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Signal processing is a large subject with applications integral to a number of technological 
fields such as communication, audio, Voice over IP (VoIP), pattern recognition, sonar, radar, 
ultrasound and medical imaging. Techniques exist for the analysis, modelling, extraction, 
recognition and synthesis of signals of interest.  
The focus of this thesis is signal processing for acoustics (both sonic and ultrasonic). In the 
applications examined, signals of interest are usually incomplete, distorted and/or noisy. 
Therefore, reconstructing the signal, noise reduction and removal of any distortion/interference 
are the main goals of the signal processing techniques presented. The primary aim is to study 
and develop an advanced time-frequency signal processing technique for acoustic applications 
to enhance the quality of the signals. 
In the first part of the thesis, a technique is presented that models and maintains the correlation 
between temporal and spectral parameters of audio signals. A novel Packet Loss Concealment 
(PLC) method is developed with applications to VoIP, audio broadcasting, and streaming. The 
problem of modelling the time-varying frequency spectrum in the context of PLC is addressed, 
and a novel solution is proposed for tracking and using the temporal motion of spectral flow to 
reconstruct the signal. The proposed method utilises a Time-Frequency Motion (TFM) matrix 
representation of the audio signal, where each frequency is tagged with a motion vector 
estimate that is assessed by cross-correlation of the movement of spectral energy within sub-
bands across time frames. The missing packets are estimated using extrapolation or 
interpolation algorithms using a TFM matrix and then inverse transformed to the time-domain 
for reconstruction of the signal. The proposed method is compared with conventional 
approaches using objective Performance Evaluation of Speech Quality (PESQ), and subjective 
Mean Opinion Scores (MOS) in a range of packet loss from 5% to 20%. The evaluation results 
demonstrate that the proposed algorithm substantially improves performance by an average of 
2.85% and 5.9% in terms of PESQ and MOS respectively.  
In the second part of the thesis, the proposed method is extended and modified to address 
challenges of excessive coherent noise arising from ultrasonic signals gathered during Guided 
Wave Testing (GWT). It is an advanced Non-destructive testing technique which is used over 
several branches of industry to inspect large structures for defects where the structural integrity 
is of concern. In such systems, signal interpretation can often be challenging due to the multi-
modal and dispersive propagation of Ultrasonic Guided Waves (UGWs). The multi-modal and 
dispersive nature of the received signals hampers the ability to detect defects in a given 
structure. The Split-Spectrum Processing (SSP) method with application for such signal has 
been studied and reviewed quantitatively to measure the enhancement in terms of Signal-to-
Noise Ratio (SNR) and spatial resolution. In this thesis, the influence of SSP filter bank 
parameters on these signals is studied and optimised to improve SNR and spatial resolution 
considerably. The proposed method is compared analytically and experimentally with 
conventional approaches. The proposed SSP algorithm substantially improves SNR by an 
average of 30dB. The conclusions reached in this thesis will contribute to the progression of 
the GWT technique through considerable improvement in defect detection capability.  
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Chapter 1 

 Introduction 
1.1 Chapter overview 

This introductory chapter provides a background to the content of the thesis. This includes 

the motivation for this research, the fundamentals of acoustic signal processing and some 

current applications. The general approach applied throughout this research is described 

here, followed by the contributions to knowledge alongside a list of submitted publications 

arising from this thesis. The structure of the thesis is also provided in order to help guide 

the reader through the document. 

1.2 Motivation for Research 

The field of signal processing has grown over recent decades with a large proportion of 

research dedicated to enhancing the quality of digital signals. The removal of noise and 

the estimation of lost segments within digital signals are two specific areas that are 

dedicated to improving signal quality. However, the implementation of each method is 

slightly different. Most methods are only capable of enhancing the signal in particular 

situations but do not perform well in other scenarios, and in some cases, failing to offer 

any improvement at all. Thus, more advanced signal processing techniques are required 

to enhance the quality of signals. 

Numerous methods, employing hardware and/or specialist software designs, have been 

studied to enhance the quality of signals with the aim of understanding the behaviour of 

signals and to find a solution that helps improve signal quality in terms of noise, dropouts, 

lost packets, etc. Hardware designs are typically not cost-effective, whereas specialist 

software is usually more affordable, especially in commercial examples where 

conventional devices are already designed such as pipeline inspection tools. This work 

focuses on denoising techniques for acoustic applications and is described in the following 

subsections. 
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1.2.1 Motivation for Audio Signal Processing  

Use of the Internet for the transmission and reception of music, wideband speech, 

broadcast audio, and podcasts is pervasive. Audio streaming facilities are increasingly 

accessible over the Internet. This involves coding short segments of a digital audio signal, 

packing them into small data packets, transmitting, and then decompressing into 

waveforms at the destination. Data packets can be lost, discarded or delayed during 

transmission for many reasons such as router congestion, the fading of signals, etc.  

There are many approaches to mitigating the degradation in quality due to audio packet 

loss, which have been fully covered in the literature in Chapter 3. However, most of these 

methods do not specifically address the important issue of time-variation of the audio 

spectral parameters. A number of methods that may lend themselves to adaptation for 

time-varying of signals have not been fully investigated in terms of their capacity to 

provide an improvement in the reconstruction of a lost packet. Due to the challenges 

mentioned above, these methods are not suitable for wideband audio signals that contain 

a combination of inputs from several instruments with several fundamental frequencies 

and spectral envelopes. Hence, the aim of the audio part of the research is to develop an 

algorithm to reconstruct the packet loss in audio streaming to address these challenges. 

1.2.2 Motivation for Ultrasound Signal Processing  

A slightly different signal processing technique has been extended and applied to address 

another challenging problem in the Guided Wave Testing (GWT) industry, where 

shortcomings in inspections could result in: 

i) Public health and safety issues arising from the catastrophic failure of plant 

ii) Adversely affecting the surrounding environment 

iii) Enormous financial costs for associated repairs 

iv) Loss of production revenue 

It is essential to find a robust inspection method for pipelines but in an economically viable 

way. GWT offers an efficient method of inspecting for corrosion and losses of pipe wall 

section, but the confidence in defect detectability needs to improve. 

There are millions of miles of pipeline all around the world, carrying fluids such as oil, 

gas, water, etc. These structures are vulnerable to attack by internal and external damage 
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mechanisms such as corrosion or erosion. Leaks in pipelines carrying dangerous fluids 

such as petroleum pose health and safety risks to the public and if the leak or rupture is 

severe enough an environmental catastrophe could result, such as the Trans-Alaskan 

pipeline spill in the USA. Figure 1-1.a) illustrates the Trans-Alaskan pipeline itself, and 

Figure 1-1.b) shows the failure [1], which poses a huge risk to the environment1. 

In order to monitor the integrity of these structures periodic inspection and in some cases, 

where the damage mechanism is shown to be aggressive, real-time Structural Health 

Monitoring (SHM) can be employed. An inspection methodology such as this reduces the 

likelihood of failure by identifying damage or flaws before they reach a critical state. 

 a) 

 

b) 

 

Figure 1-1a) Trans-Alaskan pipeline, USA [2],  b) Clean-up efforts after failure [3], 

                                                 
1 Leakage of over 200,000 gallons of crude oil into clean water due to severe internal corrosion that 

made British Petroleum (BP) pay $12 million fine [1]. 
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There are many techniques used for pipeline inspection including visual inspection, 

Phased Array Ultrasonic Testing [4], Radiographic Testing [5], etc. GWT using Ultrasonic 

Guided Waves (UGW) [6] is a relatively recent Non-Destructive Testing (NDT) technique 

that can cover up to 100m from a single test location. GWT applications and the limitations 

of this technique are discussed in Chapter 2.  

Signal interpretation for GWT can be challenging due to the potential presence of multiple 

so-called wave modes and their dispersive effects. The wave mode purity of excitation 

and response of the structure directly affects the Signal-to-Noise Ratio (SNR) and spatial 

resolution (the ability to distinguish echoes from closely spaced reflectors). Hence, an 

advanced signal processing technique is required to improve the quality of the received 

GWT signal. The consequence of applying the proposed and optimised technique to GWT 

is an improved defect detection capability and therefore increased industrial confidence in 

the technology. 

1.3 Acoustic Signal Processing 

Signal processing appears in a wide range of digital and analogue systems, its main 

purpose is to identify the nature of signals; employing patterns, modelling, and structures 

to convert and improve the signal. Signals are usually incomplete, distorted and noisy. 

Therefore, reconstructing the signal of interest or reducing noise and removing 

distortion/interference in the signal are the main aims of signal processing. 

In general, signal processing techniques can be employed for pre-processing and/or the 

post-processing of signals to facilitate interpretation over different domains such as time 

and/or frequency domains. Hence time-frequency analysis, which studies a signal in both 

time and frequency domains simultaneously, has become subject to increased attention.  

The main purpose of time-frequency analysis is that phase and magnitude are represented 

on orthogonal planes when Fourier methods are applied (using complex representation) 

and that there is no feel for time-related information in the frequency domain, only phase 

and magnitude. A stationary signal does not have a frequency dependent parameter within 

it whereas a non-stationary signal has a variable contained within the function that varies 

with frequency. In practice, many signals are non-stationary, which means their frequency 

domain representation changes substantially over time. Therefore, the fundamental 
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aspects of signal processing, as well as time-frequency analysis, are briefly discussed in 

Chapter 3. 

1.3.1 Audio Signal Processing 

One of the main challenges regarding a reduction in the quality of audio signals in 

telecommunication systems is the presence of random frame losses. Packet loss in VoIP 

systems is a well-known scenario of this problem, where the signals suffer from effects of 

signal dropouts, background noise, and corruption during transference, etc. In order to 

play the audio signal continuously without any disruption at the receiver side, a technique 

is required to deal with the packet loss problem so that the end user remains unaware of 

the loss.  

Many studies have been conducted to develop and enhance the quality of audio signals; 

these studies are covered in the literature review of thesis research, along with a discussion 

of the shortcomings of different packet loss recovery technique. In the first technical 

chapter, (Chapter 4) a novel solution is proposed to address this issue. The technique has 

been developed to enhance the quality of the audio signal where there are packet losses in 

a received signal. The aim of the solution described is to model and synthesise the signal 

and then to reconstruct the lost packet by employing a time-frequency signal processing 

technique for reconstruction of the missing part of the signal throughout the gap. 

Therefore, a Packet Loss Concealment (PLC) method is developed with applications to 

VoIP. A novel contribution of this research is the introduction of the Time-Frequency 

Motion (TFM) matrix and its application to motion-compensated extrapolation and/or 

interpolation for audio signals. The proposed PLC algorithm utilises the TFM matrix 

representation of the audio signal where each frequency is tagged with a motion vector 

estimate. These investigations are described in Chapter 4, where the PLC model is 

developed, evaluated and discussed for reconstructing the audio signals.  

The proposed algorithm is applied to synthesised and real audio signals that contain 

random frame loss or gaps, in order to reconstruct/estimate the missing frames and 

enhance the quality of audio signals that have been degraded by packet loss. Evaluation 

of the results demonstrates that the proposed algorithm substantially improves 

performance in comparison to alternative approaches. In addition, the results presented 

here are also published in two conference proceedings and one journal paper [7], [8]. 
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Furthermore, while the proposed technique is developed to address the problem of packet 

loss in audio signals, attempts have been made to expand the proposed algorithm to be 

applicable to other signals, such as UGWs. References, therefore, have been given to the 

appropriate application, wherever necessary, and the results are applicable to any signal. 

Therefore, the application of the proposed algorithms developed throughout the first 

technical chapter is extended and modified to address another problem in a seemingly 

unrelated industry that suffers from a similar issue; corrosion detection using UGWs. A 

failure to identify problems during these types of inspection increases the risk of 

catastrophic failure of the asset under examination and could result in harm to the 

environment and to nearby residents. 

1.3.2 Signal Processing for Ultrasonics 

As mentioned in Section 1.2.2, a failure in a pipeline inspection could result in catastrophe. 

It is, therefore, crucial to implement a robust inspection method for pipelines that assesses 

the integrity of their structure and can provide a forewarning of failure. In this section, the 

focus is on a signal processing technique that could be utilised as the post-processing 

technique for a UGW response and improve the confidence in the pipeline inspection 

technique. This has been achieved by employing the modified version of time-frequency 

algorithms that were proposed and developed for audio signals in Section 1.3. 

Pipelines in the petrochemical, oil and gas sectors are subject to damage mechanisms such 

as corrosion and cracking during their operational lifetime. These damage mechanisms 

are triggered by factors associated with the environments they operate within and the 

products they contain. In-service flaws that result from these damage mechanisms are the 

main cause of pipeline failure [1][9-10]. Therefore a reliable technique is required that can 

use to perform periodic, automated and rapid inspection for the analysis of the structural 

integrity of these structures to identify flaws before they become a problem. 

As mentioned previously, one of the aims of ultrasonic part of this research is to develop 

a technique to enhance the capabilities and sensitivity of UGW inspection by the 

suppression of unwanted signals that form the coherent noise. A time-frequency signal 

processing technique called Split Spectrum Processing (SSP) is therefore proposed, 

examined and developed to enhance the SNR and spatial resolution of UGW responses. 

This is achieved by reducing the effect of dispersive wave modes (DWM), which is one 

of the main sources of the coherent noise, by utilising optimised SSP filter bank 
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parameters. The use of SSP is relatively new in the field of UGW testing; therefore, the 

main object of investigating SSP is to understand the factors that contribute to the 

sensitivity of filter bank parameters when applying the algorithm to UGW signals. The 

proposed method is compared synthetically and experimentally with conventional UGW 

inspection data; the results of this comparison show that the proposed method substantially 

improves the reliability and sensitivity of UGW testing. Furthermore, the results presented 

here are also published in two conference proceedings and two journal papers [11], [12]. 

1.4 Aim and Objectives  

The overall aim of this research is to study and develop an advanced signal processing 

technique based on time-frequency analysis for acoustic applications. The main goal is 

therefore to enhance the quality of signals of interest by recovering and reconstructing 

missing frames or minimising unwanted segments of signals in a system response. The 

specific objectives of this research are listed as follow: 

• To review the current state-of-the-art in signal processing for acoustic applications 

(audio and ultrasound). 

• To develop a time-frequency signal processing technique to enhance the quality of 

signals (audio and UGW). 

• To develop spectral motion models for audio spectral flow and apply this model to 

reconstruct the lost packets. 

• To obtain transparent quality for low and medium packet loss for 5% to 20% in terms 

of Mean Opinion Score (MOS) and objective Performance Evaluation of Speech 

Quality (PESQ) at the receiver side. 

• To develop a novel method that reduces the presence of dispersive wave modes in 

multimodal UGW signals. 

• To propose pre-defined parameters for post-processing algorithms to maximise the 

efficiency of the UGW testing by increasing the sensitivity and inspection range.  

1.5 Research Methods 

Time-frequency signal processing algorithms are widely employed in many industrial 

fields such as sonic and ultrasonic applications for the analysis of a signal to facilitate 
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better signal interpretation. In most scenarios, signal interpretation is one of the most 

challenging parts of such analysis. Therefore, a signal processing technique based on time-

frequency analysis is studied, and a model developed to reconstruct gaps created by lost 

packets, with applications to VoIP, audio broadcast, and streaming. The problem of 

modelling the time-varying frequency spectrum in the context of PLC is addressed, and a 

novel solution is proposed for tracking and using the temporal motion of spectral flow. 

