
An Empirical Study of Evolution of Inheritance in Java
OSS

E. Nasseri, S. Counsell and M. Shepperd

School of Information Systems, Computing and Mathematics,
Brunel University, Uxbridge, Middlesex, UB8 3PH.

+44 (0)1895 266740
{emal.nasseri, steve.counsell, martin.shepperd}@brunel.ac.uk

ABSTRACT
Previous studies of Object-Oriented (OO) software have
reported avoidance of the inheritance mechanism and cast
doubt on the wisdom of ‘deep’ inheritance levels. From an
evolutionary perspective, the picture is unclear - we still
know relatively little about how, over time, changes tend to
be applied by developers. Our conjecture is that an
inheritance hierarchy will tend to grow ‘breadth-wise’
rather than ‘depth-wise’. This claim is made on the basis
that developers will avoid extending depth in favour of
breadth because of the inherent complexity of having to
understand the functionality of superclasses. Thus the goal
of our study is to investigate this empirically. We conduct
an empirical study of seven Java Open-Source Systems
(OSSs) over a series of releases to observe the nature and
location of changes within the inheritance hierarchies.
Results show a strong tendency for classes to be added at
levels one and two of the hierarchy (rather than anywhere
else). Over 96% of classes added over the course of the
versions of all systems were at level 1 or level 2. The
results suggest that changes cluster in the shallow levels of
a hierarchy; this is relevant for developers since it indicates
where remedial activities such as refactoring should be
focused.

Keywords: Object-oriented, Inheritance, Java, OSS.

1. INTRODUCTION

In this paper, we investigate the evolution of seven Open-
Source Systems (OSSs) and the trends in inheritance
hierarchies therein. This is of significance for two reasons.
Firstly, if we can predict the most change prone parts of a
system then we can pre-emptively target refactoring
activity to such parts of a system. Secondly, it may yield
information as to how software engineers view and
understand complex legacy systems. The research problem
is: how do inheritance hierarchies in object-oriented (OO)
software systems evolve over time? More specifically, we

conjecture that change will not be evenly distributed but
will tend to cluster around the top levels (closer to the root)
of such structures. We therefore conduct an empirical
investigation to assess whether this is indeed the case. We
focus on OSSs because OSS is becoming increasingly
prevalent in commercial organisations and is the subject of
continued research interest [1, 7, 9]. Moreover, we know of
no study that has yet investigated the evolution of
inheritance structures from an OSS perspective.

The original claim for using inheritance was that it
modelled data in a structured and logical fashion, thus
aiding the maintenance process [6]. Use of inheritance is
claimed to reduce the amount of software maintenance
necessary, ease the burden of testing [4], and produce more
reliable, high quality software [2, 3]. While in theory this
may make sense, from a practical perspective there is
empirical research to suggest that deep levels of inheritance
impede the maintenance process because of the
comprehension overhead of needing to understand relevant
super-classes [14, 18]. Given the dominance of OO
technology over the past decade or longer it is not
unsurprising that it has been the target of a good deal of
empirical research, much of which has endeavoured to
explore the extent to which the claims of OO proponents
are well founded. A surprising finding is that the
inheritance that was at least initially seen as a central
aspect of the paradigm seems to be used little in practice.
(We consider the evidence in more detail in the next
section.) Another aspect that has not, to the best of our
knowledge, been studied is the relationship between the
inheritance structure and where maintenance activities
occur.

The motivation for the research in this paper stems from a
number of sources. Firstly, we know very little about how
inheritance structures evolve over time [16, 17, 23]; the
research in this paper seeks to shed light upon this issue.
There is evidence to suggest that developers may find
inheritance difficult to comprehend beyond a specific level.
If that is true, then we would expect developers to add
classes at shallow levels of the inheritance hierarchy rather
than at deep levels. We posit that growth will be breadth-

mailto:steve.counsell, martin.shepperd}@brunel.ac.uk

wise not depth-wise, thus supporting a growing belief
about the use of inheritance. We believe that a better
understanding of the change behaviour, and in particular
the locality, would enable refactoring resources to be
targeted more efficiently. Secondly, we believe that a first-
step towards a change prediction model is an appreciation
of current trends in changes made to an inheritance
hierarchy. Given that this is a resource intensive activity
this would clearly be of benefit to software engineers (and
potentially users) since the outcome could be more flexible
and responsive software systems.

The remainder of this paper is organised as follows. In the
next section we describe related work. In Section 3 we
describe the study details including a description of the
systems under investigation and the metrics collected. In
Section 4, we analyse the data extracted. We then present a
discussion of the results (Section 5) before drawing
conclusions and pointing to future work (Section 6).

2. RELATED WORK

As indicated in the introduction, OO systems have been
extensively researched from an empirical perspective. One
area has been the drive to try to quantify different
properties of such systems. For example, the Depth of
Inheritance Tree (DIT) metric of Chidamber and Kemerer
(C&K) [11] has been used extensively in empirical studies;
the Specialization and Reuse Ratios proposed by
Henderson-Sellers [19] have also featured in empirical
studies.

