++. The model includes: centralized SDN controller with a set of mobile 

network function applications. The data plane FDs are simulated by a combination of 

standard and modified OpenFlow switches. A number of different scenarios and case 

studies are designed and simulated, and the outcomes are compared and evaluated. 
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1.7 Publications 

❖ OpenFlow 1.3 Extension for OMNeT++ 

➢ Published in: 2015 IEEE International Conference on Computer and 

Information Technology; Ubiquitous Computing and Communications; 

Dependable, Autonomic and Secure Computing;  Pervasive Intelligence and 

Computing 

❖ Simulation and Performance Analysis of Software-Based Mobile Core Network 

Architecture (SBMCNA) using OMNeT++ 

➢ Published in: 2018 IEEE International Symposium on Broadband 

Multimedia Systems and Broadcasting (BMSB) 

❖ Software Defined Selective Traffic Offloading (SDSTO) 

➢ Published in: 2018 IEEE 23rd International Workshop on Computer Aided 

Modelling and Design of Communication Links and Networks (CAMAD) 

1.8 Thesis Organisation 

This thesis consists of a total of eight chapters, beginning with an introductory chapter 

to outline the reason behind the research, the challenges and the methodology of the 

research. Each chapter starts with an introduction and ends with a summary. The 

chapters are independent, and the readers are advised to follow the right order to fully 

understand the presented ideas in the thesis. The structure of the remainder of the thesis 

is organized as follows: 

❖ Chapter 2: conducts an extensive survey to present the relevant literature on 

the adaptation of SDN in the mobile core network. These works include a 

proposal to keep GTP as the main data plane protocol, and another to eliminate 

the GTP tunnel. It also shows the differences between our work and the others. 

❖ Chapter 3: briefly describes the difference between traditional network and 

SDN, then it describes OpenFlow protocols and its switch design structure 

based on different version of the specifications. It also shows the OMNeT++ 

model built to simulate Openflow-based network. 

❖ Chapter 4: introduces EPS technology and its main building components. It 

briefly describes the communication interfaces, protocols, UE procedures. Then 

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7361821
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7361821
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7361821
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7361821
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7361821
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7361821
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8412472
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8412472
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8500732
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8500732
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8500732
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8500732
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presents and discussed in detail the design structure and functionality of the 

OMNeT++ model that used to simulate the control plane of EPS network. 

❖ Chapter 5: Review one of the SDN-EPC integration proposals and identifies a 

few issues. Then discusses new network architecture with three methods to 

support GTP in OpenFlow switch, followed by a comparison between the 

systems performance handling SGW fail-over and traffic distributions. 

❖ Chapter 6: represents the second contribution of our research. It shows the 

benefit and the advantage of eliminating GTP and using the centralized control 

plane of SDN with a layer 2 technology to handle UEs traffic forwarding and 

maintain it during handover. It also describes major issue with removing GTP 

and proposed a solution. 

❖ Chapter 7: describes the third contribution which focus on selective traffic 

offloading to a distributed cloud infrastructure. Three different solutions are 

discussed and compared in this chapter. 

❖ Chapter 8: concludes the works presented in the thesis by summarizing the 

research finding and points out potential future work. 
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2 Literature Review 

2.1 Introduction 

The world is witnessing a rapid growth in mobile data broadband, where users expect 

to be connected anywhere and anytime. Cisco predicted [5] that global data traffic 

generated by mobile network will increase 8-fold between 2015 and 2020. Mobile 

operators are forced to handle the significant growth in data traffic in very resourceful 

ways due to the design of the existing mobile network. Many works proposed to use 

Software Defined Networking (SDN), Network Function Virtualization (NFV) and 

cloud computing as enabling technologies to design a new scalable and flexible cellular 

network, which provides fine-grain control for network management, while keeping 

costs to the minimal. SDN is an emerging technology and there are many opinions on 

how to integrate it with the cellular network. This includes whether to use it to build a 

new slate design like the works presented in [6][7][8][9][10] or use as extension to the 

existing mobile network to improve the network performance like the works presented 

in [11][12][13][14]. 

Other works proposed to replace control elements by centralized software to provide 

on-demand connectivity and services such as the works presented in [4][15][16], 

whereas the works presented in [17][18][3][19] focus on the integration of SDN and 

NFV to overcome the limitations of the existing mobile network to make possible 

upcoming 5G networks. Also, the authors of [20] focuses on the realization of on-

demand cloud-based mobile core network to provide EPC as a service. The authors of 

[21] proposed to use SDN to provide Layer 2 based backhaul network. Meanwhile, the 

works presented in [22] [23] focus on enhancing the user experience by utilizing SDN. 

The authors of [22] introduce virtual mobile core network built by utilizing 
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technologies like SDN, NFV, and MobileVisor to provide control slicing which allows 

multiple operators to use the same core network, which helps to reduce the deployment 

and operation costs as well as use network resources efficiently, while the authors of 

[23] used multimedia services provided by the IP Multimedia Subsystem (IMS) to 

demonstrate the advantage of SDN-based mobile core network to the user experience. 

The authors of [24][25][26][27][28][29] proposed the redesign of the existing mobile 

network to provide Distributed Mobility Management (DMM) by utilizing SDN and 

NFV. The surveys conducted by [30][31] describe the development of Software 

Defined Mobile Networks (SDMNs) and present several research directions. The rest 

of the chapter is organized into 4 sections namely: i) Software-defined Mobile Network 

Architecture (SDMNA); ii) SDN as an add-on; iii) Software Defined Virtualized 

Mobile Network Architectures (SDVMNA); iv) Cloud Radio Access Network (RAN) 

and SDMN Security. 

2.2 Software Defined Mobile Network Architecture  

This section describes SDN-based network architectures, which redesign the current 

cellular network components for providing scalable and flexible cellular networks. 

These architectures use Openflow as the southbound protocol. This section is divided 

into two sub-sections, the first sub-section describes network architectures that assumes 

or defines extensions to the protocol to support GTP operations, while the second sub-

section includes ”new slate” network architectures that eliminate the GTP tunnelling 

and network architectures that eliminate the GTP tunnelling only over the S1 interface 

to provide layer 2 based backhaul. The authors of [32][33] specify the control plane 

complexity and inflexibility of the current cellular network that makes it difficult to 

evolve the system to address the future requirements of the users. The authors argue 

that SDN-based cellular network provides simplified cellular data network design with 

ease of management, while enabling new services. 

In [32] the authors describe the challenges of the pure SDN-based mobile network to 

support a huge number of subscribers, handle their mobility and provide fine-grain 

measurement. Then they proposed to extend the SDN controller, switch and the 

eNodeB to include more features and functionality to address the aforementioned 

challenges. These extensions include i) policy-based forwarding that utilizes 

subscribers’ attributes; ii) local agent in each switch; ii) Deep Packet Inspection (DPI). 
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In [33] the authors focus on inter-operation with other wireless network technologies 

and other operator networks. The authors describe the benefit of the SDN-based cellular 

network to support flexible resource slicing based on the subscriber’s attributes rather 

than the header fields of the data traffic. The authors describe how the centralized radio-

slicing can provide isolation between the Radio Resource Management (RRM), 

admission control, and mobility management of each slice. The work presented in [34] 

is built upon the works presented in [32] and [33].  

The authors present their envisioned SDN-based cellular network design that reshapes 

the current mobile network and provides a backward-compatible modular cellular 

architecture. The authors argue that their architecture will reduce the operating cost 

because the centralized control plane helps to reduce the network maintenance and 

upgrade costs. The authors used UE mobility management as a case study to 

demonstrate the benefit of the proposed architecture. The authors claim that their 

architecture: i) enhance the power consumption of the UEs, which increase the increase 

the battery life; ii) provides better mobility management which reduces the signalling 

loads; iii) improve the handover delay. The authors think that the proposed architecture 

will reduce the signalling loads by 50% considering the number of mobile subscribers 

worldwide has exceed 6 billion in 2012 based on Infonetics Research on the Total Fixed 

and Mobile Subscribers, April 2102. However, no actual validation is provided. 

Meanwhile the work presented in [35] and [1] describes scalable SDN-based cellular 

core network architecture known as softCell. The authors emphasize on the 

improvement offered by the softCell architecture to the cellular system scalability and 

flexibility. In [35] and [1] the authors present the softCell architecture and describe 

how to connect the unmodified UE to the Internet without the need for specialized 

complex networking elements or complicated protocols to handle the setup and 

management of users’ traffic forwarding. 

SoftCell consists of SDN controller, Access switch attached to each eNodeB, core 

switches and commodity middleboxes such as dedicated appliances, virtual machines, 

or packet- processing rules on switches as shown in Figure 2.1. The authors describe 

the challenges of the SDN-Based Cellular Core Network that includes: i) support fine-

grained service policies with small switch tables; ii) support fine-grained packet 

classification in asymmetric topology; iii) scalable handling of network dynamics. The 

authors proposed to use multi-dimensional aggregation, smart access edge, dumb 

gateway edge and smart local agent at base stations to address these challenges. 
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The authors used floodlight controller [36] to implement SoftCell prototype and 

benchmarks the performance of the SDN controller and the SDN agent in small and 

large-scale simulations. The obtained result shows that SoftCell achieves scalability in 

both control and data plane by offloading packet classifiers and policy tags at local 

agents of the FDs and pushing packet classification to low-bandwidth access switches 

respectively. 

 

Figure 2.1:  SoftCell Network Architecture proposed by [35][1]  

2.2.1 SDMNA with GTP Extensions 

The authors of [4] think mobile networks can cope with the increasing demands of their 

customers and ever-changing network conditions that include sudden congestion, 

network device failure by using on-demand connectivity service. The authors described 

how LTE handles several procedures that include: i) service request procedure; ii) 

resiliency; ii) load balancing and specified the drawbacks of these procedures, that 

include: i) systematic establishment of the EPS bearer even when there is no data to 

use the bearer; ii) TEID value of the GTP tunnels is locally allocated by each node; iii) 

complicated SGW failover procedure that involves releasing the bearers of all UEs and 

waiting for the UEs to re-initial the service request procedure, which produces more 

signalling loads in the system; iv) load distribution based on a pre-configured weighting 
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factor and unaware of the current network load. Therefore, authors argue that LTE/EPC 

lacks the network visibility and control elasticity that enables the on-demand 

connectivity service and proposed to use SDN based network to provide the tools and 

possibility to overcome these drawbacks. The authors proposed an OpenFlow-based 

control plane for LTE/EPC architectures as shown in Figure 2.2. 

 

Figure 2.2: On-Demand Connectivity Architecture proposed by [4][15] 

It basically consists of OpenFlow-enabled eNodeBs, set of OpenFlow switches, SDN 

controller, and PGW in which the MME and the control plane of the serving gateway 

(SGW) are running as an application on top of the controller. The SGW application 

communicates with PGW using the same primitives specified by the 3GPP. The authors 

proposed to substitute the eNodeB S1-MME interface with OpenFlow switch to send 

the UE control message using OpenFlow Packet-In to the SDN controller. In the 

proposed architecture the SGW control plane is centralized and uses the OpenFlow 

protocol to remotely manage the SGW data forwarding plane. This separation is built 

into the system to ensure that the on-demand connectivity service operates even in 

critical situations such as network equipment failure and overload situations. The 

authors used the service request procedure, resiliency, and load balancing to 

demonstrate the advantage of the proposed architecture and show how it can guarantee 

the on-demand connectivity service. In this architecture the first packet of each flow is 

sent to the controller and based on the session type (derived from the first packet 

headers), network loads and statistics, forwarding rules are installed to forward the 
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session utilizing the best available routing path to guarantees the on-demand 

connectivity service. 

Also, work proposed by [15] uses the same network architecture presented in [4], the 

authors think that the programmability offered by this architecture will help network 

operators to cope with the new demands and overcome most of the new network usage. 

Signalling cost analysis derived from mathematical calculation is used by the authors 

to show and evaluate the boost in system performance to the standard LTE/EPC 

implementation. Several use cases are utilized in this work. This includes i) Initial-

Attachment; ii) Access-Bearer-Setup; iii) Access-Bearer-Release procedures. The 

preliminary result shows that using OpenFlow can reduce the signalling load for UE 

S1 and S5 and data bearer parameters are kept in the network equipment during the 

application IDLE period because the controller is responsible for setting the optimal 

release timer for each flow entry to help reduce the signalling load and memory space 

usage in network equipment.  

While the architecture presented in [16] used an approach that is similar to the works 

of [4][15]. The authors proposed an OpenFlow-enabled mobile core etwork called 

OFEPC. In this approach, the control plane of all EPC entities is centralized and 

running as applications on top of OpenFlow controller. The only difference between 

this approach and the work proposed by [4][15] is the control plane and data plane 

separation of the PGW as shown in Figure 2.3. 

 

Figure 2.3: OpenFlow-enabled mobile core network Architecture proposed by [16] 
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The authors think that the centralization of the PGW control plane will feather enhance 

the system performance compared to [4][15]. The authors used initial attachment, UE-

triggered service request, network-triggered service request, handover, and the tracking 

area update procedure to demonstrate the boost in performance offered by the new 

architecture. The authors think that their proposal increases the flexibility of the mobile 

core network and offers a wide range of innovations for the operator without the need 

for the vendor intervention whilst also the proposed architecture eases configuration 

and management. Numerical results derived from mathematical equation is used to 

show the reduction in signalling load in comparison with the traditional LTE/EPC 

architecture and the work proposed by [15].  

The authors of [37] present an evolution to the mobile EPC to simplify the 

configuration and maintenance and eliminate the distributed IP routing control plane. 

The authors proposed to pull out the control plane of EPC entities and run it on virtual 

machines in a data centre separated from the data plane implemented by a mesh of 

OpenFlow switches that enhanced with GTP routing extensions. The authors explained 

in detail the required extension to OpenFlow 1.2 switch design to allow EPC gateway 

nodes to support GTP encapsulation and decapsulation along with the OpenFlow 

protocol modification required to allow flow routing based on the GTP header field and 

Tunnel Endpoint Identifier (TEID). The authors used Selective Flow Routing for In-

Line Services, Multihomed Terminals, and Security Isolation of Mobile Terminals use 

cases to demonstrate the advantage of the proposed architecture. 

The authors of [38] present another method to support GTP operation in SDN-based 

core network design. The proposed solution does not require an extension to OpenFlow 

protocol or upgrading the switch design. The authors explain the operation of the GTP 

in term of packet structure, the processing mechanism, and processing delay. Then they 

proposed to carry TEID value in the source IP source field of the network layer header. 

This way the key field (TEID) of the GTP layer is visible in network layer header and 

can be parsed by current protocol and routing devices. An experiment is conducted by 

the authors to measure the feasibility of the proposed architecture and verify the 

possibility of parsing higher-layer field in a lower-layer. The obtained processing delay 

of the conducted experiment is high at approximately 75ms, but the authors argue that 

the delay is scale independent.  

Meanwhile the work presented in [39] discusses the potentials and limitations of a 

possible 5G network that integrates SDN technology, specifically OpenFlow protocol, 
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with the existing mobile networks. The authors describe the benefits of this integration 

in terms of increasing network flexibility by providing network-wide programmability. 

Also, the authors highlighted some open challenges that include: GTP extension, 

scalability, interoperability, mobility, and routing. The authors used the NS3 simulator 

to build software realizing of the SDN-LTE integration. The authors used a 

combination of OpenFlow 1.3 module with NS3 LTE module to build a simulation 

environment for the SDN-LTE integration. The authors extend OpenFlow protocol to 

support TEID matching and introduce a specialized EPC controller to build a scenario 

that consists of OpenFlow based backhaul network to communicate with the EPC 

MME to evaluate how the SDN-LTE can provide better source utilization. 

Meanwhile authors of [40] focus on providing better load distribution while reducing 

the signalling loads. The authors propose to use flow-based load balancing by utilizing 

the same SDN-Based architecture proposed by [4][15]. The authors wrote load 

balancing algorithms that utilize the network stats gathered from the network data plane 

FD every 1s. An experiment is conducted by the authors using mininet to demonstrate 

how the combination of SDN-based core architecture with their proposed load 

balancing algorithm can provide better traffic distribution between data plane nodes, 

which preserved the high throughput and decreased latency among the new network 

node. 

2.2.2 SDMNA without GTP 

2.2.2.1 Disruptive cellular network architecture 

The works presented in [6][7] represent an attempt to boost the performance and 

increase the elastic scaling of the mobile network to improve the network throughput 

to cope with the increasing demand in mobile data traffic. The authors think that 

disruptive redesign of the current mobile network is the solution to fulfil the future 

throughput requirements, therefore they proposed to revamp the mobile backhaul to 

introduce flatter software defined mobile architecture that includes MME functionality 

as part of the SDN controller as shown in Figure 2.4. 
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Figure 2.4: Disruptive integration of SDN with MME proposed by [6] 

The authors describe multiple designs to illustrate the proper migration path and ensure 

reasonable transition phase and concluded that simplified access network formed by 

base stations i.e. eNodeBs, interconnected through a backhaul network composed by 

SDN switches managed by the network controller is the best solution. Moreover, this 

architecture allows the virtualization of mobile network elements, which increase the 

network flexibly and availability considering that multiple instances of these control 

functions can be launched in data centres to manage the simplified data plane. The 

authors think that their architecture simplifies both the control and data planes 

considering that the transport network is based on SDN switches, while the control 

planes of the LTE entities such as MME and S/PGW are merged with SDN controller. 

Moreover, the author proposed to remove GTP and uses 802.1ad in the backhaul to 

simplify the data plane protocol stack. The obtained results show that removing GTP 

reduced overhead and prevent fragmentation which helps to improve the network 

throughput.  

However the work presented in [8] and [41] can be considered as a complementary to 

the work proposed by [6] and [7], where the authors of [8] explained in detail the 

building blocks of the proposed architecture, this includes: i) the SDN controller 
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applications e.g., virtual eNodeBs, backhaul transport, Mobility management, Access, 

Caching, Monitoring, and Services delivery; ii) data plane transport network that 

consists of simplified access devices and Carrier Ethernet Switches. The authors 

discuss the best way to migrate to their proposal without unnecessary replacement 

investments. Experiments are used to show how it is possible to realize the migration 

of 3GPP to SDN-based mobile network and demonstrate the effectiveness of their 

proposal. In the experiments, OpenFlow protocol is used as the southbound protocol 

between the controller and switching devices. Moreover, WIFI offloading scenario is 

presented by the authors to show the feasibility of SDN in LTE networks.  

Whereas the authors of [41] paid more attention to the integration of technologies like 

Software-defined Networking and Network Functions Virtualization as a basis for the 

5G network architecture. The authors emphasise on the special requirement of the 

Internet of Things (IoT) and video services in terms of efficient network resource 

operability and dynamic scalability. In the proposed architecture network elements are 

virtualized and running in the cloud, which may cause a reliability and robustness that 

needs to be addressed. The migration of control plane VM due to hardware failure or 

the need to extend the available resources can increase the delivery time and affect the 

overall latency of the system. A testbed of the proposed architecture is built by the 

authors and submitted as European Telecommunications Standards Institute Proof of 

Concept (ETSI PoC). This work demonstrates how SDN can simplify the data plane of 

the mobile network and provide more efficient routing and data forwarding while 

reducing the cost.  

Another SDN based mobile core network solution is proposed by [42], the authors 

proposed to use the centralized controller to handle the management of user traffic and 

mobility and thereby eliminate the need for the GTP. The authors focus on the user 

mobility and used intra-LTE and intra-RAT scenarios to describe the advantage offered 

by the proposed solution in terms of signalling cost, tunnelling cost, handover latency 

and scalability. The authors used mathematical equations to calculate the evaluate the 

performance of their solution, like [4][15][16], they also assumed that the data plane 

device can be configured by the single packet-out message.  

The authors of [43] also think the LTE network is excessively complex to manage 

because it uses GTP, which is unduly complex and requires an important amount of 

signalling to manage. Also, deploying a new technology in LTE is very difficult, 

therefore integrating SDN with the LTE network has the advantages of control and data 
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planes separation and eliminates the need for tunnelling protocols like GTP, therefore 

it enables network programmability and reduces the time required for the deployment 

of new services. The authors used three different handover scenarios to demonstrate 

the enhancement offered by their solution, this includes i) X2 Handover without SGW 

relocation; ii) Intra-Domain Handover with SGW relocation; iii) Inter Domain 

Handover with EPC controller (EPC-CTR) relocation. The authors used mathematical 

equations to calculate and compare system’s performance and the preliminary results 

show that the proposed solution has the potential to improve the efficiency of the core 

network. 

2.2.2.2 Layer 2-Based Backhaul 

Other approaches targeting localized mobility management are proposed in [44][21]. 

These approaches utilize layer 2 based forwarding in the backhaul network between 

the core and access network and eliminate the use of GTP-U over the S1 interface.  

The authors of [44] proposed to use a carrier Ethernet network with a modified version 

of TRansparent Interconnection of Lots of Links (TRILL) to hide the UE mobility from 

the core network to reduce the signalling load between the access and core network. 

The authors assume that the backhaul network consists of two sub-networks, namely: 

access-subnetwork and aggregation sub-network. A modified version of TRILL is used 

in the backhaul access sub-network and Carrier Ethernet is used in the backhaul 

aggregation sub-network. The authors think that their approach requires minimal 

change to the existing LTE entities such as the SGW and the eNodeBs and at the same 

time will be the enabler for the deployment of small cells without affecting the 

signalling loads. Also, the proposed architecture provides better resource utilization 

since it enables efficient multipath switching and eliminates the GTP-U overhead. 

Another approach is proposed by [21]. The authors think that the deployment of the 

SDN-based in the backhaul access sub-network will offer programmability and 

increase the network flexibility. The authors proposed Semi-Distributed Mobile 

Management Architecture (SDMA), which has a localized mobility application running 

on top of the SDN controller of the backhaul access sub-network. The application is 

used to handle some of the UE handovers without the need to contact the EPC network. 

The proposed architecture eliminates GTP and uses the centralized mobility control 

plane application to improve the data transportation efficiency and offer distributed 

mobility anchor points. Numerical calculation is used to demonstrate the enhancement 
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offered by the SDMA in terms of Handover signalling load and latency. The outcome 

shows that SDMA reduces the signalling loads sent to the EPC by 33% and enhances 

the handover latency by 86%. This solution will increase the processing latency of the 

Initial Attachment procedure because the control messages exchanged between the 

eNodeB and the EPC are processed by the SDN controller of the backhaul access sub-

network to make the disturbed mobility anchors possible. Also, new signalling load is 

generated between the SDN switches and controller in the backhaul network. 

2.3 SDN as an Add-on 

This describes network architectures that adds SDN based solution to current cellular 

network components with or without any change to the structure and functionality of 

the cellular network components. This section is further divided into two sub-sections, 

selective traffic offloading and caching and DMM. The first sub-section describes 

solutions that aim to enhance network performance by moving content near to the users 

or selectively redirect user’s traffic to the cloud, while the second sub-section describes 

works that utilize SDN to offer DMM and overcome the centralized data plane 

forwarding of the current cellular network. 

2.3.1 Selective Traffic Offloading and Caching 

The authors of [11] proposed lightweight Mobile Cloud Offloading Architecture 

(MOCA) that utilizes Software-defined networking with an in-network cloud platform 

to realize traffic offloading that can be easily adopted by mobile network operators 

without requiring significant changes to their networks. The authors think that SDN, 

cloud technologies, and minimum change to the current LTE architecture are the best 

mixture that can improve the mobile network architecture to increase its flexibility and 

provides a solution to overcome the sub-optimal routing used in LTE that causes a 

problematic issue for delay sensitive applications like online gaming. The main 

component of the proposed architecture is shown in Figure 2.5. 
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Figure 2.5: Mobile Cloud Offloading Architecture (MOCA) proposed by [11] 

The authors assumed that commercial in-network cloud platform is distributed in near 

proximity to the mobile access network to provide services like online gaming etc. This 

platform introduces extensions to the Mobility Management Entity (MME) in terms of 

functionality and control messages structure. The authors assumed that the mobile 

network can initiate on-demand S/PGW virtualized instance on the cloud platform. In 

order to perform the traffic redirection, the authors change the operation of the 

virtualized SGW to enable the on-demand redirection of the default bearer. The authors 

used commercial testbed to build a proof-of-concept of the proposed architecture and 

describe several aspects that are related to handling the mobility nature of the UEs.  

Similar to [11], the work proposed by [12] used cloud-based traffic offloading to 

overcome the sub-optimal routing of the LTE architecture. The authors provide another 

angle for the cloud offloading realization without the need to make any modification to 

the current LTE architecture. The proposed Software-Defined Networking Mobile 

Offloading Architecture (SMORE) is shown in Figure 2.6. The authors added SMORE 

controller, SMORE monitor, Database, SDN switch, and in-network cloud platform to 

the LTE architecture to realize the traffic offloading solution and reduce the end-to-end 

delay of the user’s traffic. Online gaming traffic is used as an example, but the solution 

is applicable for more types of traffic. 
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Figure 2.6: Software-Defined Networking Mobile Offloading Architecture (SMORE) 

proposed by [12] 

In SMORE, the SDN switches are deployed in regional aggregation points, and the 

SMORE monitor is responsible for monitoring the LTE/EPC control plane signalling, 

extract the required information to be stored in the database and provides triggers for 

the SMORE controller about the UEs activities like the attachment and handover 

procedures. The SMORE controller configures the SDN switches to route the traffic 

between the UE and the cloud, and the controller also reconfigures the SDN switch 

during handover. The author shows the design of the individual entities of the proposed 

architecture and explains in detail the interception and rerouting of the traffic to 

offloading servers located inside the cellular core. The authors build the proposed 

architecture on a testbed that utilizes OpenEPC LTE/EPC architecture implementation 

[45] and Open vSwitch (OVS) 2.0 which supports the OpenFlow 1.3 standard. The 

authors used processing time and Round-Trip Time (RTT) to show the enhancement 

offered by their proposal and at the same time illustrates the extra processing time 

required to handle the offloading operations.  

MobiScud [13] is an evolutionary architecture to the SMORE proposed by [12]. 

MobiScud integrates cloud and SDN technologies with the standard mobile network. 

It assumes that user-specific private VM is instantiated in a cloud-based platform 

distributed in the RAN, and the VM is maintained as users move around by utilizing 
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live virtual machine migration. In MobiScud, SDN capabilities are utilized to offload 

low-latency, compute-intensive applications to the private VM instances. MobiScud 

provides the tools and techniques to monitor the control plane message exchanges 

between the UEs and the mobile core network. During handover, MobiScud utilizes 

this information to migrate the private VM to the best cloud location that is near to the 

UE new location, at the same time, the flow forwarding rules in the SDN data plane 

devices are updated to ensure seamless handover without causing disruption to the 

UE’s ongoing connections. A prototype of the MobiScud architecture is implemented 

in PhantomNet testbed and the RTT is used to evaluate the system performance with 

and without the MobiScud.  

Another traffic offloading solution is presented in [46], where the authors used a 

mixture of Network virtualization, Software-defined Networking, and cloud computing 

technologies to pave the way for a virtualized 5G cellular network. The authors used 

virtualized-based EPC gateway with dedicated packet processing hardware to 

dynamically redirect the UEs active session between a cloud environment and a fast 

path. The gateway utilizes dynamic GTP termination to relocate the UE mobility 

anchor, which enables elastic usage of the user plane resources and provides user plane 

processing resources on-demand for each User Equipment (UE). The authors used 

OpenStack, SDN controller that supports GTP tunnel switching, and a dedicated fast 

path device to build a prototype for the proposed solution to realize the differences 

between dedicated fast path and cloud-based processing and the outcome result shows 

that their solution can mobile user’s operations without incurring significant increases 

in latency or reducing throughput. 

The work presented in [14] represent an attempt to increase the network flexibility and 

provide the tools to effectively deal with the fast-increasing amount of data traffic by 

incorporating SDN-based mobile network. The authors proposed a new architecture 

that is compatible with the current 3GPP architecture. The authors proposed transparent 

in-network caching by utilizing SDN in the mobile network backhaul, and the operation 

of the proposed solution is explained in detail by the authors to demonstrate how this 

scalable solution is compatible with the existing backhaul architecture. Basically, the 

authors used MPEG Dynamic Adaptive Streaming over HTTP (DASH) content’s 

transparent caching to demonstrate the functionality of the proposed architecture. The 

proposed architecture includes a mechanism to intercept cacheable contents by 

inspecting the HTTP GET request sent in a TCP segment over GTP tunnel, and then it 
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extracts the request from the GTP tunnel and sends it to the cache server. The data 

received from cache server is inserted back to the GTP tunnel so that the caching 

remains transparent to the UE. A prototype implementation is used to demonstrate the 

overhead of the proposed solution in-network caching solution and the result shows 

minor impact on the streaming clients’ behaviour.  

Meanwhile the authors of [47][48] think that caching is the most evident solution for 

the network operators to meet future demands at a manageable cost. The authors 

proposed to bring the contents closer to the users by utilizing an in-network caching 

solution. Software Defined Mobile Network (SDMN) architecture proposed by [6] is 

used to build the proposed in-network cashing at the backhaul of the mobile network. 

The authors present an efficient and dynamic content delivery solution and present the 

benefit of the proposed solution for both network operators and the end users. The 

authors proposed an ultimate multi-stage cache, in which cache are collocated in every 

base station and other caches spread over different points of presence in the backhaul 

network to reduce the traffic passing through the core network. SDN is utilized to 

optimize the caching location by dynamically relocate the content from one server to 

another, which minimizes the bandwidth consumption, improve the Quality of 

Experience (QoE), saves power and reduces costs. The disruptive design that removed 

GTP, which is offered by SDMN [6] is utilized by the authors to place the cache in any 

part of the network. Simulation is used to validate and analyse the performance of the 

proposed solution.  

Finally, the authors of [49] proposed a resourceful technique to reduce the traffic 

handled by the mobile core network by utilizing OpenFlow-based solution. The authors 

think that their solution efficiently uses the network resources and balances the traffic 

over the core network, which may save the mobile operators millions of dollars per 

year. The authors focus on the HTTP traffic of the UEs Internet consumption 

considering that 47.7% of the traffic handled by the mobile core network is for HTTP 

applications [50]. Therefore, the authors used OpenFlow-based solution to redirect the 

HTTP traffic directly to the Internet, before reaching to the core network. The authors 

describe three different methods to allow OpenFlow switch to identify HTTP traffic 

sent over GTP-U tunnel and used OPNET simulator to demonstrate the redirection in 

the traffic passed through the mobile core network. The proposed solution does not 

cover how the offload downlink traffic is redirected to the correct UE location upon 

handover. 
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2.3.2 Distributed Mobility Management 

The authors of [24] and [26] proposed a novel solution to implement DMM. The 

proposed solution consists of two parts: First, modification to the current LTE 

architecture; Second, SDN based architecture in the operator transport network outside 

the EPC network. The authors proposed several modifications to the current LTE 

architecture, that include: i) merge the functionality of both the SGW and PGW in a 

single entity entitled as S/PGW, which means eliminate the needs for the S5/S8 

interface; ii) modify the hierarchy of the control and data planes of the current LTE 

architecture by using multiple S/PGW entities distributed near to the mobile access 

network; iii) several messages such as Create-Session-Request/Response, and Modify-

Bearer-Request/Response are modified to allow the S/PGW to perform traffic 

redirection without the need for new IP address allocation. 

 

Figure 2.7: Double-NAT DMM Architecture proposed by [24] 

As shown in Figure 2.7, the authors proposed that the distrusted S/PGWs are connected 

to the operator transport network outside the EPC. SDN solution is added to the 

transport network to support the traffic redirection between the S/PGWs and provides 

the UEs with service continuity during handover in an efficient manner. The SDN 

solution consists of NAT-controller, egress and ingress routers. The NAT-controller is 

connected with EPC centralized MME and configures the NAT routers when necessary 

to perform traffic redirection. Considering that NAT is already widely supported by 

most of the networking devices nowadays, the authors think that the adaptation of these 
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functionalities is easily feasible with a trivial overhead and complexity. Considering 

that NAT routers need to be added only at the edges of the operator transport network, 

the author thinks that the deployment of the double NAT solution is possible even for 

a very large network. The authors proposed several control messages to handle the 

communication between i) MME and the NAT-controller; ii) NAT controller and the 

NAT routers. The proposed solution is modelled in NS3 [51] and the authors provide a 

detailed description of the required the modification to the NS3 LTE model known as 

(LENA) to implement the Double NAT solution. The evaluation results presented in 

the authors work, showed that the proposed solution is fast enough in setting up the 

traffic redirection path and readily meets the latency requirement, considering the 

maximum allowed delay threshold for real-time applications (e.g., VoIP).  

Meanwhile the authors of [26] argue that OpenFlow is a valid solution for cloud-based 

DMM. In this work the authors described and compared several technologies that can 

be used for the DMM, this includes: i) IETF Based DMM Enabling Technologies such 

as Double NAT [24], Distributed Mobility Anchoring (DMA), and Inter-domain 

DMM; ii) 3GPP DMM Enabling Technologies such as Local IP Access (LIPA) / 

Selected IP Traffic Offload (SIPTO). The authors come up with the conclusion that 

OpenFlow/SDN technology is the best candidate for the DMM solution. The authors 

think OpenFlow can efficiently be used for the support of DMM in virtualized LTE 

systems in order to provide the required flexibility and scalability to support seamless 

handover between two different PGWs.  

Partial OpenFlow-based DMM proposed by [27] is another approach to overcome the 

centralized data forwarding, sub-optimal routing, potential single point of failure and 

low scalability of LTE network. The proposed architecture is like the works presented 

in [24] and [25] but applied in virtualized LTE systems. To support the continuity of a 

session of UE handing over from one PGW to another, new entities are added to the 

operator network; this includes: i) OpenFlow controller that has traffic redirection 

control application and co-located with the MME to reduce the signalling messages and 

use direct call instead; ii) Ingress and Egress FDs, the Egress FD can be either co-

located PGW or in a standalone entity near the PGW, while the Ingress FD is deployed 

at the boundary of the mobile network operator. The authors used the NS3 simulator to 

build the proposed architecture, then measure and evaluate the handover delay from 

one PGW to another. The obtained result showed that 150ms is the best handover delay 
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obtained when the controller is positioned in the core network and the distance between 

Ingress and Egress FDs was lower than or equal to 4 hops. 

Another DMM architecture is presented in [28] and [29]. The architecture utilizes a set 

of distributed PGWs and MMEs to increase network scalability and boost the system 

performance to cope with the explosive growth in the mobile Internet traffic, where 

Packet Data Network Edge Gateway (PEGW) is a new term used to describe the 

distributed PGW that is deployed near to the RAN. Several interfaces are proposed by 

the authors to handle the data and control plane operation between the new network 

entities. This includes the following interfaces: S1a-U, S2d, and S11a that are used to 

handle the data delivery between eNodeBs and the PEGW, data delivery between 

PEGWs, and bearer control between the MME and PEGW respectively. The authors 

validate the performance of the proposed architecture by comparing the PGW’s data 

processing volume per unit time and the number of valid data sessions with the EPC 

network. 

2.4 Software Defined Virtualized Mobile Network Architec-

tures  

This section describes virtualized SDN-based cellular network architectures. These 

architectures utilize SDN and NFV to provide data and control plane separation and 

on-demand dynamic provisioning of network resource. Software-defined control of 

virtualized mobile packet core network architecture proposed by [17] presents a 

solution that considers both SDN and NFV to offer programmability, boost network 

flexibility, provide on-demand dynamic provisioning, promising interoperability and 

reduction of both CAPEX and OPEX. The proposed architecture is based on the 

assumption that Open Networking Foundation (ONF) Wireless and Mobile Working 

Groups are working on hybrid OpenFlow switches that can perform complex 

functionalities that are required in the mobile network. The proposed architecture is 

based on a centralized EPC where the control plane entities are deployed on Virtualized 

Network Functions (VNFs) running in a data centre. Two SDN controllers are used 

namely, NFV domain SDN controller and Edge to Edge (E2E) SDN controller. The 

former is used to provide connectivity to the data centre compute and storage resources 

while the latter is responsible for the data plane network. The authors proposed to use 

GTP tunnel only over the S1 interface, and after that the UE IP address and VLAN tags 
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are used to route the traffic and differentiate between different bearers. VLAN tags can 

also be used for overlapping UE addresses going to different Access Point Names 

(APNs).  

MobileFlow [18] is an SDN-based approach that defined a blueprint for reshaping the 

current and future mobile network architectures. The author’s emphasis is on how 

difficult it is to extend, innovate and incorporate new features in the current mobile 

network once it has been deployed. MobileFlow is a solution that provides maximum 

flexibility, openness, and programmability to the mobile network without mandating 

any changes in UE. MobileFlow offers open interfaces and APIs, which fosters a rich 

environment for innovation to significantly increase the operator potential to roll out 

new network features, while reducing time to market for new services.  

MobileFlow architecture mainly consists of: i) MobileFlow controller (MFC) with 

mobile network applications; ii) MobileFlow Forwarding Engine (MFFE). MFC 

consists of several functional blocks that include: mobile network function and mobile 

network abstraction. Northbound, Southbound and Horizontal interface are used to 

communicate with Mobile network applications, MFFEs, and Other MobileFlow 

controllers respectively. MFFEs are advanced FDs that include the required tools and 

functionality to support GTP operation. In another words, it is more complex than an 

OpenFlow switch but much simpler than a router or a PGW. Consequently, 

MobileFlow network can be integrated with legacy EPC equipment to provide 

backward compatibility. On-Demand Mobile Network (ODMN) prototype is used by 

the authors to demonstrate the programmability and flexibility of the MobileFlow 

architecture and provide implementation and experimentation details. No actual results 

are presented by the authors in this work.  

Another Software-Defined 5G architecture that aims to provide the flexibility and 

scalability required to handle the new emerging communication paradigms such as 

mobile cloud computing, mobile social networking, and Internet-of-Things is proposed 

by [3], SoftNet is the name used by the authors to refer to their proposed architecture. 

SoftNet is a new architecture that re-designs the current mobile network architecture 

instead of enhancing it. SoftNet aims to provide Adaptability, Efficiency, Scalability, 

and Simplicity by utilizing Virtualized SDN-based core network and access server to 

provide Unified RAN. It utilizes decentralized mobility management, distributed data 

forwarding, and multi-RATs coordination to i) reduce signalling overhead; ii) improve 

the efficiency of data forwarding and iii) enhance system capacity respectively. SoftNet 
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has a dynamically defined design which adaptively changes it working structure to 

accommodate different communication scenarios. Network configuration, operator’s 

policies, and network stats are used to specify the working network architecture. The 

authors used simulation to evaluate the performance of the proposed architecture to 

demonstrate the reduction in signalling cost offered by decentralized mobility 

management compared to the standard LTE mobile network. The signalling cost is 

measured when eNodeBs are connected to the same access server and more 

optimization is required with inter-access server handover.  

While Cellular SDN (CSDN) architecture proposed by [19] is another 5G network that 

offers dynamic resource orchestration by leveraging SDN and NFV. The former 

enables data plane and control plane separation while the latter effectively decouples 

the logic of network functions from the underlying hardware. The proposed 

architecture consists of 4 planes that include: knowledge plane, network applications 

plane, control plane, and forwarding plane as shown in Figure 2.8. These planes 

exchange information through open interfaces. 

In CSDN the knowledge plane gathers and maintains comprehensive information about 

the UEs, network and usage data which can be used to optimize network utilization and 

to enhance the user experience. The network applications plane is implemented in a 

centralized cloud-based infrastructure and holds the majority of the LTE control 

functions which includes virtualized SGW, virtualized PGW, virtualized MME, 

Routing, and RRM. The centralization of the RRM and the separation of the control 

plane from the radio equipment make it easier to perform radio resource allocation as 

well as backhauling. The proposed architecture provides the flexibility to dynamically 

implement and instantiate new applications which reduce the cost and time-to-market 

for new adapted and personalized services. The control plane consists of Network 

Operating System (NOS), a network virtualization block and uses OpenFlow protocol 

to communicate with the forwarding plane. The latter consists of a set of OpenFlow 

switches. The authors think that OpenFlow switch with the current specifications is 

insufficient due to the increasing number of UEs, roaming nature of the mobile devices 

and the required fine grain access control and proposed to extend it but without 

specifying the extensions. 
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Figure 2.8: Cellular software defined network proposed by [19] 

2.5 Cloud RAN and SDMN Security 

This section describes a few works that handle security threats for the SDN-Based 

cellular network. Also work that describes Cloud RAN solution is presented in this 

section. The works presented in [52][53] focus on the security aspect of the SDN, NFV 

and mobile network integration, where the authors discuss the security challenges of 

the SDMN presented in [6]. The authors presented a comprehensive multi-tier 

component-based security architecture to address the vulnerabilities exposed due to the 

adaptation of new telecommunication paradigm in the SDMN. The proposed security 

architecture includes important components such as i) secure the control and data 

planes communications; ii) Denial of Service (DoS) attacks mitigations by utilizing 

policy-based communications; iii) Implements Deep Packet Inspection (DPI) and 

SDN-Based traffic monitoring techniques to improve security threat detection and 

orchestrate the monitoring activities receptively. The authors used testbeds to validate 

the feasibility to implement the proposed security architecture in the real world. The 

authors used experiments to demonstrate the ability of the proposed architecture to 

prevent IP based attacks and provides an automated countermeasures reaction to 

mitigate network threats.  

Meanwhile, many other types of research focus on reshaping the access network of the 

mobile network by integrating of SDN and NFV with the RAN, such as the works 

presented in [54][55][56][57]. The authors of [54][55][56] discusses how 
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heterogeneous RANs increased the complexity of the mobile network and the emphasis 

on the data plane control plane separation offered by SDN as a potential solution to 

address the control plane problems in these networks.  

In [54], the authors describe an architecture with Cloud-based RAN, in which the 

control plane functionality is virtualized in NFV platform that allows the orchestration 

of resources using virtualization techniques. On the other hand, the authors of [57] 

present a novel approach that extends the current Third Generation Partnership Project 

(3GPP)’s 5G architecture. The authors propose to reduce the signalling costs between 

the RAN and the core network through the centralization of the control plane 

functionality of the 5G RAN. The proposed architecture provides end-to-end separation 

between the data and control planes. In their proposal, the base station known as the 

gNB is converted into a pure data plane node along with the other FDs. The authors 

think that the running the Radio Resource Control (RRC) functionality and RRM into 

the core network to centralize the control of radio resources will reduce the signalling 

cost, provides better radio resources management due to the network-wide view, and 

reduce the processing time of header encoding and decoding. NS3-simulator is used to 

validate the proposed architecture. The authors used the mobility management, 

attachment time and system throughput to demonstrate the improvement offered by the 

centralized algorithms used by the proposed architecture. 

2.6 Summary 

This chapter presents a comprehensive survey covering a wide range of researches that 

demonstrate different visions regarding the integration of SDN, NFV, and Cloud 

computing with the mobile core network as a step toward the 5G mobile network. Some 

of the works focus on the RAN network, and others focus on the core network. Despite 

that the integration of the aforementioned approaches with the RAN had been receiving 

great attention, here the EPC network is the main focus and a few of the works that 

focused on the RAN are briefly mentioned. These works characterized as following: 

First, SDMNA is described, which sub-divided to SDMNA with GTP and SDMNA 

without GTP. The SDMNA without GTP itself is further divided to two sub-sections 

that include: i) disruptive design the remove GTP from the whole network; ii) Layer 2 

based backhaul that only removes GTP from the S1 interface. Second, the works that 

used SDN as an add-on to perform selective traffic offloading or distributed mobile 
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management are described. The third category describes the Software Defined 

Virtualized Mobile Network Architectures (SDVMNA), which present some of the 

works that adopt both SDN and NFV in their proposed network architectures. Then, 

finished by presenting a few works that related to the integration of the SDN and NFV 

with the RAN. Also, the possible security threats that can be introduced by using SDN, 

NFV in the mobile network is described in this section as well. These works tried to 

address several issues with the current mobile network that prevent it from coping with 

the growing demands of their users. This includes: i) improve the system performance 

by reducing signalling loads; ii) address the sub-optimal routing caused by the 

hierarchical design of the current 4G network; iii) better resource utilization and load 

distributions; iv) enhance failure recovery procedures; v) reduce the CAPEX and 

OPEX; vi) increase the network flexibility and scalability. 
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3 OpenFlow Technology and Implementation 

Model 

3.1 Introduction 

This chapter explains the similarities and the differences between the traditional 

network and SDN. Also, this chapter discusses the specification of OpenFlow protocol 

in a way that shows the development and the evolution process of the multiple versions 

of the protocol. Finally, it describes the simulation model of the OpenFlow protocol in 

OMNeT++. This model explains in detail the design and the structure of the OpenFlow 

controller, and switch nodes. Also, it describes the OpenFlow messages supported in 

the simulation model. 

