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ABSTRACT
Human perception is inherently multisensory involving sight, hear-
ing, smell, touch, and taste. Mulsemedia systems include the com-
bination of traditional media (text, image, video, and audio) with
non-traditional ones that stimulate other senses beyond sight and
hearing. Whilst work has been done on some user-centred aspects
that the distribution of mulsemedia data raises, such as synchro-
nisation, and jitter, this paper tackles complementary issues that
temporality constraints pose on the distribution of mulsemedia
effects. It aims at improving response time interval in networked
event-based mulsemedia systems based upon prior findings in this
context. Thus, we reshaped the communication strategy of an open
distributed mulsemedia platform called PlaySEM to work more effi-
ciently with other event-based applications, such as games, VR/AR
software, and interactive applications, wishing to stimulate other
senses to increase the immersion of users. Moreover, we added light-
weight communication protocols in its interface to analyse whether
they reduce network overhead. To carry out the experiment, we
developed mock applications for different protocols to simulate an
interactive application working with the PlaySEM, measuring the
delay between them. The results showed that by pre-processing sen-
sory effects metadata before real-time communication, and select-
ing the appropriate protocol, response time interval in networked
event-based mulsemedia systems can decrease remarkably.
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1 INTRODUCTION
The advent of novel technologies and innovative devices has al-
lowed the conception of systems in which new ways of interactions
are offered to users. Applications which were seen as sheer sci-
entific fiction not so long ago have started becoming viable and
being experimented by computer science researchers. Mulsemedia
[8, 9] systems fit this evolutionary process by including the com-
bination of traditional media (text, image, video, and audio) with
non-traditional ones that stimulate other senses beyond sight and
hearing, such as smell, touch, and taste.

A mulsemedia application has different characteristics to tradi-
tional multimedia ones. Whilst the latter is dominated by require-
ments stemming from the continuous, temporal nature of audio
and video, mulsemedia applications are ones which integrate these
classic media types with non-traditional ones, such as olfactory,
haptic (wind) and gustatory. The tendency of these media types to
linger (in the atmosphere or on the tongue), the fact that one has lit-
tle control on the directionality of the sensation, means that issues
such as distribution, temporality, production and rendering take on
totally new valences in the context of mulsemedia systems. Thus,
different multi-sensory experiences require different response time.

Although many studies have found synchronisation threshold
times for distinct kinds of sensory effects in different setups such
as [1, 10, 14–16, 24, 25, 27], it is still hard to pinpoint precise num-
bers as straight marks for acceptable delays because it can vary
depending on the context of the interaction. For instance, haptic
delay perception might even be different in discrete and continuous
events in many applications depending on how the operator issues
action commands and what information is fed back [19]. Regard-
less, it is noticeable that delay is more sensitive to some kinds of
effects than others and it requires prompt responses. Therefore,
identifying temporal thresholds that permeates the mulsemedia
chain is valuable from the perspective that it provides developers
with guidelines for the design of responsive solutions.

Whilst work has been done on some user-centred aspects that
the distribution of mulsemedia data raises, such as synchronisation
and jitter, this paper tackles complementary issues that tempo-
rality constraints pose on the distribution of mulsemedia effects.
Specifically, this paper aims at improving response time interval
in networked event-based mulsemedia systems based upon the
findings of Saleme et al. [20]. The authors evaluated the integra-
tion between a gestural interactive application and a distributed
mulsemedia platform called PlaySEM [21] for rendering sensory
effects such as wind, lighting, and vibration, specified in MPEG-V,
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in the users’ environment. This platform allows developers to add
multi-stimuli in their own multimedia applications by reusing the
PlaySEM Sensory Effects Renderer (SER), the central component of
the PlaySEM architecture. However, its implementation also raises
questions and its authors highlighted four major aspects needed to
improve response time interval in networked event-based mulseme-
dia systems: (i) repetitive actions of sending metadata scripts in real
time; (ii) high number of exchanged messages; (iii) use of wireless
network; and (iv) use of suitable programming languages for pro-
cessing sensory effect metadata described in MPEG-V. Concretely,
we focus on aspects (i) and (ii) in this paper.