There is some evidence to suggest that systems without
inheritance (i.e. flat systems) are easier to modify and
maintain than systems containing inheritance. Daly et al.
[14] describe an experiment in which subjects were timed
performing maintenance tasks on OO systems of varying
levels of inheritance. Systems with 3 levels of inheritance
were shown to be easier to modify than systems with no
inheritance. Systems with 5 levels of inheritance were,
however, shown to take longer to modify than the systems
without inheritance. Harrison et al. [18] replicated the
experiment and found that flat systems (containing no
inheritance) were easier to modify than systems containing
three or five levels of inheritance, although results
indicated that larger systems were equally difficult to
understand whether or not they contained inheritance. The
multi-method study of Wood et al., [25] suggests that
inheritance should be used with care and only when
needed. Finally, two controlled experiments by Prechelt et
al. [24] found that it took longer to maintain a program
with higher levels of inheritance than a program containing
fewer inheritance features.

In terms of other directly related work, various empirical
investigations have been made into the use of inheritance.
For example, the seminal paper by C&K describes their
metrics [11] and detail empirical analyses of systems at two
sites, one of which used C++ and the other Smalltalk. The

extent of inheritance at both sites was small (with median
Depth of Inheritance Tree (DIT) values of 1 and 3 for the
C++ and Smalltalk sites, respectively). The explanation
given is that designers wanted to retain comprehensibility
and simplicity in favor of reuse. In Chidamber et al., [13],
three commercial OO systems were empirically
investigated, and, again, none showed significant use of
inheritance. Bieman and Zhao [5] describe a study of 19
C++ systems, containing 2,744 classes in total. They found
that only 37% of these systems had a median class
inheritance depth greater than 1. Cartwright and Shepperd
[10] describe the collection of a subset of metrics from a
large telecommunications system (133,000 lines of C++).
Their main finding was a positive correlation between the
DIT metric of C&K [11] and number of user-reported
problems, casting doubt on the effective use of inheritance.
They also report relatively little use of inheritance in the
system they analyzed. In Basili et al., [3] the results of an
empirical study of the C&K metrics are presented. The
metrics are used as predictors of fault-prone classes. Data
from eight medium-sized management systems, developed
in C++ was collected. An experimental hypothesis
suggested that a class located deep in the inheritance
hierarchy was more fault-prone than a class higher up in
the hierarchy; this hypothesis was found to be supported
with statistical significance. This clearly implies that, far
from aiding maintenance, use of inheritance had the
opposite effect.

Our claim, based on results from previous studies about the
use of inheritance, is thus that inheritance hierarchies will
tend to evolve on a ‘breadth-wise’ rather than ‘depth-wise’
basis thus giving the hierarchy a ‘flattened’ shape; the
claim is based on the belief that rather than try to
understand existing functionality of a hierarchy, developers
will add classes at shallow levels instead. In other words,
we believe that the original claim and purpose of
inheritance is an impediment to developers when
maintaining Java software and they will act accordingly
when maintaining code. Reported results support our claim;
we found the vast majority of added classes to be those as
shallow levels of the hierarchy and relatively small activity
at lower levels of the hierarchy. Such a trend may have
significant implications for the location of faults in the
short and long-term.

3. STUDY DETAILS

3.1 The Seven Open-Source Systems

The seven OSSs on which our study is based included a
computer game and game engine, a template engine, a
compiler construction tool, an SQL database, a
documentation support and PDF file manipulation system.
The systems were chosen sequentially from the range of
systems available at sourceforge.net ensuring that 1) as
wide a range of applications was chosen for external
validity of the study and 2) a sufficient number of versions

were available of each system. Moreover, five of the seven
systems were also used in a previous empirical study [1]
and to allow comparison of results and further possible
replication, we retained these same five systems (only
JBoss and JAG were added in the study described in this
paper). Each system thus comprised multiple versions and
inheritance metrics were collected from each version. (We
note that the ‘final’ version represents the latest version
available to download and not the end version of the
system). The systems studied (in ascending order of
number of versions) were as follows.

1) HSQLDB: a relational database engine
implemented in Java. This system comprised 6
versions. HSQLDB started with 65 classes in
first version and comprised 358 classes by the
final version.

2) JasperReports: a business intelligence and
reporting engine. This system comprised 12
versions. JasperReports started with 818 classes
and comprised 1098 classes by the final
version.

3) EasyWay: a 2D Java game engine. This system
comprised 21 versions. EasyWay started with
183 classes and comprised 197 classes by final
version.

4) SwingWT: an implementation of the Java
Swing and AWT APIs. This system comprised
22 versions. SwingWT started with 50 classes
in its 1st version and increased in size to 620 by
the final version.

