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In this study, a hybrid sequential data assimilation and probabilistic collocation (HSDAPC) approach is proposed for an-
alyzing uncertainty propagation and parameter sensitivity of hydrologic models. In HSDAPC, the posterior probability
distributions of model parameters are first estimated through a particle filter method based on streamflow discharge data.
A probabilistic collocation method (PCM) is further employed to show uncertainty propagation from model parameters
to model outputs. The temporal dynamics of parameter sensitivities are then generated based on the polynomial chaos
expansion (PCE) generated by PCM, which can reveal the dominant model components for different catchment condi-
tions. The maximal information coefficient (MIC) is finally employed to characterize the correlation/association between
model parameter sensitivity and catchment precipitation, potential evapotranspiration and observed discharge. The pro-
posed method is applied to the Xiangxi River located in the Three Gorges Reservoir area. The results show that: (i) the
proposed HSDAPC approach can generate effective 2nd and 3rd PCE models which provide accuracy predictions; (ii)
2"order PCE, which can run nearly ten time faster than the hydrologic model, can capably represent the original hydro-
logical model to show the uncertainty propagation in a hydrologic simulation; (iii) the slow (R,) and quick flows (R,) in
Hymod show significant sensitivities during the simulation periods but the distribution factor (o) shows a least sensitivity
to model performance; (iv) the model parameter sensitivities show significant correlation with the catchment hydro-mete-
orological conditions, especially during the rainy period with MIC values larger than 0.5. Overall, the results in this paper
indicate that uncertainty propagation and temporal sensitivities of parameters can be effectively characterized through the

proposed HSDAPC approach.

© 2016 Published by Elsevier Ltd.

1. Introduction

Hydrologic models are simplified, conceptual representations of
a part of the hydrologic cycle, which use relatively simple mathe-
matical equations to conceptualize and aggregate the complex, spa-
tially distributed, and highly interrelated water, energy, and vegeta-
tion processes in a watershed (Vrugt et al., 2005). Hydrologic mod-
els are increasingly used in real world applications due to the growing
availability of both computing power and hydrological data observed
at fine spatial and temporal scales (Montanari and Brath, 2004). How-
ever, significant uncertainties are associated with rainfall-runoff sim-
ulation resulting from uncertainties in model parameters, structures
and inputs. Due to the inherent complexities (e.g. Space-time vari-
ability of climatic inputs, Heterogeneity of the land surface condition
etc.) in the rainfall-runoff process, uncertainties in the hydrological
model are inevitable. In addition, the uncertainty can be divided into
epistemic and aleatory uncertainty, in which the aleatory uncertainty
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cannot be reduced (Parrish et al., 2012; Gong et al., 2013). Conse-
quently, probabilistic approaches are desired to characterize the uncer-
tainty and provide reliable hydrologic forecasts for estimating desig-
nated variables in engineering practice, mitigating hydrological risks
and improving water resource management policies (Fan et al., 2012;
Sikorska et al., 2014; DeChant and Moradkhani, 2014; Yan et al.,
2015; Fan et al., 2015b,c; Kong et al., 2015; Rakovec et al., 2015).
Previously, numerous approaches have been proposed for quanti-
fying the uncertainty in hydrologic predictions (Parrish et al., 2012;
DeChant and Moradkhani, 2014; Madadgar and Moradkhani, 2014).
Among these uncertainty quantification approaches, data assimila-
tion methods, especially sequential data assimilation techniques, have
been developed for explicitly dealing with various uncertainties and
for optimally merging observations into uncertain model predictions
(Reichle et al., 2002; Moradkhani et al., 2005a; Clark et al., 2008;
Xie and Zhang, 2013; Pathiraja et al., 2016a,b). Sequential data as-
similation methods continuously update the states and parameters in
a model when new measurements become available to improve the
model forecast and evaluate the forecast accuracy (Vrugt et al., 2005).
Particle filter (PF) method, as the most common example of sequen-
tial Monte Carlo (SMC) methods, has been widely used for



2 Environmental Modelling and Software xxx (2016) xxx-Xxx

quantifying uncertainties in hydrologic simulation (Moradkhani et al.,
2005b; Weerts and EI Serafy, 2006; Zhang et al., 2012a,b; Zhang and
Yang, 2013, 2014; Noh et al., 2014). PF evolves a sample of the state
space forward using the SMC method to approximate the predictive
distribution (Liu et al., 2012). The most significant advantage of PF
is that it relaxes the Gaussian distribution in state-space model er-
rors, which is required for the ensemble Kalman filter method. Fur-
thermore, the PF method performs updating on the particle weights
instead of the state variables, which can reduce numerical instabil-
ity especially in physically-based or process-based models (Liu et al.,
2012). The initial implementation of PF was based on sequential im-
portance sampling, which led to severe deterioration for particles (i.e.
only several or even one particle would be available). Consequently,
sampling importance resampling (SIR) was proposed to mitigate the
above problem (Moradkhani et al., 2005b). Previous studies in other
fields concluded that the PF method usually requires more samples
than other filtering methods and the sample size would increase ex-
ponentially with the number of state variables (Liu and Chen, 1998;
Fearnhead and Clifford, 2003; Snyder et al., 2008). Specifically, hun-
dreds or thousands of ensemble members may be needed for reliable
characterization of the posterior PDFs even for small problems with
only a few unknown states and parameters (Liu et al., 2012). Some
studies found that, for conceptual hydrologic models, PF would per-
form better than ensemble Kalman filter (EnKF) method when the
sample size is more than a hundred, and EnKF performance was found
to be suboptimal due to high non-linear non-Gaussian hydrologic sys-
tem (Weerts and EI Serafy, 2006; DeChant and Moradkhani, 2012).
However, the number requirement of particles for physically-based
distributed hydrologic models may limit operational applications of
PF (Liu etal., 2012). A recent improvement for PF is to combine
the strengths of sequential Monte Carlo sampling and Markov chain
Monte Carlo simulation (Moradkhani et al., 2012; Vrugt et al., 2013),
which can allow a more complete representation of the posterior dis-
tribution, reduce the chance of sample impoverishment (i.e. decrease
in the diversity of the particles or even a single particle available af-
ter resampling steps) and lead to a more accurate streamflow forecast
with small, manageable ensemble sizes (Moradkhani et al., 2012).
The PF approach can sequentially merge observations into un-
certain model predictions and quantify the posterior probabilities of
model parameters through a set of random samples. Further character-
ization for uncertainty propagation from model parameters to model
outputs are desired (Beven, 2006; Samaniego et al., 2013; Westra
etal., 2014; Chaney etal., 2015). For instance, Samaniego et al.
(2013) evaluated the implications of parameter uncertainty on soil
moisture drought analysis in Germany. Results of this study em-
phasize the importance of accounting for the parametric uncertainty
for identifying benchmark drought events in Germany. Chaney et al.
(2015) analyzed the role of model parameter uncertainty in flood
and drought monitoring, which parameter uncertainty remains an im-
portant concern for predicting extreme events even after applying
monthly and annual constraints to the ensemble. Consequently, previ-
ous studies demonstrate that parameter uncertainties always pose sig-
nificant impacts on hydrological prediction and need to be addressed
clearly. However, most of previous methods are based on Monte Carlo
simulation, which may not explicitly present the uncertainty evolu-
tion in model simulation. In such a MC simulation process, model
parameters would be sampled from known distributions, and each
sample of model parameters would be entered into the hydrologic
model to obtain statistics or density estimates of the model predic-
tions. However, with complex hydrologic models such as distrib-

uted hydrologic models, this sampling approach is computationally in-
tensive (Herman et al., 2013; Fan et al., 2015d). In addition, the un-
certainty propagation from model parameters to model outputs can
hardly be explicit since no expressions exist in MC process to show
how parameter uncertainties influence the variations of model outputs.
Furthermore, due to the temporal-spatial variations in rainfall-runoff
processes, the parameter sensitivity may be time-variant. Conse-
quently, characterization of temporal dynamics of parameter sensitiv-
ity is also desired to indicate the dominant model component under
different hydro-meteorological conditions. Therefore, this work pro-
poses a hybrid sequential data assimilation and probabilistic colloca-
tion (HSDAPC) method to explicitly show uncertainty propagation in
hydrologic simulation and further identify the temporal dynamics of
parameter sensitivity. The HSDAPC approach will approximate the
posterior probabilities of hydrologic model parameters through the use
of PF and then facilitate uncertainty propagation from model parame-
ters to model predictions through a probabilistic collocation method
(PCM). The PCM-based temporal dynamics of parameter sensitivity
will be derived to identify the dominant model components that im-
pact model predictions under different hydro-meteorological condi-
tions. The association between parameter sensitivity and catchment
conditions will be finally revealed through the maximal information
coefficient. The proposed approach is applied to the Xiangxi River
basin based on a conceptual rainfall-runoff model. This application
can help demonstrate the strength and applicability of the proposed
methodology.

