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ABSTRACT 12 

The interfacial bond behavior plays a significant role in determining the load transfer 13 

performance of anchor systems. Numerous analytical models have been proposed to 14 

investigate the pull-out behavior of grouted anchors, but no closed-form three-dimensional 15 

solution has been derived for the pull-out response of anchor systems with respect to 16 

interfacial bond failure. By considering the bond failure at the anchor-mortar interface, this 17 

paper presents a three-dimensional analytical model for predicting the pull-out response of 18 

grouted anchors based on a tri-linear bond-slip model. Specifically, the closed-form 19 

expressions are derived for the axial displacement, axial stress, and shear stress of the anchor  20 
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and concrete, the load-displacement relationship of the anchor, and the interfacial shear stress 23 

at various possible pull-out stages. Furthermore, the load-displacement relationships and 24 

interfacial shear stress distributions are analyzed for different bond lengths during the whole 25 

pull-out process. The validity of the three-dimensional model is verified with experimental 26 

results collected from the literature. Through a systematic parametric study, the effect of bond 27 

length on the ultimate load and load-displacement response is investigated with the proposed 28 

model. It is shown that the ultimate load increases with the increase of bond length 29 

significantly before a critical bond length is reached but thereafter at a smaller and steady rate. 30 

Moreover, a longer bond length improves the ductility of the anchorage and the snapback 31 

phenomenon in the load-displacement response is dependent on the bond length, while the 32 

intensity of snapback increases with an increase in bond length. The proposed model is 33 

capable of better understanding the debonding mechanism and can be employed by engineers 34 

and researchers to predict the ultimate load capacity and load-displacement response of 35 

anchor systems. 36 

 37 
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Nomenclature     
     
A1-9, B1-9, C1-9, D1-9  coefficients  wc axial displacement of concrete 
a radius of anchor  wm axial displacement of mortar 
b inner radius of concrete  ws axial displacement of anchor 
Ec Young’s modulus of concrete  Δ axial displacement at loading point 
Es Young’s modulus of anchor  δ slip at anchor-mortar interface 
G shear modulus of mortar  δ0 slip at the free end 
Gc shear modulus of concrete  δ1 slip at anchor-mortar interface  
Gs shear modulus of anchor   corresponding to τu 
h outer radius of concrete  δ2 slip at anchor-mortar interface  
L bond length   corresponding to τr 
Lcri critical bond length  δ3 a hypothetical slip which is much  
Le elastic length   larger than δ2 
Lf frictional length  δL slip at the loaded end 
Ls softening length  μc Poisson’s ratio of concrete 
Lsc critical softening length  μs Poisson’s ratio of anchor 
Lsn minimum bond length that   σc axial stress of concrete 
 exhibits snapback  σs axial stress of anchor 
Lu minimum bond length for   τ shear stress at anchor-mortar  
 elastic-softening-frictional    interface 
 stage to appear  τc shear stress of concrete 
P pull-out load  τm shear stress of mortar 
Pe elastic ultimate load  τr frictional strength  
Pemax ultimate load obtained by   τs shear stress of anchor 
 experiments  τu shear strength  
Pmax ultimate load  λ, φ, β, ζ eigenvalues 

 41 

1. Introduction 42 

Anchor systems have been widely applied in practical engineering, such as building 43 

retrofitting, slope strengthening, anti-floating engineering, tunnel supporting and mining [1-4]. 44 

In the past several decades, much research has been conducted to predict the potential failure 45 

modes of anchor systems [5-8]. It was found that the failure of an anchor system may occur 46 

in the anchor, in the concrete, at the anchor-mortar or mortar-concrete interface, or in a 47 

combined modes. However, numerous studies have found that the bond failure at the anchor-48 

mortar interface is more common [9-12]. With reference to this failure mode, Cook [5] 49 
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proposed a uniform bond stress model by assuming a constant shear stress along the bond 50 

length. However, this assumption is only valid for a short bond length since the shear stress 51 

distribution along the bond length becomes more non-uniform with the increase of bond 52 

length. Therefore, the determination of the accurate shear stress distribution at the anchor-53 

mortar interface is crucial for predicting the ultimate load capacity of grouted anchors. 54 

With regard to field and laboratory pull-out tests, considerable investigations have been 55 

undertaken on the effects of geometric and material parameters on the interfacial bond 56 

behavior of grouted anchors [9, 13-20]. Moreover, various bond-slip models have been 57 

proposed to study the interfacial behavior of grouted anchors. Based on experimental results, 58 

Benmokrane et al. [9] presented a tri-linear bond-slip model to describe the bond behavior of 59 

the anchor-mortar interface. Ma et al. [21] proposed a non-linear bond-slip model to 60 

characterize the bolt-grout interface, which is in good agreement with the results of pull-out 61 

tests. By taking into account the unloading effect, Zheng and Dai [22] introduced a slightly 62 

simplified bond-slip model of the bar-grout interface to study the pull-out response of FRP 63 

anchors using a numerical method. 64 

Extensive analytical studies on the full-range pull-out behavior of grouted anchors have 65 

also been carried out and reported in the literature. An analytical method was proposed by 66 

Yang et al. [23] for analyzing the pull-out behavior of grouted anchors due to interfacial 67 

debonding under two boundary conditions. It was found that the interfacial debonding crack 68 

may occur at the loading end, the free end or both of them, depending on the axial stiffnesses 69 

of the anchor and concrete. Furthermore, a series of analytical studies were conducted to 70 

predict the ultimate pull-out capacity of grouted anchors due to the shear failure of mortar 71 
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[24], the cone failure of concrete, and interfacial debonding [25]. For FRP anchors embedded 72 

in steel tubes with cement grout, Wu et al. [26] presented a theoretical model to predict the 73 

maximum pull-out load of FRP anchors based on a tri-linear bond slip model. Zheng and Dai 74 

[27] derived a closed-form analytical solution to predict the pull-out response of FRP ground 75 

anchors for linear elastic, softening, and frictional zones. Using a tri-linear bond-slip model, 76 

Ren et al. [28] derived an analytical solution to study the mechanical behavior and debonding 77 

process of grouted rockbolts at different loading stages. To investigate the load transfer 78 

mechanism of grouted cable bolts, an analytical study was conducted by Chen et al. [29], in 79 

which the interfacial shear stress distribution along the bond length during the entire pull-out 80 

process was analyzed. Based on a tri-linear bond-slip model, Ma et al. [30] provided an 81 

analytical model for rockbolts using the slip-strain relationship of rockbolts and considering 82 

the pre- and post-yielding behavior of the bolt material. By taking into consideration the end 83 

effect of embedded anchors, Saleem and Tsubaki [31, 32] and Saleem [33] proposed a shear-84 

lag analytical model and developed a new type of two-layer anchor-infill assembly that can 85 

be employed to evaluate the pull-out load-displacement response of post-installed anchors 86 

under monotonic and cyclic loading. Saleem and Nasir [34] presented an analytical model to 87 

evaluate the bond performance at the steel-concrete interface and to predict the pull-out 88 

response of steel anchor bolts subjected to impact loading. More recently, Saleem [35] 89 

presented a new analytical model that can be employed to simulate the load-displacement 90 

response of steel bolts subjected to cyclic pull-out push-in loading. In the model, the effect of 91 

concrete crushing was incorporated. Further, when the multiple possibilities related to crack 92 

propagation were considered, a multiple crack extension model was presented by Saleem [36] 93 
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for predicting the pull-out response of anchor bolts subjected to impact loading. Huang et al. 94 

[37] proposed a one-dimensional closed-form solution. With the solution, the load capacity 95 

and deformation response at any pull-out stage of grouted anchors could be evaluated using a 96 

tri-linear bond-slip model. By taking into account the temperature effect, Lahoual et al. [38] 97 

presented a nonlinear shear-lag analytical model for the pull-out behavior of chemical 98 

anchors, which allows for predicting the stress field and fire resistance duration when any 99 

temperature distribution is applied. 100 

Moreover, current theoretical studies for debonding of FRP plates from the concrete 101 

substrate can provide some references on the bond behavior between the anchor and mortar. 102 

Recently, based on a bilinear bond-slip model, Caggiano et al. [39] proposed a closed-form 103 

analytical solution for describing the full-range load-slip behavior of FRP plates bonded to a 104 

brittle substrate, in which the whole interfacial debonding processes for long and short bond 105 

lengths were presented in detail. Based on the pioneer work by Caggiano et al. [39], Vaculik 106 

et al. [40] presented a full-range analytical solution using the bilinear bond-slip model, which 107 

allows for residual friction used for simulating the load-displacement response at various 108 

stages during the evolution of debonding. 109 

Although numerous studies on the mechanical behavior of grouted anchors have been 110 

carried out, analytical studies in three dimensions are relatively few in the literature. Prieto-111 

Muñoz et al. [41] presented an axisymmetric solution for the anchor and the adhesive layer 112 

based on an elastic analysis, in which the embedded end of the anchor was regarded to be 113 

bonded or debonded. Furthermore, a viscoelastic analytical model was developed by Prieto-114 