5) JAG: Java Application Generator. Generates
working projects containing complete J2EE
applications. This system comprised 23
versions. JAG started with 137 classes and
contained 136 classes by the final version.

6) JBoss: a standards-compliant, J2EE based
application server implemented in Java. 27
versions of this system were available starting
from version 8. JBoss was the largest system in
size. It contained 3934 in version 8 and variably
evolved. JBoss ended with 9082 classes by the
final version.

7) Tyrant: a graphical fantasy adventure game. 45
versions of this system were studied. Tyrant
started with 122 classes and finally ended with
273 classes by the final version.

3.2 Data collected

For this study we used an automated tool to collect four
inheritance-based measures from each version of the seven
systems. The JHawk tool is an OO metrics extractor,
information about which can be accessed from:

(http://www.virtualmachinery.com/jhawkprod.html).

The four inheritance metrics collected were as follows.

1) Depth of Inheritance Tree (DIT): this metric

measures the number of ancestors of a class
including ‘Object’ from which all classes inherit.
The DIT metric was proposed by C&K [11]. We
assume the value of DIT for class ‘Object’ at the
root of the entire hierarchy is zero; hence, all
classes declared at level 1implicitly extend only
class ‘Object’.

2) Specialization Ratio (SR): this metric is
calculated as: number of subclasses/number of
superclasses. High values of the SR metric imply
high level of reuse through subclassing [19].

3) Reuse Ratio (RR): this metric measures
inheritance using the formula: number of
superclasses/total number of classes. The total
number of classes refers to total number of
classes residing in inheritance hierarchy
excluding class ‘Object’ [19]. An RR Value close
to 1 implies that the inheritance hierarchy is
narrow. An RR value close to 0 implies that the
inheritance hierarchy is shallow.

4) Number of Children (NOC) metric: this measures
the number of immediate subclasses of a class
and was first proposed by C&K [11].

The four inheritance measures were collected from classes
of each version of the seven systems. Note that we refer to
a single ‘inheritance hierarchy’ of Java throughout the
paper, since in Java every class inherits from Object. This
is distinct from C++ where a class need not necessarily
inherit from any other class or be inherited from. We also
make no distinction between concrete and abstract classes
for the purposes of our analysis.

3.3 Summary data

Table 1 shows, for each of the seven systems, in order of
versions studied, the maximum (Max), minimum (Min),
median (Med) and Mean change values in the number of
classes across the versions studied. By ‘change’ we mean
positive or negative ‘growth’ by either adding or deleting
classes.

For maximum changes, Table 1 also indicates the
normalized (Norm.) percentage of Max. to indicate what
percentage of initial system size that Max. change
represents. For example, the Max. change of 176 for the
HSQLDB represented an increase of 271% in that system
over its original size (of 65 classes).

We also include the approximate variance (Var.) values for
the set of changes for versions of each system. For
example, the variance of the set of changes from version to
version of the HSQLDB system was 15336.

http://www.virtualmachinery.com/jhawkprod.html

Table 1. Summary change data for the seven systems
(all versions)

System Max

Ch
Norm. Min

Ch
Var. Med

Ch
Mean
Ch

HSQLDB 176 271% 0 15336 23.5 58.6
Jasper
Reports

183 22% -77 11696 13.5 23.3

EasyWay 16 9% -18 190 0 0.76
SwingWT 160 320% 0 39327 20.5 27.19
JAG 3 2% -12 17 1.0 1.0
JBoss 4537 115% -

4506
507305

6
245 476.9

Tyrant 103 84% -85 1657 0 3.58

From Table 1 we see considerable variation in the
behaviour of the systems. However, the mean change is
always positive indicating a tendency to grow in size over
time. This is most pronounced for JBoss. The size of a
release or change is also most erratic for the JBoss
according to its variance. The EasyWay, JAG and Tyrant
systems all have relatively low median and mean change
values.

We could consider a stable system as one with a close to
zero mean change value and low variance. Although no
single system satisfies these criteria JAG and EasyWay
seem the most stable of our seven systems. Remarkable is
the fact that Tyrant contained twenty-three ‘transitions’
from one version to the next, where no change in the
number of classes was noted (and could be considered the
most stable of the seven systems even though it does not
have the smallest variance of the systems studied). It is
also worth noting that the number of versions studied is not
a particularly good indicator of size of change. One of the
lowest mean changes belongs to the Tyrant system and the
second largest mean change belongs to HSQLDB. If we
view stability through the Norm. values from Table 1, then
the JAG and EasyWay systems figure prominently again
(as does the JasperReports system).

4. DATA ANALYSIS

Our analysis now considers the evidence to support our
conjecture that the inheritance hierarchy grows in ‘breadth’
rather than ‘depth’. We begin with a coarse-grained
analysis of the trends in numbers (i.e. frequency) of classes
at each DIT level on a version-by-version basis for each of
the seven systems.