2. Methodology
2.1. Sequential data assimilation through the use of a particle filter

2.1.1. Bayesian filtering
In a sequential data assimilation process, the evolution of the sim-
ulated system states can be represented as follows:

x=f (xt—l’ut—l’a) T o (1)

where the subscript ¢ denotes the time step; f'is a nonlinear function
expressing the system transition from time ¢ - 1 to # x, denote the
state variables, and 6 are the model parameters; w, | is considered as
process noise (i.e. model error).

When new observations are available, the forecasted states can be
corrected through assimilating the observations into the model, result-
ing in the updating process described by:

y,=h (xt, 0) +v, )

where 4 is the nonlinear function producing forecasted observations;
v, is the observation noise.

The essence of the state estimation problem in the Bayesian filter-
ing framework is to construct the posterior probability density func-
tion (PDF) p(x;/y;.,) of a state based on all of the available informa-
tion (Gordon et al., 1993). The posterior PDF can be calculated in
two steps theoretically: prediction and update, in which the state PDF
from the previous state would be integrated through the system model,
and the update operation modifies the prediction PDF making use of
the latest observations (Han and Li, 2008). The prediction step aims
to obtain the prior p(x,|y,.,_,) based on the fact that the transition

p (x,|x,_, ) and the posterior p (x,_,|y;.,_,) at time step -1 are known,
which can be expressed as:
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p(xtlyltt—l) =/p(xt|xt—l)p<xt—l|y1:t—l)dxt—l 3)

where the transition is the probabilistic model of the system described
by Equation (1). When new observations at time ¢ are available, the
prior can be corrected according to Bayes' rule, formulated as follows:

p ()’zlxz) p (leyl :t—l)

(xt|y1:t) =
/ p (yt|'xt) P (xt|J’1 :t—l) dx, @

where p (x,| Vi t—l) represents the prior information; p (y,|x,) is the
likelihood.

The optimal Bayesian solution (i.e. Equations (3) and (4)) is dif-
ficult to determine since the evaluation of the integrals may be in-
tractable (Plaza Guingla et al., 2013). Consequently, approximation
methods are applied to address the above issues. Ensemble Kalman fil-
ter (EnKF) and PF approaches are the two most widely used methods.
The central idea of EnKF and PF is to represent the state probability
density function (pdf) as a set of random samples and the difference
between these two methods lies in the way of recursively generating
an approximation to the state PDF (Weerts and EI Serafy, 2006).

2.1.2. Particle filter method
The PF approach is a sequential Monte Carlo method that calcu-
lates the posterior distributions of states and parameters by a set of ran-
dom samples. The advantage of PF, in comparison with EnKF, is that
it relaxes the assumption of a Gaussian error structure, which allows
the PF to more accurately predict the posterior distribution in the pres-
ence of skewed distributions (Moradkhani et al., 2005b; DeChant and
Moradkhani, 2012). Moreover, in hydrologic simulation, PF can pre-
serve the water balance while EnKF may not achieve it (Moradkhani
etal., 2012; Yan et al., 2015). In detail, consider ne independent and
identically distributed random variables x,; ~ p (x,|y;.,) for i=1, 2,
., ne, the posterior density based on the sequential importance sam-
pling (SIS) method can be approximated as a discrete function:

Zwt i xt,i)

xt|)’1 it
)

where w,; are the normalized weight of the ith particle drawn from the
proposal distribution; 6 is the Dirac delta function. Assuming the sys-
tem state to be a Markov process, and applying the Bayesian recursive
expression to the filtering problem, the updating expression for the im-
portance weights (non-normalized) is expressed as:

p (ytl xt,i) p (xt,il xt—l,i)
q (xt,i| xt—l,i’yt) 6)

Wy = W1

Equation (6) provides the mechanism to sequentially update the
importance weights, given an appropriate choice of the proposal dis-
tribution g (x,,|x,_;,,y,). Consequently, the expression of the pro-

posal distribution will significantly affect the efficiency and complex-
ity of the PF method. An appropriate choice for the proposal den-
sity function is expressed as follows (Doucet et al., 2000; Doucet and
Johansen, 2011):

q (xt,ilxt—l,i’yt) =p (xt,i|xt—1,i) )

When the transition prior is chosen as the proposal distribution,
the importance weights depend on their past values and the likelihood
p(ylx, ), which is expressed as:

W; = W;_y,;P (yt|xt,i) (8)

For the likelihood p(y,|x,,), a common choice of the likelihood den-
sity function is the Gaussian distribution that describes the differences
between the observation predictions and the observations, scaled by
the (usually defined a priori) observation errors (Plaza Guingla et al.,
2013).

For the PF through SIS, a serious limitation is the depletion of
the particle set, which means that, after a few iterations (time steps),
all the particles except one are discarded because their importance
weights are insignificant (Doucet et al., 2000). To address the above
issue, a resampling step is usually adopted in PF to eliminate the parti-
cles with small importance weights and replace them by particles with
large importance weights. Various resampling methods have been de-
veloped, and the most commonly used ones include multinomial re-
sampling, systematic resampling, stratified resampling, and residual
resampling methods (Bi et al., ). In this study, the multinomial resam-
pling scheme is employed.

2.2. Probabilistic collocation method (PCM)

The polynomial chaos expansion (PCE), first introduced by
Wiener (1938), is typically applied to express the evolution of uncer-
tainty in a dynamical system with random inputs, in which the model
stochastic process is decomposed by Hermite polynomials in terms
of Gaussian random variables. For non-Gaussian random input vari-
ables (e.g. Gamma and uniform), the convergence of Hermite polyno-
mial expansion is not optimal (Xiu and Karniadakis, 2003). Xiu and
Karniadakis (2002) proposed generalized polynomial chaos expan-
sions for non-Gaussian distributions. The general polynomial chaos
expansion can be written in the form:

i +ZZ 11’21—‘2 g’l é’lz)

i1=lip=

n
Y =a,+ Zai]l"
ij=1
n iy i

+ ZZZ ’1'2’3 é,11 é"z Clz)

i1=lip=li3= (9)

where Y is the output and r, <¢’il,§iz, “"Ci,,) are the pth order poly-

nomials in terms of the multi-dimensional random variables {é’ik}licwl

For standard normal variables, the Hermite polynomial will be used,
which is expressed as:

| N (AN ):(_1)pe1/2€T€Le—l/2zT§
P l]’ 12’ ki lM ac[-laé’iz.,,aé‘il‘/’
(10)
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where (gil,giz, e ) (¢ is the vector form) are the standard normal
D

random variables (SN'Vs). Consequently, Equation (9) is often written
in a simple formulation as:

Y=ay+ ) al';(0)
’ 21 (11)

where g; are the unknown expansion coefficients.

Previous studies have demonstrated that accurate approximations
can be obtained through a truncated PCE with only low order terms
(Lucas and Prinn, 2005; Li and Zhang, 2007; Shi et al., 2009; Zheng
etal., 2011; Fan etal., 2015a,d; Xiao et al., 2015; El Mocayd et al.,
2016). Therefore, if the degree of a truncated PCE is predefined as the
highest order (denoted as p) of the involved Hermite polynomials, the
truncated PCE for M dimensional random variables can be expressed
as:

n—1
Y~ a+ )al©)
=t (12)

where n = (M + p)!/M!p!.

The basic premise of the probabilistic collocation method is to
let the polynomial chaos expansion(PCE) in terms of random inputs
be the same as the model simulation results at selected collocation
points. Collocation points can be specified by various algorithms. In
this study, the algorithm proposed by Webster et al. (1996) is adopted,
in which the collocation points are selected so that each SNV takes
zero or one of the roots for the higher-order Hermite polynomial
(Huang et al., 2007; Li and Zhang, 2007). For example, for the 2" or-
der polynomial chaos expansion, the collocation points are combina-
tions the values of- \/5 ,0and \/5 , which are the roots of the 3" order

Hermite polynomial H, (¢) = ¢* — 3¢. For the 3"-order polynomial

chaos expansion, the collocation points are chosen from zero and the
roots of the 4-order Hermite polynomial H AGE £r—6¢% +3 (e

+1/3V6)

A Probabilistic collocation method (PCM) can be implemented
through approximating a model output with a polynomial chaos ex-
pansion (PCE) in terms of random inputs (Zheng et al., 2011). The
unknown coefficients contained in the expansion can be determined
based on model simulations at selected collocation points (each col-
location point is a realization of the random inputs). The number of
collocation points is much larger than the number of unknown coef-
ficients, leading to two main methods for estimating these unknown
coefficients: linear equations and regression-based methods (Huang
etal., 2007; Fan et al., 2015a,d). In this study, the regression-based
method is employed in which all collocation points are used to form an
over-determined equation system, and further generate the unknown
coefficients through linear regression method.