The proposed PLC utilises a TFM matrix representation of the audio signal, where each 

frequency is tagged with a motion vector estimate. The spectral motion vectors are 

estimated by cross-correlating the movement of spectral energy within sub-bands across 

time frames. The missing packets are estimated in the TFM domain and inverse 

transformed to the time-domain to improve performance.  

Of particular note is that the proposed technique operates on Short-Time discrete Fourier 

transform (ST-DFT) of audio signal utilising the TFM matrix. The performance of the 

TFM matrix for PLC is evaluated employing subjective and objective measurement, and 

their outcomes are discussed. To design such algorithms, numerous parameters are 

considered, including the statistical distribution assumptions of audio signals (e.g. music, 

speech, and noise). However, most of such algorithms are based on Independent 

identically distributed (IID) assumptions on successive frames of the signal. According to 

a statistical model of the signal, it is assumed that DFT values are independent of each 

other across both time and frequency. Furthermore, a statistical interpolator based on time-

frequency interpolation is developed for this application. 

In addition, a signal processing technique is developed based on time-frequency analysis 

for UGW. UGW testing is widely utilised for pipeline inspection to find defects/damages 

in the structure. However, the presence of coherent noise in the received signals is a 

significant challenge for pipeline inspection, which may limit the inspection range, as well 

as the sensitivity of inspection. This challenge is mainly due to the multi-modal, dispersive 

propagation nature of UGW, and mode conversions that contribute to the coherent noise. 

This results in degradation of the signals regarding SNR and spatial resolution. Therefore, 

a technique is required to reduce the level of coherent noise and enhance the quality of 

received signal. Hence, a technique is proposed for post-processing of the received UGW 

signal known as “split-spectrum processing” (SSP) for pipeline inspection. 

This algorithm is similar to the one developed in the first technical chapter. It should be 

mentioned that the SSP technique has already been developed for conventional UT for 
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SNR enhancement; however, the use of SSP and its optimum parameters have not yet been 

applied in UGW testing. The extant literature identifies that the performance of SSP is 

highly sensitive to the selection of filter bank parameters. To the best of the author’s 

knowledge, other than Mallet [13], no one else has investigated the use of SSP in UGW 

testing. However, Mallet’s result indicates that he was not able to find the optimum 

parameter values of SSP for UGW testing, and his proposed parameters created some 

erroneous features for both synthesised and field data. Mallet stated regarding his work, 

the SSP with the parameters that he employed was not suitable to use in industry and 

future work was necessary to address the limitation of his approach. Therefore, an 

investigation is provided to clarify the sensitivity of SSP performance to the filter bank 

parameter values for UGWs such as processing bandwidth, filter bandwidth, filter 

separation, etc. to find the optimum values to enhance the SNR and spatial resolution of 

such signal.  

In order to apply the proposed technique, information such as the centre frequency of the 

test, the number of cycles, and the group velocity of a wave mode of interest are required 

to be known. These data ease the detection process of features of the structure under 

investigation. The excitation signal employs multiple cycle Hann windowed sinusoidal 

pulse at a particular frequency range to excite a pure axisymmetric signal. However, some 

other wave modes are usually excited during excitation, which is dispersive and spread 

out in time and space that converts to coherent noise2. 

It is found that the proposed algorithms reduce the effect of DWM; thus, reducing the 

coherent noise in the received UGWs. It is also indicated that this algorithm is best suited 

for one-dimensional structures such as pipes, bars, rods, etc. The proposed method is 

synthetically and experimentally tested using a brute force search algorithm to evaluate 

the effectiveness of the proposed technique. The synthesised UGWs involve the modelling 

of an axisymmetric with its flexural wave modes’ family to generate the UGWs. The 

results show that the proposed method significantly improves the SNR of received UGWs. 

Moreover, two laboratory experiments are carried out in this research using two pipes in 

the laboratory with some defects. In the first experiment, the Teletest Focus+ system [14] 

is employed to transmit a signal (Tx), and a Polytec 3D Laser Doppler Vibrometer (3D-

                                                 
2 The problem of coherent noise in the UGWs testing is discussed in Chapter 2 and a novel solution 

developed for reduction of coherent noise is outlined in Chapter 5. 
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LDV) [15] scan is utilised to receive the signal (Rx) on a six-inch diameter pipe. The pipe 

included an axisymmetric defect of a 12.5% depth, which represented a loss in cross-

section area (CSA) of 13.5%. The results show that the proposed technique substantially 

enhances the SNR and spatial resolution of the received UGWs. In the second experiment, 

the Teletest system [14] [16] is utilised for both transmitting and receiving the signal on 

an eight-inch diameter pipe. The experiment introduces a saw-cut, of increasing size 

between repeated tests, from 0.5% to 8% CSA. 

It is shown that SSP in both cases has the potential to reduce the presence of coherent 

noise significantly and is able to identify the smaller size of defect down to 3% CSA where 

it is hidden below noise level for the unprocessed signals. Furthermore, the proposed 

algorithm is applied to a set of field data from pipelines in Alaska. These pipelines contain 

a number of known features that were used to assess our method. The SNR, as well as the 

spatial resolution of these data, is greatly improved. These signals are far more complex 

than the lab’s data and as a result, contain a number of unidentified peaks in the processed 

signals. Some of these may correspond to unidentified peaks in the unprocessed signals, 

and some may be erroneous features introduced by the technique and requiring further 

investigation. 

However, this research identifies that SSP has some limitations especially when two 

features are very close to each other, as shown in the synthesised signals where two 

features merge in the output of processed signal and present as a single feature. This leads 

to a loss of resolution. The limitations are identified, some of which are addressed in 

Chapter 6. Overall, the proposed technique shows promise regarding the use for UGW 

inspection and has great potential to enhance the SNR, sensitivity, and spatial resolution 

of UGW response. Hence, these enhancements can lead to the detection of smaller defects 

and an increase in inspection range. However, further development is required to address 

the current limitations of this algorithm, which is recognised by this work.  

Moreover, the outcome of the research conducted in this thesis paves the way to enhance 

the quality of the audio signal by reconstructing the lost packets in audio applications and 

enhance the reliability and sensitivity of UGW inspections by removing the coherent noise 

and thus increasing the SNR and spatial resolution of the UGW response. 
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1.6 Thesis Outline 

The organisation of the rest of this document is set out as follows: 

Chapter 2 presents an overview of the background review of the acoustic application and 

the fundamental knowledge of signal processing techniques and related concepts, e.g. 

Fourier transforms, windowing, SSP, etc. followed by introducing the important theory of 

streaming audio signal to reconstruct audio packet loss. Then provides some of the main 

points of UGW theory includes the fundamental knowledge of ultrasonic applications, 

particularly the development of GWT for pipe inspection to help the reader to understand 

the concept of UGW testing as it is repeatedly referred throughout the thesis.  

Chapter 3 covers the literature review of acoustic application for both sonic and ultrasonic 

guided wave signal includes the history of packet loss recovery techniques in particular 

receiver-based techniques followed by the literature review of SSP method that is 

introduced and developed for the use in NDT techniques to enhance SNR.  

Chapter 4 provides the development of the time-frequency signal processing application 

in audio signals that are degraded by audio packet loss and discusses the different 

reconstruction methods includes the extrapolation and the interpolation techniques that 

utilised for estimating the missing frames. 

Chapter 5 suggests a signal processing technique called split-spectrum processing (SSP) 

that is developed for UGW testing for reduction of the effect of dispersive wave modes in 

multimodal UGW signals. The optimisation of SSP parameters for some synthesised 

signals is investigated within this chapter. 

An empirical investigation of the SSP technique followed by reusability study for the 

optimum filter bank parameters and validation with a defect detection trial in a real 

structure is studied in Chapter 6. The application of SSP to experimental data is discussed, 

evaluated and implemented in this chapter followed by field data analysis in order to 

validate the effectiveness of the proposed technique. 

The conclusion of the research is discussed in Chapter 7, where the contributions to the 

knowledge are thoroughly reviewed in the wider context of the published literature before 

recommendations for future research work are presented.  
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1.7 Contributions to Knowledge 

In addressing the objectives of this research, by employing a combination of signal 

synthesis, laboratory experiments, and field data to evaluate the proposed techniques, and 

to study the characteristics of the signals, signal processing methods based on time-

frequency analysis are suggested and implemented, leading to two distinct contributions 

to knowledge. The detailed descriptions of the contributions are listed below. 

 

Demonstration of a signal processing technique based on time-frequency analysis for 

enhancement of the quality of audio signals that are degraded by audio packet loss 

The problem of the restoration of gaps in an audio signal is addressed, and a novel 

solution of packet loss concealment is presented for audio signals based on Time-

Frequency Motion (TFM) matrix using a discrete Fourier transform (DFT) or 

discrete cosine transform (DCT) method. The novel aspect of this methodology is 

the introduction of TFM and its application to motion-compensated 

extrapolation/interpolation for audio. The spectral motion vectors are estimated by 

dividing the signal bandwidth into several sub-bands. The cross-correlation of the 

frequency bands across time frames are used for motion estimation. The objective 

and subjective evaluation experiment reveal that the proposed method compares 

well with the conventional methods, resulting in superior output quality in terms of 

PESQ and MOS scores.  

 

Demonstration of a signal processing technique called SSP for UGWs in pipelines via 

experimentation 

I. An advanced signal processing technique called SSP is investigated for the reduction 

of coherent noise in UGW testing due to the presence of unwanted, dispersive wave 

modes. The research into this application of SSP demonstrates that the performance 

of the technique is sensitive to the parameter values employed in its implementation. 

This research therefore investigates a parametric study of the filter bank parameter 

values to determine their influence on SSP performance for pipe inspection using 

UGWs. Parameters such as processing bandwidth, filter bandwidth, and filter 

separation with resultant estimated optimum values were investigated for pipeline 
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inspection. The results show that SSP with optimal filter bank parameters applied 

has the capability to significantly enhance the SNR and spatial resolution of an 

UGW response. To the best of the author’s knowledge, these optimum parameters 

have not previously been recognised or identified in the field of UGW testing. 

 

II. A range of SSP recombination algorithms are studied in this research, before being 

selected for synthesised and experimental data. Polarity Thresholding (PT) and PT 

with Minimisation (PTM) algorithms were found to be the best SSP method for 

recombining the signal. An SNR improvement of up to 38dB of received UGWs 

was observed. In addition, the SSP technique shows promise in improving the SNR 

and spatial resolution of focused UGWs up to 6dB when applying a Hybrid Active 

Focusing technique. 

 

III. The limitations of each of the SSP algorithms are investigated in this research. The 

research identifies that if the distance of two features (e.g. defect and weld) is less 

than 0.4cm, the SSP algorithm combines the reflection of two features as a single 

feature and presents a single peak. The amplitude of this single peak is the value of 

the larger of the two original peaks this effect reduces the temporal resolution. A 

minimum distance of 0.5cm is found to be effective with the proposed technique. It 

should be mentioned that, this examination utilises an excitation frequency of 44kHz 

with 10-cycles. However, this result may vary slightly for different excitation 

frequencies and pulse widths. Therefore, the frequency optimisation study indicates 

that the distance limitation can be reduced up to 0.35cm by increasing the excitation 

frequency up to 70kHz. 

 

IV. The defect sensitivity of the SSP algorithm is examined in this study. The results 

reveal that the SSP algorithm has the potential to identify defects down to 2% Cross-

Sectional Area (CSA). In addition, SSP shows good potential to increase the 

inspection range from a single test location as it significantly reduces the level of 

coherent noise, enhancing the SNR, and improves the spatial resolution of UGW 

response.  
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Chapter 2 

 Fundamental Knowledge and 

Background Review 
2.1 Chapter overview 

This chapter introduces the theoretical background of acoustic applications includes the 

principles of acoustics, a fundamental knowledge of signal processing techniques such as 

Fourier transform, split spectrum processing (SSP) technique with its various 

recombination algorithms which is necessary for Chapters 5 and 6 are explored in this 

chapter. In addition, the fundamental knowledge of sound, streaming media/protocol, 

Kalman filter, etc. are discussed within this chapter to equip the reader with an 

understanding of the concept of time-frequency analysis for sonic signals that are 

employed in Chapter 4.  

Furthermore the theoretical background of ultrasonic guided waves (UGWs), in particular, 

the development of GWT that has been achieved in recent years is explored, to help the 

reader to understand the concept of UGW testing. The explanation of different wave 

modes and the relationship between concepts such as phase and group velocities, 

dispersion curve and relevant concepts, an understanding of which is required in Chapters 

5 and 6, is also covered in this chapter. 

2.2 Principle of Acoustics 

Acoustics is the interdisciplinary science of sound that deals with the study of mechanical 

waves, including sound wave production, transmission, detection and its effects. The 

scope of acoustics is not limited to those phenomena that can be heard by the normal 

human ear, but also contains all phenomena that are governed by the same physical 

principles. Hence, disturbances with low frequencies (infrasound) or high frequencies 

(ultrasound), which cannot be heard by the normal human ear, can also be considered 

within the sound wave category. In general, the sound is a periodic vibration that travels 

through any medium. 
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Many researches and studies in acoustic applications show that the transmission of sound 

is affected by, and consequently gives information concerning, the medium through which 

it passes. Isaac Newton’s (1642–1727) [17] investigation of the mathematical theory of 

sound propagation included a mechanical interpretation of sound as being "pressure" 

pulses transmitted through neighbouring fluid particles. The mathematical analysis was 

limited to waves of constant frequency and was universally difficult to decipher. Newton 

theoretically calculated the speed of sound; however, he miscalculated by about 16% 

(lower than the accepted value today) because he assumed an isothermal (constant 

temperature) instead of an adiabatic (no heat exchange) process. Numerous researches 

have been done in the field of acoustic applications for sonic and ultrasonic sound 

propagations [17][18]. The fundamental knowledge regarding sonic and ultrasonic 

applications is discussed in greater detail in this chapter. 

2.3 Signal Processing Techniques 

Various signal processing techniques have been studied, and are employed in this thesis 

to facilitate the analysis and interpretation of signals. In this regard, the fundamentals of 

signal processing techniques as well as the time-frequency analysis employed throughout 

this thesis are explored below, which provides further details in respect of signal 

processing techniques that are required in the following chapters. 

2.3.1 Fourier Transform 

The Fourier transform, named after Joseph Fourier, is a mathematical transformation 

utilised to transform signals between time and frequency domains regarding the way in 

which signals can be viewed, analysed, and processed. In signal processing applications, 

frequency spectrum and bandwidth are the fundamental concepts that result from the 

Fourier representation of signals, which are widely applied for signal analysis. The Fourier 

transform is employed to analyse the spectral content (frequency components) of a signal 

by breaking the signal down into sine waves of different amplitudes and frequencies. 