3.2 Networking Technologies 

Networking devices consist of three planes. First, the data plane which represents the 

device hardware and processing silicon; second, the control plane which represent the 

logic and the intelligence of the device, which normally is performed by software 

applications that runs standard or proprietary protocols; Typically, the framework and 

the control plane applications are developed and maintained by vendors only [58]. The 

third plane is the management plane, which is part of the control plane and used by 

operators and IT administrators to monitor and configure the networking devices. 

These planes reside inside almost all the networking devices nowadays. A fairly new 

and emerging network architecture known as SDN has proposed the separation of the 

data and control planes. In SDN the control plane is independent and centralized, which 

increases the programmability of networking devices. The migration of the control 
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plane enables abstraction of network infrastructure and treats the network as a virtual 

or logical entity. The next sub-sections describe both the traditional and SDN based 

networking. 

3.2.1 Traditional networking 

Traditional networks are a combination of Local Area Network (LAN) and WAN 

networks connected to each other to form a bigger network and so on. These networks 

include various networking device such as switches, routers and firewalls. LAN 

represents a group of networking and end user devices interconnected to each other in 

a relatively small geographic area. This can be a home, small building or even a 

university. On the other hand, WAN interconnects devices across different cities as a 

nationwide network in a country and it connects many LANs together [59]. In these 

networks data traffic is transmitted over different connections utilizing multiple 

technologies. LAN Ethernet is the most commonly used connection because it is very 

flexible and mature and can offer a variety of connection speeds like 100Mbps, 1Gbps, 

even 10Gbps. WAN uses different connection technologies, but optical fibre is the most 

promising technology as it offers a very high-speed data rate. 

3.2.1.1 Switch 

A switch is a network device, works at Layer 2 of the Open Systems Interconnection 

reference model. In networking nowadays, switches are used to forward data traffic 

between two nodes in the network. It is possible that both nodes are connected to the 

same switch or connected to two different witches in the network. The switch utilizes 

layer 2 information such as: destination MAC address and the VLAN id to specify the 

output direction for the received frames. The forwarding process consists of two steps. 

In the first step the switch uses the source MAC address to learn about the location of 

the connected device, then in the second setup the destination MAC address is used to 

find the correct output port. Upon receiving a new frame, the destination MAC address 

is lookup against the switch forwarding table, and if a match is found, then the frame 

is sent out the port specified by the match entry. Otherwise, the frame is flooded to all 

ports except the port on which it was received [59]. Considering that a switch only 

works based on layer 2 information, any packet which is destined to another IP sub-net 

cannot be processed by it and is sent to a router for further processing. 
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3.2.1.2 Router 

A router is a networking device that works and operates at the layer 3 of the Open 

Systems Interconnection reference model. It is normally used as LAN gateway. It 

connects several LANs and WANs together. The control plane of the routers runs 

routing protocols that perform a computational task to build the routing behaviour, 

which includes finding the optimal path between any two points in the network. The 

best path calculated by the routing protocol may depend on the number of hops, the 

link bandwidth and other parameters. Upon calculating the best path, the routing 

protocol configures the routing table with this information, which helps the router to 

forward the traffic from one IP subnet to another. Traffic forwarding is performed by 

the router based on the destination IP address of the received packet in contrast to the 

MAC address used by the switch. The process starts after receiving the packet, where 

the routing checks the destination IP address, and if it directly connected then the packet 

is sent though that interface, alternatively it forwards a packet to another router, if the 

destination node lies further away [58]. 

3.2.2 Software Defined Networking 

SDN is a modern approach to networking that is considered in the eyes of some experts 

as a revolution in the networking industry as it aims to eliminate the complexity and 

the static nature of traditional distributed network architectures. SDN offers control and 

data planes separation to centralize the network intelligence and abstract it from 

underlying network infrastructure, as shown in Figure 3.1. SDN architecture converges 

the management of network and application services into a centralized, extensible 

orchestration platform that automates the provisioning and configuration of the entire 

infrastructure. [60] The control plane is centralized on a software-based controller that 

provides performance and fault management, which typically handles the configuration 

and the management of the SDN complaint devices and understands the network 

topology. Loaded with these details, the controller can process requests based on the 

desired requirements such as Quality of Service (QoS) level and also perform link 

management between devices. The data plane is responsible for data traffic forwarding. 

The centralization of the control plane helps accelerate application deployment and 

delivery, which improves network agility and automation dramatically, while 

substantially reducing the cost of network operations via policy-enabled work-flow 
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automation. SDN has gained a massive interest is both academia and the industry 

because many of the big players of networking around the world support it. This 

includes Google, Microsoft, Yahoo and Facebook because of the characteristics offered 

by SDN. SDN benefits can lead to: 

❖ Centralized control of multi-vendor environments: in traditional 

networking, vendor specific interfaces and configuration is a real problem that 

is always a concern for the IT team of the network because it requires a 

specialized team to manage and configure a small part of the network from an 

individual vender. Differently, in SDN based networks, the service and 

management applications can configure any OpenFlow-enabled network device 

(switches, routers, virtual switches) from any vendor. The centralized control 

plane helps the IT administrators to deploy and update network services of the 

entire network in a quick and efficient manner [60]. 

❖ Reduced complexity through automation: SDN controllers are normally 

equipped with tools that increase the flexibility of network management and 

offers automation framework. These tools help solve the problem of manual 

management and human error that lead to network instability. At the same time 

these tools reduce operator overhead and support emerging IT-as-a-Service and 

self-service provisioning models. The integration of SDN in a cloud-based 

solution that provides self-provisioning and intelligent orchestration helps 

reduce the operation overhead and increase the business agility. 

❖ Higher rate of innovation: the centralized control plane offered by SDN 

allows network administrator to dynamically (re)program the entire network in 

real time to meet user expectations and achieve faster business innovation. 

Network administrators can define network behaviour or introduce a new 

service in a matter of hours by leveraging network virtualization and services 

abstraction [61]. 

❖ Increased network reliability and security: in traditional networking that is 

used nowadays, network configuration and policy that are specified by IT 

administrators or network operators need to be configured on all the network 

devices one by one. These devices need to be re-configured each time a new 

services or application is introduced or removed from the network. The story is 

different with the SDN-based networks because southbound protocols like 

OpenFlow help to deliver the network configuration and policy to the network 
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infrastructure and when a policy is changed, or service or application needs to 

be modified, the controller re-configures the network devices using OpenFlow, 

which eliminates the need to individually (re)configure network devices used 

in networking these days [61]. 

❖ More granular network control: southbound protocols like OpenFlow offer 

a very granular level of policy control. This includes session, user, device, and 

application levels, and with the network abstraction and automation offered by 

SDN, cloud operators can maintain and support multiple tenants while keeping 

them isolated in terms of security and resource management, if the customers 

share the same infrastructure. 

❖ Better user experience: The Centralized control plane offers a unified interface 

to manage the network of different equipment manufacturers. In addition, the 

centralization of the network state is leveraged by the high-level applications to 

provide dynamic and more efficient adaptation to the business needs. 

 

Figure 3.1: Software Defined Networking Architecture 

3.3 OpenFlow 

OpenFlow protocol represents the first and the most commonly used standard protocol 

for the communications between the control and data plane layers of the SDN 



 

38 
 

architecture. It is standardized by the ONF. ONF is a non-profit foundation that deals 

with the advancement and the standardization of OpenFlow. The standardization of 

OpenFlow protocol makes the control plane - data plane separation possible and 

facilitates the manipulation of the data plane devices by high-level applications. 

OpenFlow-based SDN solution is currently being implemented in a variety of networks 

where the control plane is abstracted from the underlying data plane device. The FDs 

or data plane of the network such as a switch or a router can easily be managed through 

the OpenFlow interface. The advantages offered by OpenFlow have made networking 

vendors to include OpenFlow support in most of their switches, routers and wireless 

access points. By including OpenFlow in network devices, researchers can run their 

experiments without the need to reconfigure networking devices to alter their working 

behaviour. Multiple versions of OpenFlow protocols have been specified by ONF. This 

section briefly describes OpenFlow version 1.0, 1.1, 1.2 and 1.3. Although OpenFlow 

1.5 is the latest version but the focus only on the aforementioned versions because the 

features offered by OpenFlow 1.5 are not relevant to the requirement of this work. 

OpenFlow 1.0 was released in December 2009 [62]. It is the most commonly deployed 

version of OpenFlow. The OpenFlow 1.0 specification exactly described the data plane 

FDs. It consists of a flow-table and the means to talk to the control plane that resides 

on a remote controller using the OpenFlow Protocol. OpenFlow 1.1 added the support 

for a pipeline of multiple cascaded flow tables, group-table and MPLS label-related 

actions [63].  

OpenFlow 1.2 extends the number of supported protocols by adding support for IPv6. 

Switches running OpenFlow 1.2 and above can match packets based on their IPv6 

protocol number, source and destination addresses, flow label, traffic class and various 

ICMPv6 fields. In OpenFlow 1.2 [64] flow match fields are described in the OpenFlow 

eXtensible Match (OXM) format, which is a compact Type-Length-Value (TLV) 

structure. This way it is possible for anyone to define new match entries in an extensible 

way. Also, OpenFlow 1.2 is more resilient, scalable and efficient compared to the 

previous versions since a switch can be connected to one or more controllers 

simultaneously [64]. 

OpenFlow 1.3 was released in June 2012 [65]. It supports all OpenFlow 1.1, 1.2 

features and provides new features for monitoring and operations management with 

more robust QoS support. In contrast to OpenFlow 1.0 based systems, OpenFlow 1.3 

can provide different benefits in terms of the supported protocols, possibility to load 
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balancing, fault tolerance, and richer support for QoS such as basic rate limiting or even 

more complex QoS using diffserv [63]. 

3.3.1 OpenFlow Switch 

OpenFlow Switch is a new concept for networking devices that most commonly known 

as datapath processing considering that it only implements the data forwarding. There 

are two types of OpenFlow switch classifications based on the supported operations: 

OpenFlow-only, and OpenFlow-hybrid. The first type processes the received packets 

only by the OpenFlow pipeline, while the second implements both the OpenFlow 

pipeline and the normal L2 switch functionality. Each OpenFlow switch has a secure 

channel with the centralized OpenFlow controller. The controller manages the switches 

using OpenFlow protocol leveraging this channel. The controller manages the switch 

via this protocol, by add, update, and delete flow entries, both reactively (in response 

to packets) and proactively. OpenFlow protocol specifications outline the switch 

structure and operations. This includes the number and type of tables, the mandatory 

match fields, and the possible actions a switch can take if a match occurs. This section 

explains the structure of OpenFlow switch as specified by OpenFlow protocol versions 

1.0, 1.2, and 1.3. 

3.3.1.1 Switch as Specified by OpenFlow 1.0 Specifications 

Figure 3.2 shows the basic structure of OpenFlow switch as specified by OpenFlow 

protocol 1.0 specification. The switch basically consists of a secure channel and one 

flow-table. The table contains multiple flow entries; each flow-entry consists of i) 

matching rules that are composed of a set of ingress port and L2/L3/L4 header fields, 

which may be variously wildcarded or masked, ii) a list of one or more actions attached 

to each match rule, iii) counters for collecting statistics about the flows [66].  

In OpenFlow 1.0, actions associated with flow-entry include forwarding actions, where 

the switch forwards the packet to the port specified in the output action or floods it to 

all ports. Furthermore, the controller can instruct the switch to forward all the traffic 

that match a certain flow-entry to the controller. More actions that empower OpenFlow 

switch to be used for network access control or even as a firewall are available such as 

the drop packets action. It is also possible to modify the header of the incoming packets 

in OpenFlow 1.0 including the modification of VLAN tag, IP source, destination 
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addresses, etc. By default, if no flow-entry matches the incoming packet headers, then 

the switch notifies its controller about the packet using an OFP-Packet-In message [67].  

OFP-Packet-In message may either contain the entire packet or just a fraction of the 

packet header. In the second case, the packet is stored in a buffer at the switch and the 

OFP-Packet-In message contains the buffer ID of the stored packet. The controller that 

receives the OFP-Packet-In notification message identifies the correct action for the 

packet and sends an OFP-Flow-Mod Message asking the switch to handle the 

upcoming packets according to the new rules and an OFP-Packet-Out message to 

forward the buffered packet. Whenever a packet is processed by an OpenFlow switch, 

the statistics are updated using various counters in the switch. OpenFlow controller 

may query the switch for this information that can be used in its applications. OpenFlow 

1.0 switch keeps statistics about flows that are processed by flow-entry, port, and queue 

[68]. 

 

Figure 3.2: OpenFlow 1.0 Switch Structure 

3.3.1.2 Switch as Specified by OpenFlow 1.2 Specifications 

Figure 3.3 illustrates the main components of OpenFlow 1.2 switch. The switch 

consists of i) processing pipeline; ii) switch ports; iii) secure channel. The processing 

pipeline is updated to include a new table named group-table and instead of one flow-

table the switch includes set of multiple flow-tables linked together and sequentially 

numbered, starting at 0. Packets are processed through a pipeline of multiple flow-

tables starting from the first table. The packet is compared against the flow-table 

entries. If the packet matches a single flow-entry then the respective instruction-set are 

applied, and the flow-entry counters are updated, while if more than one matching entry 

are found the most specific entry with the highest priority is selected [64]. 
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 The instructions of the selected flow-entry may include updating the action set, 

updating the metadata value, and performing actions. It also may send the packet to 

another flow-table using the Goto-Instruction where the same procedure is repeated 

[68]. In the processing pipeline, metadata fields are collected from the packet during 

the matching process and used to pass information between the tables as the packet 

traverses through them. Flow-table entries contain instructions instead of actions. flow-

entry is only allowed to send the packet in a forward direction to a flow-table with 

greater number than its own flow-table number. If the instruction-set of a flow-entry 

does not contain a Goto-instruction, the pipeline processing stops, and the accumulated 

action set is executed on the packet. Flow-table entries can also direct the packet to a 

group-table. Group-table is a special and more sophisticated table designed to facilitate 

more complex and specialized packet operations that are common across multiple flow 

entries and it supports more complex forwarding behaviours such as load balancing, 

fault tolerant and link aggregation. It consists of one or more group entries. Each entry 

contains group-id, group type, action buckets, and counters. 

 

Figure 3.3: OpenFlow 1.2 Switch Structure 

3.3.1.3 Switch as Specified by OpenFlow 1.3 Specification 

The main components of an OpenFlow switch as specified by OpenFlow 1.3 

specifications are shown in Figure 3.4. It consists of: i) one or more flow-table; ii) 

group and meter-tables; iii) set of OpenFlow ports; iv) secure channel with the 

centralized OpenFlow controller. 
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Figure 3.4: Main Component of OpenFlow Switch 

A.  Flow Table 

The flow-table has a similar structure to the traditional networking devices forwarding 

table. Each table contains a set of flow entries that are used in the processing pipeline 

to perform packet lookup, header manipulation, and forwarding decisions. Each flow-

entry consists of three main components; first, matching fields, this includes incoming 

port number, source or destination MAC address, source or destination IPv4 address, 

source and destination port number etc. second, set of instructions to be executed on 

the matched flow; finally, counters to record a detailed statistic about the flow as shown 

in Figure 3.5. 

 

Figure 3.5: Flow Table Basic Structure 
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B.  Group Table 

Group-table is a special table used to perform complex operations. It consists of 

multiple group entries as shown in Figure 3.6. Each entry consists of: i) group identifier 

which represents a unique identifier used a key id in the group-table. Normally frames 

are sent to the group-table by the flow-table entry utilizing the group identifier; ii) group 

type, four types are support by OpenFlow switches for which more detail is provided 

in the next sub-section; iii) counters store statistics about the packets handled by the 

group-entry and are updated each time packets are processed by the entry; iv) an 

ordered list of action buckets that includes actions to be executed on the packet. 

I. Group Types 

Four types of groups have been defined by the OpenFlow specification, but the switch 

does not have to support all types. In other words, two types are mandatory while the 

other two are optional. This section describes these types in detail. 

❖ All: it is the first required group type that is mandatory to be supported by all 

switches running OpenFlow 1.2 or later. All the group-entry action buckets are 

executed on the packet processed by group-entry type ALL. This type is often 

used to implement broadcast and multicast operations. To do that the received 

packet is cloned several times (equal to the number of action buckets), and each 

copy is processed by a single bucket. To send the packet back through the same 

port it was received on, the group must include an extra bucket, which includes 

an output action to the OFPP_IN_PORT reserved port. 

❖ Select: It is an optional group type that is primarily designed for load balancing. 

Unlike the ALL group type, packet is processed by only one action bucket based 

on a selection algorithm that is implementation specific (e.g. round robin). 

Although OpenFlow specification does not specify a selection algorithm but it 

does point to a few features that should be supported by the implemented 

selection algorithm. This includes equal load sharing selection that can utilize 

bucket weights. In this type, if the outport specified by the match action bucket 

is down, the switch may restrict bucket selection to the remaining set (those 

with forwarding actions to live ports) instead of dropping packets destined to 

that port [64].  

❖ Indirect: this is the second required type, although is it a group type but it only 

has one action bucket and all the received packets are handled by this bucket. 
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The purpose of this type is to accommodate a common set of actions to be 

utilized by multiple flow entries to simplify the switch pipeline operations and 

support faster and more efficient convergence. 

❖ Fast failover: This is an optional group type designed specifically to detect and 

overcome port failures. A list of buckets is associated with this group, and each 

action bucket has port and/or group parameters, which are used to monitor the 

liveness of the bucket. Normally upon receiving a packet, the bucket list is 

evaluated, and the first alive bucket is picked to handle the packet, but if no 

bucket is alive then the packet is dropped. With this group type, a path switch 

can be performed without the need to contact the controller. 

 

Figure 3.6: Group Table Basic Structure 

C.  Meter Table 

The basic structure of meter-table is illustrated in Figure 3.7. Meter-table has one or 

more entries, and each entry consists of: i) meter identifier; ii) meter bands; iii) 

counters. Meter-table is used to provide per-flow metering, which helps the 

implementation of simple QoS operations like rate-limiting. At the same time, more 

complex QoS frameworks such as Diffserv is supported by OpenFlow 1.3 specification 

by combining per-flow metering with per-port queuing. To provide per-flow metering, 

meter entries are attached directly to the flow-table entries by the means of flow-entry 

instructions.  

Meter-entry measures the packets directed to it and helps control the rate of those 

packets. As previously mentioned, meter-entry includes one or more meter-bands and 

each band has a type and rate associated with it. Packets are handled by only one meter-

band, more specifically the band with the highest configured rate that is lower than the 

current measured rate. If the current measured rate is lower than the configured rate of 

all meter bands, then no meter band is applied [67]. Two meter-band types are specified 

in OpenFlow 1.3 specification, namely drop and DSCP-remark as shown in Figure 3.7. 
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The first type is used to define a rate-limit, while the second can be used as a simple 

Diffserv policer by increasing the drop precedence of the DSCP field. 

 

Figure 3.7: Meter Table Basic Structure 

D.  Processing pipeline procedure 

The processing pipeline operation starts immediately after receiving a packet from the 

switch port. As previously mentioned, flow-tables are sequentially numbered, the 

received packet is always matched against the flow entries of the first flow-table. If no 

match is found, then the table miss-entry is executed. Figure 3.8 illustrate the switch 

processing pipeline procedure.  

Upon receiving the frame, an empty actionSet and metadata are attached to the frame 

and the header information of the received frame is matched against the flow entries of 

flow-table 0. If no match is found, the table miss-entry is executed. The table miss-

entry is normally used to either drop the packet or send it in an OFP-Packet-In message 

to the controller. Alternatively, if a match is found, then the counters of the match entry 

are updated, and the instructions associated with the match entry are executed on the 

received frame. If a Goto-instruction is included in the matched flow-entry instructions, 

then the packet is sent to the table specified by the instruction. The packet is only 

allowed to be sent to a table with a higher sequence number. In other words, pipeline 

processing can only go forward and not backward. The pipeline processing ends when 

the matched entry instructions do not have Goto-instruction. At this stage the 

accumulated actionSet is executed on the packet. The actions may send the packet to a 

group-table for feature processing and at the end the packet is either sent to the network 

through an output port or dropped if no output action is included in the actionSet. 
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Figure 3.8: OpenFlow 1.3 switch processing pipeline procedure 

E.  OpenFlow Ports 

OpenFlow ports are interfaces that are simply used to exchange packets between the 

switch processing pipeline and the network. OpenFlow ports are available for the 

switch processing pipeline, which may be equivalent to the network interfaces provided 

by the switch hardware but mostly this is not the case considering that some of the 

network interfaces can be disabled for OpenFlow and other additional logical interfaces 

that can be provided by the switch to the processing pipeline.  

OpenFlow switches are normally connected to each other using OpenFlow ports. A 

packet travels from the first switch egress port and is received by the second switch 

ingress port. OpenFlow ingress port is considered as a property of the packet 

throughout the processing pipeline and represents the switch port on which the packet 

was received. In the processing pipeline the packet ingress port can be used as matching 

criteria to identify the type of the flow and define how the packet should be handled by 

executing one or more actions on the packet. OpenFlow ports can be classified as 

physical, logical, and reserved ports. As previously mentioned, these ports can be used 

as ingress or egress ports. OpenFlow ports have counters and they have state and 

configuration [67]. 
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I.  Physical Ports 

OpenFlow physical ports are switch defined ports that represent one-to-one mapping 

with the switch hardware interfaces. For instance, the switch Ethernet interfaces are 

mapped to OpenFlow physical interfaces. In a virtualized environment, OpenFlow 

physical interfaces are mapped to the virtual interface of the virtual switch. 

II.  Logical Ports 

OpenFlow logical ports represent higher level abstractions defined by the switch and 

used to perform complex operations e.g. link aggregation groups, tunnels, loopback 

interfaces. OpenFlow logical port does not correspond directly to the hardware 

interface of the switch as it may map to various physical ports. The logical port 

operations are not specified by OpenFlow protocol and it is implementation dependent. 

Logical port should interact with the switch processing pipeline in same way as 

physical ports, with an extra property attached to the flow received by logical port to 

precisely identify the logical port in the switch processing pipeline. 

III.   Reserved Ports 

Another type of switch defined OpenFlow port are the reserved ports. These ports can 

be used to forward the received traffic using OpenFlow or non-OpenFlow methods. In 

the first case, these ports can send the traffic to the controller or flooding out all the 

interfaces except the one on which it was received, while in the second case, these ports 

can be used to forward the traffic using the normal switch processing. Specified by 

OpenFlow protocol, it is required that the switch implements the following reserved 

ports. 

❖ All: reserved port that is used as egress port only. It is used by the switch to 

send a packet to all the ports except the port from where the packet is received 

and ports that are configured to not forward. 

❖ Controller: switch defined reserved port that can be used as ingress or egress 

port. Normally used to communicate with the control plane. It works as egress 

port and encapsulates the packet within a packet-in message and sends it to the 

controller, and it identifies the controller message when it works as an ingress 

port. 

❖ In Port: another reserved port supported by the switch. This port is used only 

as an output port and is normally used to send the received packet back to the 

same interface it was received on. 
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❖ Any: It is not an ingress port or egress port. It is a special value used by some 

OpenFlow commands as a port wildcard when no port is specified. 

❖ Table: unique ports that are only used in the action list of OFP-Packet-Out 

message, where it is used to send the received packet to the first flow-table to 

be processed by the switch processing pipeline. Also a few reserved ports that 

are not mandatory to be implemented by OpenFlow switch but still supported 

by many switches. 

❖ Local: reserved port that can be used as either ingress or egress port. 

❖ Flood: a reserved port that can be used only as an egress port. In general, it uses 

the traditional non-OpenFlow pipeline to send the packet out to all the switch 

interfaces excluding the port from where the packet was received. The switch 

may also use the packet VLAN ID or other criteria to select which ports to use 

for flooding. 

❖ Normal: optional reserved port that can only be used as an egress port.  The 

same as the FLOOD port, this port uses the traditional non-OpenFlow pipeline 

to forward the received packet. In general, the process of routing or switching 

the packet is implementation independent and it is not specified by the 

OpenFlow specification. 

 

3.3.2 Connection Establishment between Switch and Controller 

All OpenFlow capable switches need to register itself with a controller. The TCP 

handshake process is started by the switch through sending a TCP sync message to the 

controller IP address at the default TCP port 6633. The controller replies to the switch 

by sending a sync acknowledgement message. When the sync acknowledgement 

message arrives at the switch, an acknowledgment message is sent back to the 

controller and the TCP session is established between the two devices. After that echo 

request and reply are exchanged between the two devices to maintain a healthy 

connection. The same procedure is used when a new OpenFlow switch is added to the 

network. 

3.3.3 OpenFlow Messages 

Three types of messages are specified by the OpenFlow specifications. This includes 

controller-to-switch, asynchronous, and symmetric, each with multiple sub-types [67]. 
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The name is the recipe with controller-to-switch messages considering that it describes 

the messages generated and sent by the controller to the switches, these messages are 

used to manage, configure, and inspect the state of the data plane switches. The 

asynchronous messages represent the class of messages generated and sent by the data 

plane switches to notify the controller about a new event or state change in the network. 

The last type describes the messages generated and sent by either the controller or the 

switch without any solicitation. Section 3.4.2.3 describes in more detail the most 

common messages of each type and at the same time which of them are modelled in 

the OpenFlow 1.3 model. 

3.4 Simulation Model 

In order to fully understand the design and the implementation of the OpenFlow 1.3 

model it is required to understand OMNeT++ simulator. In this section a brief 

description about OMNeT++ simulator is provided and then the design and 

functionality of OpenFlow 1.3 model is presented with more focus on the controller 

and switch entities. 

3.4.1 OMNeT++ Simulation Framework 

OMNeT++ is an object-oriented modular discrete event network simulation framework 

that can be used to model wired and wireless networks, network protocols, and many 

other things. Here only the OMNeT++ aspects that are more relevant to understanding 

OpenFlow 1.3 model is described. More information about OMNeT++ framework can 

be found in [71]. OMNeT++ in itself is not a network simulator, rather it is a framework 

that provides infrastructure of components and tools called modules, which can be 

combined together to form the simulation network. These OMNeT++ modules have 

gates, which act as interfaces. The gates are connected by predefined connection links. 

The modules communicate with each other by sending and receiving messages through 

those modules’ gates. At the top of this Ease of Use hierarchy is the network, which 

has no gates to the outside world. In OMNeT++, the module’s structure (gates, 

connections, etc.) is described in files written in NED (Network description) language. 

The implementation of the module’s behaviour is written in C++, while the parameters’ 

value that customize the module behaviour and define the simulation topology can be 

assigned in either the NED or .ini files [69]. 
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Figure 3.9: OMNeT++ Basic Building Blocks 

The active modules are written in C++, by using the class library of the OMNeT++, 

and they are called simple modules (which sit at the lowest level of the module 

hierarchy). Simple modules can be grouped to form compound modules. Simple 

modules in different compound modules can connect with each other only through the 

compound module’s gates (the connections cannot sidestep module hierarchy) as 

shown in Figure 3.9. Overall, the OMNeT++ simulation model consists of simple 

modules communicating via messages. The creation, deletion, modification, storage, 

transmission, and reception of messages is the main job of the simple modules, hence 

the whole OMNeT++ model is there to accomplish this job. To create or destroy a 

message object you need to use the C++ New or Delete operators. The message object 

is an instance of a class called cMessage, or one of its subclasses. Practically, fields 

should be added to the cMessage to customize it upon your simulation requirements, 

by creating subclasses to extend the cMessage class. The same goes for the network 

packets, since it is an instance of the cPacket, which is sub-classed from the cMessage. 

3.4.2 OpenFlow 1.3 Simulation Model 

OpenFlow 1.3 model is developed as extension to the INET library of OMNeT++ 

simulation framework. The model was carried out as an upgrade to the OpenFlow 1.0 

model [70]. The model provides a basic implementation of OpenFlow 1.3 devices, 

including OpenFlow 1.3 compliant switch nodes, controller, and secure channel. Due 

to the intrinsic complexity of the OpenFlow 1.3 standard, the model does not support 

all the features specified by the OpenFlow 1.3 specification standard [65].  

However, the proposed model has features that allow the simulation of at least several 

important aspects of OpenFlow 1.3 based networks; moreover, it provides a very good 

basis for further extensions as well as for the development of a complete tool for the 

future. The model structure is built using the NED languages, while the functionality 
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is built completely in object-oriented C++. The model includes vital functionality that 

provides a scalable and reusable API. OpenFlow 1.3 processing pipeline is used in the 

model with the support for group, and meter tables as well as OXM. Figure 3.10 shows 

the UML diagram of the most important classes that compose the model. It is important 

to remark that the diagram only reports the most important data members and functions. 

Some details about the relationship among classes have been omitted due to space 

limitations. In this section, the model building blocks are described in terms of structure 

and functionality. This includes OpenFlow-compliant switch, OpenFlow controller, 

and OpenFlow messages for the communication between the switch and the controller 

over a secure OpenFlow channel.  

The general structure of the OpenFlow 1.3 switch and controller is illustrated in Figure 

3.15 and Figure 3.16 respectively. The proposed model implements the OpenFlow 

switch and controller nodes as compound modules. The switches can be connected with 

each other and with other nodes (e.g. routers, host, etc.) in order to compose a network. 

The controller module realizes a set of common functionalities to control and inquire 

an OpenFlow network. According to the OpenFlow specification all the FDs need to 

register with the controller using OpenFlow connection channel. This connection is 

used for exchanging OpenFlow messages between the control plane (OpenFlow 

controller) and the data plane (OpenFlow switches) in order to implement the 

forwarding behaviours. In the OpenFlow controller module, the controller creates a 

complete overview of all switches and links between the switches. The controller 

module calculates the best path for the destination node and instructs the switches to 

create flows that adhere to this shortest path. 
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Figure 3.10: OpenFlow 1.3 Module Classes UML Diagram 
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3.4.2.1 OpenFlow Switch Node 

OpenFlow Switch module is illustrated in Figure 3.15 and it consists of OpenFlow 

plugin and forwarding plane modules. The functionality of the OpenFlow plugin is 

implemented using the OFA_Switch module, while the forwarding plane consists of: 

Flow, Group, Meter tables, Buffer, and Open Flow Processing modules. The next sub-

sections present an extensive and comprehensive description of the OpenFlow Switch 

module building blocks. 

A.  OFA_Switch Module 

It represents the connection point of the Switch module with the OpenFlow controller 

module. The functionality of the module is implemented by the OFA_Switch class. At 

the beginning, the OFA_Switch module establishes a TCP session with the controller 

and negotiates the supported OpenFlow version and capabilities [70]. In fact, the OFA 

Switch module receives messages from both the controller module and the Switch’s 

Open Flow Processing module. Controller messages are received through the TCP 

connection, while NO-MATCH-FOUND notification message are received from the 

Switch Open Flow processing module using the OMNeT++ signals concept. 

In our opinion the most interesting and immediate use case for an OFA_Switch module 

is to aid the handling and validating of the controller messages. Therefore, the 

OFA_Switch Implements handleMessage() and receiveSignal() methods to handle the 

messages received from the controller and the Open Flow Processing module 

respectively. The handleMessage() is responsible for handling the messages that have 

arrived from the controller. This method works like a classifier, since it first checks if 

the received message is an OpenFlow message, and if not, then the received message 

is ignored and deleted at a later stage. Otherwise, it identifies the type of the OpenFlow 

message and calls the method that handles this type of message as shown in Figure 

3.12. For example, if the controller wants to change the forwarding path for a certain 

flow, it sends OFP-Flow-Mod message to modify the flow-table of the FDs. When the 

OFA_Switch module receives the OFP-Flow-Mod message from the controller, it calls 

the handleFlowModMsg(). This method checks command field of the OFP-Flow-Mod 

message to identify if the controller wants to add, modify, or delete the flow-entry.  

Vital functionality is introduced in the OFA_Switch module to perform a validation 

check for the OFP-Flow-Mod message before updating the flow-table as shown in 

Figure 3.11. If the message failed the validation check, an error message is sent to the 
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controller with the error type and code that is specified in OpenFlow 1.3 switch 

specification. The validation check is an interface that defines two main functions: 

ofpActionsValidation(), and ofpActionsValidateSetFieldReq(); the first function 

returns ofp-error-msg, if the output port is greater than OFPP MAX or out of the switch 

ports, if group action is specified in the action list. It looks up the group-id presented 

with the action in the group-table, and if no match is found, ofp-error-message is 

returned.  The second function validates the set field action and returns ofp-error-msg 

if the request does not meet the prerequisite. The Group-Mod, and Meter-Mod 

messages are handled by following the same procedure used to handle the OFP-Flow-

Mod message as shown in Figure 3.12.  

The handleGroupModMessage(), and handleMeterModMessage() methods are used to 

handle the aforementioned messages respectively. Furthermore, OFA_Switch module 

implements functions related to the communication with the controller module, such as 

sending OFP-Packet-In messages. The OFP-Packet-In message is sent to the controller 

when the switch receives a packet and fails to match it against one of the flow-table 

entries, and the Open Flow processing module signals NO-MATCH-FOUND to the 

OFA Switch module as shown in lower part of Figure 3.12. Based on the switch 

configuration, the OFA Switch module either encapsulates the complete packet within 

the OFP-Packet-In message or buffers the unmatched packet and only sends the buffer-

id with the OFP-Packet-In message [70]. In addition to performing all the above 

functionality, it is also responsible for the exchange of connect, OFP-Features-Request, 

OFP-Features-Reply, OFP-Multipart-Request, OFP-Multipart-Reply, and error 

messages with the controller module. 
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Figure 3.11: Actions Validation Procedure of the OFP-Flow-Mod Message 



 

56 
 

 

Figure 3.12: OFA_Switch Module handleMessage Procedure 
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B.  Open Flow Processing Module 

The module structure is build using NED language, while the functionality is 

implemented by the Open Flow Processing class. The Open Flow Processing class 

provides the OpenFlow 1.3 pipeline. It is necessary to mention that some of the 

Openflow 1.3 pipeline related features is not implemented, such as the support for 

multiple flow-tables.  

The actual pipeline processing is triggered immediately after receiving a packet from 

the OFPort module. First Metadata, and empty actionSet are attached to the packet. 

Then match fields are extracted from the packet headers and used to query the flow-

table. If headers of the received packet do not match any flow-entry, then NO-MATCH- 

FOUND signal is sent to the OFA_Switch module to notify the controller by sending 

an OFP-Packet-In message. Otherwise, the instructions attached to the matched flow-

entry are executed. The method executeInstructionSet() of the Open Flow Processing 

class is called when the flow-table lookup finds a match. As shown in Figure 3.13, the 

method loops though all the instructions attached to the selected entry. It first checks 

the type of the instruction and based on the result it calls another method to execute 

this type of instruction. The instructions can send the packet to a meter table to enforce 

QoS on the packet, apply an action list immediately on the packet or update a packet 

actionSet. The flow instruction can also point to a group-table using OFPActionGroup. 

When the pipeline processing stops, the accumulated actionSet is executed on the 

packet.  

For example, if the selected flow-entry has an instructionSet consist of two instructions: 

the first one is OFPInstructionMeter, and the second is OFPInstructionActions. The 

executeInstructionSet() method will check the type of the first instruction and then call 

the applyEntry() method of meter-table class. Then it checks the type of the second 

instruction and if the result is ofp-Instruction-apply-actions it calls executeActionList 

to execute the actionList on the packet. Otherwise, it calls writeActionsToActionSet to 

update the packet actionSet. The applyEntry method of meter-table class can pass, drop, 

or modify the prec-level of the packet. Therefore, the executeInstructionSet() will 

check if the packet is dropped by the meter before the execution of the second 

instruction. 
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Figure 3.13: executeInstructionSet method Operations 

C.  Flow Table 

This is a simple module without any gate. It represents the flow-table and each 

OpenFlow switch has an instance of this module. This module has methods to read, 

interact, update the flow-table. At the same time, it requires function calls because 

handle message is not implemented. This module works as a container for one of more 

flow entries. A vector from C++ standard library is used to store these entries and 

OMNeT++ Watch Marco is used to keep track of the table activity during runtime as 

shown in Figure 3.14. 

 

Figure 3.14: Flow Table content at simulation runtime 
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D.  Group, Meter Tables Modules 

Group and Meter tables have been added to the switch module. They are implemented 

by the group-table and meter-table classes respectively. These modules provide 

methods to query, modify, delete, add, and execute entries of the table. According to 

the OpenFlow 1.3 specification [65] a meter-entry consists of meter-id, one or more 

meter-bands, and counters. Meter-table can be pointed by the flow-entry to perform 

either simple QoS such as rate-limiting or more complex QoS such as Diffserv. 

Following the same design strategy, each group-table entry consists of group-id, action 

buckets, and counters. These tables are designed to prevent overlapping between entries 

and have a unique ID for each entry. Table manipulation error handlers are also 

available. Meter and group-tables are connected to the flow-table through an OpenFlow 

instruction. 

E.  Buffer 

Very simple module is used to hold the received packet while the OpenFlow switch is 

asking the controller module for instructions. This module does not have a connection 

to any other module. The Open Flow Processing and OFA_Switch modules use a direct 

call to store and retrieve the packet from the buffer. 

 

Figure 3.15: OMNeT++ Module of OpenFlow Switch 
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3.4.2.2 OpenFlow Controller Node 

OpenFlow controller node plays a crucial role in the OpenFlow architecture. As 

illustrated in Figure 3.16, it consists of an OFA Controller module and a collection of 

applications realized in a separate module called CtrApp. In general, the controller node 

is responsible for the transmission and the reception of OpenFlow messages. In this 

respect, the module has the objective of modelling the transmission of OFP-Feature-

Request, OFP-Multipart-Request, OFP-Packet-Out and OFP-Flow-Mod messages and 

the reception of OFP-Feature-Reply, OFP-Packet-In from the connected switches, 

Finally, it is also responsible for the exchange of connect messages during the initial 

setup procedure. In that context, the controller node sends an OFP-Feature-Request 

message to the data plane switches upon session establishment. This message is 

generated by the 

OFA Controller module, so the CtrApp does not need to process this typically. The 

switch responds with an OFP-Feature-Reply message, which is also handled by the 

OFA Controller module, without any intervention from the CtrApp module, while the 

OFP-Packet-Out and OFP-Flow-Mod messages are sent based on the application’s 

behaviour and needs. The application specifies the messages’ command and asks the 

OFA Controller module to send it to the switch.  

The communication between the OFA Controller module and the CtrApp is again 

realized via the OMNeT++ signal concept [69]. It is intended to provide a 

programmatic platform for controlling one or more OpenFlow switches. The most 

important tasks of the controller are the network discovery, Flow modification, and 

packet routing. OMNeT++ cTopology class is used by the controller Node to provide 

useful network functions such as network discovery, host tracking, and routing. The 

controller node is enhanced to provide a simple, easy to use and well-defined API that 

facilitates the creation of any new control and management applications.  

The CtrApp contains a set of built-in applications such as Hub, Switch and Forwarding. 

If the network needs to be managed differently, new behaviour application needs to be 

written. The application tells the controller module how to manage the FDs. Then the 

controller module configures the FDs by using OpenFlow protocol. Figure 3.17 shows 

and example of the interaction between the individual entities of the controller module 

to perform network operations. In this example, a switch application is used as the brain 
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of the network but in the same way different applications can be utilized to alter the 

network behaviour.  

The outer structure of OpenFlow controller node is kept the same as the previous 

OpenFlow 1.0 module, while new functionality has been adopted to support OpenFlow 

1.3 message structures as well as the support for OXM based on [71]. Ongoing work is 

being carried out to create a controller application that simulates the behaviour of LTE 

core network (Evolve Packet Core). This application aims to enhance the 3GPP EPC 

performance by removing the GTP and providing DiffServ QoS for the user Traffic. In 

that respect, a new interface has been added to send OpenFlow meter and group 

modification messages to the connected switches. The controller sends OFP-Meter-

Mod to modify the switch meter-table entries. In the same way OFP-Group-Mod is sent 

by the controller to modify the group-table of the FD.  

OpenFlow modification messages are used for all the group and meter-table entry 

operations such as adding new entry, deleting existing entry, and modifying one of the 

table’s OpenFlow instructions. OFP-Multipart-Request message is used by the 

controller to obtain statistics from data plane switches and these messages are used by 

the controller to gather the status of individual table, entry, or port from the data plane 

switches. OFA Controller provides the tools to obtain the data plane status and feed it 

to the application layer as needed or requested. 

 

Figure 3.16: OMNeT++ Module of OpenFlow controller 
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Figure 3.17: Controller Node Operation with Switch Application 

3.4.2.3 OpenFlow Messages 

OpenFlow supports three classes of communications: controller-to-switch, 

asynchronous and symmetric messages each with multiple sub-types. The controller-

to-switch communication messages are purely initiated and sent by the controller and 

may or may not require a response from the OpenFlow-compliant switch. 

As explained in previous sections, the controller communicates with the FDs using 

OpenFlow protocol utilizing OpenFlow messages. These messages are used for feature 

detection, configuration, and programming of the switches. They are also utilized by 

the controller to inspect the state of the connected switches.  

Asynchronous communication messages are sent by the OpenFlow switch to the 

controller without any request. The switch sends asynchronous messages when: i) it 

receives a packet and does not know how to forward it; ii) notify the controller about 
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various state changes at the switch; iii) report errors. Some of the important 

asynchronous messages are OFP-Packet-In and OFP-Flow-Removed messages.  

Finally, symmetric messages are initiated and sent without solicitation from either side, 

i.e., the controller or an OpenFlow compliant switch. These are OpenFlow messages 

like Hello and Echo request/reply that can be used to monitor the control channel and 

make sure it is healthy and available.  

OpenFlow 1.3 model implements the most important subset of messages that allows 

exhaustive simulations of OpenFlow enabled networks. Every message in the 

OpenFlow 1.3 model inherits from OFP-Header message class, which contains basic 

OpenFlow header information, allowing an easy way to create new OpenFlow 

messages just by extending it. All the implemented messages in OpenFlow 1.0 model 

[70] that include the OFP-Features-Request and the OFP-Features-Reply, OFP-Packet-

In, OFP-Packet-Out, OFP-Flow-Mod are updated to OpenFlow 1.3 and new messages 

to modify the group and meter-table have been implemented. Messages in OMNeT++ 

are defined as a C++ class. Figure 3.18 shows the class representation of the messages 

implemented in the OpenFlow 1.3 model. 

 

Figure 3.18: Messages Implemented in OpenFlow 1.3 Model 
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3.5 Openflow 1.3 Model Validation 

To validate that Openflow 1.3 OMNeT++ model works according to the standard, a 

network consists of client, server, two Openflow switches, and Openflow controller has 

been simulated as shown in Figure 3.19.  The client eth0 interface is connected to 

Openflow switch1 eth0, while the server eth0 interface is connected to Openflow 

switch2 eth0 interface. The switches are connected to each other by the mean of 

interface eth1. The controller is connected to both switches using TCP.  

 

Openflow 1.3 based network topology 

Figure 3.19: Openflow 1.3-based Network Topology 

At the start of the simulation the Openflow switches setup a TCP session with the 

controller and maintain it during the simulation, then the server picks a random time 

between 0.1ms and 1ms to send UDP traffic to the client at the other end. 

Figure 3.20 shows that after the setup of the TCP session the controller sends a 

FeaturesRequest message to all the connected Openflow switches, upon receiving 

the controller request message, each switch response back with FeaturesReply 

message. 

Figure 3.21 shows the interaction between the controller and the switch. The 

server is configured to send UDP packets to the client IP address, therefore it first 

sends ARP message to know the MAC address of the client because this is an 

ethernet network. First the ARP packet is sent to the Openflow switch and because 

it doesn’t have a flow entry at the beginning of the simulation, the switch sends 

the ARP packet encapsulated in Openflow PacketIn message to the controller. 

Upon receiving the PacketIn message, the controller application is written to 
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handle ARP request, therefore, the controller sends back two PacketOut messages 

to the switch in question. 

•  The first packet instructs the switch to drop the ARP request,  

• The second message contains the ARP response to be send back to the 

Server. 

When the server receives the ARP response, it starts sending UDP packet to the 

client address. The first packet received by the switch is send to the controller and 

the controller response with Flow_Mod message to configure the switch with a 

new flow entry to should be used to handle the upcoming traffic of this flow.  

 

Figure 3.20: Openflow 1.3 Channel Setup Interaction 

 

Figure 3.21: Openflow 1.3 First Packet Handling Procedure 
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Figure 3.20 and Figure 3.21 proof that the Openflow 1.3 model works based on 

the standard specification of Openflow 1.3. Also, serviceTime Parmenter is added 

to both the switch and the controller modules to simulate the processing time of 

these entities. 