4.1 Coarse-grained DIT analysis

Figure 1 gives the frequency of DIT values for classes in
the versions of HSQLDB and shows (apart from DIT level
4) a strong tendency for classes to be consistently added
(i.e., representing a net increase) at DIT levels 1, 2 and 3

throughout. There is particularly strong evidence of classes
being added at DIT levels 1 and 2 of the hierarchy. After
version 3 however, the addition of classes to this system at
both these levels starts to decline. There is only a single
class at DIT level 4 and this class disappears by version 6.
The strength of addition at DIT level 1 is illustrated by the
fact that of the 302 classes added to this system over the
course of the 6 versions, 225 were added to DIT level 1 and
66 added to DIT level 2. Combined, this represents 96.36%
of the total. Only 11 classes were added to DIT level 3.
Thus we have a system that is characterized by change at
the shallow levels of the hierarchy.

Figure 2 shows the same breakdown of the frequency of
DIT values for versions of JasperReports and shows a
similar upward trend to that of Figure 1. It appears that,
again, the majority of classes were added at levels 1 and 2.
Interestingly, the number of classes at levels 4 and 5 (10
and 4, respectively) did not change throughout the entire
set of 11 versions studied. Of the 280 net classes added to
JasperReports, only 13 were added to DIT level 3. In
contrast, 267 classes, representing 95.36% of the total were
added to DIT levels 1 and 2.

0

100

200

300

Version

Fr
eq

ue
nc

y

DIT =1 54 104 114 247 246 279

DIT=2 2 23 29 63 64 68

DIT=3 0 3 4 12 12 11

DIT=4 0 0 0 1 1 0

v1 v2 v3 v4 v5 v6

 Figure 1. DIT frequencies all versions (HSQLDB)

0

100

200

300

400

500

600

700

800

v1 v2 V3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Version

Fr
eq

ue
nc

y

DIT=1
DIT=2
DIT=3
DIT=4
DIT=5

Figure 2. DIT Frequencies all versions (JasperReports)

Figure 3 shows the frequency of DIT values on an identical
basis for the EasyWay system. The EasyWay system
shows a different trend to that of HSQLDB and
JasperReports. After version 2, there is a drop in the
number of classes at DIT level 1 of the inheritance
hierarchy and then the DIT fluctuates until version 8. It

then rises slowly until version 16, when the trend is then
downwards again. Overall however, the net number of
classes added at DIT levels 1 and 2 from a total of 14
classes added over all versions is 13 (i.e., 92.86%) of
which 9 are at DIT level 1. It is noteworthy that, in keeping
with the result for the JasperReports system, there is also
very little activity at DIT levels 3 and 4 for System 3; only
one class is added in total to level 3 throughout - zero
classes were added for DIT level 4, which remained
consistently at 1 throughout.

Figure 4 shows the DIT frequencies for the SwingWT
system. A clear trend for classes to be added at DIT level 1
is evident again. In fact, for DIT levels 1 and 2, 400 and 83
classes were added, respectively. This compares with 19
added classes at DIT levels 3; a combined total of only 68
classes were added at levels 4, 5, 6 and 7. An interesting
feature of levels 5, 6 and 7 is the fluctuation in the number
of classes.

0
20
40

60
80

100
120

140
160
180

v1

v3 v5 v7 v9 v1
1

v1
3

v1
5

v1
7

v1
9

v2
1

Version

Fr
eq

ue
nc

y DIT=1
DIT=2
DIT=3
DIT=4

Figure 3. DIT frequencies all versions (EasyWay)

0
50

100
150
200
250
300
350
400
450
500

v1

v3 v5 v7 v9 v1
1

v1
3

v1
5

v1
7

v1
9

v2
1

Version

Fr
eq

ue
nc

y

DIT=1
DIT=2
DIT=3
DIT=4
DIT=5
DIT=6
DIT=7

 Figure 4. DIT frequencies all versions (SwingWT)

Figure 5 illustrates this feature; while fluctuating, the trend
for classes at DIT level 5 (and to a certain extent level 6) is
upwards.

Figure 6 shows the trend in DIT frequencies for the JAG
system. In contrast to data from the other four systems
(with the possible exception of the EasyWay system), the
DIT level 1 values remain relatively static over the course

of the versions studied. Only 2 classes are added to level 1
in total between versions 1 and 23. The number of classes
at level 2 actually falls from 15 to 12 over the same number
of versions. For DIT levels 3 and 4, in common with the
JasperReports system, there is no change from their initial
values.