The Fourier transform, and its discrete implementations, such as the discrete Fourier 

transform (DFT), as well as Fourier-related transforms, such as discrete sine transform 

(DST), discrete cosine transform (DCT), and modified DCT (MDCT), employ a set of 

time-invariant fixed sinusoidal basis functions. For a segment of 𝑁𝑁 samples, the DFT basis 

function is �1, 𝑒𝑒−𝑗𝑗
2𝜋𝜋𝜋𝜋
𝑁𝑁 , 𝑒𝑒−𝑗𝑗

4𝜋𝜋𝜋𝜋
𝑁𝑁 ,⋯ , 𝑒𝑒−𝑗𝑗

2𝜋𝜋(𝑁𝑁−1)𝜋𝜋
𝑁𝑁 � with a fixed complex sinusoidal kernel 
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of 𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 , a frequency resolution of ∆𝑓𝑓 = 𝐹𝐹𝑠𝑠

𝑁𝑁
 and a time resolution of ∆𝑇𝑇 = 𝑁𝑁𝑇𝑇𝑠𝑠 where 𝐹𝐹𝑠𝑠 =

1
𝑇𝑇𝑠𝑠

 is the sampling frequency.  

The main shortcoming of the Fourier transform is that its basis functions are time-invariant 

and consequently it is assumed that the input signal is non-stationary. While the short-

time Fourier transform (i.e. essentially the DFT of a window of 𝑁𝑁 samples of a signal) 

mitigates the problem, the DFT does not provide any explicit functional information on 

time-variations of the frequencies of the input signal. 

There are a variety of time-varying transforms for non-stationary signals, such as the 

Gabor transform [19], the Wigner distribution function [20], and complex wavelets [21]. 

These transforms, in combination, provide a set of parameter differences: frequencies, 

window lengths (scales), window shape, and in the case of two-dimensional transforms, 

window orientations. However, while these transforms provide a set of time-frequency 

resolutions, they do not provide a systematic functional relationship on how the time-

varying frequencies evolve over time.  

Due to its relative simplicity and efficiency, the Fourier transform remains the most 

powerful spectral analysis technique widely used in consumer applications, such as for 

coding of audio, filtering, image and video signals, radar, spectral analysis, ultrasound, 

and in scientific research. Hence, augmenting the DFT and its variants with additional tags 

that will explicitly indicate the direction and magnitude of the movement of spectral 

energy across time frames will be of practical and theoretical interest. Fourier transform 

has been employed throughout this thesis as it facilitates the manipulation and 

interpretation of a signal and leads to the perception of frequency analysis and synthesis. 

The discrete implementation of the Fourier transform method is discussed in greater detail 

in the following section. 

2.3.1.1 Discrete Fourier Transform (DFT) 

DFT is a discrete implementation of the Fourier transform of a signal, which is obtained 

by sampling the discrete-time Fourier transform (DTFT) at 𝑁𝑁 discrete frequencies by 

sample times  𝑇𝑇. The DTFT can be derived by numerical integration of the Fourier 

transform as shown in (2-1): 



19 
 

𝑋𝑋(𝑗𝑗𝑗𝑗) =  ��𝑥𝑥(𝑛𝑛𝑇𝑇𝑠𝑠)𝑒𝑒−𝑗𝑗𝑗𝑗𝑚𝑚𝑇𝑇𝑠𝑠� × 𝑇𝑇𝑠𝑠

+∞

−∞

 (2-1) 

When 𝑥𝑥[𝑛𝑛] = 𝑥𝑥(𝑛𝑛𝑇𝑇𝑠𝑠) and 𝑗𝑗 =  2𝜋𝜋𝐹𝐹𝑠𝑠/𝑁𝑁. Then, using the normalised frequency 𝑗𝑗� =

2𝜋𝜋𝐹𝐹/𝐹𝐹𝑠𝑠 , we have: 

𝑋𝑋(𝑒𝑒𝑗𝑗 𝑗𝑗� ) =  �𝑥𝑥[𝑛𝑛]𝑒𝑒−𝑗𝑗 𝑗𝑗�𝑚𝑚
+∞

−∞

 (2-2) 

where the value of 𝑇𝑇𝑠𝑠 has been neglected. The DFT is obtained from (2-1) and (2-2) as: 

𝑋𝑋(𝑘𝑘) =  �𝑥𝑥[𝑛𝑛]𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑚𝑚

𝑁𝑁−1

𝑚𝑚=0

 (2-3) 

This equation gives a complex number that describes the magnitude and phase of 𝑥𝑥[𝑛𝑛] at 

that frequency. Thus, the DFT generates the frequency domain components in discrete 

values or bins. Furthermore, the fast Fourier transform (FFT), which is presented by 

Cooley and Tukey [22] is an optimised implementation of DFT that takes less computation 

to perform. The FFT runs in 𝑂𝑂(𝑁𝑁𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁) whereas DFT runs in 𝑂𝑂(𝑁𝑁2). Overall, the 

frequency domain representation of a signal may be of more help to understand and 

troubleshoot signals compared to the time domain signal. FFT by itself performs well and 

provides great insight of the signal; however, to improve the signal quality, a windowing 

function is also required in the processing procedure. 

2.3.1.2 Short-Time Fourier Transform (STFT) 

The spectral content of signals in the acoustic application is not stationary and changes 

over time, therefore applying DFT over a long window does not reveal transitions in 

spectral content. Hence, to solve this issue, the DFT is applied over a short period in such 

a way that the signal can be considered stationary. 

Therefore, Short-Time Fourier Transform (STFT) [23] is developed, which is a Fourier-

related transform that is employed to determine the sinusoidal phase and frequency 

element of sections of a signal that is not stationary. This is achieved by splitting a longer 

time signal into shorter segments of equal length and then computing the Fourier transform 

for each shorter segment individually. However, the drawback of STFT is that once the 
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size of the time window is selected, it must be the same for all frequencies, while 

sometimes it is required to have a more flexible approach.  

The Fourier transform of the windowed signal waveform can be calculated as; 

𝑋𝑋(𝑛𝑛,𝑗𝑗) =  � 𝑥𝑥[𝑚𝑚]𝑤𝑤[𝑛𝑛 −𝑚𝑚]𝑒𝑒−𝑗𝑗 𝑗𝑗𝑚𝑚
+∞

𝑚𝑚 = −∞

 (2-4) 

 where 𝑤𝑤 is a window function and the sequence 𝑥𝑥[𝑚𝑚]𝑤𝑤[𝑛𝑛 −𝑚𝑚] is a short-time section 

of the signal 𝑥𝑥[𝑚𝑚] at time 𝑛𝑛. Hence, the discrete STFT is defined as: 

𝑋𝑋(𝑛𝑛,𝑘𝑘) =  𝑋𝑋(𝑛𝑛,𝑗𝑗)|
𝑗𝑗=2𝜋𝜋𝑁𝑁 𝑘𝑘

 (2-5) 

In addition, the spectrogram, which is a graphical display of the magnitude of the discrete 

STFT, is calculated as: 

𝑆𝑆(𝑛𝑛,𝑘𝑘) =  log|𝑋𝑋(𝑛𝑛,𝑘𝑘)|2 (2-6) 

This is a 2D plot of the relative energy content in frequency at different time locations. 

According to Cohen [23], there is a time-frequency trade-off that limits the resolution of 

time and frequency to the uncertain principle. Many researchers have performed 

investigations with the intention of balancing the uncertainty in Time-Frequency 

Representation (TFR) [such as [23][24]]. In UGW applications, this has been achieved by 

comparing TFR signals with the theoretical dispersion curves, which is fully covered in 

the literature. 

2.3.2 Windowing 

Windowing functions are usually utilised in signal processing applications to enhance the 

quality of signal from spectral leakage in the frequency domain that is caused by 

discontinuities in the signal. This is achieved by reducing the amplitude of the 

discontinuities at the boundaries of each finite sequence acquired by the digitizer. This 

involves multiplying the time record by a finite-length window with an amplitude that 

varies smoothly and gradually toward zero at the edges to meet the requirement of the 

endpoints of the waveform. Thus, it creates a continuous waveform without sharp 

transitions. In order to localise any signals in time, a windowing function 𝑤𝑤 [𝑛𝑛, 𝜏𝜏 ] is 

defined, which tapers the signal at its ends to avoid unnatural discontinuities in the 

segment. Several different window types exist that could affect the spectral leakage of the 
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signal, which are usually selected as a trade-off between the width of its main lobe and 

attenuation of its side lobe. The main lobe is centred at each frequency element of the 

time-domain signal and the side lobes approach to zero. 

The height of the side lobes shows the effect of windowing on frequencies around main 

lobes. The side lobe response of a strong sinusoidal signal may suppress the response of 

the main lobe of a nearby weak sinusoidal signal. Lower side lobes reduce leakage in the 

measured FFT but increase the bandwidth of the major lobe. The side lobe roll-off rate is 

the asymptotic decay rate of the side lobe peaks. Thus, the spectral leakage will be reduced 

by increasing the side lobe roll-off rate. 

The Hann, Hamming, and Gaussian windows are among the most common windows 

widely employed in signal processing applications. These window functions provide a 

wide peak with low side lobes. The Hann window drops to zero at both ends. Therefore it 

eliminates discontinuity, whereas the Hamming window does not reach zero; thus, the 

signal after windowing contains some discontinuity at the edges, so it is good for 

cancelling the nearest side lobe but gives a poorer result for cancelling the others. 

In addition, the Gaussian function extends to infinity. Thus it is required to be either 

truncated at the ends of the window or to be windowed itself with another zero-ended 

window. Therefore, these window functions are more suitable for noise measurement and 

enhanced frequency resolution compared to the other window functions. 

Nuttal [25] described and compared the different window functions. The Hann window, 

developed by Cawley and Alleyne [26], and the Gaussian window function are utilised 

throughout this thesis in order to implement the research methodology for both sonic and 

ultrasonic applications. The Hann window function is a discrete window function, named 

after the Austrian meteorologist Julius Von Hann, which can be defined as: 

𝑗𝑗(𝑡𝑡) = 0.5 ( 1 − cos � 
2𝜋𝜋𝑡𝑡
�́�𝐿 − 1

 � ) , 0 ≤ 𝑡𝑡 ≤  �́�𝐿 − 1 (2-7) 

Where 𝑡𝑡 is time, �́�𝐿 is the window length. The Hann windowed sine wave can be defined 

as follows: 

𝑊𝑊𝑠𝑠(𝑡𝑡) = sin(𝑗𝑗𝑡𝑡)( 0.5 ( 1 − cos � 
2𝜋𝜋𝑡𝑡
�́�𝐿 − 1

 � ) , 0 ≤ 𝑡𝑡 ≤  �́�𝐿 − 1 (2-8) 



22 
 

Figure 2-1 illustrated a 50kHz continuous sine wave modulated by a 10-cycles sinusoidal 

tone burst and its windowed form (Hann window) in a) time and b) frequency domains. 

As shown in Figure 2-1 b) the window function helps to reduce the effect of spectral 

leakage created in the frequency spectrum due to the cut-off between the last sample and 

the repeated first sample which creates artefacts. Therefore, the window function could 

smooth out these discontinuities by reducing artefacts in the spectrum. 

2.3.3 Cross-correlation 

Cross-correlation (CC) is a signal processing technique that measures the similarity of two 

signals as a function of the lag position of one relative to the other. CC has the capability 

to compare the values of samples at one time to the value of the samples at another time 

[27]. The CC function of the sampled signal, 𝑅𝑅(𝑚𝑚) can be defined as: 

𝑅𝑅(𝑚𝑚)  =  �𝑥𝑥[𝑛𝑛]𝑦𝑦[𝑛𝑛 + 𝑚𝑚]
𝑁𝑁−1

𝑚𝑚=0

 (2-9) 

where 𝑥𝑥[𝑛𝑛] and 𝑦𝑦[𝑛𝑛] is a function of time, 𝑚𝑚 is the lag position that could be negative, 

zero or positive and 𝑅𝑅 is the cross correlation. 

2.3.4 Sampling Rate  

In general, continuous signals require to be sampled for transmission, processing, etc. to 

obtain a discrete signal such as conversion of a sound wave to a sequence of samples. 

a) 

 

b) 

 

Figure 2-1: a) Time domain Hann window, sine wave and windowed, b) Frequency spectrum of 
the sine wave and its windowed form. 
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These samples present the values at a point in time/space. The sampling frequency 

(sampling rate), 𝐹𝐹𝑠𝑠 is the average number of samples achieved in one second that could be 

calculated as follow: 

𝐹𝐹𝑠𝑠 =  1 𝑇𝑇𝑠𝑠⁄  (2-10) 

where 𝑇𝑇𝑠𝑠 is the sampling period. In some cases, the sampled signal requires conversion to 

a new sampled signal at a different sampling period, 𝑇𝑇�𝑠𝑠 in order that the resulting signal 

corresponds to the same analog function. Therefore, the new sampling frequency 𝐹𝐹�𝑠𝑠 will 

be obtained as: 

𝐹𝐹�𝑠𝑠 =  1 𝑇𝑇�𝑠𝑠⁄  (2-11) 

The process of changing the sampling frequency, 𝐹𝐹𝑠𝑠 of a discrete signal to obtain a new 

sampling frequency, 𝐹𝐹�𝑠𝑠 of a discrete signal from the same continuous signal is called 

sample rate conversion (SRC) [28], which is widely employed in different areas such as 

audio/visual systems, communication systems and radar systems [29]. The process of SRC 

is a linear time-varying system that is usually compulsory in audio/speech signal when 

converting a signal from one sampling rate (such as studio quality 192𝑘𝑘𝑘𝑘𝑘𝑘) to another 

sampling rate (such as CD quality 44.1𝑘𝑘𝑘𝑘𝑘𝑘). 

2.3.5 Zero-Padding 

Zero padding is widely utilised in signal processing applications and adds zeros to the end 

of a time-domain signal to increase its length. This allows longer FFT, which results in 

more frequency bins that are more closely spaced in frequency, making the spectrum look 

smoother when plotted without interpolation. In general, zero padding is utilised before a 

DFT/FFT as it is a computationally efficient method of interpolating many points. 

The number of samples that structure each filter function depends on the DFT of a signal, 

which contains the same number of samples as the input signal. Thus, zero padding is 

usually added to the input signal to increase the resolution and improve the resolution of 

the filters (e.g. Gaussian). In GWT the number of samples �𝑀𝑀𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓� within the 3dB 

bandwidth �𝐵𝐵𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓� of a Gaussian filter could be obtained as: 

𝑀𝑀𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓 =  𝑀𝑀
𝐵𝐵𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓
𝐹𝐹𝑠𝑠

 (2-12) 
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where 𝐹𝐹𝑠𝑠  is the sampling frequency and 𝑀𝑀 is the total number of samples of the original 

signal. Hence, to achieve a desired number of samples, 𝑀𝑀�𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓 , in the 3dB bandwidth of the 

Gaussian filter, it is required to zero pad the original signal to make sure that the input 

length is at least 𝑀𝑀�  samples long. Hence, 𝑀𝑀�  is calculated as follows:  

 

𝑀𝑀� =  
𝑀𝑀�𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠
𝐵𝐵𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠

 (2-13) 

However, if the input length by itself is sufficient �𝑀𝑀 >  𝑀𝑀�  �, then zero padding is not 

required. Zero padding is utilised in both sonic and ultrasonic applications, as proposed in 

Chapters 4 and 5. 