2.3. Uncertainty quantification for the hydrological model based on a
hybrid sequential data assimilation and probabilistic collocation
method

Based on data assimilation through PF, the posterior probability
distributions of model parameters can be quantified through a set of

random samples. Consequently, these obtained posterior distributions
can hardly be quantified through some specific probability distribu-
tions (e.g. Gaussian, Gamma etc.). In comparison, the PCE model can
merely be established to reflect uncertainty propagation in a dynamic
system in terms of some specific distributions. For example, for the
stochastic process decomposed by Hermite polynomials, the random
inputs should be first expressed as standard normal random variables
(SNVs). Consequently, if the PCE model is to be employed to explic-
itly express uncertainty evolution from the posterior distributions ob-
tained by PF to the hydrologic outputs, those obtained posterior distri-
butions would be firstly transformed to SNVs. Several methods have
been developed to transform the non-Gaussian random variables to
Gaussian random variables such as Box-Cox transformation (Box and
Cox, 1964), Gaussian anamorphosis (GA) (Simon and Bertino, 2009),
and log-sinh transformation (Wang et al., 2012). In this study, the GA
method is adopted since it can directly transform any random variable
into a SNV (see Appendix).

The process of the HSDAPC method involves two main compo-
nents: parameter estimation through PF and uncertainty quantifica-
tion through PCM. The detailed process includes the following steps
(Fig. 1):

Step (1). Model state initialization: Initialize N, -dimensional model
state variables and parameters for ne samples: x,;, i=1, 2, ..., ne,
x € R0, 0 € RM.

Step (2). Sample weight assignment: Assign the particle weights
uniformly: w, | = 1/ne.

Step (3). Model state forecast step: Propagate the ne state variables
and model parameters forward in time using model operator f:

X1 =1 (Xr,i’”r,wei) + w,, @,
~N(0, Q),i
=1,2,&,ne

where x, . | ; is the forecasted value for particle i at time ¢ + 1, x,; and
0, ; are the values of state variables and parameters at time 1.

Step (4). Observation simulation: Use the observation operator /4 to
propagate the model state forecast:

Verri = h (xt+l,i’0i) F V15 Uigy
~N(0,R,), i
=1,2,&,ne

Step (5). Estimate the likelihood for the selected particles:

1
L (yr+1|xt+1,i’91.f) = exp <_ﬁ [yx+1 —h (xr+1,i’9r,i)]2>
t

27 R

t+1

L (yr+1|xx+1,i’9x,i)
ZZ] L (yt+| |xt+l,[’ et,i)

p (yt+1 |xt+l,i’ Ht,i) = =p (yt+l -h (xt+1,iv o,
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Specify ensemble size (ne), total period of assimilation (T)

¢r=l

Sampling the model state and parameter vectors from a uniform distribution
X, i=12,...,ne,xeR" ;8,,i=12, .., ne R

Assign the particle weights uniformly:
wyi = l/ne

v

Propagate the ne state variables and model parameters forward using model
operator fi Xy, = S(x,.0,.0,) 4 0, @ ~NOL'Y= 1 2 ne

poyaw 3dvas

L2
Use the observation operator & to to generate simulated observation:
Ve =hx, .0, ) +v,,, Ve, = N(O.EZL,) i=1,2, .., ne
¥
Estimate the likelihood:

LV | %,01,06,) =

exp(- [Vpey = B,y 6,)F)

1
| fZ.*rR,,1 2R,

L{ IJ'O 4] J'Bl.l)
..Jll# = Pea = Mx0,0,) | Ry)
ZL(J'M [%..6.)
i=]
v

Update the weight for the analyzed ensembles:
W, P, —hx,,,.6,)|R,,)

P | %00.0,) =

Wi = e

Z] Wy, P —h(x,,,6,) | R
¥
Implement resampling procedure for parameters and states
v
Take parameter evolution to the next stage through adding small stochastic error around the sample:
9[4.: = 9:-1.- + fl-l.: f:-u - N(O!Zi})
A
Convert 8 into standard Gaussion variables through GA
| C={0.G..... 0} |
I
Select N collocation points
oG ...
Obtain the corresponding 0 values at N ¥
collocation points 0', 0%, ..., 0% Construct a p-degree PCE on §, denoted
v - as g({)
Run the hydrologic model at 0" and obtain N
outputs y', v, ... y¥

v
Establish linear regression equations based on: y' = g({),i= 1,2, ....N,
Generate the unknown coefTicients of PCE

Use ¥ = g(£) as the surrogate for the original
hydrologic model

Analyze the uncertainty propagation and parameter |
sensitivity based on § = g(0)

Fig. 1. The flowchart of the proposed SDAPC method.
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Step (6). Obtain the updated weightw, | ; for the analyzed ensem-
ble values:

Wi P (yt+1 —h (xt+1,i’ 01‘,1') |Rt+1)

2751 Wi p (J’z+1 —h (xt+1,i’ 91,:’) ‘Rt+1)

Wi =

Step (7). Resampling: Apply the resampling procedure proposed
by Moradkhani et al. (2005b) for all states and parameters, and store
the resulting particles as:0, ; | eamp,iX; + 1-resamp,i-

Step (8). Parameter perturbation: Take the parameter evolution to
the next stage by adding small stochastic errors around the sample:

9t+1,i = 9t+l—resamp,i + S RIS W N (0’ nS (et,i))

where 7 is a hyper-parameter which determines the radius around each
sample being explored, which is set to be 0.15 in this study. Also, the
hyper-parameter can be adjusted through variance multiplier approach
(Leisenring and Moradkhani, 2012). S(6, . ;) is the standard deviation
of the analyzed particle values.

Step (9). Setw, ;1 ;= l/ne.

Step (10). Convert the parameter O into standard Gaussian vari-
ables through GA.

Step (11). Approximate the outputs of interest using the polyno-
mial chaos expansion in terms of the standard Gaussian variables.

Step (12). Select the collocation points according to the dimensions
of the stochastic vector and the order of the applied polynomial chaos
expansion.

Step (13). Determine the unknown coefficients in the polynomial
expansion through a statistical regression technique.

Step (14). Check the stopping criterion: if measurement data is still
available in the next stage, #=t+ 1 and return to step 2; otherwise,
continue to the next step.

Step (15). Evaluate the inherent statistical properties of the outputs
stemming from the uncertainty of the parameters through the obtained
PCE.

2.4. PCE-based temporal dynamics of parameter sensitivity

Sensitivity analysis (SA) evaluates the impact of model parame-
ters on the model outputs, and is therefore a convenient tool to as-
sess model behavior and particularly the importance of certain para-
meterizations within the model (Reusser et al., 2011). Generally, SA is
widely adopted in the model calibration process and attempts to iden-
tify the most important parameters for hydrologic model calibration
and the unimportant parameters which can be prefixed as a constant
value. Some objective functions are adopted for sensitivity analysis in
hydrology, such as RMSE and NSE. In contrast to classical sensitivity
analysis, the temporal dynamics of parameter sensitivity (TEDPAS)
analyze the model output variables (such as discharge, groundwater
level or snow water equivalent) to quantify which model components
dominate the catchment response and can be considered as dominant
indicators for functioning of the model (Reusser et al., 2011). Many
SA methods as Sobol's method can be adopted for both classic SA and
TEDPAS processes (Guse et al., 2014; Song et al., 2015). The main
difference between these two processes is that SA is performed for
each time step individually in TEDPAS, while classic SA is conducted
only once over the simulation period.

In this study, Sobol's method is employed for the temporal dynam-
ics of parameter sensitivity. Sobol's method is a global SA method de-
rived from variance decomposition, attempting to quantify the contri-
bution to the total variance of the model output by both an individual
parameter and its interactions with other parameters (Dai et al., 2014).
In Sobol's method, a variance decomposition from the random vari-
able y can be formulated as (Zheng et al., 2011):

V)= DVi+ XDV 44V,
i P>y

(13)

where V; is the variance attributed to the single effect of input x; and
V;=V(EQ | x))); Vj is the variance attributed to the interaction ef-
fect of x; and x;, and V;; = V(E(y | x;, X)) - V(E(v | x)) - V(E(y | x)));
higher-order variances have similar expressions (Zheng et al., 2011;
Wu et al., 2014). The Sobol's sensitivity indices are defined as the ra-
tios of partial variances to the total variance, indicating the contribu-
tion of each individual parameter and its interactions to the total un-
certainty (Dai et al., 2014):

Vi
S, = ——
V) (14)
_ Y
R AC) (15)
Vlz,“k
S =
12..k 1% (y) (16)

The total sensitivity index is defined as the sum of all partial sensi-
tivity indices for a parameter and provides the total effect of the para-
meter, including the interactions (Dai et al., 2014):

ST =S8+ ZSU +.+ Sk
J#i “n

The Sobol's indices are mathematically rigorous but time-consum-
ing (Zheng et al., 2011). Consequently, Zheng et al. (2011) integrated
PCE into Sobel's variance-decomposition and derived the total vari-
ance V(y) as:

co M;
vy =Ya]]r
i=1 j=1

(18)

where p;;! is the order of jth univariate Hermite polynomial (UHP). An
example for the PCE-based sensitivity analysis indices are provided in
Appendix.