3.6 Summary 

This chapter briefly describes the differences between the network technology that used 

nowadays and SDN that considered to be one of the emerging technologies that met to 

reshape the structure of networking. Then OpenFlow protocol described in detail with 

focus on the switch structure requirement based on OpenFlow specifications from 1.0 

to 1.3. Finally, the chapter describes our OMNeT++ implementation for OpenFlow 1.3 

protocol. The model describes the structure and the functionality of the controller and 

switch nodes. This section explains how the basic components of the OpenFlow node 

interact with each other’s to perform different tasks that are required to simulate 

OpenFlow-based network. 
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4 Evolved Packet System Technologies and 

Implementation Model 

4.1 Introduction 

This chapter discusses the EPS architecture and its simulation platform in OMNeT++. 

This chapter describes the building components, communication interfaces and 

protocols of the EPS, it also explains network procedures such as Initial Attachment, 

Access Bearer Setup and Release procedures, and X2-Handover. Finally, it briefly 

describes simuLTE and illustrates in detail the structure, operations, and functionality 

of several networking entities like eNodeB, SGW, PGW and MME. 

4.2 Evolved Packet System 

The EPS architecture has been designed to provide seamless IP connectivity between 

the UE and external Packet Data Networks (PDNs). The main functional elements and 

connection interfaces of EPS system architecture are illustrated in Figure 4.1. EPS 

consists of two important networks namely the access and core networks. The access 

network is also known as the Evolved Universal Terrestrial Radio Access Network 

(EUTRAN) and it consists of multiple base stations denoted as the eNodeB. The core 

network known as the EPC is consists of multiple functional elements that include: 

MME, SGW, PGW, Home Subscriber Server (HSS), and Policy and Charging Rule 

Function (PCRF) [72]. The eNodeB represents the essence of the access network and 

it is responsible for the air interface towards the UE and S1 interface towards the core 

network. Meanwhile, the EPC connects the mobile network to external PDNs that 

include: i) Internet; ii) IP Multimedia Core Network Subsystem (IMS); iii) private 
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corporate networks, which provides the UEs with a variety of services. The SGi 

interface is utilized to maintain the connection with the outside networks. The EPC is 

all-IP-Network that provides always-on connectivity to UEs and supports IP version 4, 

IP version 6, or dual stack IP version 4/version 6. When the User device is switched 

on, the EPC sets up a basic IP connection to the external world and maintains it until 

the device is switched off. 

 

Figure 4.1: Main Component of the EPS Architecture 

4.2.1 Evolved UMTS Terrestrial Radio Access Network  

Figure 4.2 shows the basic building blocks of the EUTRAN. The EUTRAN has only 

one element known as the eNodeB and it is responsible for the communications 

between the UEs and the core network (EPC). The eNodeB performs two important 

functions that can be summarized as follows: First, it manages and organizes UEs’ low 

level operation utilizing several control-signalling messages such as handover 

commands. Secondly, it handles the downlink and uplink radio transmissions to/from 

the UE using the analogue and digital signal processing functions of the LTE air 

interface [72].  

The eNodeB represents the control point of UEs in one or more cells. In LTE, UE 

communicates with a single eNodeB cell at any one time. The eNodeB that is handling 

the UE communication is known as its serving eNodeB. Each eNodeB is connected to 

the EPC and nearby eNodeBs through the S1 and X2 interfaces respectively. These 

interfaces are not direct physical connections. In reality, control and data traffic are 

routed through multiple hops in the underlying transport network to reach the desired 
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target. The X2 interface is not mandatory and is used to exchange signalling and data 

traffic between source and target eNodeBs during UE handover. If eNodeBs are not 

connected through the X2 interface, then the S1 interface is used to handle the 

functionality offered by X2 interface, although indirectly and more slowly.  

Several eNodeB types can be used as a part of the EUTRAN namely: Macrocell, 

Microcell, Picocell, and Femtocell [73]. The latter is a home eNodeB (HeNodeB) that 

is used to provide coverage for a small area like a home. HeNodeB is purchased by a 

user and belongs to a Closed Subscriber Group (CSG) and can only be accessed by 

mobiles with a Universal Subscriber Identity Module (USIM) that also belongs to the 

CSG. From an architectural point of view, HeNodeB can connect to the core network 

(EPC) through a direct connection like the other types of eNodeB or through an 

aggregation point known as a home eNodeB gateway. 

 

Figure 4.2: Evolved UMTS Terrestrial Radio Access Network Main Components 

4.2.2 Evolved Packet Core 

EPC represents 3GPP latest evolution in mobile core network architecture. The EPC is 

characterized as being a simplified IP based mobile core network with a flat 

architecture and supporting packet switching only. It uses a large variety of IP-based 

protocols to transport all services. As previously mentioned, the EPC consists of several 

network function elements that include the HSS, SGW, PGW, MME, and PCRF. Figure 

4.3 shows the main components and the communication interfaces of the EPC. 
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4.2.2.1 Home Subscriber Server 

The Home Subscriber Server (HSS) is a centralized database for UEs. It maintains user-

related and subscriber-related information. This includes identification, security, 

location, and profile parameters, which are used for mobility management, call and 

session setup, user authentication and access authorization. 

4.2.2.2 Serving Gateway 

The SGW acts as a router that represents the interconnection point between the radio-

side and the EPC since it is logically connected to the EUTRAN through the S1-U 

interface and to another gateway, specifically the PGW through the S5 interface. It 

deals with the user plane that includes IP data traffic forwarding between the eNodeB 

and PGW and vice versa. It is also characterized for being a local mobility anchor for 

UE handovers between eNodeBs and also between LTE and other 3GPP accesses. A 

typical mobile operator might have several SGWs, where each of them is responsible 

for all the UEs in a specific geographical region. During the UE Initial Attachment 

procedure, it is assigned to a specific SGW, but the SGW can be changed if the UE 

moves away from the geographical region covered by the current SGW. 

It also participates in some of the control plane operations that include S1-U and S5-U 

tunnel establishments. 

4.2.2.3 Packet Data Network Gateway  

The PGW represents the point of interconnect between the EPC and the external IP 

networks. The PGW together with the SGW enables data traffic forwarding between 

the UE and external IP networks. The PGW also performs various functions that 

include: i) UE IP address allocation; ii) policy enforcement; iii) packet filtering. The 

PGW routes packets to and from the PDNs through the SGi interface. Each PGW is 

connected to the external networks that include network operator’s servers, Internet or 

the IP multimedia subsystem. APN is used as an identifier for a PDN. In a typical 

mobile network deployment, network operator uses several distinct APNs to 

differentiate between its own services and the Internet. In the Initial Attachment 

procedure of each UE, a default PGW is assigned to provide an always-on connectivity 

to a default PDN such as the Internet. However, it also possible for a UE to be assigned 

to additional PGW gateways when it wants to use a different service that may be offered 
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by private corporate networks. Each PGW stays the same throughout the lifetime of the 

data connection. 

4.2.2.4 Policy and Charging Rule Function  

PCRF represents an important network element that is responsible for charging and 

policy control, as shown in Figure 4.3 where the Gx interface is used to connect the 

PCRF to PGW in the EPS architecture. The PCRF provides guidance for the policy and 

charging treatment that a particular service data flow should receive during initial 

bearer setup or modify the QoS parameters of an existing bearer. This is done by either 

referring to a predefined Policy and Charging Control (PCC) rule, or by composing a 

dynamic PCC rule. Upon receiving the PCC, the Policy and Charging Enforcement 

Function (PCEF) which is part of the PGW implements the decision. PCRF has 

multiple signalling interfaces that are mainly used diameter applications, in a similar 

way to the interface between the MME and the HSS. Figure 4.3 shows only the Gx 

interface, but it also has the Gxx interfaces to the PCEF and Bearer Binding and Event 

Reporting Function (BBERF), the Rx interface to the application function, and the S9 

interface between the home and visited PCRFs. 

4.2.2.5 Mobility Management Entity 

The MME represents the main control element in the EPS architecture. It deals with 

the high-level control operations of the mobile that include sending control signalling 

related to mobility and security for the EUTRAN. The same as the SGW, a typical 

deployment of the mobile network may have multiple MMEs each one is in control of 

a specific geographical region. Every UE is managed by a single MME that is denoted 

as the serving MME, but that can be changed if the UE moves outside of the 

geographical region covered by the current MME.  

The MME is involved in the UE authentication and authorization and it is also 

responsible for the tracking and paging procedures of UE in the idle mode since it keeps 

track of UE location and state information. The Non-Access Stratum (NAS) signalling 

terminates at the MME and is responsible for ciphering and integrity protection of these 

NAS messages. It is also responsible for the generation and allocation of temporary 

identities to UE, which is then used in all subsequent procedures to identify the UE in 

the network. The UE changes its state to idle-mode after a period of inactivity, and the 

MME is responsible for paging it in case of network-initiated events. The MME is also 
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characterized for being the element in the EPS architecture that handles handovers 

between eNodeBs as well as to other access networks. After passing the security check 

the MME manages the process of data bearer establishment and teardown. This process 

involves selecting the appropriate SGW and PGW for a UE at the Initial Attachment 

procedure and relocating the SGW during intra-LTE handover that is required for 

changing the current SGW. 

 

Figure 4.3: EPC basic network function elements and the connection interfaces 

4.3 Interfaces and Protocol Stacks 

A protocol stack is associated with each interface of the EPS. This protocol stack has 

two planes, namely: protocols in the Control plane and protocols in the User plane. 

These protocols are used by network elements to exchange signalling messages and 

forward data traffic respectively. 

4.3.1 Signalling Protocols 

Figure 4.4 shows the signalling control protocols used in the EPS network. These 

include control protocols used over interfaces in both access and core networks. The 

access network includes protocols such as the RRC protocol which represents the 

signalling protocol used in the air interface between the UE and the serving eNodeB.  

Figure 4.6 shows the protocol stacks over the X2 interface in control and user planes, 

X2-AP is the signalling protocol used over the X2 interface to allow the neighbour 

eNodeB to communicate with the serving eNodeB. Also, each UE utilizes two 

signalling protocols that lie under the umbrella of the NAS protocol to communicate 
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with the MME through the air interface. These protocols are used to control the way 

the network handles traffic from the UE to the outside and vice versa, and it is also used 

to maintain an updated information about the UE in the EPC network. These protocols 

are formally known as the EPS Session Management (ESM) and the EPS Mobility 

Management (EMM). ESM and EMM messages travel from the UE to the core network 

embedded in a lower-level RRC and S1AP messages over the Uu and S1 interfaces 

respectively.  

The protocol stack for UE communication with the eNodeB and MME is illustrated in 

Figure 4.5. In the core network, the MME represents the main control element. It has 

interfaces that connect it to multiple elements such as another MME, SGW, HSS, and 

eNodeBs. The MME controls all the eNodeBs that are registered with its pool area by 

using the S1 application protocol (S1AP). It also uses the Diameter protocol to 

exchange control information with the HSS over the S6a interface. Basic Diameter is a 

protocol standardized by the IETF based on the Remote Authentication Dial-In User 

Service (RADIUS) and is used for authentication, authorization, and accounting. 

The Diameter protocol is implemented on the S6a and Gx interfaces between the MME 

and the HSS and between the PGW and PCRF respectively. diameter used on these 

interfaces represents an enhanced version of the basic diameter to provide the necessary 

features required by the EPS network. GTP Control part (GTP-C) represents the main 

protocol implemented by several interfaces in the EPS core network (EPC). This 

includes S10 interface between 2 MMEs, S11 interface between the MME and the 

SGW, S5/S8 interface between the SGW and the PGW. The GTP-C contains a 

mechanism to provide a peer-to-peer communication between the aforementioned EPC 

elements over the S10, S11, S5/S8 interfaces. It is also used to set up, manage and 

teardown the GTP-U tunnel over the aforementioned interfaces. EPS uses GTP-C 

version 2, commonly known as GTPv2-C, while version 0 and 1 of GTP-C is used in 

older mobile networks such as 2G and 3G. Specifically, 2G before release 99 uses GTP-

C version 0 which is also known as GTPv0-C, while 2G after release 99 and 3G 

networks uses GTP-C version 1, denoted as GTPv1-C. 

4.3.2 User Plane Protocols 

The EPS data plane represents the mechanisms to correctly forward the traffic from the 

UE to the PGW and vice versa. It also provides the tools to precisely change the traffic 

direction as a response to the UE movement from point A to point B in the network. A 
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well-known protocol is utilized by the 3GPP to implement the data plane mechanisms. 

To be more specific the GTP User part (GTP-U) is the main protocol used in the EPS 

to implement the data plane forwarding. In EPS only version 1 of the GTP protocol is 

used, and it is mostly known as GTPv1-U, while in older generations of the mobile 

network such as 2G and 3G version 0 is used, where it is commonly referred to as 

GTPv0-U. In EPS, GTP represents the main data transport protocol in the S1 interface, 

while S5/S8 can use either GTP or Generic Routing Encapsulation (GRE) as the data 

transport protocol. This thesis, only explains the EPS implementation when the S5/S8 

is implemented by using GTP. GTP is described in more detail in Section 4.3.3. 

 

Figure 4.4: EPS communication interfaces and protocols

 

Figure 4.5: Control Plane Protocol stack for compunctions between a UE and MME 
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Figure 4.6: Data and Control Plane Protocol stacks for X2 Interface 

4.3.2.1 Data Transport 

Figure 4.7 shows the end-to-end protocol stack used in the EPS to provide the UE with 

an always-on connectivity to the PDN. As previously mentioned, Section 4.3.2, will 

focus only on the EPS implementation when the S5/S8 interface uses GTP. The 

downlink traffic is used as an example to explain how the user traffic is delivered from 

the Internet service to the UE mobile device. During the Initial Attachment procedure, 

the UE is assigned an IP address from the same address space of the PGW. The Internet 

routes data packets destined to a mobile device to its PGW, and when the traffic is 

received by the PGW, it first identifies the SGW that is currently looking after the 

mobile device, then it encapsulates the incoming packet with another IP packet and 

sends it to the SGW IP address, upon receiving the packet by the SGW. It decapsulates 

the incoming packet and repeats the same process on the S1 interface toward the 

eNodeB. Finally, the eNodeB uses the air Interface to properly deliver the packet to the 

mobile device. 

 

Figure 4.7: User Plane Protocol Stack 
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4.3.2.2 EPS Bearer 

Users’ traffic in the EPS is forwarded from one node in the network to another by 

utilization of what is called bearers. EPS Bearers is a bi-directional data pipe which is 

used to forward data traffic from UE to the PGW and vice versa, while it guarantees a 

certain level QoS. The term QoS refers to the network resource used to transfer the data 

to ensure that the data meets a specific level of data rate, error rate, and delay. EPC 

bearer carries User traffic that belongs to one or more services classified by a service 

data flow. In turn, each service data flow consists of one or more packet filters, and 

each filter represents a data flow such as the audio and video streams that represent a 

specific service.  

In EPS, the same QoS is applied to all the traffic handled by the same EPS bearer.  

Based on the QoS, the EPS bearer can be classified to either Guaranteed Bit Rate (GBR) 

or non-GBR bearer. The name GBR bearer is always associated with a Guaranteed Bit 

Rate that represents the average data rate that should be received when using this type 

of bearer. GBR bearer is commonly used for a real-time traffic such as voice. 

Differently, non-GBR bearer offers no data rate guarantees and is mainly used for non-

delay sensitive traffics such as web browsing. Also, EPS bearer is most commonly 

known as a default or dedicated bearer, where default bearer can only be a non-GBR 

bearer while the dedicated bearer can be either GBR or non-GBR bearer.  

An always-on default bearer is assigned to each UE through the Initial Attachment 

procedure described in Section 4.4.1. In this procedure, after the UE is successfully 

registered to the network, IP address and a default bearer are assigned to the UE to 

provide it with always-on connectivity to default PDN such as the Internet. At this 

stage, the UE has an IP address and a default EPS bearer to the default PDN network. 

The UE may also request or be assigned one or more dedicated bearers that connect it 

to the same network. Dedicated bearers do not require a new IP address to be assigned 

to the UE instead it runs as a child to the default bearer and shares the same IP address. 

As previously mentioned, a dedicated bearer is normally used to guarantee a certain 

level of QoS. UE may have up to 11 EPS bearers to get connectivity to different 

networks with QoS differentiation.  

The EPS bearer spans through multiple interfaces, namely Uu, S1 and S5/S8 interfaces. 

Therefore, it consists of the compensation of the radio, S1, S5/S8 bearers as shown in 

Figure 4.8. Each bearer is associated with QoS parameters that are used to maintain the 
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delay, error and data rate guaranteed by the EPS bearer. The radio bearer QoS is 

implemented by properly configuring the air interface protocols, while the S1 and 

S5/S8 bearers are implemented by utilization the GTP-U tunnels. It is also worth 

mentioning that the radio bearer is combined with the S1 bearer and is sometimes 

referred to as the Evolved Radio Access Bearer (E-RAB) as shown in Figure 4.8. 

 

Figure 4.8: EPS Bearers 

4.3.3 GPRS Tunnelling Protocol  

GTP is a collection of protocols used by 3GPP Packet core networks 

(GPRS/UMTS/EPC) to play a major role in User session establishment, traffic 

forwarding, and mobility. It can be classified as GTP-C, GTP-U, and GTP variants. 

The GTP-C represents the control part of GTP and it defines the language used by the 

EPC control plane to exchange control information. The GTP-C has three versions: 0, 

1, 2 and operates on top of UDP as the transport protocol. GTP v2 offers backward 

compatibility only with GTP v1 but explicitly offers no support for fall back to GTP 

v0. GTP-U represents the user part of GTP and defines the mechanisms for data 

forwarding between network elements in the EPC network. It has only two versions: 1 

and 2 and like GTP-C, it uses UDP as the transport protocol. Finally, GTP which is 

also known as GTP Prime is used for interfacing with Charging Gateway Function 

(CGF) in GPRS and UMTS networks. In the EPS, GTP-C is used in the S11/S5 

interfaces between the MME, SGW and PGW nodes to exchange control plane 
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signalling, while GTP-U is used in the S5/S1-U interfaces between the PGW, SGW 

and wired part of the eNodeB to forward user traffic in the data plane. 

4.3.3.1 Tunnelling Using GTP 

In EPC, GTP is used to implement a mapping between the S1 and S5/S8 bearers, and 

these bearers are implemented between the PGW, SGW and the wired part of the 

eNodeB. As previously mentioned, a bearer is a bi-directional data pipe, this pipe is 

represented by a GTP tunnel. Each tunnel utilizes two unique identifiers denoted as 

TEIDs, one for the uplink and other for the downlink. During the session establishment 

procedure, the GTP-C signalling messages are exchanged between the involved 

network elements to set up and store the TEIDs at both ends of each tunnel. For a better 

understanding of how EPS bearers operate, downlink data flow coming from the 

Internet and destined to a UE is used as a demonstration example.  

As shown in Figure 4.9 the UE has established two bearers to handle two types of traffic 

namely, video and email traffic. The reason for establishing a different bearer for each 

traffic is because they require different QoS. It is necessary to differentiate between the 

incoming traffic in order to assign each traffic to the correct EPS bearer. This is done 

by utilizing the Traffic Flow Template (TFT) associated with each EPS bearer. Each 

TFT consists of a list of packet filters. Each filter represents a flow in the EPS bearer. 

Packet Filters use information like the source and destination IP address, transport layer 

source and destination port numbers, protocol type to match a flow. The filters may use 

a range of the above-mentioned information to match a traffic as well. When the 

Internet traffic has reached the PGW, the PGW inspects the incoming traffic and 

compares it with all the packet filters that it has. This way the traffic is always assigned 

to the correct EPS bearer, and then the PGW lookups the GTP-U tunnel information.  

The most important information is the downlink TEID and the UE’s SGW IP address. 

Then the Packet is encapsulated in a new GTP header that includes the downlink TEID 

and new IP layer headers that include the SGW IP address as the destination IP address 

with a new layer 2 headers and then the packet is forward to the SGW. When the packet 

is received by the SGW, it first inspects the GTP-U header and extracts the TEID and 

uses it to identify the correct EPS bearer and lookups the destination eNodeB IP address 

and TEID. The packet is then forwarded to the desired eNodeB following the same 

procedure performed by the PGW previously described. A similar process happens 

with the uplink traffic from the UE to the Internet. 
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Figure 4.9: Traffic Flow Template to EPS Bearer to GTP-U tunnel mapping 

4.4 EPS Procedures 

This section describes the essential and most important procedures used in EPS 

networks to provide connectivity to end users. These include EUTRAN initial 

attachment, Access Bearer Release, Service Request, and X2-based handover 

procedures. 

4.4.1 EUTRAN Initial Attachment Procedure 

The initial attach procedure starts immediately after switching the mobile device on 

and it has four main objectives that include: i) register UE to the network; ii) sets up 

and configure air interface; iii) acquire an IP version 4 address and/or an IP version 6 

address; iv) sets up the default EPS bearer for the UE. Subsequently, EPS enables the 

UE to have always-on connectivity to the outside world. Figure 4.10 illustrates the call 

flow for the Initial Attach procedure in the EPS network. A brief description of the 

Initial Attach procedure, including the main messages and their important Information 

Elements (IEs), is provided below: 

❖ The Initial Attachment procedure starts with the UE sending an Attach Request 

Message to the eNodeB, where this message contains the UE’s International 

Mobile Subscriber Identity (IMSI), UE Capabilities that indicate the supported 

NAS and AS security algorithms, attach type, RRC parameters, and ESM 

message container for requesting data connectivity. The ESM Message 
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Container includes the requested PDN type whether it is IPv4, IPv4 or IPv4v6, 

Protocol Configuration Options (PCO) and security parameters. 

❖ When the Attach Request message reaches the eNodeB, a unique identifier 

called the eNodeB UE S1AP ID is assigned to the UE, and after a successful 

selection of the MME, the NAS message along with information on the current 

location of the UE is encapsulated in an S1AP: Initial UE Message and 

forwarded to the MME. 

❖ Upon receiving the S1AP: Initial UE Message, the MME starts the 

authentication and security procedure by requesting the authentication vectors 

from the HSS using the authentication Information provided by the Request 

message. The HSS sends an Authentication Information Answer message that 

includes the requested information back to the MME, and after acquiring the 

authentication vectors from the HSS, a sequence of Authentication Request and 

Authentication Response messages are exchanged between the MME and UE 

to mutually authenticate each other. On a successful authentication, the MME 

sets up the NAS security parameters towards the UE in order to enable 

ciphering and integrity protection of further NAS messages, then a unique 

identifier known as the MME UE S1AP ID is assigned to the UE by the MME. 

A combination of eNodeB UE S1AP ID and MME UE S1AP ID can be used to 

identify the S1-MME connection for a UE. 

❖ An Update Location Request Message is sent by the MME to the HSS to 

confirm the successful registration of the UE to the network and to request 

subscription information for the UE. 

❖ The HSS sends an Update Location Ack which is sent back to the MME as an 

acknowledgement to the MME request. This message contains the UE 

subscription information which includes the subscribed PDN type, QoS profile 

and APN. By utilizing the received information, the MME validates the UE’s 

presence in the Tracking Area (TA) and services requested by the UE. If the 

checks are OK, then a new context is created for the UE on the MME. 

❖ At this stage, the UE is successfully registered to the network and the MME has 

started the SGW selection and default EPS bearer creation process. This process 

is started by the MME by sending a Create Session Request towards the selected 

SGW requesting to set up and configure the default EPS bearer. This message 
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includes the UE IMSI, EPS bearer ID, IP address of the PGW, APN and 

subscribed QoS Parameters. 

❖ Upon receiving the Create Session Request from the MME, the SGW creates a 

new entry in its EPS bearer table and sends a Create Session Request toward 

the PGW over the S5 Interface. This message contains UE IMSI, SGW Address 

for the User Plane, SGW TEID for the data and control planes, APN, Default 

EPS Bearer QoS, and PDN Type along with other parameters. 

❖ When the Create Session Request message is received by the PGW and if the 

dynamic PCC is implemented, then IP-CAN session establishment procedure 

is performed by the PGW to obtain the default PCC rules for the UE from the 

PCRF. This procedure requires the PCEF, which is part of the PGW to send UE 

IMSI and IP address, User Location Information, APN-AMBR, and Default 

EPS bearer QoS along with other parameters to the PCRF. The APN-AMBR 

and QoS parameters associated with the default bearer may be altered in the 

PCRF response to the PGW. If dynamic PCC is not implemented, then PGW 

applies local QoS policy. The PGW enforces the policy and generates a 

Charging ID for the bearer to enable charging of the subscriber and sends Create 

Session Response to the SGW. In the message, the PGW most importantly 

includes the PGW TEID and 

❖ Address for the data plane, PGW TEID for the control plane, EPS Bearer 

Identity, EPS Bearer QoS, and Charging Id along with other parameters. The 

TEIDs and the IP address are used to establish the S5 tunnel between the SGW 

and PGW. 

❖ Upon receiving the Create Session Response message from the PGW, the SGW 

creates a new Create Session Response message and forwards it to the MME. 

In this message, the SGW includes SGW TEID and IP address for the data 

plane, SGW TEID for the control plane, EPS Bearer Identity, and EPS Bearer 

QoS along with other parameters which include the PGW addresses and TEIDs 

for the S5/S8 interface, PDN Type, PDN Address, APN Restriction, APN-

AMBR, Protocol Configuration Options, Prohibit Payload Compression, etc. 

❖ Upon receiving the Create Session Response Message from the SGW, the MME 

processes the message and encapsulates an Attach Accept Message in an S1AP: 

Initial Context Setup Request Message and sends it to the eNodeB. The Attach 

Accept message most importantly includes a Unique Temporary Identifier 
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assigned by the MME to the UE. This identifier is known as the Globally 

Unique Temporary Identifier (GUTI), while the Initial Context Setup Request 

Message includes all the parameters that allow the eNodeB to establish the S1-

U tunnel towards the SGW and allocate radio resources to the UE. These 

parameters include but are not limited to SGW TEID and IP address for the data 

plane, EPS Bearer Identity, EPS Bearer QoS, UE-AMBR, and Handover 

Restriction list, etc. 

❖ When the S1AP: Initial Context Setup Request Message arrives at the serving 

eNodeB, the Attach Accept Message is extracted and forwarded to the UE to 

provide the UE with the GUTI assigned to it by the MME and a list of tracking 

areas in which the UE can roam freely without performing a Tracking Area 

Update Procedure. 

❖ The eNodeB establishes and sets up the radio bearers to enable data transfer. 

This is done by sending an RRC Connection Reconfiguration message and 

expects RRC Connection Reconfiguration Complete message as a response 

from the UE. 

❖ Then the eNodeB issues an S1AP: Initial Setup Context Response message and 

sends it to the MME, where this message includes the eNodeB S1-U TEID and 

IP address which is required to finish the S1-U GTP tunnel between the eNodeB 

and SGW for user traffic forwarding. 

❖ Upon reception of S1AP: Initial Context Setup Response message, the MME 

issues and sends a Modify Bearer Request message to the SGW. This message 

includes eNodeB S1-U TEID and IP address, EPS Bearer Identity, and 

Handover Indication. If the Handover indication is set to true in the Modify 

Bearer Request message, the SGW issues and sends a Modify Bearer Request 

message to the PGW requesting immediately routing packets for default and 

dedicated bearers. The PGW acknowledges it by sending Modify Bearer 

Response back to the SGW. 

❖ At this stage, a Modify Bearer Response is sent back to the MME by the SGW 

as an acknowledgement to the Modify Bearer Request message, and after this 

message, downlink packets can be delivered from the external data network to 

the UE through the established bearer. 
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Figure 4.10: Initial Attach Procedure call flow 

4.4.2 Access Bearer Release Procedure 

A UE can use services offered by the EPS network after establishing the default EPS 

bearer through the Initial Attachment procedure. In this stage, the UE becomes fully 

registered to the network and in the state of EMM-REGISTERED, ECM-

CONNECTED, and RRC-CONNECTED, which allows the UE to send and receive 

data traffic to/from the outside world by using the always-on default bearer. After a 

period of inactivity, the network performs Access Bearer Release procedure to release 

the UE radio and S1 bearers, which changes its state to ECM-IDLE, and RRC-IDLE. 

The network may also release the access bearer due to the loss of radio communication 

between the UE and its serving eNodeB or if the UE has failed the authentication or 

integrity checks. In this procedure, signalling radio bearers (SRB1, SRB2) between the 

UE and the serving eNodeB are released and the UE data radio and S1 bearers are 

deleted. Figure 4.11 shows the message exchanges between the network elements to 

perform the Access Bearer Release procedure. The process starts when the inactivity 

timers in the eNodeB have expired. 

❖ This process is started by the eNodeB. It first sends S1AP: UE Context Release 

Request message to the MME asking to change the state of the UE from ECM-

CONNECTED to ECM-IDLE. 
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❖ When the request message has reached the MME, the MME composes and 

sends a Release Access Bearer Request message to the SGW to tear down the 

S1 bearer that was previously allocated for the UE. 

❖ The SGW releases the UE S1 bearers and responds back to the MME with a 

Release Access Bearer Response message. 

❖ In this procedure, the S5/S8 bearer remains intact to provide always-on 

connectivity for the UE, and in this way, the downlink traffic can travel through 

the network until it reaches the UE SGW and because the S1 bearers are 

released the paging procedure is triggered to establish the UE radio and S1 

bearers. 

❖ When the Release Access Bearer Response message is received by the MME, 

the latter informs the serving eNodeB through the S1AP: UE Context Release 

Command to tear down the signaling radio bearers and release the S1 bearers. 

❖ The serving eNodeB reacts to the S1AP: UE Context Release Command by 

sending an RRC Connection Release message across the air interface. 

❖ The UE responds to RRC Connection Release message by tearing down the 

SRB1, SRB2, releasing all the data radio bearers, and changing its state to 

ECM-IDLE and RRC-IDLE. 

❖ At the same time, the serving eNodeB releases the UE S1 and radio bearers and 

sends an S1AP: UE Context Release Complete message back to the MME. 

 

Figure 4.11: Access bearer release Procedure 
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4.4.3 Service Request Procedure 

The Service Request procedure is performed by UEs in ECM-IDLE. This procedure 

can be triggered by either the network by using the paging produces or by the UE when 

it wishes to communicate with the network. Network-based Service Request procedure 

happens when the network receives a packet from an outside server to a UE in the 

ECM-IDLE state. In this case, the network uses the paging procedure to alter the state 

to ECM-CONNECTED and re-establish the SRB1 and SRB2. Also, the data radio and 

S1 bearers are re-established to provide the UE with the capability to exchange data 

with the outside server. The UE-based Service Request procedure happen when a UE 

in an ECM-IDLE state wants to communicate with the network. This chapter only 

describes the UE-based Service Request procedure. Figure 4.12 illustrates the sequence 

of messages exchanged between the network elements to perform the Service Request 

procedure. 

❖ The process started by the UE for establishing a signalling connection with its 

serving eNodeB is done using a Random-Access procedure and the RRC 

Connection Establishment. Upon finishing the establishment of the signalling 

connection, the UE composes a Service Request message asking the MME to 

change its state from ECM-IDLE to ECM-CONNECTED. This message is 

included inside the RRC Connection Setup Complete message. 

❖ When the serving eNodeB has received the message, it extracts the Service 

Request message and forwards it to the MME. 

❖ The MME authenticates and updates the NAS security if it required or if the 

received messages have failed the integrity check 

❖ The MME then sends an S1AP: Initial Context Setup Request message back to 

the eNodeB asking it to set up the UEs S1 and radio bearers. This message 

includes information such as the SGW TEID and IP address, mobile radio 

access capabilities and the security key. This information is maintained by the 

MME from the UE Initial Attachment procedure. 

❖ Upon receiving the message by the serving eNodeB, the security key is used by 

the eNodeB to activate AS security. Then it sends an RRC message to the UE 

to configure the SRB2 and the data radio bearer of the UE. 
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❖ The UE considers the RRC message as an acceptance to its state change request 

and returns an acknowledgment. At this stage, the data radio bearer is active, 

and the UE can send data to the outside world. 

❖ When the RRC acknowledgment message is received by the eNodeB, the 

eNodeB sends an S1AP: Initial Context Setup Request ACK message back to 

the MME. In this message, the eNodeB most importantly includes its S1-U 

TEID and IP address. 

❖ Then the MME forwards this information to the SGW by sending a Modify 

Bearer Request message. 

❖ The SGW responds back with a Modify Bearer Response message and now the 

UE can send and receive data traffic. 

 

Figure 4.12: Access Bearer Setup Procedure 

4.4.4 Handover 

Handover is a procedure that describes the process of changing the serving cell of UE 

in RRC-CONNECTED, ECM-CONNECTED modes. In this process, two eNodeBs are 

involved, commonly known as the source and target eNodeBs. Multiple variations of 

UE handover are defined in the 3GPP specification based on the source and target 

eNodeB. First, Intra SGW and MME handover, which describes the process of handing 

over a UE from one eNodeB to another without changing the SGW and the MME. 

Second, inter SGW handover, which describes the UE handover process when the 
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target eNodeB is connected to a new SGW. In this case, the MME needs to ask the 

current SGW to release the UE context and ask the new SGW to set up a new set of 

bearers for the UE. Upon receiving the MME request the new SGW contacts the PGW 

to alter the S5/S8 tunnel direction to the new SGW. Third, inter MME handover which 

describes the process when the target eNodeB belongs to a new MME pool area. In this 

case, S1-based handover is required which starts with the source eNodeB asking the 

source MME to perform UE handover. Upon receiving the request, the source MME 

hands control of the mobile over to the target MME, and the later forwards the handover 

request to the target eNodeB. The focus here is only on the X2-based handover when 

the SGW and MME are kept the same. 

4.4.4.1 X2 Based Handover Procedure 

The X2-handover process is started by the source eNodeB right after receiving a 

measurement report from UE upon which it decides that the UE can receive a better 

service from a neighbour eNodeB. This chapter only covers the X2 handover that does 

not involve changing the SGW or the MME. As shown in Figure 4.13, the process is 

started by the UE performing a measurement procedure.  

In this procedure, the UE sends measurement reports for all the neighbouring cells to 

its serving eNodeB, where the latter has made the handover decision and sends 

handover request message over the X2 interface to the target eNodeB. By this message, 

the serving eNodeB is asking the target eNodeB to take control of the UE. This message 

includes the UE identity, its serving MME, security key, its radio access capabilities, 

and a list of the UE bearers along with their QoS requirements. It also includes the 

global ID of the new cell and a list of the UE bearers. Admission control is performed 

by the target eNodeB by examining the list of the UE bearers to identify the bearers 

that it is willing to accept. Based on the available resources in the new cell, the target 

eNodeB may not accept all the UE bearers. 

The target eNodeB sends back a Handover Request Ack message along with RRC 

Connection Reconfiguration to inform the UE about the setups required to 

communicate with the new cell. This message includes the UE new Cell Radio Network 

Temporary Identifier (C-RNTI), the SRB1, SRB2 configurations, and list of the data 

radio bearers that it has accepted. Upon receiving the acknowledgement message, the 

serving eNodeB extracts the RRC message and forwards it to the UE. At the same time, 

SN Status Transfer message is sent by the serving eNodeB to the target eNodeB to 
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convey the PDCP status of the E-RABs. Also, the serving eNodeB forwards any uplink 

packets that it has received out of sequence, any downlink packets that the mobile has 

not yet acknowledged and any more downlink packets that arrive from the SGW.  

On the other hand, when the RRC Connection message reaches the UE, the latter uses 

the included parameters to configure itself to communicate with the new cell and 

perform the Random-Access procedure. Then an RRC Connection Reconfiguration 

Complete message is sent from the UE to the Target eNodeB. Then the UE starts 

reading the system information of the new cell and optionally performs the PDCP status 

report procedure with the Target eNodeB to minimize the amount of duplicate packet 

re-transmission. At this point, the UE is successfully connected to the Target eNodeB 

and can send uplink traffic through that eNodeB, but at the same time, the SGW still 

sends UE downlink traffic to the serving eNodeB. Therefore, the target eNodeB sends 

an S1AP: Switch Path Request message over the S1-MME interface to the UE’s serving 

MME to change the path of the UE downlink traffic to the target eNodeB. In this 

message, the Target eNodeB includes all the UE bearers that it accepts to handle and 

the S1-U tunnel information. This includes the Target eNodeB TEID and IP address. 

On receiving the message, the MME sends a Modify Bearer Request message over the 

S11 interface to the SGW. In this message, the MME most importantly includes the list 

of bearers and the GTP-U tunnel parameters. When the SGW receives the MME 

request, it changes the UE downlink traffic to the Target eNodeB by redirecting the 

GTP tunnel based on the MME information for all the bearers specified by the message 

and deletes the rest. At the same time, the SGW sends an End Marker Packet back to 

the serving eNodeB to inform it about the end of the data stream.  

The serving eNodeB then forwards the same message to the Target eNodeB. The SGW 

finishes its role by sending a Modify Bearer Response back to the MME as an 

acknowledgement. In this message, the SGW also includes its S1-U TEID and IP 

address for the Target eNodeB to use in the uplink direction. When the MME receives 

the SGW acknowledgment, it sends an S1AP: Switch Path Request ACK message to 

the Target eNodeB. In this message, the MME includes the SGW tunnel information. 

Then the Target eNodeB informs the serving eNodeB that the handover has been 

completed successfully. The serving eNodeB can release now all the UE resources. 
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Figure 4.13: X2-Based Handover When the SGW and MME kept the same 

4.5 Evolved Packet System Model 

Several mobile network simulators exist, which includes commercial simulators and 

open source simulators. Both types have their share of advantages and disadvantages 

in terms of flexibility, availability, and cost. Commercial simulators are developed and 

maintained by specialized companies with a proprietary right, and these simulators are 

very accurate and reliable and can produce very detailed predictions of the performance 

of the simulated network. At the same time, they are quite difficult to be modified and 

enhanced and also, they are very costly and cannot be acquired by everyone. Few of 

the most popular commercial simulators include OPNET [74] and EstiNet [75] .  

On the other hand, open-source simulators are normally developed and maintained by 

the community, they are free, can be accessed by everyone, easy to be modified and 



 

90 
 

extended to include new features and functionality. Proprietary simulators are usually 

not available for free use and can be directed towards very specific research purposes. 

The decision has been made to use open source simulator because of the lack of 

availability of commercial simulators and to avoid the unnecessary cost required to 

purchase a commercial simulator. The most common open source simulator for mobile 

networks includes NS3 [76], LTE-Sim [77], and simuLTE [78]. After a thorough 

research, decided has been made to use simuLTE because it has the required tools that 

are needed to build the simulation platform to simulate SDEPC which will describe in 

Chapter 6. simuLTE is described in the next sub-section. 

4.5.1 SimuLTE Platform 

This section briefly describes the simuLTE platform with a particular emphasis on the 

design of the UE and the eNodeB modules. Basically, simuLTE represents a system-

level simulator build on OMNeT++ framework [69]. OMNeT++ is described in detail 

in Chapter 3 Section 3.4.1. Here will describe OMNeT++ in a way that helps 

understand the simuLTE platform. OMNeT++ framework revolves around that 

utilization of a basic modelling units known as a module. Modules can be organized in 

a hierarchy of compound modules that communicate by the exchange of messages. 

Each module consists of structure and behaviour parts. The former is defined via .ned 

files, while the latter is implemented via C++ classes. This separation increases the 

flexibility of OMNeT++ by allowing one to change either of the two without affecting 

the other. LTE Network Interface Card (NIC), represents the core module of the 

simuLTE platform. This module is used by both the UE and the eNodeB entities to 

incorporate LTE functionality. The LTE NIC together with modules built by the INET 

framework [79] are used to create a fully functional UE and eNodeB entities as shown 

in Figure 4.14. The LTE NIC is modelled in layers that include PDCP, RLC, MAC, 

and PHY, which directly map to the LTE protocol stack.  

The NIC module is built by leveraging one of the most important features offered by 

the OMNeT++ frameworks, which is the inheritance of both the structure and 

behaviour of the module. The common features and functionality of each layer of the 

NIC module are developed in a base class and more specific functionality is added 

when required. For example, the MacBase class is extended to create the MacUe and 

MacEnb classes that implement UE and eNodeB specific functionalities receptively. 
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For instance, eNodeB is responsible for the resource scheduling, which is implemented 

by the MacEnb class because it is a node-specific function. 

 

Figure 4.14: UE and eNodeB modules as implemented in simuLTE 

In simuLTE, data transmission and resource accounting are modelled separately. A 

specialized module known as Binder is used for the resource accounting (i.e., keeping 

track of which RBs are being used by whom). The Binder works like Oracle with full 

visibility of all nodes in the system and can be queried by them to obtain shared 

information. This design can produce an optimal baseline by running an ideal algorithm 

that leverages the binder’s full knowledge of the ongoing transmissions. On other hand, 

data transmissions are modelled through message exchanges between modules. Based 

on the MAC PDU and the modulation and coding scheme used by the transmitter, the 

binder specifies the correct amount of RBs to carry the message.  

All the control channel specified by the 3GPP specification are not directly modelled 

in simuLTE. Instead, a direct message exchange is used to accomplish a similar 

solution. Interference management is guaranteed, considering that the physical layer of 

the NIC is associated with the ChannleModel. In each node, the ChannelModel is 

responsible for the computation of SINR of the received signals, which in turn is used 

by the PHY layer to compute the Channel Quality Indicators (CQIs) and evaluate 

transmission errors. The ChannelModel is defined in simuLTE as a C++ abstract class 

with pure virtual functions. The design increases the flexibly of the simulator and 

allows one to define its own ChannelModel by simply extending the abstract class and 

redefining the getSINR() and error() functions. In simuLTE a realistic ChannelModel 
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is included. It accounts for path loss, fading and shadowing. Although simuLTE covers 

a wide range of LTE features and provides a very good mechanism to gather network 

statistics, at the same time it misses a few key elements that can be summarized as 

follows: 

❖ Scalability to build a large network that includes the EPC, in this case it very 

difficult to scale the network in terms of the number of connected UEs, the 

reason is that EPC bearers are configured in an XML file which makes it very 

difficult or impossible to build a network with 100 or 200 UEs 

❖ Very simplified core network that mainly provides a means to specify the UEs 

default bearer before starting the simulator (using the ”ini” and XML files) 

without the ability to update/delete/ or even create a new bearer after the 

simulator has been started, which makes the simulation of some of the LTE 

procedures like handover not applicable or not accurate considering that the 

EPS bearer needs to be updated in the SGW entity to redirect the downlink 

traffic from the source eNodeB to the target eNodeB. Therefore, the decision 

has been made to build the required functionality to support a scalable, dynamic, 

and more realistic control plane for the core network of the simuLTE. 

To implement the control plane functionality, a new node is modelled, and the existing 

nodes are extended to support the control plane operations. More specifically, MME is 

modelled, and the eNodeB, SGW, and PGW are extended to support both the control 

plane and data plane operation instead of only the data plane. All the EPC nodes are 

designed to have a simplified and common structure to increase the flexibility of the 

simulator and make it easy to modify the behaviour of any particular node to test a new 

feature or protocol. Also, EPC nodes have reused many of the modules that are 

implemented by the INET library. Therefore, the INET modules used in our simulator 

are described first, before explaining how OMNeT++ modularity and inheritance are 

utilized to simplify and optimize the LTE simulator platform. 

4.5.1.1 INET Modules used as part of the EPC Nodes 

The MME, SGW, PGW, and eNodeB reused the following modules that are defined by 

the INET library. 

❖ Interface Table (InterfaceTable): Container module that holds network 

interfaces (eth0, wlan0, etc) of a node. During the initialization phase, network 
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interface cards (NICs) register the interface to the interfaceTable. Other 

modules access interface information via a C++ class interface. 

❖ Routing Table (routingTable): Another container is used to store and maintain 

IPv4 routing entries. Also, the C++ interface is used to access this module. This 

interface includes many methods to add, delete, and lookup route entry. 

❖ Network layer: a Compound module which groups multiple simple modules 

that represent protocols of the network layer. This includes: 

❖ IP module: which is responsible for the Encapsulation, decapsulation, and 

routing of the received datagrams. This module uses the help of the 

routingTable module in its forwarding decision. 

❖ ARP module: which handles address resolution operation. 

❖ ICMP module: which is responsible for sending ICMP echo messages and 

handles the ICMP reply messages. 

❖ ErrorHandling module: receives and logs ICMP error replies [79]. 

❖ Transport layer protocols: This is a module that performs the transport layer 

operations. It has a connection to the network layer from one side and the 

application layer form the other side. Currently, TCP, UDP, and SCTP are 

supported in the INET 2.3 library used in this work. 