To carry out the experiment, we redesigned the communication
strategy of the PlaySEM SER in order to work more efficiently with
other event-based applications, such as games, VR/AR software,
and interactive applications. Furthermore, we added support to
other commonly used lightweight communication protocols re-
currently used in CPS (Cyber-Physical Systems) such as CoAP
(Constrained Application Protocol) and MQTT (Message Queue
Telemetry Transport), and Websocket, apart from UPnP (Universal
Plug and Play) which is natively supported by the PlaySEM SER,
to analyse whether they reduce network overhead. For evaluating
the performance, we developed mock applications for each added
protocol to simulate an interactive application working with the
PlaySEM SER over a network, measuring the delay between them.
The results showed that by pre-processing sensory effects metadata
before real-time communication, and selecting the appropriate pro-
tocol, response time interval in networked event-based mulsemedia
systems can decrease remarkably.

This paper is organised as follows. Section 2 discusses related
work. Section 3 depicts the new architecture of the solution, describ-
ing its elements, as well as its behaviour in terms of exchanging
mulsemedia metadata and events through the network. In Section
4, we describe our experiment design and setup. Section 5 shows
the results and raises some discussion contrasting prior findings to
this one. Finally, Section 6 presents our final considerations.

2 RELATEDWORK
A mulsemedia system can work in two ways: (i) timeline or (ii)
event-based. In timelinemode, physical devices (or actuators), which
deliver sensory effects to stimulate other senses, are synchronised
with a continuous medium in the virtual world, i.e. movies, songs,
and so on. In event-basedmode, actuators can be activated by events
that occur in the virtual world, such as an explosion in a game, or
as a response to a stimulus from the real world captured through
sensors by the virtual world. Ordinary issues in this kind of sys-
tem are inextricably linked to the transmission, production and
presentation of multiple signals which increase the complexity of
developing mulsemedia systems considerably [27].

Instances of timeline mulsemedia systems are SEMP [26], Sensi-
ble Media Simulator [11] and Multimedia Multisensorial 4D Plat-
form [3], whereas Sensorama [4] and PlaySEM [21, 22] are instances
of both timeline and event-based ones. What all these mulsemedia
systems have in common is that they support metadata described
in MPEG-V as an input which is processed and then converted into
commands for different actuators to render the effects in the users’
environment.

Created by Cho [4], Sensorama aims at supporting both timeline
and event-based sensory effects when proposing the use of sensory
effect metadata combined with a list of events in which can be
triggered on demand. Apart from other mulsemedia solutions, it is
centred on 4D platforms for movie theatres, and their actuators are
part of a CAVE (Cave Automatic Virtual Environment) composed
of professional apparatus. Notwithstanding, its pre-defined set of
sensory effects created by the author are embedded in the applica-
tion, which restrains its expansion, not allowing, for instance, the
use of other event-based application combined with it.

Saleme and Santos [21] envisaged and implemented a networked
scenario where users could take advantage of sensory effects in
their own multimedia applications by integrating them to a dis-
tributed mulsemedia platform. Following that, Saleme et al. [20]
evaluated an integration between an interactive application where
users interact by gestures with the PlaySEM platform. In contrast
to local applications, networked ones introduce a delay due to the
payload’s exchange. Though the authors did not carry out user
evaluations, they drew attention to crucial technical aspects such
as network delay and processing time which could impact the QoE
(Quality of Experience) of users. For Eg and Raaen [6], network
and computational limitations can indeed interfere with the reali-
sation of users’ expectation. Accordingly, in the context of remote
delivery of mulsemedia components, issues such as delay, jitter,
and synchronisation have been indicated as a research challenge in
mulsemedia applications [13].

