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Abstract

In this paper we consider a variation of the Merton’s problem with added stochastic volatility
and finite time horizon. It is known that the corresponding optimal control problem may be
reduced to a linear parabolic boundary problem under some assumptions on the underlying
process and the utility function. The resulting parabolic PDE is often quite difficult to solve,
even when it is linear. The present paper contributes to the pool of explicit solutions for stochastic
optimal control problems. Our main result is the exact solution for optimal investment in Heston
model.

1 Introduction

The optimal control theory for stochastic processes plays a prominent role in financial mathe-
matics and allows to formulate and solve problems in optimal investment, optimal trading, and
other areas related to finance. The seminal paper by Robert Merton [12] was generalized in
several directions. The subsequent research has introduced more realistic and complex asset
dynamics [15], [6], and more realistic market models [10]. Similar mathematical problems arise
in algorithmic trading [2], and market microstructure studies [14].

In this paper we consider a variation of the Merton’s problem with stochastic volatility and
finite time horizon. As shown in [15], the optimal control problem may be reduced to a linear
parabolic boundary problem under some assumptions on the underlying process and the utility
function. Generally, due to the lack of solution smoothness for this boundary problem, one needs
to find a viscosity solution to a non-linear equation.

The resulting parabolic PDE is often quite difficult to solve, even when it is linear. In several
special cases the explicit solutions were obtained, see [11] for the model similar to Heston’s, and
[4] for Chacko-Viceira model.

The present paper contributes to the pool of explicit solutions for stochastic optimal control
problems. Our main result is the exact solution to the optimal control problem within the
framework of the celebrated Heston model [7]. The method of affine representations, as used
in [11], cannot be applied here. To obtain the desired explicit solution we employ the theory
of integral representations and special functions. Quasi-analytical solutions were obtained by
asymptotic and perturbation methods in [6] for optimal control of more general processes.
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The paper is organized as follows: in section 2 we formulate the problem; in section 3 we
discuss the results of [15] on the representation of Bellman function as the solution of the linear
parabolic equation, and extend their results to the case of exponential utility; in section 4 we
present the main results of the paper; in section 5 we analyze the obtained explicit solution; in
Appendix (section 6) we provide some technical asymptotics relations.

2 Formulation of the problem

Let (X,V ) = (Xs, Vs)s≥t be a vector stochastic process, given by the triangular system of
stochastic differential equations

dX/X = µdt+
√
V dB1, Xt = x (2.1)

dV = k(Θ− V )ds+ σ
√
V dB2, Vt = v.

where B1 = (B1
t )s≥t B2 = (B2

t )s≥t are correlated Wiener processes with correlation coefficient
ρ, i.e. 〈B1, B2〉t = ρ t, and µ, k, Θ, σ are some constants. The model for the asset price X
defined by (2.1) is very well known in financial mathematics, and is called the Heston model [7].

In order to solve the system of SDE’s (2.1) one needs to solve the second equation first to
obtain V , and then solve for X. Process V = (Vs)s≥t represents the volatility of asset X. Process
V is a Feller process, also called a CIR (Cox-Ingersoll-Ross) process in financial mathematics [5]
. We assume that the Feller condition 2kΘ > σ2 is satisfied for V . Thus, V is always positive
given V0 > 0.

Let us consider a controlled process W = (Ws)s≥t given by

dW = αdX, Wt = w. (2.2)

where control α = (αs)s≥t is adapted to filtration F≥t = σ{Bs −Bt, s ≥ t} and
∫ T
t
α2
sdt <∞.

Our aim is to find the control on which functional EU(WT ) achieves its maximum

J(w, x, v, t) = sup
α

EU(WT ). (2.3)

Function J(w, x, v, t) is the Bellman function, which is a solution to HJB ( Hamilton-Jacobi-
Bellman) equation. Utility function U(w) can be a power or an exponential utility function. For
the convenience of notation we will omit the indices.

UP (w) =
wγ

γ
, γ < 0, UE(w) = 1− e−cw

c
, c > 0. (2.4)

Note, that the logarithmic utility is a special case of the power utility with γ = 0. This well
known observation can be checked by taking the limit limγ→0(wγ − 1)/γ = log(w) and noting
that utility functions are defined up to an additive constant.

The financial interpretation of the processes above is the following: process W represents the
wealth dynamics of the investor, while control α is the evolution of the investor’s position in the
asset. The utility function U represents the investor’s preferences. Thus, to invest optimally,
one should find the optimal investment rule at each time t such that the expected utility of the
terminal wealth at time T is maximised (2.3).