❖ NICs: PPPInterface, EthernetInterface, and WLAN interfaces represent 

examples of the NIC modules implemented in the INET library. Basically, NIC 

is a Compound module that normally includes queue and MAC modules. The 

queue is a module used to store the packet while it is waiting to be transmitted 

through the wire, and multiple queueing types are implemented to accommodate 

different needs (DropTailQueue, Random Early Detection Queue (REDQueue), 

DropTailQoSQueue, etc.). 

❖ Mobility Module: This module is used by nodes to include movement 

capability. This module is responsible for the way and the direction of the node 

movement in the simulated playground. In wireless networks, simulation nodes 

are required to include this module even if they are stationary because the 

mobility module stores the location of the node, needed to compute wireless 

transmissions. 
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4.5.1.2 Control Plane Functionality and Operation 

OMNeT++ modularity, object-oriented and inheritance have been leveraged to 

optimize and simplify the simulator code considering that the S1AP and the GTP-C are 

used in multiple EPC entities. More specifically, the GTP-C is used in the MME 

together with the SGW, and PGW while the S1AP is used in both the eNodeB and the 

MME. 

The gtpControl class structure is shown in Figure 4.15. The gtpControl class 

implements the main operations and functionality that are shared by all three modules, 

a more specific class is used to implement the functionality of the MME, SGW, and 

PGW entities. For example, the gtpControlMme class extends the gtpControl class to 

add more features and functionality that are related to the MME entity. The MME 

module built in this simulator does not cover all the functionality specified by the 3GPP 

standard but at the same time, it allows users to implement and test a wide variety of 

LTE procedures and operations to measure and evaluate the system performance. This 

section describes few of the operations handled by the main gtpControl class, and 

describes the main features added by the gtpControlMme, gtpControlSgw, 

gtpControlPgw.  

There is a shared method in the aforementioned classes, but with different functionality, 

for example, both the gtpControlSgw and gtpControlPgw have a method to handle 

Create-Session-Request message, also the gtpControlMme, and the gtpControlSgw has 

a method to handle Create-Session-Response message, but the functionality of the 

methods is different based on the class it is defined in. This is done by leveraging C++ 

function overwrite functionality. The same structure is used in all the control plane 

modules, therefore, the S1AP module is programmed using the same inheritance 

feature, and the main functionality that is shared between the eNodeB, and MME is 

implemented in the S1AP class. The s1apEnb and s1apMme implement the 

functionality of the eNodeB and the MME respectively. In our Module, the s1ap class 

implements the handleMessage() method, which checks the message, and if the 

message is received from the UDP module then, it calls the handleMessageFromUdp(). 

This method is an abstract method that must be implemented by all sub-classes of the 

s1ap class (the s1apEnb, s1apMme classes). Each class implements its own version of 

the handleMessageFromUdp() method. For example, the s1apMme uses this method to 

handle messages like Initial-UE-Message, Path-Switch-Request message etc.., while 
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the s1apEnb uses the same method to handle messages like the Initial-Context-Setup-

Request, and Path-Switch-Request-Ack message etc. The s1apEnb is modeled as a 

cListener which simply means that it has the capability to listen to OMNeT++ signals. 

This feature is used to exchange control messages between the enbApp and the LTE 

NIC model. 

 

Figure 4.15: UML Class Diagram for the control plane Modules 
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4.5.1.3 Mobility Management Entity Module 

The main structure of the MME is shown in Figure 4.16, where the MME is modelled 

as an extension to the NodeBase module of the INET library, the NodeBase module 

represents a simplified node that includes all the basic elements of each networking 

entity. This includes: i) layer 2 interfaces like the point to point, Ethernet, wireless 

LAN, and loopback interfaces; ii) interface Table module; iii) network and routing 

Table modules; iv) it also has modules for mobility, notificationBoard and stats 

modules. 

 

Figure 4.16: OMNeT++ Module of the MME 

A.  MME Application Module 

The main functionality of the MME node is in the MME application (mmeApp 

module). This module is built as an OMNeT++ compound model that works as a UDP 

application. For simplicity S1AP interface in our module runs over UDP instead of 

SCTP as specified by the 3GPP standard. This section describes the structure and the 

operations of the MME Application module. This includes: 

i) identifying the building modules of the MME applications; ii) describes the 

functionality of each module; iii) shows how these modules are connected with each 

other; iv) finish with the operations performed by the MME application module. 
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I.  MME Application Structure 

Figure 4.17 shows the internal structure of the MME application. It mainly consists of: 

i) three tables, that represent the subscribers, eNodeBs, and the SGWs that are currently 

served by this MME node; ii) two control modules that are responsible for handling the 

S1AP and the GTP-C messages. The control applications use direct call between each 

other to perform the subscriber procedures, for example when the S1AP module 

receives the Initial-UE-Message from the eNodeB, it will use one of the GTP-C module 

methods to send a CreateSession-Request message to the SGW. Considering that in our 

module the S1AP is also running over UDP, a multiplexer module is used to 

differentiate between the received messages and sends them to the correct control 

module for process. 

 

Figure 4.17: OMNeT++ Module of the MME Application 

❖ eNodeB Record Table:  This table contains a list of all the eNodeBs that are 

currently served by this MME, the table consists of one or more entries, and 

each entry contains information that is related to an eNodeB. This table is used 

by the GTP-C and the S1AP modules to perform their operations correctly and 

accurately. The s1apEnb at the initialization of the network finds the MME node 

and registers the eNodeB with the MME. This approach simplified the simulator 

for anyone because based on the connection setup in the network topology, the 

s1apEnb finds the MME and registers itself without any static configuration 

prior to the network run (in the ”ini” file). 
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❖ Serving Gateway Record Table: The same as the eNodeB record table, this 

table consists of one or more entries, and each entry represents a SGW 

information that is required to perform some of the MME application operations 

such as the SGW selection process. The gtpControlSgw in the SGW node is 

used by the network to find the MME and register itself with the MME. The 

SGW record table in the MME is used to keep information about each SGW in 

the network that has a connection to the MME. 

❖ Subscriber Record Table: This table is structured in the same way as the first 

two tables. It keeps information about the subscribers that are currently served 

by this MME. The table represents a container for the subscriber’s profile. The 

latter represents a class that is used to maintain UEs’ most important 

information. This includes GTP tunnel information for the S1-U, S11, and S5 

interfaces, S1AP-Enb and S1AP-MME identifiers, the current cell-Id and more. 

This table is also used by the GTP-C and the S1AP modules to perform their 

operations. 

 

❖ GTP Control Module for the MME: The GTP Control plane functionality in 

the MME is modeled as an OMNeT++ simple module. The gtpControlMme 

class is used to implement the control plane functionality in C++. The module 

handles most of the procedures specified by the 3GPP LTE standard. Currently, 

the module only supports EPS bearer setup/ update/delete operations. The 

module functionality can be easily explained because it is structured using the 

same layout used in OMNeT++. In this module, the received message is 

handled by the main handleMessage() Method. In this method the message type 

is checked and based on the result a new method is called to handle the message, 

for example when a Create-Session-Response Message is received from the 

SGW, the message type is first checked in the handleMessage() method, then 

the handleCreateSessionResponse() method is called to handle the message. 

The handleCreateSessionResponse() method performs the required operation to 

handle this type of message and initiate the S1AP Initial-Context-Setup-

Request message to be sent from the MME to the serving eNodeB. 

❖ S1AP module for the MME: This module is used to exchange messages 

between the MME and the serving eNodeB over the S1-MME interface to 

perform UE specific procedures as described in Section 4.4. The same as the 
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GTP-C module, not all the S1AP functionality specified by the 3GPP standard 

are implemented by our module, but at the same time, it still allows users to 

implement a very sophisticated network that performs variety of operations, for 

example in the default bearer setup procedure, after receiving the Attach 

Request message from the UE, the serving eNodeB adds the message to the 

S1AP: Initial UE Message and sends it over the S1-MME interface to the MME. 

In the s1apMme module, the received message is handled by the 

handleMessage() method. Similar to the work of handleMessage() method in 

the GTP-C, this method checks the message type and based on the type, it 

invokes another method that deals with this type of messages. In this case, 

handleInitailUEMessage() method process the message and asks the GTP-C 

module to send a Create-SessionRequest message to the SGW. Currently, the 

s1apMme module implements methods to handle the Initial-UE-Message, Path-

Switch-Request, Initial-Context-Setup-Response, and Erab-Release-Initiation 

messages and it also has several methods to send the Initial-Context-Setup-

Request, and the Path-Switch-Request-Ack, etc. 

❖ Multiplexer: As shown in Figure 4.17, the multiplexer module has three bi-

directional connections, where the first connection represents the mmeApp in 

and out connections, while the second and the third connections represent the 

interfaces to/from the GTP-C and S1AP modules, known as to/from GTP, and 

to/from S1AP respectively. As previously mentioned, both the S1AP and the 

GTP-C are running over UDP. Therefore, the multiplexer is used to differentiate 

between the S1AP and the GTP messages received from the UDP module. In 

this module, the control-info-object attached to the received message is checked 

to obtain the destination port number and based on that number the multiplexer 

forwards the received message to either the GTP-C or the S1AP module. For 

example, if the destination port number is equal to 2123 the multiplexer 

understands that the received message is a GTP-C message and sends it through 

the toGTP connection to the GTP-C module. 

II.  MME Application Operations 

The MME application module handles control messages from both the eNodeB and the 

SGW. Messages from the SGW are GTP-C messages sent over the S11 interface, while 

the eNodeB messages are S1AP messages sent over the S1-MME interface. As 

previously mentioned S1AP protocol messages are sent over UDP instead of SCTP. 
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Therefore, if the received message is not sent by the UDP Module, then the simulation 

is stopped, and an error message is displayed to help the user understand what the 

problem is as shown in Figure 4.18. If the message is received from the UDP module 

then the UDP destination port number is used to differentiate between the s1ap and 

GTP-C messages. More specifically, the gtpControlMme is responsible for handling 

messages sent to UDP port 2123, while the s1apMme is responsible for handling 

messages sent to UDP port 8789 (a random port number is used as the destination port 

number of all s1ap messages. This can be changed through the ”.ned” file of s1ap 

module or the ”ini” file of the simulated network). Messages sent to different UDP port 

numbers are simply ignored with an error message explaining that MME application 

does not support this type of messages. 

 

Figure 4.18: MME Application Module Operations 

4.5.1.4 Serving Gateway Module 

SGW in the LTE simulator is modelled as OMNeT++ compound module that is 

composed as follows: i) routing and interface tables; ii) mobility module; iii) NICs; iv) 

Transport and Network layer modules; v) SGW Application module; vi) stats modules. 

The main structure of the SGW Module is shown in Figure 4.19. All these modules are 

implemented by the INET frameworks and reused in our LTE simulator, except the 

SGW Application module which is implemented by us to include LTE specific 

functionality. The structure and functionality of the INET framework modules are 
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briefly described in Section 4.5.1.1, and more details can be found in [79]. This section 

explains the structure and the operation of the SGW application module. 

 

Figure 4.19: OMNeT++ Module of the SGW 

A.  SGW Application Module 

This is an application module that simulates SGW functionality, which includes 

intelligence and the main operation performed by the SGW Module. The SGW module 

can only have one SGW application and the application must be connected to a UDP 

module. The SGW application has several parameters to allow the user to configure the 

module operations from the ”.ini” file. 

I.  SGW Application Structure 

The SGW Application consists of several simple modules that are assembled into a 

complete SGW application module. These include a Multiplexer, GTP-C, GTP-U, and 

subscriber Record table as shown in Figure 4.20. The module has a dedicated gate for 

the UDP layer module. The GTP-C is modelled by the gtpControlSgw module which 

extends the gtpControl module to add the functionality and operations performed by 

the SGW control plane, while the functionality and the operation of GTP-U are 

modelled by the gtpUser module to handle data plane traffic sent over the GTP-U 

tunnel. Finally, the subscriber record table is used to maintain the UEs context and used 

by both the gtpUser and gtpControlSgw modules.  

The general structure of the sgwApp is shown in Figure 4.20, where the module has a 

single bi-directional connection with the UDP module. The inner simple modules 

exchange messages by using connections to send and receive messages except for the 
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subscriber record table because both the gtpControlSgw and gtpUser modules use 

direct calls to leverage the functionality offered by the userEquipmentRecordTable 

module. The multiplexer module works in the same fashion in all modules (MME, 

SGW, PGW, eNodeB). The main functionality is to differentiate the received traffic 

and send it through the correct connection to the right module. In the SGW, traffic with 

UDP port 2152 is sent to the gtpUser module, while traffic with UDP port 2123 is sent 

to the gtpControlSgw module. UE contexts are stored in the 

userEquipmentRecordTable module, this module is used as part of the MME, SGW, 

PGW and eNodeB application modules and offers the same functionality for all 

modules. The userEquipmentRecordTable module is fully described in Section 

4.5.1.3A. I. . 

GTP control and data plane messages are handled by the gtpControlSgw and gtpUser 

modules respectively. gtpControlSgw handles GTP-C messages, which includes 

updating the UE context state and responses to the received messages if necessary. 

Figure 4.15 shows a simplified version of the type of messages handled by the 

gtpControlSgw module. The gtpUser uses UE context information stored in the 

userEquipmentRecordTable to specify the correct configuration and direction for the 

received GTP-U messages. 

 

Figure 4.20: OMNeT++ Module of SGW Application 

II.  SGW Application Operations 

The steps performed by the SGW Application to handle the received message are 

illustrated in Figure 4.21. Upon receiving a message, the application checks the port 

from which the message is received. The module can only process messages received 
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from the UDP module, therefore, precautionary steps are included to stop the 

simulation with error message explaining the problem if a message is not coming from 

the UDP module. If the message is received from the UPD Module, then the transport 

layer destination port number is checked. If it equals to 2152, then the application 

realizes that a GTP-U message is received and sends it to the gtpUser module to handle 

it. In the gtpUser module, the TEID value obtained from the received message is used 

to find the GTP-U tunnel information. This information is used to encapsulate the 

packet and send it to the correct peer node. If the transport layer destination port number 

is not equal to 2152, then the module knows that the received message is not GTP-U 

message and checks if it is a GTP-C message by trying to match the destination port 

number to 2123. If it does not match, then an error message is displayed. Otherwise, if 

it matches, then the message is sent to the gtpControlSgw module to handle the 

message. In this module, the message type is examined and based on the result a handler 

is called. 

 

Figure 4.21: SGW Application Module Operations 

4.5.1.5 Packet Data Network Gateway Module 

This is a compound module that represents the functionality and operations performed 

by the PGW Entity. The module contains groups of multiple simple modules. The PGW 

module has the same structure and internal modules as the SGW module with two 

exceptions. First, the PGW module has another pppInterface to simulate the SGi 
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interface. Second, the PGW application is used instead of the SGW application. The 

module has parameters to specify the operation of the module. Changing these 

parameters from the ”.ini” file allows one to modify the module behaviour. The module 

structure is illustrated in Figure 4.22, the design and features offered by modules 

implemented by the INET framework are briefly in Section 4.5.1.1. This section focus 

on the PGW application module to illustrate its design and explain the features offered 

by the module. 

 

Figure 4.22: OMNeT++ Module of the PGW 

A.  PGW Application Module 

LTE simulator provides a simple design for all of its nodes, where the important 

operation and functionality is implemented by the node application. In the PGW, the 

brain and the data plane forwarding decision is made by the PGW application. This 

includes bearer setup and teardown, data plane traffic filtering. In 3GPP specification, 

the PGW is responsible for UE IP address allocation during the Initial-Attachment-

Procedure as shown in Section 4.4.1. This is not the case in our simulation because in 

OMNeT++, IPv4NetworkConfigurator module is responsible for assigning IP address 

for all nodes in the network during the simulation initialization phase. With all that, the 

functionality of the PGW are still the same. 
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I.  PGW Application Structure 

The environment of the PGW application module is described by Figure 4.23. It mainly 

consists of: i) multiplexer module that works as a decision maker to direct the received 

traffic to the correct module. The multiplexer uses UDP port number to specify the 

traffic direction; ii) userEquipmentRecordTable which represent a container to store 

UE context during the simulation runtime; iii) GTP data and control planes processing 

module which is modelled by the gtpUser and gtpControlPgw modules respectively; 

iv) Finally, trafficFilterModule which is used to extract header information of the 

packets received from the Internet and use it to specify the bearerId for these packets. 

The same Multiplexer and the userEquipmentRecordTable modules are used in all the 

nodes (MME, SGW, PGW and an eNodeB). The design and features offered by these 

modules are fully described in Section 4.5.1.3A. I. Figure 4.15 shows a very basic 

overview of the methods implemented by the gtpControlPgw class to process and 

generate GTP-C messages. gtpUser module is responsible for processing the received 

GTP-U messages by leveraging the UE context configured by the gtpControlPgw and 

maintained in the userEquipmentRecordTable module. trafficFlowFilter is a simple 

module that is responsible for classifying the traffic received from the Internet, the 

module has a list of filters that belong to different bearers. The header information of 

the received packet, more specifically (source and destination IP address, transport 

layer protocol and the source and destination port numbers) is used to find the bearerId, 

then the bearerId is attached to the packet as a part of the control-info-object, then the 

packet is sent to the gtpUser for processing. 

 

Figure 4.23: OMNeT++ Module of PGW Application 
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II.  PGW Application Operations 

The PGW application module handles both data and control planes traffic. As shown 

in Figure 4.24, upon receiving a message, the PGW application check the port from 

which it is received. There are two possible gates to receive a message. The first one 

from the UDP module and the second from the pppInterface through the 

trafficFlowFilter module. If the message is received from the UDP module, then the 

PGW application checks if the received message is a GTP-U message or GTP-C 

message or something else. To do that the PGW application checks the transport layer 

destination port number of the received message. If it is equal to 2152, then the message 

is sent to the gtpUser to handle it. In the gtpUser module, the UE packet is extracted 

from the GTP Tunnel and sent to the Internet through the pppInterface. Otherwise, if 

the destination port number equal to 2123, then the message is sent to the 

gtpControlPgw module to handle it. This module handles the received message based 

on the type attached to the message for example if Create-Session-Request message is 

received the module calls the handleCreateSessionRequestMessgae() methods to 

handle the message and replies if necessary. Messages received from the pppInterface 

are also handled by the gtpUser module. In this case upon receiving the message, header 

information is obtained from the message and used to classify the packet using the TFT 

list, then the bearerId is obtained and used to find the GTP-U tunnel information. The 

GTP-U tunnel information is used to encapsulate the packet and sends it to the correct 

SGW. 

 

Figure 4.24: PGW Application Module Operations 
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4.5.1.6 eNodeB Module 

eNodeB module implements the 3GPP eNodeB entity for connecting the UE to the 

EPC network. It is modelled as a compound module that assembles the functionality 

offered by multiple simple modules. The design of the eNodeB module is different 

from the other modules that previously described. As shown in Figure 4.25, the module 

consists of several basic modules that implemented by both the INET framework and 

the simuLTE simulator. At the same time, the enbApp module is added to support the 

eNodeB control plane functionality. Also, LTE NIC module is slightly modified to 

incorporate the control plane operations. The modules implemented by the INET 

modules includes the UDP, SCTP, NetworkLayer, NICs, routing and interface tables, 

mobility and statistics. These modules are used as a part of the eNodeB module. The 

design and functionality of these modules are briefly described in Section 4.5.1.1. 

While the deployer, LTE NIC (nic), X2App, and gtpUserX2 modules are implemented 

by the simuLTE. The design and the features offered by these modules are fully 

described in [78]. 

 

Figure 4.25: OMNeT++ Module of the eNodeB 

Brief description of the aforementioned modules is presented in this section to help the 

reader understand the operations performed by the eNodeB module. The eNodeB 

module uses the X2App and gtpUserX2 to communicate with its neighbour eNodeBs 

and exchange control and data planes information respectively [80]. More information 

about the X2 protocol stack of both control and data planes are shown in Section 4.3.1. 

Each eNodeB module has a deployer that includes basic information about the eNodeB 
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to use during the simulation. The LTE NIC module is fully described in Section 4.5.1. 

Here few of the changes made to the NIC module to include the control plane 

functionality is highlighted. This includes: i) changes to the IP2LTE layer of the NIC 

module; ii) adding a new functionality to allow the NIC module to exchange control 

plane information with the eNodeB application by utilizing OMNeT++ signal 

mechanism; iii) modification to PDCP layer to expect the LCID with the traffic coming 

from the eNodeB application module. 

A.  eNodeB Application Module 

eNodeB application module plays a crucial role in the eNodeB module. This includes: 

i) the generation and the process of s1ap messages; ii) process of the GTP-U messages; 

iii) NAS messages overlay to the EPC. This section describes the design and the 

operation of the module. 

I.  eNodeB Application Module Structure 

The simple modules used to assemble the functionality of the eNodeB application 

compound module are illustrated in Figure 4.26. This includes the multiplexer, gtpUser, 

s1apEnb, trafficFlowFilter and the userEquipmentRecordTable modules.  Figure 4.26 

also shows how these modules are connected to each other. The multiplexer is 

connected to the eNodeB application from/to UDP gate from one side and the s1apEnb 

and gtpUser module from the other side. trafficFlowFilter is connected to the eNodeB 

application from one side and the gtpUser module from the other side. 

userEquipmentRecordTable does not have a connection with any other module and can 

be accessed only by a direct call. 

 

Figure 4.26: OMNeT++ Module of eNodeB Application 
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II.  eNodeB Application Module Operations 

The eNodeB application has two gates from which it can receive packets. First, from 

the UDP module. Second, from the LTE NIC module. As shown in Figure 4.27, when 

a packet arrives at the eNodeB application, the port from which the packet is received 

is obtained and examined. Packets that are not coming from the UDP module goes 

through another process to check if it is coming from the LTE NIC or not. If it not 

coming from the LTE NIC, then the simulation is stopped with an error message 

explaining the issue. Otherwise, if the packet is coming from the LTE NIC module, 

then the eNodeB application understands it needs to handle uplink data plane packet 

because in the our eNodeB module, the NIC exchanges control plane messages with 

the eNodeB application module by leveraging OMNeT++ signal module. The LCID 

value is attached to all the data plane uplink traffic received by the eNodeB application. 

Therefore, the LCID is extracted from the received packet and used to find bearerId for 

this traffic, then the GTP-U tunnel information of the bearer is used to encapsulate the 

packet and sends it to the UE’s SGW.  

In case the received packet has arrived through the UDP gate, then the UDP destination 

port number is used to differentiate between the control and data plane traffic. If it is 

equal to 2152, then eNodeB knows that it is dealing with downlink data traffic. 

Therefore, it uses the TEID of the received packet to find the LCID, then extracts the 

inner packet from the GTP tunnel and attaches the LCID to the inner packet before 

sending it to the LTE NIC Module. If the UDP destination port equal to 8789, then the 

eNodeB handles s1ap message. Otherwise, an error message is displayed to explain 

that the module received is an unknown message that cannot be handled. 

 

Figure 4.27: eNodeB Application Module Operations 
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4.5.2 Data Plane Traffic Forwarding in LTE Simulation Model 

This section describes how UE traffics are forwarded by the LTE simulation model in 

both uplink and downlink directions. 

4.5.2.1 Downlink Traffic 

Downlink traffic procedure is shown in Figure 4.28. The Internet traffic is first received 

by the PGW entity through the PPP interface, which sends the received packet to the 

pgwApp without any modification. In the pgwApp, the packet is first handled by the 

trafficFlowFilter module, where the packet header is extracted from the packet and the 

5tuple (source and destination IP addresses, source destination port number, and the 

transport layer protocol) is used to find the bearer-Id of the bearer to which this packet 

belongs. The bearer-Id is then added to control-info-object and attached to the packet 

before it is sent to the gtpUser module. In the gtpUser module, the bearer-Id is obtained 

from the control-info-object and used to lookup the S5-U GTP tunnel information. The 

gtpUser module has a UDP socket, used to add the new UDP, IP, Layer2 headers to the 

GTP packet. The gtpUser module encapsulates the received packet with the GTP 

header and leverages the UDP socket to add the other layers. The GTP packet is sent 

through the multiplexer to the UDP module, which adds the new UDP headers to the 

Packet and sends it to the network module, and the latter adds the layer 3 header 

information and sends the packet to the layer 2 interface to send the packet to the other 

end of the tunnel (SGW).  

In the SGW, the Layer2, IP, and transport headers of received packet are removed by 

passing the packet through the layer2 interface, network and the UDP modules. Then 

the GTP message is delivered the sgwApp module. The GTP message that is sent by 

the UDP module to the sgwApp has a control-info-object attached to it. In the sgwApp 

the multiplexer module extracts the object from the message and checks the UDP 

destination port number and based on that port number, the message is forwarded to 

either the gtpUser module or gtpControlSgw module. Assuming this packet is a data 

plane packet (UDP destination port 2152), the packet is sent to the gtpUser module, 

wherein this module the packet is interrogated, the TEID is obtained from the packet 

and used to find the S1-U GTP tunnel information. The obtained information is used to 

update the GTP layer header information of the packet and the UDP socket is used to 

deliver the packet to the eNodeB. To accomplish this task, the GTP message is sent to 

the multiplexer, where the latter sends the packet to the UDP module to add a new 
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transport header, which sends the message to the network module to add a new IP 

header to the received message which sends it to the Layer 2 interface to add new layer 

2 header to the packet and delivers the frame to the eNodeB.  

In the eNodeB, the received packet is decapsulated by passing through the Layer 2 

interface, network, and UDP modules, then the GTP message is sent to the enbApp; in 

this application the packet is received by the gtpUser module, which extracts the TEID 

from the received GTP message and uses it to find the radio bearer and because the 

radio bearer is not implemented in simuLTE (LTE NIC module) the TEID is map to 

LCID, the latter uniquely identifies the radio connection between the UE and the 

eNodeB, then the GTP message is decapsulated and the inner packet is obtained and 

sent to the LTE NIC module to be sent to the UE through the air interface. In the UE, 

the received message is decapsulated by passing through the LTE NIC, network and 

transport modules and the application data are delivered to the application module. 

 

Figure 4.28: Downlink Data processing by LTE simulation Platform 

4.5.2.2 Uplink Traffic 

Uplink traffic describes the route of the traffic sent by the UE to the Internet or any 

other services provided by the network operator. In our module, the UE Entity handles 

both uplink and downlink traffic in the same way. As shown in Figure 4.29, uplink 

traffic generated by the UE application module is sent through the air interface to the 

serving eNodeB. This task involves sending the traffic from the application module 
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through the transport and network modules to the LTE NIC to be transmitted to the 

eNodeB.  

In the eNodeB, the message received by the LTE NIC module and is sent to the enbApp 

module. The message sent from the LTE NIC to the enbApp has control-info-object 

attached to it. This object has the traffic LCID. The TrafficFlowFilter module of the 

enbApp receives the message and extracts the LICD from the attached object of the 

message and uses it to find the EPS bearer-Id. The TrafficFlowFilter module is used in 

both the pgwApp and enbApp but the functionality of each model is different. The 

module has a member variable that specifies where this module is being used and based 

on the value of this member the functionality or the way this module handles the 

received packet is specified. The message is sent from the TrafficFlowFilter module to 

the gtpUser module with the bearer-Id as a part of the control-info-object attached to 

the message. In the gtpUser module, the bearer-Id is used to obtain the S1-U tunnel 

information. At this point, the gtpUser encapsulates the UE packet inside a GTP 

message and sends it to the SGW. The GTP header information includes the UE SGW 

TEID. To send the message to the SGW, the gtpUser sends the packet to the multiplexer 

that forwards the message to the UDP module to add a new UDP header to the message 

and sends it to the network module to do the same and adds a new network header 

which includes the eNodeB S1-U address as the source and the SGW S1-U address and 

the destination IP address. Then the packet is sent from the network module to the layer 

2 PPP interface to add a new layer 2 headers and is then sent to the SGW. 

In the SGW, the message is received by the layer 2 PPP interface and passed through 

the network and UDP module till it reaches the sgwApp. The message is decapsulated 

by each module it passes through, more specifically layer 2 headers are removed and 

the packet is sent to the network module that removes the network header and the 

segment is then sent to the UDP module, which removes the transport header and sends 

the message to the sgwApp. The information of the removed headers is attached to the 

message as a part of the control-info-object. The sgwApp works in the same fashion 

for both uplink and downlink traffic. In the module, the TEID of the GTP message is 

obtained and used to find the S5-U tunnel information, then the GTP header is updated 

with the new information, and the message is sent to the PGW, passing through the 

UDP, network, and layer 2 modules, When the message passes through these modules 

a new header is added in each module to route the packet correctly to the PGW specified 

by the sgwApp.  
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In the PGW the message is decapsulated passing through the layer 2, network, and UDP 

modules. Then the GTP message is delivered to the pgwApp. In this app, the GTP 

header is removed and the inner packet is obtained and delivered to the correct 

destination, in this case, the Internet. 

 

Figure 4.29: Uplink Data Processing by LTE simulation platform 

4.6 Summary 

The EPS system is an all IP network that consists of two sub-networks. Namely, EPC 

and EUTRAN. Several Interfaces are defined to allow the communication between the 

network entities. The S1 interface is used for the communication between the two sub-

networks. The concept of EPS bearer is used for the data plane traffic forwarding. GTP 

represents the core of the bearer design where several procedures are specified by the 

standard to setup/modify/teardown the EPS bearers and provide always-on 

connectivity. simuLTE is the simulation platform for the EPS network in OMNeT++, 

it only simulates data plane operations by using static xml configuration file, which 

make it inflexible and doesn’t support control plane procedures. This chapter showed 

the design and the operation of the EPS entities emphasizes on the newly added 

functionalities. 
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5 Software Based Mobile Core Network 

Architecture 

5.1 Introduction 

In recent years, the world has witnessed a massive growth in data traffic of mobile 

networks, due to increasing numbers of connected devices, which requires a redesign 

of the network’s data and control plane infrastructures to cope with the increasing 

demands. Researchers in both academia and industry have presented several proposals 

to adopt SDN in the core of mobile network. For instance, the work presented by 

[37][81][18] introduce the concept of extending OpenFlow protocol to support GTP 

tunnel operation, including traffic matching and en- and de-capsulation operations to 

adopt and benefit from SDN characteristics in mobile networks. 

An alternative method of realizing the SDN solution is described in [7][9], which is 

based on the concept of the elimination of GTP tunnelling and employs the global view 

of the controller to handle users’ operations. However, these studies are limited in that 

they present straightforward realizations of SDN/OpenFlow but lack a detailed analysis 

of the necessary procedures. A different approach from the aforementioned studies, 

which shifts focus to presenting the virtualized cellular network utilizing NFV to 

provide high availability, elasticity, and modularity, which relatively reduces the 

capital expenditure, and operation expense, is subsequently offered by [17][19]. This 

approach also leverages SDN to manage the virtualized network. This chapter makes 

the following contributions: 

❖ Present mobile core network architecture based on the SDN concept called 

Software based Mobile Core Network Architecture (SBMCNA). The 
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architecture’s inherent SDN characteristic to provide an abstraction layer 

separating the control plane from the underline data plane. 

❖ Identifies few issues with the architecture proposed by the authors of [4] and 

shows how our architecture can correct the implementation issues. 

❖ Presents an OMNeT++ module to simulate the SBMCNA architecture. The 

simulation platform is based on the integrations of OMNeT++ LTE model 

(simuLTE [78]) and the extended version of our own works of OpenFlow 1.3 

[82]. 

❖ Compares two different design methods to support GTP in OpenFlow 1.3 FD. 

The chapter is organized as follows: Section 5.2 presents the SBMCN Architecture and 

explains the functionality of its components. Section 5.3 describes the main operations 

realized by the SBMCNA to provide on demand service connectivity. Section 5.4 

describes the implementation of the SBMCNA architecture and the developed solution 

in the OMNeT++. Section 5.5 shows the results obtained from the simulation and 

compares the system performance of two distinct design methods. Finally, the chapter 

ends up with a summary. 

5.2 SBMCN Architecture 

Figure 5.1 illustrates the main components of the SBMCN Architecture, which is 

composed of the elements outlined in the below sub-sections. 

5.2.1 Network Controller 

The Network Controller (NC) plays a crucial role in SBMCN architecture. It consists 

of three key components, specifically an application layer, a network operating system, 

and communication interfaces. The application layer composes sets of applications that 

implement network functions and services such as MME and SGW/PGW control 

planes (SPGW-C) applications that will be described later in next sub-sections. 

The network operating system consists of several building blocks that are responsible 

for topology auto-discovery, topological resource view and network resource 

monitoring. The communication interfaces are the northbound, southbound, and 

horizontal interfaces (east-west). The northbound interface is used for communication 

between the application layer and the network operating system such as providing a 

virtual view of the network to the application layer; it also receives policies for the 
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application layer. The southbound interface handles the communication between the 

data and control planes. The horizontal interface allows communication between 

multiple controllers and supports third party interactions. The controller manages the 

data plane forwarding of eNodeB, SGW (denoted as SGW-D) and PGW (denoted as 

PGW-D). The NC is responsible for user session establishment and load monitoring at 

the data plane. 

5.2.2 MME 

The MME keeps the same functionality specified by 3GPP with one exception, which 

is the SGW and PGW selection, because this task is handled by the NC. The MME 

communicates with the NC using the Application Programming Interface (API). The 

3GPP interface between the MME and HSS is maintained [4]. 

5.2.3 Serving and PDN Gateways Control Plane 

The SGW-C and PGW-C represent the brain and control intelligence of the SGW and 

PGW respectively. These functions, together with the MME, are virtualized and 

packaged as applications on top of the NC, as shown in Figure 5.1. They play a major 

role in GTP tunnel establishment including TEID allocation. They allocate unique 

TEID values for the S1-U and S5-U interfaces for both uplink and downlink traffic. 

PGW-C is also responsible for UE IP address allocation [4]. 

5.2.4 Forwarding Device 

The FD represents a set of OpenFlow switches enhanced with important features to 

optimize them for use in a mobile network. These features include GTP 

encapsulation/decapsulation, and a local program. Therefore, it can apply rules 

received from the controller in two distinctive ways that will be explained in Section 

5.4.2. 

5.2.5 OpenFlow-Based eNodeB 

This element represents the point of interaction between the access and core network 

in the SBMCN architecture. It still keeps the same radio functions as specified in 3GPP 

standards while its S1 interface is replaced by an OpenFlow switch. Therefore, it is 

necessary to define a new set of control signalling to be sent over the OpenFlow link 

between eNodeB and the NC to handle UE operations, while the data plane is 
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programmed according to instructions received from the NC. Each instruction has a 

hard time-out that represents the flow-entry lifetime. The eNodeB maintains the radio 

and S1 bearers for as long as the session is active, or the hard time-out has not expired. 

Upon detecting UE inactivity, the radio bearer is released and the S1 bearer is 

maintained (i.e. the OF entry is maintained) as long as the Release Timer has not 

expired. The Release Timer is configured according to the traffic pattern (e.g. session 

type, session duration, periodic connection request, etc.). 

 

Figure 5.1: Software-Based Mobile Core Network Architecture 

5.3 Architecture Operations 

This section demonstrates and describes four procedures. Basically, these procedures 

include the initial attachment, service request, resiliency and load balancing although 

the same concept is applicable to the other scenarios proposed in [15][16]. 

5.3.1 Initial Attachment and Initial Access Bearer Setup Procedures 

This procedure is started by the UE during the initial power on. It represents the steps 

used by the UE to register with the network and setup the default bearer. The 3GPP 

specification of the UE initial attachment and initial access bearer setup procedure is 

described in Chapter 4 Section 4.4.1 and Section 4.4.3. The authors of [4] offer a 
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different approach regarding this procedure. Figure 5.2 shows the UE initial attachment 

procedure. 

 

Figure 5.2: Initial Attachment Procedure as proposed by [4] 

The authors proposed to use the initial attachment procedure to only perform the UE 

registration with the network and at the same time assign an IP address to it. In this 

approach the UE starts the procedure by sending an Attach-Request message to its 

serving eNodeB, which uses it OpenFlow connection to forwarding the Attach-Request 

message encapsulated in a Packet-In message to the OpenFlow controller. Upon 

receiving the message, the controller forwards the request to the MME application. The 

latter starts the authentication and authorization procedure and upon finishing the 

procedure, the controller notifies the SGW-C application. The SGW-C sends create-

session-request message to the selected PGW with the SGW-TEID. The PGW creates 

an entry in its tables for the UE. At the same time, it allocates a new IP address for the 

UE and assigns a S5-TEID for the uplink traffic, then it responds back to the SGW-C 

application by sending Create-Session-Response message. After the processing of the 

PGW message the UE IP address is passed from the SGW-C to the MME. The latter 

sends Attach-Response message that includes the UE IP address to the UE through its 

serving eNodeB. Then the UE needs to initiate service request procedure to setup the 

air bearer.  
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Figure 5.3: Initial Bearer Setup Procedure proposed by [4] 

Figure 5.3 shows the service request setup operation. After registering with the network 

and obtaining the IP address, the UE starts the procedure by sending a service request 

message, which is passed by the eNodeB to the network controller. The eNodeB 

encapsulates the NAS service request message in a Packet-In message and send it 

through the OpenFlow connection to the network controller. Upon receiving the service 

request message, the NC controller asks the eNodeB to setup the radio bearer for the 

UE. Upon receiving the first packet of the session, the NC controller initiates the bearer 

setup procedure to configure the data plane FDs. The controller sets up the GTP tunnel 

by sending Modify bearer-request message to the PGW and Packet-Out message to the 

eNodeB and the selected SGW-D. The action associated with the Packet-Out message 

is sent to the SGW-D, which includes information such as the SGW-TEIDs of the S1 

and S5 Interfaces along with the IP address and the TEID of the PGW and the eNodeB. 

This proposal is conceptually correct, but it has several issues that need to be addressed. 

This includes: 

❖ The Create-Session-Request message send by the SGW-C to the PGW should 

include the TEID and the IP address of the selected SGW-D not just the TEID 

as the authors mentioned. 

❖ Sending the first packet of each session to the controller will increase the 

signalling specially if multiple sessions need to be handled in the same way 

without any special treatment. 
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❖ Packet-Out message is defined by the OpenFlow specification to do a specific 

job, which is forwarding the packet buffered in the switches. The Packet-Out 

action in the authors’ proposal includes information about both uplink and 

downlink traffic, which will confuse the OpenFlow processing pipeline and the 

UE packets will not be delivered to the correct next hop node. 

To overcome these issues, the system should include and support the following: 

❖ Centralize the control plane of both the SGW and the PGW and in this way the 

controller can configure the data plane devices to work as intended without any 

issue. 

❖ Add a local agent that includes a pre-defined list of traffic classes in the FD to 

reduce the number of Packet-In sent by the FDs to the controller. 

❖ Use a better way to setup the GTP tunnel in the data plane devices. 

In our architecture, the FDs’ local agent is configured by the controller during the initial 

attachment procedure and the first session of the UE new flows are handled locally 

without the need to send it to the controller unless the flow initiated by the UE do not 

match any one of the traffic classes maintained by the local agent. In this case the first 

packet of the session is sent to the controller in a Packet-In message for processing. 

Our architecture support two GTP implemented methods.  

The call flow of these methods is shown in Figure 5.4. In the First method, the 

controller converts the information provided by the network function applications to a 

sequence of Flow-mod-Msg and sends them to each FD in the selected path (a sequence 

of switches from one edge switch to another) to install a flow-entry for each direction, 

as proposed by [37]. In the second method, the OpenFlow plugin of the FDs is enhanced 

to include extra functionality that are required to help it understand and handle a new 

message added as an extension to the OpenFlow 1.3 protocol. 

The new OpenFlow plugin is capable of performing all the functionality specified by 

the OpenFlow standard and at the same time, it can intercept the User-DataPlane-Setup-

Request message received from the controller and convert its information to two flow 

entries: one to handle the uplink traffic and another to handle the downlink traffic. 
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Figure 5.4: GTP tunnel Setup Methods 

5.3.2 Resiliency 

This work considers resiliency as a method to handle the SGW failure. The 3GPP 

procedure to handle SGW failure is shown in Figure 5.5 [83]. When a SGW fails, the 

MME notices that the SGW is not responding to the GTP echo messages that 

periodically exchange between them. At this point the MME starts the access bearer 

release procedure to release all the sessions handled by the failed SGW. This procedure 

requires the MME to communicate with the eNodeBs of all the UEs that have at least 

a session handled by the failed SGW to perform an S1 bearer release procedure. Then 

the MME waits for the effected UE to start a service request procedure to setup a new 

S1 bearer with a new SGW. This procedure gets the job done and all the effective UEs 

start using the network again but at the same time it increases the signalling loads and 

requires more time to restore the service back to the effected UEs. 
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Figure 5.5: SGW failover procedure based on 3GPP specification 

The SBMCNA offers a method to handle SGW failure without the need to release all 

the active sessions handled by the failed SGW and wait for the effected UE to initiate 

the service request procedure used by the 3GPP. As previously mentioned, the control 

plane of multiple SGWs is centralized and the data plane processing is handled by 

extended version of OpenFlow 1.3 switches denoted as (SGW-D). When a SGW-D has 

failed, the failure is discovered by the NC, the SPGW-C is notified. The latter selects 

another SGW-D and provides the NC with the updated information of the new link for 

the impacted UEs. The SGW-C may select one or more SGW-Ds based on the last 

logged load of the failed SGW-D; if there is a SDW-D that can handle the entire load 

of the impacted UEs then a single SGW-D is selected, otherwise multiple SGW-Ds are 

selected, based on the information received from the SGW-C.  

The NC configures the flow-table of the newly selected SGW-Ds and modifies the 

virtual port configuration of the PGW-D to reroute the downlink traffic to the new 

SGW-D. This process is carried out by changing only the destination IP address and 

the physical port number if required, since the SGW-TEID values for the downlink 

traffic on the S5 interface remain the same for the impacted sessions. The NC will 

repeat the same operation with the serving eNodeBs to redirect the uplink traffic to the 

desired SGW-D in the same fashion, as the SGW-C does not create new TEID values 

during the restoration procedure. This chapter compares two methods to configure the 

data plane FDs.  
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In the first method, illustrated in Figure 5.6, the controller updates the virtual port 

configuration of the PGW-D and the serving eNodeB by sending a GTP-Tunnel-

Modify-Message (the FD OpenFlow plugin is programmed to update the TEID table 

when it receives this message). After that the controller first configures the SGW-D2 

by sending GTP-Tunnel-Setup-Message to configure the virtual ports for the S1 and 

S5 GTP tunnels and then it sends two Flow-Mod messages to send the downlink traffic 

to the S1 virtual port and uplink traffic to the S5 virtual port. 

The second method is different because the FDs’ OpenFlow plugin is enhanced and 

modified to perform the operation required in the mobile network. Therefore, the 

controller only sends a single message to the PGW-D, serving eNodeB and the SGW-

D. The FD’s OpenFlow plugin behaves based on the type of the received message. In 

this case the PGW-D and the serving eNodeBs update the TEID table, while the SGW-

D fully configures both the TEID and flow-tables. 

 

Figure 5.6: SBMCNA SGW failover procedure 
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A similar solution is proposed by the authors of [4]. They proposed to use SDN with a 

centralized management for the TEID allocation which helps reduce the time and the 

signalling cost required to change the traffic direction of the effective UEs. The 

procedure proposed by the authors is shown in Figure 5.7. The procedure starts by 

detecting the failure and then the SGW-C application communicates with the PGW 

(PGW kept the same as specified by the 3GPP) to alter the direction of the downlink 

traffic to the new SGW-D, then the controller sends a Modify state message to the 

serving eNodeB to change the direction of the uplink traffic, finally a Packet-Out 

message is sent to the new SGW-D to configure it. 

 

Figure 5.7: SGW Failover procedure based on [4] 

In our opinion, this procedure has a problem that needs further investigation because 

the system cannot be implemented to function in the way they proposed by only using 

their method. The main issue is the authors proposed to send all the TEID tunnel 

information in an OpenFlow Packet-Out message. In OpenFlow, the Packet-Out 

message has its own purpose, which is to forward the packet currently buffered in the 

FD. The authors proposed to use the Packet-Out to carry the S1 and S5 GTP tunnel 

information, which includes the IP address and the TEID of the involved entities along 

with other information. For example, to handle the SGW failure, the authors proposed 

that the action field of the Packet-Out sent to the new SGW-D should include the IP 

address and the TEID of the eNodeB, the IP address and the TEID of the PGW, and 

the SGW S1 and S5 TEIDs. Considering that the author did not propose or suggest any 

change to the OpenFlow processing pipeline, this action will be ambiguous, and the FD 

will never be able to forward the traffic to the correct network hop. 
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5.3.3 Load-Balancing 

Load-balancing is a widely adopted workload distribution method used to effectively 

optimize the network resource usage. Load-balancing in mobile networks like 

LTE/EPC is based on the Weighting Factor (WF). The SGW selection criteria 

performed by the MME utilize the weighting factor obtained from a Domain Name 

Server (DNS). The weighting factor of a specific gateway is derived from its actual 

capacity compared with the concurrent gateways in the same domain. The MME 

performs the SGW selection based on this information without any knowledge of the 

current load of the selected SGW. Therefore, some SGW may suffer from congestion 

periods considering that the Weighting Factor load-balancing does not consider the 

SGW load in real-time and the MME may keep assigning the traffic of new UEs to the 

same SGW. Basic representation of the load distribution based on the 3GPP 

specification is shown in Figure 5.8. 