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21

Version

Fr
eq

ue
nc

y DIT=5
DIT=6
DIT=7

Figure 5. Classes at levels 5, 6 and 7 (SwingWT)

0

20

40

60

80

100

120

140

v1 v3 v5 v7 v9 v1
1

v1
3

v1
5

v1
7

v1
9

v2
1

v2
3

Version

Fr
eq

ue
nc

y DIT=1
DIT=2
DIT=3
DIT=4

 Figure 6. DIT Frequencies all versions (JAG)

For scaling purposes, Figure 7 shows the DIT level 1 trend
for the JBoss (the system has the highest number of start
and end set of classes). A fluctuating pattern can be seen
and the sharp peak seems to occur between versions 20 and
23. Figure 8 shows the DIT frequencies for the remaining
DIT levels 2-7. A striking feature of Figure 8 when
compared with Figure 7 is the strong similarity between the
graph for classes at DIT level 1 and those at DIT level 2.
Both graphs peak and trough at the same times and there
seems a common symmetry between the two lines. There is
also a noticeable correspondence (although not nearly as
pronounced) between the line graphs for DIT level 2 and
DIT level 3. Both of these observations were also
unexpected results from the analysis; they suggest that
there is a strong correlation between the numbers of classes
found at DIT level 1, DIT level 2 and, from the evidence
presented, that at level 3).

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

v1 v3 v5 v7 v9 v1
1

v1
3

v1
5

v1
7

v1
9

v2
1

v2
3

v2
5

v2
7

Version

Fr
eq

ue
nc

y

DIT=1

Figure 7. DIT level 1 frequencies for JBoss

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15 17 19 21 23 25

Version

Fr
eq

ue
nc

y

DIT=2
DIT=3
DIT=4
DIT=5
DIT=6
DIT=7

Figure 8. DIT frequencies for JBoss

Figure 9 shows the trend in DIT frequencies for classes in
the Tyrant System. Version 5 seems to be the point where
significant changes are made to the classes at each level
and The rise in DIT level 1 and 3 values seems to be
accompanied by a corresponding drop in DIT level 2
values. One noticeable feature of Figure 9 is the transition
at version 26, when the number of classes at levels 1, 2 and
3 move from a ‘plateau-like’ pattern and start increasing.

0

20

40

60

80

100

120

140

160

v1 v5 v9 v1
3

v1
7

v2
1

v2
5

v2
9

v3
3

v3
7

v4
1

v4
5

Version

Fr
eq

ue
nc

y

DIT=1
DIT=2
DIT=3
DIT=4
DIT=5

Figure 9. Frequencies for Tyrant

The emerging theme from Figures 1-9 is clear in terms of
where the majority of classed are added. For each of the
seven systems analyzed, DIT level 1 is where the main
activity lies. To emphasize the difference between DIT

levels 1, 2 and 3 we calculated that from a total number of
6397 net added classes over all versions of all systems:

• 5181 classes (80.99%) were added to DIT level
1,

• 972 classes (15.19%) were added to DIT level 2
and,

• 244 classes (3.81%) added to DIT level 3.

Moreover, only 25 classes were added to level 4 and 27
classes to level 5 (we note that only 4 of the 7 systems
actually had classes at level 5). At deeper levels, there is
strong evidence of classes being removed. At DIT level 5,
30 classes were added in total; at level 6, 11 classes were
added and at DIT level 7, only 4 classes were added.

4.2 Specialization and Reuse Ratio

The main objective of the research in this paper was to
show that the Java inheritance hierarchy tends to grow in
width rather than depth. Based on previous studies [5, 14,
18], we believe that developers will add classes to low
(shallow) levels of the inheritance hierarchy rather than
extend existing classes. One measure that might further
inform our analysis is the Specialization Ratio (SR) [19],
which measures the extent of subclassing. A low SR
implies that classes will tend to ‘cluster’ around lower
levels of the inheritance hierarchy (i.e., DIT levels 1 and
2). A high specialization ratio suggests a high degree of
subclassing. A further indication of the lack of subclassing
is given by the Reuse Ratio (RR) [19]. An RR value close
to 1 implies that the inheritance hierarchy is narrow and an
RR value close to zero implies that the inheritance
hierarchy is shallow [19]. Table 2 shows the summary data
for the SR and RR metrics for the seven systems.

Table 2. SR and RR summary data for the seven
systems

System Med

. SR
Max
. SR

Med
. RR

Max
. RR

HSQLDB 0 0 0 0.8
JasperReports 0 0 0 0.86
EasyWay 0 0 0 0
SwingWT 0 14 0 0.75
JAG 0 0.33 0 0.86
JBoss 0 68 0 0.86
Tyrant 0 0 0 0.67

Table 2 gives a good representation of the lack of
subclassing across the seven systems. The median SR and
RR values are zero for all systems across all versions.
Moreover, the maximum and standard deviation values

represent values from a very small sample of classes for
which the SR and RR were computed. For example, for
version 1 of the JBoss system, the SR values for only 8 of
the 3934 classes were non-zero (i.e., 0.20%); equally, the
RR for only 99 of the same 3934 classes was non-zero (i.e.,
2.52%). For version 16, only 9 SR or RR values from the
5085 classes in that version were non-zero. For the 9082
classes in version 34, only 8 SR values and 118 RR values
were non-zero. The same pattern applied to each of the
other six systems. The very low values for the SR and RR
values imply, by definition, that reuse through subclassing
was very low in each of the seven systems and that the
shape of the inheritance hierarchy very shallow.
Considering the large number of classes added at DIT level
1 and 2 and documented in the preceding sections, this
does not come as a surprise. However, this evidence does
support the claim of the research that developers do not
tend to add classes at deep levels of the inheritance
hierarchy, but rather at shallow levels, itself causing a
broadening of the entire hierarchy.