2.3.6 Split-Spectrum Processing (SSP) 

SSP is an advanced signal processing technique that was initially developed from the 

frequency agility techniques used in radar. This method was then considered for SNR 

enhancement in NDT application such as conventional UT to reduce grain scatter in the 

received signal. A significant amount of research has been undertaken over the last few 

decades in this area with respect to the reduction of non-random noise (coherent signals) 

in NDT applications due to ultrasonic scattering. These developments are fully described 

in the literature review of SSP in Chapter 3. The application of SSP in UGW testing is 

relatively new and, to the best of the author’s knowledge, this technique has not been 

previously utilised in the field of UGW testing [except for Mallet thesis3 [13]].  

SSP application divides the spectrum of a received UGW signal in a frequency domain 

using a bank of bandpass filters in order to generate a set of sub-band signals at 

incremental centre frequencies. These sub-band signals are normalised and then subjected 

to a number of possible non-linear processing algorithms in the time domain to generate 

an output signal. The block diagram shown in Figure 2-2 describes the steps to implement 

the SSP application where the input time domain signal 𝑥𝑥(𝑡𝑡), is transformed into the 

frequency domain using the FFT and is then filtered by a bank of band-pass filters. 

Subsequently, the outputs from the filter banks ,𝑋𝑋𝑘𝑘(𝑓𝑓) (𝑘𝑘 =  1,2, … ,𝑛𝑛),  are converted 

back into the time domain using the inverse FFT (IFFT) and normalised by a weighting 

                                                 
3 The review of Mallet thesis [13] is fully covered in the literature review of SSP in Chapter 3. 
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Figure 2-2: Block diagram of SSP 

factor,  𝑤𝑤𝑘𝑘. These non-linear signals are combined using one of the SSP recombination 

algorithms, which are described in the following section, to generate the output 

signal,𝑦𝑦(𝑡𝑡). 

In general, SSP application shows potential to reduce those signal components that vary 

across a frequency range, and to suppress the regions of the signal of interest that are 

constant in that frequency range. 

2.3.7 SSP Recombination Algorithms 

Several SSP recombination algorithms exist that could be utilised for the reduction of 

coherent noise in NDT applications [30]. The five most common algorithms, which have 

been employed in this work for UGW testing, are described here in detail: 

2.3.7.1 Polarity Thresholding (PT) 

The PT algorithm is defined as; 

𝑦𝑦𝑃𝑃𝑇𝑇[𝑚𝑚]  =  𝑥𝑥[𝑚𝑚]   if all 𝑥𝑥𝑓𝑓[𝑚𝑚]  >  0,          𝑖𝑖 = 1, … ,𝑛𝑛 

𝑦𝑦𝑃𝑃𝑇𝑇[𝑚𝑚]  =  𝑥𝑥[𝑚𝑚]   if all 𝑥𝑥𝑓𝑓[𝑚𝑚] <  0,           𝑖𝑖 = 1, … ,𝑛𝑛 

        𝑦𝑦𝑃𝑃𝑇𝑇[𝑚𝑚]  =  0   Otherwise 

 

(2-14) 

where 𝑦𝑦𝑃𝑃𝑇𝑇 is the output result obtained after processing of the signal at 𝑚𝑚, 𝑥𝑥[𝑚𝑚] is the 

unprocessed (input) signal, 𝑛𝑛 is the number of filter band signals and 𝑥𝑥𝑓𝑓[𝑚𝑚] are the sub-
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band signals. This algorithm is somewhat similar in operation to the “sign detector” 

utilised in the past to detect signals. Hence, it looks at the signal sub-bands at each sample 

time, and if the samples are all positive or all negative then the signal is unchanged. 

Otherwise, the output is zero. This has the effect of only passing time samples where 

polarity is not affected by frequency. Therefore, those parts of the signal that are highly 

frequency-dependent should be removed. The amplitude of the signal of interest must be 

greater than the amplitude of the noise, as if the noise has larger amplitude it will be change 

the signal’s sign. 

2.3.7.2 PT with Minimisation (PTM) 

This technique is the combination of the PT algorithm with minimisation (PTM) and the 

output of this algorithm, 𝑦𝑦𝑃𝑃𝑇𝑇𝐹𝐹, is the minimum amplitude of PT when there is no change 

in polarity, which is defined in (2-15); 

𝑦𝑦𝑃𝑃𝑇𝑇𝐹𝐹[𝑚𝑚]  =  𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥𝑖𝑖[𝑚𝑚]) if all 𝑥𝑥𝑓𝑓[𝑚𝑚] >  0,       𝑖𝑖 = 1, … ,𝑛𝑛 

(2-15) 𝑦𝑦𝑃𝑃𝑇𝑇𝐹𝐹[𝑚𝑚]  =  𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥𝑖𝑖[𝑚𝑚])  if all 𝑥𝑥𝑓𝑓[𝑚𝑚]  <  0,      𝑖𝑖 = 1, … ,𝑛𝑛 

       𝑦𝑦𝑃𝑃𝑇𝑇𝐹𝐹[𝑚𝑚]  =  0   Otherwise 

The aim of this method is to suppress noise further than is achieved by the PT algorithm, 

by taking the minimum points that PT has passed. Since the variance of the points 

containing noise is usually greater than those are containing the signal of interest, the use 

of minimisation reduces those that are the result of noise. However, this technique 

becomes less effective when the noise level is greater than the actual signal’s amplitude, 

so reducing the noise level will significantly reduce the signal amplitude in certain sub-

bands and gives minimum values for the PTM’s output in that region. 

2.3.7.3 Mean 

The output of mean algorithm, 𝑦𝑦𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚 is the summation of the mean of each sub-band 

sample at that sample time, as given in (2-16); 

𝑦𝑦𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚[𝑚𝑚] =  
1
𝑁𝑁
�𝑥𝑥𝑓𝑓[𝑚𝑚]
𝑁𝑁

𝑓𝑓=1

 (2-16) 

where 𝑁𝑁 is the number of sub-bands signals and 𝑥𝑥𝑓𝑓 are the sub-band signals. Using the 

mean of sub-band samples as the output could reduce the noise as the value of noise 
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fluctuates between negative and positive values at each sub-band, as they are frequency-

dependent. On the other hand, the value of the signal of interest should have a constant 

value across the sub-bands and remain unchanged for all sub-bands. As the noises are not 

constant, the amplitude of the signal across the sub-bands varies. This is the result of 

combination between signal and noise. However, this recombination algorithm is more 

suitable for signals with low noise level, and as the output is the mean of sub-band, thus 

the amplitude will decrease when the noise level is high. Thus, this method is not suitable 

for a noisy signal. 

2.3.7.4 Minimisation 

The output of each sample for this algorithm is simply the minimum magnitude of 

amplitude of each sub-band sample as given in (2-17); 

𝑦𝑦𝑚𝑚𝑓𝑓𝑚𝑚[𝑚𝑚] = 𝑚𝑚𝑖𝑖𝑛𝑛(|𝑥𝑥1[𝑚𝑚]|, … , |𝑥𝑥𝑚𝑚[𝑚𝑚]|) (2-17) 

This algorithm, similar to the mean algorithm, will reduce noise as the noise level varies 

across each sub-band. It is expected that the variation of the noise will be greater than the 

signal variance so that it will reduce the noise. This method will be effective only in cases 

where the level of noise is considerably lower than the signal. Therefore, it is only useful 

when the amplitude of the signals of interest is significantly higher than the noise level.  

2.3.7.5 Frequency Multiplication (FM) 

The outputs of each sub-band signal are multiplied by each other in this algorithm to 

generate the FM output signal, 𝑦𝑦𝐹𝐹𝐹𝐹[𝑚𝑚] , as given in (2-18); 

𝑦𝑦𝐹𝐹𝐹𝐹[𝑚𝑚] =  𝑥𝑥1[𝑚𝑚] × 𝑥𝑥2[𝑚𝑚] × … × 𝑥𝑥𝑚𝑚[𝑚𝑚] (2-18) 

This algorithm is relatively similar to the algorithms called Geometric Mean algorithm 

without applying the square root operation to the sub-bands’ outputs. Therefore, the output 

of this algorithm compared to the square root of the product is capable of enhancing the 

amplitudes of larger signals but has a greater distortion level. It is less complex and uses 

fewer bands. However, this algorithm is not suitable for highly dispersive materials and 

only works for low dispersive material. 
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2.4 Sonic Applications 

Most of our daily experience with acoustics applications is related to sonic signals for 

communication or pleasure, such as audio, speech, music, etc. In this work, the aim is to 

develop a technique to enhance the quality of modern telecommunication systems where 

such signals suffer from the effects of signal dropouts, background noise, and corruption 

during transference, etc.  

One of the main challenges in telecommunication systems that result in a reduction of the 

quality of signals is the presence of random frame losses in the received signal. Packet-

switching techniques are widely employed to deliver the audio signal in VoIP networks to 

maximise the network efficiency. This means that the audio signals are divided into small 

data packets, each of which is then sent independently over the network. Hence, the 

packets can travel by different routes to reach a destination and may suffer differing 

amounts of delay to arrive. Some packets may never reach their endpoint because of 

reasons such as congestion at the routers, overloaded server’s buffer, and link failure. It is 

clear that a late arriving packet is as good as one that has never arrived, as the audio signal 

needs to be played continuously at the receiver side. Therefore, a technique is required to 

deal with the packet loss problem such that the end-user does not perceive the loss. 

2.4.1 Bandwidths of Voice and Music 

Normal hearing is usually in the range from 10Hz to 20kHz, although some individuals 

may have an ability to hear a wider range of frequencies. In general, sounds below 10Hz 

and above 20kHz are called infrasound and ultrasound respectively. The sound 

information of speech is mostly in the traditional telephony bandwidth of 300Hz to 

3.5kHz. Sound energy with a frequency beyond 3.5kHz is mainly utilised for high-quality 

applications such as music. A singing voice requires a wider bandwidth than speech as it 

has a wider dynamic range, and usually contains energy in the frequencies well above that 

of ordinary speech. The bandwidth range for music is between 10Hz and 20kHz. A regular 

CD is sampled at 44.1kHz or 48kHz and is quantised with the equivalent of 16bits to 

24bits of uniform quantisation, which gives a SNR of about 100dB at which point the 

quantisation noise is inaudible and the signal is transparent [31]. A sound wave’s 

wavelength λ depends on its propagation speed 𝑐𝑐 and the frequency of vibration 𝑓𝑓 and can 

be calculated as below: 
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𝜆𝜆 =  
𝑐𝑐
𝑓𝑓

 (2-19) 

2.4.2 Streaming Media 

Streaming media is a term used to describe multimedia (audio, video, text, and data) that 

is delivered, or streamed, constantly by a provider to an end-user client to provide the 

opportunity to play the data in real-time without the need to download or transmit the 

entire file. Audio streaming is one of the fast-growing technologies and is increasingly 

accessible all around the world via the Internet, which has become the global broadcasting 

and distribution standard. The technical simplicity of using one global technology to 

communicate, along with its convenience, worldwide access, and especially its low cost, 

makes web broadcasting irresistible to media distributors and consumers. This involves 

coding short segments of a digital audio signal, packing them into small data packets, 

transmitting, and then decompressing into waveforms at the destination [32]. 

Hence, as the data arrives, it is buffered for a few seconds at the destination before the 

audio starts to play; meanwhile, more data is constantly streaming (arriving), which allows 

the user to hear constant audio. Thus, the data should always be available in the buffer to 

achieve constant audio; however, due to congestion on the Internet, the buffer may 

sometimes be empty, which causes a delay in receiving data. 

2.4.3 Streaming Protocol 

Real-Time Transport Protocol (RTP) and Real-Time Streaming Protocol (RTSP) are 

widely employed for delivering streamed media over IP networks by using either User 

Datagram Protocol (UDP), Transmission Controls Protocol (TCP), or IP multicast 

transmission channels. However, most applications are developed to use UDP as it 

supports the timely delivery of information, which is highly important for real-time 

delivery, whereas TCP favours reliability over timeliness [33]. 

UDP compresses audio files into extremely small data packets for transmitting data over 

the Internet and is a connectionless transport layer protocol that does not require any 

previous setup to communicate between the hosts. Hence, data packets can choose 

different directions to transfer; this simplicity provides an unreliable message delivery 

and, unlike TCP, adds no flow control, reliability, or error-recovery functions to IP. In 

addition, UDP streams continuously, which means if a packet is delayed or lost during 

transmission, the server preserves the sending data and only a small gap occurs rather than 
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a huge gap of silence, whereas in TCP transmission, the server tries to resend the lost 

packet before delivering the next packet, that makes for greater delays with larger gaps.  

To summarise, UDP does not guarantee a reliable data stream service or retransmission 

service. Therefore, data packets can be lost, discarded or delayed for the following 

reasons: (a) router congestion; (b) excessive delays that may be caused due to routeing 

and congestion at a number of nodes; (c) network outages; or (d) fading of radio signals 

[32]. The audio packets usually correspond to 20-30msec of audio, hence a gap that is 

created by just a single frame loss is relatively wide (around 882-1,323 samples at 44.1kHz 

sampling rate), hence restoring gaps is usually difficult, especially if there is no access to 

the sender side and the only solution is to estimate the missing frames [32]. Each lost 

packet creates a gap in the streamed audio and must be concealed and replaced somehow 

to prevent an annoying disturbance to the end-user. Reconstructing the gap to approximate 

the original waveform is the common methods used to replace the missing packet. 

Bolot et al. [34] investigated some fundamental characteristics of audio streaming over 

the Internet by measuring the audio loss process for each connection utilising UDP. They 

found that when the network load is low/moderate then the number of consecutively lost 

audio packets and the length of the gaps, are small. Bolot [35] studied the loss rates in 

such cases as a function of the network load (δ), where δ indicates the constant interval 

between the sending times of two successive UDP packets. The results indicate that the 

packet losses are accidental, especially when the traffic employs less than 10% of the 

available capacity of the connection to send the packets. However, losses become more 

correlated at higher rates; also, the buffer will experience overflows and lead to dropping 

more packets. Bolot showed that packet loss occurred in most scenarios. However, when 

the network load is low, the loss rate is low (typically less than 10%); conversely, when 

the network load is high, the gaps are wider and more frequent, which leads to connection 

drop-out with poor quality service. Therefore, it is clear that the majority of users are 

confronted with some packet losses when using media streaming. Thus, finding a solution 

to replace lost packets is essential. 

2.4.4 Packet Loss Concealment Domains  

Many domains could be utilised for packet loss concealment (PLC) such as time-domain, 

frequency-domain, compressed domain, spectral domain, linear prediction coding (LPC) 

methods, and etc., which are utilised for audio coding to reconstruct waveform samples. 
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Traditionally, LPC was employed for time-domain speech coder, but it has more recently 

been applied to the frequency-domain coders and achieved promising results in terms of 

audio and speech coding standards such as that used in audio coding and MPEG-D unified 

speech to enhance voice services and coding efficiency [36]. 

As an example, the audio signal in MPEG-audio coders such as MP3 is compressed in the 

MDCT domain. An advantage of this is a single packet loss in the MDCT domain is 

translated to a gap of only two coefficients per frequency bin. Hence, it is easier to 

interpolate the missing packets in this domain compared to the time domain [37], which 

suggests reconstructing the missing MDCT coefficients separately for each frequency bin 

based on the available coefficients from neighbouring packets at the same frequency. 

One of the main issues of working in the MDCT domain rather than the time domain is 

the window type employed in the MPEG-audio coders during transforming in the MDCT 

domain. Window type is directly related to the packets, which means that if a packet is 

lost, its window type and the information about it is lost too. Also, choosing the wrong 

window type reduces the quality of construction as it will not eliminate the aliasing. 