2.5. Temporal association between model sensitivity and catchment
conditions

TEDPAS calculates the parameter sensitivity of the model output
(discharge) for each time step, with the goal to determine the dom-
inance of different model components for different periods (Reusser
etal., 2011; Guse et al., 2014). Moreover, values of TEDPAS will
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change over time since the dominant hydrologic process may vary
temporally, e.g. between wet and dry periods (Wagener et al., 2003;
Reusser et al., 2011; Guse et al., 2014; Rahmani and Zarghami, 2015).
Consequently, the values of TEDPAS may be highly correlated with
the catchment conditions (e.g. precipitation, discharge). Such correla-
tion may be nonlinear due to the nonlinear behavior of hydrologic sys-
tems.

To identify the correlation between model sensitivity and catch-
ment conditions, the maximal information coefficient (MIC) proposed
by Reshef et al. (2011) will be adopted. MIC captures a wide range
of associations both functional and non-functional, and for linear rela-
tionships it provides a score that approximately equals the coefficient
of determination (Rz) (Reshefet al., 2011). The expression of MIC can
be formulated as (Zhang et al., 2014):

MIC = max {I (x.y) /logy min (n,.n,)} (19)

where

I(x,y)=H )+ H(y)— H(x,y)

nyn, < B(n) and B(n) = n6

Based on MIC, the nonlinearity between two variables x and y can
be defined by MIC — nyz (Reshef et al., 2011), where R,, is the Pear-
son's r value between x and y. Through MIC values, the associations
between a parameter's sensitivity and catchment conditions is identi-
fied, which can answer (i) which factor (e.g. precipitation, potential
evapotranspiration) poses the most significant impact on parameter
sensitivity, and (ii) does the association between parameter sensitivity
and the catchment factor change under different hydro-meteorological
conditions (e.g. wet and dry periods for precipitation)?
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3. Case study
3.1. Study catchment

The Xiangxi River basin, located in the Three Gorges Reservoir
area of China (as shown in Fig. 2), was selected to demonstrate the ap-
plicability of the proposed method. The Xiangxi River is located be-
tween 30.96 and 31.67 °N and 110.47-111.13E in the Hubei area of
China, Three Gorges Reservoir (TGR) region, which drains an area of
about 3200 km?. The Xiangxi River originates in the Shennongjia Na-
ture Reserve, with a main stream length of 94 km and a catchment area
of 3099 km?, and is one of the main tributaries of the Yangtze River
(Han et al., 2014; Fan et al., 2015b,c). The watershed experiences a
northern subtropical climate. The annual average temperature in this
region is 15.6 °C and ranges from 12 °C to 20 °C. The historical mea-
surements record a maximum temperature of 43.1 °C and a minimum
temperature of —9.3 °C (Fan et al., 2016). The average frost-free days
at low, middle and high elevations are 272, 215 and 163 days, respec-
tively (Li, 2012). The average annual quantity of solar radiation value
(heat units) is 2.90 X 10® kW/m?, with values during April to Septem-
ber reaching as high as 1.88 x 10® kW/m? (Li, 2012; Li et al., 2015).
Annual precipitation is 1100 mm, ranging from 670 to 1700 mm with
considerable spatial and temporal variability. The major rainfall sea-
son is May—September, with a flooding season from July to August.
The precipitation in the north is higher than that in the south, with an
average of sixty-nine percent of the annual precipitation occurring as
rain, resulting in an average streamflow of 40.18 m’/s (Li, 2012) in the
Xiangxi River.

The study area consists of a mixed coniferous-deciduous forest
which demonstrates an explicit vertical gradient with elevation. Vege-
tation changes from broadleaf forest (below 800 m) to coniferous for-
est (800—1000 m) and shrub-grassland (above 1800 m) as elevation in-
creases (Li, 2012). The land use is characterized by mixed grain and
cash-crop farming on terraced farmland. Crops include rape, wheat,
maize and rice, nuts, and garden fruits respectively (Li, 2012).

NTETE I 1F0N

Hydrological Staticn |

26,000
Meters

Fig. 2. The location of the studied watershed.
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3.2. Hydrologic model

Hymod, which is a well-known conceptual hydrologic model, will
be used in this study. Hymod is a non-linear rainfall-runoff concep-
tual model run in any time scale (Moor, 1985). The general concept of
the model is based on a probability distribution of soil moisture mod-
eling proposed by Moore (1985, 2007). In Hymod the catchment is
considered as an infinite amount of points, each of which has a cer-
tain soil moisture capacity denoted as ¢ [L] (Wang et al., 2009). Soil
moisture capacities vary within the catchment due to spatial variabil-
ity such as soil type and depth and a cumulative distribution function
(CDF) is proposed to describe such variability, expressed as (Moor,
1985, 2007):

C

hexp
F(c)=1—[1— ] , 0 <c¢ < Cmax

max

(20)

where Cp,, [L] is the maximum soil moisture capacity within the
catchment and by, [-] is the degree of spatial variability of soil mois-
ture capacities and affects the shape of the CDF.

As shown in Fig. 3, Hymod conceptualizes the rainfall-runoff
process through a nonlinear rainfall excess model connected with
two series of reservoirs (three identical quick-flow tanks represent-
ing the surface flow, in parallel with a slow-flow tank representing
the groundwater flow). The Hymod has five parameters to be cali-
brated: (i) the maximum storage capacity in the catchment C,,,,, (ii)
the degree of spatial variability of the soil moisture capacity within the
catchment b, (iii) the factor partitioning the flow between the two
series of linear reservoir tanks «, (iv) the residence time of the linear
quick-flow tank R, and (v) the residence time of the slow-flow tank
R,. The model uses two input variables: mean areal precipitation, P
(mm/day), and potential evapotranspiration, ET (mm/day).

3.3. Synthetic experiment setup

A Synthetic experiment is to be proposed to demonstrate the ef-
fectiveness of the proposed HDAPC approach in uncertainty quan-
tification. In this synthetic experiment, the synthetic streamflow data
are generated based on the potential evapotranspiration, ET (mm/day),
and mean areal precipitation, P (mm/day) from the Xiangxi River
basin. In the generation process of the synthetic streamflow, the val-
ues of the five parameters of Hymod would be predefined, as given
in Table 1. These generated streamflow values are considered as the
“true” observations in the updating process of particle filter (PF). In
any data assimilation framework, one must assume error values for
any quantity that contains uncertainties (DeChant and Moradkhani,

ET p

2012). In this study, random perturbations would be added to the
precipitation, potential evapotranspiration (ET) and model predictions
to account for their uncertainties. For the potential evapotranspira-
tion, the Gaussian noise is recommended by a number of literature
(e.g. DeChant and Moradkhani, 2012; Moradkhani et al., 2012; Chen
et al., 2013; Rasmussen et al., 2015; Yang et al., 2015; Nourani et al.,
2015). For precipitation, some studies applied Gaussian noise (e.g.
Rasmussen et al., 2015), while other studies concluded that log-nor-
mal noise may perform better (e.g. DeChant and Moradkhani, 2012;
Moradkhani et al., 2012). In this study, the Gaussian noise is adopted
in the synthetic experiment, while log-normal noise is employed in
the real-case study. These random perturbations are assumed to have
their standard errors being proportional to the magnitude of the true
values. The proportional coefficients for precipitation, potential evap-
otranspiration, streamflow observation and model predictions, are set
to be 0.3 in the synthetic experiment. This means that precipitation,
PET, streamflow observation, and model predictions are assumed to
have normal distributions with relative errors of 30%.

3.4. Real-case study

To demonstrate the applicability of the proposed method in quan-
tifying uncertainty for hydrologic models, the daily precipitation, po-
tential evapotranspiration, and streamflow measurements from 1994
to 1996 were applied to evaluate the performance of the proposed al-
gorithm. The uncertainty of model parameters were first characterized
through the PF method.