The findings pointed out in [20] revealed an elapsed time of
27ms to 67ms on average for the whole process of integrating a ges-
tural interactive application to the PlaySEM, covering recognition,
packaging, transmission, metadata processing, and execution time
(exact point in which the devices are activated). As mentioned in
the Introduction (Section 1), the authors highlighted four issues that
such applications posed, but also suggested that a CPS approach
could be an alternative in this context.

Indeed, it is worth noticing that the arrangement of the environ-
ment in [20] had similar characteristics to CPS. According to [17],
CPS are “engineered systems that are built from, and depend upon, the
seamless integration of computational and physical components.” The
authors dealt with two systems that integrated multimodal sensing,
processing, communication, and controlling, into a physical envi-
ronment and connected them to the cyber world. Therefore, it is
possible to consider that multimedia/mulsemedia and CPS share
many common features when physical processes and computa-
tions affect each other. It allows us to take the benefits of a mixed
approach, taking into account some of the issues that have been
discussed in CPS and also mulsemedia systems. In fact, Duchon et
al. [5] have approached multimedia systems from this perspective,
calling them Cyber-Physical Multimedia Systems (CPMS).

3 ARCHITECTURE AND COMMUNICATION
STRATEGY

Once this paper works towards the findings of Saleme et al. [20],
we review what the PlaySEM platform and the gestural interactive
application are within this Section. Moreover, we describe what
changes were made to improve the response time interval. It in-
cludes a modification in the PlaySEM’s architecture to support



Improving response time interval in networked event-based mulsemedia systems MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

other communication protocols, and in its operation mode in order
to reduce repetitive tasks and the number of exchanged messages
through the network, thus creating a new communication strat-
egy. We refer to that gestural interactive application as GIA to
distinguish it from the general term “interactive application” that
could be whatever application which accepts any kind of input
from humans as it runs.

3.1 PlaySEM and GIA
PlaySEM1 is an open source platform written in Java and has three
main decoupled components: (i) the Sensory Effects (SE) Video
Player, (ii) the Sensory Effects Renderer (SER), which processes
MPEG-V metadata and prepares commands to control the devices,
and (iii) the Microcontroller module, responsible for receiving the
aforementioned commands and driving different actuators. The
PlaySEM SER is the central subsystem when it comes to dealing
with processing sensory effects. It can be used not only by the SE
Video Player but by several different applications, from multimedia
players to any event-based application such as games, VR/AR soft-
ware, and interactive applications. To make it possible, the PlaySEM
SER provides a UPnP interface through the network to allow other
applications to interact with it.

By taking advantage of the PlaySEM SER facilities, Saleme et al.
[20] integrated a GIA with the PlaySEM SER. In order to bind the
applications and create a new interactive system, they used two out
of several services supplied by the PlaySEM SER: SetSem, to receive
and process MPEG-V metadata scripts, and SetPlay, to indicate that
a previously processed script can be executed giving rise to sensory
effects. Figure 1 depicts the original communication strategy.

The original communication strategy works as follows. After
capturing a gesture with the Kinect (RGB-D sensor), the applica-
tion recognises it (Recognition task). Then, the GIA packages the
MPEG-V metadata script to be sent to the PlaySEM SER UPnP Ser-
vice (Packaging task). The message SetSem containing an MPEG-V
script related to the recognised gesture is then transmitted through
the network (Transmission task). Subsequently, the PlaySEM SER
Controller converts the received MPEG-V script into commands for
handling the physical devices (Metadata processing task). Following
that, the PlaySEM SER sends a confirmation message to the GIA to
signal that the script was processed and can be executed (Transmis-
sion task). After receiving it, the GIA transmits the message SetPlay
to indicate that the execution can start (Transmission task). Finally,
the script is executed (Execution task) and then sensory effects are
rendered in the user’s environment (Rendering task).