Muñoz et al. [42] to predict the creep behavior of anchor systems. Upadhaya and Kumar [43] 115 
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proposed an axisymmetric model to predict the pull-out capacity and stress field of adhesive 116 

anchors with the eigenfunction expansion method, which was found to be in good agreement 117 

with the finite element method and experimental results.  118 

Despite significant research efforts on the pull-out behavior of grouted anchors, the load 119 

transfer performance and interfacial bond failure process of grouted anchors have not been 120 

fully understood. (1) In most of the aforementioned analytical work [21-40], a simple one-121 

dimensional model was employed, in which the effect of Poisson’s ratio of each phase in 122 

anchor systems is not taken into consideration. However, due to the axisymmetric nature of 123 

anchorages, the study on the pull-out response of anchors is, in essence, a three-dimensional 124 

axisymmetric problem [41]. Thus, a three-dimensional axisymmetric model is needed to 125 

provide a more complete and precise prediction on the load capacity and stress field of 126 

anchor systems during the whole pull-out process for the purpose of design. (2) In the 127 

previous three-dimensional axisymmetric analytical models [41-43], the bond between the 128 

anchor and adhesive is considered to be perfect and the materials in the anchor system are 129 

assumed to be either elastic (anchor), elastic or viscoelastic (adhesive), or rigid (concrete). In 130 

these studies, stress based failure criteria are employed to estimate the ultimate load capacity. 131 

However, the postpeak stress and displacement fields are not considered. Moreover, the full-132 

range pull-out load-displacement response is not taken into account in these analyses. It is 133 

seen from the previous studies that the nonlinear pull-out behavior of anchors is particularly 134 

important for the design of anchor systems and the interfacial debonding process has a 135 

significant effect on the pull out behavior [27-29, 37]. Furthermore, the deformation of the 136 

concrete substrate plays a pivotal role in the pull-out capacity and load-displacement response 137 
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of grouted anchors [2, 15, 16, 19, 20, 23-25]. However, to the best of our knowledge, a full-138 

range closed-form three-dimensional axisymmetric solution for the nonlinear pull-out 139 

response of grouted anchors has not been reported so far. 140 

The purpose of this paper is to develop a three-dimensional analytical model, in which a 141 

tri-linear bond-slip model representing the bond behavior of the anchor-mortar interface is 142 

employed to predict the full-range failure process and pull-out response of grouted anchors. 143 

Afterwards, the analytical model is validated with laboratory pull-out test results and the 144 

effect of bond length on the ultimate load and load-displacement curves is discussed. 145 

 146 

2. Fundamental assumptions and governing equations 147 

A typical anchor system is schematically shown in Fig. 1, where the anchor is embedded 148 

in concrete. L , a , b , and h  are the bond length, the anchor radius, the inner and outer radii 149 

of the concrete, respectively. sE , sG , sµ , cE , cG , and cµ  denote Young’s modulus, the shear 150 

modulus, and Poisson’s ratio of the anchor and concrete, respectively. As shown in Fig. 1, the 151 

embedded end of the anchor system at 0z =  remains completely free, while the outer 152 

boundary of concrete at r h=  is fixed. In the present study, the following assumptions are 153 

introduced. 154 

(1) The anchor, mortar, and concrete are treated as elastic materials. Mortar with shear 155 

modulus G  is only subjected to shear. 156 

(2) The crack occurs only at the anchor-mortar interface, initiates at the loaded end, and 157 

propagates towards the free end of the anchorage until complete debonding. 158 

(3) The bending effect of concrete is neglected and the radial deformations of the anchor and 159 
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concrete are assumed to be zero. 160 

(4) The end effect of the embedded anchor is not considered. 161 

A traditional tri-linear bond-slip model representing the bond behavior of the anchor-162 

mortar interface has been widely used in several studies [9, 21, 26-30, 37], as depicted in Fig. 163 

2(a). In the frictional zone of the model, the interfacial shear stress remains constant [9]. 164 

However, it should be noted that in the present work, due to the limitation of interfacial 165 

boundary conditions, the solutions for the stress and displacement fields in the frictional zone 166 

cannot be derived when the interfacial shear stress remains constant. Therefore, a slip 3δ  is 167 

assumed in the present study, as shown in Fig. 2(b). When the value of 3δ  is far greater than 168 

that of 2δ , the interfacial shear stress in the frictional zone can be regarded as constant. For 169 

this purpose, 3δ  is taken as 100 times 2δ  so that the bond-slip model shown in Fig. 2(b) can 170 

approximately represent the traditional tri-linear bond-slip model shown in Fig. 2(a).  171 

The tri-linear bond-slip model shown in Fig. 2(b) consists of three branches: (1) the first 172 

branch (linearly ascending to ( 1δ , uτ )) represents the elastic behavior of the interface; (2) the 173 

second branch (linearly descending to ( 2δ , rτ )) characterizes the softening behavior of the 174 

interface; and (3) the third branch (linear descending to ( 3δ , 0 )) corresponds to the frictional 175 

component. The shear stress at the anchor-mortar interface τ  can be mathematically 176 

expressed in terms of the shear slip δ  as 177 

 

1
1

2 1
1 2

2 1 2 1

3
2 3

3 2 3 2

for 0

for

for

u

u r u r

rr

τ δ δ δ
δ

τ τ τ δ τ δτ δ δ δ δ
δ δ δ δ

τ δτ δ δ δ δ
δ δ δ δ


≤ ≤


 − −

= − + ≤ ≤ − −


− + ≤ ≤
− −

  (1) 178 

where uτ  and rτ  denote the bond and frictional strengths at the anchor-mortar interface and 1δ  179 
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and 2δ  are the relative shear slips corresponding to uτ  and rτ , respectively. 180 

According to assumption (1), the mortar is only subjected to pure shear. For a cylindrical 181 

mortar element shown in Fig. 3, the equilibrium of shear forces in the z direction yields [1] 182 

 1 1d dm
m

r
r

τ
τ

= −   (2) 183 

where mτ  is the shear stress in mortar at distance r from the z axis. Integrating Eq. (2) gives 184 

 m
a
r

τ τ=  (3) 185 

From assumption (3), all deformations are confined to the axial direction and the 186 

displacement of mortar in the radial direction is zero. According to Hook’s law in shear, the 187 

shear stress in the grout mτ  can be expressed in terms of the axial displacement of the grout 188 

( )mw r  as 189 

 ( )d
d
m

m

w r
G

r
τ = −  (4) 190 

Substituting Eq. (3) into Eq. (4) gives 191 

 ( ) dd m
a rw r
G r
τ

= − ⋅   (5) 192 

Integrating Eq. (5) with respect to r  from a  to b  yields 193 

 ( ) ( ) lnm m
a bw r b w r a
G a
τ

= − = = −  (6) 194 

From assumption (2), the mortar-concrete interface is considered to be fully bonded and the 195 

displacements of mortar and concrete are the same at the mortar-concrete interface. Thus, it 196 

follows from Eq. (6) that the shear slip at the anchor-mortar interface δ  can be expressed as 197 

 ( ) ( ) ( ) ( ) lns m s c
a bw r a w r a w r a w r b
G a
τδ = = − = = = − = −   (7) 198 

where sw  and cw  denote the axial displacements of the anchor and concrete, respectively. 199 

From the continuity conditions at the anchor-mortar and mortar-concrete interfaces, the 200 
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shear stress in concrete at the mortar-concrete interface ( )c r bτ =  can be expressed as 201 

 ( ) ( )c s
a ar b r a
b b

τ τ τ= = − = =   (8) 202 

where sτ  is the shear stress in the anchor. Substituting Eq. (7) into Eq. (1) yields 203 

 
( ) ( )

( ) ( )
( ) ( )

1 2

3 3

, , for elastic zone

, , for softening zone

, , for frictional zone

s c

s c

s c

K w r a z w r b z

K w r a z w r b z K

K w r a z w r b z

τ

δ

 = − =  = − = − = −   
− = − = −   

  (9) 204 

where 205 

 
1

1

ln
u

K a b
G a

δ
τ

=
+

; 1
2 1

1

ln
u r

K a b
G a

δ δ
τ τ

=
−

−
−

; 2 1
2

u r

u r

K δ τ δ τ
τ τ

−
=

−
; 3

3 2

1

ln
r

K a b
G a

δ δ
τ

=
−

−
 (10) 206 

Based on the strain-displacement relationships for axisymmetric problems and 207 

assumption (3), the constitutive law in the axial direction can be used to describe the 208 

respective relationships between the axial displacement iw , the axial stress iσ , and the shear 209 

stress iτ  210 

 
( )

( )( )
1

1 1 2
i i i

i
i i

E w
z

µ
σ

µ µ
− ∂

=
+ − ∂

; 
( )2 1

i i
i

i

E w
r

τ
µ

∂
=

+ ∂
  (11) 211 

With Eq. (11), the governing equation for the anchor and concrete can be expressed as 212 

 
2 2

2 2

2(1 ) 1 0
1 2

i i i i

i

w w w
z r r r

µ
µ

− ∂ ∂ ∂
+ + =

− ∂ ∂ ∂
  (12) 213 

where i  is equal to s  for the anchor and c  for concrete. 214 

 215 

3. Analytical solutions 216 

The various possible pull-out cases during the propagation process of debonding are 217 

shown in Fig. 4, where 0δ  and Lδ  are the slips at the free end and loaded end, respectively. It is 218 

noted that the value of uL  will be defined later by Eq. (60). The failure process under the pull-219 