However, there is a possibility to recover and estimate the window types of the lost packets 

by checking the window types of the packets that surrounded the missing segment.  

The second issue that can occur in the MDCT domain is the use of different window types 

with different frequency resolutions: the MDCT coefficients sometimes represent 

different resolutions at a certain frequency bin even for two consecutive segments. 

Therefore, it is not an accurate estimation to reconstruct the coefficient of a missing 

segment from another coefficient that represented a different resolution of the frequency 

band. To solve this problem, the MDCT coefficient should be converted back to the time 

domain, and then the same window length applied for all segments to convert them once 

more to the frequency domain. Another limitation of the MDCT domain that makes it 

difficult to use is the rapid sign changes of MDCT coefficients from frame to frame, at 

each frequency bin, which reflect phase changes in the complex spectral domain [38]. 

Therefore, in order to reduce the fluctuating representation of the audio signal, it is 

necessary to employ another domain that could cover these limitations and provide better 

results. An alternative domain that could function as the concealment domain to overcome 

those limitations is the DSTFT domain.  
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In the last few decades, a variety of approaches has been developed to enhance audio 

signals; these approaches are mainly based on the restoration of the short-time spectral 

amplitude (STSA) of the audio signal. In most cases, a short-time phase distortion is 

assumed that has negligible effects on the perceptual quality of audio signals [39][40]. 

There are many researches [41]-[43] that estimate the STSA of speech by utilising a 

spectral subtraction algorithm that estimates the average noise spectrum by subtracting it 

from the noisy signal. The spectral subtraction’s disadvantage is the ‘musical noise’ 

artefact that is like an annoying narrowband with short-life bursts of noise in the restored 

signal [44][45].  

In order to solve the problem of STSA estimation, a method based on Bayesian 

interference algorithms is investigated that employ a priori probability knowledge of 

distributions for a short time discrete Fourier transform (ST-DFT) of the signal [45]. 

Estimation of the ST-DFT parts of the signal is another way of enhancing the audio signal. 

Although the first approach is more suitable in general, estimating the ST-DFT has the 

potential to be used for more statistical models. Martin [46][47] utilised Laplacian and 

Gamma distributions to develop the ST-DFT approach of the speech signal. He derived 

the corresponding closed form of estimators for modelling the imaginary and real part of 

the ST-DFT of the signal, whereas Chen and Loizou [48][49] proposed a numerical 

integration and discovered that a closed form solution obtained with Laplacian prediction 

was impractical for an STSA estimator. They suggested a numerical integration algorithm 

instead, which was not suitable for many real-time applications, as it requires a high power 

computational device with a lot of memory, which in many cases is not affordable.  

The Wiener filter method [46] is one of the optimum solutions for finding ST-DFT 

components utilising Gaussian priors. Ephraim and Malah [50] proposed technique, 

utilising a derived minimum mean square error (MMSE) STSA estimator based on the 

assumption of Gaussian distribution for the imaginary and real part of the ST-DFT of 

speech. They assume that ST-DFT components are statistically independent and, based on 

this assumption, they demonstrate that the amplitude of the DFT has a Rayleigh 

distribution and its phase is uniformly distributed. Hence, they state that the amplitude and 

the phase of the signal cannot be optimally predicted simultaneously. On the other hand, 

there are some methods that were introduced for tracking the temporal variation of SNR 

and observe that STSA typically follows successive speech frames [43][45][51][52].  
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It is notable that the successive short-time frames of the audio/speech spectrum in signal 

processing approach are usually assumed to be independent and identically distributed 

(IID) across both frequency and time. However, according to Cohen [51], there is an 

apparent contradiction about this idea. These techniques use the IID assumption as well 

as the assumption of the dependency of successive frames for the estimation and 

smoothing of the main audio/speech parameters, such as a priori SNR spectrum[46], [47], 

[50], [53]. Cohen [54] has obtained more robust speech enhancement by utilising the 

correlation between successive samples of the short-time speech spectrum. Therefore, the 

main challenge of audio enhancement to improve the performance of signals could be 

overcome by utilising a realistic model of the temporal trajectory of the audio spectrum. 

In general, audio signals have a slow varying nature; therefore, it could be argued from a 

signal processing point of view that the overlap between successive frames of such signals, 

which is usually considered in the short-time frequency analysis, is another way to achieve 

correlation between successive frames. Essi [55], [56] proposed an autoregressive (AR) 

technique to model the temporal correlation of the ST-DFT components of speech utilising 

the framework of Kalman filters for optimal prediction of speech in the presence of noise. 

He assumed that both speech and noise ST-DFT components had Gaussian distributions; 

he then extended the algorithm to incorporate the AR techniques of the ST-DFT 

trajectories of noise signal in the Kalman filter framework and obtained a good result. 

2.4.5 Review of Audio Flow  

A major obstacle in audio processing applications is the requirement for an appropriate 

algorithm that smoothly reconstructs the gap between two sounds. For example, the 

spectral mismatch at concatenation join points must be reduced for speech synthesis, 

reconstruction between two decoded spectra is required in speech compression, and 

interpolation between different people’s phonemes for adaptation purposes is required for 

speech recognition [57]. 

Measuring the motion of two smoothed envelopes in audio flow is inspired by the idea of 

optical flow from computer vision applications, as proposed by Horn and Schunck [58], 

which measures the motion of objects between two images. The easiest way to interpolate 

two envelopes is to linearly cross-fade between them [59], or to linearly cross-fade 

alternative representations of the envelopes such as line spectral frequencies [60]. 

However, neither method is acceptable for shifting between two sounds [61], [62]. A 
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nearest neighbour correspondence estimation technique is employed in sinusoidal 

methods that track partials across a spectrogram [63]. However, it is difficult to track 

partials due to their noisy nature, plus partial movement is affected by pitch/formant 

changes. Goncharoff and Kaine-Krolak [64] proposed the pole-shifting method, which 

attempts to establish a correspondence between poles in the linear predictive coding (LPC) 

representation of the envelopes. The relationship between formants and poles was not one-

to-one; therefore, pole matching was difficult to achieve. Pfitzinger [62] proposed a 

dynamic frequency warping (DFW) method where a morphing algorithm is employed to 

generate the intermediate envelopes as well as using DFW to establish correspondence 

non-parametrically between two LPC envelopes. However, the DFW method was direct 

with no access to any data, which is not acceptable for long losses. 

Ezzat [57] proposed several techniques whereby each one improves further the 

computation of the audio flow4. He employed Audio flow technique to estimate the 

correspondence between envelopes to ensure that the warping process preserves the 

desired alignment between the geometric attributes of the objects during the morphing. 

Ezzat focused on interpolating smoothed spectral magnitude envelopes and defined how 

spectral energy at each frequency bin moved between two envelopes [65]. He then 

proposed a morphing algorithm that morphs smoothly between any two spectral 

magnitude envelopes of speech. This technique captures the formant resonances of the 

vocal tract and interpolates formant shapes, locations and amplitudes between the two 

envelopes. In addition, an inverse audio flow between envelopes is calculated by utilising 

cross-dissolving or blending the warped intermediates. This method performs better than 

the DFW method [62] as it is data-driven, and can extract natural flow estimation in most 

cases. However, the formant trajectories follow the linear paths (even for bandwidths). 

Hence, it is not suitable and accurate enough for a nonlinear trajectory, as the change of 

bandwidths during the sound transition is nonlinear. In addition, in terms of algorithm 

performance, the audio flow is only tested for a 20-second corpus of audio. If the corpus’ 

size is smaller than this value, there will not be enough data to generate smooth paths 

through the graph, and even for a 20-second corpus, which is sufficiently large, this 

technique sometimes produces incorrect results. 

                                                 
4 Audio flow defines the movement of spectral energy at each frequency bin between two envelopes 

to check the formant shifting that occurs from one sound to another [57]. 
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2.4.6 Kalman Filter 

Rudolf Kalman developed the Kalman filter, which is an efficient recursive filter that 

predicts the state of a dynamic system from a series of incomplete, noisy signals [66], 

[67]. It can produce an estimation of unknown variables more precisely compared to other 

methods that are based on a single measurement, such as Bayesian inference. Therefore, 

it has been widely utilised during the last few decades in different technology fields, such 

as tracking algorithms (e.g. visual tracking [68]), speech enhancement (e.g. noisy signal 

[69], [70]) and noise reduction applications (e.g. white Gaussian noise [71]).  

The main advantage of the Kalman filter compared to other filters such as the Wiener filter 

is the dependencies of successive predictions, which are explicitly modelled in the Kalman 

filter. In addition, the Kalman filter employs the former values of the received signal for 

estimation of the signal. The Kalman filter application is widely utilised for speech 

enhancement and focuses on the time-domain processing of the speech signal. Hence, it 

gains was calculated and applied to reconstruct the speech signal or remove the effect of 

any unwanted signal (e.g., noise) to improve the signal’s quality. The basic Kalman filter 

can be calculated as follows: 

𝑥𝑥𝑓𝑓 =  𝐹𝐹𝑓𝑓𝑥𝑥𝑓𝑓−1 +  𝐵𝐵𝑓𝑓𝑢𝑢𝑓𝑓 + 𝑤𝑤𝑓𝑓  
(2-20) 

where 𝑥𝑥𝑓𝑓 is the state vector containing the terms of interest for the system at time 𝑡𝑡, 𝐹𝐹𝑓𝑓 is 

the state transition model that is applied to the previous state 𝑥𝑥𝑓𝑓−1 , 𝑢𝑢𝑓𝑓 is the vector 

containing any control inputs, 𝐵𝐵𝑓𝑓 is the control-input model that is applied to the control 

vector 𝑢𝑢𝑓𝑓 and finally 𝑤𝑤𝑓𝑓 is the vector containing the process noise terms for each parameter 

in the state vector. Yan and Zavarehei [56], investigated the use of the Kalman filter for 

inter-frame correlations of the speech spectrum based on the DFT trajectories of noisy 

speech. They also considered the Kalman filter’s application in the frequency domain, 

which has a very different implication to that of time domain. The Kalman filter algorithm 

is utilised in the proposed method, developed in Chapter 4. 

2.5 Ultrasonic Applications 

As mentioned in Section 2.4.1, frequencies above 20kHz that are beyond the limit of 

hearing are called ultrasonic waves. The main features of ultrasonic waves are: i) they are 

highly energetic; ii) the speed of propagation depends upon their frequencies; iii) they can 
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be transmitted over a long distance without any appreciable loss of energy. Ultrasonic 

waves are widely utilised in many applications, such as: ultrasonic flaw detection, 

ultrasonic guided wave, applications in medicine, welding, cutting and matching of hard 

materials, communication, etc.  

A wave mode is a way in which sound energy propagates through the structure, which can 

be defined by its displacement characteristics (shape of the mode) at a particular 

frequency. Since the geometries and materials can vary, different wave modes can be 

generated at different frequencies. Wave modes can be plastic, anisotropic, etc.; however 

only elastic wave modes are considered in this work. 

2.5.1 Propagation of Elastic Waves 

The fundamental theory of wave propagation within an elastic solid is discussed in many 

papers, such as [125]-[127]. In this work, a brief explanation of elastic waves propagating 

in an elastic medium is given. The characteristics of wave propagation depend on the 

boundary conditions of an elastic medium such as its density and geometry. A differential 

equation of motion is defined by Navier, which can be applied for these propagation 

conditions for an isotropic elastic unbounded media, as given in (2-21): 

(𝜆𝜆 + 𝜇𝜇)𝛻𝛻𝛻𝛻.𝑢𝑢 +  𝜇𝜇𝛻𝛻2𝑢𝑢 =  𝜌𝜌 �
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

� (2-21) 

where  𝑢𝑢 is a three dimentional vector, 𝜇𝜇 and 𝜆𝜆 are two constant materials (Lam�́�𝑒), 𝜌𝜌 is 

the material density and 𝛻𝛻 is a three dimentional differential operator. The full details of 

this can be found in [75], [76]. Equation (2-21) is capable of calculating the motion of 

elastic wave propagation within the material. This is a linear equation; it is not able to 

integrate without using the Helmholt decomposition as follows: 

𝑢𝑢 =  𝛻𝛻 ∅ +  𝛻𝛻 × 𝛷𝛷 (2-22) 

where ∅ is a summed scalar potential, (compressional), 𝛷𝛷 is the vector filed and  𝛻𝛻 .𝛷𝛷 =

0. By combining equations (2-21) and (2-22), the two unknown parameters can be 

calculated using two separate equations that govern longitudinal and shear waves 

respectively, as given in equations (2-23) and (2-24): 

�
𝜕𝜕2∅
𝜕𝜕𝑡𝑡2

� =  𝑐𝑐𝑙𝑙2𝛻𝛻2∅ (2-23) 
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�
𝜕𝜕2𝛷𝛷
𝜕𝜕𝑡𝑡2

� =  𝑐𝑐𝑠𝑠2𝛻𝛻2𝛷𝛷 (2-24) 

where 𝑐𝑐𝑙𝑙 and 𝑐𝑐𝑠𝑠 are the longitudinal and shear wave velocities in the infinite isotropic 

medium, which are given as follows: 

𝑐𝑐𝑙𝑙 =  �
𝜆𝜆 + 2𝜇𝜇
𝜌𝜌

 (2-25) 

𝑐𝑐𝑠𝑠 =  �
𝜇𝜇
𝜌𝜌

 (2-26) 

These are the only waves that can propagate in an unbounded isotropic medium, which is 

independent of each other. Wave propagation can vary in character depending on the 

restrictions imposed by an elastic medium. A guided wave is only applicable when there 

is a physical boundary within the medium, similar to the bulk waves (longitudinal waves 

and shear waves) when applied to wave propagation in an infinite media. Surface waves 

can propagate in a three-dimensional medium along a bounding surface of a medium, such 

as Rayleigh waves and Love waves. 

The propagation of bulk waves and surface waves is used to describe the seismic wave 

phenomena that travel through the Earth’s surface layer. Lamb waves are generated by the 

interaction of longitudinal and shear waves in a bounded elastic medium where there are 

two equidistant surfaces. Some of these wave modes are briefly described here. 

2.5.2 Longitudinal Waves 

Longitudinal waves are also known as compression or pressure waves. These waves are 

characterised by alternating particle motion (i.e. stretching and compression). The 

vibration displacements of longitudinal waves are exclusively oriented in the same 

direction as the direction of travel of the wave mode, and the velocity of compression 

waves, 𝑐𝑐𝑙𝑙, is given in equation (2-25).  

2.5.3 Shear Waves 

Shear waves are also referred as transverse waves as their vibration displacements are 

aligned perpendicularly to the direction of propagation. This means that it is shearing the 
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material transversely. This vibration displacement can occur vertically (shear vertical 

wave, SV) or horizontally (shear horizontal wave, SH), as displayed in Figure 2-3.  

The velocity of these waves, 𝑐𝑐𝑠𝑠, is given in equation (2-26). It is notable that shear stress 

does not work for materials with fluids inside them, thus shear waves do not propagate 

through them.  

2.5.4 Surface Waves 

Surface waves (e.g. Rayleigh and Love waves) are another type of wave modes that 

propagate in a three-dimensional medium along a bounding surface of a medium, such as 

earthquakes [77]. These waves are widely studied in many fields, i.e. NDT, electronics 

and geophysics, which are characterised by vibration displacement of an elliptical manner. 