3.2 Service layer and communication protocols
Compared to local applications whereby processing is only on one
side, networked ones insert a delay due to message exchanging.
On the one hand, provided that developers use the PlaySEM SER,
they do not have to be concerned about rendering sensory effects.
On the other hand, the number of messages and the way they are
exchanged over the network can be an issue. Bearing this in mind,
we expanded the architecture of the PlaySEM SER to support differ-
ent ways of communications in terms of: (i) reducing the number

1PlaySEM available at: https://github.com/estevaosaleme/PlaySEM_SERenderer

Figure 1: Original communication strategy adapted from
[20].Whenever a gesture occurs, this sequence is performed.

of unnecessary real-time communication between client applica-
tions and the PlaySEM SER, (ii) reducing the number of exchanged
messages through the network, and (iii) adding lightweight commu-
nication protocols from the CPS domain in order to reduce response
time.

Based on a feature of the PlaySEM platform that requires pub-
lish/subscribe messaging pattern to process asynchronous mes-
sages, we selected the protocols CoAP, MQTT, and WebSocket,
apart from UPnP which is natively supported by the PlaySEM SER.
Considering that UPnP puts together a set of protocols such as
HTTP, SOAP and XML on top of IP, we aim at answering if other
protocols can improve response time interval in networked event-
based mulsemedia applications provided that they efficiently carry
less information, thereby reducing the time for communication.

CoAP is a transfer protocol designed for use with constrained
environments, that is, systems with restricted conditions [23]. It is
primarily used in IoT and CPS which require lightweight protocols
to communicate with limited devices and networks. CoAP is based

https://github.com/estevaosaleme/PlaySEM_SERenderer
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upon Representational State Transfer (REST) architecture providing
a request/response and publish/subscribe interaction with very low
overhead. CoAP messages are exchanged asynchronously between
CoAP endpoints. It runs on UDP, however, it has its own reliability
mechanism when it is needed a message confirmation. According to
[23], it could also be used over other transports such as SMS, TCP,
or SCTP. In [12], the authors reported that their framework, entitled
as Californium CoAP, showed 33 to 64 times higher throughput
than high-performance HTTP Web servers. Thus, besides meet-
ing the requirements of the PlaySEM platform, it has a promising
performance in distributed systems.

Just like CoAP, MQTT is a lightweight protocol thought to work
with resource-constrained devices [2]. However, it is limited to a
publish/subscribe interaction based on topics and runs on top of
TCP/IP. The protocol itself is designed to be simple. A client can
publish messages to the broker and subscribe to topics for receiving
events. The protocol has three qualities of service for message
delivery. These are: At most once, with a low guarantee, in which
message loss can occur; At least once, with guaranteed delivery
but duplications can happen; and Exactly once, in which is assured
that a message will arrive just once. The intrinsic characteristic of
MQTT makes it a minimised protocol to reduce network overhead.

Unlike CoAP and MQTT, the Websocket protocol was not de-
signed originally for constrained devices. It aims atmaking available
a mechanism for browser-based applications, such as games, simul-
taneous editing tools, user interfaces exposing server-side services
in real time, and so on, that need two-way communication with
servers that do not rely on opening multiple HTTP connections
[7]. In contrast to polling, it does not have to repeat HTTP head-
ers in each request, attenuating communication overhead. It helps
developers to build scalable real-time web applications through a

Figure 2: The new architecture of the PlaySEM platform.

single socket over the internet via browser [18]. The fact of many
applications nowadays are implemented in browsers, and most of
them provide support to Websockets, makes it a requirement for
the PlaySEM SER to incorporate.

Despite the fact that these protocols work differently, the services
provided by the PlaySEM SER are the same. Figure 2 shows the
new architecture of the PlaySEM platform highlighting the dashed
rectangle called Communication broker. It allows client applications
to choose the best interface for them not based on performance
alone, but also on their requirements. For instance, manipulating
Websockets on web applications requires less effort than UPnP. The
new PlaySEM architecture makes an abstraction of the services
and includes an interface for each protocol used for accessing these
services. It also enables the PlaySEM SER to extend the range of
supported protocols without changing its services.

In Table 1 the PlaySEM’s components and its new architecture
are presented. It is introduced in blocks representing important
features of the whole platform. Notice that the Mulsemedia User
andWind, Lighting, and Vibration devices play a role in Figure 2 but
they are not components of the architecture.