 

Figure 5.8: 3GPP Load-Balancing Solution 

With the emergence of SDN, load-balancing can be handled in a non-dedicated way, 

which could significantly reduce the cost. The model proposed by [4][40] used the SDN 

concept to perform per-session load-balancing that distributes UE sessions across 

multiple SGW-Ds in the same domain. The authors proposed to use the controller 

knowledge about the network statistics to offer more efficient solution for the load-

balancing in the mobile network. Considering that the first packet of any new session 
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is sent to the controller for processing, the controller can use the real time statistics with 

the session type to balance the network loads between the SGW-Ds, as shown in Figure 

5.9. The authors argue that this solution will lead to a better traffic distribution. 

Although this mechanism provides optimized resource utilization, it also introduces a 

few issues. First, the first packet of each session needs to be sent to the controller even 

if the session does not need special treatment and can be handled in the same way the 

eNodeB handles the other UE sessions. Secondly, the controller may route UE sessions 

through multiple SGW-Ds as with the sessions of UE1 shown in Figure 5.9. UE1 web 

traffic is handled by the SGW-D1 and the voice traffic is handled by SGW-D2. In this 

case, if the UE1 hands over from one eNodeB to another, then more control signalling 

messages are required to change the downlink traffic direction. This is because the 

controller will have to modify the flow entries of multiple SGW-D devices compared 

to only one in the 3GPP method of implementation. 

 

Figure 5.9: Load-Balancing Solution proposed by [4] 

In SBMCNA, the concept of load awareness offered by the SDN controller is utilized 

to implement the load-balancing mechanism. The solution attempts to reduce the 

number of Packet-In-Messages sent to the controller and the number of control 

messages sent by the controller as a response to the Packet-In. Therefore, network 

transport devices are equipped with a local SDN agent that has the capacity to maintain 

a list of pre-defined traffic classes. This list is temporary and follows the same rules of 
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OpenFlow Entries, since it has an idle and hard timeout and can be modified or deleted 

based on the controller requirements.  

In the UE-attachment procedure, the centralized controller computes the routes that 

satisfy a set of requirements based on users’ policies and profiles. Then it configures 

the forwarding local agent with a predefined list of traffic classes. Therefore, different 

UE sessions that belong to the same traffic class are handled locally based on the 

instructions provided by the controller without the need to send the first packet to the 

controller. Also, the monitoring application is used to properly and efficiently collect 

fine-grained statistics from the network devices. The monitoring application has a 

process that is responsible for building a historical profile for each user. This profile 

incudes the current usage, the user’s active hours, and mobility patterns, among others.  

The load-balancing application utilizes the statistics obtained by the monitoring 

application to offer fair distribution of the network traffic between the different SGW-

D devices in the same domain. If one of the SGW-Ds suffers from congestion, the 

controller seamlessly moves some of the UEs to another SGW-D to provide better 

resource distribution without increasing the signalling load. If the application needs to 

move some of the UE sessions to another SGW-D, then the load-balancing application 

is programmed to use the historical profile built by the monitoring application to choose 

the best UEs (normally the one that rarely changes it location, especially at this 

particular time of the day), then it moves some of its sessions to different paths through 

different SGW-Ds. In this case, the load-balancing application will assign UE session 

to a different SGW-D only if there is no other solution and the UE profile is used to 

pick the best UEs for the job. 

5.4 Network Model 

The network topology used in our simulation is shown in Figure 5.10. It consists of the 

core network, access network and the InternetHost. The core network comprises of an 

OpenFlow controller and three enhanced OpenFlow FDs that are capable of GTP 

tunnelling. The core network adds realistic delays that simulate the time required for a 

packet to travel from the InternetHost to the access network and vice versa. 

Specifically, 8ms for the S1-U interface, 4ms for the S5 interface and 8ms for the SGi 

interface.  
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The EUTRAN consists of three OpenFlow capable eNodeBs and a set of UEs, where 

each eNodeB is equipped with an omnidirectional antenna with 40 dBm transmission 

power, 18 dB antenna gain, 5 dB noise figure and 2 dB cable loss. The RLC layer at 

the eNodeB is configured with the Unacknowledged Mode, with a fixed PDU size of 

40 bytes. A realistic channel model that considers both path loss and fading is used in 

our simulation. The Urban Macro Path Loss Model and the Jakes model for Rayleigh 

fading is used in all scenarios. The UEs are configured to use 26dBm transmission 

power and a linear mobility model with a speed of 1m/s.  

The network is implemented in OMNeT++ version 4.2.2 utilizing its independently 

developed open source INET 2.3 library together with simuLTE and OpenFlow 1.3 

extensions. OMNeT++ is run on the Windows 7 Pro operating system hosted by a Dell 

Precision Tower equipped with Intel Xeon E3-1246V3 / 3.5 GHz CPU with 8 GB of 

RAM. INET library and the aforementioned extensions provide flexible tools that are 

utilized in the creation of the simulation platform used to evaluate and quantify the 

efficiency and the performance of the proposed architecture. To evaluate the integration 

of SDN in EPC, a prototype implementation was developed that introduced several 

modifications, improvements and extensions to the base version of both simuLTE and 

OpenFlow 1.3 models, in order to create a simulation platform that offers complete 

tools to enable the validation of the system performance under different circumstances. 

These extensions include: the elements detailed in the next sub-sections. 

 

Figure 5.10: Network topology used in OMNeT++ simulation 
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5.4.1 NC Controller Module 

Figure 5.11 illustrates the OMNeT++ module of the SDN controller node. It consists 

of an application layer, a network operation system and communication interfaces. The 

mmeApp module works together with the spgwApp modules to realize the network 

functions and services by sending instructions or requirements to the ControllerOS 

module to relay them to the networking components. The spgwApp module 

implements the control plane functionality of the SGW-C and PGW-C previously 

explained in Section 5.2.3.  

The ControllerOS module is also responsible for extracting information from the 

network devices and communicating them back to the application layer. To achieve 

this, the ControllerOS module utilizes two framework applications, namely: topology 

discovery and monitoring applications, to extract and maintain network information. 

This information includes an abstract view of the network, statistics, and events that 

describe what is happening. Since HSS is not implemented in this model, the userTable 

module is used to store the UEs subscription profile and for simplicity, the UE 

authentication procedure is not implemented. 

 

Figure 5.11: Controller Module in OMNeT++ 



 

130 
 

The SDN controller module implements most of the communication interfaces, 

although not all of them have the accuracy that is specified by the standard. The 

OMNeT++ signal mechanism is used as a synthetic representation of the northbound 

interface between the ControllerOS and the application layer. The southbound interface 

has been modelled with high accuracy and real packets are built and exchanged 

between the controller and the FDs. The SDN controller model has a TCP connection 

with every FD in the network exclusively for the purpose of exchanging control and 

statistics messages.  

OpenFlow protocol is used to realize the southbound interface by handling the 

communications between the individual network devices and the controller. The 

controller module can work in two operational modes and each mode represents the 

way the controller configures the data plane devices. The operational mode specifies 

the number and the type of messages that need to be sent to the FDs to setup the UE 

GTP tunnel. These modes are NORMAL, and ADVANCED respectively. The 

controller parameters specified by the ini file are used to specify the operation mode of 

the controller, for example in order to make the controller operate in the normal way 

(sends a sequence of Flow-Mod messages to setup the GTP tunnel), the below line of 

code is used in the ”ini” file. 

 

In the same way to change the operation mode from NORMAL to ADVANCED the 

below line of code is used. In this mode the controller sends a User-DataPlane-Setup-

Request message to each FD in the selected path to instruct it about how to handle the 

UE upcoming traffic. 

 

5.4.2 GTP-Capable-OpenFlow-Switch Module 

The module depicted in Figure 5.12 represents an overview of the different components 

of the GTP-capable OpenFlow switch. It mainly consists of the OpenFlow plugin and 

data processing pipeline. Tunnelling in this implementation is realized through the 
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deCap-vPort and enCap-vPort modules that simplifies header’s manipulation to 

support GTP encapsulation and decapsulation. 

 

Figure 5.12: Implemented Model of a GTP capable OpenFlow Switch 

5.4.2.1 OpenFlow Plugin 

The switchApp module depicted in Figure 5.12 represents an extended version of the 

original OpenFlow plugin module that presented in [82]. It has a local program with a 

focus on the interpretation of the new OpenFlow messages and converts them to flow-

entry. It is also responsible for providing the controller with aggregate statistics of the 

FD. Therefore, switchApp can handle both the standard OpenFlow control messages 

and the User-DataPlane-Setup-Request. The latter is a new message that proposed to 

carry information to setup UE uplink and downlink tunnels. 

For example, in the service-request procedure, the controller configures the GTP tunnel 

by sending User-DataPlane-Setup-Request to the selected FDs. The message sent to 

the SGW-D contains the SGW-S1-TEID, SGW-S5-TEID, eNodeB-S1-TEID, eNodeB-

IP-Address, PGW-S5-TEID, PGW-IP-Address, physical output ports, and QoS 

parameters. Upon the reception of this message the local program configures the TEID 

Table to add two entries that hold the virtual port encapsulation parameters. The 

Tunnel-Id used as a key in the TEID-table. Let us say that the TEID table has two 

entries, 100 and 200; the former to encapsulate the packet with eNodeB information 
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(TEID, IP-Address, UDP Port Number (always 2152 in our simulation)) and the latter 

to encapsulate the packet with PGW information. Then the local program installs two 

flow entries to map the traffic to the correct virtual port. The first entry matches traffic 

with SGW-S1-TEID to be sent to the virtual port 200 and the second entry matches 

traffic with SGW-S5-TEID to be sent to the virtual port 100. 

5.4.2.2 Switch Data Processing Pipeline 

The data message received by the physical port is passed up without any modifications 

to the processingUnit module, which implements the OpenFlow switch functionality 

on the data plane. The processingUnit is pre-configured with flow-entry that has the 

highest possible priority. This entry matched traffic that has UDP destination port equal 

to 2152 (GTP-U traffic) and sends it to the deCap-vPort. The returned packet from the 

deCap-vPort consists of the IP header with a transport-layer header plus payload; the 

GTP TEID is also written into the lower 32 bits of the tunnel-Id metadata. Another 

flow-entry matches the GTP-U tunnel utilizing the tunnel-Id metadata and sends it to 

the enCap-vPort.  

The enCap-vPort operation is directly mapped to the information specified by the 

TEID-table. When the packet arrives at the enCap-vPort, it first extracts the output 

tunnel-Id from the control information attached to the packet, and then it looks up the 

tunnel header information in the TEID-table. If a match is found, then the packet is 

encapsulated with GTP utilizing the tunnel information of the TEID-table as shown in 

Table 5.1. If no such tunnel information is present, the enCap-vPort checks if the value 

of output tunnel-Id is equal to one of the physical ports; then the packet is encapsulated 

within Ethernet headers utilizing the information included in the control information 

attached to the received packet. Otherwise, the packet is forwarded to the controller 

with an error indication. The TEID-table consists of one or more entries. Each entry is 

composed of tunnel Id, TEID value, next hop address, next hop port number, and QoS 

parameter, as shown in Table 5.1. 

Table 5.1: Main Components of TEID Entry 
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5.4.3 OpenFlow-Based eNodeB  

The OpenFlow-Based-eNodeB keeps the same radio protocol stack as specified by 

3GPP standards leveraging the LTE NIC module from simuLTE [78], while its S1 

interface is replaced by an OpenFlow switch. To handle UE authentication, 

authorization, and mobility management, a new set of signalling messages is adopted 

to exchange the necessary information during the UE operations. The main control 

messages included in the OMNeT++ model are Initial-UE-Message, Initial-Context-

Setup-Request, Initial-Context-Setup-Response, Switch-Path-Request, and Switch-

Path-Request-ACK. The new messages have similar information to those specified by 

the 3GPP standards but are structured using OpenFlow protocol. 

 

Figure 5.13: OpenFlow-based eNodeB Module Structure 

Figure 5.13 shows the basic structure of the eNodeB module. It mainly consists of 4 

parts: 

❖ The first part represents the connection between the eNodeB and the network 

controller through the OpenFlow link. This part consists of 4 modules: namely, 

onDemandSwitchApp, tcp, networklayer, and ethernet Interface.  

The onDemandSwitchApp module represents the OpenFlow plugin. It is more 

advanced and complicated compared to the OpenFlow plugin specified by the 

OpenFlow 1.3 specification. This module is responsible for sending and 

receiving all the UEs messages related to the mobility and session 

establishment, modification and tear down. No authentication messages are sent 

or forwarded by this module because this feature is not implemented by either 
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the MME or the HSS. This module communicates with the controller using a 

TCP connection. The other three modules of this part are implemented by the 

INET library [79] and reused here to setup the TCP connection with the 

controller. These modules are explained in detail in Chapter 4 Section 4.5.1.1. 

The onDemandSwitchApp module has two operating modes: First is normal 

and second is advanced. The mode in which this module operates is specified 

by the eNodeB parameters specified in the ”ini” file. Currently the only 

difference between the two operating modes is that the advanced mode has the 

ability to intercept and read the User-DataPlane-Setup-Request message to 

configure the tables of the eNodeB module, while the normal mode cannot. The 

below line shows how to configure the eNodeB to use the normal mode. 

 

Changing the word NORMAL to AVANCED will alter the 

onDemandSwitchApp behaviour to work in the advance mode. If the 

onDemandSwitchApp received a User-DataPlane-Setup-Request message 

while it is configured to use the normal mode, then the message will be dropped, 

and the simulation stop with an error message explaining the problem. This can 

happen if the controller is configured to use the advanced mode while the 

eNodeB is configured to use the normal mode. Figure 5.14 shows the 

onDemandSwitchApp operation in the advanced mode. 

Figure 5.14 shows how the onDemandSwitchApp module of the eNodeB 

module handles messages coming from the controller through the TCP 

connection. This module also handles messages sent from the NIC module. 

These messages are sent by utilizing the OMNeT++ signal mechanism and 

handles by re-implementing the receiveSignal method (). 

❖ The second part is the NIC module, which is built by the simuLTE model and 

modified by us to includes features required to support the OpenFlow 

interconnection. It implements the radio protocol stack. It has four connections, 

one to the air interface to exchange messages with the UEs, the others with the 

X2App, gtpUserX2, and processingUnit respectively. The NIC module also 

uses the OMNeT++ signal mechanism to exchange information with the 

switch’s OpenFlow plugin(onDemandSwitchApp). The NIC module use the 
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X2App connection to exchange control messages with its neighbour eNodeB 

over the X2 interface e.g handover request. The gtpUserX2 connection is used 

to send UEs data traffic during the handover. Finally, the processingUnit 

connection is used to send/receive traffic to/from the S1-U interface. 

 

 

Figure 5.14: onDemandSwitchApp Advanced Mode Operations 

The third part represents the connection between the eNodeB and it neighbour 

eNodeBs. This part consists of several modules that simulate the data and 

control plane to exchange data and control messages between the neighbouring 

eNodeB. Currently the module only has the control messages required to 

support X2 handover. The X2 control plane modules includes, X2App, sctp, 

networkLayer, and X2ppp Interface, while the data plane modules include, 

gtpUserX2, udp, networkLayer, and X2ppp Interface. These modules represent 

one-to-one mapping with the control and data plane protocol stack specified by 

the 3GPP specification. These modules are implemented by the simuLTE [78] 

and the INET library [79] and reused in our module to support the X2 
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communication between the neighbouring eNodeB. These modules are not 

mandatory, and one need to configure them only if there is a point-to-pint link 

between the eNodeBs in its simulation network. This section briefly describe 

the X2App and gtpUserX2 modules. The X2App module is consist of two 

blocks: namely, server and client and each eNodeB must have N of the X2Apps, 

where N equal to the number of X2 point-to-point links it has with the other 

eNodeBs.  

For example, if the eNodeB is connect to three neighbouring eNodeBs, then it 

must have three X2Apps which is equal to the number of eNodeBs that it has 

X2 point-to-point link with. The server block is used to send x2 control 

messages and the client block is used to receive X2 message from the other 

eNodeBs. As previously message X2 control message sent over SCTP session 

and that’s why the X2App module has a connection to sctp module. The later 

helps setup the SCTP session for the X2 control communication. The 

gtpUserX2 is responsible for encapsulating the packets coming from the INC 

module with GTP header before passes it to the other networking modules to 

add the required headers before sending it to the next hop. At the same time, 

this module decapsulate packets coming from the UDP module and deliver it to 

the NIC module. 

❖ The last part is responsible for handling the data traffic sent and received 

to/from the S1-U interface. In our module, this part is implemented by the 

processingUnit module. The latter is a is a modified version of the open flow 

processing module explained in Chapter 3 section 3.4.2.1B. It is a compound 

module that has multiple virtual ports to help with the encapsulation and 

decapsulation of the received packets. Two virtual ports are connected to the 

UDP module one to decapsulate the received packet by removing the GTP 

header and send the inner packet to the processing pipeline to find the correct 

mapping between the TEID and the LCID. The basic structure of the 

processingUnit module is shown in Figure 5.15. The downlink traffic coming 

from the UDP module is passed through the fromUdp gate to the deCap-vPort 

sub-module where GTP header is removed and the inner IP packet with the 

TEID value attached as a control object is forwarded to the pipeline module. In 

the pipeline module, the TEID value is used to lookup the forwarding table and 

the matched entry should specify the LCID (used in simuLTE as a part of NIC 
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module to uniquely identify a session with in the system. In simuLTE this value 

is generated by the PDCP module, but the module is modified to expect 

receiving the value attached with the receiving packet). The pipeline attaches 

the LCID value to the packet and send it through the toNic gate to the NIC 

module. The latter sends the packet through the correct radio link to the UE. 

 

Figure 5.15: Internal Structure of the ProcessingUnit module of the eNodeB Node 

In the same fashion, uplink traffic is passed through the fromNIC module to the pipeline 

module. The latter expect to receive an IP packet with a LCID value attached to the 

packet as control object. The LCID used to lookup the flow-table and the output port 

of the matched entry (represent the vPortId) is attached to the packet before sending to 

the enCap-vPort module. In the enCap-vPort the vPortId is used to lookup the TEID 

table to fund the correct GTP configuration and based on the result and IP packet is 

encapsulated with GTP header and sent to the UDP module through the toUdp gate and 

UDP and IP headers are added by passing the GTP packet through the networking 

modules until it reach the Ethernet interface where the layer 2 header information is 

added to the new packet before send it to the network. 

5.4.4 Local Agent 

Local program used as part of the module structure of both the FD and the eNodeB 

modules. The main structure of these modules depicted in Figure 5.12 and Figure 5.15 

are extended to include OFAgent and ueProfileTable modules. The next sub-sections 

describe the OFAgent module structure and operations. 
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5.4.4.1 OFAgent Module 

Structure of the OFAgent Module is defined by the ”ned” file of the OMNeT++ 

simulator. This file describes the module structure and defines its parameters and 

connection gates. It also, associate each parameter with default value if it necessary. 

Figure 5.16 shows the basic structure of the OFAgent module. It has two gates to 

connect the module with the OpenFlow plugin module. These gates are used to send 

and receive messages to/from the OpenFlow plugin module. The names of these gates 

are swAppIn and swAppOut. Messages send by the OpenFlow plugin module should 

be received by and only by the swAppIn. In the same fashion messages sent to the 

OpenFlow plugin module should be sent through the swAppOut gate. 

 

Figure 5.16: Agent Module Structure 

In OMNeT++ [69], all simple modules are implemented as subclass of the 

cSimpleModule. Although the cSimpleModule defines many of the simulation-related 

functionality, but it cannot perform anything useful by itself. Therefore, it is mandatory 

for the subclass module to redefine one or more of the base-class (cSimpleModule) 

virtual methods. The OFAgent redefine the functionality of the handleMessage() and 

initialization() methods to properly initialized the module and handle the received 

messages. The OFAgent handles both control and data plane messages. Control 

messages received through the swAppIn and handled by the handleMessage() method. 

Data plane message emitted by the ProcessingUnit module through OMNeT++ signal 

mechanism. In order to receive these signals, OFAgent register itself as a listener in the 

initialization phase of the simulation. 

To be a listener for a specific signal, it is required to be sub-class of the cListener. The 

latter is do-nothing implementation suitable as a base class for other listeners. 
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Therefore, the OFAgent module is implemented as sub-class of both the 

cSimpleModule and cListener modules as shown in Figure 5.17. It redefines and 

implements its own version of receiveSignal() method to handle the data plane 

messages sent through the signal mechanism. Furthermore, it can access all tables in 

the FDs compound module. This includes the flow-tables, group and meter tables, 

TEID and ueProfileTables. The OFAgent defines a unique identifier to each table. In 

the initialization method, the module gains access to each table and assign value to it 

identifier. The identifiers then are used to refer to the tables at different stages of the 

simulation. 

 

Figure 5.17: OFAgent class tree structure 

OFAgent module overwrite handleMessage() and receiveSignal() methods to 

implement its own version of handling the messages received from the OpenFlow 

plugin and the processingUnit modules respectively. As shown in Figure 5.18, upon 

receiving a message, the OFAgent module check the source of the message to 

differentiate between the control and date plane messages. The messages received from 

the OpenFlow plugin (switchApp) module classified as control messages and 

handleMessage() method is called to process the received control message. If the 

message received through OMNeT++ signal mechanism, then the message classified 

as data message and receiveSignal() method is called to deal with the received message. 
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5.4.4.2 Control Messages 

The same implementation concept is used in all our modules. That is the 

handeMessage() method works only as a decision maker, which only inspect the 

received message and based on the value of a specific field, a more specialized method 

is called to handle the message properly. In this case, the message type is used to 

identify the received message. Currently the module only has a handler for the OFPT 

UE PROFILE MOD message but it can be extended to support many more features. If 

a message received by the OFAgent module with a different message type, the 

simulation is stopped with a description about the error to explain that the module can’t 

support the received message. If the type of the received message is OFPT UE 

PROFILE MOD, then the handleUeProfileModMessage() is called to process the 

received message. The handleUeProfileModMessage() uses the command field 

attached to the received message to specify the correct operation to perform. The 

method expects the command value to be one of the following: OFPUPC ADD, 

OFPUPC MODIFY, or OFPUPC DELETE and based on the command it configures 

the ueProfileTable to adding a new entry, modify or delete existing one. The upper part 

of Figure 5.18 shows the procedure used by the OFAgent to handle control plane 

message. 

5.4.4.3 Data Plane Messages 

The processing pipeline of the standard OpenFlow FD module has been modified. Now 

the OFAgent is responsible for the NO-MATCH-FOUND request signal instead of the 

OpenFlow plugin module. Upon receiving the NO-MATCH-FOUND signal the 

OFAgent module obtain the received packet from the buffer module and lookup the 

ueProfileTable using either the source or the destination IP address of the received 

packet. If no match is found, then Packet-In message is sent to the controller through 

the OpenFlow plugin module. Otherwise, header information of the packet is match 

against the traffic template list associated with the ueProfile. The same as before if NO-

MATCH-FOUND Packet-In message is sent to the controller through the OpenFlow 

plugin module. If the packet headers match one of the traffic template list, then a new 

flow-entry is added to the flow-table. The header of the received packet is used as a 

matching field combined with the instruction attached to the traffic template is used to 

define the flow-entry components. 



 

141 
 

 

Figure 5.18: Control and Control Plane Operations of the OFAgent module 

5.5 Simulation Setup and Results 

In order to study and analyse the system performance of both proposals, multiple 

experiments that employed different numbers and types of applications are used. Each 

experiment lasted for 100s and was replicated five times with different seeds to exclude 

simulation artifacts and to obtain mean and confidence intervals over the different 

repetitions. At the start of each experiment, the UEs were randomly placed within a 

square of a given size at a maximum distance of 100-meter from the eNodeB and 

moved linearly at the speed of 1 m/s. The common ”ini” configuration between all the 

simulation scenarios is shown below. 
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5.5.1 Applications 

Three types of applications are used in these experiments. These application works like 

a traffic generator in some modules (e.g UEs) and traffic sink in another. In the first 

experiment, PING application is used and in the second experiment TCP and 

UDPVideoStream applications are used. More specifically TCP application is used in 

scenario 1 of experiment 2 and UDPVideoStream application in scenario 2 of the same 

experiment. The next sub-sections explain in detail these applications. 

5.5.1.1 PING APP 

An application module implemented by the INET library [79]. This application used 

only as a traffic generator. The module generates and sends ICMP echo request 

messages. At the same time, it calculates and records the RTT and packet loss of the 

received ICMP echo reply. Several parameters included in the ”ned” file of the module 

to specify the sending time, the time between the ICMP echo request messages and the 

address of the destination node. The startTime, sendInterval, destAddr parameters are 

used to fill these roles. A sequence number is attached to every request packet sent by 

this module and it expect that the reply packets arrive in the same order. For example, 

if reply packets with the sequence number (e.g 1, 2, 3, 5) received by the Ping 

application module, then the missing packet (number 4 in this example) is counted as 

lost. When the module receives a packet with a sequence number less than the sequence 

number of the last packet it successfully received it will be counted as out-of-sequence 

arrival. Therefore, the actual packet loss equal packet Loss minus the out-of-order 

packets. 

5.5.1.2 TCP Application 

Multiple TCP applications are available in the INET library such as 

TCPBasicClientAPP, TCPEchoAPP, TCPGenericSrvApp, TCPSessionApp, 

TCPSinkApp, TCPSrvHostApp and TelentApp. All these applications are built as child 

class of the TCPBasicBase. The latter represent a class the includes all the common 

functionality and operation shared by all these types of TCP applications. In the 

simulation, the TCPSessionApp is used only as a traffic generator and TCPSinkApp as 

a sink application. Therefore, this section briefly explains these applications and 

readers are advised to read the INET manual [79] for more information about the other 

types of the TCP applications. 
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❖ TCPSessionApp: is used as traffic generator application that open a single TCP 

connection to send a given number of bytes to the destination node. The 

application has multiple parameters that specify: 

➢ The local and remote socket configuration [IP address: port number], this is 

specified by the localAddress, localPort, connectAddress and connectPort 

parameters. 

➢ Traffic characteristics, these include when to open and close the session, the 

size and the type of the data need to be sent. The tSend and tClose 

parameters are used to specify the opening and closing time of the TCP 

session and sendBytes and the dataTransferMode parameters are used to 

specify the size and the type of the data need to be sent. Currently 

dataTransferMode can be set only to one of the following values 

”bytecount”, ”object” and ”bytestream”. 

❖ TCPSinkApp: simple TCP application that is programed to accepts any 

number of incoming TCP connections, and discards whatever arrives on them. 

This application measure and maintain the number of received packets and the 

end-to-end delay of each packet it receives. 

5.5.1.3 UDP Video Stream APP 

An application that consist of two complementary modules: namely, 

UDPVideoStreamCli, and UDPVideoStreamSrv. The former works a traffic sink and 

the latter works as a traffic generator. The client module sends a single packet to the 

server module to request a video stream. The application starting time, server IP address 

and the port is obtained from the startTime, serverAddress, and serverPort parameters. 

When a stream request packet is received by the UDPVideoStreamSrv module, it uses 

the videoSize parameter to draw a random video stream and start sending the stream to 

the client. The UDPVideoStreamSrv sends packets with size equal to packetLen 

parameter every sendInterval until videoSize is reached. The module works as CBR 

traffic generator if the packetLen and sendInterval is set to constant values. The 

UDPVideoStreamCli records several statistics about the received UDP stream. This 

includes the statistic of received packets and received bytes and statistic of end-to-end 

delay of incoming packets. 
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5.5.2 Signalling Experiment 

This experiment focuses on measuring and evaluating the control-signalling messages 

sent by the controller to: 

➢ Setup the GTP tunnel for the UEs to send data to the InternetHost. 

➢ Perform SGW failover procedure. 

This experiment validates the performance of two GTP implementation methods. In 

the first method, which is proposed by [37], the controller is responsible for the 

configuration of the enhanced OpenFlow FDs. The controller configures the FD 

processing pipeline by installing flow-entries according to users’ policies and profiles. 

To accomplish this task, the controller sends a sequence of signalling control messages 

that include Flow-Mod messages and TEID-table configuration messages (GTP-

Tunnel-Setup-Request), while in the second method, the OpenFlow plugin of the FDs 

is enhanced to support extra features and functionality. These include the ability to 

intercept, reads a new message that added to the OpenFlow 1.3 protocol known as User-

DataPlane-Setup-Request message (carries information about both the uplink and 

downlink tunnels). The OpenFlow plugin uses the information of the received message 

to configure the FD flow and TEID tables. For simplicity, these methods will 

henceforth be referred to as Method 1 and Method 2. This experiment is divided to two 

scenarios. 

5.5.2.1 Bearer Setup Signalling Scenario 

This scenario simulates a network with 100 UEs connected to OFB_Enb. These UEs 

starts an access bearer setup procedure to setup the GTP tunnels before sending the 

PING packets to the InternetHost. The simulation is repeated 10 times. In the first run, 

only 10 UEs are used and 20 UEs in the second run and so on till the last run where 

100 UEs are used. In these simulation runs each UE used a single PING application to 

send a small message (40B every 1s) to the InternetHost. The ”ini” configuration of the 

PING application is shown below. 



 

145 
 

 

The first line tells OMNeT++ [69] to run the simulation 10 times with different number 

of UEs, the second line specify that each UE must has only one PING application, the 

other lines configure the PING app to pick a random time between 0.1s and 0.9s after 

the start of the simulation to start sending a PING packet with the size of 40B every 1s 

to the IP address of the InternetHost. The last line tells the application to stop sending 

the PING packet at time 99s which is only 1s before the end of the simulation. This 

scenario measured and analysed the number of control-signalling messages sent by the 

controller to setup the GTP tunnel to forward the PING messages from the serving 

eNodeB to the InternetHost. Figure 5.19 illustrates the measured number of control 

messages required to setup the end-to-end GTP tunnel between the eNodeB and PGW-

D for the aforementioned methods. 

Figure 5.19 presents the performance results related to the two methods described 

previously. As the figure shows, Method 1 leads to poor performance as this method 

requires more control messages to setup a single GTP tunnel and is highly likely to 

produce more signalling loads in the system. It makes perfect sense that the 

performance of the Method 2 is dominant because the advanced OpenFlow plugin of 

the FDs takes care of the processing pipeline configuration, which reduces the number 

of operations and control messages handled by the controller. In Method 2, the 

controller only sends a single User-DataPlane-Setup-Request message that includes 

information specified by the MME and SPGW applications to each FD in the selected 

path and the OpenFlow plugin handles the remaining operations. 
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Figure 5.19: Number of Control Messages Sent by the Controller vs. Number of UEs 

Running a Single Application that Sends PING Messages to the InternetHost 

5.5.2.2 Serving Gateway Failover Scenario 

The aim of this simulation scenario is to evaluate the system performance during SGW 

failure. This scenario uses the same network setup and configuration of scenario 1 

where UE traffic is distributed between SGW-D1 and SGW-D2. The scenario focuses 

on measuring the control-signalling sent by the controller to overcome the failure of 

the SGW-D1. Link failure is used to simulate the SGW-D1 failure because there is no 

direct and easy way to cause node failure in OMNeT++ [69]. To do that several 

parameters are added to the monitoring application of the SDN controller to specify the 

time to cause the link failure. 

 

These lines are used to cause a link failure between OFB_Enb and SGW-D1 after a 6s 

from the start of the simulation time. More specifically, the first two lines specify the 

link that need to be disabled by the monitoring application. The third line specify the 

time of the failure.  



 

147 
 

In this case, 6s after the start of the simulation time. The last line makes the monitoring 

application notify the controllerOS module about the link failure. The monitoring 

application is statically configured to send a link failure notification after 0.5s from the 

time it causes the link failure, which mean the controllerOS will be notified at 6.5s. The 

monitoring application is programmed using C++ to reads these parameters either from 

the ”ini” file. If these parameters are not specified by the ini file, then the monitoring 

application will use the default values.  

The default values disable this feature and makes the monitoring application works as 

normal without any extra task to perform. In both scenarios the spgwApp module is 

configured to use weighting factor to perform load distribution between the SGW-D1 

and SGW-D2. 1:3 metric is used in the selection algorithm, which means that the 

spgwApp module assigns one UE to SGW-D1 and 3 to the SGW-D2 and repeat the 

process again. The ”ini” configuration to make the spgwApp module use the weighting 

factor is shown below. 

 

This configuration tells the spgwApp to uses weighting factor for the load distribution, 

assign the first incoming request to SGW D1 and use 1:3 metric. In 3GPP SGW failover 

procedures previously explained in Section 5.3.2, the MME starts an access bearer 

release procedure and waits for the UE start a new access bearer procedure to assign 

them to a new functional SGW. Unlink 3GPP procedure, our procedure aims to provide 

faster recovery time without the need to release the access bearers and waits for the 

UEs request. This is done utilizing the SDN concept and the uses of centralized TEID 

allocation. This scenario compares and evaluates the performance of the two GTP 

implementation methods in term of the control message required to perform the tunnel 

redirection from one SGW-D to another. Figure 5.20 shows the number of control-

signalling sent by the controller to transfer the UEs served by the SGW-D1 (failed 

SGW) to SGW-D2. The Restoration procedure includes installation of new flow-

entries in the SGW-D2 and modifications of the TEID table of the PGW-D and 

OpenFlow capable eNodeB to change the virtual Port destination IP address and 

physical output port to forward UEs traffic to the new SGW-D. 
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Figure 5.20 shows the number of control messages that are needed to be sent by the 

controller to move different numbers of UEs from SGW-D1 to SGW-D2, as a response 

to SGW-D1 failure. Two things can be observed from the simulation outcome: First, 

the number of UEs served by the failed SGW is between 3 and 25, which makes since 

considering the 1:3 weighting factor metric. Second, the difference between the two 

implementation methods in terms of signalling loads is minimal. This result makes 

sense, because the number of control messages generated by the controller to change 

the forwarding behaviour from one SGW-D to another for each UE are 5 in the Method 

1 and 3 in Method 2. Specifically, in Method 1, the controller sent 2 Flow-Mod 

messages and 1 GTP-Tunnel-Setup-Request to configure the processing pipeline and 

specify the virtual port parameters of the newly selected SGW-D, then it sent 1 GTP-

Tunnel-Modify-Request to both the PGW-D and the serving eNodeB to send the traffic 

to the IP address of the new SGW-D, as the TEID will be the same. Conversely, in 

Method 2, a single User-DataPlane-Setup-Request message is sent by the controller to 

the newly selected SGW-D and the OpenFlow plugin of that devices handles the 

transformation of the received packet to flow-entries and specify the virtual port 

parameters. At the same time, a User-DataPlane-Modify-Request message is sent to 

both the PGW-D and the OFB_Enb to modify the TEID table and change the Next hop 

IP address of the tunnel to the IP address of SGW-D2 instead of SGW-D1. 

 

Figure 5.20: Number of Control Messages Sent by the Controller to Handle the SGW-

D Failover with respect to the Number of UEs Served by the Failed SGW-D 
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5.5.3 SDN Agent and Load balancing Experiment 

This experiment focuses on: 

➢ Demonstrate the advantage of the SDN in providing better load distribution. 

➢ Show the benefit of extending the OpenFlow FDs to include a local agent in 

term of reducing the signalling load and the centralized processing of packets. 

Two scenarios are used to measure the required statistics. The first scenario, measured 

the control messages sent by the controller and the second scenario, measured the load 

distribution within the FDs of local SGW pool. More information about the scenarios 

step and the obtained result is presented in the next sub-sections. The simulation time 

of this experiment is also 100s with the same repetition number of Experiment 5.5.2. 

5.5.3.1 Multiple sessions Bearer Setup Signalling Scenario 

The simulated network of this scenario consists of number of UEs ranging between 10 

and 100 connected to OFB_Enb. These UEs pick a random time after the start of the 

simulation to start the initial bearer setup procedure and after that each UE start two 

TCP session with the InternetHost. The ”ini” configuration of TCP sessions between 

the UEs and the InternetHost is shown below. 

 

The above configuration is used to configure each UE to have two TCP applications.  

After the start of the simulation these applications pick a random number between 0.1s, 

and 0.9s to open TCP session with the InternetHost. Then it picks another random 

number between the 1s and 1.9s to start sending 1Gigabyte of data to the InternetHost. 
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Assuming that 10 UEs are used in the simulation and the InternetHost has the IP address 

12.0.1.1, then the first application of UE1(0) will open session using the TCP socket 

[12.0.1.1:1000] and the second application will open session using the TCP socket 

[12.0.1.1:1011], this way the InternetHost will be able to differentiate between the TCP 

sessions coming from different UEs. In this scenario, the controller signalling messages 

to setup the initial access bearer is measured when: 

➢ Native OpenFlow procedure is used to configure the FDs (Method 1). 

➢ OpenFlow plugin of the FD is extended to handles mobile network specific 

operations (Method 2). 

➢ FDs is equipped with a local agent (Method 3). 

Considering that the focus of this scenario is the controller signalling messages, no load 

distribution is used and all the UEs traffic travel using the same path from the UEs to 

the InternetHost. More specifically, the UEs echo request packet is travelled through 

the air Interface to OFB_Enb to SGW-D to PGW-D to the InternetHost and return 

traffic are transferred using the same path in the reverse direction. Figure 5.21reports 

the signalling loads for the aforementioned cases when the number of connected UEs 

ranges from 10 to 100. 

 

Figure 5.21: Number of Control Messages Sent by the Controller when the FDs have 

i) Normal OpenFlow plugin, ii) Enhanced OpenFlow plugin, iii) Enhanced OpenFlow 

plugin with Agent 
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Figure 5.21 shows the results obtained from experiment 2 scenario 1. The grey lines 

represent the control message sent by the network controller to the FDs to setup the 

access bearers for the UEs when the simulation network is configured to use Method 

1, while the orange and blue lines represent the control messages when the simulation 

network is configured to use Method 2, and Method 3 respectively. The following can 

be observed from the results: 

➢ Both Method 2, and Method 3 reduce the signalling loads and contributes to 

reducing the network congestion, as congestion may occur if too many data 

packets are needed to be sent to the controller to create a reactive rule. 

➢ Both Method 2, and Method 3 extends OpenFlow protocol to uses specific 

messages that is built to handle a specific operation of the mobile network 

(User-DataPlane family messages that include setup/modify/delete messages) 

but still Method 3 outperform Method 2 because in Method 2 the first packet of 

any new flow needs to be sent to the controller for processing. 

➢ Considering that the traffic generated by the UE applications falls under the 

same traffic class specified by the pre-defined traffic classes list. Method 3 

provides the best system performance and adding the SDN agent to the FDs 

reduces the signalling load significantly. In this case, very few control messages 

need to be sent or received by the controller as shown in the blue lines. 

➢ If the UE applications generate traffics the belong to a traffic class that is not 

included in the local agent list, then the FD will forward the first packet of the 

session to the controller for further processing and expect User-DataPlane-

Setup-Request message as a response. In this case Method 2 and Method 3 will 

behave in the same way and fellow the same procedure. 

➢ With two applications per UEs the signalling load required to setup the data 

plane forwarding path in Method 1 is very high even higher than the outcomes 

result of experiment 1 scenario 1. 

5.5.3.2 Load-balancing Scenario 

This scenario simulates a network of 100 UEs connected to an eNodeB. Two simulation 

suns with different load distribution methods are used in scenario. Weighting Factor is 

used in the first run and network load is used in the second run to distribute the 

downlink traffics between two different SGW-D devices. Namely, SGW-D1 and SGW-

D2.  
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Network topology used in this scenario is shown in Figure 5.10. In this network each 

UEs is equipped with UDPVideoStreamCli application. This application is configured 

to pick a random time after the start of the simulation to send a VideoStream request 

message to the UDPVideoStreamSrv application, which is in the InternetHost node. 

The InternetHost is configured to run multiple UDPVideoStreamSrv applications that 

equal to the number of the UEs. The UDP port number is used to differentiate between 

the applications. Upon receiving the VideoStream request message, the InternetHost 

start sending the video stream to the UE in question. The ”ini” configuration used to 

specify the load distribution mechanism is shown below. 

 

The first line is used in the first run to distribute the network traffic between the SGW 

FDs using Weighting Factor and the second line is used in the second run to use the 

network load as the mechanism to distribute the traffic. Only one of these 

configurations can be used in a single run and if both lines are used, then the first one 

is used and the second is just ignored. Figure 5.22 shows a close approximation of how 

the system will handle load distribution when weighting factor and network loads are 

used as two mechanisms to select the SGW-D that should handle the UEs traffic. 

Considering that the scenario simulates downlink traffic from the InternetHost to the 

UEs. The SGW-D1 load is measured as the number of bits per second send over the 

link between the SGW-D1 and the eNodeB. The same method is used to measure the 

load of the SGW-D2. In this simulation scenario, the monitoring application is 

configured to get the FDs stats every 5 ms and the UEs requests are sent sequentially 

between simulation times of 1.0 s and 2.0 s. This simulation environment allows the 

load distribution application to Presley distribute the downlink traffic between the 

SGW FDs (SGW-D1 and SGW-D2). 
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Figure 5.22: Load Distribution between the SGW-Ds in the Local Pool for both 

Weighting Factor and Network Load Selection Mechanism 

The first insight that one can extract from Figure 5.22 is that the load handled by SGW-

D2 is much greater than the load handled by SGW-D1 when weighting factor is used 

as a selection mechanism. In fact, this result is logical considering that a 1:3 metric is 

used in the selection algorithm. Changing the weighting metrics, to 1:2 or even 1:1, 

leads to a better load distribution. It is important to notice that a weighting-based 

algorithm follows a configured pattern without any knowledge about the network 

status, which may lead to unfair distribution of network loads, as shown in Figure 5.22. 

Conversely, load-based selection will always provide a fair distribution that aims to 

maximize resource utilization. 

5.6 Summary 

This chapter has presented Software-Based Mobile Core Network Architecture. 

Specifically, the architecture inherent SDN characteristic to provide an abstraction 

layer separating the control plane from the underlying data plane. Three procedures are 

described and analysed in detail, including Initial attachment and Initial bearer setup 

procedure, network resiliency, and load-balancing. The system performance when the 

FDs have local agent is measure and compare with two distinctive GTP tunnel 
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implementation methods. The results show that signalling loads are significantly 

reduced when the FD is equipped with a local agent. The experiments also show that, 

utilizing SDN introduces flexible and programmable aspects to the mobile core 

network to provide better load distribution and faster recovery time during network 

equipment failure. The system performance still can be enhanced in term of the data 

plane forwarding by removing the GTP tunnel. These approaches will be investigated 

in the next chapters. 
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6 Software Defined Evolved Packet Core 

6.1 Introduction 

The current cellular network suffers from inflexible and expensive equipment, complex 

control plane protocols, and vendor specific configuration interfaces [32] [84]. The 

growth of mobile users’ data traffic requires a significant re-design of the network’s 

data and control plane infrastructures. The motivation is to simplify the mobile network 

deployment and operations by providing a programmable system that allows operators 

to deploy a new service or tune an existing one in a simple, flexible manner by 

separating the control plane and data plane.  

Chapter 5 illustrates how the control plane and data plane separation can help enhance 

the network performance in terms of signalling load and better recovery time for some 

of the operations like SGW failure recovery, thanks to the centralized control 

management application used to provide centralized allocation of the TEIDs of the UEs 

GTP tunnels. Forwarding the UEs traffic in tunnel make it very difficult for the network 

operators to deploy services near to the UEs (in the backhaul network).  

Therefore, the aim of this chapter is to demonstrate the ability of SDEPC to enhance 

the system performance in terms of end-to-end delay and packet loss. SDEPC utilizes 

SDN/OpenFlow technology to eliminate the need for GTP tunnelling [6][9], and uses 

path based MPLS tagging for the traffic forwarding and services differentiation. The 

SDEPC is built, tested and validated using an Open Source simulator (OMNeT++) by 

extending our work on an OpenFlow 1.3 model [82]. 
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6.2 SDEPC Architecture 

SDEPC architecture is shown in Figure 6.1, where the control plane is incorporated in 

a logically centralized SDN controller while the data plane forwarding is handled by 

the SDN transport network. The transport network consists of a set of core and 

ingress/egress nodes where the eNodeBs and the FDs connected to the PDN represent 

the ingress and egress nodes respectively and the rest are core nodes. Unlike the current 

EPC implementation where the PGW is responsible for IP address allocation, NAT, 

firewall and packet inspection [85]. In SDEPC the network functionality runs as a 

separate software application on top of the controller. This set-up contributes to 

providing an easier upgrade process of individual services without the need to upgrade 

the entire physical device. The MME and PCRF are replaced with software applications 

that provide similar functionality. eNodeB signalling messages have been restructured 

and formatted to be sent to the SDN controller using OpenFlow protocol. 