The sequential data assimilation approach can quantify model pre-
diction errors stemming from various sources such as inputs, model
structures and parameters. To account for actual uncertainties in real
world climatic variables such as precipitation and potential evapotran-
spiration, random perturbations are usually added into real measure-
ments in climatic variables and discharges. Several studies have as-
sumed the standard deviation of the observed errors to be proportional
to the true discharge (Dechant and Moradkhai, 2012; Moradkhani
et al., 2012; Abaza et al., 2014), while some studies set the errors to be
proportional to the log discharge (Clark et al., 2008; McMillan et al.,
2013). In our study, we primarily focus on the capability of the de-
veloped HSDAPC approach to quantify the uncertainty of hydrologic
models. Consequently, the observed errors in measurements are as-
sumed to be independent and set to be proportional to the true values.
In detail, according to the study by Fan et al. (2015d), the precipita-
tion is assumed to be log-normally distributed with a relative error of
20% of the true values. The ET is normally distributed with a relative
error of 20%, respectively. The error in streamflow is assumed to be
normally distributed, with a proportional rate of 20% of the true dis-
charges.
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Fig. 3. Description of Hymod.
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Table 1
The predefined true values and fluctuating ranges for the parameters of Hymod through
PF.

Parameters

Cmax bcxp o R.\' Rq
True 175.40 1.5 0.46 0.11 0.82
Primary range  [120, 250] [0, 2] [0.20,0.70] [0.05,0.20] [0.60, 0.99]

4. Result analysis and discussion
4.1. Result analysis of synthetic experiment

4.1.1. Performance of the HSDAPC approach

In the proposed HSDAPC approach, the particle filter method re-
cursively updates the posterior probabilities of model parameters and
state variables through representative samples when new observations
become available; the probabilistic collocation method (PCM) is pro-
posed after each update to explicitly describe uncertainty propagation
from model parameters to model outputs. However, one major chal-
lenge for connecting PF and PCM is that the posterior probabilities
of model parameters obtained by PF are arbitrary, while the PCM re-
quires inputs with specific probability distributions (e.g. standard nor-
mal variable for PCE with Hermite polynomials). Consequently, the
GA approach is employed to convert the posterior distributions into
standard normal variables.

In the synthetic experiment, four sample size scenarios, involv-
ing {50, 100, 200, 500} particles are adopted to evaluate the perfor-
mance of HSDAPC. Under each scenario the synthetic experiment
is tested for 30 trials to ensure the reliability of the proposed ap-
proach. For each sample size, the prior probabilities of model para-
meters are assumed to follow uniform distribution within predefined
intervals, as presented in Table 1. The posterior probabilities of those
five model parameters are estimated through particle filter, and the as-
sociated 2nd and 3"-order PCE models are derived to represent the
hydrologic model. The average values of NSE and RMSE for these
30 trials are listed in Table 2. The results suggest that, as the sam-
ple size increases, the performance of particle filter method is im-
proved, leading to improvement for the following PCE models. More-
over, the variations of the NSE, RMSE and PBIAS values for Hy-
mod and the associated 2nd and 3M-order PCE models for the 30 trials
are plotted in Fig. 4. This indicates that the performance of HSDAPC
approach is mainly determined by the posteriors estimation through
PF. Once the parameter posterior probabilities are obtained, the differ-
ences between the PCE models and the original hydrologic model can
even be neglected, indicating the accuracy for the 2nd and 3" order
PCE models in representing the original hydrological model. Conse-
quently, the generated PCE models can represent the original hydro-

Table 2
Comparison between the performance of Hymod and two and three-order PCEs under
different sample size scenarios of data assimilation process.

Sample
size NSE RMSE

2" order  3™M-order 2" order  3"-order

Hymod PCE PCE Hymod PCE PCE

50 0.8564 0.8566  0.8561 12.6264 12.6055 12.6416
100 0.8831 0.8840  0.8829 10.7984 10.7595 10.8041
200 0.8878 0.8875  0.8829 11.0099 11.0180 11.0083
500 0.8903 0.8902  0.8900 10.5155 10.5147 10.5372

logic model for further uncertainty propagation and sensitivity analy-
sis.

4.1.2. Comparison with Monte Caro simulation

To demonstrate the accuracy of the obtained 2nd and 3-order PCE
models from SDAPC, the inherent probabilistic characteristics of the
predictions from PCEs and Monte Carlo approach are compared. In
detail, the streamflow predictions in six days (i.e. 23,145, 181, 182,
218, 350) are chosen, which cover low, medium and high flow con-
ditions. Their inherent statistical properties and the corresponding his-
tograms are obtained through MC and the 2nd and 3™-order PCE mod-
els. Table 3 lists the mean, standard deviation, kurtosis and skewness
values of uncertainty predictions from MC simulation and the 2nd
and 3"-order PCEs. The results show that the probability functions
generated by the 2nd and 3rd -order PCEs would be similar to those
probability functions generated by MC. Fig. 5 shows the histograms
of the 2nd and 3rd -order PCEs and MC simulation results at the se-
lected time periods. It also indicates that the probability distributions
obtained by the 2nd and 3rd -order PCEs have similar shapes with the
“true” distributions from the MC simulation method.

4.2. Results analysis of real case study

4.2.1. Uncertainty characterization of hydrologic model through
HSDAPC

In the uncertainty quantification process through HSDAPC for the
Xiangxi River, the prior probability of each model parameters are as-
sumed to be uniformly distributed within an interval. The five prede-
fined intervals for Hymod are obtained based on the calibrated para-
meter values through SCE-UA algorithm. The sample size is set to
be 500 in the real case study, based on the results of synthetic ex-
periment. The posterior probabilities of model parameters in the hy-
drologic model are first estimated through the PF approach based on
available observations. The uncertainty of model predictions, stem-
ming from uncertain model parameters, is then characterized through
the probabilistic collocation method. In detail, as presented in Fig. 1,
once the observed discharge is available, the posterior probabilities of
the model parameters are updated, and then the coefficients of the ob-
tained PCE model are changed. In this study, the 2nd and 3 order
PCE models are employed, and so there are 21 and 56 coefficients for
these two models, as presented in Table 4. For instance, Fig. 6 shows
the variability of posterior probabilities in different temporal periods.
Correspondingly, Table 4 presents the detailed 2nd and 3"_order PCE
models and provides the corresponding coefficients on 100" and 200"
day. The results show that, even though 3_order PCE model has more
polynomials, the coefficients of its low order polynomials (1st and
2nd-order) have similar values with the coefficients of the 2™-order
PCE, while in comparison most coefficients of the 3" order polyno-
mials are zero. This suggests that, for the Hymod, 2"order PCE may
be adequate to serve as the proxy. Moreover, the proposed HSDAPC
approach improves upon previous methods where random samples are
drawn directly from the posterior distributions through the inefficient
Monte Carlo method. In comparison, a proxy model of the original hy-
drologic model is established through PCM with respect to the uncer-
tain model parameters. Such a proxy model can explicitly reflect the
uncertainty propagation from uncertain parameters to uncertain out-
puts and thus can be employed to reveal the prediction uncertainty of
the hydrologic model.

Fig. 7 shows the comparison between predictions of the hydro-
logic model, PCEs and observations. The polynomial chaos expan-
sions (PCEs) are the proxy models for the original hydrologic model
obtained by PCM. Fig. 7(a) indicates the comparison between the



Nash-Sutcliffe Efficiency
r [

Environmental Modelling and Software xxx (2016) xxx-xxx

Percent bias
40 T

Hymod

) ¢ I % ®
0.95/ % i 30| 2.order PCE I\
N I\I I',I | T 3-order PCE
0.8} \ [ 20 ) |
1 1 {1 |
. ) I‘. b T ; ¥ |
. \ :- ! l-i II‘ 0 . 1,‘
e _ I\ ¥ +
0.8 e » £ 0 I\ .'r\ i
w | ’2 \ I ‘II ', \ I|
< 075 II @ 10/ \ - |
I & \ \ \ || |
[ \#2\ | [ : V4| H
0.7 |I 2o [ ) \ [ b T e | |
| \ ] ) |
0.65/ '. 30| 4 & /\1 '\ 14
Hymod | & \ .'
0.6/ 2-order PCE | 40 .
3-arder PCE | \
055 -50 ®
1} 5 10 15 20 26 20 [V} 5 10 15 20 25 30
Iteration Iteration
Root-mean-square error
25;
Hymeod P
2-order PCE
20 3-order PCE .
Z 15 \
mE II
w |
7] \
Z 10! i H
Vo |
\
| |
& |
5| {
0 5 10 15 20 25 30
Iteration
Fig. 4. Performance comparison between hydrologic model and the associated PCE models.
Table 3
Comparison of statistic characteristics among two and three-order PCEs and MC simulation results at specific time periods.
Time (d) Mean Standard deviation Kurtosis Skewness
2-Order 3-Order 2-Order 3-Order 2-Order 3-Order 2-Order 3-Order
PCE PCE MC PCE PCE MC PCE PCE MC PCE PCE MC
23 1.67 1.66 1.67 0.18 0.20 0.18 3.55 3.87 3.26 0.76 0.74 0.64
145 111.15 110.25 110.95 12.42 13.26 12.46 3.47 3.77 3.31 0.70 0.68 0.62
181 336.92 334.41 336.37 34.27 36.37 34.43 3.43 3.71 3.27 0.67 0.64 0.59
182 289.41 287.68 288.33 19.85 25.10 21.13 3.70 3.98 2.91 0.80 0.72 0.56
218 159.18 158.12 158.72 11.37 13.54 11.84 3.42 3.80 291 0.65 0.63 0.49
350 0.01 0.01 0.01 0.0012 0.0014 0.0012 3.73 3.88 3.45 0.71 0.68 0.63