 12 

out load P  may exhibit elastic, elastic-softening, elastic-softening-frictional, softening-220 

frictional, and frictional for a long bond length [27, 28]. However, when the bond length L  is 221 

not long enough, the softening stage rather than the elastic-softening-frictional stage may 222 

occur [29, 37, 40]. In the current study, the analytical solutions for the displacement and 223 

stress fields of the anchor system under the two scenarios are derived by solving the 224 

governing Eq. (12) with boundary conditions. 225 

 226 

3.1. Elastic stage 227 

Under a small pull-out load, there is no softening or friction along the anchor-mortar 228 

interface. In this case, the interface behaves elastic. Based on separation of variables, the 229 

general solutions of Eq. (12) for the elastic stage can be expressed as 230 

 ( ) ( ) ( ) ( )0, sinh coshs sw r z A z B z J d rλ λ= +     (13)231 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0, sinh coshc c c c cw r z C z D z Y d r J d h J d r Y d hλ λ= + −         (14) 232 

where A , B , C , D , λ , sd , and cd  are coefficients to be determined with the boundary 233 

conditions. Based on the assumption that the outer boundary of concrete is fixed, the 234 

displacement of concrete can be simplified to Eq. (14) by satisfying ( ), 0cw r h z= = . 235 

Substitution of Eqs. (13) and (14) into Eq. (11) yields 236 

 ( ) ( ) ( ) ( )1 0, cosh sinhs sr z E J d r A z B zσ λ λ λ= +    (15) 237 

 ( ) ( ) ( ) ( )1, sinh coshs s s sr z d G A z B z J d rτ λ λ= − +    (16) 238 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 0 0 0 0, cosh sinhc c c c cr z E C z D z Y d r J d h J d r Y d hσ λ λ λ= + −        (17) 239 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 1 0, sinh coshc c c c c c cr z d G C z D z Y d r J d h J d r Y d hτ λ λ= − + −        (18) 240 

where 241 



 13 

 ( )2 1
1 2

i
i

i

d
µ

λ
µ

−
=

−
; 

( )
( )( )1

1
1 1 2

s s

s s

E
E

µ
µ µ

−
=

+ −
; 

( )
( )( )2

1
1 1 2

c c

c c

E
E

µ
µ µ

−
=

+ −
 (19) 242 

The boundary conditions are as follows 243 

 ( )0, 0s z rσ = = ; ( )0, 0c z rσ = = ; ( )
0

2 , d
a

sr z L r r Pπ σ⋅ = =∫  (20) 244 

 ( ) ( ) ( ) ( ) ( ), , , ,c s s c
b r b z r a z z K w r a z w r b z
a

τ τ τ= = = = − = − = − =    (21) 245 

With these boundary conditions, the following coefficients are obtained as 246 

 0A C= = ; 
( ) ( )12 sinh s s s

PB
a L d G J d a

λ
π λ

= ; 1D N B= ; and (22) 247 

 ( )
( ) ( ) ( ) ( )

1
1

1 0 1 0

s s s

c c c c c c

ad G J d a
N

bd G Y d b J d h J d b Y d h
=

−  
 (23) 248 

The coefficient λ  can be solved by combining Eqs. (13), (14), (16), (18), and (21) as 249 

 ( ) ( ) ( ) ( ) ( ) ( ){ }1 0 1 0 0 0 0s s s s c c c cd G J d a K J d a N Y d b J d h J d b Y d h= − −     (24) 250 

From Eq. (24), a series of roots can be obtained. For simplicity, only the first root is used in 251 

the elastic stage [41, 42]. With λ  determined, the value of id  can be obtained from Eq. (19). 252 

The shear stress τ  can be obtained from the condition (21) as 253 

 ( ) ( )
( )

cosh
2 sinh
P z

z
a L

λ λ
τ

π λ
=   (25) 254 

If the displacement of the anchor at the loading point denotes ∆ , the load-displacement 255 

relationship can be obtained by substituting 0r =  and z L=  into Eq. (13) as 256 

 ( ) ( )12
tanhs s sad G J d a

P L
π

λ
λ

∆
=   (26) 257 

As the load P increases, this stage ends when the shear stress τ  at the loaded end reaches uτ . 258 

Substituting ( ) uz Lτ τ= =  into Eq. (25) gives the elastic ultimate load eP  259 

 ( )2 tanhu
e

aP Lπ τ λ
λ

=   (27) 260 

It is noted that eP  represents the pull-out load before the interface starts softening. 261 
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 262 

3.2. Elastic-softening stage 263 

In this stage, softening first appears at the loaded end and the peak shear stress moves 264 

towards the free end. Thus, the whole anchor-mortar interface consists of an elastic zone of 265 

length eL  and a softening zone of length sL . With the boundary and continuous conditions in 266 

this stage, the general solutions of Eq. (12) for the elastic zone can be written as 267 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 2 2 0, sinh cosh sinh coshs s sw r z A z B z J d r A z B z J d rϕλ λ ϕ ϕ= + + +         (28) 268 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 0 0 0 0

2 2 0 0 0 0

, sinh cosh

sinh cosh

c c c c c

c c c c

w r z C z D z Y d r J d h J d r Y d h

C z D z Y d r J d h J d r Y d hϕ ϕ ϕ ϕ

λ λ

ϕ ϕ

= + −      
 + + −    

   (29) 269 

where 1A , 1B , 1C , 1D , 2A , 2B , 2C , 2D , ϕ , sdϕ , and cdϕ  are unknown coefficients and 270 

 ( )2 1
1 2

i
i

i

dϕ

µ
ϕ

µ
−

=
−

  (30) 271 

Substituting Eqs. (28) and (29) into Eq. (11) gives 272 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
1 0 1 1

1 0 2 2

, cosh sinh

cosh sinh
s s

s

r z E J d r A z B z

E J d r A z B zϕ

σ λ λ λ

ϕ ϕ ϕ

= +  
+ +  

 (31)273 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
1 1 1

2 2 1

, sinh cosh

sinh cosh
s s s s

s s s

r z d G A z B z J d r

d G A z B z J d rϕ ϕ

τ λ λ

ϕ ϕ

= − +  
− +  

 (32) 274 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 1 1 0 0 0 0

2 2 2 0 0 0 0

, cosh sinh

cosh sinh

c c c c c

c c c c

r z E C z D z Y d r J d h J d r Y d h

E C z D z Y d r J d h J d r Y d hϕ ϕ ϕ ϕ

σ λ λ λ

ϕ ϕ ϕ

= + −      
 + + −    

 (33) 275 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 0 1 0

2 2 1 0 1 0

, sinh cosh

sinh cosh

c c c c c c c

c c c c c c

r z d G C z D z Y d r J d h J d r Y d h

d G C z D z Y d r J d h J d r Y d hϕ ϕ ϕ ϕ ϕ

τ λ λ

ϕ ϕ

= − + −      
 − + −    

 (34) 276 

The boundary conditions in the elastic zone [0, ]eL  are as follows 277 

 ( )0, 0s z rσ = = ; ( )0, 0c z rσ = = ; ( ),s e ur a z Lτ τ− = = =   (35) 278 

 ( ) ( ) ( ) ( ) ( ), , , ,c s s c
b r b z r a z z K w r a z w r b z
a

τ τ τ= = = = − = − = − =    (36) 279 
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It can be seen from the conditions (21) and (36) that ϕ  is in fact another root of Eq. (24). 280 

Based on the superposition principle and separation of variables, the general solutions of Eq. 281 

(12) for the softening zone can be expressed as 282 

 ( ) ( ) ( ) ( )3 3 0 2, sin cos s
sw r z A z B z I d r Kβ β= + +     (37)283 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 0 0 0 0, sin cos c c c c
cw r z C z D z K d r I d h I d r K d hβ β  = + −       (38) 284 

 ( ) ( ) ( ) ( )1 0 3 3, cos sins
s r z E I d r A z B zσ β β β= −    (39)285 

 ( ) ( ) ( ) ( )3 3 1, sin coss s
s sr z d G A z B z I d rτ β β= +    (40) 286 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 3 0 0 0 0, cos sin c c c c
c r z E C z D z K d r I d h I d r K d hσ β β β  = − −      (41) 287 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 1 0 1 0, sin cosc c c c c
c cr z d G C z D z K d b I d h I d b K d hτ β β  = − + +      (42) 288 

where 3A , 3B , 3C , 3D , β , sd , and cd  are unknown coefficients and 289 

 ( )2 1
1 2

ii

i

d
µ

β
µ

−
=

−
  (43) 290 

The continuous and boundary conditions in the softening zone in [0, ]sL  are as follows 291 

 ( )0s zσ =  and ( )0sw z =  are continuous; ( ), 0s ur a zτ τ− = = =  (44) 292 

  ( )
0

2 , dr
a

s sr z L r Pπ σ⋅ = =∫   (45) 293 

 ( ) ( ) ( ) ( ) ( )1 2, , , ,c s s c
b r b z r a z z K w r a z w r b z K
a

τ τ τ= = = = − = = − = −    (46) 294 

With the conditions (35), (36), (44), (45), and (46), the unknown coefficients 1A , 1B , 1C , 295 