The use of GTP-U tunnelling has been completely replaced by an SDN transport 

network to provide additional flexibility and optimal usage of the resources. MPLS tags 

have been used for the traffic forwarding through different paths from the eNodeBs to 

the PDN and the tags also carry the QoS identifier to provide service differentiation. 

Unlike LTE, which uses a centralized user plane network that requires all the traffic to 

traverse to the edge of the network where the PGW is usually located (even if some 

data traffic is going to/from local application servers), e.g. enterprise cloud servers, 

SDEPC helps in providing more efficient data plane forwarding. Simulation used to 

establish the actual improvement in system performance in terms of scalability, 

efficiency (bandwidth utilizations) and performance (end-to-end delay) using different 

network configurations. The proposed architecture can use NFV [17] as one, but not 

necessarily exclusively as the means of its implementation. 

6.2.1 Architecture Description 

This section briefly describes the basic building components of the SDEPC 

architecture. This includes the control components which represented by the SDN 

controller and data plane components represented by set of OpenFlow FDs and 

OpenFlow-enabled eNodeB. The next sub-sections describe these components in more 

detail. 
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6.2.1.1 SDN Controller 

SDN Controller provides a programmatic platform for controlling the data plane FDs 

[3]. It has a set of supervisory applications, such as (i) network topology; (ii) network 

monitor; (iii) resource optimization apps, which are responsible for maintaining a 

global view of the network topology, network resources and distributing the loads 

across different links in the network.  

The EPC network functions also run on top of the controller and contain multiple 

applications, such as (i) mobility manager; (ii) Network Address Translation (NAT); 

(iii) firewall; (iv) routing; (v) PCRF; (vi) the subscriber’s profile. The latter maintains 

accurate information about the subscriber such as the user identification, address, and 

service subscription status; it also stores user subscribed QoS information, such as the 

maximum allowed bit rate or allowed traffic class. By ungrouping and moving network 

roles from individual network elements e.g. PGW, the SDEPC can reduce the overall 

latency by providing better routing.  

The network topology application utilizes queries primitives and a graph database to 

maintain a global view of the network topology, while the monitor application 

maintains up-to-date network statistics and tracks topology changes. This data can be 

used by other applications to deliver their services, such as routing and resource 

optimization applications.  

The monitoring application uses OpenFlow primitives such as OFP-Table-Stats-

Request, OFP-Flow-Stats-Request, OFP-Port-Flow-Request, OFP-Queue-Stats-

Request, OFP-Group-Stats-Request, and OFP-Meter-Stats-Request to acquire this 

information from each device. From the acquired information, the SDN controller 

builds detailed statistics about the type of traffic and the usage of each UE in order to 

apply charges and retain control over each UE based on the network operator’s 

management policies and the subscriber’s entitlement. 

6.2.1.2 Forwarding Devices  

This is represented by several OpenFlow switches, each consist of a flow, group, meter 

tables and the means to talk to the control plane that resides on a remote controller 

using the OpenFlow Protocol. A flow-table contains multiple flow entries; each flow-

entry consists of: 

➢ Matching rules that are composed of a set of ingress ports and L2/L3/L4 header 

fields, which may be variously wildcarded or masked. 
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➢ List of one or more instructions attached to each match rule. 

➢ Counters for collecting statistics about the flows. A group table can be used for 

load balancing, fast failover, multicast/broadcast and to apply the same 

instruction to multiple flow entries, while the meter table is used to support 

QoS. 

6.2.1.3 eNodeB 

eNodeB represents the point of interaction between the access and core network in the 

SDEPC architecture. In the proposed architecture, the eNodeB keeps the same 

functionality and radio protocol stack as specified by 3GPP standards, while the S1 

primitives are mapped to OpenFlow messages. 

To handle UE authentication, authorization, and mobility management, new signalling 

messages have been adopted to be sent over the OpenFlow link between eNodeB and 

the EPC. These new messages have similar information to those specified by the 3GPP 

standards but are structured using OpenFlow. An SDN Agent is installed in each 

eNodeB and is responsible of informing the SDN controller about the radio resource 

allocation and its list of UEs that are receiving a better signal from the neighbour 

eNodeBs. This way the controller has a global view of the resource usage and the 

currently used handover and cell coverage parameters, in order to determine if it is 

necessary to implement load balancing in the access network. 

 

Figure 6.1: SDEPC network 
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6.2.2 Architecture Operations 

In SDEPC, the topology discovery application builds a graph database from the 

network nodes and links. The monitoring application tracks the network loads and 

utilization as well as the UE usage. It builds detailed statistics about the different nodes 

and UEs in the network. These statistics are used for charging and are also used by the 

routing application to specify the MPLS tags that represent a path between the ingress 

and egress nodes, allowing the controller to provide fair distribution of the network 

resource. The routing applications use Yen´s algorithm [86] to calculate multiple 

shortest paths between the ingress/egress nodes and assign an MPLS tag to each path. 

Unlike the conventional MPLS implementation where the label is locally significant, 

in the present implementation the controller assigns a single tag for the path from start 

node to the end node of the path. Then the controller conducts and installs OpenFlow 

rules in the entire core FDs to make a forwarding decision solely based on the received 

packet MPLS tag. The core nodes utilize the MPLS LABEL and MPLS Traffic Class 

(TC) fields to match the incoming traffic. The former is used to specify the output port 

leading to the next hop, while the latter is used to enforce complex QoS to provide a 

service prioritization between the received traffic by utilizing meter table together with 

per-port queues. The controller can either install these rules at the network initialization 

stage or when it receives the first packet from the edge nodes depending on the 

operator’s requirements. 

❖ User attachment procedure: starts with an Attach-Request being sent by the 

UE to the serving eNodeB. The latter sends an OFP-Initial-UE-Message that 

encapsulates the user Attach-Request to the controller, and upon receiving the 

message, after successful authentication, the controller replies to the serving 

eNodeB with the UE assigned IP address as shown in Figure 6.2. 

❖ Uplink traffic: as Figure 6.2 shows, first the radio bearer is setup, then the UE 

sends the flow to its serving eNodeB. Upon receiving the first packet by the 

serving eNodeB. The latter realizes that it does not have a flow-entry 

programmed on its flow-tables to handle this traffic. Therefore, a Packet-In 

message is sent from the eNodeB to the controller requesting instructions to 

handle this type of traffic. The controller uses (i) the packet header information 

to identify the traffic type; (ii) the PCRF rule and user profile to determine the 

QoS Parameters. Then it determines the path that this packet and all upcoming 
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packets related to the same session should take through the network. The 

session type and network loads are considered in the process to determine the 

best path. The controller then installs a new flow-entry in the eNodeB to push 

UE identifier and Forwarding Path MPLS tags, and the QoS parameters for the 

session. The QoS parameter is a one-to-one mapping between the QoS Class 

Identifier (QCI) and the MPLS TC. All of the transport devices forward the 

traffic based on Forwarding Path MPLS tag using pre-installed flow-entry. 

Before the traffic reaches the egress node the Forwarding Path MPLS tag is 

popped and sent to the egress node. At the egress node, the UE identifier MPLS 

tag is popped; NAT/Port Address Translation (PAT) is performed, and the 

traffic is forwarded normally. 

❖ Local uplink traffic between two UEs: when the controller receives the first 

packet of the session traffic, it will instruct the eNodeB to push the MPLS tag 

for the path between the source and destination eNodeB. Instead of tunnelling 

the data all the way to the edge of the network (PGW) utilizing the GTP 

tunnelling, simply to send it back to a UE in a neighbour eNodeB or even in the 

same eNodeB (used in current 3GPP standard), the controller in SDEPC offers 

network function abstraction to move some of the PGW functionality away 

from the network boundary and closer to the access network. This process 

reduces the unnecessary burden on the core network by providing a more 

efficient, less bandwidth consuming traffic forwarding mechanism that 

contributes to better latency for the UE-2-UE traffic. 

❖ Downlink procedure: is similar to the uplink explained previously where the 

first packet of the traffic is sent to the controller, which checks if the traffic is 

destined to a UE in the ideal state. If yes, then it uses the EPC control plane 

application to specify the location of the UE, sending a paging message to the 

UE to change its state to connected and setup the radio bearer with the eNodeB. 

The controller uses the session information and the operator configuration to 

install a new OpenFlow rule to push an MPLS tag that specifies the path and 

the QoS level for the traffic to reach the serving eNodeB where the tag is popped 

and the normal OpenFlow lookup is performed to map the session to a radio 

bearer. 
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❖ Handover procedure: SDEPC provides the same handover process of a 3GPP 

LTE network with a slightly different way of handling the Path-Switch-Request 

by the controller to redirect the downlink traffic to the target eNodeB.  

In SDEPC the X2 interface is used only to exchange control messages between 

the source and target eNodeBs. Once a handover decision is made by the source 

eNodeB based on the UE measurement reports that inform it about the UE 

received signal strength/quality of the serving and neighbour eNodeBs, a 

Handover Request message is sent to the target eNodeB. The latter performs 

admission control and sends an OFP-Path-Switch-Request message to the 

controller. The controller updates the subscriber profile record to reflect the new 

location of the UE and sends an OFP-Flow-Mod-Message to the edge FD to tag 

the UE traffic with a new MPLS tag, which routes the traffic to the new serving 

eNodeB. Then the controller configures the flow-table the target eNodeB by 

sending OFP-Flow-Mod-Message. After that the target eNodeB sends a 

handover acknowledgement back to the source eNodeB that issues a handover 

command to the UE to detach from the source eNodeB and attempts to connect 

to the target eNodeB. The main differences between this procedure and the 

3GPP-X2-handover are: 

➢ UE downlink traffic is immediately redirected to the target eNodeB that is 

responsible for buffering the data during the radio connection 

reconfiguration and synchronization. When the UE is successfully 

connected to the target eNodeB, the buffered data is forwarded to the UE. 

➢ no control messages are required to be sent by the target eNodeB to release 

the network resource at the source eNodeB because the resource is released 

after the timer associated with OpenFlow flow entries is expired [43]. 
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Figure 6.2: Simple Software Defined EPC Operations 
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6.3 Simulation Study of SDEPC Architecture 

SDEPC architecture is implemented on OMNeT++ and modelled by a combination of 

OpenFlow 1.3 [82] and SimuLTE models. The user plane transport network is a set of 

FDs, while the UE and eNodeB nodes are imported from the SimuLTE [78]. To 

implement the SDEPC architecture in OMNeT++ it was necessary to address: 

➢ SimuLTE module does not support control plane signalling messages. 

➢ the restructure and encapsulation of the eNodeBs signalling messages in order 

for them to be sent using OpenFlow protocol to the controller. An extension is 

required to support the vast majority of the signalling messages between 

eNodeB and EPC. The proposed extension provides a simple conceptual model 

that represents a good basis for further extensions as well as the development 

of a complete tool for the future 

➢ Introduce a few extensions to OpenFlow protocol to allow the mapping between 

the radio bearer and flow-entry in the flow-table 

To address these issues, support for several control plane functionalities was added that 

are necessary in order to handle a UE session, establishment/teardown and intra-LTE 

handover which consists of: 

 

➢ An ideal radio access control plane, achieved by exchanging data structures 

between the eNodeB and the UEs using the sendDirect() method without 

consuming link resources and errors. 

➢  Addition of all of the control plane messages for UE session management in 

the EPC (for simplicity, NAS authentication messages were not implemented). 

Also, the Initial-UE-Message, Initial-Context-Setup-Request, Initial-Context-Setup-

Response, Path-Switch-Request, and Path-Switch-Request-Ack are restructured to be 

sent over OpenFlow link to the controller. To adapt these messages to OpenFlow 

protocol the OpenFlow protocol was extended to send/receive and handle the LTE 

related control messages and adopted a new set of messages that are related to UE 

operations. All of the new messages began with OFP-The-Name-OF-The-Message. 

Furthermore, a new action was added to the OpenFlow protocol to allow the controller 

to program the eNodeB to map multiple flow entries to a radio bearer. The OFP-Action-

DRbearer struct provides a data structure for encoding a new action to map a flow-
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entry to a radio bearer. It contains fields describing the radio bearer type, the data 

structure length, and the radio bearer identifier. 

 

Figure 6.3: SDEPC OMNET++ Simulation Model 

6.4 Simulation Results and Analysis 

SDEPC has been simulated on a Dell Precision Tower equipped with an Intel Xeon E3-

1246V3 / 3.5 GHz CPU with 8 GB of RAM, the Windows 7 Pro operating system, and 

OMNeT++ version 4.2.2, INET 2.3 with SimuLTE, and OpenFlow 1.3 extensions. 

Multiple experiments are used with different number of UEs and traffic types for both 

Uplink and Downlink. The simulated SDEPC network, shown in Figure 6.3, consists 

of: i) three eNodeBs; ii) several UEs uniformly distributed among cells with a few UEs 

sending/receiving traffic to/from the InternetHost that resides outside the SDEPC 

network; iii) SDN FDs that work as SGW/PGW data plane; iv) SDN controller. This is 

compared with the standard 3GPP LTE network that has the same number of eNodeBs 

and UEs. In our simulation experiments, eNodeBs employ MaxC/I scheduler and 

operates on 20MHz frequency band (100 Physical Resources Blocks available). The 

UEs moving linearly in a random direction with the speed of 1 meter per second (m/s) 

away from the eNodeB. The simulation lasted for 100s and replicated 5 times with 

different seed numbers to exclude simulation artifacts and to obtain mean and 
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confidence intervals over the different repeated simulations. The main simulation 

parameters are reported in Table 6.1. 

Table 6.1: EUTRAN Configuration Parameters 

Parameter Value 

Carrier Frequency 2 GHz 

Bandwidth 20 MHz (100 RBs) 

Mobility Model  Linear/Stationary 

UE Speed 10/0 m/s 

Path Loss Urban Macro 

eNodeB Tx Power 40 dBm 

UE Tx Power 26 dBm 

eNodeB Antenna Gain 18 dB 

Noise Figure 5 dB 

Cable Loss 2 dB 

6.4.1 GTP Overhead Experiment 

This experiment focuses on studying the effect of GTP overhead on the network 

utilization. In this simulation scenario, the UEs are connected to the access network 

ranging from 50 to 175 UEs distributed across 3 eNodeBs. The UDPBasicApp used as 

the traffic generator application, sends a packet every 5ms to each UE. 

❖ INET 2.3 used in our simulation has several UDP applications to work as the 

UDP traffic generator or sink. This includes: UDPBasicApp, UDPSink, 

UDPEchoApp. The UDPBasicApp can work as a traffic generator or a sink, 

and when it is working like a generator, it sends UDP packets to the address of 

the destination node every given interval and expects the other end to run one 

of the following Applications UDPSink, UDPBasicApp, and UDPEchoApp. If 

the destination node is running one of the first two applications, then one-way 

traffic is simulated and a statistic like the end-toend delay is recorded by the 

receiver application (UDPSink, UDPEchoApp). Other statistics are also 

recorded by both the generator and sink application. These statistics includes 

the sending and receiving packets and packet loss etc. The UDPEchoApp works 

like the name suggest, it echoes the received packet back to the sender 

application. In this case two-way traffic is simulated and statistics like the RTT 
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is recorded with the other statistics that previously mentioned. destAddresses 

parameter of the UDPBasicApp model is the used to specify the way this model 

works. If it has an IP address or a name of the destination model, then the 

UDPBasicApp works as a traffic generator. Otherwise, the model works as a 

sink and discards the received packets after recording the statistics. 

The simulation was run with two different packet sizes, 40B and 300B respectively. 

Figure 6.4 presents the measured link utilization related to both 3GPP-LTE and 

SDEPC.  

 

Figure 6.4: Load vs Link Utilization 
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Figure 6.4 shows that the SDEPC provides a better link utilization compared to the 

standard 3GPP-LTE. Moreover, the side effect of GTP encapsulation is more 

noticeable when the packet size is 40B. With 20Mbps loads, the overhead is about 9% 

when the packet size is 40B and less than 2% when the packet size is 300B. It worth 

noticing that with very large packet sizes, which is not considered in our simulation, IP 

fragmentation takes place and causes more overhead because of GTP encapsulation 

headers. 

6.4.2 SDEPC Performance Evaluation Experiment 

This experiment evaluates and analyses the impact of the extra headers added by GTP 

for each packet on the system performance by recording end-to-end delay, packet loss, 

and PGW queuing times for the different loads for both the SDEPC and the standard 

LTE networks. In this experiment, UDPVideoStream (VDoIP) is used as the traffic 

generator application.  

The UDPVideoStream app is described in more detail in Chapter 5 Section 5.5.1.3. The 

Internet host uses UDPVideoStream Server application, which generates 1000 Byte 

packet every 5ms to each client request video stream. The load is changed by changing 

the number of UEs requesting the video stream from the InternetHost. It can be 

observed from the obtained results shown in Figure 6.5 that SDEPC provides a better 

performance than the 3GPP-LTE network. The average end-to-end delay, queuing 

time, and packet loss were used as metrics to validate the system’s performance.  



 

168 
 

 

Figure 6.5: System performance comparison result 

Figure 6.5-A illustrates the average delay experienced by the VDoIP packets during the 

simulations for the UEs. The results indicate that both systems provide a good 

performance with a minor advantage to the SDEPC until the load reached 90Mbps 

where the side effect of GTP tunnelling starts to appear, because the new headers added 



 

169 
 

by GTP (8-byte GTP, 8 byte UDP, and 20 byte IP headers) for each packet increase the 

loads above the interface threshold that increase the queuing time. This contributes 

towards a higher average end-to-end delay compared to the SDEPC where the overhead 

side effect appears only after the loads reached 95 Mbps.  

Figure 6.5-B confirmed that 3GPP-LTE network queuing packets started when the 

loads reached 90 Mbps while SDEPC started after 95 Mbps which support the 

difference between the two systems in terms of end-to-end delay, as shown in Figure 

6.5-A. Figure 6.5-C shows that the SDEPC started to drop packets only after the loads 

reached 95 Mbps, while the 3GPP-LTE started dropping packets when the loads 

reached 90 Mbps. In LTE, the packet loss ratio is 0.6% around 90 Mbps and continues 

to increase to reach 4% around 93.9 Mbps, while the packet loss in the SDEPC with 

the same loads was 0. After loads of 95.9 Mbps both LTE and SDEPC suffer from 

fairly high packet loss but SDEPC continues to provide better system performance in 

terms of packet loss ratio. 

6.4.3 UE to UE Communication Experiment 

This experiment focuses on measuring the system performance in the UE-to-UE case. 

Two tests are used in this experiment each with different traffic generator applications. 

In each test the simulation is run 5 times with different seed numbers and the average 

of the collected results is taken to reduce the simulation artifacts. In all tests the network 

topology is fixed and UEs are statically positioned in the simulation playground each 

near to its serving eNodeB to guarantee that both UEs have QCI 15 and the measured 

statistics are not affected by the wireless channel. In each test UE1(0) used a specific 

application to send traffic to the UE2(0). 

➢ The first test uses PingApp as a traffic generator to send ICMP echo request 

from UE1(0) to UE2(0). The PingApp is configured to start sending traffic after 

100ms of the simulation start time. The PingApp sends a packet with size 32 

byte every 1s to the IP address of the UE2(0). In this run the RTT is recorded 

and measured. 

➢ The second test uses simpleVoIPSender in the UE1(0) and simpleVoIPReceiver 

in UE2(0). The simpleVoIPSender application starts sending VoIP packet after 

100ms of the simulation start time. The application sends a packet with the size 

of 40B every 20ms for the duration of weibull(1.423 s, 0.824 s), then changes 

its state to the silence and stops sending packets for weibull(0.899 s, 1.089 s). 
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In the simpleVoIPReceiver application both the end-to-end delay and Mean 

Opinion Score (MOS) are measured and recorded. MOS is a value between 1 

(Poor) and 5 (Excellent), representing a human user’s opinion of the voice 

quality. It is computed by using International Telecommunication Union (ITU) 

E-Module utilizing the packets end-to-end delay, jitter and packet loss ratio for 

the voice calls. 

➢ Voice traffic is simulated in OMNeT++ by using VoIP application which 

consists of two models namely simpleVoIPSender and simpleVoIPRecevier, 

the former used as a traffic generator while the latter used as a sink. The 

simpleVoIPSender module generates constant bitrate traffic that supports 

talkspurts. The sender can be in either a talk or silence state. The 

talkspurtDuration and the silenceDuration parameters are used to specify the 

time spent by the sender in each state. In the first state the simpleVoIPSender 

model works like a CBR source and sends sequence of packets every 

configurable time interval to the simpleVoIPRecevier model at the destination 

node over UDP. The talkPacketSize and packetizationInterval parameters are 

used to specify the packet size and the sending interval. Packets generated and 

sent by this model do not have actual voice data. The senders change its state 

to silence without any explicit signalling after the talkspurtDuration is passed 

and stay in this state for the time specified by the silenceDuration parameter. In 

this state no packets are sent by the simpleVoIPSender model. The 

simpleVoIPRecevier works as a sink application for the traffic generated by the 

simpleVoIPSender model. When the simpleVoIPRecevier receives a packet, it 

records several statistics that includes the end-to-end delay and the MOS. 

The same runs are performed with the standard EPS network (simuLTE [78]) using the 

same simulation configuration and the two results are compared and plotted to illustrate 

the performance of both systems.  

Figure 6.6 illustrate the mean RTT comparison and Figure 6.7 shows time vector of the 

RTT of both systems. It is clear that the mean RTT of the SDEPC system is lower than 

the standard EPS system, because in EPS the ICMP echo request packet travels from 

the source (UE1(0)) through the serving eNodeB to the EPC network and back again 

to the service eNodeB of the destination (UE2(0)) till it reaches the destination. While 

in the SDEPC the centralized control plane allows a local break out to the traffic at the 

aggregation points to ensure the best route for the traffic. 
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Figure 6.7 shows a time vector for the RTT of each ICMP echo packet for both systems. 

It is very noticeable that the first and 51 echo packets have a higher RTT than the others. 

The reason for that, the first packet is sent to the controller based on a predefined rule 

that instructs the eNodeB to send traffic with destination address that matches the local 

IP addresses pool to the controller. Also, in our simulation all dynamic OpenFlow rules 

have a hard-timeout of 50s and because of that the forwarding rules are deleted, and 

the upcoming packet must go to the controller again to install a new rule to forward the 

traffic. This behaviour can be further enhanced by deploying a better mechanism to 

specify the rules hard and idle timeouts. 

 

Figure 6.6: EPS vs SDEPC Mean RTT 

 

Figure 6.7: EPS vs SDEPC RTT Vectors 
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The same network with the same configuration is used in the second test, only the 

application is changed to VoIP. In this test, end-to-end delay together with the MOS 

are used as the metric to evaluate the system performance. Also, this test measures the 

effect of the slightly long processing time of the first packet on the user experience 

during the voice call. Figure 6.8 shows bar charts of the recorded end-to-end delay of 

both systems. This chart plots the minimum, maximum and the average end-to-end 

delay. 

 

Figure 6.8: VoIP Traffic - end-to-end Delay comparison of EPS and SDEPC 

The results obtained from this test show the same behaviour of the PING test and 

SDEPC outperforms the standard EPS because of the optimization in the UE-to-UE 

traffic routing offered by the centralized control plane. Also, time vector for the end-

to-end delay and MOS of the VoIP traffic throughout the simulation time is measured 

and presented in Figure 6.9, while Figure 6.10 shows the time vectors of measured 

MOS. The obtained results are used to evaluate the effects of the first packet and the 

packet after deleting the forwarding rule from the switches due to the hard timeout 

timer. 
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Figure 6.9: VoIP Traffic - end-to-end Delay Time Vectors 

The end-to-end delay time vectors of both systems show that the time duration of the 

talk and silence states is different. At the same time, it is noticeable that in the SDEPC 

system the first packet and the packet after 50s simulation have a slightly higher delay 

time but with minimum impact on the overall end-to-end delay of the system. To further 

investigate if this delay causes a problem to the user experience during this call, MOS 

is captured and recorded as a time vector during the whole simulation time. 

 

Figure 6.10: VoIP Traffic - EPS vs SDEPC Mean Opinion Score 
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It can be observed that both systems provide a very good MOS throughout the 

simulation time, this is because both systems are not loaded and only two UEs are 

simulated. The SDEPC score a slightly higher value than the standard LTE. The Mean 

Opinion Score value is calculated using the E-Model that considers packet loss and 

delay together with jitter in its computation. In this test both systems do not have any 

packet losses or concerning jitter. The packet delay of both systems drives the MOS 

outcome. Therefore, the SDEPC score a higher MOS value than the standard LTE 

because the measured end-to-end delay is better as shown in Figure 6.9. Moreover, 

deleting the forwarding rules at time 50s of the simulation changes the measured MOS 

from 4.39 to 4.26 but this change does not affect the user experience at that moment 

since both values are within the rage of very good experience. Furthermore, the extra 

delay of the first packet has no noticeable effect of the reported MOS considering the 

measured MOS for the first packet is exactly 4.39169 while the MOS of the flow 

upcoming VoIP traffic is ranged between 4.39196 and 4.39243. 

6.5 Advantages and Disadvantages 

This presented SDEPC architecture utilizes SDN to increase network programmability 

and flexibility. SDEPC eliminates GTP tunnelling which helps reducing the overhead 

of the extra headers added by the GTP for each packet and provides better routing 

without the need to tunnel all the traffic to the PGW to forward the traffic. Using SDN 

with MPLS path-based traffic forwarding boosts system performance in terms of end-

to-end delay and bandwidth utilization. 

Nevertheless, the main benefits are obtained from new services such as offloading of 

selective traffic to a distributed cloud solution and better in-network cashing solutions. 

At the same time, SDEPC operates without GTP, which reduces the system 

interoperability with legacy networks and requires an innovative solution to provide 

some sort of backward compatibility. Therefore, the next section describes the 

modifications required to SDEPC architecture to operate with and without GTP, which 

guarantees the backward compatibility with legacy networks. 

6.6 Backward Compatibility Support 

The network topology is shown in Figure 6.13. It has several differences from the 

network explained in Section 6.2.1. This includes: i) heterogenous backhaul network; 
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ii) standalone MME device; iii) modified OpenFlow FDs to work as SGW-D and PGW-

D. 

❖ backhaul network: consists of two sub-networks; the first sub-network is a 

normal traditional network while the second is represented by set of OpenFlow 

switches distributed on the boundary of the first sub-network as shown in Figure 

6.13. OpenFlow switches are used after the mobile core and access networks, 

and these switches are configured by the SDN controller to route the received 

traffic through the normal network to the switch on the other end. The 

OpenFlow FDs of the backhaul network is implemented to support two 

operating modes. In first operating mode, OpenFlow FD utilizes its normal 

implementation that always send the first packet of each flow to the controller, 

while in the second operating mode, each FD is equipped with a local agent. 

The Agent is used to offload some of the controller operations to data plane 

nodes and reduce the signalling messages between the controller and data plane 

nodes. The agent is configured once and only update when the controller thinks 

it is better to alter the network forwarding behaviour. This approach helps 

reduce the number of packets that needs to be sent to the controller and reduce 

the processing time of the first packet. Section 6.6.3.2 compare the performance 

of these operating modes in term of the delay of the first packet and the effect 

of the distance between the controller and the OpenFlow FDs. 

❖ MME entity: keeps its S1, S11 and S10 interfaces to interact with the legacy 

network, at the same time it can interact with the SDN controller using RestFul 

API. As previously mentioned, the path selection is done by the SDN controller 

through a specialized application that considers the current network loads 

before specifying the best path to handle the traffic. 

❖ SGW-D and PGW-D: is implemented by utilizing a modified version of 

OpenFlow protocol. The next sub-section explains in detail the structure and 

the design of the OMNeT++ model of these data plane devices. 

6.6.1 SGW and PGW Data Plane Forwarding Device 

In OMNeT++ nodes are simulated by a combination of modules that are connected 

together by means of links. Each module consists of structure and behaviour parts. The 

former is implemented in ned file while the latter is implemented in C++. modules 

communicating with each other by the exchange of messages. Figure 6.11 shows the 
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structure of the FD. Each internal module is associated with a C++ class that represents 

the behaviour of that particular module. All the modules in OMNeT++ are 

implemented as an extension to the cSimpleModule. The latter represents an abstract 

class with methods to initialize and finalize the module, it also has method 

(handleMessage) to handle the messages received by the module. Any module built as 

extension to the cSimpleModule must haves at least an overwrite implementation of 

the Initialization and handleMessage methods. Normally the Initialization method 

initialize the module by reading the module configuration, also in the initialization 

access to the node tables is obtained if necessary. The handleMessage implements the 

way to handle the received message by each individual module. 

 

Figure 6.11: SGW and PGW Data plane FD module 

The UML representation of the FD module is shown in Figure 6.12. This section briefly 

describes the relationship and the interaction between the classes. The class Entry is an 

abstract class that implements do-nothing methods and it is required from all the sub-

classes to re-implement these methods to redefine the method´s operation. FlowEntry, 

MeterEntry, GroupEntry, and TeidEntry are implemented as sub-classes of class Entry. 

A simplified view of attributes and methods is used due to the space limitation. Below 

a brief description of these sub-classes. 

❖ FlowEntry class: has one to one relationship with the FlowStats class. The later 

includes the flow matching fields, the InstructionSet with a basic statistic about 
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the number of packet and bytes handled by the FlowEntry and it includes the 

duration of the entry as well. 

❖ GroupEntry class: has one or more OFBBucket. The later contains a 

bucketStats and action list. The structure of the action list class is omitted in 

Figure 6.12 but is fully explained in Chapter 3 Section 3.4.2.1B. The 

bucketStats class maintains statistics about the number of packets and bytes 

handled by each bucket. 

❖ MeterEntry: is designed by following the same philosophy. As shown in 

Figure 6.12, each MeterEntry consists of one or more meter-bands, and each 

meter-band has meter statistics. 

❖ TeidEntry: is the last sub-class of the Entry class. It has several parameters that 

represent the GTP tunnel configuration. 

In the same way FlowTable, GroupTable, MeterTable, and TeidTable are implemented 

as subclasses of the abstract Table class. The later includes an empty implementation 

to Add, Modify, Delete, and lookup an entry in the table, where each sub-class 

implements its version of these methods. The structure, operation, and relationship of 

each one of these subclasses is described below. 

❖ FlowTable class: has FlowEntryList that consist of one or more FlowEntry. It 

also performs basic operations to add, modify, lookup, and delete FlowEntry 

from the FlowEntryList. The class can be accessed by other classes such as the 

OFA_Switch, OFAgent, and the ProcessingUnit. 

❖ GroupTable and MeterTable: have the same behaviour described in the 

FlowTable, in a sense that the GroupTable has a GroupEntryList that consists 

of one or more GroupEntry. The same with the MeterTable, it has a 

MeterEntryList that consists of one or more MeterEntry. Both classes 

implement their version of the Table operations methods and accessed by 

OFA_Switch, OFAgent, and the ProcessingUnit. 

❖ TeidTable: has a TeidEntryList that consists of one or more TeidEntry, 

normally configured by the OFA Switch and used by the enCap-vPort class to 

lookup if the packet needs to be sent through a GTP tunnel. 

❖ ueProfileTable: has ueProifleList that consists of one or more ueProfile entries. 

This class is accessed and configured only by the OFAgnet. 

The most important behaviours of the FDs are performed by the OFA_Switch, 

ProcessingUnit, and the OFAgent classes. The OFA_Switch plays the role of a 
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simplified OpenFlow plugin. It is mainly responsible for the interaction with the SDN 

controller and is based on the controller instruction OFA_Switch to configure the FDs 

tables; it also produces and send statistic messages to the controller upon request. The 

processingUnit fills the role of the fast data plane processing entity. It basically 

forwards the received packet based on the controller instructions specified by the FD 

tables. Differently the OFAgent is involved in both data and control plane operations. 

The control plane refers to the interaction with the controller and the configuration of 

the FD tables. In this switch design, the OFAgent module works like an addon that can 

be turn on and off by using the FD parameters. 

6.6.1.1 Operating Mode 

The SGW and PGW data plane FDs are implemented to support three different 

operating modes. The first one is to work in reactive mode while the second is to work 

in proactive mode and the last one is to work in semi-reactive mode. The OFAgent 

module is turned off in the first two operating modes and only used in the semi-reactive 

mode. This section briefly describes the FD process the incoming traffic in each 

operation mode. 

❖ Reactive Mode: in this operating mode, when a frame is received the 

processingUnit class handles the packet by performing a lookup on the 

flowTable and if a match is not found, then the received frame is inserted in the 

buffer and NO-MATCH-FOUND signal is emitted by the processingUnit. The 

OFA_Switch class registers itself as a listener to this type of signals and upon 

receiving the signal, the frame is obtained from the buffer and a Packet-In 

message is sent to the controller. The message may contain the whole frame or 

just headers information depending on the sendCompleteFrame parameter 

specified by structure of the OFA_Switch module. In our test, this parameter is 

set to false and only the frame headers are sent to the controller. The frame is 

kept in the buffer while the OFA_Switch is waiting for the controller´s 

response. Upon receiving the controller instructions through a Flow-Mod-

Message, the OFA_Switch creates a new FlowEntry and configures the 

FlowTable to add this new Entry. At the same time, the OFA_Switch module 

sends a FRAME PROCESS signal to the processingUnit to process the buffer 

frame. In this operating mode, the FD only asks for instructions when it receives 

a frame and does not know how to handle it. 
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❖ Proactive Mode: in this mode, the FD flowTable is configured to handle the 

traffic even before receiving it. As previously mentioned, this mode reduces the 

handling time of the first packet of each flow, but at the same time introduces 

extra entries in the flowTable even when there is no traffic. One way to optimize 

this behaviour is by utilizing an algorithm to predict the behaviour of different 

traffic classes to assign a hard_time out to remove the flow-entry after a specific 

time has elapsed. This solution may introduce high signalling load if the 

algorithm did not correctly predict the right time to remove the flow-entry. If 

the flow-entry is removed while the actual traffic is still coming to the FD, the 

procedure previously explained in the reactive mode needs to be performed to 

acquire a new instruction from the controller. 

❖ Semi-Reactive Mode: in this mode, the OFAgent module is turned on and used 

to keep the controller instructions provided during the UE initial attachment 

procedure. In the initial attachment procedure, the controller sends a Ue-profile-

mod-message to the selected FD. The message is first received by the 

OFA_Switch, which simply forwards the message to the OFAgent. The latter 

creates a new ueProfile that includes the UE information and a list of traffic 

classes with the way to handle them. Then it configures the ueProfileTable to 

add the new ueProfile to the table. At the same time, if the serving eNodeB is a 

standard eNodeB, then the controller also sends a GTP-Tunnel-Setup-Request-

Message to the SGW-FD to provide the FD with the capability to setup an on-

demand GTP tunnel with the serving eNodeB. Similarly, for the ue-Profile-

Mod-Message, the message is first received by the OFA_Switch. Upon 

receiving the message, the OFA_Switch creates a new TeidEntry that contains 

all the GTP tunnel information and configures the TEID table to add the entry 

to the table. At the same time the controller notifies the MME about the 

SGWFD GTP tunnel configuration. The MME then sends the information to 

the serving eNodeB in the normal S1AP initial-context-setup-request-message. 

Upon receiving the first packet of a new flow, the processingUnit will not find 

a match in the flowTable because the switch is working in a semi-reactive 

mode. NO-MATCH-FOUND signal is then emitted by the processingUnit, but 

unlike the normal implementation of the FD, the OFAgent is the one 

responsible about this signal not the OFA_Switch module.
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Figure 6.12: UML representation of the SGW and PGW FD Modul 
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6.6.2 Simulation Network 

The logical topology of the network used in our scenarios is shown in Figure 6.13. It mainly 

consists of several building blocks, that includes: i) one or more UEs; ii) two eNodeBs, the 

first one represents the standard LTE eNodeB while the second one is OpenFlow enabled 

eNodeB; iii) MME; iv) SDN controller; v) set of OpenFlow FDs; vi) InternetHost that 

includes an application that works as a traffic generator or sink. 

 

Figure 6.13: Logical Topology of the simulated network in OMNeT++ 

In our simulations, all the nodes are statically positioned in the simulation playground 

except for the UEs. The location, speed and movement direction are changed based on the 

experiment. As shown in Figure 6.13, UEs are connected to the eNodeB by means of the 

air interface, eNodeB1 is connected to the MME through the S1-MME over the SCTP 

connection, while eNodeB2 is connected to the SDN controller through the OpenFlow 

channel over TCP connection. The same as eNodeB2 all the FDs are configured to connect 

to the SDN controller using OpenFlow protocol. Finally, the MME is connected to the 

SDN controller through a simple connection that simulates the northbound interface.  



 

182 
 

In this simulation, the serving eNodeB of each UE is statically configured using the ini 

file. In the initialization step of the simulation, each UE reads the macCellId, and masterId 

parameters from the ini file to know it’s serving eNodeB. Then they start the initial 

attachment procedure with its serving eNodeB by sending Attached-Request-Message 

using ideal RRC protocol (the message does not require a radio resource and is received 

without any delay as a result of radio channel. In order to achieve this the OMNeT++ 

sendDirect method is used between the UeRRC and EnbRRC models). Upon receiving the 

UE message by the serving eNodeB, the NAS payload together with eNodeB UE S1AP 

ID, Tracking Area Identifier (TAI), and GCI are attached to S1AP Initial-UE-Message and 

sent to the MME. It is worth mentioning that the MME selection procedure is not 

implemented in our model and only one MME can be used in the network simulation and 

it is required that the name of the module to be exactly (MME), otherwise the eNodeB 

S1AP module will not be able to locate the MME in the simulation to send the S1AP 

messages. If the serving eNodeB is OpenFlow capable then the Initial-UE-Message is sent 

to the SDN controller using OpenFlow over the TCP connection.  

At the controller the OpenFlow header is removed and the Initial-UE-Message is 

forwarded through the northbound interface to the MME. In EPS, when the S1AP Initial-

UE-Message is received by the MME the Gateways selection procedure is performed to 

select SGW and PGW required to establish the UE default bearer. In our architecture, the 

MME is not responsible for the Gateway´s selection. Instead the SDN controller performs 

this task utilizing the current utilization of the available FDs to pick the best one to handle 

the UE upcoming traffic. When the Initial-UE-Message is received from the OpenFlow 

capable eNodeB a copy is sent to the MME to update the UE profile. At the same time the 

SDN controller setup the path for the UE upcoming data plane traffic. The process includes 

identifying the best FDs to handle the UE traffic and configure the FDs to handle the UE 

traffic based on the UE profile. The FDs of SDN sub-network of the backhaul are equipped 

with an agent to: 

➢ Reduce the signalling traffic between the SDN controller and the data plane 

devices. 

➢ Reduce the delay of the first packet of each new flow. 
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To keep the programmability features offered by the SDN architecture, the agent is 

modelled to inherit OpenFlow characteristics, which allows the SDN controller to 

dynamically (re)configure the FDs agent. New messages have been added to the OpenFlow 

protocol to allow the SDN controller to communicate and exchange information with the 

FDs. Through these messages the controller can Add/update/delete the configuration of 

the FDs agent. 

6.6.3 Performance Metrics and Evaluation Results 

Two experiments are used to validate the operability of the proposed system. The 

simulation times of all tests are 100s and each simulation is repeated 5 times with different 

seed numbers, the average result is used as optimal result. In these experiments, a fixed 

simulated delay has been added to links between the individual entities. The link delay 

between the eNodeBs and the SGW-FDs is set to 5ms, and another 5ms is the delay of the 

link between the SGW-FD and the PGW-FD, while the simulated delay of the link to the 

internet between the PGW-FD and the InternetHost is set to 8ms. The air interface is 

accurately simulated, and packet delay is compliant to the 3GPP specification of the LTE 

network. simuLTE [78] is used to provide the air interface between the UEs and the 

eNodeBs. The EUTRAN parameters are summarized in Table 6.1, which is based on the 

3GPP specification for the EUTRAN. This includes the used carrier frequency, bandwidth, 

eNodeB and UE transmission powers, noise figure, cable loss, and path loss model. 

6.6.3.1 UE Handover in Heterogenous Network Experiment 

This experiment is utilized to demonstrate the ability of the SDEPC system to operate with 

and without GTP by leveraging a smart centralized control plane application that allows 

traffic redirection to and from the GTP tunnel. In this experiment, the InternetHost uses 

the UDPBasicApp to send UDP traffic to the UE1(0). The application is configured to start 

after the simulation starts by 0.5s. The application sends a packet of size 400 Byte every 

10ms to the IP address of UE1(0). A randomly generated UDP port number is used as the 

source while the destination port number is set to 5001. The UE1(0) uses the UDPSinkApp 

that basically deletes the received packet after it has measured and recorded the traffic 

statistics.  
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In this experiment, both UEs are equipped with OMNeT++ LinearMobility module that 

allows the UE to change its location during the simulation utilizing a configurable speed 

and angle. The mobility module of each UE is configured to move 10 meters every second 

in a straight horizontal line between eNodeB1 and eNodeB2.The number of packets sent 

by the InternetHost and the SGW-FD is used as a metric to validate the system operation. 

The SGW-FD uses port0 to send downlink traffic to eNodeB1 utilizing the GTP tunnel 

and Port1 to send the downlink traffic eNodeB2 utilizing layer 2 tunnelling. The packets 

sent by each port are recorded using a time vector and scalar. The handover time is also 

recorded together with the end-to-end delay.  

The obtained results are shown in Figure 6.14, Figure 6.15, Figure 6.16, and Figure 6.17.  

 

Figure 6.14: UE1(0) serving Cell Id though out the simulation 

Figure 6.14 shows the handover times of UE1(0) during the simulation time. The handover 

time is signalled to the statistic listener after the target eNodeB sends the Switch-Path-

Request message to the MME or the SDN controller to change to downlink traffic direction 

to the correct serving eNodeB. It can be observed that UE1(0) performed 5 handover 

operations between the two eNodeBs. In the beginning of the simulation UE1(0) starts the 

default bearer setup procedure using eNodeB1 then after 5s performed the first handover 

operation to change its serving eNodeB to eNodeB2. The other 4 handover operations are 

performed on simulation times 24s, 45s, 65, 85s respectively. 
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Figure 6.15: Packet sent by the InternetHost and the SGW-FD 

Figure 6.15 shows the time vector of the traffic sent by the InternetHost and the SGW-FD. 

The grey line represents the packet sent by the InternetHost during the simulation time. 

The blue and orange lines represent the traffic sent through port0 to eNodeB1 and through 

port 1 to eNodeB 2, respectively. 

It can be observed that in the SGW-FD the downlink traffics are bouncing between port 0 

and port 1 and the time of changing of the forwarding port is in line with the handover time 

shown in Figure 6.14. After the simulation started the downlink traffic is sent through port 

0 to eNodeB1 and around 5s the sending interface is changed to port 1, which changes the 

direction of the traffic to eNodeB 2, where the behaviour is continued till the simulation 

time reaches the second 24. At that moment, the sending port changed to port 0. The 

sending port is changed each time UE1(0) changes its serving eNodeB using the X2 

handover procedure. The change in the sending port happened again around 45 s, 65 s, and 

85 s. It is also worth noticing that the packet size sent through the layer 3 tunnel (GTP) is 

larger than the packet sent through the layer 2 tunnel. In fact, this is due to the extra headers 

added by GTP to each packet to route the packet through the network backhaul to the 

serving eNodeB. The GTP tunnel statistics is recorded and plotted in Figure 6.16. While 

Figure 6.17 shows the end-to-end delay recorded by the UE1(0) during the simulation time. 
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Figure 6.16: GTP tunnel statistic When the Packet size equal to 400 Byte 

 

Figure 6.17: SDEPC UE1(0) end-to-end delay 

It can be observed that the end-to-end delay measured by UE1(0) has several spikes that 

represents an increase in the end-to-end delay. It is obvious that this extra delay is due to 

the buffering together with the X2 transmission delay. Bear in mind that the time of the 

delay spikes is the same as the handover times shown in Figure 6.14. The first spike is due 

to ARP resolution and first packet processing. The link delay of the connection between 

the PGW and internet Host is set to 8ms and in our simulation an ethernet link is used to 
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connect these two nodes.  When the UDPBasicApp send the first chunk of data to the IP 

address of the UE1(0). it passes through the UDP and network modules. At the network 

layer ARP procedure is performed to resolve the MAC address of node advertised public 

IP address of the UE. In reality, this will not be the case and the first spike will not be 

visible. Overall the system performance is still very good, and this extra delay caused by 

the handover operations did not affect the system performance considering that the peak 

delay reported by UE1(0) is 69ms which is still a very good end-to-end delay and will not 

affect the user experience. 