Rayleigh waves are usually utilised in NDT to inspect surface flaws and can be produced 

by employing electro-magnetic acoustic transducers (EMATs) or wedge probes. The 

amplitude of these waves decays exponentially with depth, starting from the wave crest. 

2.6 Guided Waves 

The term ‘guided waves’ is utilised when there is a free boundary restricting an elastic 

body that guides and drives waves, which means two boundaries are present in the 

structures, unlike surface waves, which exist when there is only one boundary between 

two mediums. Since the particle oscillations are guided during displacement, these waves 

can be said to form a ‘wave guide’. UGWs have been broadly employed in several NDT 

applications over recent decades, in applications where structural integrity is of concern. 

Longitudinal and transverse wave modes are the only wave modes that occur in an infinite 

medium. However, many other type of ‘guided waves’ exists for a medium with multiple 

boundaries. In addition, there will be an infinite number of wave modes depending on the 

geometry of a specimen that could be propagated with a much more complex velocity,   

 
Figure 2-3: Distribution of displacements for the vertical shear wave (left) and the horizontal shear wave 

(right) [78]. 
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where velocity is a function of material properties as well as the geometry itself. Therefore, 

the shape of the wave modes can be changed according to geometry structure and 

wavelength. This means that some wave modes are frequency dependent, where the same 

wave mode at a different frequency/different wavelength is capable of propagating with a 

different velocity and different mode shape. The frequency dependent behaviour of wave 

modes, which is known as “dispersion”, will be explained in more detail in Section 2.6.6.  

2.6.1 Lamb waves 

Horace Lamb developed the theory of the propagation of Lamb waves in 1917 [79], but 

he was not able to generate the waves that he discovered. These waves were physically 

generated by Worlton [80], who also discovered the potential use of Lamb waves for 

damage detection.  

Lamb discovered that there are an infinite number of modes of propagation in an infinite 

media that are bounded by two surfaces such as plates. These waves arise because of the 

superposition of multiple reactions of shear and longitudinal waves from the bounding 

surfaces, which are often complex in terms of particle motions in the structure. The 

displacement form of Lamb waves can be classified according to the distribution of the 

displacements in the structure; as shown in  

Figure 2-4, Lamb waves can be classified as ‘Symmetric’ (𝑆𝑆0) and ‘Anti-symmetric’ (𝐴𝐴0) 

in a plate structure5.  

2.6.2 Guided Wave in Hollow Cylinders 

A cylindrical specimen such as pipe, rod, etc. can be considered as a plate where it has 

been shaped into a cylinder by joining along an axial part. The axial cross-section of the 

specimen wall will support Lamb waves that propagate along the length of the specimen, 

and since there are circumferences that lead to an additional boundary condition, other 

 
Figure 2-4: Distribution of displacements pattern of a) Symmetric (S0) or b) Anti-

symmetric (A0) Lamb waves [81] 
                                                 
5 The nomenclature of symmetric and anti-symmetric waves will be increased by 𝑛𝑛 for higher order 

mode, so for the symmetric modes is 𝑆𝑆0, 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛 and for the anti-symmetric modes is 𝐴𝐴0,𝐴𝐴1, … ,𝐴𝐴𝑛𝑛. 

a) b) 



40 
 

wave modes can be generated. The UGW propagation in cylinders is investigated, 

analysed and explained in detail in many works [82]-[85]. In general, cylindrical wave 

modes can be categorised into three main families, based upon their particle movement: 

• Torsional wave modes that are similar to the Shear horizontal (SH) plate modes where 

T(0,1) is the fundamental member of this family. Note that except T(0,1), all the other 

waves modes in this family are dispersive.  

• Longitudinal wave modes that have the similar particle movement to the Lamb waves 

in plates where the L(0,1) and L(0,2) wave modes are equivalent to A0 and S0 

respectively. These wave modes in the frequency that is utilised in GWT are 

dispersive. 

• Flexural wave modes are attributed to those presenting a particle movement pattern 

around the circumference that incorporates a harmonic oscillation that is distributed. 

These wave modes can be categorised into two groups, which are attached to either 

the torsional or the longitudinal family, where F(1,1) and F(1,2), and F(2,1) are the 

fundamental flexural waves in these types of structures. 

It should be mentioned that the relationship between the thickness of the specimen and the 

wavelength of a guided wave mode is considered in terms of wave propagation through 

the specimen. This is usually expressed as a function of the product of the frequency and 

thickness, 𝑓𝑓.𝑑𝑑 in 𝑘𝑘𝑧𝑧.𝑚𝑚. In addition, the fundamental wave modes are the modes that exist 

from 𝑓𝑓.𝑑𝑑 =  0 𝑘𝑘𝑧𝑧.𝑚𝑚 upward. Other wave modes, referred to as higher order wave modes, 

require a minimum 𝑓𝑓.𝑑𝑑 to exist. Thus, a cut-off frequency has been introduced to present 

the frequencies where each wave mode comes into existence. This means that below that 

frequency, the specimen will not support the particular wave mode with that particular 

thickness. Therefore, additional modes will come into existence by increasing the 

frequency. These higher-order modes contain a more complex displacement pattern 

compared to the fundamental wave modes. As a result, in order to reduce the level of 

coherent noise that is mainly produced by the higher- order modes, it is beneficial to work 

towards fewer wave modes, to receive the test data with higher quality. 

2.6.3 Propagation of UGW 

The nature of sound has been explored over recent decades by many researches, including 

those by Helmholtz [86], Rayleigh [87], and Lamb [88], whereas the UGW technique is a 
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relatively new method. The potential of using Lamb waves for the use of NDT, 

particularly in plates applications, is recognised by Worlton [80]. Viktorov [89] 

investigated the use of Lamb and Rayleigh wave modes for flaw detection in plates, tubes, 

and thin-walled structures of a complex shape. Meitzler [84], in 1961, considered the 

propagation of elastic waves in wires and proposed particular notations for the different 

propagation wave modes in UGW testing, widely utilised by researchers. He introduced 

the naming scheme of the wave mode family for hollow cylinders in terms of their particle 

displacement patterns around the circumference. The wave modes are defined in the form 

of X(m,n) where X will be replaced by either T, L or F for torsional, longitudinal or flexural 

modes respectively; m is the integer number of harmonic variation in particle displacement 

around the circumference; n is a counter variable of modes with order m of family X 

referring to the cut-off frequency. Since the displacement patterns for torsional and 

longitudinal modes do not vary around the circumference, the value of m is always zero 

for them, and they are referred to as axisymmetric modes. Flexural wave modes on the 

other hand, show a non-axisymmetric variation whose displacements vary around the 

circumference during propagation, and the value of  𝑚𝑚 will present its order. Figure 2-5 

illustrates a finite element analysis of fundamental axisymmetric modes, T(0,1), L(0,2), 

and a random flexural, F(3,2) mode.  

Silk & Bainton [90] empirically investigated the generation of UGWs by referring to 

Meitzler's work in thin-walled metal tubing, employing a piezoelectric probe. They 

studied the interaction of UGWs with artefact defects in pipes using longitudinal wave 

modes (i.e. L(0,1) and L(0,2)), and stated that the propagation of the L(0,1) wave mode, 

when compared to the L(0,2) wave mode, is more efficient. Böttger et al. [91] employed 

the UGW inspection method to propose a prototype system of ferritic tubes with the aid 

of electro-magnetic acoustic transducers (EMATs). They claimed that there is a linear 

relationship between the amplitude of the T(0,1) mode and the reflection of the defect’s 

cross section area. 

In the early 1990s, researchers such as Mudge et al. [92], and Cawley and Alleyne [26], 

investigated the use of UGWs into NDT applications for different types of structures (e.g. 

plates, pipes, bars, rods) [147-150]. It was suggested by Cawley and Alleyne to use an 

appropriate frequency region in which the Lamb mode(s) are non-dispersive. They also 

considered the frequency thickness of the specimens. They utilised the L(0,2) wave mode 

for their inspections on 3-inch diameter pipes in the region where it was non-dispersive. 



42 
 

 
Figure 2-5: A Finite Element Analysis (FEA) representation of the T(0,1), L(0,2), and F(3,2) wave modes. 

They employed a ring of shear mode piezoelectric transducers coupled around the 

circumference with axial alignment to generate the L(0,2) wave mode [95]. In order to 

suppress the generation of the L(0,1) wave mode, two rings of transducers were employed 

along the surface of the waveguide, where the transducers were separated by the 

wavelength of L(0,1) exciting with reverse polarities. Furthermore, in order to amplify the 

L(0,2) wave mode, another ring was added to create constructive interference of the 

desired mode. Since it is desirable to propagate in one direction/forward only, the signal 

is transmitted by the first two rings, with a phase delayed from the third ring’s signal, by 

the ratio of their separation and phase velocity of L(0,2) [95]. Alleyne and Lowe [96], a 

few years later, investigated the use of T(0,1) wave mode instead of L(0,2) wave mode, 

as it was non-dispersive across the frequency range of interest. However, the velocity of 

T(0,1) is much less than that of L(0,2) which means that the test range as well as the 

resolution of inspection can be reduced due to the shorter wavelengths. 

2.6.4 Commercial Applications of UGW 

The majority of commercial applications of UGW testing comprise the in situ inspection 

of industrial pipelines [97]. Conventional units usually include three main parts: the 

transducer array, the ultrasonic pulser/receiver device, and an operator that uses this 

equipment to collect data using a laptop/PC. As shown in Figure 2-6 an array of shear 

mode transducers is located around the circumference of a pipe [16] and is pneumatically 

forced against the surface, which is excited with a windowed (e.g. Hann, Hamming) tone 

burst signal of between 10-100kHz. This generates a signal in the pipe metal, which UGW 

propagates along its length. The wave is sensitive to changes in the CSA of the pipe, such 

as defects, welds, flange, etc. These features cause the incident signal to be mode 

T(0,1) L(0,2) F(3,2) 



43 
 

converted into other wave modes, some of which will be reflected back along the pipe to 

the transducer position, where they can be recorded and stored for further analysis. 

Since the waves travel at well-defined velocities, the arrival time of reflected signals can 

be used to determine the distance of the features from the transducer(s). The amplitudes 

of the reflections are found to be proportional to the size of the features, in terms of their 

CSA. Testing in this manner has been found to be most useful in the rapid screening of 

pipes to ensure their freedom from defects, particularly gross corrosion. 

Table 2-1 summarises the state-of-the-art of current commercial implementations of UGW 

technology, within which the same physical principle is employed. The pulse-echo 

inspection method is utilised in these systems for monitoring long lengths of pipelines (up 

to 100m) to identify damage, corrosion, etc. from a single access location. 

Teletest®Focus+6, Olympus®, and Wavemaker®G4 systems employ an array of 

piezoelectric transducers as transduction for their inspection, which covers the 

circumference of a specimen [16][98], [99], whereas Temate® and MsSR® systems 

utilise magnetostrictive coils for transduction on the pipe surface [95]. 

The longitudinal L(0,2) and the torsional T(0,1) wave modes are the only wave modes that 

are employed for inspection.  However, T(0,1) is more popular as it is non-dispersive for 

the whole frequency range of interest and therefore it is utilised throughout this work, 

while L(0,2) is slightly dispersive and there is a requirement to suppress the generation of 

L(0,1) [95]. Note that although T(0,1) wave mode is non-dispersive its family of flexural 

wave modes are dispersive that needs to be reduced/removed. 

2.6.5 Phase and Group Velocity 

Wave propagation can be captured by two types of velocities: phase velocity and group 

velocity. Phase velocity, 𝑉𝑉𝑠𝑠ℎ is the sound energy that is propagated by the movement of 

the changing phase in a continuous wave that propagates in space. It is more practical to 

employ discrete waves that transmit a short pulse containing several cycles of a particular 

frequency. A window function such as a Hann window is usually employed to modulate 

a tone burst (pulse) in order to reduce the pulse bandwidth. Group velocity, 𝑉𝑉𝑔𝑔𝑔𝑔 is the 

velocity of the envelope of the pulse that the pulse propagates, with its own velocity. The  

                                                 
6 Teletest Focus® is a commercial UGW system that is distributed by Plant Integrity Ltd. This system 

is employed throughout the thesis to collect data on various pipelines for post processing. 
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Figure 2-6: Illustration of commercial UGW pipe inspection equipment, Teletest®Focus+ system 
including the transducer array, the ultrasonic pulser/receiver, and an operator with a laptop [14], [16]. 

 
Table 2-1: Summary of commercial UGW systems 

System Supplier Transduction Frequency 

Teletest® Focus+ Plant Integrity Ltd Rings of PZT 20-100kHz 

Wavemaker® G4 Guided Ultrasonic Ltd Rings of PZT 15-80kHz 

UltraWave® Olympus Corporation Rings of PZT 15-85kHz 

PowerFocus™ 
Structural Integrity 

Associates Inc. 
Rings of PZT 20-85kHz 

Temate® Inner spec Technologies Inc Magnetostrictive coils 0.1-1MHz 

MsSR® 3030R NDT- Consultant Ltd Magnetostrictive coils 2-250kHz 

 

relation between the phase velocity, 𝑉𝑉𝑠𝑠ℎ and the group velocity, 𝑉𝑉𝑔𝑔𝑔𝑔 is illustrated in (2-27) 

[99]. 

𝑉𝑉𝑔𝑔𝑔𝑔 =
𝑉𝑉𝑠𝑠ℎ

1 −  𝑓𝑓𝑉𝑉𝑠𝑠ℎ
.
𝑑𝑑𝑉𝑉𝑠𝑠ℎ
𝑑𝑑𝑓𝑓  

 (2-27) 

where f is the nominal central frequency.  This equation shows that the phase velocity is 

equal to group velocity only when the phase velocity does not change with frequency.  

24 inch 
18 inch 

6 inch 2 inch 

Different Teletest 
collar sizes 

MK4 Teletest Focus+  

Piezoelectric 
transducers 



45 
 

 
Figure 2-7: Wave propagations including phase velocity where the phase is changing but the wave 

propagate with zero group velocity (green dots), and group velocity where the pulse envelope propagates 
but the phase is not changing (red dots). 

In this case, the phase propagates at the same speed as the pulse envelope. Note that in 

UGW testing, excepting the fundamental torsional wave mode, T(0,1) where 𝑉𝑉𝑠𝑠ℎ =  𝑉𝑉𝑔𝑔𝑔𝑔 , 

all the other modes propagate with a frequency dependent phase velocity that causes the 

phase velocity to contain a different value compared to the group velocity. A phase 

velocity and a group velocity of a discrete pulse propagated with a changing phase or 

changing envelop are displayed in Figure 2-7. 