1D , 2A , 2B , 2C , 2D , 3A , 3B , 3C ,  and 3D  can be obtained as 296 

 
( )

2
1 cosh e

NB
Lλ

= ; 
( )

3
2 cosh e

NB
Lϕ

=  (47) 297 

 1 2 1 2 0A A C C= = = = ; 1 1 1D N B= ; 2 4 2D N B=  (48) 298 

 ( )
( ) ( ) ( ) ( )3 12 1

3
1

tanhtanh s s es s e
s s

N d J d a LN d J d a L
A

d I d a
ϕ ϕ ϕλβ

λ ϕ

 
= + 

  
  (49) 299 
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 ( )3
1

u
s s

s

B
d G I d a

τ
= − ; 3 5 3C N A= ; 3 5 3D N B=    (50) 300 

where 301 

 
( ) ( )

( )
( )

2
11

2
1

1

1

u u
s s

s s ss

s s

s s

K
d G J d ad G I d a

N
d J d a

d J d a

ϕ ϕ

ϕ ϕ

τ τ
− −

=
−

; ( )3 2 2
1

u
s s

s

N K N
d G I d a

τ
= − −  (51) 302 

 
( )

( ) ( ) ( ) ( )
1

4
1 0 1 0

s s s

c c c c c c

ad G J d a
N

bd G Y d b J d h J d b Y d h
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

=
 − 

 (52)303 

 
( )

( ) ( ) ( ) ( )
1

5
1 0 1 0

s s
s

c c c c c
c

ad G I d a
N

bd G K d b I d h I d b K d h
= −

 + 
 (53) 304 

Substituting Eqs. (37), (38), (40), and (42) into the condition (46), the remaining unknown 305 

coefficient β  can be obtained by solving the following equation 306 

 ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 0 5 0 0 0 0 0s s s c c c c
sd G I d a K I d a N K d b I d h I d b K d h − − − =    (54) 307 

It is noted that only one root can be obtained from Eq. (54) as the modified Bessel 308 

function is a non-oscillating function. According to Eqs. (32), (36), (40), and (46), the shear 309 

stress τ  in the elastic-softening stage can be expressed as 310 

 
( ) ( ) ( )

( ) ( )
1 1

2 1

cosh

cosh
s s s

s s s

z d G B z J d a

d G B z J d aϕ ϕ

τ λ

ϕ

=

+
 in the elastic zone [0, ]eL  (55) 311 

 ( ) ( ) ( ) ( )3 3 1sin coss s
sz d G A z B z I d aτ β β= − +    in the softening zone [0, ]sL  (56) 312 

Substituting the condition (45) into Eq. (39) yields the pull-out load P  313 

 
( ) ( ) ( )1

3 3

2
cos sin

s s
s

s s

ad G I d a
P A L B L

π
β β

β
= −     (57) 314 

The displacement at the loading point ∆  is obtained from Eq. (37) as 315 

 ( ) ( )3 3 2sin coss sA L B L Kβ β∆ = + +   (58) 316 

Thus, the critical softening length scL  can be obtained by solving d d 0sP L =  . If the 317 
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ultimate load maxP  occurs in this stage, it can be obtained by substituting scL  into Eq. (58). As 318 

a matter of fact, as the softening zone propagates, two scenarios may occur. On one hand, the 319 

elastic-softening-frictional stage occurs when τ   at the loaded end reduces to rτ . Thus, sL  can 320 

be obtained by substituting ( )s rz Lτ τ= =  into Eq. (56) as 321 

 ( ) ( ) ( )3 3 1sin coss s
s s s rd G A L B L I d aβ β τ+ = −     (59) 322 

On the other hand, the softening stage occurs when sL  extends to L  and τ   at the loaded 323 

end is still greater than rτ . At the critical situation, softening appears at the free end and 324 

friction begins at the loaded end. Substituting sL L=  into Eq. (59) yields 325 

 1 arccos r
u

u

L L τ
β τ

 
= =  

 
  (60) 326 

where uL  represents the minimum bond length for the elastic-softening-frictional stage to 327 

appear. It is easily shown that when the bond length is greater than uL , the elastic-softening-328 

frictional stage occurs. Otherwise, the softening stage will appear.  329 

 330 

3.3. Elastic-softening-frictional stage 331 

At this stage, frictional zone appears and extends along the interface. If the length of the 332 

frictional zone is fL , the solutions in the elastic-softening stage, i.e., Eqs. (28) to (34), (37) to 333 

(43), and (47) to (56) are still valid by replacing L  with fL L− . 334 

The general solutions of Eq. (12) for the frictional zone can be expressed as 335 

 ( ) ( ) ( ) ( )4 4 0 3, sin cos s
sw r z A z B z I d rζζ ζ δ= + +     (61)336 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 0 0 0 0, sin cos c c c c
cw r z C z D z K d r I d h I d r K d hζ ζ ζ ζζ ζ  = + −       (62) 337 

 ( ) ( ) ( ) ( )1 0 4 4, cos sins
s r z E I d r A z B zζσ ζ ζ ζ= −    (63) 338 

 ( ) ( ) ( ) ( )4 4 1, sin coss s
s sr z d G A z B z I d rζ ζτ ζ ζ= +    (64) 339 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 4 4 0 0 0 0, cos sin c c c c
c r z E C z D z K d r I d h I d r K d hζ ζ ζ ζσ ζ ζ ζ  = − −      (65) 340 

( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 1 0 1 0, sin cosc c c c c
c cr z d G C z D z K d b I d h I d b K d hζ ζ ζ ζ ζτ ζ ζ  = − + +      (66) 341 

where 4A , 4B , 4C , 4D , ζ , sd ζ , and cd ζ  are unknown coefficients and 342 

 ( )2 1
1 2

ii

i

d ζ µ
ζ

µ
−

=
−

  (67) 343 

The boundary and continuous conditions in the frictional zone [0, ]fL  are as follows 344 

 ( )0s zσ =  and ( )0sw z =  are continuous; ( ), 0s rr a zτ τ− = = =  (68) 345 

 ( )
0

2 , dr
a

s fr z L r Pπ σ⋅ = =∫  (69) 346 

 ( ) ( ) ( ) ( ) ( )3 3, , , ,c s s c
b r b z r a z z K w r a z w r b z
a

τ τ τ δ= = = = − = = − = −    (70) 347 

With the conditions (68) to (70), the coefficients 4A , 4B , 4C , and 4D are obtained as 348 

 
( )
( ) ( ) ( )1

4 3 3
1

cos sin
s s

s ss s

d I d a
A A L B L

d I d aζ ζ

ζ
β β

β
= −   ; 4 6 4C N A=   (71) 349 

 ( ) ( )4 3 3 2 3sin coss sB A L +B L Kβ β δ= + − ; 4 6 4D N B= ; and (72) 350 

 
( )

( ) ( ) ( ) ( )
1

6
1 0 1 0

s s
s

c c c c c
c

ad G I d a
N

bd G K d b I d h I d b K d h

ζ ζ

ζ ζ ζ ζ ζ
= −

 + 
 (73) 351 

Based on the condition (70), ζ  can be obtained by solving the following equation 352 

 ( ) ( ) ( ) ( ) ( ) ( ){ }1 3 0 6 0 0 0 0 0s s s c c c c
sd G I d a K I d a N K d b I d h I d b K d hζ ζ ζ ζ ζ ζ ζ − − − =    (74) 353 

The shear stress τ  can be obtained by combining the condition (70) with Eq. (64) 354 

 ( ) ( ) ( ) ( )4 4 1sin coss s
sz d G A z B z I d aζ ζτ ζ ζ= − +     (75) 355 

Substituting the condition (69) into Eq. (63), the load P  can be expressed as 356 

 
( ) ( ) ( )1

4 4

2
cos sin

s s
s

f f

ad G I d a
P A L B L

ζ ζπ
ζ ζ

ζ
 = −    (76) 357 

The expression of ∆  can be obtained from Eq. (61) with 0r =  and fz L=  358 

 ( ) ( )4 4 3sin cosf fA L B Lζ ζ δ∆ = + +   (77) 359 
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Substituting ( )0 rzτ τ= =  into Eq. (75) gives the relationship between fL  and sL  360 

 ( )1 4
s s

s rd G I d a Bζ ζ τ− =   (78) 361 

It can be seen that the load-displacement relationship can be obtained from Eqs. (76) to 362 

(78). If maxP  occurs in this stage, it can be obtained with the Lagrange multiplier method. In 363 

particular, since the interfacial shear stress in the frictional zone remains constant, the pull-364 

out load P  can also be expressed in a simple manner from Eq. (57) 365 

 
( ) ( ) ( )1

3 3

2
2 cos sin

s s
s

r f s s

ad G I d a
P a L A L B L

π
π τ β β

β
= + −     (79) 366 

where 3A  and 3B  are shown in Eqs. (49) and (50). The pull-out load P  reaches the ultimate 367 

load maxP  when the derivative of Eq. (79) is zero with respect to fL , i.e., 368 