6.6.3.2 SDN Controller Location Experiment 

In this experiment, two runs are used to measure and compare the system performance. In 

the first run, the OpenFlow switches of the backhaul network are equipped with an SDN 

agent while the second run uses standard OpenFlow switches as specified by the OpenFlow 

1.3 specification. In this experiment the end-to-end delay of the first packet and the 

distance of the backhaul SDN controller from the switches are used as metrics to evaluate 

the system performance. The end-to-end delay of the first packet of downlink traffic from 

the InternetHost to 10 UEs connected to eNodeB1 is shown Figure 6.18. For simplicity, 

run 1 and 2 will be referred to as network 1 and 2 respectively. 

 

Figure 6.18: end-to-end delay of downlink traffic first Packet 



 

188 
 

It can be observed from the obtained results that the delay of the first packet recorded by 

all the UEs is less with network 1. In network 2, the first packet of each flow is buffered, 

and headers information are sent to the controller for processing. Upon receiving the 

controller instructions, the buffered and the upcoming packets of the flow are forwarded 

using the installed rules.  

Meanwhile, the FDs of networks 1 has an agent that is preconfigured by the controller to 

correctly forward the received traffic to the correct serving eNodeB based on the header 

information of the received packet. This helps the OpenFlow switches to handle the 

received packet locally without contacting the controller which contributes in reducing the 

buffering and processing time. To investigate the effect of the controller distance from the 

OpenFlow switches on the delay of the first packet of downlink traffic sent by the 

InternetHost to UE1(0) that is connected to eNodeB1, multiple simulation runs are used to 

measure the delay of first packet when the controller is 172, 263, 316, 458, 525, 662 

Kilometres away from the OpenFlow switches (OFS1 & OFS2 in our simulation). 

In this test the delay of the link between the OpenFlow switches and the SDN controller is 

calculated by utilizing the geographical distance between the two nodes. The delay of the 

fibre cable used in the simulation is calculated by dividing the geographical distance 

between the nodes by the propagation speed for optical fibre. The propagation speed of the 

fibre cable used in our simulation equals to the speed of light divided by the 1.5 which 

represent the refraction index of the fibre cable as shown in equation 1. 

𝐿𝑖𝑛𝑘𝑑𝑒𝑙𝑎𝑦 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(
𝑠𝑝𝑒𝑒𝑑𝑜𝑓𝑙𝑖𝑔ℎ𝑡

1.5
)

(6.1) 

The Link delay of connection between the OpenFlow Switches and the controller using 

the aforementioned distances is equal to 0.00086s, 0.001315s, 0.00158s, 0.00229s, 

0.002625s, 0.00331s respectively. The orange line shown Figure 6.19 represents the delay 

of the first packet when the FD has a local agent while the blue line represents the delay 

of the first packet when the FD does not have a local agent.  

As expected in Network 2, the delay of the first packet increased proportionally with the 

distance of the controller and in Network 1, the first packet delay is not affected by the 

increased distance between the OpenFlow switches and the SDN controller. In Network 1, 

the agent of the OpenFlow switches is preconfigured by the backhaul controller. Therefore, 
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the distance between the switches and the controller has no effect on the delay of the first 

packet. Differently, in Network 2 the first packet is sent to the controller for processing 

and because of that the distance between the backhaul OpenFlow switches and the 

controller has a clear effect on the delay of the first packet. 

 

Figure 6.19: First packet delay with respect to the controller location 

6.7 Summary 

In this chapter, SDEPC architecture is presented and the OMNeT++ simulation model is 

described. Several experiments are conducted to compare the performance of the SDEPC 

and the standard LTE networks. The link utilization, end-to-end delay, packet loss, queuing 

time is used as metrics to evaluate the performance of the systems. Removing GTP 

proposed by the SDEPC simplifies the data plane network and increase the network 

flexibility which contributes to enhancing the network performance in term of end-to-end 

delay especially with the congested network. At the same time, removing GTP introduce 

backward compatibility issue with the existing mobile network architectures. Therefore, 

modification to the SDEPC architecture is presented to support data forwarding with and 

without GTP. OpenFlow FDs enhanced with a local agent to further improve the system 

operation and reduce the number of interactions between the controller and the FD and 

help reduce the number of installed flow entries in each FD. Two experiments are 
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conducted to validate the operate-ability of the proposed architecture. The next chapter 

shows how removing GTP help to deploy new services in the backhaul network and easy 

and simple manner. 
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7 Software Defined Selective Traffic Offloading 

7.1 Introduction 

The current advances in the technologies being deployed in mobile networks are not able 

to cope with the unprecedented traffic amount being traversed across the networks due to 

the increasing number of smartphones and tablets and so on, where delay is still a common 

issue facing network operators and developers, especially when it comes to time sensitive 

applications such as online gaming applications [87], since these applications require real 

time communications or near real time. If you encounter delays in online games, then it 

will affect badly on these applications especially they require high level of QoS. One of 

the main reasons for ongoing delay issue is related to the architecture of the current mobile 

cores and the fact that each packet in the mobile network has to travel relatively long 

distance before even reaching to the gateway nodes (Packet Data Network Gateway 

(PGW) nodes in LTE/EPC nomenclature), because the gateways are mounted in 

centralized distribution, which will create a hierarchical routing causing the delay issue 

mentioned earlier.  

There are some approaches that are proposed to overcome this issue such as various 

offloading strategies, including offloading to data centres inside the mobile provider core 

network footprint [11], however these approaches suffer from difficulty in deployment in 

real networks due to the fundamental complexity of mobile architectures. Assuming a 

cloud-based infrastructure distributed in a near proximity from the mobile access network 

which allows the operators to selectively offload some of it delay sensitive traffic. This 
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Chapter describes three network designs to implement cloud offloading. These solutions 

implemented with 4G network but can be also adopted in 5G network as well. All three 

solutions have similar network design that is composed of three sub-networks namely, 

Access, backhaul and core networks. The backhaul network consists of two parts: i) access; 

ii) aggregation. The main components of the selective traffic offloading solutions are 

implemented in the access part of the backhaul network. The solutions mainly consist of a 

Traffic-Offloading-Switch and a SDN controller. Based on the solution, slight 

modifications maybe required to the standard mobile network entities. More specifically, 

the first cloud offloading solution only requires a slight modification to the MME, while 

the second solution requires modification to both the eNodeB and MME to improve the 

processing delay of the first solution. The last solution is different than the first two 

solutions because it is based on the idea of GTP tunnel elimination. 

7.2 Solution 1 Network Design 

The aim of first solution is to minimize the change required to the standard LTE network 

and supports selective traffic cloud-based offloading operations [12][14]. The only change 

required in this design is to the MME entity.  

In this solution the MME has a connection to the SDN controller to obtain network 

statistics and notify the controller to perform the traffic offloading. The MME has been 

modified to track and keeps the GTP-U tunnel information between the eNodeB and the 

SGW, which includes information like the TEID and IP addresses of both the eNodeB and 

SGW, as well as the UDP source and destination port numbers. The SGW TEID and IP 

address are obtained from the Create-Session-Response message sent to the MME by the 

SGW, while the eNodeB TEID and IP address are obtained from the S1AP Initial-Context-

Setup-Request-ACK message. After obtaining the GTP-U information and if the UE is 

eligible for traffic offloading, a Traffic-Offload-Notification message is sent by the MME 

to the SDN controller as shown in Figure 7.1. The UE is considered as eligible for traffic 

offloading, either if it is registered by the network operator, or if an offload request is 

received from the server that is providing the service to the UEs. The main new elements 

in this network design is the SDN controller and the Traffic-Offloading-Switch, although 
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these elements are used in all three solutions, the functionality and the features offered by 

them are different in each solution.  

In this design, the GTP between the eNodeB and the SGW is kept the same and the SDN 

solution works with the MME to perform the traffic offload to the cloud infrastructure. 

This solution specifies the traffic that should be offloaded and configures the offloading 

switch to extract the traffic from the GTP-U tunnel and send it to the cloud, and the 

offloading switch is also configured to return the traffic coming from the cloud back to the 

GTP-U tunnel again. These operations are happening without the eNodeB and the SGW 

being aware of the traffic redirection operation. 

 

Figure 7.1: Solution 1 - Traffic Offload Setup Call Flow Sequence 

7.2.1 Traffic Offloading Switch Implementation in OMNeT++ 

The Traffic-Offloading-Switch (TOS) is modelled in OMNeT++ as an extension to our 

work in [82] that provides a standard implementation of Openflow 1.3 switch. Basically, 

the TOS module inherits the structure of the standard Openflow 1.3 switch by leveraging 

the modularity and the object-oriented structure offered by OMNeT++. Therefore, most of 

the switch functionality is reused in our module of the Traffic-Offloading-Switch. The 
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main difference between the Traffic-Offloading-Switch and the standard OpenFlow 1.3 

switch is the ability to perform GTP tunnelling.  

The Traffic-Offloading-Switch is modelled to support GTP operations by extending 

several modules of OpenFlow 1.3 switch. Precisely, the extensions introduced to the flow 

processing pipeline and the OpenFlow plugin entities. The processing pipeline has been 

heavily modified considering that the Traffic-Offloading-Switch processing pipeline offers 

more features compared to the standard 1.3 switch processing pipeline. The module is 

converted to a compound module that includes several simple modules. Precisely, the 

module consists of the processingUnit, mux, enCap-vPort, Inspection-vPort and deCap-

vPort modules. The processingUnit represents a modified version of the open flow 

processing module of the standard OpenFlow 1.3 switch module that basically inherits the 

main operation of the open flow processing module and adds extra features that are 

necessary and required to perform the GTP encapsulation and decapsulation. To ensure 

accuracy and reliability, the UDP and network layer modules offered by the OMNeT++ 

INET library have been reused to add the layers required to perform GTP encapsulation. 

Since the transport layer (UDP) and the network layer are already modelled and tested by 

the INET library it is unnecessary to program the same functionality in the enCap-vPort 

module. Therefore, the enCap-vPort module only adds the GTP header and the other layers 

are added by the INET’s UDP, network and eMAC modules. The OpenFlow plugin is 

modelled by the OFA Switch To module that inherits the functionality offered by the OFA 

Switch module of the standard OpenFlow 1.3 switch and adds extra features.  

The new features are used to allow the Traffic-Offloading-Switch to understand the 

OpenFlow extensions messages. Moreover, a new module has been added in the Traffic-

Offloading-Switch known as the TEID-table. This table is used by the TOS in order to 

keep and maintain the GTP tunnel configuration. This section summarizes the changes 

made to the standard building blocks of OpenFlow 1.3 switch module. Moreover, a brief 

description of the new components structure, design and functionality is provided.  The 

Traffic-Offloading-Switch shown in Figure 7.2 shares the same structure of the standard 

OpenFlow 1.3 switch. 



 

195 
 

 

Figure 7.2: OMNeT++ module of the Traffic Offloading Switch 

7.2.1.1 TEID Table Module 

This is modelled as a OMNeT++ simple module that works as a container for the GTP 

tunnels information. The same as the flow-table, the TEID-table consists of one or more 

TEID entries, where each entry consists of two fields, namely the tunnel-Id which works 

as an Identifier to differentiate between the table entries. 

The second field is the GTP tunnel configuration parameters, which includes information 

like the TEID and IP address for both the eNodeB and SGW, source and destination UDP 

port number, and the number of the output physical port. The TEID-table module is used 

by other modules in the Traffic-Offloading-Switch, specifically the OFA_Switch_To and 

the enCap-vPort modules. The latter is a simple module that is part of the switch processing 

pipeline compound module that is explained in Section 7.2.1.3.3. 

7.2.1.2 OFA_Switch_To Module 

This part of the offloading switch is also modelled as OMNeT++ simple module and as 

previously mentioned it is modelled as an extension to the OFA_Switch module by 

inheriting its functionality. It adds more features that are required to implement the traffic 
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offload to the cloud. This section describes the main changes and the added features and 

functionality, which includes the process of using the TEID-table by this module.  

The OFA_Switch_To module represents the point of interaction with the SDN controller 

using OpenFlow protocol over TCP (Transport Layer Security (TLS) is not implemented). 

Most of the features offered by this module are inherited from the OFA_Switch module of 

the standard OpenFlow 1.3 switch, but at the same time, this module offers a set of new 

functionalities that are mainly related to GTP operations. Considering that GTP is not 

supported by OpenFlow, an extension to the protocol to support the required operation for 

the traffic offloading is implemented. This includes a set of new OpenFlow messages that 

has been defined to support GTP tunnel configuration operation (add/modify/delete). 

Furthermore, the GTP-Tunnel-Setup-Request, GTP-Tunnel-Modify-Request, and GTP-

Tunnel-Delete-Request messages have been defined and structured to be used as part of 

OpenFlow message exchanges between the controller and the data plane switches to 

support the aforementioned GTP tunnel operation.  

The OFA_Switch_To module has the required tools and functionality to receive, read and 

understand the new messages. Based on the type of the message the TEID-table is 

configured by the OFA_Switch To module leveraging the information of the received 

control message. The extensions to OFA_Switch module follow the same structure and 

operation steps defined by the OpenFlow switch 1.3 standard. When a control message is 

received from the controller through the TCP connection, the OFA_Switch_To module is 

responsible for handling the message and response to the controller if it is necessary. The 

message type is checked first and based on the type the correct method is called to handle 

the message for example if the GTP-Tunnel-Setup-Request is received, and then 

handleGTPTunnelSetupRequest method is called to handle the message. This method 

reads the control message and obtains the tunnel-Id value, which is used to check the TEID-

table entries. If no match is found in the table, a new TEID-entry is added to the table. If a 

TEID-entry with the same tunnel-Id exists in the table, then an error message is sent back 

to the controller. This message includes the type and the code of the error as specified by 

the OpenFlow standard. Therefore, the error type set is to OFPET GTPTUNNEL STEUP 

FAILED, and the code field is set to OFPGTC TUNNEL EXISTS. These two parameters 
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are used to inform the controller that the switch already has a TEID-entry with the same 

Tunnel-Id specified by the message sent by the controller.  

The same procedure is used with the other types of the GTP-Tunnel messages. Leveraging 

these messages, the controller can setup a new GTP tunnel, update or delete an existing 

tunnel. For example, GTP-Tunnel-Setup-Request message is used to configure the 

offloading switch at the beginning and when the UE changes its location while it is still 

using the offloading cloud services, the GTP-Tunnel-Modify-Request message is used to 

update the tunnel configuration with new parameters that reflect the GTP tunnel 

information with the new eNodeB. 

7.2.1.3 Processing Pipeline 

In the Traffic-Offloading-Switch, the processing pipeline is modelled as a compound 

module. It consists of several simple modules, namely mux, deCap-vPort, enCap-vPort, 

and processingUnit modules and each one of them is described in next sub-sections. 

A.  Mux Module 

It is a very simple module that is only concerned about sending the traffic to the correct 

physical port. In our module, the mux has a bidirectional connection with each physical 

port through the eMAC module, and at the same time it has unidirectional connections 

(equal to the number of physical ports) with the processingUnit, enCap-vPort, deCap-vPort 

and the network modules known as ToOfprocessing, fromEnCap, fromDecap, 

fromNetLayer respectively. Incoming packets are sent to the processingUnit module 

without any modification through the ToOfprocessing connection. In our design the mux 

uses one to one mapping between the physical port number and the ToOfprocesisng port 

number. For example, packets received on physical port number 1 are sent by the mux to 

the processingUnit module through ToOfprocessing connection number 1, and after 

processing the packet in the module the packet is sent to the mux again through either the 

enCap-vPort or deCap-vPort or the network module. This is based on the operation 

performed by the processingUnit module. Similarly, if the packet is received through 

connection 2 then it is sent through physical port 2. 
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B.  ProcessingUnit Module 

This module is responsible for most of the OpenFlow processing operations, which 

includes packet headers extraction, flow-table lookup, and flow-entry instruction 

execution. This module inherits the structure of the open flow processing module of the 

standard OpenFlow 1.3 switch presented in [82]. Extra functionality and operations have 

been adopted in this module to support the required feature to perform offloading 

operation. The module is physically connected to both the enCap-vPort and deCap-vPort 

modules, and it has a vector of connections to receive the traffic from the mux module. 

C.  enCap-vPort Module 

This module has been added to the processing pipeline to include the support for GTP 

encapsulation in the Traffic-Offloading-Switch. This module has three connections that 

are known as fromOfprocessing, toMux, and toUDP connections. The first one represents 

a unidirectional connection to receive traffic from the processingUnit module while the 

second connection represents a vector of unidirectional connections to send the traffic 

received from the processingUnit to the physical port without adding the GTP headers. 

The last connection is used to perform the GTP encapsulation operation. When a packet is 

received by the enCap-vPort module, it can be sent to either the mux through the toMux 

connection or to the UDP module through the toUDP connection.  

The process starts by removing the control info object from the received packet. This object 

is attached and contains information like the tunnel-Id, Physical port number, and layer 2 

headers information. The tunnel-Id is obtained and interrogated, and if it is marked as 

unspecified, then the packet is sent to the mux through the connection that equals to the 

value specified by the physical port number. Before sending the packet through the toMux 

connection, the layer 2 header is added to the packet using the information provided by the 

control info object. If the tunnel-Id has a valid value, then the TEID-table is checked and 

inspected to find a matching entry. If a match is found, then the tunnel configuration 

parameters are obtained, and the packet is encapsulated with GTP header and sent to the 

UDP module to add the extra layers information that includes UDP, network and layer 

headers. 
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D.  deCap-vPort Module 

This module is also connected to both the mux and the processingUnit modules. It has a 

unidirectional connection with the processingUnit module to receive the traffic and a 

vector of connections that equal to the number of the physical ports to send the traffic to 

the cloud after GTP decapsulation. When a packet is received by this module, the control 

info object is extracted to obtain the value of the outport field, then the packet is 

decapsulated and the inner packet is extracted and sent to the cloud through the mux 

module. To send the packet to the mux module the outport value obtained from the control 

info object is used to send the packet through the correct connection that makes the mux 

forward the packet to the correct physical port. 

7.2.2 Control Plane Operations 

This section describes the process of configuring the Traffic-Offloading-Switch to match 

a specific uplink traffic and extract it from the GTP tunnel, then send the inner packet to 

cloud-based infrastructure that are distributed near to the access network to reduce the 

latency and improve bandwidth utilization in the core network.  

As shown in Figure 7.3, the process starts with the MME. It maintains the bearer 

information of the UE traffic that is considered eligible for cloud offloading. Then the 

bearer information is sent to the SDN controller in a form of Traffic-Offload-Notification 

message. In this message the MME includes information like the GTP-TIED and IP 

address of the SGW, with the TEID and IP address of the eNodeB, and the UE IP address 

is also included in the notification message along with other parameters. Upon receiving 

the notification message, the cloud offloading application of the SDN controller handles 

the message by extracting and obtaining the S1-U tunnel information, and this information 

together with the UE IP address is used to configure the Traffic-Offloading-Switch to 

offload the UE traffic sent over this bearer to the cloud.  

To Configure the Traffic-Offloading- Switch, the controller first sends a GTP-Tunnel-

Setup-Request message to the switch, in which the controller includes the tunnel-Id 

together with the GTP tunnel configuration parameters. When the switch receives this 

message, it configures the TEID-table, and this process involves adding a new TEID-entry 

consisting of two fields, namely: the tunnel-Id (entry identifier), and the tunnel 
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configuration parameters. The latter consists of TEID and IP address of the eNodeB, SGW 

IP address, and the source and destination UDP port numbers together with the output port 

number are also included in the structure of the tunnel configuration parameters. 

The second step performed by the controller is the flow-table configuration. Therefore, the 

sequence of Flow-Mod messages is sent to Traffic-Offloading-Switch to configure the 

flow-table to handle both the uplink and downlink traffic. Each Flow-Mod message has 

match-fields and instructions along with other parameters. Upon receiving the message, 

the Traffic-Offloading-Switch configures the flow-table by adding a new flow-entry that 

matches the traffic with the same header information specified by match-fields of the Flow-

Mod message, and executes the instruction specified by the message on the matched traffic.  

 

Figure 7.3: Solution 1 - TOS Configuration Procedure 

Figure 7.4 shows a snapshot of the flow-table configured by the controller to handle traffic 

offloading operations. 
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Figure 7.4: Solution 1 - flow-table of the TOS Module 

Walkthrough example is the best and easiest way to fully understand the traffic forwarding 

operations. This section explains the control plane setup procedure by using the example 

shown in Figure 7.5. 

In the beginning of the simulation the controller configures the data plane network to 

forward the traffic based on the Layer 2 information, also a static flow-entry is configured 

in each offloading switch to match traffic with UDP port 2152 to be sent to GTP inspection 

logical port that implemented as an internal part of the processing pipeline module. Figure 

7.5 shows the network configuration after setup of the EPS bearer. The UE with the IP 

address 10.0.0.1/24 has GTP-U tunnel between the eNodeB1 and the SGW. The GTP-U 

tunnel has uplink TEID equal to 1002 (also known as the SGW TEID) and downlink TEID 

equal to 1003 (also known as the eNodeB TEID).  

The eNodeB IP address is 192.168.2.1/24 with mac address equal to 00:00:00:00:02:02, 

while the SGW has the IP address 192.168.1.1/24 and mac address 00:00:00:00:01:01. In 

this tunnel UDP port 2152 is used as the destination port number and a randomly generated 

UDP port number used as the source for each side of the tunnel. After setup the tunnel, the 

MME sends a Traffic-Offload-Notification message to the controller as previously 

explained. In this example the message includes the UE IP address (10.0.0.1/8). The GTP-

U tunnel information that includes 1003 and 192.168.2.1 as the eNodeB TEID and IP 
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address respectively, it also includes the 1002, and 192.168.1.1 as the SGW TEID and IP 

address respectively.  

When the controller receives the Traffic-Offload-Notification message, the offloading 

application processes the message and obtains the important information and uses the 

OpenFlow interface to configure the offloading switch. The configuration of the switch 

starts by sending a GTP-Tunnel-Setup-Request message. Before sending this message, the 

offloading application generates a tunnel-Id for this UE from a configurable pool. In this 

example the tunnel-Id 5001 is used. The next step is to fill the tunnel configuration 

parameters struct with the required information, which is obtained from the MME 

notification message.  

The configuration parameters that include the 1003 as the eNodeB TEID, 192.168.1.1 and 

192.168.2.1 as the source and destination IP address respectively, UDP source and 

destination port numbers together with the output port are also included as a part of the 

tunnel configuration parameters. After acquiring all the message information, the GTP 

tunnel Setup Request message is built and sent to the offloading switch. After configuring 

the TEID-table of the offloading switch, the controller then sends two flow mod messages 

to add two flow entries that handle both the uplink and the downlink traffic. The first Flow-

Mod message matches traffic that have 10.0.0.1/8 and 1002 as the source IP address and 

TEID respectively. The instruction in this message is set to send the packet to deCap-vPort 

and two set field actions to set the source and destination mac addresses to 

00:00:00:00:02:02 and 00:00:00:00:03:03 respectively.  

To summarize this flow-entry matches UE1 traffic that is sent over GTP-U of bearer 1. 

Then it decapsulates the packet, extracts it from the GTP tunnel and sends it to the cloud 

infrastructure. The second Flow-Mod message matches the traffic with source IP address 

that is equal to the cloud server IP address and the destination IP address equal to 

10.0.0.1/8. The instruction included in this Flow-Mod message has two sets of field actions 

to specify the source and destination mac addresses, in this case 00:00:00:00:01:01 and 

00:00:00:00:02:02 respectively. The output action specifies the tunnel-Id 5001 as the 

output port. The processingUnit module uses this information to fill the control info object 

fields before sending the packet to the enCap-vPort 
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Figure 7.5: Logical Topology of the distributed cloud based offloading solution 1 and 2 

7.2.3 Data Plane Traffic Forwarding Procedures 

This section briefly describes the network operation performed by network entities to 

handle both the uplink and downlink. The focus of this section is to describe the operation 

performed by the Traffic-Offloading-Switch to deliver the received traffic to the correct 

destination. The procedure performed by the Traffic-Offloading-Switch to process the data 

plane traffic is shown in Figure 7.8. 

7.2.3.1 Uplink Traffic 

The main operations performed by the Traffic-Offloading-Switch are shown in Figure 7.6. 

The received uplink traffic is either sent to the SGW as normal or decapsulated to extract 

the original packet sent by the UE from the GTP tunnel, which sends it to the cloud. The 

processing pipeline is responsible for the handling of the uplink traffic received by the 

switch. In our switch module, the processingUnit module performs the main operations to 

handle the packet.  
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The Packet is passed from the mux to the processingUnit module. At this stage, packet 

header information is extracted and used to find a matching entry in the flow-table. This 

assumes that the offloading switch is loaded with a flow-entry that matches traffic with 

UDP port 2152 (GTP-U traffic) to be sent to Inspection-vPort that is adopted in the TOS 

implementation as an internal part of the processing pipeline module. The main operation 

performed by Inspection-vPort is the update of the matching fields with new values that 

include GTP TEID, the source and destination IP addresses of the original packet. Then It 

sends the packet back to the processingUnit module.  

The processingUnit repeats the process again and lookups the flow-table using the new 

matching fields. If a match found, then the packet is offloaded to the cloud. To do this, the 

instruction of the matched entry is obtained, and a new control info object is created to 

include information like the physical port number and the layer 2 header information. This 

information should be obtained from the instructions of the flow-entry and the packet is 

send to the deCap-vPort. The latter follows the same procedure that was previously 

explained in Section 7.2.1.3D. to forward the packet to a cloud-based infrastructure.  

In case there is no flow-entry match, the headers information obtained from the Inspection-

vPort, then the packet is normally forwarded to the SGW of the UE. This is done by 

sending the packet to the enCap-vPort with a control info object attached to the packet. In 

this object the tunnel-Id is set to unspecified, and the outport set to the number of physical 

port number specified by the output action of the flow-entry instructions. The value of the 

outport represents the physical port number connected to the SGW (Port number 1 in 

Figure 7.5). The layer 2 source and destination mac addresses are set to eNodeB mac 

address as the source address and the SGW mac address as the destination address. When 

the packet has reached the enCap-vPort module, the procedure previously explained in 

Section 7.2.1.3C. is performed to send the packet to the correct SGW without any 

modification. 
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Figure 7.6: Solution 1 - TOS Procedure to extract Uplink traffic from GTP tunnel and 

send it to the Cloud-Based infrastructure 

7.2.3.2 Downlink Traffic 

Traffic-Offloading-Switch receives download traffic from either the cloud or the SGW. 

Downlink traffic from the SGW is GTP-U traffic that should be handled normally and just 

forwarded to the correct eNodeB without any modification, while the cloud traffic is the 

traffic that needs to be returned to the GTP tunnel from which it was previously extracted 

to make the LTE forwarding entities (SGW and eNodeB) unaware of the offloading 
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operation. Figure 7.7 shows the steps performed by the Traffic-Offloading-Switch to 

handle the downlink traffic. When a packet is received by the Traffic-Offloading-Switch, 

it passes from one module to another until it reaches the processingUnit module where the 

main processing is performed.  

In this module, packet header information is extracted from the packet and compared 

against the flow-table entries, and if the packet is received from the SGW, then it should 

have UDP port 2152 as the destination port number in the transport layer header. The 

packet is sent to the Inspection-vPort to obtain the GTP header information and update the 

matching fields, and then it is circled back to the processingUnit module. The latter checks 

the flow-table again using the new matching fields and since it is a downlink traffic from 

the SGW, no match entry will be found in the flow-table. Therefore, the packet is 

forwarded to the correct eNodeB using the layer 2 and layer 3 information of the GTP 

headers (not the inner packet). Downlink traffic from the cloud needs to be returned back 

to the GTP tunnel, and in order to perform this operation, the switch is configured to match 

the traffic sourced from the cloud and destined to the UE. The flow-entry instructions 

represent the operation that should be performed on the packet before sending it back to 

the network. This instruction includes, tunnel-id and Layer 2 source and destination mac 

addresses. 

The processingUnit module, creates a new control Info object and sets the tunnel-id and 

the layer 2 information based on the flow-entry instructions. The control info object is 

attached to the packet and then the packet is sent to the enCap-vPort module. When the 

packet is received by the enCap-vPort module, the same procedure explained in Section 

7.2.1.3C.  is performed and the packet is encapsulated to be added again to the GTP tunnel. 

Doing that makes the eNodeB think it received the message from the SGW. This way the 

offloading procedure is seamless and the involved LTE entities are totally unaware of the 

traffic offloaded except for the MME which plays a major role in the setup of the 

forwarding rules. 
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Figure 7.7: Solution 1 - TOS Procedure to return the Cloud traffic back to the GTP tunnel 

between the SGW and the Serving eNodeB 
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Figure 7.8: Solution 1 - data plane operations 



 

209 
 

7.2.4 Handover 

The procedure that describes the steps required to change the attachment point of a UE 

form one eNodeB to another is most commonly known as the handover. When the UE 

changes its location from one place to another and these places under the control of 

different eNodeBs, a handover procedure is performed. Handover procedure is divided to 

three phases, namely: preparation, execution, and completion as explained in Chapter 4 

Section 4.4.4.1.  

The third phase is the focus on this section, in this phase the Target eNodeB (T-eNodeB) 

notifies the serving MME about the change in the UE location and requests to change the 

direction of download traffic to the new location. The T-eNodeB sends a S1AP: Path-

Switch-Request message to perform that. Upon receiving the message, the MME checks 

if the UE is registered for cloud traffic offloading, if no, then the normal procedure 

specified by the 3GPP standard is followed to redirect the traffic to the T-eNodeB where 

the UE is currently located. If the UE is registered for a cloud traffic offloading, then the 

SDN controller is notified by the MME about the change of the UE location and based on 

the information provided by the MME notification message, the SDN controller configures 

the data plane switch to guarantee that the traffic returned from the cloud-based solution 

is sent through the correct tunnel to the correct location without causing any service 

disruption. The handover process involves two possible scenarios. In the first one, both the 

source and the target eNodeBs are connected to the same Traffic-Offloading-Switch.  

Figure 7.9 shows the handover procedure when both eNodeBs are connected to the same 

Traffic-Offloading-Switch. In this scenario, the SDN controller only needs to re-configure 

the Traffic-Offloading-switch to add the traffic coming from the cloud to the new tunnel 

between the SGW and the new eNodeB. This process involves updating the TEID-table to 

update the GTP tunnel configuration parameters to reflect the new tunnel between the 

SGW and the new eNodeB, and to do this the SDN controller sends a GTP-Tunnel-Update-

Request message to the Traffic-Offloading-Switch. In this message the controller includes, 

the tunnel-Id and the new GTP tunnel configuration parameters. Upon receiving the 

message, the offloading switch uses the tunnel-Id against the TEID-table entries to find a 

matching tunnel configuration, and then the tunnel configuration is updated with the new 

parameters provided by the GTP-Tunnel-Update-Request received from the controller. 



 

210 
 

The second scenario is more complicated and involves more than one Traffic-Offloading- 

Switch. This happens when a UE handover from one eNodeB to another that are connected 

to two different Traffic-Offloading-Switches, with the assumption that both switches are 

connected to the same cloud-based solution. 

 

Figure 7.9: Handover Procedure when the source and target eNodeB connected to the 

same Traffic-Offloading-Switch 

Messages are exchanged between the network entities to perform the handover procedure, 

which is shown in Figure 7.10. In this scenario, the handover procedure is started by the 

T-eNodeB sending a Path-Switch-Request message to the serving MME to redirect the 

downlink GTP tunnel of a UE that is registered for the cloud traffic offloading. Upon 

receiving the message, the MME sends a Modify-Bearer-Request message to the SGW to 

inform it about the TEID and IP address of the new eNodeB. The SGW responds with a 

Modify-Bearer-Response message that contains the TEID and IP address that needs to be 

used by the eNodeB to send UE uplink traffic. Then the MME sends Handover-

Notification-Message to the controller to notify it about the UE handover request. Upon 

receiving the notification message, the SDN controller realizes that the T-eNodeB is 

connected to a different Traffic-Offloading-Switch, which means that it is necessary to 

configure both switches.  
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The process starts by configuring the T-Traffic-Offloading-Switch to perform the cloud 

offloading procedure. This is done by sending a sequence of GTP-Tunnel-Setup-Request 

and Flow-Mod messages. Through these messages the controller instructs the T-Traffic-

Offloading-Switch to perform the offloading procedure between the UE and the cloud. At 

the same time, the controller instructs the S-Traffic-Offloading-Switch to report back the 

UE usage and release its contexts by deleting the flow entries and TEID entries. 

 

Figure 7.10: Handover Procedure when the source and target eNodeB connected to the 

different Traffic-Offloading-Switches 

7.2.5 Accounting and Charging 

In the standard LTE implementation, the PGW is responsible for enforcing policy, 

applying packet filtering for each user, performing lawful interception and packet 

screening, and charging support. Considering that the EPS bearers of all UEs terminate at 

the PGW, this makes it the perfect point to perform the aforementioned operations. At the 

same time, it is considered the main factor to cause unoptimized routing, and single point 

of failure. In SDSTO, some of the UE traffic is allowed to be extracted from the S1-U GTP 

tunnel and sent to the cloud that located in areas near to the mobile access network. 
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Therefore, it is necessary to have in hand a solution to keep track of the UE traffic sent to 

the cloud.  

In SDSTO design, an SDN controller application is utilized to query the Traffic-

Offloading-Switches and obtain the usage of the UEs registered for the traffic offloading 

to the cloud. The application uses OpenFlow primitives to query the Traffic-Offloading-

Switches and uses the statistics of the flow-entries of the UEs to support the accounting 

and charging operations. When a UE changes its location from one eNodeB to another, 

and these eNodeBs are connected to different Traffic-Offloading-Switches, the SDN 

controller obtains the usage of UE from S-Traffic-Offloading-Switches before instructing 

it to release the UE context. This way the network operator knows the UE’s usage that are 

sent to the cloud and the traffic sent through the EPC, which allows them to apply different 

treatment if necessary. 

7.2.6 Advantage and Drawbacks 

This solution performs traffic offloading with minimal change to the standard 3GPP 

specification of the LTE network. This solution only requires extending the MME 

operations to communicate with an SDN controller. Although this network design 

performs the operation perfectly, but it is required to perform many operations that cause 

more delay. Considering that all the traffic sent over the S1-U interface are GTP-U traffic 

with UDP port 2152, this means that the switch will inspect all the traffic and considering 

the ratio of the traffic that should be sent to the cloud is less than the total received traffic. 

7.3 Solution 2 Network Design 

The second solution is proposed to reduce the unnecessary processing of the traffic that 

should be just forwarded based on the eNodeB and SGW layer 2 or layer 3 addresses. To 

implement this solution, a slight modification to the MME and eNodeB modules 

functionality. This way traffic that should be offloaded to the cloud is tagged and the SDN 

controller configures the switch to offload only the traffic with a layer 2 tag. In this 

solution, all the other traffic is simply forwarded to the SGW without any modification, 

which should reduce the delay of the unnecessary processing. The flow-table of Traffic-



 

213 
 

Offloading-Switch is configured to offload UE traffic to a cloud-based infrastructure based 

on the VLAN tag as shown in Figure 7.11. 

7.3.1 Control Plane Setup Procedure 

Like the first solution, the MME is connected to the SDN controller and slightly modified 

to track and maintain the UE bearer information and if the UE is eligible for traffic 

offloading, then control messages are exchanged between the MME, SDN controller and 

the eNodeB to setup the control plane. In this solution, few of the standard messages have 

been modified to allow the MME to inform the eNodeB to add a layer 2 tag after the GTP 

tunnel headers. The modified messages include the S1AP initial-Context-Setup-Request 

and Path-Switch-Response messages. Also, a new message has been added to setup the 

layer 2 tagging on-demand. If subscription-based scenario is used, then the tagging is setup 

during the bearer setup procedure leveraging the modified messages, and if the on-demand 

scenario is used, then the new notification message is used to notify the eNodeB. The next 

sub-sections explain the control plane procedures of both scenarios. 

 

Figure 7.11: flow-table of the Traffic-Offloading-Switch OMNeT++ Module 
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7.3.1.1 Subscription-Based Scenario 

In this scenario, cloud offloading eligibility is specified by the network operator through 

the subscriber profile, which means that the MME knows if the UE is eligible for the traffic 

offloading or not. Therefore, in the bearer setup procedure, if the UE is eligible, then the 

MME waits to receive the Modify-Bearer-Response message from the SGW and sends a 

Modified-Context-Setup-Request message to inform the eNodeB about the information 

that it should use to send the UE uplink traffic. This message includes a layer 2 tag. This 

tag is added to every packet sent using this tunnel. At the same time, the MME sends a 

Traffic-Offload-Notification message to the SDN Controller, and this message, includes 

the layer 2 tag, eNodeB TEID, and IP address of the SGW and the serving eNodeB. The 

layer 2 tag is used by the controller to configure the Traffic-Offloading-Switch to match 

traffic that includes the tag and extract it from the GTP tunnel and sent to the cloud. 

Meanwhile the eNodeB TEID and IP address of the SGW and the eNodeB are used to 

insert the cloud traffic back to the GTP tunnel. This way the Traffic-Offloading-Switch 

will only extract the traffic that need to be extracted and no unnecessary processing is 

required. 

7.3.1.2 On-Demands Scenario 

Most of the operations explained in the previous section are the same and applied in this 

scenario as well. The main difference is how the MME knows if traffic offloading is 

required or not. In this scenario, the UE uses its data plane bearer to access the Internet 

service provider frontend server. Upon receiving the UE request, the frontend server sends 

an offloading request to the MME, and upon receiving the request, the MME specifies the 

location of the UE in question and sends a Tag-Request-Notification message to its serving 

eNodeB. By this message the MME is asking the eNodeB to tag the UE traffic sent over 

this particular bearer. At the same time, the MME notifies the SDN controller through 

TrafficOffload-Notification message about the bearer information and the offloading layer 

2 tag. Then the controller configures the Traffic-Offloading-Switch. 
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7.3.2 Data Plane Traffic Forwarding Procedures 

This section describes how the Traffic-Offloading-Switch handles the UE uplink and 

downlink traffic. Traffic-Offloading-Switch can forward the UE uplink traffic to the EPC 

or the cloud-based infrastructure based on the SDN Controller instructions. In the same 

way downlink traffic coming from the EPC or the cloud is handled by the switch to make 

the offloading operation invisible to the LTE entities. The next sub section describes the 

uplink and downlink forwarding operations. 

7.3.2.1 Uplink Traffic 

The best way to describe the data plane traffic forwarding is through an example, as shown 

Figure 7.12, where the uplink data is processed by the Traffic-Offloading-Switch. Figure 

7.12 shows how the switch handles the traffic that should be offloaded to the cloud, 

considering that all the other traffic is handled normally using the standard OpenFlow 

switch processing. The process starts by receiving a packet from the serving eNodeB 

(eNodeB 1 in Figure 7.5) and because the cloud traffic is tagged with layer 2 tag (100 in 

this example), assuming the flow-table is previously configured to match the traffic with 

tag 100 to be sent to the deCap-vPort.  

The same as in the first solution the control Info object is attached to the packet and sent 

to the deCap-vPort, where the control object includes the number of the physical port and 

the layer 2 header information to be added to the packet before sending the packet to the 

cloud.  

The deCap-vPort operations are broken down into three simple steps: in the first step, the 

control info object is extracted from the received packet, then in step 2, the external GTP 

headers are removed, and the inner packet is obtained, then the third and last step is 

performed, which is mainly concerned about sending the packet to the right physical port. 

To perform this step, information from the first step is used to add the layer 2 header to the 

packet and send the packet to physical port. The mac address of the cloud access entity in 

Figure 7.5 is used as the destination mac address and a random mac address is used as the 

source mac address for the traffic sent by a particular UE. The packet is sent to the cloud 

through physical port 3. Untagged uplink traffic is handled by using flow-entry 3 with 
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priority 700, and by leveraging this flow-entry, the traffic is simply forwarded to the SGW 

through physical port 1. 

 

Figure 7.12: Solution 2 TOS - Data Plane Uplink Traffic Processing Procedure 

7.3.2.2 Downlink Traffic 

Downlink traffic, as previously mentioned can be received from either the SGW or the 

cloud. In the first case, the traffic is simply forwarded to the correct serving eNodeB 

without any modification, while the second case represents the cloud traffic sent back to 

the UE, where this traffic needs to be added back to the GTP tunnel before it is sent to the 

serving eNodeB. 

The procedure used by the Traffic-Offloading-Switch to handle the downlink traffic, is 

shown in Figure 7.13. Downlink traffic received from the SGW is handled by flow-entry 

4 by forwarding the traffic to the eNodeB through physical port 2 without modifying 

anything. The other traffic received from the cloud are handled by flow-entry 2 with 

priority 800. Through this flow-entry the cloud traffic is sent to the enCap-vPort to add the 

traffic back to the GTP tunnel.  
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The enCap-vPort includes three steps to perform its operations. The first step is the same 

in both enCap-vPort and deCap-vPort which involves the removal of the control info object 

from the received packet. Although the information contained in this object maybe 

different in each case, after removing the control object, the second step is started. In the 

second step the layer 2 header is removed from the packet, then the most important 

operation is performed in third step. In this step the tunnel-Id obtained in step 1 is used to 

query the TEID-table to find the GTP tunnel configuration parameters and based on the 

result, new GTP, UDP, and IP layers are added to the original packet, then the layer 2 

information obtained in step 1 is used to add layer 2 to the packet before sending it to the 

physical port. As shown in Figure 7.5, TEID 1003 is used in the GTP layer, and UDP used 

as the transport layer protocol with 2244 and 2152 as the source and destination port 

numbers respectively. In the network layer header, 192.168.1.1 and 192.168.2.1 represent 

the SGW and eNodeB1 IP addresses respectively are used as the source and destination IP 

addresses. The same with the layer 2 header since SGW mac address is used as the source 

mac address and eNodeB1 mac address is used as the destination mac address. 

 

Figure 7.13: Solution 2 TOS - Data Plane Downlink Traffic Processing Procedure 
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7.3.3 Handover 

The handover procedure is explained in Chapter 4 Section 4.4.4.1. This section describes 

how the proposed solution handles the change of the UE location without causing any 

service disruption and redirects the downlink traffic coming from the EPC and the cloud-

based infrastructure to the new location of the UE. The redirection of the downlink traffic 

coming from the cloud-based infrastructure requires the SDN controller to know if the 

source and target eNodeBs involved with the UE handover procedure are connected to the 

same Traffic-Offloading-Switch or not.  

If both eNodeBs are connected to the same Traffic-Offloading-Switch, then the SDN 

controller will only update the downlink flow-entry considering that the MME will notify 

the target eNodeB to tag the uplink traffic of UE’s bearer eligible for the cloud offloading. 

In this case, the SDN controller sends a GTP-Tunnel-Modify-Request to Traffic-

Offloading-Switch to update the TEID-table. The message includes the information of the 

new GTP tunnel that has been agreed on between the SGW and the target eNodeB. This 

way UE traffic coming from the cloud is sent to the target eNodeB where the UE is 

currently attached. 

If the source and the target eNodeBs are connected to two distinct Traffic-Offloading-

Switches, then it is necessary to configure the new Traffic-Offloading-Switch and ask the 

old Traffic-Offloading-Switch to release the UE context. It is also possible to ignore the 

old Traffic-Offloading-Switch and let the ideal time out of the flow entries to take care of 

the flow deletion process. This approach can cause a problem and may require a special 

application to process the UE statistics to build a historical view of the UE activity to come 

up with the best ideal time-out for each entry. The SDN controller configures the new 

Traffic-Offloading-Switch following the same procedure explained in Section 7.3.1, which 

includes sending GTP-Tunnel-Setup-Request followed by two Flow-Mod messages to 

configure the switch TEID and flow-tables to properly handle the UE traffic sent over a 

specific bearer in both uplink and downlink directions. 

7.3.4 Accounting and Charging 

There is no change between this solution and solution 1 in terms of accounting and 

charging procedure. The SDN controller is equipped with a specialized application to 
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monitor the UE activities and gather usage statistics of all the traffic sent to the cloud 

instead of the mobile network EPC. This information is then used by a centralized 

application to help enforce policy and charging. The Monitoring application keeps tracking 

the UE statistics as long as it is registered to the SDN controller for the cloud offloading. 