Table 1: Description of the new architecture of the PlaySEM
platform and its main blocks.

Block Description
Input devices When developing an event-based application,

such as a game or an interactive application,
events have to be captured. It represents any
sensor such as an RGB-D camera or a joystick.

Timeline-based ap-
plication

It is a kind of application guided by a timeline
such as video or music players.

Event-based appli-
cation

It is a kind of application whereby events cap-
tured from the physical world are conveyed
to the virtual world and sparks an action.

Communication
interface

It is a component responsible for communi-
cating with external applications.

Communication
broker

It is a mediator. It receives messages from the
sender and translates them internally to call
services.

Service base It contains the implementation of each service
exposed by the protocols.

UPnP service It enables a UPnP interface for clients to con-
sume the services.

CoAP service It enables a CoAP interface for clients to con-
sume the services.

MQTT service It enables an MQTT interface for clients to
consume the services.

Websocket service It enables a Websocket interface for clients to
consume the services.

Metadata parser It is responsible for converting MPEG-V meta-
data scripts into commands for the devices.

MPEG-V metadata
library

It is a library for marshalling and unmar-
shalling MPEG-V XML files into Java objects.

Serial connectivity It supports serial connectivity with the de-
vices.
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3.3 Communication strategy
In the experiment related in [20], the authors recommended avoid-
ing the tasks of repackaging, retransmission and reprocessingMPEG-
V metadata script in real-time to reduce the overhead and improve
response time in the integration of the GIA and the PlaySEM SER.
In their application, once a gesture is recognized, a new message
with a metadata should be send to the PlaySEM SER, even for a
gesture which has been recognized previously. It injects an unnec-
essary overhead whenever a gesture occurs, and some of the tasks
depicted in Figure 1 can indeed be made more efficient.

To improve the communication strategy between the GIA, or any
other event-based application, and the PlaySEM SER, a two-step
process was created. The goal is to reduce repetitive tasks and the
number of exchanged messages through the network. As an alter-
native to the services SetSem and SetPlay (see 3.1), two new services
called SetSemEvent and SetPlayEvent were included in the origi-
nal implementation of the PlaySEM SER to deal specifically with
event-based applications. Fundamentally, they carry the parameter
eventId to make distinction between the scripts.

In the first step, the GIA and the PlaySEM SER have to handshake
soon after loading in order to transmit and process all scripts before
the user starts interacting with the GIA. This process is shown in
Figure 3.

After initialising, the GIA packages all the MPEG-V metadata
scripts to be sent to the PlaySEM SER Communication Broker (Pack-
aging task). Following that, it starts a loop in order to send and pro-
cess each script. The message SetSemEvent containing an MPEG-V

Figure 3: Step one - modified communication strategy for
loading MPEG-V scripts and pre-processing them.

script related to the recognised gesture and an identification (even-
tId) is transmitted through the network (Transmission task). Once
received, the PlaySEM SER Communication Broker calls the Play-
SEM SER Controller to parser the script. Subsequently, the PlaySEM
SER sends a confirmation message to the GIA to signal that the
event was processed and can be executed (Transmission task).

In the second step, both applications behave almost as they did
in the original strategy, however, without needing to repackage,
retransmit and reprocess MPEG-Vmetadata script in real-time. This
process is shown in Figure 4.

After capturing a gesture with the Kinect (RGB-D sensor), the
GIA recognises it (Recognition task). Every gesture is related to one
or more action, which is considered an event for the PlaySEM SER.
Each of them is identified with an eventId. Thus, after recognising
a gesture, the GIA just sends the message SetPlayEvent to indicate
that the execution can start (Transmission task). Finally, the script is
executed (Execution task), and then sensory effects are rendered in
the user’s environment (Rendering task). As can be seen, message
traffic is automatically decreased, once there is no more need to
perform as many tasks as depicted in Figure 1.