 ( ) ( ) ( ) ( ) ( )
2 2

2 1 3 11 tanh 1 tanh
cos

r
s s e s s e

s s

N d J d a L N d J d a L
G Lϕ ϕ

τλ ϕ
β

   − + − =      (80) 369 

The relationship between eL  and sL  is shown in Eq. (59), which can be further simplified as 370 

 ( ) ( ) ( ) ( ) ( )
( )

3 12 1 tanhtanh cos
sin

s s es s e u s r

s s

N d J d a LN d J d a L L
G L

ϕ ϕ ϕλ τ β τ
λ ϕ β β

−
+ =   (81) 371 

It is noted that, when the ultimate load occurs in the elastic-softening-frictional stage, 372 

the value of ‘ eLϕ ’ is usually greater than 2. The reason for this is that ϕ  is the second root of 373 

the oscillation equation (24). Thus, substituting ( )tanh 1eLϕ =  into Eqs. (80) and (81) gives 374 

 ( ) ( ) ( )
2

2 1

tanh 1
cos

r
e

s s s s

L
N d G J d a L

τλ
β

= −   (82) 375 

 ( ) ( )
( ) ( )

( )
( )

3 1

2 1 2 1

cos
tanh

sin
s su s r

e
s s s s s s

N d J d aL
L

N d G J d a L N d J d a
ϕ ϕτ β τ

λ λ
β β ϕ

 −
= − 

  
  (83) 376 

Combination of Eq. (82) with Eq. (83) yields 377 

 ( )
( ) ( )

( )
( ) ( ) ( )

2

3 12

2 1 2 1 2 1

cos
1

sin cos
s su s r r

s s s s s s s s s s

N d J d aL
N d G J d a L N d J d a N d G J d a L

ϕ ϕτ β τ τλ
β β ϕ β

 −
− = − 

  
  (84) 378 
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Thus, when the ultimate load occurs in the elastic-softening-frictional stage, the 379 

softening length sL  can be calculated from Eq. (84) with a numerical solver and the 380 

corresponding elastic length eL  can be obtained from Eq. (82) or (83). It is interesting to note 381 

that both the elastic length and the softening length are constant, independent of the bond 382 

length. In other words, if an anchorage reaches its ultimate load in the elastic-softening-383 

frictional stage, only the frictional length fL  increases with the increase of bond length. This 384 

indicates that there exists a critical bond length, i.e., once the critical bond length is reached, 385 

the increased bond length only affects the frictional length. The effect of bond length on the 386 

ultimate load is detailed in section 6. 387 

When the slip at the free end continues to increase, the interfacial shear stress at the free 388 

end reaches the shear strength. In this case, the elastic zone vanishes, the whole bond length 389 

is composed of the softening and frictional zones, and the interface enters the softening-390 

frictional stage. 391 

 392 

3.4. Softening stage  393 

Based on the above discussions, the softening stage occurs after the elastic-softening 394 

stage when uL < L . In this stage, the whole interface behaves softening. Therefore, the 395 

solutions for the softening zone Eqs. (37) to (43) are still valid by replacing 3A , 3B , 3C ,  and 396 

3D  with the unknown coefficients 5A , 5B , 5C ,  and 5D , respectively. The boundary conditions 397 

in this stage are as follows 398 

 ( )0, 0s z rσ = = ; ( )0, 0c z rσ = = ; ( )
0

2 , d
a

sr z L r r Pπ σ⋅ = =∫   (85) 399 

 ( ) ( ) ( ) ( ) ( )1 2, , , ,c s s c
b r b z r a z z K w r a z w r b z K
a

τ τ τ= = = = − = = − = −    (86) 400 
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With the conditions (85) and (86), the coefficients 5A , 5B , 5C ,  and 5D  are given by 401 

 5 5 0A C= = ; 
( ) ( )5

12 sins s
s

PB
ad G L I d a

β
π β

= − ; 5 5 5D N B=  (87) 402 

The shear stress τ  can be obtained by substituting the condition (86) into Eq. (40) 403 

 ( ) ( ) ( )5 1coss s
sz d G B z I d aτ β= −  (88) 404 

Substituting 0r =  and z L=  into Eq. (37), the load-displacement relationship can be obtained 405 

as 406 

 
( ) ( )2

12 tan s s
s

PK
a L d G I d a

β
π β

∆ = −   (89) 407 

 408 

3.5. Softening-frictional stage 409 

As the debonding process propagates, the softening-frictional stage occurs at the end of 410 

the elastic-softening-frictional or softening stage. In a similar manner, the solutions for the 411 

softening and frictional zones, i.e., Eqs. (37) to (43) and (61) to (67) are still valid if 3A , 3B , 412 

3C , 3D , 4A , 4B , 4C ,  and 4D  are replaced with the unknown coefficients 6A , 6B , 6C , 6D , 7A , 413 

7B , 7C ,  and 7D , respectively. The boundary conditions in the softening zone [0, ]sL  are as 414 

follows 415 

 ( )0 0s zσ = = ; ( )0, 0c z rσ = = ; ( ),s s rr a z Lτ τ− = = =  (90) 416 

 ( ) ( ) ( ) ( ) ( )1 2, , , ,c s s c
b r b z r a z z K w r a z w r b z K
a

τ τ τ= = = = − = = − = −    (91) 417 

Based on the above conditions, the coefficients 6A , 6B , 6C ,  and 6D  can be obtained as 418 

 6 6 0A C= = ; 
( ) ( )6

1cos
r

s s
s s

B
d G L I d a

τ
β

= − ; 6 5 6D N B=  (92) 419 

The boundary and continuous conditions in the frictional zone [0, ]fL  are as follows 420 
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 ( )0s zσ =  and ( )0sw z =  are continuous; ( )
0

2 , dr
a

s fr z L r Pπ σ⋅ = =∫  (93) 421 

 ( ) ( ) ( ) ( ) ( )3 3, , , ,c s s c
b r b z r a z z K w r a z w r b z
a

τ τ τ δ= = = = − = = − = −    (94) 422 

The remaining unknown coefficients can be obtained from the conditions (93) and (94) as 423 

 
( ) ( )

( )
1

7 6
1

sins s
s

s s

d L I d a
A B

d I d a

ζ

ζ

β β

ζ
= − ; ( )7 2 3

1

r
s s

s

B K
d G I d a

τδ= − −    (95) 424 

 7 6 7C N A= ; 7 6 7D N B=    (96) 425 

The shear stress τ  can be formulated from the boundary conditions (91) and (94) as 426 

 ( ) ( ) ( )6 1coss s
sz B d G z I d aτ β= −  in the softening zone [0, ]sL  (97)427 

 ( ) ( ) ( ) ( )7 7 1sin coss s
sz d G A z B z I d aζ ζτ ζ ζ= − +    in the frictional zone [0, ]fL  (98) 428 

Substituting the condition (93) into Eq. (63) gives the pull-out load P  429 

 
( ) ( ) ( )1

7 7

2
cos sin

s s
s

f f

ad G I d a
P A L B L

ζ ζπ
ζ ζ

ζ
 = −    (99) 430 

The displacement at the loading point ∆  is obtained from Eq. (61) as 431 

 ( ) ( )7 7 3sin cosf fA L B Lζ ζ δ∆ = + +   (100) 432 

It should be noted that in this stage, fL  is variable but can be determined within a certain 433 

range. Herein, two cases are considered. In case I, the softening-frictional stage occurs after 434 

the elastic-softening-frictional stage, while in case II the softening-frictional stage occurs 435 

after the softening stage. In case I, the elastic-softening-frictional stage ends when the length 436 

of the elastic zone reduces to zero. Substituting 0z =  and uτ τ=  into Eq. (97) gives 437 

 1 arccos r
s u

u

L L τ
β τ

 
= =  

 
; f uL L L= −  (101) 438 

Therefore, fL  is between uL L−  and L . In case II, fL  is between 0 and L . It is worth 439 

noting that the snapback phenomenon may occur in this stage for an anchorage with a longer 440 

bond length. Snapback is caused by the sudden release of the stored strain energy in the 441 
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frictional zone due to the reduced load capacity [44]. Previous studies have shown that the 442 

occurrence of snapback in the load-displacement response depends on the bond length [37, 40, 443 