The application uses OpenFlow multipart messages to query to the Traffic-Offloading-

Switch to obtain the statistics. The application is also notified when the UE changes it point 

of attachment. Normally no action is required if the UE is still served by the same Traffic-

Offloading-Switch, but if the movement of the UE requires changing the Traffic-

Offloading-Switch, then few steps are performed by the application to make sure that the 

information it has about the UE are correct and up to date. 

7.3.5 Advantage and Drawbacks 

This solution helps to reduce the OpenFlow switch processing time required to correctly 

forward the received traffic to the next hop. In this solution, it is not necessary to inspect 

each and every received packet like the first solution. Instead traffic eligible for the cloud 

offloading is tagged by the eNodeB and the OpenFlow switch just decapsulates the packet 

and sends it to the cloud and inserts the return traffic back to the GTP tunnel before sending 

it to the serving eNodeB. At the same time, this solution requires more modification to the 

EPS entities compared to the first solution because modification to the eNodeB structure 

and some of the S1AP messages are required to model this solution. 

7.4 Solution 3 Network Design 

This solution is based on the concept of eliminating the needs for GTP tunnelling and 

utilizes L2-based mobile backhaul [44]. Before starting with the Traffic offloading 

solution, it is important to understand the backhaul network design. Figure 7.14 shows the 

logical network topology of this solution, where the backhaul network is composed of two 

parts, namely access and the aggregation sub-networks. The access sub-network is 

responsible for providing forwarding paths for a group of eNodeBs and aggregation sub-

network connects several access sub-networks to the mobile core network. SDN based 

network is used in the access sub-network and Carrier Ethernet is used in the aggregation 

sub-network.  
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In this solution the eNodeB MAC address is used as the UE locator address and the UE IP 

address, which is assigned during the initial attachment procedures, is mainly used as the 

UE identifier. In order to increase the scalability of the proposed solution VLAN stacking 

with 802.1ad frames is used [21]. At the same time, the SDN controller is equipped with a 

Local Mobility Management application that is responsible for handling the change of the 

UE location as long as it is still connected to the same backhaul access sub-network. This 

approach keeps the EPC unaware of the UE movement and reduces the signalling messages 

sent to the core network. To implement this solution, the controller of the backhaul access 

sub-network keeps an IP-MAC address mapping between the UE address and the MAC 

address of its serving eNodeB. Also, the controller configures the switch to change the 

source MAC address of the traffic coming from all the eNodeBs connected to it with its 

own MAC address. The destination IP address of all the traffic received from the core 

network is used to find the MAC address of the serving eNodeB and the output port 

number. 

The core network is only aware of the MAC address of the access switch, which makes 

the UE movement between the eNodeB groups connected to the same backhaul access 

switch not relevant to the core network and does not need to do anything about it. Instead, 

the Local Mobility Management application updates the IP-MAC mapping to forward the 

UE traffic to the new location. To support selective traffic offloading, a new cloud 

offloading application is modelled and added to the SDN controller. 

This application is responsible for handling the offloading request messages from the 

MME. At the same time, it cooperates with the Local Mobility Management application to 

handle UE handover. The next sub-sections, first describe the process of triggering cloud 

offloading and the way to configure the access switch to enforce the offloading traffic , 

then describe how the access switch handles the uplink and downlink traffic, followed by 

the explanation of the handover procedure with more focus on how the controller 

applications work together to redirect both EPC and cloud downlink traffic to the new 

location of the UE, and finish with the advantages and disadvantages of this solution. 
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Figure 7.14: Solution 3 - Logical Network Topology 

7.4.1 Control Plane Operations 

On-demand and subscription-based offloading represent two possible ways to trigger the 

selective Traffic Offloading operations. The main difference between these ways is when 

the SDN controller of the backhaul network is notified to configure the access switch to 

perform the cloud offloading operations. On-demand is more flexible because the 

offloading request can be sent at any time from the service provider to the mobile core 

network (the MME). Subscription-based access is easy and can be configured by the 

network operator, but it is less flexible than the On-demand way.  

In this section, the process of network configuration to send some of the UEs’ traffic to the 

cloud after the reception of the offloading request from the MME (whether it is configured 

or sent by the service provider) is explained in detail. The subscription-based process starts 

immediately after finishing the Service-Request-Procedure, while the On-demand process 

starts after receiving the offloading request from the service provider, as shown in Figure 

7.15. The MME needs to notify two entities to implement the UE traffic offloading, 

precisely, the eNodeB and the SDN Controller. The MME starts by asking the eNodeB to 
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tag UE traffic either by using Modified version of the Context-Setup-Request or Tag-

Request-Notification based on whether the network is configured to support On-demand 

or Subscription-based offloading. Then, the MME sends a Traffic-Offload-Notification 

message to the backhaul access sub-network controller. In this message the MME includes 

the protocol type, transport layer designation port number, source and destination IP 

address, cloud-Solution IP address, and VLAN Id. The MME sends these messages 

through the backhaul network by utilizing the control plane VLAN id.  

The backhaul access sub-network switch is configured to send all the traffic tags with the 

control plane VLAN to the SDN controller. Therefore, the Context-Setup-Request or Tag-

Request-Notification and Traffic-Offload-Notification messages are sent to the SDN 

controller first. The procedure used by the controller to handle the received message is 

shown in Figure 7.16. The process starts by checking the received message type and based 

on the result an application is triggered to handle the received message. In this case the 

message sent by the MME to the eNodeB is handled by the switching application to simply 

forward the message to the correct eNodeB.  

On the other hand, Traffic-Offload-Notification is handled by the cloud offloading 

application. In the application the packet handler is the one responsible for the organization 

of the job performed by application modules. First the packet handler module asks the UE 

store module to add a new entry for this particular UE, then it requests the 

FlowWriteService to send two flow entries to configure the access switch to offload UE 

traffic sent over a specific layer 2 tunnel to the cloud-based infrastructure and delivers the 

response to the correct location of the UE. To help understand the offloading procedure let 

us assume that UE 1 is connected to eNodeB1, where the latter is connected to access 

switch 1 to be connected to the mobile core network.  

During the Initial-Attachment-Procedure, the IP address 10.0.0.1/24 is assigned to UE1. 

At the same time, the network operator has configured UE1 to be eligible to offload all of 

its TCP traffic with destination port 4545 to a cloud-based infrastructure with the IP 

address 20.0.0.1/24. Moreover, VLAN 100 is used as the cloud offloading VLAN. The 

backhaul access sub-network controller configures the access switch to offload UE1 traffic 

after receiving the Traffic-Offload-Notification message from the MME. The controller 

configures access switch 1 by sending Flow-Mod message. This message includes the 
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following matching fields (VLAN id = 100, source IP address = 10.0.0.1/24, Protocol = 

TCP, Destination port number = 4545) with instruction to: 

➢ Remove the VLAN Id 

➢ Change the source and destination MAC address to Switch 1 and Cloud router 

MAC addresses respectively. 

➢ Change the destination IP address to 20.0.0.1/24. 

This message is sent by the controller to configure the switch to handle the uplink traffic, 

and another Flow-Mod message is sent to it with the following matching fields (destination 

IP address = 10.0.0.1/24, Protocol = TCP, source port number = 4545) with the instruction 

to: 

➢ Add new VLAN Id = 100 to the received frame 

➢ Change the source and destination MAC address to the Switch 1 and eNodeB1 

MAC address respectively. 

➢ Change the source IP address back to 20.0.0.1/24. 

This way TCP traffic with destination port = 4545 is sent to the cloud instead of the core 

network and the response is sent back to the UE without any knowledge of the offloading 

process. 

 

Figure 7.15: Solution 3 - Control Plane Operations 
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Figure 7.16: Solution 3 - Cloud Offloading Application Operations 
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7.4.2 Data Plane Traffic Forwarding Procedures 

This section explains how uplink and downlink traffic is normally forwarded between the 

EPC and the EUTRAN and how the traffic of a specific UE is sent to cloud-based 

infrastructure that assumed to be available in near proximity to the EUTRAN. 

7.4.2.1 Uplink Traffic 

Uplink Traffic refers to the operation of delivering UE traffic to the correct destination. 

This normally explains the operation required to send the UE traffic through the core 

network to the desired destination specified by the packet sent by the UE. This section also 

describes the operation to send a selective traffic to a cloud-based architecture that assumed 

to be located near to the access network.  

As shown in Figure 7.17, UE 1 is trying to send two different TCP traffic, one of them is 

specified by the network to be offloaded to a cloud-based infrastructure. Flow path number 

1 with black arrow represents UE1 traffic (HTTP traffic that has TCP destination port 

number equal 80) that should be handled normally by sending the traffic through the UE 

default bearer to its SGW. While the flow path number 2 with a blue arrow represents UE1 

traffic (traffic with TCP destination port number equal to 4545, whose random port number 

is used to identify the service eligible for cloud offloading) that needs to be offloaded to 

the cloud-based infrastructure. UE uplink traffic is sent through the air interface to the 

serving eNodeB. In the latter, layer 2 header information is added to the UE packet and 

sent to the backhaul access sub-network, and the eNodeB uses its own MAC address as 

the source and the SGW MAC address as the destination. The access switch enforces the 

SDN controller rule of whether to send the received traffic to the SGW or offload it to the 

cloud infrastructure.  

Section 7.4.1 explains how different parts of the network works together to implement the 

traffic offloading solution. Assuming that the access switch (OpenFlow Enabled switch) 

is configured to offload UE 1 TCP traffic that has destination port number equal to 4545 

to the cloud, and all the other traffic should be forwarded normally to the SGW. When the 

access switch has received an uplink traffic from the eNodeB connected to it, it first, checks 

the flow-table looking to see if it has a flow-entry to offload the received traffic to the 

cloud. If no match is found, then the packet is sent to next hop after changing the source 
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MAC address with its own MAC address. Otherwise, if it has a flow-entry that matches 

the received traffic characteristics, then the instruction attached to the matched entry is 

executed on the packet before sending it to the cloud. 

 

Figure 7.17: Solution 3 - Uplink Traffic Operations 

7.4.2.2 Downlink Traffic 

In this solution the SGW is modified to map S5/S8 GTP tunnel to layer 2 tunnel by utilizing 

the IEEE 802.1ad technology. Normally, Downlink traffic represents the traffic sent from 

EPC to the UE. In this solution the EPC sends the traffic destined to a UE to the MAC 

address of the access switch to which the UE serving eNodeB is connected. With the cloud-

based offloading, downlink traffic can either be sent by the EPC or the cloud-based 

infrastructure as shown in Figure 7.18. In the first case, EPC traffic is sent through the 

backhaul network utilizing the 802.1ad technology and uses the backhaul access sub-

network switch MAC address as the destination MAC address. Upon receiving the frame, 

the access switch uses the packet destination IP address to find the correct output port, then 
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it adds a new layer 2 header before sending the frame to the serving eNodeB. In this 

Header, the SGW MAC address is used as the source MAC address and serving eNodeB 

MAC address is used as the destination MAC address. In the second case, the access switch 

receives downlink traffic from the cloud-based infrastructure. The process of configuring 

the backhaul access switch to handle cloud downlink traffic is explained in Section 7.4.1. 

This section explains how the switch processes the traffic coming from the cloud-based 

infrastructure assuming that it is already configured and has all the required flow-entries 

to correctly forward the received cloud traffic to the current location of the UE. Upon 

receiving a frame from the cloud, the destination IP address along with the transport layer 

protocol and source number is used to identify the traffic, then the traffic is returned back 

to the L2 tunnel by adding a VLAN Id to the frame after updating the source IP address 

and the source and destination MAC address. Then the frame is sent through the correct 

physical port to which the UE serving eNodeB is connected. 

 

Figure 7.18: Solution 3 - Downlink Traffic Operations 



 

228 
 

7.4.3 Handover 

This section briefly describes two possible scenarios of the X2 handover when the SGW 

and the MME are kept the same. As mentioned in Section 7.4, the backhaul access sub-

network’s controller is equipped with two main applications, namely the Local Mobility 

Management (LMM) and the Cloud OFFloading (COFF) Applications. First, the 

interaction between these applications is explained to demonstrate the process of downlink 

traffic redirection to the correct eNodeB without any involvement from the core network 

(when both the source and target eNodeBs are connected to the same access sub-network 

switch or switches that under the controller of the same SDN controller). Then the 

handover procedure between two eNodeBs that are connected to a different access sub-

networks is briefly described. 3GPP LTE X2-based handover procedure has been 

previously explained in Chapter 4 Section 4.4.4.1. 

In this solution, control signalling messages are sent over a specific VLAN and all the 

access switch is configured to send this traffic to the SDN Controller. Let us assume that 

UE1 with IP address 10.0.0.1/24 has performed handover from eNodeB1 with MAC 

address 00:00:00:00:00:01 to eNodeB2 with MAC address 00:00:00:00:00:02. Both 

eNodeBs are connected to access switch 1 through port 1 and 2 respectively. In the 

handover completion phase, the Path-Switch-Request message is sent by the eNodeB2 to 

notify the MME about the new location of the UE and request downlink traffic redirection. 

This message is intercepted by the access switch and sent directly to the SDN controller.  

As shown in Figure 7.19, the message is passed by the Packet notification to the Local 

Mobility Management application. The latter lookups the UE in the UE profile store, and 

if no match is found, then the application understands that the UE was connected to another 

access network, which is not under its control. Therefore, the message is forwarded to the 

MME to handle it as normal. At the same time, it keeps monitoring the control messages 

to update the UE profile store with the UE information. In our example both eNodeB1 and 

eNodeBs are connected to the same access network through access switch 1. Therefore, 

the packet handler is used to update the UE profile in the local UE profile store, then it 

sends a handover notification message to the Cloud Offloading application and re-

configures the access switch flow-tables to redirect the traffic to the target eNodeB 

(eNodeB2). This configuration is related to the downlink traffic sent by the SGW from the 
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core network. When the Cloud Offloading application receives the handover notification 

message, it first checks if the UE is registered for the traffic offloading services, and if it 

is not registered, then nothing needs to be done and the application ignores the received 

notification message. Otherwise, the application updates the switch flow-entries to send 

the cloud traffic to eNodeB2 through port 2 instead of eNodeB1 through port 1. 

 

Figure 7.19: Solution 3 - UE Handover Procedure 

7.4.4 Accounting and Charging 

This solution is no different from the previous solutions, because it is necessary to have a 

mechanism to track the UE usage regarding the traffic sent to the cloud. The SDN 

controller has an application specially built to keep track of the UE activity within its 

region of control. The application utilizes OpenFlow multipart messages to obtain statistics 
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of the UE flow entries. The Accounting and Charging application periodically updates the 

UE profile store. These statistics are used by the controller applications to enforce a policy 

to drop UE traffic after its allowance has been exceeded. Statistics gathered by the 

Accounting and Charging are then fed to a centralized Monitoring and Charging 

application to keep track of the UE usage when its handovers from one access network to 

another. 

7.4.5 Advantage and Drawbacks 

This solution helps to reduce the control signalling loads by keeping the UE movement 

away from the mobile core network and handles it locally through the use of the SDN 

controller in the backhaul access sub-network. The offloading procedure is simple and 

does not require any change to the OpenFlow 1.3 switch specification because there is no 

GTP inspection or encapsulation/decapsulation required. This reduces the processing time 

required to decide whether to send the traffic to the EPC or offloaded it to the cloud. At 

the same time, it requires almost all the EPS entities to support the Layer 2 based backhaul 

and the traffic offloading operations, which is a heavy price to pay. 

7.5 Simulation Scenario 

To evaluate the proposed solutions, a simulation environment has been developed for each 

solution. The simulation project is built on OMNeT++ 4.3 and uses INET 2.3, simuLTE 

and OpenFlow 1.3 as preference projects (which mean that all the modules built by the 

aforementioned libraries can be used in the simulation project known as 

SoftwareDefindEPC shown in Figure 7.21.  

The SoftwareDefindEPC project is used to create a simulation platform to determine the 

impact of the traffic offloading solutions. The network topology used in our simulation is 

shown in Figure 7.20. It consists of: Access, Backhaul, and Core networks. The access 

network consists of two eNodeBs to which random number of UE are connected (the 

number of UEs specified in each simulation run). The backhaul network is simplified and 

is simulated by an SDN-based network that is mainly composed of a single OpenFlow 

controller and modified OpenFlow switches (named Traffic-Offloading-Switch, which is 

responsible for forwarding the traffic coming from a group of eNodeBs to the EPC and 
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vice versa). Cloud-based infrastructure is distributed in the backhaul and connected to the 

Traffic-Offloading-Switch. The core network consists of multiple important entities that 

include the MME, SGW, and PGW. The latter is connected to the Internet through the SGi 

interface which is simulated as a Point-to-Point interface. The HSS or PCRF are not 

implemented in our simulator. Instead, a simplified version of the functionalities offered 

by these entities are included as part of the MME and PGW respectively.  

The Internet is simulated by a single OMNeT++ standard Host (InternetHost). In the 

simulation environment the Traffic-Offloading-Switch, which is a modified version of the 

standard OpenFlow 1.3 switch, is used in solutions 1 and 2 and normal OpenFlow 1.3 

switch is used in solution 3.  

The MME entity is modified to include new features that help implement the traffic 

offloading solution. The design and the structure of the standard MME entity is explained 

in Chapter 4 Section 4.5.1.3. In order to make the simulator work like a normal EPS 

network and at the same time offer the possibility to simulate cloud-based offloading 

solution, the mmeApp module is modified to include a new module named sdnAgent 

module. Also, a few configuration parameters are added to specify the operation of the 

MME entity. This section explains in more detail the changes and the configurations 

required to change the MME behaviour. 

 

Figure 7.20: Network Topology Simulated in OMNeT++ 
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Figure 7.21: Simulation platform File hierarchy 

7.5.1 Simulated Module of the MME Entity 

The design and the structure of the MME entity are kept the same, while the internal 

structure of the mmeApp module is extended to include a sdnAgent module.  Figure 7.22 

shows the design of the MME application Module used in our simulation. The sdnAgent 

module provides the MME entity with the functionality and tools required to implement 

the selective traffic offloading. The sdnAgent module is responsible for gathering a copy 

of bearer information of the UEs eligible for the traffic offloading and communicates with 

the SDN controller to implement the offloading solution in the backhaul access sub-

network. 
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Figure 7.22: MME Application Internal Structure 

The sdnAgent module is programmed to work like a plugin, which can be turned On or 

Off by utilizing a set of new parameters added to MME entity. These parameters include 

sdnEnabled, and sdnAgentPeerAddr. The sdnEnabled parameter is used to specify the 

operation mode of the MME module (Standard, Traffic Offloading Enabled). If this 

parameter is set to false, then the MME works based on the 3GPP specification and the 

sdnAgent module is not functional during the simulation. Otherwise, if the sdnEnabled 

parameter is set to true, then the sdnAgentPeerAddr parameter must be set as well. This 

parameter specifies the IP address or the name of the SDN controller. Also, the sdnAgent 

module is programmed with multiple blocks of code and uses another set of parameters to 

specify operation mode.  

The parameters used by the sdnAgent module to specify the block of code it should run 

includes sdnOperatingMode, offloadOperatingMode, and trafficOffloadVlans. The 

sdnOperatingMode is used to specify the operating mode of the sdnAgent Module. The 

sdnOperatingMode must be set to one of the following (solution 1, solution 2 and solution 

3). The offloadOperatingMode parameter is used to specify whether to use a subscription-

based or on-demand offloading. In case of the subscription-based offloading, the 

offloadEligibleUeAddresses parameter is used to specify the IP addresses or the names of 

the UEs that are eligible for the traffic offloading. If the sdnOperatingMode is set to either 



 

234 
 

solution 2 or solution 3, then the trafficOffloadVlans parameter is used to specify a list of 

VLANs that should be used to identify the traffic that needs to be offloaded to the cloud-

based infrastructure. The trafficOffloadVlans parameter only accepts two values that 

represent the start and the end of the VLANs list. A snippet of the MME configuration that 

utilizes the aforementioned parameters is presented below. 

 

The configuration snippet shown above describes how to configure the MME entity to 

perform traffic offloading based on the different solutions described in Sections 7.2, 7.3 

and 7.4. This configuration tells the MME to work in a subscription-based offloading mode 

and sends the traffic of UE1(0) to UE1(4) to the cloud. In solution 2 and 3 the VLAN range 

of 100 to 300 is used to tag the UEs traffic to help the Traffic-Offloading-Switch to send 

the traffic to the correct offloading infrastructure. It is also required to specify the controller 

behaviour. This parameter identifies the control plane application that the controller needs 

to use to implement the network forwarding behaviour. 
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OffloadingApp is a C++ class that built to support the traffic offloading operations. It 

works like a normal layer 2 switch application but at the same time it has the capability to 

intercept the MME offloading notification messages and react to it by configuring the data 

plane FDs (Traffic-Offloading-Switch). The controller also needs to know the address or 

the name of the MME entity. The second line of the above configuration does just that. 

7.5.2 Simulation Parameters 

This section describes and defines the parameters used in our simulation. These parameters 

are divided into general and network specific parameters. The general parameters describe 

the simulation time, repetition number, entity positions and simulation environment, while 

the network specific parameters describe the EUTRAN settings and EPC setting. Finally, 

a general overview of the used traffic generator and receivers is presented in the next sub-

sections. 

7.5.2.1 General Parameters 

The simulation of each solution is repeated 5 times with different seed numbers to reduce 

simulation artifacts and the average result of the 5 runs is used as optimal result. Each run 

lasted for 100s with the UE statically positioned at a fixed point of the simulation 

playground, and all the UEs are guaranteed to have QCI 15 to ensure that the measured 

results are not affected by the distance between the UE and its serving eNodeB. This 

section presents the parameters of the simulation environment. 

7.5.2.2 Network specific parameters 

This section presents the common settings of the access and the core networks used in the 

simulation of all the solutions. 
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A.  EUTRAN-Settings 

As previously mentioned, the EUTRAN network consists of two eNodeBs to serve 

multiple UEs. In the simulation scenarios, the eNodeB employs a MaxC/I scheduler and 

operates on a 20MHz frequency band (100 Physical Resources Blocks available). The 

Main EUTRAN simulation parameters are summarized in Table 7.1. 

Table 7.1: EUTRAN Configuration Parameters [88] 

Parameter Value 

Carrier Frequency 2 GHz 

Bandwidth 20 MHz (100 RBs) 

Mobility Model Linear/Stationary 

UE Speed 10/0 m/s 

Path Loss Urban Macro 

eNodeB Tx Power 40 dBm 

UE Tx Power 26 dBm 

eNodeB Antenna Gain 18 dB 

Noise Figure 5 dB 

Cable Loss 2 dB 

 

B.  EPC-Settings 

In our simulation all the EPC entities are statically positioned in the playground. EPC 

entities are connected to the access network through Ethernet links, at the same time they 

are connected to each other and the Internet through Point-to-Point links. IP addresses are 

assigned to each entity at the beginning of the simulation by the IPv4NetworkConfigurator 

module. The latter reads an XML file to properly assign an IP address to each Interface of 

each node. 

 The PGW is connected to SGW from one side and the Internet from the other side, the 

delay of the link between the InternetHost and the PGW is set to 8ms, while the delay 

between the PGW and SGW is set to 4ms. The MME is connected to the SGW and the 

serving eNodeBs through a Point-to-Point link and the Ethernet backhaul respectively, 

while the SGW is connected to the MME and PGW through point-to-point link and the 

serving eNodeBs through the Ethernet backhaul. The backhaul delay is divided into two 

parts. The first is the delay from the eNodeB to the OpenFlow switch which is set to 1ms, 



 

237 
 

and the second is from the OpenFlow switch to the EPC, more specifically the SGW and 

MME respectively. The delay of this link set to 4ms. 

C.  Traffic Generator Applications 

INET library represents a place rich with multiple traffic generators and sinks that work as 

UDP or TCP applications. It also has applications that work on top of the network layer 

like ICMP application and other application that works with SCTP. In our simulation’s 

different types of traffic generators and receivers are used. This includes the 

UDPBasicApp, UDPVideoStreamApp, and PingApp.  

The UDPBasicApp is used as traffic generator and the sink is used in the destination node 

to gather statistics and drop the received packet. The same process is applied to the 

UDPVideoStreamApp. The UEs use UDPVideoStreamClient application to request a UDP 

video stream from the InternetHost or the CloudHost. These two entities are running 

UDPVideoStreamServer application that respond to the video stream request of the UEs. 

The PingApp sends ICMP request messages and measure the statistics of the reply 

messages. The design and the work structure of UDPVideoStream and PingApp are 

explained in detail in Chapter 5 Section 5.5.1, while the UDPBaiscApp is explained in 

Chapter 6 Section 6.4.1. The send interval, packet size and the start and the end of the 

application is mentioned in the experiments. 

To simulate one-direction traffic, a traffic generator is run on one side and a sink in the 

other side. For example, to simulate uplink traffic, a traffic generator is used on the UE 

and a sink application is used on the InternetHost and the same applies with the downlink 

traffic where the generator is used on the InternetHost and the sink on the UEs. 

7.5.3 Performance Metrics and Evaluation Results 

In this section, OMNeT++ is used to simulate the EPS network with three different 

offloading solutions to compare the system performance with these solutions and weight 

the side effect of the standard EPS implementation. End-to-end delay, RTT, processing 

Time, and virtual ports statistics are used as metrics to evaluate the system performance. 

Three experiments were conducted to measure and evaluate the system performance. The 

end-to-end delay and RTT are measured in the first experiment, while the second 
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experiment deals with the TOS performance in the different offloading solutions. The last 

experiment measures the performance of the three offloading solutions during handover. 

7.5.3.1 Traffic Offloading Experiment 

The aims of this experiment are to measure and compare the performance of the EPS 

network with and without the traffic offloading solution. The end-to-end delay and the 

RTT are used as metrics for the performance evaluation. In this experiment, 4 simulation 

runs are used to measure the required statistics. The first two simulations use 

UDPBasicApp to measure the end-to-end delay, and the other two simulations use 

pingApp to measure the RTT. In all simulation runs UE1 is connected to eNodeB1. 

A.  UDPBasicApp Case 

In this case two simulation runs are used. The first one without traffic offloading solution 

and the second run with traffic offloading solution. The same network topology and 

configuration is used in both simulation-runs with only one difference. The MME 

sdnEnbled parameter is set to false in the first simulation run and true in the second. 

 

In the first run, the MME does not run the sdnAgent module and operates normally as 

specified by the 3GPP specifications. In the second run, the MME knows it should use the 

sdnAgent module and therefore, other parameters are required to correctly configure the 

MME to know the list of eligible UEs for the offloading operation and at the same time 

exchange the required information to implement the offloading solution with the SDN 

controller of the backhaul access sub-network.  
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In these simulations, ue1(0) uses UDPBasicApp to send a 200B packet every 1s. The 

application is configured to wait a random time between 0.1s and 0.2s before it starts 

sending the UDP packets and stops after 90s. Both the InternetHost and the cloudHost 

modules are using a sink application. The sink application records few statistics about the 

received packet before dropping it. In this simulation ue1(0) sends 90 UDP packets. In the 

first run, UDP packet pass through the EPC network to the InternetHost, which measures 

and records the end-to-end delay. In the second run, the MME is configured to notify the 

SDN controller to send ue1(0) UDP packets to the cloudHost. The latter does exactly the 

same as the InternetHost, it measures and records the end-to-end delay before dropping the 

received packet. Figure 7.23 shows the measured system performance in terms of end-to-

end delay with and without the traffic offloading solution. It can be observed that using a 

distributed cloud-based infrastructure to perform traffic offloading enhances the system 

performance and provides better performance especially for applications that are very 

delay sensitive. 

 

Figure 7.23: Expirement1-UDPBasicApp end-to-end delay of the EPS with and without 

the traffic offloading Solution 

Figure 7.23 shows the minimum, maximum and the average end-to-end delay with and 

without the traffic offloading solution. The blue bars represent the measured statistics of 

the system when solution 1 of the cloud offloading is used, while the orange bars represents 

the measured statistics of the system without traffic offloading solution. It can be observed 
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that the traffic offloading solution helps to enhance the system performance by providing 

a better end-to-end delay compared to the standard EPS implementation. This is due to the 

fact that the packet has travelled a shorter distance which reduced the link and processing 

delays. With the offloading solution, a virtualized server is deployed in a cloud 

infrastructure deployed near to the access network and it is responsible for handling the 

UE1(0) request, which contributes to reduce the distance between the services and the UE. 

B.  PingApp Case 

In this simulation 10 UEs are connected to eNodeB1, each UE is equipped with PingApp 

application module to send an ICMP request message to the IP address of the server. The 

server responds by sending an ICMP reply message back to the UE. Upon receiving the 

message, the PingApp calculates the RTT that was used to provide an estimate of the 

service latency with and without the traffic offloading solution. In this simulation the 

PingApp starts at 0.2s and sends ICMP request message every 1s to the destination node. 

The applications stop after 90s and the simulation stops at 100s. Two packet sizes are used 

in these simulations, specifically 32B, and 200B. Figure 7.24 illustrates the average RTT 

of the 10 UEs with and without traffic offloading solution when the packet size is 32B or 

200B. 

 

Figure 7.24: Expirement1-PingApp RTT with and without Cloud Offloading Solution 
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The results plotted in Figure 7.24 shows: 

➢ When cloud offloading is on, the RTT of the first packet is higher than the 

following packets because the first packet is sent to the controller for more 

processing. 

➢ The larger the packet the higher the RTT, but this has nothing to do with the 

offloading solution and is related to mobile network access network work flow. 

➢ Using the cloud-based offloading helps to improve the services RTT to almost the 

half because the services are always near to the UEs. 

➢ No packet loss or out-of-order packets are encountered in this simulation run 

because only a small number of UEs are used. 

7.5.3.2 Traffic Offloading Switch Performance Experiment 

This experiment aims to compare the Traffic-Offloading-Switch (TOS) processing time of 

each solution. OMNeT++ simulator is used to simulate the network and captures the 

number of packets sent to the inspection virtual port and the number of packets 

extracted/returned from/to the S1-U GTP tunnel. To achieve this goal, two different 

scenarios are used. The first scenario measures the number of packets handled by the TOS 

virtual ports. In this scenario 10 UEs are connected to eNodeB1. Two of them (UE1(0), 

UE1(1)) are configured to be registered for cloud traffic offloading. UEs are using 

PingApp to send a 32B packet every 1s and expect a response from the destination node. 

The TOS virtual port modules can capture and store statistics about the received messages, 

which can be used for post processing. Figure 7.25 shows the number of packets handled 

by each virtual port of the TOS device during the simulation of three different offloading 

solutions that previously explained in Sections 7.2, 7.3 and 7.4. 
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Figure 7.25: TOS Virtual Port Statistics 

The results illustrated in Figure 7.25 show that: 

➢ In Solution 1, the TOS device passes all the traffic it received through the 

inspection virtual port and only decapsulates/encapsulates the traffic needs to be 

sent to the cloud infrastructure. This behaviour introduces extra processing delay 

for the traffic that need to be sent the EPC. 

➢ In Solution 2 only the traffic needs to be sent to the cloud is inspected and 

decapsulated before sending it to the cloud and the return traffic is encapsulated 

and returned back to the correct GTP tunnel. That way only 180 packets are 

inspected, decapsulated and encapsulated which is equal to the traffic sent and 

received by UE1(0) and UE1(1). 

In solution 3 the TOS does not use the virtual ports to handle the traffic offloading 

operations. 

The second scenario measures the TOS processing time to perform the following: i) 

differentiate between UE1(0),UE1(1) traffic and the other UEs traffic; ii) extract the uplink 

traffic sent by UE1(0) and UE1(1) from the GTP tunnel and send the UEs original packets 

to the cloud infrastructure, at the same time it returns the cloud response back to the GTP 
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tunnel; iii) forwards the traffic of the other UEs to the EPC without any modification. In 

this scenario 10 UEs are connected to eNodeB 1 and only UE1(0) and UE1(1) are eligible 

for the cloud offloading. The UEs are equipped with UDPVideoStreamCli application. 

Both the InternetHost and the cloudHost are using UDPVideoStreamSrv application. The 

UDPVideoStreamCli application send a video stream request packet to the server 

application, and upon receiving the request message the UDPVideoStreamSrv sends a 

1000 Byte packet every 400ms until the simulation ends. Figure 7.26 shows the processing 

time of the TOS to perform the aforementioned operations with three different solutions. 

 

Figure 7.26: TOS Processing Time 

It can be observed from the results shown in Figure 7.26 that: 

➢ Solution 3 provides the best performance in terms of the processing time required 

by the TOS device to: i) identify the traffic needs to be sent to the cloud 

infrastructure; ii) altering the direction of the identified traffic from the EPC to the 

cloud. 

➢ In both solution 1 and 2 the time required to handle the traffic that needs to be sent 

to cloud is more than time required for the traffic that needs to be sent to the EPC. 
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This is because the TOS devices need to extract the traffic from the GTP tunnel 

(uplink traffic) and return them back to the tunnel (downlink traffic). 

➢ Solution 2 enhanced the system performance in terms of the processing time 

required to forward the traffic that needs to be sent to the EPC because in this 

solution the TOS only need to inspect and decapsulate tagged traffic, while all other 

traffic is forward normally without any extra processing. 

7.5.3.3 UE Handover Experiment 

The experiment focusses on the user mobility and the performance of the three offloading 

solutions during the UE handover. Network topology used in this experiment is shown in 

Figure 7.20. This network is used to simulate UE handover when both eNodeBs are 

connected to the same backhaul TOS. Then the backhaul network is modified to include 

two TOS devices under the control of two separate SDN Controllers. 

In this topology eNodeB1 it connected to TOS1 and eNodeB2 is connected to TOS2. This 

new topology is used to simulate the UE handover between two eNodeBs connected to two 

TOS that are under the control of different SDN controllers. In this network the link delay 

between the eNodeBs and the MME assumed to be 5.5 ms, link delay of the S11 interface 

between the MME and SGW is assumed to be 0.5 ms, link delay between the SDN 

controller and the MME is assumed to be 4.5ms and the delay between the controller and 

the TOS switch is assumed to be 0.5 ms. Finally link delay between the eNodeBs and the 

TOS is assumed to be 1 ms. In the beginning of the simulation, UE1(0) and UE2(1) start 

connected to eNodeB1 and move in a straight line toward eNodeB2 till they reach the 

simulation playground boundary. At this point the UEs change their direction toward 

eNodeB1. The UEs keep following this pattern throughout the simulation time (100s).  

Figure 7.27 shows the change of the serving eNodeB during the simulation time. The UEs 

are periodically sending a measurement report to their serving eNodeBs and based on these 

reports the serving eNodeB initiates the handover procedure. The Handover procedure is 

explained in Chapter 4 Section 4.4.4.1. Here the involvement of the core network in 

downlink traffic redirection to the new eNodeB where the UE is currently connected is the 

main concerned. In our simulation UE1(0) is registered for the cloud traffic offloading, 

while UE1(1) is not. The time required to redirect the downlink traffic to the current 
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location of the UE in question is used as a metric to evaluate the system performance of 

the proposed solutions. In order to achieve this goal, OMNeT++ signal and statistic 

mechanisms is used to fire a trigger for the start and the end of the handover completion 

process. The target eNodeB triggers the ”start” signal after it sends a Path-Switch-Request 

message to the MME and the ”end” signal after receiving the Path-Switch-Request-ACK 

message. 

 

Figure 7.27: UE1(0) Serving Cell Id during the simulation 

 

Figure 7.28: Time required to Handle Downlink Traffic Redirection 
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Results illustrated in Figure 7.28 shows: 

➢ The time required to handle the downlink redirection in the cloud traffic offloading 

solutions (Solution 1 and 2 and one case of solution 3) is more than the time 

required to handle the same process in the standard LTE implementation. Normally 

the time required to redirect the downlink traffic is calculated by using the below 

equation. 

𝑇𝑅𝑇 =  (𝐸𝑀𝐿𝐷𝑥2) +  (𝑀𝑆𝐿𝐷𝑥2) +  𝑀𝑃𝑇 +  𝑆𝑃𝑇 +  𝐸𝑃𝑇(7.1) 

where TRT represent the Traffic Redirection Time, EMLD and MSLD represent 

the link delay of the S1-MME and the S11 interfaces respectively. The MPT, SPT 

and the EPT represent the processing time of the MME, SGW, and the eNodeB 

respectively. The EMLD and MSLD are multiplied by 2 because two messages are 

sent on each interface. For example, the MME sends a Modify-Bearer-Request 

message to the SGW, and the latter send a Modify-Bearer-Response message back 

to the MME over the same interface. With the cloud traffic offloading the process 

is slightly different because the UE in question may have downlink traffic coming 

from the cloud and the direction of this traffic needs to be altered as well. Both 

Solutions 1 and 2 require the same time to handle the downlink traffic redirection. 

In these solutions, the time required to handle the redirection is less if the UE is 

moving between two eNodeBs, which are connected to the same TOS device. 

Otherwise, an extra 1.5ms is required to handle the traffic redirection. In the cloud 

offloading solutions, the MME needs to notify the SDN controller about the UE 

handover and the controller needs to update the configuration of the TOS device to 

send the cloud traffic to the new eNodeB (in case both the source and the target 

eNodeBs are connected to the same TOS). If more than one TOS are involved, then 

more time is required to finish the redirection process. 

➢ Solution 3 can provide a very efficient way to handle the UE handover and redirect 

the cloud traffic to the current location of the UE if both the source and the target 

eNodeBs involved in the UE handover process are connected to the same TOS or 

between two TOS that under the control of the same SDN controller. Otherwise, 

solution 3 behaves like the first two solutions and requires more time to handle the 

traffic redirection. This solution is different and requires less processing time 
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because the handover process is handled locally by the backhaul access network 

SDN controller, unless the target eNodeB is connected to a TOS that is under the 

control of a different SDN controller. In this case, the system falls back to the 

normal procedure and sends the Path-Switch-Request message to the core network. 

Processing the Path-Switch-Request locally by the SDN controller is used to realize 

that handling this request is out of it control area. It then decides to send this request 

to the MME to handle it, which introduces more time delay to complete the 

downlink redirection process. This explains the result of solution 3. 
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8 Conclusion and Future Works 

8.1 Conclusion 

This thesis presented multiple ways to build SDN-based mobile core network. Several 

experiments are used to test and evaluate the system performance in terms of end-to-end 

delay, Packet loss, queueing time, signalling loads, and processing time. In these 

experiments different types of applications are used in multiple simulation scenarios. The 

system is simulated in OMNeT++ and some of the results are displayed as a time vector 

while others are displayed in scatter or bar charts. 

➢ Incorporating SDN in the mobile core network boost the network performance in 

term of signaling loads. It also helps providing better load distribution as showed 

in the SBMCNA. 

➢ SDN enables the removal of GTP which contribute to: 

o  Provides better resource utilization, routing and reduces the single point of 

failure. 

o Enhances the system performance in terms of end-to-end delay, Mean 

Opinion Score, queuing times and packet loss 

➢ Hybrid system that supports heterogeneous network of multiple technologies used 

to overcome the backward compatibility issue introduced from removing GTP. 
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➢ SDN can be used as add-on solution to work with the 4G network not to replace it 

as showed in SDSTO.  Which can be used to move the content near to the user 

either through caching or cloud-based offloading  

➢ Openflow in its current version is not fit to be used as a southbound protocol for 

the mobile network. Extension is required whether it used in GTP enabled 

environment or not. 

➢ Extending the Openflow plugin of the SDN controller and the forwarding device 

to support new messages that are specifically related to the mobile network tunnels 

management enhance the system performance by reducing the signalling loads. 

➢ Adding SDN agent to the network forwarding device helps reducing the signaling 

loads and the processing time of the first packet for every new flow. More advanced 

and sophisticated agent can be used to address more tasks. 

➢ OMNeT++ is one of the best available network simulations that can be used to 

simulate software defined mobile network. However, beside it requires a 

considerable learning curve; it is also not suitable for testing system processing 

time performance or use it to benchmark the SDN controller performance. 

8.2 Future Works 

The SDN-EPC integration is discussed from two different approaches. First, SBMCNA 

which considers keeping GTP as the main data plane forwarding protocol. Second, SDEPC 

which shows the advantage and disadvantage of removing GTP. This thesis opens doors 

of possibility for the future works such as the following: 

➢ The implementation and testing of the proposed architectures in a real testbed 

environment. This includes: 

▪ The implementation of the proposed GTP extension methods in a real 

hardware or software OpenFlow switches like Open vSwitch [89]. 

▪ Use a testbed to investigate and interrogate the ability of real SDN 

controller such as Opendaylight [90] and Floodlight [36] to handle the high 
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volume of mobile network signalling, then use the findings to extend and 

enhance our OMNeT++ model. 

➢ Further investigation is required to study the capability of FDs to scale in handling 

the increasing number of users, their mobility, and providing fine grain access 

control. The side effect of sending the first packet of each new flow to the controller 

requires further investigation in terms of latency and link loads in a very large 

network. 

➢ The proposed architectures use single SDN controller, more investigation is 

required to check if one controller is sufficient, if not,  a simulation of large SDN 

based mobile network that includes multiple controllers in a cooperative 

environment is important as part of the future work. 

➢ Building new routing algorithm that works with multiple controllers in a mobile 

network environment to handle traffic redirection when the UE changes its location 

to an eNodeB under the control of different SDN controller. 

➢ Extend the system to implement in-network caching. 
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Appendix 

Please see the source code of the presented Software Defined Mobile Networks in the CD 

included with this thesis. To use the source files, you need to: 

❖ Download OMNeT++ 4.4.1 source code from the following url: 

https://omnetpp.org/component/jdownloads/download/32-release 

olderversions/2273-omnet-4-4-1-win32-source-ide-mingw-zip. This URL last 

checked on 15th Aug 2018. if the URL is not working please visit 

https://omnetpp.org/ and click on Download on the top of the page, then click on 

older version and go through the different versions until you find the required 

version. 

❖ Install OMNeT++ 4.4.1 on your computer please make sure that you download the 

version compatible with your operating system. The link provided is for windows, 

but you can find version for Linux as well. To install OMNeT++ on your computer, 

first unzip the source code you downloaded in step 2 to your C:/ drive, after doing 

that go to C:/omnetpp-4.4.1 where the source files of the OMNeT++ is located, then 

double click on the mingwenv file and write the following commands: 

$ . setenv 

$ ./configure 

$ make 

Write these commands one by one, which mean that you need to wait until the need 

of the execution of the command before writing the next command. 

❖ Now open the simulator by double clicking on the mingwenv file and write the 

command: 

$ omnetpp 

Figure A.1 shows the way to run OMNeT++ simulator from the mingwenv file. 

https://omnetpp.org/component/jdownloads/download/32-release
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Figure A. 1: Open OMNeT++ 4.4.1 simulator 

❖ The First time you open the simulator, it will ask you to import the latest version of 

the INET library from the Internet. Please click no because INET 2.3 used in our 

simulation in not compatible with the newer versions. 

❖ Now you are ready to import the source code of our Software Defined Mobile 

Networks. First copy the source code from the CD to your workspace folder. 

This folder you must specify in step number 3. 

❖ Now you can import the source code to the OMNeT++ simulator. To do that 

click on File→ Import→ general→ existing projects into workspace as shown 

in Figure A.2 and Figure ??, then click next. 

After you click next, you will see Figure A.4, you need to click browse and go to the 

workspace folder and click on the inet folder, the click finish. Please make sure that 

the ”Add project to working set is unchecked as shown in Figure A.4. 

Now at the left-down corner of the OMNeT++ interface, you will see c/c++ indexer as 

shown in Figure A.5. Please wait for it until it finished before starting the next step. 

Right click on the inet folder shown in the project explorer and click on build project as 

shown in Figure A.6 and Figure A.7 



 

260 
 

 

Figure A. 2:Import the source code of the INET library - step 1 

 

Figure A. 3: Import the source code of the INET library - step 2 
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❖ In the project explorer click on the SoftwreDefinedEPC→ scenario, and you 

will see all the scenarios described in this thesis and more. To run one of them 

click on the folder and right click on the ’.ini’ file→ run as → OMNeT++ 

simulation as shown in Figure A.8. 

❖ In this case, the simulation will run using the default parameters written in the 

’.ini’ file. You can change the simulation parameters by clicking on the ’.ini’ 

file and alter the parameters you want as shown in 

 

Figure A. 4: Import the source code of the INET library - step 3 
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Figure A.5: Import the source code of the INET library - step 

Figure A.9. 

 

Figure A.6: Build the source code of the INET library - step 1 
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Figure A.7: Build the source code of the INET library - step 2 

 

Figure A.8: Run a simulation in OMNeT++ 
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Figure A.9: Change the simulation parameters from the ini file 

 