4.3 Number of children

A final indication of the structure of the inheritance
hierarchy and how it may evolve is given by the Number of
Children (NOC) metric. The metric measures the number
of immediate subclasses for a class. To find support for our
original claim, we would expect:

1. A relatively high proportion of the classes at

DIT level 1 and 2 to have a large number of
children.

2. Classes at DIT levels 3, 4, 5, 6 and 7 to have a
very low proportion of children.

To investigate, we ranked all NOC values in descending
order and determined the DIT values for the first 50 classes
in the generated sequence; we did this for both the first and
last versions of each system (N.b., the SwingWT system
only contains 50 classes in its first version hence why we
chose the number 50 as a sample size). The extracted
profile is given in Table 3. For example, for the HSQLDB
system, when we ranked the top fifty NOC classes, 48 of
the classes inspected (96%) had a DIT of 1 and only 2
classes had a DIT level 2. It can be seen that the vast
majority of the classes are taken from DIT level 1. In every
case except for the first version of Tyrant, over 50% of the
top 50 classes when ranked on NOC were drawn from DIT
level 1. In over half of the cases, this percentage exceeds
70% and, in five cases, equals or exceeds 80%.

Table 3. Breakdown of DIT ranked on NOC for first
and last versions

HSQLDB DIT=1 2 3 4 5 6
First version 48 (96%) 2 0 0 0 0
Last version 39 (78%) 11 0 0 0 0

JasperReports
First version 30 (60% 16 3 1 0 0
Last version 28 (56%) 18 3 1 0 0
EasyWay
First version 43 (86%) 6 1 0 0 0
Last version 41 (82%) 8 1 0 0 0
SwingWT
First version 29 (58% 16 5 0 0 0
Last version 28 (56%) 10 3 5 2 2
JAG
First version 40 (80%) 5 5 0 0 0
Last version 40 (80%) 5 5 0 0 0
JBoss
First version 37 (74%) 10 3 0 0 0
Last version 39 (78%) 9 2 0 0 0
Tyrant
First version 16 (32%) 16 8 10 0 0
Last version 31 (62%) 11 8 0 0 0

Moreover, the top ten classes (ranked on NOC) were
invariably drawn from DIT levels 1 and 2. For example, of
the top ten classes for the first version of HSQLDB, 9 were
at DIT level 1 and 1 at DIT level 2. Equally, for the first
version of SwingWT, the top ten classes comprised 8
classes at DIT level 1 and 2 classes at level 2. For the final
version of the JBoss system, 9 of the top ten classes were at
DIT level 1 and only 1 at DIT level 2. Figure 10 shows this
trend and the large number of children associated with
those classes (NOC values actually ranged from 14 to 69);
this breakdown is typical of the seven systems studied.
Figure 11 shows the same data for the final version of
Tyrant.

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5

DIT

NO
C

 Figure 10. DIT and ranked NOC for JBoss

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5

DIT

N
O

C

Figure 11. DIT and ranked NOC for Tyrant

The data in Table 3, and the evidence presented confirms
our claim that the majority of activity is at DIT levels 1 and
2, with very little activity at, and beyond, level 3. Only 21
of the 700 classes (3.0%) from Table 4 were found to be at
levels 5-7.

5. DISCUSSION

Many issues arise from the analysis in this paper. The
population is non-trivial OSS projects that have undergone
protracted maintenance. One important aspect that needs
to be considered is the threat to the validity of the study.
Firstly, we have to consider the extent to which our non-
random sample has impacted our ability to generalize.
However we have chosen a set of application domains
ranging from computer games to a database application.
Secondly, we have looked at different numbers of versions
of each of the seven systems. While ideally, we would have
liked to have had the same number of versions for each
system, we wanted to extract as much information about
available data as possible., Thirdly, while we can make
observations about numbers of classes at different levels of
the inheritance hierarchies, we can not say with any
certainty, or quantify with any certainty, the movement of
classes between the different levels. This would require a
finer-grained analysis of the code and we leave that and the
refactoring aspects for future work. Fourthly, since we
restrict our analysis to structural aspects of the evolution
we do not know why the developers made the choices that
they have.