44, 45]. However, very little attention has been paid to develop theoretical formulas to 444 

evaluate the minimum bond length that exhibits snapback. In this regards, the present study 445 

details the derivation of the minimum bond length as follows. 446 

As previously mentioned, the softening-frictional stage occurs after the elastic-447 

softening-frictional stage once the elastic zone vanishes. It follows from Eq. (101) that 448 

s uL L=  and f uL L L= − . In this case, the displacement at the loading point 1∆  can be obtained 449 

by substituting s uL L=  and f uL L L= −  into Eq. (100) as 450 

 ( ) ( )1 8 8 3sin cosu uA L L B L Lζ ζ δ∆ = − + − +         (102) 451 

where 452 

 ( )
( )8

1

sinu u
s s

s

L
A

d G I d aζ ζ

τ ζ β
β

= − ; ( )8 7 2 3
1

r
s s

s

B B K
d G I d a

τδ= = − −  (103) 453 

On the other hand, the softening-frictional stage ends when the softening length vanishes, 454 

i.e., 0sL =  and fL L= . In this case, the displacement at the loading point 2∆  can be obtained 455 

by substituting 0sL =  and fL L=  into Eq. (100) as 456 

 ( )2 7 3cosB Lζ δ∆ = +   (104) 457 

It follows from 1 2∆ = ∆  that 458 

 ( ) ( ) ( ){ }8 8sin cos cos 0u uA L L B L L Lζ ζ ζ− + − − =         (105) 459 

It can be seen from Eq. (105) that the minimum bond length snL  that exhibits snapback 460 

can be determined from Eq. (105) using a mathematical solver. The significance of snL  is that 461 

it is the shortest bond length that exhibits snapback phenomenon, which may lead to a 462 

catastrophic bond failure and become more dangerous as the bond length increases [45]. 463 
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Afterwards, the whole interface enters the frictional stage when the softening zone 464 

vanishes. In this case, the interfacial shear stress remains constant and the pull-out load P  is 465 

independent of the slip. For convenience, the solutions in the frictional stage are given in the 466 

Appendix. 467 

 468 

4. Anchor pull-out response and interfacial bond behavior 469 

Consider a typical anchor system, in which a steel thread bar is embedded in concrete 470 

with cement grout [9]. The material properties and geometric and interfacial parameters are 471 

taken from the pull-out test of Benmokrane et al. [9] as follows: 205 GPasE = , 30 GPacE = ,  472 

7.7826 GPaG = , 0.3sµ = , 0.2cµ = , 7.9 mma = , 19 mmb = , 100 mmh = , 14.5 MPauτ = ,473 

1 2.9 mmδ = , 3.7 MParτ = , 2 10.6 mmδ = ,  and 3 2100 1060 mmδ δ= = . With these parameters, 474 

the value of uL  can be obtained from Eq. (60) as 1156 mm. To study the pull-out response of 475 

the anchor and the interfacial bond behavior during the whole pull-out process for different 476 

bond lengths, the load-displacement curves and the interfacial shear stress distributions for L  477 

smaller, equal to, or larger than uL  are considered. 478 

 479 

4.1. Load-displacement curves 480 

When the bond length is smaller than uL , two bond lengths of 100 and 800 mm are 481 

considered. The load-displacement curve for 100 mmL =  is shown in Fig. 5(a). It can be seen 482 

from Fig. 5(a) that the branch O-A obtained from Eq. (26) is linear elastic and terminates 483 

when P  reaches the elastic ultimate load eP . Subsequently, the elastic-softening stage, i.e., the 484 

branch A-B obtained by Eqs. (57) and (58), is non-linear. This cannot be clearly observed in 485 
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Fig. 5(a) since the interfacial shear stress distributes uniformly along the bond length. 486 

Afterwards, the response in the softening stage, i.e., branch B-C obtained from Eq. (89), is 487 

linear. It is noted that the softening-frictional stage may not happen due to the uniform shear 488 

stress distribution, as shown in Fig. 5(a). The load-displacement curve in the frictional stage 489 

is represented by the horizontal line C-D obtained from Eq. (A.5). 490 

The load-displacement curve for 800 mmL =  is illustrated in Fig. 5(b). Beyond eP  (point 491 

A), the load increases with the extension of softening zone. Afterwards the ultimate load maxP492 

(point B) is reached and the curve exhibits a nonlinearly decreasing trend (branch B-C). The 493 

branch C-D represents the softening stage and terminates when the frictional zone starts to 494 

develop from the loaded end. The branch D-E, corresponding to the softening-frictional stage, 495 

can be obtained from Eqs. (99) and (100).  496 

Fig. 5(c) shows the load-displacement curve for uL L= . As in the last case, the interface 497 

behaves elastically until eP  is reached. With the propagation of softening zone, the load 498 

increases nonlinearly until the ultimate load maxP  is reached. Afterwards, the non-linear 499 

softening response occurs and terminates at the point C, where the softening length is equal to 500 

the bond length, i.e., s uL L L= =  and τ  at the loaded end is equal to rτ . Subsequently, the 501 

softening-frictional stage occurs after the elastic-softening stage, corresponding to the non-502 

linear branch C-D. 503 

The load-displacement curve for 2000 mmL =  is shown in Fig. 5(d). The branches O-A 504 

and A-B represent the elastic and elastic-softening stages, respectively. The branch B-C-D 505 

corresponds to the elastic-softening-frictional stage and can be obtained from Eqs. (76) to 506 

(78). It is noted that, in this stage, the load P  first reaches the ultimate load maxP  (point C) and 507 
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thereafter decreases gradually until the elastic zone vanishes. The reason for this is that, when 508 

the frictional zone extends to a certain extent, the loss of pull-out capacity in the elastic zone 509 

may be larger than the resistance force provided by the frictional zone. Afterwards, the 510 

softening-frictional stage occurs, which corresponds to the snapback branch D-E and is very 511 

challenging to be captured in any displacement controlled or load controlled pull-out test [44, 512 

45]. 513 

 514 

4.2. Interfacial shear stress distribution 515 

The interfacial shear stress distribution for 100 mmL =  is illustrated in Fig. 6(a). It can 516 

be clearly seen from Fig. 6(a) that the shear stress successively appears at four different 517 

stages, i.e., elastic, elastic-softening, softening, and frictional stages, which can be obtained 518 

from Eqs. (25), (55) and (56), (88), and (A.4), respectively. A uniform distribution throughout 519 

the pull-out process is observed, indicating that pull-out tests with short bond lengths can be 520 

used to derive the bond-slip model. 521 

As for 800 mmL =  shown in Fig. 6(b), five pull-out stages can be found. In the elastic 522 

stage, τ increases non-linearly along the bond length. In the elastic-softening stage, however, 523 

τ  increases with increasing z  in the elastic zone but decreases with decreasing z  in the 524 

softening zone. Afterwards, the softening stage occurs and τ  gradually decreases until it 525 

reduces to rτ  at the loaded end. In the softening-frictional stage, Eqs. (97) and (98) are 526 

adopted to obtain the interfacial shear stress distribution. 527 

The interfacial shear stress distribution for uL L=  is depicted in Fig. 6(c). At the end of 528 

the elastic-softening stage, τ  at the free end increases to uτ  while τ  at the loaded end reduces 529 
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to rτ . The softening-frictional stage occurs after the elastic-softening stage. Fig. 6(d) 530 

represents the interfacial shear stress distribution for 2000 mmL = . Compared with the case 531 

for 800 mmL = , the failure process experiences an elastic-softening-frictional stage, in which 532 

the shear stress distribution can be obtained from Eqs. (55), (56), and (75). 533 

From the above discussions, it is seen that the bond length L  determines the possible 534 

stages that occur during the pull-out process. For short bond lengths such as 100 mmL = , the 535 

interfacial shear stress distribution is uniform along the bond length and therefore the shape 536 

of the load-displacement curve depicted in Fig. 5(a) is analogous to that of the bond-slip 537 

model. However, the non-uniform shear stress distribution becomes more pronounced as the 538 

bond length increases, which can be clearly observed from Fig. 6. 539 

 540 

5. Experimental verifications 541 

The experiments herein presented refer to laboratory pull-out tests, whose numerous 542 

results have been reported in the literature. To verify the efficiency of the proposed analytical 543 

model, four series of laboratory pull-out tests are collected for comparison. It is noted that, 544 

although the outer boundaries in these pull-out tests are unconstrained, the axial stiffnesses of 545 

the test samples are large enough so that the deformations at the outer boundaries can be 546 

assumed to be zero. Thus, the test results can be used for comparison with the analytical 547 

model. 548 

The first pull-out test, regarding cable bolts embedded in concrete cylinders with plain 549 

cement grouts, was reported by Rajaie [46]. The parameters were as follows: 7.6 mma = , 550 

25.5 mmb = , 125 mmh = , 8.9076 GPaG = , 194 GPasE = , 0.3sµ = , 19 GPacE = , and  551 
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0.2cµ = . The interfacial parameters were determined by pull-out tests for 200 mmL =  as: 552 

5.84 MPauτ = , 2.81 MParτ = , 1 9.9 mmδ = , and 2 19.9 mmδ = . The bond length varied from 553 

150 to 700 mm. With these parameters known, the ultimate load maxP  with different bond 554 

lengths can be obtained, as listed in Table 1, together with the measured emaxP . From Table 1, 555 

it can be seen that the analytical solution agrees well with the test results, indicating that the 556 

analytical solution is able to predict the ultimate load of grouted anchors. 557 

The second pull-out test was conducted by Chen et al. [47]. The anchor was a modified 558 

cable bolt and embedded in a commercial cement grout with strata binder grout. The 559 

parameters were as follows: 14.25 mma = , 21 mmb = , 175 mmh = , 4.1074 GPaG = , 560 

201GPasE = , 0.3sµ = , 11.82 GPacE = , and  0.2cµ = . The pull-out test for 320 mmL =  was 561 

used to calibrate the interfacial parameters: 13.50 MPauτ = , 11.00 MParτ = , 1 5.0 mmδ = , and 562 