2.6.6 Dispersion Curve  

As shown in Equation (2-27), although the phase velocity and group velocity values are 

related to each other, in most cases they have a different value. Therefore, the phase can 

be travelling at a different speed to the envelope of the pulse (group velocity), which 

means a propagating pulse will have the potential to spread out over time and space. This 

is referred to as the ‘dispersion’ behaviour of the pulse, which represents a significant 

impact between the UGW testing and conventional methods. In general, dispersion exists 

when the velocity of a wave mode is dependent on the frequency. This is defined by a 

‘dispersion curve’ algorithm. This algorithm display two plots of the velocity variation of 

the phase and group velocity over a range of selected frequencies (usually kHz) for each 

wave mode separately. Note that if a wave mode is non-dispersive over a particular 

frequency range, then the value of phase and group velocity will be very close to each 

other. 
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Dispersion curves were initially investigated by Gazis [82], [83] and Viktorov [89], 

utilising analytical models to generate dispersion curves.  Pavlakovic et al. [100] in 1997  

used this knowledge and developed a software called ‘Disperse’, by measuring the 

dispersion behaviour of the UGWs and the mode propagation characteristics. This 

software is commercially available to generate a dispersion curve for plates and cylindrical 

structures, and produces dispersion curves for each particular wave mode in terms of phase 

and/or group velocity across the frequency range of interest. It is also able to estimate 

variation in attenuation over frequency for multi-layer structures, such as insulated pipes. 

Disperse software has been utilised throughout this thesis to generate the dispersion curves 

and mode shapes for all UGW testing and experiments that are investigated in this 

document. In general, a non-dispersive wave mode is always preferred for excitation in 

order to achieve a pure signal in terms of dispersion behaviour of wave modes, which 

makes the data interpretation easier. 

The dispersion curves for a six-inch steel pipe with an 168.3mm outer diameter and 

7.11mm wall thickness are illustrated in Figure 2-8. T(0,1) , L(0,1), and L(0,2) are the 

fundamental axisymmetric UGW modes, which have a family of flexural wave modes, 

F(n,2), F(n,1), and F(n,3) (where 𝑛𝑛 > 0) that have very similar propagation 

characteristics, and the mode shapes of the fundamental wave modes associated with them 

are displayed in Figure 2-8. For example, F(n,2) of flexural modes have a similar pattern 

to the T(0,1) wave mode and are referred to as the ‘T(0,1)’ family of wave modes, which 

are mentioned throughout this work. As shown in this figure, the T(0,1) is the only non-

dispersive wave mode with a constant velocity throughout the whole frequency range, 

thus its phase velocity and group velocity are equal over all frequencies. The L(0,1) mode 

is relatively dispersive, which is why this wave mode is not used for excitation in UGW 

testing; the aim of most techniques is to cancel the signal generated by this wave mode. 

Conversely, the L(0,2) mode is relatively non-dispersive for a wide range of frequencies 

employed for UGW inspection (20-100 kHz).  

In addition, as shown in Figure 2-8, the number of wave modes increases at higher 

frequencies, and as the frequency increases, the wave modes become less dispersive. This 

means that the wave modes will be propagated with different velocities for higher and 

lower frequencies, which affects the behaviour of the wave modes in terms of spreading 

out in time and space. Furthermore, the properties of UGW propagation are affected by 

the geometry of the cylinder. These changes have been studied by Catton [95], who 
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demonstrates that the dispersion curves of the cylindrical structure will change depending 

on variations in the pipe wall thickness and its diameter.  

One of the main problems in UGW testing is the dispersion behaviour of the wave modes. 

Therefore a wave mode must be selected carefully for a particular frequency range to 

minimise the effect of dispersion. Regions, where the velocity varies considerably with 

frequency, are known as ‘dispersive regions’. For this reason, a discrete pulse is usually 

employed in UGW testing to detect the reflections from the features of the specimen. To 

achieve this, a continuous sine wave is excited and then modulated by a window function, 

such as Hann windowed, to form a discrete pulse with a finite number of cycles while 

minimising the frequency bandwidth. Therefore, there will be a bandwidth of frequencies 

excited, centred over the nominal centre frequency. Thus, the lower frequency component 

propagates at a different frequency compared to those at a higher frequency on that 

particular bandwidth, especially if the frequency bandwidth is in the dispersive region. 

This is the main reason that dispersive wave modes spread out in time and space. The 

frequency spectrum of a Hann modulated pulse with 10-cycles, and a centre frequency of  

50kHz as well as the phase velocity dispersion curve of F(4,2) wave mode for the above 

mentioned six-inch steel pipe is illustrated in Figure 2-9. The figure is described by a 

`main lobe' positioned at the nominal centre frequency, with `side lobes' of diminishing 

amplitude either side. The frequency corresponding to the start and end of these side lobes 

𝑓𝑓𝑘𝑘 is defined as follow: 

𝑓𝑓𝑘𝑘 = 𝑓𝑓𝑐𝑐  ±  
(𝑘𝑘 + 2).𝑓𝑓𝑐𝑐

𝑛𝑛
 (2-28) 

Where 𝑓𝑓𝑘𝑘 is the frequency bandwidth of side lobe k (where k = 0 refers to the main lobe),  

𝑓𝑓𝑐𝑐 is the centre frequency, and n is the number of cycles in the pulse. Thus, number of 

cycles plays an important role in UGW testing, as increasing the number of cycles reduces 

the frequency bandwidth with a longer pulse length, whereas reducing the number of 

cycles increases the frequency bandwidth, with a shorter pulse length. However, as most 

of the wave modes are dispersive, it is advisable to use a short bandwidth for processing. 

Figure 2-9 illustrated the dispersion behaviour of the flexural F(4,2) wave mode, where 

the frequency components travels at different frequencies (between ~3.5m/ms and 

~4.7m/ms). Therefore, significant distortion of the pulse shape is inevitable in this case, 

even for short distances of a few metres. It is preferable to excite the axisymmetric wave  
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Figure 2-8 : Dispersion curves diagram for a six-inch steel pipe with 168.3mm outer diameter and 
7.11mm wall thickness. a) phase velocity and b) group velocity for different axisymmetric modes and 

their family of flexural modes are illustrated in this figure. 
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Figure 2-9: Frequency spectrum of a 50kHz, 10-cycles Hann windowed pulse overlaid with the 

phase velocity dispersion curve of the F(4,2) mode for a six-inch steel pipe schedule 40. The main and 
first side lobes are illustrated to present that the pulse has a frequency bandwidth from 35kHz to 65kHz. 

mode as its dispersion behaviour is minimal, which will make data interpretation easier. 

However, as the excitation pulse is not always fully axisymmetric, other wave modes will 

produced due to mode conversion. These wave modes are the flexural family of the excited 

axisymmetric wave modes, which converts to coherent noise and makes the data 

interpretation difficult. Therefore, an advanced post-processing signal processing 

technique is required to analyse such signals. 

2.6.7 Mode Conversion of UGWs 

Mode conversion usually occurs in media when the energy of the sound propagation 

converts from one form into another. This could occur when an excited wave mode meets 

a boundary between materials of different acoustic impedances [95]. In addition, 

refraction usually appears at the boundary when sound waves move across the boundary 

between structures that have different acoustic impedances. Therefore, mode conversion 

in UGW testing may occur when a wave mode come across a discontinuity in the 

materials, hence it converts into other wave modes, with different velocity and 

displacement characteristics. For example, due to mode conversion, the T(0,1) mode can 

be converted into F(n,2) at the frequency of interest, which is its own flexural family. 
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2.6.8 Coherent Noise 

The main challenge of guided wave inspection in pipelines is the presence of many 

unwanted wave modes that converts to coherent noise and makes the received signal noisy 

and complicated. The main reason for such a result is the excitation of multiple wave 

modes that travel at different velocities in different directions that in general are frequency 

dependent (i.e. dispersive wave mode (DWM)).  

In general, the coherent noise is arising from two main sources: i) the excitation and 

reception of unwanted modes and mode conversion. ii) the transmission of waves in the 

opposite direction along the pipe and the reception of echoes from that direction. 

Reducing the coherent noise is not only a challenging task for UGW inspection. It is also 

a problem for many other applications, such as NDE, radar, etc., where many studies and 

much research have been applied for over a decade to address the issue of coherent noise. 

In order to reduce/remove the coherent noise in UGW testing, it is vital to excite/receive 

a pure axisymmetric mode in one direction as well as minimising the excitation of other 

(i.e. dispersive) modes.  

However, these unwanted modes are usually the flexural family of the excited 

axisymmetric wave modes that converts to coherent noise and makes the data 

interpretation difficult. In order to minimise the effect of unwanted modes, an advanced 

signal processing technique could be utilised to analyse such signals, thus improving the 

SNR and the spatial resolution of the UGW response. 

2.6.9 Guided Wave Inspection Methods 

Pulse-echo and Pitch-catch inspection methods are widely employed for UGW operations. 

In the pulse-echo method, a single transducer or ring of transducers is/are employed to 

excite the signal, before utilising same transducer(s) to receive the reflected signal; 

whereas in the pitch-catch method at least two sets of transducers are required for 

inspection to excite and receive the signal at two different locations. The pitch-catch 

method has the potential to provide a higher resolution compared to the pulse-echo 

method. Both types of inspection methods have been employed throughout the thesis.  
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2.7  Summary 

This chapter provides the fundamental and theoretical background of acoustic 

applications, signal processing techniques and time-frequency analysis that are required 

throughout this thesis. This includes Fourier transform, windowing, etc., which are utilised 

in the technical Chapters 4 and 5. In addition, the fundamentals of split-spectrum 

processing (SSP) technique with its recombination algorithms is explored within this 

chapter, which is required for Chapters 5 and 6. 

Furthermore, the fundamental and theoretical background of acoustic applications for 

sonic signals, including streaming media/protocol, describing different PLC domains, 

review of audio flow, etc. are provided in this Chapter, which are required in the following 

chapter.  

Finally this chapter introduces the theoretical background of acoustic applications for 

UGWs, including fundamental information regarding ultrasonic applications; in 

particular, the development of UGW testing that has been achieved in recent years is 

explored, to help the reader to understand the concept of elastic wave, UGWs, which is 

repeatedly referred to throughout the thesis. In addition, the explanation of different wave 

modes and the relationship between concepts such as phase and group velocities, 

dispersion curve and relevant concepts, an understanding of which is required in Chapters 

5 and 6, is fully covered in this chapter. 
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Chapter 3 

 Literature Review 
3.1 Sonic Applications 

3.1.1 Packet Loss Recovery Techniques 

As mentioned in Chapter 1, streaming audio utilises RTP for delivery over the Internet 

based on UDP and because of the UDP characteristics, audio packets can be lost or discard 

during connection and lead to produce an annoying disturbance at the receiver sides. Since 

the human hearing system is very sensitive, it could easily realise the discontinuity of the 

sound, which is created in the waveform even by the small lost packet. Therefore, recovery 

and replacement of the missing packets are very important and challenging task. 

It is not an acceptable solution to splicing the ends of the gap together and assumes that 

nothing is missing. This solution makes a timing mismatch in the playback buffer as well 

as possibility to interfere with server-user synchronisation in real-time process. The best 

solution is replacing the missing packets with the samples that are similar to the original 

one. There are numerous methods that have been investigated for recovery or replacement 

of lost packets in audio streaming [32], [101]. These techniques are divided into two broad 

approaches for mitigating the degradation in quality due to audio packet loss [101]: 

I. Sender-based packet recovery methods, where the sender changes the encoded bit 

stream, adding resilience in the form of some redundancy or additional side 

information that the receiver side could use this information for recovery of lost 

packets. Forward Error Correction (FEC) [34], [101], Multiple Description Coding 

(MDC) and MDC-FEC method [102] are the examples of this method. 

II. Receiver-based packet loss concealment (PLC) algorithms, which only utilise the 

received packets to estimate and/or predict the missing packets without any 

assistance from the sender side. 

Overall, these solutions are designed to help the decoder process at the receiver side. 

Sender-based algorithms can employ side-information from the encoder as well as using 

error correction to improve the concealment process and even sometimes repairing the 

missing packets entirely, while receiver-based algorithms do not have access to the 
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encoder and employ error concealment techniques. Therefore, in order to produce the 

natural sound after replacing the gaps, they could only approximate the missing packets 

with some quality degradation. 

In general, the missing gaps could be divided into short and long gaps. Replacing signal 

in short gaps is easier as we can estimate the characteristics similar to the lost signal by 

using the surrounding packets. Audio signals are often short-term or non-stationary. Hence 

users usually do not even realise that there was a gap. On the other hand, for long gaps or 

for the gaps that are very close to each other, it is usually impossible to use the same 

estimation method that used for short gaps; instead, gaps are commonly replacing by using 

other techniques and only attempt to create smooth sounds rather than annoying sounds. 

The concept of this work is to find a solution for receiver-based PLC technique that could 

be applied to both short and long gaps. Therefore, the receiver-based PLC techniques are 

described in more details next. 

3.1.2 Receiver-Based Techniques 

Sender-based methods are usually more effective than the receiver-based techniques as 

they have access to the encoder part and its information. However, using receiver-based 

techniques are more feasible and affordable in practical situations as most of the time the 

receiver side does not have access to the sender part. Receiver-based methods could be 

divided into three major categories [101]:  

Insertion-based repair schemes are the simplest method to implement as the lost packets 

are replaced by inserting a simple fill-in segment such as a zero-length fill-in (splicing), 

silence/comfort noise substitution, or a repeat of a previously matched packet as the 

replacement. However, since the characteristics of the signal are not used to aid 

reconstruction, the performances of these methods are poor and not acceptable. 

In splicing method, lost frame is concealed by splicing together the audio on either side 

of the loss, and the timing of the stream is disrupted and gives poor result as a result of 

makes a step reduction in the amount of available data at the buffer [103]. In order to 

preserve the timing relationship between the surrounding packets, silence substitution 

used to fill the gaps. This method is only suitable for interleaved audio over low-pass paths 

as when packet losses are increased; the quality will degrade rapidly [104]. Noise 

substitution is improved version of the silence substitution method, where, background 
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noise is filling the lost packet gaps. For example, using white noise compares to the silence 

method gives better subjectively quality and also improves the intelligibility [105][106].  

In Repetition method, a gap is replaced using the previous packets which arrived 

immediately before the lost one. This method implemented well and involved low 

computational complexity. The performance of this technique could be enhanced by 

utilising the fading of repeated signal to zero amplitude for long gaps like that is used by 

GSM system [107].  Furthermore, packet repetition with fading technique is a good 

compromise between the other poorly performing insertion-based concealment techniques 

and the more complex interpolation-based and regenerative concealment methods [101]. 

However, the result of this method is not promising particularly for long gaps as it 

produces an annoying metallic sounding artefact. Hence, these schemes in general 

compared with the other more sophisticated schemes give poor performance result. 

Time-Domain Interpolation-based repair techniques that use some form of pattern 

matching and interpolation to derive a replacement packet similar to the lost one from 

packets that surround a loss frame [101]. The advantage of this method compared to the 

former method is using the changing characteristics of the signal in the interpolation 

polynomial. Hence, better performance is achievable, although, mathematically it is more 

difficult to implement, and complexity/expense will be increased.  

Audio signals, in general, have a time-varying behaviour, but the quasi-periodic repetitive 

structure, which causes most acoustic signals reoccur throughout the whole signal with 

some variations. The basic interpolation technique [32] used this pattern matching for 

reconstruction, where a lost segment of a signal is substituted by finding the best match 

from previous segments. This technique is particularly useful when there is a large gap in 

the signal. For this type of signals, it is a good idea to construct a library of patterns in 

order to utilise in waveform substitution [108]. 