mean predictions of the hydrologic model and observations. Compar-
isons between the mean predictions of 2"_order PCE and observations
and the mean predictions of 3 order PCE and observations are pre-
sented in Fig. 7(b) and (c). From Fig. 7, the predictions from the orig-
inal hydrologic model and the two and three-order PCEs exhibit no
significant differences. All three approaches can trace the variations in
observed streamflow data while the underestimates or overestimates
in the original hydrologic model will also lead to similar deviations in
the two and three-order PCE models.

To further compare the performance of the hydrologic model and
PCE:s in discharge predictions, the indices of RMSE, PBIAS, NSE
were calculated based on the prediction means and observations. The
comparison process between the Monte Carlo method and PCEs was
implemented through: (i) choosing N samples from the standard
Gaussian distribution, (ii) deriving the associated parameter values in

the hydrologic model through the GA approach, (iii) running the PCEs
and hydrologic model respectively, (iv) obtaining the evaluation cri-
teria results. Table 5 shows the results of RMSE, PBIAS, and NSE
values obtained through the Monte Carlo method and 2nd and 3" or-
der PCEs. These values indicate a satisfactory performance for the hy-
drologic model and its corresponding 2nd and 3"_order PCE models
in tracking the streamflow dynamics in the Xiangxi River. Specifi-
cally, there are no obvious differences in the performance of the Hy-
mod and the 2nd and 3™-order PCEs in predicting the streamflow. Al-
though the two and three-order PCEs are established as proxy mod-
els for the original Hymod, the results in Table 5 suggest the proxy
models based on the two and three-order PCEs can well represent
the original Hymod. The 90% predictive intervals obtained by the
original hydrologic model and the 2nd and 3" order PCEs are pre-
sented in Fig. 8. These predictive intervals are obtained based on
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Fig. 5. The comparison of histograms among MC simulation, 2-order and 3-order PCE results.

the posterior probabilities of model parameters at each time step. This
meaning that the parameters are time-variant. The results indicate the
90% predictive intervals from all three models can bracket most ob-
servations, especially for high flow C}?eriods. Moreover, the predictive
intervals obtained by the 2nd and 3™-order PCE models show consis-
tent varying trends with the predictive interval obtained by the original
hydrological model, indicating the accuracy of the 2nd and 3 order
PCE models in quantifying uncertainty in the hydrologic model.

4.2.2. Computational efficiency of the HSDAPC method

The basis of the hybrid sequential data assimilation and probabilis-
tic collocation (HSDAPC) approach for quantifying the uncertainty of
hydrologic models is to estimate the posterior distributions of the hy-
drologic model parameters through a PF method and then reveal the
uncertainty of hydrologic models through the probabilistic collocation
method (PCM). Previously, once the posterior distributions were ob-
tained through PF, the Monte Carlo method was employed to draw
samples and run the hydrologic model again to generate prediction
uncertainty ranges. In the HSDAPC approach, such uncertainty quan-
tification can be conducted through the obtained PCE models of the
hydrologic model. This method has three advantages: (i) the original
samples can be drawn from the standard Gaussian distribution, which
is easily conducted; (ii) the computational efficiency can be highly im-
proved; (iii) the inherent relationship between model parameters and
model outputs can be explicitly expressed by the PCE models.

The first advantage of the HSDAPC approach is straightforward
since the inputs of the PCE models with Hermite polynomials obey
the standard Gaussian distribution. The second advantage is illustrated
through comparison between the traditional Monte Carlo method and
the PCE models. Table 1 shows the computational efficiency and
the associated performance of the Monte Carlo method and PCEs.
In this study, five sample sizes (n =500, 1,000, 1,500, 2,000, 2500)
are selected to compare the computational efficiency of the hydro-
logic model and PCEs. As shown in Table 5, as the sample size in-
creases, the performance of the hydrologic model and PCEs does not
vary significantly. However, the computational efficiency of PCEs
would be much faster than the Monte Carlo (MC) method. Specif-
ically, the computational efficiency of 2™-order PCE model would
be ten times faster than the original hydrologic model. For exam-
ple, when n =500, the computational time of MC method would be
60.01 (s), while the computational time of two-order PCE is just
2.85 (s). For the 3" order PCE, its computational efficiency is also

more efficient than the original hydrologic model. Consequently, the
proposed HSDAPC approach can significantly improve the computa-
tional efficiency for uncertainty quantification of hydrologic models.

In this study, Hymod was applied to demonstrate the efficiency of
the proposed approach. This model is a simple conceptual hydrologic
model, with five parameters to be calibrated. Consequently, the com-
putational requirement for this model is quite low, when compared
with other sophisticated models such as semi-distributed and distrib-
uted hydrologic models. However, as presented in Table 5, the ob-
tained 2nd and 3"-order PCE models are much faster in computational
efficiency when compared with Hymod. Consequently, the computa-
tional efficiency would be improved significantly for more complex
hydrologic models.

4.2.3. Temporal dynamics of parameter sensitivity (TEDPAS)

Based on the HSDAPC approach, the posterior probability distri-
butions of model parameters were obtained based on three years of
measurements for the Xiangxi River. The two and three-order PCE
models were further derived to characterize the uncertainty propa-
gation from model parameters to model forecasts. Even though the
test model is a simple conceptual model having only five parameters,
a temporal diagnostic analysis for Hymod is useful to characterize
which model components control the performance under different hy-
drologic conditions, and to further explore the dominant runoff mech-
anisms under different hydro-meteorological conditions.

As expressed by Equations (A9)—(A11), Sobol's indices can be the-
oretically approximated through the PCE model. Based on the HS-
DAPC approach, the PCE model was generated to serve as a proxy
for the original hydrologic model. The performance of the PCE was
consistent with the original hydrologic model. Consequently, Sobol's
indices can be used to analyze the temporal dynamics of parameter
sensitivity. Figs. 9 and 10 present the temporal dynamics of parameter
sensitivity obtained from the 2"%order and 3™-order PCE respectively,
across the simulation period. The results in Figs. 5 and 6 show a con-
sistent trend between each other due to the accurate approximation of
the two- and three-order PCEs for the original hydrologic model.

From Figs. 9 and 10, the dominant model components can be char-
acterized under different hydro-meteorological conditions. As shown
in Fig. 9, the parameter alpha, in general, posed less influence on
model performance over the simulation period, with its values of less
than 0.2. This means that the distribution factor of water flowing
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Table 4
The coefficients of 2nd and 3™-order PCE model under different periods.

Polynomials 2"_order PCE 3" order PCE
100 (day) 200 (day) 100 (day) 200 (day)

1 41.64 28.96 41.61 28.96
& -0.36 -0.09 -0.32 -0.08
& 0.34 0.08 0.32 0.07
& 0.33 0.11 0.29 0.10
& 0.06 0.18 0.06 0.16
& 0.30 -0.82 0.28 -0.77
g2-1 0.00 0.00 0.00 0.00
& -1 0.01 0.00 0.01 0.00
&1-1 -0.01 0.00 0.00 0.00
£r-1 0.00 -0.01 0.00 -0.01
&2-1 0.00 -0.03 -0.03 0.03
E& 0.00 0.00 0.00 0.00
E& 0.00 0.00 0.00 0.00
£&, 0.00 0.00 0.00 0.00
£ &s 0.00 0.01 0.00 0.00
&& 0.00 0.00 0.00 0.00
&&, 0.00 0.00 0.00 0.00
E&s 0.00 -0.01 0.00 0.00
&&, 0.00 0.00 0.00 0.00
E&s 0.00 -0.01 0.00 0.00
E&s 0.00 0.00 0.00 0.00
&3 -3¢ 0.01 0.00
&1 -3¢, -0.01 0.00
& -34 0.00 0.00
£3-3¢, 0.00 0.00
& -3¢ 0.00 0.01
(&) 0.00 0.00
(&1 0.00 0.00
() 0.00 0.00
E(ET-1) 0.00 0.01
EEZ-1) 0.00 0.00
EET 1) 0.00 0.00
EET-1) 0.00 -0.01
EET-1) 0.00 0.00
EES-1) 0.00 -0.01
E&T-1) 0.00 0.00
EET-1) 0.00 0.00
E(ET-1) 0.00 0.00
()] 0.00 0.00
()] 0.00 0.00
E(&T-1) 0.00 0.00
E(ET-1) 0.00 0.00
EE2-1) 0.00 0.00
E(&7-1) 0.00 0.00
E(&T-1) 0.00 0.00
EET-1) 0.00 0.00
£ &¢ 0.00 0.00
£ &E, 0.00 0.00
E\&és 0.00 0.00
£ 8¢, 0.00 0.00
E&5¢s 0.00 0.00
E &4 0.00 0.00
58, 0.00 0.00
5 0.00 0.00
&\ 0.00 0.00
&&is 0.00 0.00