A question that arises from the study is whether we should
consider the evolution of systems at shallow levels as bad
practice, since it contradicts the original aim of
inheritance? Our belief is maybe not. Developers will
nearly always modify systems in the easiest and quickest
way possible and from that perspective we could not really
expect ‘ideal’ trends to occur. Furthermore, systems will
inevitably deteriorate over time and re-engineering effort
by developers is a luxury that cannot usually be afforded.
In other words, it is not bad practice that leads to evolution
at shallow levels, merely a ‘fact of life’ in the maintenance
world that systems will evolve in a manner that conforms

to forces dictated by the original architecture and by
previous maintenance effort.

Many systems may not be amenable to deep inheritance
hierarchies in the first place, so any additional classes will
always be placed at shallow levels. Previous studies have
suggested that graphical-based systems are the most
amenable to extension through inheritance (interestingly,
the SwingWT system in our study did exhibit high levels of
inheritance up to DIT 7) [18].

One interesting aspect of OSSs is that the developers are
often geographically and often time-zone separated from
each other. Often the design documents are not available to
each of the ‘contributors’. We offer the explanation that for
OSSs, developers may add classes at shallow levels of the
inheritance hierarchy because they are unaware of the
‘bigger design picture’. Of course, this does not explain
why for previous studies where proprietary software was
used, the same observations have been made, although
scale might have a similar impact. In addition, an anecdotal
claim of many developers is that the original designs of
many proprietary systems are not updated as and when
changes to the software are made and this renders those
designs virtually unusable. The explanation for the lack of
available design documentation in OSS may therefore be
mirrored by outdated designs in proprietary software.

We also need to consider the implications of our study.
One major implication of the effective flattening of the
inheritance hierarchy is the potential maintenance headache
of modifying a class with many children (i.e. its
dependencies). Inheritance is a form of coupling [8] and, in
this sense, a short-term ‘easy fix’ may be at the expense of
long-term problems - refactoring may have a large role to
play in this sphere of developer activity [12, 15]. Finally,
it is interesting and ironic that there is previous empirical
evidence to suggest that deep levels of inheritance have
been blamed for the existence of faults; yet, we could
suggest that by avoiding those deep levels of inheritance,
the problem may simply have been devolved to shallower
levels of inheritance (further empirical studies would be
needed to support this claim).

6. CONCLUSIONS AND FUTURE
WORK

In this paper, we have described an empirical analysis of
the trends in inheritance over multiple versions of Java
OSSs. Previous studies have suggested that developers tend
to avoid the use of inheritance at deep levels and that
consequently, systems will evolve at very shallow levels
(they will grow ‘width-wise’ rather than ‘depth-wise’). The
aim of the research described in this paper was to
demonstrate whether or not this was the case. A tool
(JHawk) was used to extract inheritance-based metrics
from seven OSSs. The results in this paper confirm for

OSSs what many of the earlier reported studies did for
proprietary systems (low DIT levels). There is also a strong
tendency for classes to be added at levels 1 and 2 of the
hierarchy rather than at deeper levels. Over 96% of classes
added over the course of the versions of all systems were
either at level 1 or level 2. This result was supported
through analysis using the Specialization Ratio, Reuse
Ratio and Number of Children metrics, which showed the
extent of reuse in, the shallowness of, and width within, the
inheritance hierarchy, respectively. These metrics
supported and informed our analysis of the DIT and NOC
metrics forming the main thrust of the paper.

The results have relevance for developers in terms of
systems maintenance and refactoring. Predicting change-
prone areas of systems will help to target refactoring effort
and this may impact the localization of faults. If the
majority of additions of classes are made at shallow levels
of the hierarchy, then that is possibly where the faults will
be likely to be found as a system evolves. This study also
contributes to an empirical body of knowledge on
inheritance and our understanding of software engineers’
views on inheritance; we urge further empirical studies to
refute or support our claims [21, 22]. Our future work will
focus on two key areas. Firstly we want to investigate the
trends in faults associated with the seven systems studied in
this paper. Secondly, we want to investigate the potential
for refactoring inheritance hierarchies [1, 15] and through
measurement, studying the effect induced.

REFERENCES

[1] Advani, D., Hassoun, Y., and Counsell, S., Extracting
Refactoring Trends from Open-source Software and a
Possible Solution to the ‘Related Refactoring’ Conundrum.
Proceedings of ACM Symposium on Applied Computing,
Dijon (SAC 2006), France, April 2006, pages 1713-1720.
[2] Basili, V. R., Briand, L. C. and Melo, W. L., How
Reuse Influences Productivity in Object-Oriented Systems,
Communications of the ACM, 39(10), pp. 104-116, 1996.
[3] Basili, V., Briand, L. and Melo, W., A validation of
object-oriented design metrics as quality indicators. IEEE
transactions on Software Engineering, 22(10): 751-61,
1996.
[4] Basili, V. R., Viewing maintenance as reuse-oriented
software development, IEEE Software, 7(1). pp. 19-25,
1990.
[5] Bieman, J. and Zhao, J., Reuse through inheritance: A
quantitative study of C++ software, ACM Symposium on
Software Reuse, Seattle, Washington, pp. 47-52, 1995.
[6] Booch, G. Object-Oriented Analysis and Design with
Applications, 2nd ed., Benjamin/Cummings, 1994.
[7] Dinh-Trong, T., and Bieman, J., Open Source
Software Development: A Case Study of FreeBSD,
Proceedings of 10th IEEE International Symposium on
Software Metrics, Chicago, USA, 2004, pages 96-105.
[8] Briand, L.C., Daly, J.W. and Wust, J.K. 1999, A unified
framework for coupling measurement in object-oriented