4 EXPERIMENTAL DESIGN AND SETUP
The new communication strategy previously described was used to
measure the efficiency of the communication between the GIA and
the PlaySEM SER in real-time. The main goal was to identify the
effect on response time from the reduction of operations, and from

Figure 4: Step two - optimised strategy. New sequencing
whenever a gesture occurs.
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the protocols added to the PlaySEM SER. The performance of the
protocols was measured with regard to time in which a message is
transferred and confirmed in a wired network Transmission task.

4.1 Method
As reported in Section 3.3, there are two steps for the integration
between the applications. In the first one, MPEG-V scripts associ-
ated to each user interaction are loaded in the PlaySEM SER and
pre-processed when the GIA is loading. It is done just once. Thus,
we are not interested in this response time because it could be done
without the users realise it, for instance, at the time in which a
splash screen is exhibited. Therefore, we focus on the second step,
in which a real-time process is required and most of the critical
operations are performed. Also, it can be directly compared to the
previous approach described in [20].

The following tasks were performed in order to carry out the
quantitative experiment.

(1) Computer A was set up to run mocks of the GIA whereas
computer B configured to run the PlaySEM SER. The dif-
ference between the mocks and the GIA is that the former
does not recognises gestures because we are not interested
in improving recognition time in this paper.

(2) Computer A and B were connected to a router R, which was
isolated from the internet and other devices.

(3) Fifty iterations of the message SetPlayEvent were triggered.
Four mock applications (one for each protocol) were created
to simulate the GIA keeping the same MPEG-V scripts (ac-
tions) as in [20]. Once there were 8 actions (ACT02..ACT09),
the total number of iterations was 400. We did not distin-
guish them for the SetPlayEvent because the length is the
same for each action and there was no transmission before
it as in [20].

(4) The communication between the applications over the net-
work was captured and its log stored in a text file.

(5) The set of data was converted into tabular sheets. For the
CoAP protocol communication, the difference between the
messageCON sent by the client on the endpoint SetPlayEvent
and the message ACK sent by the server was measured. For
MQTT, the difference between Publish Message on the topic
SetPlayEvent and Publish Complete. For UPnP, the difference
between POST on the service SetPlayEvent and HTTP/1.1 200
OK was measured. Finally, for Websocket, the difference be-
tween Websocket Text containing a JSON (JavaScript Object
Notation) object SetPlayEvent and [ACK] was also measured.

(6) To analyse the experimental results, we summarised the data
set in measures of central tendency and variability.

4.2 Hardware and software setup
The hardware setup used in the experimental evaluation consists
of two computers laptop and a router as mentioned in the previous
Section. The first one, running the mocks for the GIA, is an Intel
Core i7-6700HQ, 16GB RAM, 254GB SSD, running on Windows 10
64 bits. The second one, running the modified PlaySEM SER, is an
Intel Core i7-3537U, 4GB RAM, 128 GB SSD, running on Windows
8.1 64 bits. They were connected via cable to the router Wireless
Dual Band AC750 Archer C20.

For experiment, four applications simulating the GIA were cre-
ated, one for each protocol. It was necessary to do it due to the
way each protocol works. Nevertheless, the MPEG-V scripts were
precisely the same. For COAP, there was a limitation when trying
to send the script through the message SetSemEvent owing to its
payload limitation. Thus, in that case, the PlaySEM SER received the
scripts through Websocket and operated the service SetPlayEvent
through CoAP. It is not a problem because the SetSemEvent time is
not needed for the real-time conversation.

The PlaySEM SER was running under a simulated mode, which
signifies that the output of the commands for playing sensory ef-
fects is exhibited on screen, instead of delivering it to the devices.
For the modification of the PlaySEM SER to support the protocols
CoAP, MQTT, and Websocket, open source implementations for
Java such as Californium CoAP framework 2.0.0-M4, Moquette 0.10,
and Embedded Jetty 9.4.0.v20161208, were respectively used. Also,
we kept Cling Core 2.0.1 for UPnP. CoAP ran on its Confirmable
Message mode whereas MQTT on its Exactly once. For UPnP and
Websocket the QoS level was set to default. A parameter was de-
fined in the PlaySEM SER’s configuration file to indicate which
protocol would run in each instance.