to the quick-flow reservoir would not influence the model perfor-
mance significantly, regardless of the variation in actual hydro-mete-
orological conditions. Conversely, the parameters R, and R, exhibit
significant impacts on the model streamflow predictions. Specifically,
the values of R, and R, show significant fluctuation, with the min-
imum value being zero and maximum value approaching one. Fur-
thermore, the temporal sensitivity of R, is generally consistent with
the variation of precipitation, while the value of R, shows an op-

posite trend with the precipitation. This is because R, indicates the res-
idence time of quick-flow reservoirs, while the R represents the res-
idence time of slow-flow reservoirs. For G, and by, they exhibit
similar variation trends between each other since they are indicators
for soil moisture but in general, C,,, plays a more importance role in
model performance.

Table 6 presents the sensitivities of the five parameters in low and
high flow periods. In this study, the high flow is characterized as
a flow amount larger than the 95% quantile value of the historical
flow records while the low flow is less than the 5% quantile value
of the historical records. The results in Table 6 mean that the para-
meter R, pose most significant impact on the model predictions in
high flow period, while the parameter R; is the dominant impact fac-
tor for model predictions in low flow period. This suggest that the
quick flow process contributes most in high flow periods but the slow
flow process dominates in low flow periods. Particularly, the results in
Table 6 show that there is only slight differences for parameter sensi-
tivities obtained by 2" order and 3™-order PCE models, indicating the
accuracy for these two models in reflecting uncertainty propagation in
hydrologic simulation.

Furthermore, the differences of parameter sensitivities under pre-
cipitation and non-precipitation conditions are characterized. Table 7
shows the parameter sensitivities under dry and rainy conditions. The
results indicate that the quick flow process (i.e. R,) contribute most to
the streamflow when precipitation occurs, followed by the maximum
soil storage (i.e. Cmax) and the slow flow (i.e. R,). Conversely, the
parameter R, dominates during the dry periods with a parameter sensi-
tivity value more than 0.4. The parameters of Ry and Cmax also pose
apparent impacts on the model predictions with the parameter sensi-
tivities more than 0.3 and 0.1, respectively.

Fig. 11 shows the comparison of the cumulative probability for the
TEDPAS obtained through 2™-order and 3™-order PCEs. The CDFs
for the five parameters obtained by two PCEs show similar trends, in-
dicating the accuracy of the proposed method for quantifying the tem-
poral sensitivities of the hydrologic model. Similar to the results pre-
sented in Figs. 9 and 10, the parameter alpha in Hymod shows the
least sensitivity to the model performance, with the maximum value
less than 0.2, followed by Cy,,,c and by, with their values fluctuating
within [0, 0.6] and [0, 0.5]. R, had a sensitivity higher than 0.4 for
more than 40% of the days, illustrating that it has a high sensitivity for
a considerable period of time. Moreover, R also shows high sensitiv-
ity for a considerable period since it exhibits a high sensitivity higher
than 0.4 for nearly 40% of days in the simulation period.

As shown in Figs. 9 and 10, the model parameter sensitivities will
vary over time. One issue to characterize the variation in model pa-
rameter sensitivity is to determine how catchment conditions will in-
fluence the model parameter sensitivity. Fig. 12 shows the correla-
tion between model inputs and outputs (i.e. precipitation, potential
evapotranspiration, and streamflow) and model parameter sensitivi-
ties. The results show that the association between model inputs and
outputs and model parameter sensitivity is not fully clear. Conse-
quently, to further reveal such associations, the MIC will be adopted
which is expressed as Equation (19). Table 8§ presents correlation be-
tween precipitation, potential evapotranspiration, observed discharge
and model parameter sensitivities. It can be concluded that, over the
simulation period, the model parameter sensitivities are correlated
with the precipitation, potential evapotranspiration and streamflow
discharge, with most MIC values being larger than 0.1. Moreover, dur-
ing the rainy periods, the correlation between model parameter sensi-
tivities and catchment meteorological conditions is quite significant,
with most MIC values larger than 0.5. Particularly, such correlation/
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Table 5
Comparison between Monte Carlo method and PCEs.

Sample size 500 1000 1500 2000 2500
Hydrologic RMSE 33.076  33.119  33.111  33.108  33.111
Model
PBIAS(%) 25.510 25.526 25.521 25.511 25.541
NSE 0.7293 0.7286 0.7287 0.7288 0.7287
Time (s) 60.01 119.39  179.05  239.33  300.40
2" order PCE RMSE 33.055 33.093 33.084 33.084 33.088
PBIAS(%) 25480 25491 25485 25480 25.510
NSE 0.7296  0.7290  0.7292  0.7291  0.7291
Time (s) 2.85 5.15 7.58 10.17 12.74
3" order PCE RMSE 33.053 33.086 33.078 33.078 33.081
PBIAS(%) 25497 25504 25499 25495  25.520
NSE 0.7297  0.7291  0.7293  0.7293  0.7292
Time (s) 22.89 45.28 67.95 90.90 114.29

association will mainly increase as the precipitation increases from 0
to 1 mm/day. The increasing trends would not apparent as the pre-
cipitation increases from 1 to 5 mm/day. This may be due to the fact
that the hydrologic model uses saturation excess overland flow mech-
anism in the rainfall-runoff process. Moreover, Table 9 characterizes
the nonlinearity between model parameter sensitivities and observed
precipitation, potential evapotranspiration and streamflow discharge.
The results in Tables 8 and 9 show that the correlation/association
between model parameter sensitivities and catchment conditions (i.e.
precipitation) are mainly nonlinear regardless of precipitation levels.
Moreover, the nonlinearity will increase as the precipitation increases.
For instance, under light (P > 0) and heavy (P > 5) rain days, the non-
linearity between C,,, and Q is about 0.52 and 0.62 respectively.

5. Conclusions

In this study, a hybrid sequential data assimilation and probabilistic
collocation (HSDAPC) approach was developed to quantify the uncer-
tainty of hydrologic models and screen the sensitivities of model pa-
rameters. The proposed HSDAPC method integrates the capability of
sequential data assimilation and the probabilistic collocation method
into its framework, in which the posterior probabilities of hydrologic
model parameters are estimated through the PF method, and the un-
certainty propagation is showed through the probabilistic collocation
method. The temporal dynamics of parameter sensitivity (TEDPAS)
based on Sobol's indices are obtained through the obtained PCE. The
maximal information coefficient (MIC) is then adopted to identify the
association between model parameter sensitivities and catchment con-
ditions.

The developed HSDAPC approach was applied for a small catch-
ment in the Three Gorges Reservoir area, China. The results showed
that, the 2nd and 3"-order polynomial chaos expansion (PCE) mod-
els can well represent the hydrologic model for streamflow forecast-
ing and uncertainty quantification. The performance of the two and
three-order PCE models did not deteriorate when compared with the
original hydrologic model. In this study, the original hydrologic model
produced satisfactory predictions with best NSE value being about
0.73 based on multiple trials. The associated 2nd and 3 order PCE
models also generated satisfactory predictions with NSE values being
about 0.73. Specifically, the efficiency of the PCEs was considerably
more efficient than the hydrologic model, as the 2™*-order PCE model
ran ten times faster than the simplified conceptual model (i.e. Hy-
mod). Moreover, temporal dynamics of parameter sensitivity (TED-
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Table 6
Parameter sensitivity under different streamflow periods.