Function J(w, x, v, t) is the solution of Hamilton-Jacobi-Bellman (HJB) equaion. The solution
of HJB equation in the general case is a non-linear PDE. However, this equation may become
linear under some choice of utility functions. Zariphopoulou [15] has proposed a method based
on viscosity solution technique. Under this method the equation (2.3) may be reduced to a linear
parabolic equation. The method may be applied to systems of stochastic differential equations
of “triangular type”. Under this restriction the drift and the diffusion of the underlying asset X
may depend on the volatility process V in arbitrary way.
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It is much easier to perform qualitative and quantitative analysis of the optimal solution
while provided with the exact formula. Nevertheless, it is not always possible to find an explicit
solution to a linear parabolic PDE. Explicit solutions were obtained in some special cases: see [7]
for the model similar to Heston’s, and [8] for Chacko-Viceira model. Either of the above results
are based on affine representations of solutions. This technique is not applicable in the model
we consider (2.1).

In the present paper we propose a method based on Laplace transform. This technique allows
us to obtain an explicit solution in terms of confluent hypergeometric functions.

3 T. Zariphopoulou’s result and extensions

A quite general model for optimal investment (2.3) with power utility function UP was considered
in [15]. The asset price dynamics X dependent on random process V was given by the triangular
system of stochastic differential equations

dX/X = µ(V, t)dt+ σ(V, t)dB1,

dV = b(V, t)dt+ a(V, t)dB2, (3.1)

where B1 = (B1
t )s≥t B2 = (B2

t )s≥t are correlated Wiener processes with correlation coefficient
ρ.

We assume the necessary restrictions on the coefficients of system (3.1) being satisfied in
order to guarantee the existence of a strong solution (X,V ).

Theorem 3.1 (Zariphopoulou). For process (3.1) and power utility function (2.4) we have the
following representation of Bellman function (2.3)

JP (w, x, v, t) =
wγ

γ
f1/δ(v, t), (3.2)

where

δ = 1 + ρ2 γ

1− γ
, (3.3)

and function f = (v, t) is a solution to the following parabolic boundary value problem

ft +
1

2
a2(v, t) fvv +

(
b(v, t) + ρ

γ µ(v, t)a(v, t)

(1− γ)σ(v, t)

)
fv +

γ

1− γ
δ

2

µ2(v, t)

σ2(v, t)
f = 0, (3.4)

f(v, T ) = 1.

The optimal synthesis is given by

α∗P (w, x, v, t) =
w

x(1− γ)

(
µ(v, t)

σ2(v, t)
+
ρ

δ

a(v, t)

σ(v, t)

fv(v, t)

f(v, t)

)
. (3.5)

To find the optimal control at time t one should substitute the values for processes W and
(X,V ) into synthesis (3.5). Note, that representation (3.2) can be explained as follows. Firstly,
one can separate variables in the Bellman function J(w, x, v, t) = u(w)R(x, v, t). This trick
is well known for the power utility case. Secondly, from the form of the coefficients and the
boundary condition, one can see that the solution does not depend on variable x. Thirdly, after
the above manipulations, the remaining non-linear equation can be linearised by substitution
Rδ(v, t) = f(v, t).

We use similar reasoning as above to extend Zariphopoulou’s formula to the case of exponen-
tial utility. It is our first result in this paper.
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Proposition 3.1. Under exponential utility function UE, the Bellman function (2.3) is repre-
sented by

JE(x,w, v, t) = 1− e−cw

c
f1/δ(v, t), (3.6)

where
δ = 1− ρ2, (3.7)

and function f = f(v, t) is a solution to the following parabolic boundary value problem

ft +
1

2
a2(v, t)fvv +

(
b(v, t)− ρµ(v, t)a(v, t)

σ(v, t)

)
fv −

δ

2

µ2(v, t)

σ2(v, t)
f = 0, (3.8)

f(v, T ) = 1.

The optimal synthesis is given by

α∗E(w, x, v, t) =
1

c x

(
µ(v, t)

σ2(v, t)
+
ρ

δ

a(v, t)

σ(v, t)

fv(v, t)

f(v, t)

)
. (3.9)

Note, that constant δ given by (3.7) and equation (3.8) for f can be obtained from power
utility formula (3.3) and (3.4) by taking limit γ → −∞.