Wireshark 2.4.2 was used to capture the communication between
the mock and the PlaySEM SER applications over the network
throughout the experiment. We present and discuss the acquired
results in the next Section.

5 RESULTS AND DISCUSSION
Table 2 presents some measures of central tendency and variability
for the service SetPlayEvent for each protocol. We calculated the
mean, the standard error, the standard deviation, and the minimum
and maximum value. Considering the mean, CoAP is the faster,
followed by MQTT, UPnP, and Websocket. Regarding the standard
error of the mean, the data set indicated little variability between
sample means for each protocol. The standard deviation is higher
for faster protocols. Since the mean is rather low for them, any
data point far from the mean, or outliers, will affect the standard
deviation severely. The minimum and maximum values agree on
that, that is, they show how further the extreme data points are
from the mean. Nevertheless, the data points are not spread out
over a broader range of values as shown in Figure 5.

Figure 5 delineates the upper and lower boundaries for the out-
liers and does not indicate any pattern for them along the rounds.
To the extent that the rounds proceeded, response time decreased
slightly for UPnP. As a result, it could indicate that UPnP is faster as
far as it goes, however, the frequency of the data points remained
steady after the 200th round. Also, we can not conclude that UPnP
is slower at the beginning of the rounds because the reason is un-
known, and it was probably affected by extraneous variables. On
the contrary, the frequency held relatively steady for CoAP, MQTT
and Websocket.

5.1 Protocols timing and selection
Unlike timeline applications, in which some sensory effects can
start before a particular scene, it is hard to know deterministically
when an event will occur during the execution of an event-based
one, such as a game, a VR/AR software, or any other interactive
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Table 2: Central tendency and variability of the experiment’s data set.

Protocol Mean (ms) SE Mean (ms) StDev (ms) Minimum (ms) Maximum (ms)
CoAP 1.436 0.074 1.481 0.617 16.628
MQTT 3.288 0.087 1.740 1.937 33.251
UPnP 8.393 0.145 2.894 2.222 36.496

Websocket 51.210 0.121 2.430 41.162 74.037

Figure 5: Dispersion of data for each protocol after 400 rounds.

application. Thus, synchronism must be tight, and response to an
interaction should be given as soon as possible in order to avoid
delays which might negatively impact users’ expectation.

By adding lightweight communication protocols to the Play-
SEM SER, we expected to cut down time wasting when integrating
an event-based application to it via network. Figure 7 depicts the
comparative mean between the protocols CoAP, MQTT, UPnP, and
Websocket in the experiment. Since we created a new way of inte-
gration (see Figure 4) whereby MPEG-V scripts are pre-processed
at the handshake of the applications (see Figure 3), it was needed
to compare just the mean time from the service SetPlayEvent.

The results revealed that the selection of the protocol will have
an influence on performance. Protocols commonly used in CPS
such as CoAP and MQTT tend to deliver a response in a quite
short time being the first one twice faster. Compared to CoAP,
UPnP was 4 times slower, but it still remains as an option working

around 8ms. Websocket hit 51ms on average. If on the one hand, it
makes the process of integration easier for web applications, on the
other hand, it could be infeasible for them to work efficiently. More
research is needed with regard to the impact of delay in event-based
mulsemedia systems for different types of sensory effects. In other
words, this time could be reasonable for lighting but not for scent.
However, the jury is still out on the issue of to what degree this
kind of delay plus devices’ delivery time will impact QoE of users.