Period Parameter 2-Order PCE 3-Order PCE
Mean Std Mean Std

High flow  Cmax 0.132 0.160 0.128 0.160
bexp 0.045 0.070 0.040 0.063
alpha 0.031 0.050 0.029 0.047
Rs 0.072 0.085 0.073 0.087
Rq 0.721 0.267 0.730 0.263

Low Flow Cmax 0.148 0.124 0.147 0.127
bexp 0.117 0.097 0.105 0.090
alpha 0.036 0.035 0.034 0.033
Rs 0.567 0.348 0.577 0.350
Rq 0.131 0.198 0.138 0.207

Table 7
Parameter sensitivity under different precipitation conditions.
Period Parameter 2-Order PCE 3-Order PCE
Mean Std Mean Std

P>0 Cmax 0.200 0.161 0.198 0.164
bexp 0.129 0.109 0.116 0.101
alpha 0.036 0.048 0.034 0.045
Rs 0.159 0.244 0.163 0.249
Rq 0.477 0.312 0.489 0315

P=0 Cmax 0.136 0.150 0.134 0.152
bexp 0.094 0.106 0.085 0.098
alpha 0.057 0.051 0.053 0.048
Rs 0.412 0.361 0.419 0.364
Rq 0.301 0.323 0.309 0.326

PAS) analysis were then performed to characterize the dominant
model component under different hydro-meteorological conditions.
Sobol's sensitivity indices were employed for the above sensitivity
analysis since they could be well approximated through the coef-
ficients in the obtained PCE models. The results showed that the
slow-flow and quick-flow, in Hymod, would be the dominant model
components, in which slow-flow was most important under dry mete-
orological conditions and quick-flow contributed most when precipita-

tion occurred. Soil moisture contributed more to runoff generation
under wet conditions than that under dry conditions. The associa-
tion/correlation between model parameter sensitivities and catchment
conditions was revealed through the maximal information coefficient
(MIC). These results showed that the correlations between model pa-
rameter sensitivity and precipitation, potential evapotranspiration and
streamflow discharge were significant and such correlations mainly
showed nonlinear features. Particularly, these correlations will be
quite significant during rainy periods, with most MIC values being
larger than 0.5. Also, the correlations were dominated by nonlinearity
during the rainy periods.

The developed HSDAPC method integrates the capability of the
PF method and the probabilistic collocation method for quantifying
the uncertainty of hydrologic predictions. This method could also be
applied to other hydrological models (conceptual, semi-distributed,
and distributed hydrologic models). The innovations of this study are
that: (i) after the data assimilation process by PF, the probabilistic col-
location method was further used, other than the classic Monte Carlo
simulation method, to show uncertainty propagation in the hydrologic
model; (ii) the temporal dynamics of parameter sensitivity were de-
rived through the obtained PCE to reveal the dominant components of
the hydrologic model in different simulation conditions; and, (iii) the
correlation between model parameter sensitivities and catchment con-
ditions (i.e. precipitation, potential evapotranspiration, and streamflow
discharge) was identified through the use of the maximal information
coefficient.

In the HSDAPC approach, the resulting PCE model is a proxy
for the original hydrologic model, which means that the accuracy
of the PCE model can hardly perform better than the original hy-
drologic model. Consequently, once the parameters in a hydrologi-
cal model are not well identified in the data assimilation procedure
of HSDAPC, the resulting PCE model would also provide inaccu-
racy predictions. Moreover, the applicability of the proposed method
is demonstrated through a lumped hydrologic model with only 5 pa-
rameters. For other high-dimensional cases, such as distributed hydro-
logic models, the number of polynomials used in PCE will increase
remarkably. For instance, the 3"_order PCE for a hydrological model
with 10 parameters has 286 polynomials. This may lead to difficulties
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in coefficients estimation for the PCE model. However, the proposed
HSDAPC can still be applied for high-dimensional cases through
some improvements: (i) as demonstrated in this study, a 2" order
PCE model can adequately represent the original hydrologic model,
which has less polynomials than the 3" order PCE (i.e. 66 items
for 10 dimensional cases). Consequently, 2" order PCE model can
be applicable for some high-dimensional cases. (ii) For high-dimen-
sional cases, some pre-processing approaches can be employed to
identify the low sensitive parameters, and the HSDAPC is then ap-
plied which only consider high sensitive parameters. For instance,
Wang et al. (2015) addressed this issue through introducing fractional

factorial analysis into the probabilistic collocation method to analyze
uncertainty propagation of hydrologic model parameters in a reduced
dimensional space.
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Table 8
The MIC values between model inputs and outputs and model parameter sensitivity.

Precipitation Chax bexp alpha Ry R,

All Pre 0] 0.1759 0.1924 0.1498 0.2551 0.3083
P 0.1682 0.1552 0.1836 0.2293 0.1946
ET 0.1384 0.1395 0.1574 0.1756 0.1284

P>0 0 0.5601 0.5889 0.5281 0.5080 0.5740
P 0.5141 0.4970 0.4877 0.5540 0.5176
ET 0.4599 0.5085 0.5333 0.4257 0.4557

P>1 0 0.7254 0.7496 0.6560 0.6322 0.7010
P 0.6288 0.6543 0.6161 0.6600 0.7603
ET 0.5943 0.6507 0.6608 0.6656 0.6920

P>5 0] 0.7151 0.7713 0.6550 0.6472 0.6962
P 0.6369 0.6578 0.6222 0.6606 0.7603
ET 0.5953 0.6515 0.6633 0.6654 0.6920

Table 9

The nonlinearity between model inputs and outputs and model parameter sensitivity.

Chax bexp alpha R, R,
All Pre  Q 0.1721 0.1667 0.1384 0.1969 0.1844
P 0.1653 0.1504 0.1384 0.1712 0.0826
ET  0.1272 0.1258 0.1049 0.1755 0.1265
P>0 Ot 0.5228 0.4934 0.5268 0.4874 0.4515
Pt 0.4653 0.4455 0.4434 0.5037 0.3342
ET  0.4582 0.4969 0.5319 0.3934 0.3976
P>1 Ot 0.6354 0.6078 0.6501 0.6236 0.5582
Pt 0.4731 0.5061 0.5846 0.6300 0.5010
ET  0.5918 0.6341 0.6597 0.6566 0.6666
P>5 Ot 0.6209 0.6259 0.6482 0.6371 0.5559
Pt 0.4747 0.5070 0.5870 0.6232 0.5021
ET  0.5922 0.6343 0.6628 0.6500 0.6668

Al. Gaussian anamorphosis (GA) transformation

For an original random variable x and the transformed random
variable x’ = f(x), the premise of GA is to find a function f'to define a
change of variables (anamorphosis) such that the random variable x’
obeys a standard normal distribution. Such a transformation technique
was applied previously for biogeochemical and physical-biogeochem-
ical simulations in ocean (Simon and Bertino, 2009; Béal et al., 2010)
and subsurface hydraulic tomography simulation (Schoniger et al.,
2012).

Consider an arbitrarily distributed variable x and its Gaussian
transform variable z, they can be linked through their cumulative dis-
tribution functions (CDFs) as follows:

z=G"'(F(y) (A1)

where F(y) is the empirical CDF of y, G is the theoretical standard
normal CDF of z. Since G is monotonously increasing, the inverse G
exists. Equation (A1) is called the Gaussian anamorphosis function.

Following the method proposed by Johnson and Wichern (1988),
the empirical CDF of y can be obtained, based on its sample values as
follows:

b 405
! N (A2)

where j are the ranks of the sample values of x; N is the sample
size of x (rendered as the number of particles in this study). From
Equations (A1) and (A2), the sample values of the Gaussian trans-

form variable z can be obtained, which correspond to the sample val-
ues of x. Also, the sample range of z can be determined as follows:

. =G_1<1—0.5>

N (A3)

N—O.S)

Zmax = G_] ( N

(A4)

A2. PCE-based sensitivity analysis

For example, consider a truncated two-dimensional 2"_order PCE
expressed as:

F=ay+a,{ +al, +a; (2 1) +a, (5 — 1) +a5(,8, (AS).
the total variance can be obtained as:

V()/?)=a%+a§+2a§+2ai+a§ (A6)
If ¢, is fixed, the variance would be:

V (31¢1) = a +2a; (A7)
Similarly V (3]¢,) = @ + 242 and V (5]¢,.4,) =V (9) (AS9).

Consequently, the first and second-order Sobol's sensitivity indices
can be expressed as (Zheng et al., 2011):

CLVIEGK)  da

! V() aj +a; +2a3 +2a; + a; (A9)

CLVIEDR) @+

V) aj+ay+ 25 +2a+al
LV 016.6)-V(EGI)) -V (EGIL)) _

2= V() ai+a; +

Also, the total-effect indices can be obtained as: ST = S| + S5,
and S] =S, +.5),.

A3. Evaluation methods

A number of evaluation criteria are proposed to identify the per-
formance of hydrologic forecasting accuracy. In this study, the
root-mean-square error (RMSE) and the Nash-Sutcliffe efficiency
(NSE), are employed to evaluate the performance of HSDAPC ap-
proach. The formulation of the above four indices are presented as:

(A12)
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