4 The main result

Let us return to the original problem. Consider the Heston model given by (2.1). Using the results
from section 3, in particular substitutions (3.2) and (3.6) from Theorem 3.1 and Proposition 3.1
respectively, we can reduce the original boundary value problem for Bellman function to the
following boundary value problem for function f = f(v, t)

σ2v

2
fvv +

(
kΘ− 1− δ

ρ
µσ − kv

)
fv −

C

v
f + ft = 0. (4.1)

f(v, T ) = 1,

Equation (4.1) is the same for both cases of power and exponential utility functions, with the
only difference in the values of constants δ and C. In the case of power utility function

δ = 1 + ρ2 γ

1− γ
, C = − γ

1− γ
µ2

2
δ. (4.2)

For the exponential utility case

δ = 1− ρ2, C =
µ2

2
δ. (4.3)

Lemma 4.1. The solution of (4.1) is given by

f(v, t) =
Γ(η − λ+ 1/2)

Γ(2η + 1)
e−Ψ(v,t)/2 (Ψ(v, t))

λ
Mλ,η (Ψ(v, t)) , (4.4)

where

Ψ(v, t) =
2kv

σ2
(
ek(T−t) − 1

) , λ = −kΘ

σ2
+

(1− δ)µ
ρσ

, η =

√(
λ+

1

2

)2

+
2C

σ2
, (4.5)

Mλ,η(z) is a Whittaker’s function, and Γ(z) is a Gamma function.
Moreover, we have

fv
f

=
(η + λ+ 1/2)

v

M1+λ,η (Ψ(v, t))

Mλ,η (Ψ(v, t))
. (4.6)

4



Proof. Making substitutions

ṽ =
2kv

σ2
, k(T − t) = τ̃ , f(v, t) = e−λτ̃ ṽλeṽ/2h(ṽ, τ̃) (4.7)

we get the following boundary value problem for h

hṽṽ +

(
−1

4
+

1/4− η2

ṽ2

)
h =

1

ṽ
hτ̃ .

h(ṽ, 0) = ṽ−λe−ṽ/2.

Let G(ṽ; ζ) be the Laplace transform of function h(ṽ, τ̃) with respect to τ̃

G(ṽ; ζ) =

∫ ∞
0

eζτ̃h(ṽ, τ̃)dτ̃ .

By denoting χ(ṽ) = ṽ−1−λe−ṽ/2, one can see that

G′′ +

(
−1

4
− ζ

ṽ
+

1/4− η2

ṽ2

)
G = −χ(ṽ). (4.8)

If made homogeneous, equation (4.8) is a Whittaker equation. Whittaker functions M−ζ,η(ṽ)
and W−ζ,η(ṽ) are two linearly independent solutions of a Whittaker equation. One can check by
substitution that the formula below is the solution of equation (4.8)

G(ṽ; ζ) =
Γ(1/2 + ζ + η)

Γ(1 + 2η)

(
M−ζ,η(ṽ)

∫ ṽ

0

χ(ϕ)W−ζ,η(ϕ)dϕ+W−ζ,η(ṽ)

∫ ∞
ṽ

χ(ϕ)M−ζ,η(ϕ)dϕ

)
.

(4.9)
To proceed further we use formula 6.669.4 from [9]∫ ∞

0

e−
1
2 (a1+a2)t cosh x coth2ν

(
1

2
x

)
I2µ (t

√
a1a2 sinhx) dx =

Γ
(

1
2 + µ− ν

)
t
√
a1a2Γ(1 + 2µ)

Wν,µ(a1t)Mν,µ(a2t),

Re

(
1

2
+ µ− ν

)
> 0, Reµ > 0, a1 > a2.

The above formula from [9] allows us to rewrite (4.9) as

G(ṽ; ζ) =
√
ṽ

∫ ∞
0

∫ ∞
0

ϕ−1/2−λe−
ϕ
2−

ṽ+ϕ
2 coshψ tanh2ζ

(
ψ

2

)
I2η

(√
ṽϕ sinhψ

)
dϕdψ. (4.10)

Applying 6.643.2 from [9]∫ ∞
0

xµ−
1
2 e−αxI2ν

(
2β
√
x
)
dx =

Γ
(
µ+ ν + 1

2

)
Γ(2ν + 1)

β−1e
β2

2αα−µM−µ,ν

(
β2

α

)
, Re

(
µ+ ν +

1

2

)
> 0

(4.11)
to the internal integral in (4.10), we obtain

G(ṽ; ζ) = e−ṽ/2
Γ(η − λ+ 1/2)

Γ(1 + 2η)

∫ ∞
0

e(1−coshψ)ṽ/4 tanh2ζ

(
ψ

2

)(
coshψ + 1

2

)λ
Mλ,η

(
coshψ − 1

2
ṽ

)
2dψ

sinhψ
.