systems, IEEE Transactions on Software Engineering, vol.
25, no. 1, pp. 91-121.
[9] Capiluppi, A., Morisio, M., and Ramil, J., Structural
Evolution of an Open Source System: A Case Study,
Proceedings of the 12th International Workshop on
Program Comprehension, Bari, Italy, pages 172-182, 2004.
[10] Cartwright, M., and Shepperd, M., An Empirical
Investigation of an industrial object-oriented (OO) system.
IEEE Transactions on Software Engineering, 26(8), pp.
786-796. 2000.
[11] Chidamber, S.R. & Kemerer, C.F., A metrics suite for
object oriented design, IEEE Transactions on Software
Engineering, vol 20, no.6. pp. 467-493, 1994.
[12] Counsell, S., Hassoun, Y., Johnson, R., Mannock, K.,
and Mendes, E., Trends in Java Code Changes: the Key to
Identification of Refactorings? International Conference on
the Principle and Practice of Programming in Java. Ireland,
p 45-48, 2003
[13] Chidamber, S. R., Darcy, P. D., Kemerer, C. F.,
Managerial use of metrics for object-oriented software: an
exploratory analysis, IEEE Transactions on Software
Engineering, 24(8), pp. 629-639, 1998.
[14] Daly, J., Brooks, A, Miller, J., Roper, M. and Wood,
M, Evaluating Inheritance Depth on the Maintainability of
Object-Oriented Software, Empirical Software
Engineering: an International Journal, 1(2), pp. 109-132,
1996.
[15] Fowler, M. (1999) Refactoring: Improving the Design
of Existing Code. New York: Pearson Education.
[16] Girba T., and S. Ducasse, S., Modeling History to
Analyse Software Evolution, Journal of Software
Maintenance and Evolution, 18(3), pages 207-236, 2006.
[17] Girba, T., Lanza, M., and Ducasse, S., Characterizing
the Evolution of Class Hierarchies, Software Maintenance
and Reengineering, 2005.CSMR 2005.Ninth European
Conference on Software Maintenance and Reengineering,
pp. 2-11.
[18] Harrison, R., Counsell, S., and Nithi, R., Experimental
Assessment of the Effect of Inheritance on the
Maintainability of Object-Oriented Systems, Empirical
Assessment in Software Engineering, Keele, April, 1998.
[19] Henderson-Sellers, B. (1995), Object-oriented metrics:
measures of complexity, Prentice-Hall, Inc. Upper Saddle
River, NJ, USA.
[20] JHawk tool:
(http://www.virtualmachinery.com/jhawkprod.html).
[21] Kemerer, C.F., and Slaughter, S., Need for more
Longitudinal Studies of Software Maintenance, Report
from the Proceedings International Workshop on Empirical
Studies for Software Maintenance, Monterey, California.,
1996, Empirical Software Engineering: An International
Journal, 2(2), pages 109-118, 1999.
[22] Kemerer, C.F., and Slaughter, S., An Empirical
Approach to Studying Software Evolution, IEEE
Transactions on Software Engineering, 25(4), pages 493-
509, 1999.
[23] Lehman, M., Ramil, J., Wernick, P., Perry, D., and
Turski, W. M., Metrics and Laws of Software Evolution -
The Nineties View, IEEE International Symposium on

http://www.virtualmachinery.com/jhawkprod.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wernick:Paul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Perry:Dewayne_E=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Turski:Wladyslaw_M=.html

Software Metrics (METRICS 97), Albequerque, USA,
pages 20-32, 1997.
[24] Prechelt, L., Unger, B., Philippsen, M., and Tichy, W.,
A controlled experiment on inheritance depth as a cost
factor for code maintenance, The Journal of Systems &
Software, vol. 65, no. 2, pp. 115-126, 2003.
[25] Wood, M., Daly, J., Miller, J. and Roper, M., Multi-
method research: An empirical investigation of object-
oriented technology, The Journal of Systems & Software,
48(1), pp. 13-26, 1999.

	1. INTRODUCTION
	2. RELATED WORK
	3. STUDY DETAILS
	3.3 Summary data

	6. CONCLUSIONS AND FUTURE WORK
	REFERENCES