In the event that developers devise their own communication
protocol, they might enhance even more the response time inter-
val in networked event-based mulsemedia systems. However, we
are interested in scenarios where interoperability and reusability
prevails and developers could take advantage of the PlaySEM SER
to expand their multimedia applications to mulsemedia systems
through industrial standards. Thereby, our conclusion is that devel-
opers are recommended to use CoAP for improving transmission
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Figure 7: Comparative mean between the protocols CoAP,
MQTT, UPnP, and Websocket in the experiment.

response time in similar cases when developing non-web applica-
tions. Despite the fact that Websockets are slower compared to the
other protocols, we suggest its use when integrating mulsemedia
web applications to the PlaySEM SER because the other protocols
are not natively supported by web browsers and the total time in
our integration’s approach is equivalent of the total time pointed
out in [20].

5.2 Communication strategy optimisation
Many tasks had to be performed in the original communication
strategy reported in [20] from Recognition task until Execution task

(see Section 3.1). By changing the communication strategy, we
expected to reach a more efficient way of communication between
the GIA and the PlaySEM SER, leading to a faster response. Though
there has to be a loading step before the real-time conversation, it
is not an issue. The upside is that pre-processing MPEG-V scripts
prior to the required instantaneous communication will make the
process slighter. The focus was on eliminating repetitive actions
of packaging and sending scripts in real time and cutting down on
the high number of exchanged messages.

Figure 6 compares the original to the current optimised commu-
nication strategy (see Section 3.3). The total time was defined by
the sum (

∑
) of each interaction step ti represented by T for each

protocol p starting from i = 1 until n. Tp represents the total time
for the protocols CoAP (c), MQTT (m), UPnP (u), and Websocket
(w). For the protocols, the range of time represented in t5p was
defined by the lower and upper outlier. Recognition time on the
current strategy inherited values from [20] since we created mock
applications to simulate the GIA.

As can be noticed in Figure 6, t2, t3, and t4 were suppressed of the
current strategy because the pre-processing of scripts was previ-
ously done when loading the applications. Therefore, we eliminated
the time for the tasks Packaging task, the first Transmission task,
andMetadata processing task. By doing so, the gain over the original
strategy was between 19ms and 46ms. Furthermore, taking into
account the time for the Transmission task obtained from the use
of other protocols, t5 decreased for the protocols CoAP and MQTT,
held steady for UPnP, and increased significantly for Websocket. In
spite of rising the latter, Tw was not severely affected by it in com-
parison with the original strategy due to the prior suppression of t2,
t3, and t4. Thereby, for Tc, Tm, and Tu there was a striking difference

Figure 6: Time comparison between the original communication strategy reported in [20] and our approach whenever an
event/gesture is detected.
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to the original Tu strategy whereas Tw is considered equivalent in
terms of superior threshold.

6 CONCLUSION
This work proposed a newway for improving response time interval
in networked event-based mulsemedia systems from the change of
the communication strategy between an event-based application
and PlaySEM, an open source platform for rendering sensory effects
over network. We contrasted the original communication strategy
proposed by Saleme et al. [20] to our approach. In summary, the
outcome demonstrated that pre-processing MPEG-V scripts for
real-time communication in networked event-based mulsemedia
systems could cut down time wasting significantly.

In addition, the use of lightweight communication protocols
such as CoAP and MQTT boost response time up to four times
compared to the native way of PlaySEM’s communication based
on UPnP. The worst case for CoAP, MQTT, and UPnP working
over the new communication strategy outperforms the best case
of the original strategy. All in all, the time for Websocket in the
new strategy is virtually the same as the original strategy regarding
superior threshold.

Despite employing the scenario of Saleme et al. [20], the re-
sults found through this research could be taken into consideration
whenever working with any event-based mulsemedia application
that describes its sensory effects in the standard MPEG-V and has
a wish to make reuse of the PlaySEM platform for stimulating
other senses beyond sight and hearing. Applications such as games,
VR/AR software, and interactive applications fit well in this context.

Future work includes finding the influence of computational
delays on the user’s experience by identifying to what extent they
are supported. Moreover, there is an open room for expanding
the PlaySEM platform to make it even more flexible on the side
of the devices by adding support to other connectivity protocols
such as Ethernet 802.3, 802.11, Bluetooth, and Zigbee besides serial
connectivity.
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