(4.12)
By changing the variable of integration ψ in (4.12) as

2 log

[
tanh

(
ψ

2

)]
= ν,

2dψ

sinhψ
= dν, coshψ − 1 =

2eν

1− eν
,
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we get

G(ṽ; ζ) = e−ṽ/2
Γ(η − λ+ 1/2)

Γ(1 + 2η)

∫ 0

−∞
exp

{
− ṽ

2

eν

eν − 1
+ ζν

}(
1

eν − 1

)λ
Mλ,η

(
ṽ

eν

eν − 1

)
dν.

Inverting the Laplace transform, and using substitutions (4.7), we recover the formula for f(v, t)

f(v, t) =
1

2πi

Γ(η − λ+ 1/2)

Γ(1 + 2η)

∫ N+i∞

N−i∞

∫ 0

−∞
exp

{
− ṽ

2

eν

eν − 1

}
eζ(ν+τ̃)

(
ṽ
e−τ̃

eν − 1

)λ
Mλ,η

(
ṽ

eν

eν − 1

)
dζdν,

(4.13)
where N is a number such that all residues of the integrand are to the right of it.

Using the well-known representation of Dirac function

1

2πi

∫ N+i∞

N−i∞
ezζdζ = δ(z),

and changing the order of integration in (4.13), we get

f(v, t) =
Γ(η − λ+ 1/2)

Γ(1 + 2η)

∫ 0

−∞
δ(ν + τ̃) exp

{
− ṽ

2

eν

eν − 1

}(
ṽ
e−τ̃

eν − 1

)λ
Mλ,η

(
ṽ

eν

eν − 1

)
dν.

(4.14)
Note, that τ̃ ≥ 0. Thus, we can complement the range of integration in (4.14) to the whole
line, and, using the definition of Dirac’s function, namely

∫∞
−∞ δ(ζ − z)g(ζ)dζ = g(z) for any

continuous g, we get

f(v, t) =
Γ(η − λ+ 1/2)

Γ(1 + 2η)
exp

{
− ṽ

2

eτ̃

eτ̃ − 1

}(
ṽ
e−τ̃

eτ̃ − 1

)λ
Mλ,η

(
ṽ

eτ̃

eτ̃ − 1

)
. (4.15)

Finally, by reversing the change of variables (4.7), we receive the main formula (4.4). The
expression (4.6) for fv/f is obtained by using differential rules for Whittaker functions (see [1]).
4

The following theorem is the analogue of the results from section 3 but for Heston’s model.
It gives an exact solution for the optimal control and Bellman function.

Theorem 4.1. For power utility (2.4) and process (2.1) the Bellman function (2.3) is given by

JP (w, x, v, t) =
wγ

γ
f1/δ(v, t), (4.16)

and the optimal control is

α∗P (w, x, v, t) =
w

x(1− γ)

(
µ

v
+
ρ σ

δ

(η + λ+ 1/2)

v

M1+λ,η (Ψ(v, t))

Mλ,η (Ψ(v, t))

)
, (4.17)

where

f(v, t) =
Γ(η − λ+ 1/2)

Γ(2η + 1)
e−Ψ(v,t)/2 (Ψ(v, t))

λ
Mλ,η (Ψ(v, t)) ,

δ = 1 + ρ2 γ

1− γ
, λ = −kΘ

σ2
+

(1− δ)µ
ρσ

, C = − γ

1− γ
µ2

2
δ, η =

√(
λ+

1

2

)2

+
2C

σ2
,

Ψ(v, t) =
2kv

σ2
(
ek(T−t) − 1

) ,
Mλ,η(z) is a Whittaker’s function, and Γ(z) is a gamma function.
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Theorem 4.2. For exponential utility (2.4) and process (2.1) The Bellman function is given by

JE(x,w, v, t) = 1− e−cw

c
f1/δ(v, t), (4.18)

and the optimal control is

α∗E(w, x, v, t) =
1

c x

(
µ

v
+
ρ σ

δ

(η + λ+ 1/2)

v

M1+λ,η (Ψ(v, t))

Mλ,η (Ψ(v, t))

)
, (4.19)

where

f(v, t) =
Γ(η − λ+ 1/2)

Γ(2η + 1)
e−Ψ(v,t)/2 (Ψ(v, t))

λ
Mλ,η (Ψ(v, t)) ,

δ = 1− ρ2, λ = −kΘ

σ2
+

(1− δ)µ
ρσ

, C =
µ2

2
δ, η =

√(
λ+

1

2

)2

+
2C

σ2
,

Ψ(v, t) =
2kv

σ2
(
ek(T−t) − 1

) ,
Mλ,η(z) is a Whittaker’s function, and Γ(z) is a gamma function.