2 12.0 mmδ = . With these parameters, the ultimate loads with bond lengths of 320 to 380 mm 563 

can be obtained as shown in Table 2, together with the test results of Chen et al. [47]. It is 564 

seen from Table 2 that the proposed analytical solution is in good agreement on the test 565 

results, which further validates the accuracy of the analytical model. 566 

Zhang et al. [19] performed a series of pull-out tests on FRP rods embedded in steel 567 

tubes with cement grout. Three types of FRP rods, round sanded (FR1), spiral wound (FR2), 568 

and indented (FR3), and four types of cement grouts, CG1, CG2, CG3, and CG4, were 569 

adopted. The radii and Poisson’s ratios of FRP rods and the shear moduli of cement grouts 570 

were as follows: 3.75 mma = , 0.38sµ =  for FR1; 4.00 mma = , 0.35sµ =  for FR2; and  571 

3.95 mma = , 0.38sµ =  for FR3 and G = 7.8378, 8.3784, 10.4091 and 7.4554 GPa for CG1, 572 

CG2, CG3, and CG4, respectively. For each specimen, the parameters were as follows: 573 
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25.5 mmb = , 28.5 mmh = , 195 GPacE = , and 0.3cµ = . Detailed information regarding the 574 

other parameters is shown in Table 3. Based on the analytical model, the ultimate load for 575 

each specimen can be obtained as listed in Table 3, together with the experiment results. It 576 

can be seen from Table 3 that, the proposed analytical model agrees well with the 577 

experimental results except for specimens 5, 6, and 12. The reason for this is that the three 578 

types of FRP rods have lower Young’s moduli and longer bond lengths, resulting in a 579 

significant radial deformation in the FRP rods under a larger pull-out load, which is not 580 

considered in the proposed analytical model. 581 

The pull-out test on FRP tendons embedded in cement mortar filled steel tubes 582 

conducted by Zhang and Benmokrane [20] is used to further verify the proposed analytical 583 

model. In their test, two types of FRP tendons, round sanded (AR) and Leadline ribbed (LE), 584 

and two types of cement grouts, CM and EM, were used. The radii and Young’s moduli of 585 

FRP tendons were 3.75 mm and 60.8 GPa for AR and 3.95 mm and 163.3 GPa for LE. The 586 

shear moduli of cement grouts were 9.1129 and 10.9016 GPa for EM and CM, respectively. 587 

For each specimen, the parameters were as follows: 25.5 mmb = , 28.5 mmh = , 0.38sµ = , 588 

195 GPacE = , and 0.3cµ = . The other parameters are listed in Table 4. Thus, the ultimate 589 

load can be predicted as shown in Table 4, together with the experimental results. It can be 590 

seen from Table 4 that the analytical solution is in good agreement with the experimental 591 

results. The interfacial shear stress distribution along the bond length at the ultimate state is 592 

shown in Fig. 7. It is seen from Fig. 7 that the shear stress is uniform along the bond length 593 

since the bond length of each specimen is relatively short. Thus, the interfacial parameters 594 

measured by experiments are reliable. 595 



 30 

In order to further validate the proposed analytical model, the load-displacement 596 

responses of different specimens are calculated and compared with the experimental results 597 

of Zhang and Benmokrane [20], as shown in Fig. 8. It can be seen from the experimental 598 

curves shown in Fig. 8 that, after the ultimate load is reached, the response exhibits a sharp 599 

decrease in pull-out load with an increase in slip, indicating that the bond property of the 600 

anchorage may degrade due to the propagation of interfacial cracking. It is noted that from 601 

this point onwards, the experimental response exhibits an oscillating residual pull-out 602 

capacity due to the mechanical interlocking between Leadline ribbed tendons and grout [20]. 603 

The predicted load-displacement curves are also shown in Fig. 8 for different 604 

consecutive debonding stages, where A, B, C, and D represent the ends of the elastic, elastic-605 

softening, softening, and softening-frictional stages, respectively. It can be seen from the 606 

analytical curves shown in Fig. 8 that, after the peak load, the interface starts to transfer from 607 

the elastic-softening stage (branch A-B) to the softening stage (branch B-C) since the bond 608 

lengths of the three specimens are much smaller than uL . As debonding propagates, the 609 

interface enters the softening-frictional stage (branch C-D), in which debonding initiates at 610 

the loaded end and propagates rapidly towards the free end. Finally, the interface enters the 611 

complete frictional stage, which is followed by the gradual pull-out of grouted tendons. It 612 

should be noted that from the point D onwards, the predicted pull-out load remains constant 613 

and therefore is not in good agreement with the experimental results. This inconsistency 614 

could be explained as follows. Since the three FRP tendons are Leadline ribbed, the grout 615 

flutes are crushed, and the tendon ribs are partially sheared off during the pull-out process 616 

[20]. As a result, the experimental response exhibits an oscillation in the residual load due to 617 
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the mechanical interlocking between the tendon ribs and grout. However, the effect of anchor 618 

profile configuration on the interfacial bond failure is not taken into account in the present 619 

model and the tri-linear bond-slip model with constant frictional stress is used to describe the 620 

interaction between the anchor and grout. 621 

Besides, it is interesting to note that the predicted load-displacement response 622 

approaches to that of the local bond-slip model shown in Fig. 2. The reason for this is that the 623 

interfacial shear stress distribution is almost uniform for anchorages with short bond lengths, 624 

as shown in Fig. 7. From the above discussions, it is seen that the present analytical model is 625 

capable of predicting the ultimate load capacity and the load-displacement response of 626 

grouted anchors.  627 

 628 

6. Effect of bond length 629 

It can be seen from the proposed analytical solution that the bond length exhibits an 630 

important effect on the pull-out behavior of grouted anchors. Therefore, it is of practical 631 

significance to investigate its effect on the ultimate load and the load-displacement response. 632 

The parameters of the test of Benmokrane et al. [9] as given in section 4 are used as the 633 

reference values. 634 

The effect of bond length L  on the ultimate load maxP  is shown in Fig. 9(a), which shows 635 

that, as the bond length increases, maxP  increases rapidly. However, when the bond length 636 

exceeds around 1300 mm, maxP  increases at a much lower but steady rate. This confirms the 637 

presence of a critical bond length criL , as marked by the black dot in Fig. 9(a). The reason for 638 

this is that, the ultimate load maxP  appears in the elastic-softening stage when L  is smaller than 639 
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criL . Otherwise, maxP  occurs in the elastic-softening-frictional stage. As discussed in section 640 

3.3 as seen from Eqs. (79) to (84), if maxP  appears in the elastic-softening-frictional stage, the 641 

elastic and softening lengths are constant and only the frictional length increases with the 642 

increase of bond length. Since the interfacial shear stress in the frictional zone keeps a 643 

constant value rτ  smaller than that in any other part of the anchorage, the increase of bond 644 

length has a smaller but steady influence on maxP  once it is larger than criL . The method for 645 

determining the value of criL  is described as follows. When maxP  occurs in the elastic-646 

softening-frictional stage, the elastic length eL  and softening length sL  can be obtained from 647 

Eqs. (83) and (84) without knowing the bond length in advance. Thus, criL  is equal to the sum 648 

of eL  and sL . For example, with the parameters taken in this section, eL , sL , and criL  are 649 

calculated as 445, 838, and 1293 mm, respectively, which is consistent with the observation 650 

shown in Fig. 9(a). 651 

The effect of bond length on the load-displacement curve is shown in Fig. 9(b). It can be 652 

seen from Fig. 9(b) that the bond length has a significant influence on the load-displacement 653 

response of anchorages. With the parameters taken in this section, the minimum bond length 654 

that exhibits snapback can be obtained from Eq. (105) as 1462 mmsnL = . As expected, when  655 

L  is less than snL , no snapback occurs and the load-displacement curves show a postpeak 656 

softening response. Moreover, Fig. 9(b) shows that an increase in bond length beyond snL   657 

leads to an increase in the intensity of snapback. In other words, the snapback response 658 

becomes more pronounced as the bond length increases. This can be explained as follows. 659 

Fig. 9(a) shows that, for a bond length greater than snL  (> criL ), the frictional length increases 660 

with the increase of bond length. As a result, the longer the bond length is, the larger the 661 
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amount of strain energy in the frictional zone is stored. Thus, as the bond length increases, the 662 

frictional zone releases more stored strain energy, which results in an increase in the intensity 663 

of snapback and the ductility of the failure process. 664 

 665 

7. Conclusions 666 

This paper has presented a three-dimensional analytical model for the nonlinear pull-out 667 

response of anchorage systems based on a tri-linear interfacial bond-slip relationship. Due to 668 

the axisymmetric nature of anchorages, the proposed analytical model is able to provide a 669 

rigorous and complete theoretical basis for understanding the debonding mechanism and for 670 

predicting the full-range pull-out behavior of anchorages. Based on this study, the following 671 

conclusions can be made as follows: 672 

(1) Three-dimensional analytical solutions have been derived for the stress field, 673 

displacement field, and load-displacement response of anchorage systems during the 674 

whole complete pull-out process. 675 

(2) By comparing with experimental data, it has been validated that the proposed analytical 676 

model is capable of predicting the ultimate pull-out load and load-displacement response 677 

of grouted anchors. 678 

(3) It has been found that there exists a minimum bond length uL  which is responsible for all 679 

possible pull-out stages during the process of debonding. 680 

(4) The ultimate load maxP  increases rapidly with the increase of bond length before the 681 

critical bond length criL  is reached but thereafter at a small but steady rate. 682 