Comment. The model (3.1) with drift µ(Xt, t) = Vt is studied in [11]. For that particular
model the coefficient for f in (3.4) is proportional to v. This is the reason why the affine repre-
sentation is possible in that specific case. Moreover, if the boundary condition is not constant,
the affine representation is not possible again. Our method, on the contrary, allows us to obtain
the required solution for any boundary conditions and for both models, either Heston’s or the
model considered in [11].

5 Analysis

5.1 Analysis of the optimal control

Optimal control in (4.17) and (4.19) is proportional to the sum of two terms: the first term µ/v
corresponds to the static portfolio optimization problem. It it simply the ratio of the instanta-
neous drift to the instantaneous variance and does not depend on time or on the parameters of
the volatility process. The second term

ρ σ

δ

(η + λ+ 1/2)

v

M1+λ,η (Ψ(v, t))

Mλ,η (Ψ(v, t))
(5.1)

represents the hedging of the future opportunity set ( see Merton [13]). This term vanishes in a
number of important special cases:

ρ = 0: no correlation between the two driving Brownian motions,

γ = 0: when the investor has log-utility.

The case of zero volatility of volatility limit of Heston model (σ=0 in (2.1)) turns the asset
process into a process similar to a geometric Brownian motion but with a deterministically time
varying volatility. If in addition we set V0 = Θ in (2.1), then we get a geometric Brownian
motion.

Using the asymptotic results from Appendix 6 in case σ ∼ 0, we get

f(v, t) ∼ 1,
fv(v, t)

f(v, t)
∼

C

kv2
ek(T−t). (5.2)
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Therefore, for σ ∼ 0 the Bellman function is approximately equal to the utility function, namely
JP ∼ UP , JE ∼ UE ; and the optimal controls are

α∗P (w, x, v, t) =
w

x(1− γ)

(
µ

v
+
ρ σ

δP

CP
kv2

ek(T−t)
)
, (5.3)

α∗E(w, x, v, t) =
1

c x

(
µ

v
+
ρ σ

δE

CE
kv2

ek(T−t)
)
, (5.4)

where constants C[−] and δ[−] depend on the choice of utility.

5.2 Hedging interpretation via a bond

Suppose C is given by (4.2) or (4.3). With substitution C/v = r, f(v, t) = g(r, t) we can rewrite
(4.1) as

b2r3

2
grr + hr (m− r) gr − rg + gt = 0,

g(r, T ) = 1,

where

b =
σ√
C
, h = −σ

2

C
(1 + λ), m = − kC

σ2(1 + λ)
.

Using the Feynman-Kac formula we get the following expression for g = g(r, t)

g(r, t) = Ee−
∫ T
t
rsds, (5.5)

where process r = (rs)s≥t is a solution to the following stochastic differential equation

dr = h r(m− r)dt+ br3/2dB2, rt = C/vt. (5.6)

Equation (5.6) describes the well-known 3/2-model of stochastic interest rates (see [8].) In this
model, if r is interpreted as the short rate, value of a zero coupon bond is given by (5.6), see [3].
Hence, the ratio fv/f can be expressed as

fv(v, t)

f(v, t)
=

d

dv
logE

[
e−

∫ T
t
rsds | rt = C/v

]
. (5.7)

Substituting (5.7) into formulae for optimal control (4.17) and (4.19) one can get an interpretation
of the hedging of the future opportunity set via a bond.

6 Appendix. Technical asymptotics relations

It follows from (4.4), that function f = f(v, t) can be written as a function of only Ψ, namely
f = f(Ψ), where Ψ = Ψ(v, t) is given by (4.5). This representation allows us to study the
asymptotics of Bellman function and the optimal control by using the asymptotics of Whittaker
functions Mλ,µ(z) (see, for example, [1]).

Indeed, by using the well known formulae below

Mλ,η(z) ∼ zη+1/2(1 +O(z)), z → 0, Mλ,η(z) ∼
Γ(1 + 2η)

Γ(1/2− λ+ η)
ez/2z−λ, z →∞,

we get

f(v, t) ∼
Γ(1/2− λ+ η)

Γ(1 + 2η)
Ψη+1/2(v, t)

[
Ψλ(v, t) +O(Ψ(v, t))

]
, Ψ(v, t)→ 0, (6.1)
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and
f(v, t) ∼ 1, Ψ(v, t)→∞. (6.2)

For fv(v, t)/f we have

fv(v, t)

f(v, t)
∼

(η + λ+ 1/2)

v
, Ψ(v, t)→ 0, (6.3)

and
fv(v, t)

f(v, t)
∼

2C

σ2

1

vΨ(v, t)
, Ψ(v, t)→∞. (6.4)

Acknowledgements. The authors are grateful to Yury Kabanov for fruitful discussions and
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