(5) The observed snapback in the load-displacement response is dependent on the bond 683 
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length. Anchorage systems with bond lengths shorter than snL  do not exhibit snapback. 684 

Otherwise, snapback becomes more pronounced with an increase in bond length. 685 
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Appendix 803 

 804 

Closed-form solutions for frictional stage 805 

When the interfacial shear stress τ  at the free end reduces to rτ , the whole interface 806 

exhibits only friction. Thus, the solutions for the frictional zone Eqs. (61) to (67) are valid by 807 

replacing  4A , 4B , 4C ,  and 4D  with the unknown coefficients 9A , 9B , 9C ,  and 9D , respectively. 808 

The boundary conditions are as follows 809 

 ( )0, 0s z rσ = = ; ( )0, 0c z rσ = = ; ( )
0

2 , d
a

sr z L r r Pπ σ⋅ = =∫  (A.1) 810 

 ( ) ( ) ( ) ( ) ( )3 3, , , ,c s s c
b r b z r a z z K w r a z w r b z
a

τ τ τ δ= = = = − = = − = −    (A.2) 811 

Substituting the conditions (A.1) and (A.2) into Eqs. (61) to (67), the coefficients 9A , 9B ,812 

9C ,  and 9D  can be obtained as 813 

 9 9 0A C= = ; 
( ) ( )9

12 sins s
s

PB
ad G L I d aζ ζ

ζ
π ζ

= − ; 9 6 9D N B=  (A.3) 814 

The interfacial shear stress τ  can be obtained from the condition (A.2) as 815 

 ( ) ( )
( )

cosh
2 sinh
P z

z
a L

ζ ζ
τ

π ζ
=   (A.4) 816 

Substituting 0r =  and z L=  into Eq. (61) gives the load-displacement relationship 817 

 
( ) ( )3

12 tanh s s
s

P
a L d G I d aζ ζ

ζδ
π ζ

∆ = −   (A.5) 818 

It should be noted that the interfacial shear stress τ  in the frictional stage remains a 819 

constant value rτ  along the bond length. Since the slip 3δ  is assumed to be extremely larger 820 

than 2δ  in the current study, the shear stress solved from Eq. (A.4) can be considered as 821 

constant in a smaller range. 822 
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 849 

Fig. 1. Anchor-mortar-concrete anchorage. 850 
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 852 

(a)                               (b) 853 

Fig. 2. Bond stress-slip relationship in (a) typical tri-linear model and (b) tri-linear model 854 

used in this paper. 855 

  856 

δ  
 

τ  
 

τ  
 

 
 

δ  
 

o  
 

rτ  
 

3δ  
 

 
 

o  
 

uτ  
 

1δ  
 

2δ  
 

rτ  
 

1δ  
 

2δ  
 

uτ  
 



 45 

 857 

Fig. 3. Stress analysis of mortar cylindrical shell element. 858 
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859 

Fig. 4. Various possible debonding cases at anchor-mortar interface. 860 
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 862 

                   (a)                                 (b) 863 

 864 

                   (c)                                 (d) 865 

Fig. 5. Load-displacement curves for (a) L=100 mm, (b) L=800 mm, (c) L=1156 mm, and (d) 866 

L=2000 mm. 867 

  868 
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 869 

                (a)                                 (b) 870 

 871 

                (c)                                 (d) 872 

Fig. 6. Interfacial shear stress distributions for (a) L=100 mm, (b) L=800 mm, (c) L=1156 873 

mm, and (d) L=2000 mm. 874 
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 876 

                    (a)                                  (b) 877 

 878 

    (c) 879 

Fig. 7. Interfacial shear stress distributions along bond length at ultimate state for (a) specimens 880 

AREM40 and AREM80, (b) specimens LECM40 and LECM80, and (c) specimens LEEM40 881 

and LEEM80. 882 
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 884 

                    (a)                                 (b) 885 

 886 

    (c) 887 

Fig. 8. Comparison of load-displacement curve between analytical solution and experimental 888 

results for (a) specimen LECM40, (b) specimen LECM80, and (c) specimen LEEM 80. 889 

  890 
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 891 

 (a)                                  (b) 892 

Fig. 9. Effect of bond length on (a) ultimate load and (b) load-displacement curve. 893 
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Table 1 Comparison of ultimate load between analytical solution and experimental results of 895 

Rajaie [46]. 896 

No. L (mm) Pemax (kN) Pmax (kN) (Pmax－Pemax)/ Pemax (%) 

1 150 43.4 41.8 －3.8 

2 200 55.8 55.7 －0.3 

3 300 85.2 83.3 －2.2 

4 400 115.6 110.8 －4.2 

5 500 145.6 137.9 －5.3 

6 600 168.6 164.6 －2.4 

7 700 187.2 190.9 2.0 

 897 

  898 
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Table 2 Comparison of ultimate load between analytical solution and experimental results of 899 

Chen et al. [47]. 900 

No. L (mm) Pemax (kN) Pmax (kN) (Pmax－Pemax)/Pemax (%) 

1 320 381.3 385.6 1.1 

2 340 432.9 409.5 －5.4 

3 360 462.6 433.4 －6.3 

4 380 479.1 457.3 －4.6 

 901 

  902 
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Table 3 Comparison of ultimate load between analytical solution and experimental results of 903 

Zhang et al. [19]. 904 

 905 

  906 

No. Specimen 
Es 

(GPa) 

L 

(mm) 

τu 

(MPa) 

τr 

(MPa) 

δ1 

(mm) 

δ2 

(mm) 

Pemax  

(kN) 

Pmax 

 (kN) 

(Pmax－Pemax)/Pemax  

(%) 

1 FR1+CG1 60.83 100 8.2 2.8 1.31 3.86 19.4 19.0 －2.0 

2 FR1+CG2 60.83 100 7.9 2.5 1.05 6.10 18.6 18.5 －0.5 

3 FR1+CG3 60.83 100 8.4 3.1 0.72 5.60 19.9 19.6 －1.5 

4 FR1+CG4 60.83 100 8.7 2.6 0.66 4.18 20.6 20.2 －1.9 

5 FR1+CG4 60.83 200 8.7 2.6 0.66 4.18 26.9 38.8 44.2 

6 FR1+CG4 60.83 350 8.7 2.6 0.66 4.18 37.1 56.7 52.8 

7 FR2+CG1 43.5 100 12.3 3.3 2.34 7.66 30.9 30.3 －1.9 

8 FR2+CG2 43.5 100 7.9 2.4 2.30 6.48 20.0 19.6 －2.0 

9 FR2+CG3 43.5 100 12.3 3.3 1.78 7.80 31.0 30.4 －2.0 

10 FR2+CG4 43.5 100 13.2 3.8 2.50 6.50 33.3 32.3 －3.0 

11 FR2+CG4 43.5 200 13.2 3.8 2.50 6.50 55.6 59.9 7.7 

12 FR2+CG4 43.5 350 13.2 3.8 2.50 6.50 67.9 85.9 26.5 

13 FR3+CG1 163.33 100 13.1 4.1 3.32 9.60 32.6 32.4 －0.6 

14 FR3+CG2 163.33 100 10.6 3.1 2.97 9.95 26.7 26.2 －1.9 

15 FR3+CG3 163.33 100 12.4 4.4 2.61 8.70 30.8 30.7 －0.3 

16 FR3+CG4 163.33 100 14.4 5.6 2.90 6.40 35.8 35.5 －0.8 

17 FR3+CG4 163.33 200 14.4 5.6 2.90 6.40 67.6 69.7 3.1 
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Table 4 Comparison of ultimate load between analytical solution and experimental results of 907 

Zhang and Benmokrane [20]. 908 

Specimen 
L 

(mm) 

τu 

(MPa) 

τr 

(MPa) 

δ1 

(mm) 

δ2 

(mm) 

Pemax 

(kN) 

Pmax 

(kN) 

(Pmax－Pemax)/Pemax 

(%) 

AREM40 40 14.85 3.93 1.22 3.25 14.00 13.91 －0.64 

AREM80 80 10.76 2.84 1.37 4.44 20.30 20.04 －1.28 

LECM40 40 23.75 6.78 4.49 8.99 23.60 23.55 －0.21 

LECM80 80 22.92 7.52 4.51 8.37 45.50 45.25 －0.55 

LEEM40 40 21.54 8.06 4.22 7.89 21.40 21.36 －0.19 

LEEM80 80 18.62 7.73 4.34 7.76 37.00 36.80 －0.54 

 909 

  910 
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HIGHLIGHTS 911 

 912 

(1) Three-dimensional analytical model is proposed for the pullout response of anchors.  913 

(2) The ultimate load and load-displacement response have been predicted and verified.  914 

(3) The bond length determines the possible stages in the evolution of debonding.  915 

(4) The bond length plays a pivotal role in the load-displacement response of anchors. 916 

 917 