Waveform Substitution is one of the popular strategies for PLC that studied by Goodman 

et al. [109] for packet voice structures that utilises audio before and optionally after the 

loss to find a suitable signal to cover the loss. The advantages of these methods are their 

simplicity and low computational complexity, which has obtained its popularity mainly in 

telecommunication industry where the computational power and memory is restricted. 

This method employs the buffered data of past few packets at the receiver side to analyse 
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them to find an appropriate substitutions samples to replace with the lost packet. The use 

of one or two-sided methods is evaluated to find the suitable pitch patterns for the loss. 

Pitch waveform replication is presented by Wasem et al. [110] is the improved version of 

waveform substitution where the pitch of the substituted waveform is modified for voiced 

speech part to match the known pitch at both sides of the gap. Also, the packet repetition 

is employed for replacement of the unvoiced speech segments. Overlap-add time-scale 

modification scheme [111] allows the audio to be stretched across each side of the loss. 

This can be done by pitch synchronous overlap-add method as commonly used in the text 

to speech synthesis [108]. A variant of this approach has been used by Sanneck et al. [112]. 

Furthermore, a pitch synchronous overlap-add interpolation scheme is suggested by 

Valenzuela and Animalu [113] for speech signal that is similar to the technique that 

proposed in [114]. Although more computation is required for this technique, overall 

provides better result compared to the other two previous methods. 

Moreover, the International Telecommunication Union (ITU) employs waveform 

substitution, where the missing frames are replaced by one of the previous frames using 

pitch replication. ITU has standardised this algorithm for extrapolation of speech signal 

gaps of up to 60 𝑚𝑚𝑠𝑠 (G.711 Appendix I) [114], including ITU-T standard PLC known as 

G.722 Appendix III as well as ITU-T Recommendation G.728 Annex I and G729 [115], 

[116], [117] 

Regeneration-Based Repair methods (Model-based Interpolation techniques) use 

knowledge of the audio compression algorithm to derive codec parameters of the received 

packets to synthesise a lost packet. In these methods, a large amount of state information 

is used to repair the losses, however; it is a codec-dependent technique and 

computationally intensive. These methods are widely employed in the compressed domain 

instead of the waveform methods.  

Many researchers [118]–[120] have been investigated in the modified version of 

waveform substitution based methods to utilise the advantages of simplicity, and source 

filter model-based techniques to achieve higher quality signals. Examples include; the 

interpolation of transmitted state for codecs based on linear prediction (LP) or transform 

coding [55], where the decoder interpolate between the received states to replace lost 

packets. Interpolation using compressed domain parameters for speech coders [36]. 
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Another example of this method is ITU G.723.1 where for short lost packets, the state of 

the LP coefficients are interpolated by speech decoder [121].  

Due to adaptive nature of codec parameters, there are no boundary effects on either side 

of the loss, and this is one of the advantages of codecs where it is possible to interpolate 

the state rather than the audio signal. In addition, the computational load stays constant. 

However, demands of high processing may be applied in this category for interpolation. 

Model-based extrapolation/recovery [122] where the packet(s) on either one or both side 

of the loss is fitted to a model that used to generate audio to cover the lost frames. One of 

the well-known model-based interpolator methods in the restoration of lost samples is 

autoregressive (AR) model [123]-[126] that is used for reconstructing a long portion of 

missing samples in audio signals. AR introduced the multi-rate interpolation scheme that 

applied by Janssen et al. [108] for estimation of non-recoverable errors in compact disk 

systems. Maximum a posteriori AR (MAPAR) and least square error AR (LSAR) [124] 

are other common methods for estimation that could be applied to the problem of gap 

restoration. However, the aim of basic AR models is to restore the spectral envelope of 

the signal, whereas the aim of modified version is to restore the excitation-related 

parameters such as pitch at the same time. A pitch-based AR interpolator suggested by 

Vaseghi and Rayner [125] that employed the long-term correlation structure of the speech 

and quasi-periodic signals. Kauppinen and Roth [127] suggested a method that replaced 

the missing part of the excitation with zeros that effectively used the zero-exited LP model 

from the past samples to estimate the missing samples. A time-reversed excitation 

substitution technique with a multi-rate post-processing module is proposed by Esquef et 

al. [126] for audio gap restoration. This technique developed to prevent any artefacts 

signals that may generate from discontinuities of the excitation signal at the two ends of 

the gap. 

Chen and Loizou [48] proposed repair of interleaved m-law encoded speech that combines 

the autoregressive analysis results with an estimate of the excitation made for the loss 

period. The interleaved blocks size is small enough (8/16 𝑚𝑚𝑠𝑠) in this method, thus, the 

speech characteristics have a high probability to be relevant with the last received block.  

Sinusoidal models [15] that operate on the source-filter components of the speech signal 

are the alternative approaches to modelling the excitation signals that considered by 

Lindblom and Hedelin [128]. They suggested an algorithm for extrapolation of lost speech 

packets using a LP model of the spectral envelope of the signal, and then they presented a 
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similar interpolation technique with some extension [129]. A LP algorithm has been 

proposed by Rødbro et al. [130] that applied in both symmetric and asymmetric windows 

as well as the overlap-add process of successive frames to predict the sinusoidal model 

parameters of missing frames in time-domain signal. The robustness of the inter-frame 

and intra-frame is investigated by Wang and Gibson [131]. They employed line spectral 

frequency (LSF) coders to estimate the packet loss. Most of the mentioned methods had 

strived to estimate and/or predict the excitation signal and the spectral envelope 

throughout the gap, which are the main sets of audio/speech features. 

Zavarehei [55] proposed an interpolation algorithm based on a linear prediction - 

harmonic-plus-noise model (LP-HNM) of speech. The spectral envelope of speech is 

modelled using a LSF representation of a LP model, and the excitation is modelled with a 

HNM, for each sub-band whose parameters were the harmonic frequencies, amplitudes 

and harmonicity (voicing levels). These parameters are utilised for a phase prediction 

algorithm and then interpolated throughout the gap using a combination of autoregressive 

and linear interpolation techniques to produce the synthesised speech. This method is also 

modelled/tracked the time-varying contours of the formants and the harmonic energies 

across the gap. Furthermore, a codebook-mapping method is employed to mitigate abrupt 

changes in the envelope of the signal as well as improving the performance of the 

algorithm in the restoration of long gaps (e.g. > 50 ms) [55].  

Alternative methods include interpolation of the missing sample by using gapped-data 

amplitude and phase estimation (GAPES) algorithm to reconstruct the missing data in the 

discrete short-time Fourier transform (DSTFT) domain. The same algorithm is also 

applied on a different complex domain, formed by combining the modified discrete cosine 

transform (MDCT) domain (real part) and the modified discrete sine transform (MDST) 

domain (imaginary part) [132], [133]. Advanced repair techniques are required more 

computation to perform [101], and although the result showed the achievement of quality 

improvement was incremental by following these advanced schemes, however, packet 

repetition method with fading sometimes preferred as it offers a good compromise 

between excessive complexity and achieved quality. 

The main limitation of most audio/speech enhancement methods is their destructive effect 

on the harmonic structure of audio signals [134], particularly at low signal-to-noise ratios. 

This is partly a consequence of ignoring the harmonic structure of audio spectrum. HNMs 

method is a well-known algorithm that results in high quality synthesised and high 
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intelligibility for modelling the harmonic structure of audio signal that makes it popular 

for many applications. Sinusoidal models, and their modified version such as harmonic 

noise model, widely employed in text-to-speech (TTS) systems [135], bandwidth 

extension [136], packet loss concealment [122], [130], speech coding [137], [138], speech 

enhancement [69], [139] and many other audio processing applications. 

Overall, most packet loss methods that mentioned in the above literature review do not 

specifically address the important issue of time-variation of the speech spectral 

parameters; their impact on the replacement of lost packets and the solutions that may 

account for the time-variations. A number of methods that may lend themselves to 

adaptation for time-varying extrapolation/interpolation, such as model-based codecs and 

overlap-add synthesis; have not been fully investigated in terms of their capacity to 

provide such improvement in time-varying environments for reconstruction of the lost 

packet. Due to the challenges mentioned above, these methods are not suitable for 

wideband audio/music signals that contain a combination of inputs from several 

instruments with several fundamental frequencies and spectral envelopes. Thus, a novel 

solution is presented in this work in Chapter 4 to address these challenges. 

3.2 Ultrasonics Guided Wave 

In order to increase the SNR, spatial resolution and specifically defect sensitivity, it is 

essential to minimise the presence of the dispersive wave modes (DWM) in UGW signals. 

Dispersion is one of the main sources of the coherent noise that occupies the same 

bandwidth as the signal of interest. Conventional methods such as band pass filters and 

averaging are unable to reduce the effect of DWM. Sicard et al. [140] initially studied the 

effect of dispersion in UGWs to compensate the dispersive behaviour of the signal. Wilcox 

[141] developed a technique for reversing the effect of dispersion on DWM. The technique 

used knowledge of the dispersion characteristics of the wave mode to map signals from 

the time to the distance domain. It reversed the effect of dispersion on a particular wave 

mode and restored it to an undispersed pulse. The dispersion pre-compensation technique 

is performed based on the chirp technique by Lin & Zeng [142] on the narrowband 

excitation signals that managed to compress the time duration of received wave packet 

during the extracting process. In addition, information of multiple distinct frequency 

ranges and responses has been extracted for a few narrowband excitations by employing 

the benefits of broadband chirp excitation. Moreover, this technique optimised the design 
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of excitation waveform. This method utilised a previous knowledge of the dispersion 

curve and the propagation distance. The dispersion compensation (DC) in multimodal 

cases is presented by Xu et al. [143] to estimate the plate thickness and propagation 

distance followed by a self-compensated technique for wave modes that were studied by 

employing a wideband dispersion reversal (WDR) algorithm [144]. This technique created 

a single wave mode packet that made the signal interpretation easier, but it was required 

to have the knowledge of the propagation distance in advance [145]. This was problematic 

when inspecting over a range of distances. 

Toiyama and Hayashi [146] combined the DC algorithm with Pulse compression (PuC) 

methods by employing chirp waveforms. They investigated a scenario of single wave 

mode without introducing the quantitative SNR enhancement. Marchi et al. [147] 

employed a combination of warped frequency transform (WFT)-based DC algorithm with 

PuC to improve the localisation of a steel cylindrical mass in an aluminium plate. This 

technique was tested for a simulated defect only, and it was not practical, as the 

wavelength had to be filtered to reduce the effect of multimodal propagation. They also 

considered irregular waveguides using a triangular pulse excitation; however, no 

experimental validation was reported [148]. Yucel et al. [149], [150] and Fateri [151] 

utilised by combining of DC with PuC employ broadband maximal length sequence 

(MLS) excitation to improve the SNR of the UGW response for an aluminium rod. The 

result indicated that the propagation distance is successfully obtained for the highly 

dispersive flexural wave mode but not that effective for the non-dispersive longitudinal 

wave mode. It has been claimed that the cross-correlation compared to DC achieves a 

better result when the wave modes have little dispersion. Mallet [13] considered cross-

correlation and wavelet de-noising for reduction of the effect of DWM on synthesised and 

experimental UGW response. It was shown that both techniques were not suitable for the 

reduction of coherent noise. This was because both methods have removed the smaller 

amplitudes regardless of whether or not they were signal or noise.  

3.2.1 Literature review of SSP 

SSP was originally developed for radar systems as a frequency diversity/agility technique 

[152]. Bilgutay et al. [153] in 1981 considered the frequency agility method to improve 

SNR in ultrasonic NDT for large grain materials. Of particular concern was microstructure 

scattering of the ultrasonic signal. The grain echoes, unlike flaw echoes, are highly 
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sensitive to shifts in the transmitted frequency, and as a result, de-correlation in grain 

echoes could be obtained by shifting the transmitted frequency, which improves the flaw 

visibility. Therefore, the grains only reflect signals that have similar size of wavelength to 

the grain size. This basic principle has led to the idea of SSP technique for ultrasonic flaw 

detection to improve the flaw to grain echo ratio of signal response. This technique 

reduced grain noise in a simulated UT by utilising minimisation and conventional 

averaging algorithms. Then, Bilgutay et al. developed a method that produced frequency 

diverse de-correlated signals from the received wideband signal by digital filtering instead 

of by transmitting many different narrowband signals. This was achieved by splitting a 

wideband-received spectrum of signal responses to obtain a set of sub-band signals. This 

was equivalent to using a frequency agility technique, where a number of pulses were 

transmitted with different frequencies. 

Newhouse et al. [154] in 1982 considered SSP for NDE to enhance the ultrasonic signal 

that belongs to a flaw, above those of grains using frequency diversity. Due to destructive 

interference, Newhouse et al. expected that the received spectrum of a random distribution 

of point scatters would exhibit minima. This was an assumption from a simpler situation, 

where, minima of zero amplitude occur for a regularly spaced grid of scatters in the 

received spectrum at predictable frequency intervals. SSP was used in connection with 

this phenomenon to divide a received time-trace bandwidth into multiple sub-band time-

traces, where each one belonged to a different frequency window. Newhouse et al. 

assumed that a defect’s response should be presented in the sub-band signals as it 

manifests frequency coherence, whereas the grain noise will be incoherent. In addition, 

since the recombination algorithms utilised were non-linear, the amplitudes of a defect 

will be increased while the amplitude of noise will be reduced. However, the improvement 

of SNR was limited because when the original signal was divided into sub-band signals 

its SNR was also divided, and adding them linearly would restore the original SNR. 

A theoretical analysis of SSP investigated by Amir et al. [155], who modelled a target and 

a set of random scatters. They obtained an improvement in SNR by utilising both linear 

and non-linear averaging and minimisation. They claimed that the minimisation algorithm 

gave the greatest SNR enhancement when the input had an SNR greater than unity. 

Karpur et al. [156] proposed a theoretical basis for the selection of SSP filter bank 

parameters using a minimisation algorithm. They studied the dependence of the 

performance of SSP on various processing parameters and showed that the SNR 
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enhancement was mostly dependent on selecting the optimum filter bank parameters. In 

order to verify their theoretical basis, they carried out experiments for the selection of 

parameters, which were defined to predict SNR enhancement by compounding a number 

of frequency diverse signals. However, some of these parameters obtained a larger value 

than expected. This can be the result of utilising Gaussian function for filtering, whereas 

their calculation was based on a Sinc function. 

Rose et al. [157] studied the use of SSP in a number of ultrasonic NDT applications for 

SNR enhancement. They considered the characterisation of the grain structure in different 

materials employing a polarity thresholding (PT) algorithm. They claimed that selecting 

an appropriate value for filter-bank parameters is one of the main factors for SNR 

enhancement. They have suggested that the filter bandwidth needs to be around three to 

four times the separation and advised that if the filter overlap was too narrow or there was 

no overlap at all, no improvement in SNR will be achieved. Rose et al. also claim that, if 

“one edge of the plane of the defect is displaced from the other edge by more than three 

to four times the wavelength with respect to the direction of wave propagation”, SSP will 

not lead to SNR enhancement.  

Karpur et al. [158] in 1988 proposed a technique for calculating an optimum bandwidth 

required for the SSP technique. It was claimed that the transmitted bandwidth and the 

received bandwidth in UT are not the same because scattering has a low-pass filtering 

effect, and based on that, the attenuation was calculated as a function of frequency for a 

given grain size and propagation distance. Thus, the low-pass filtering characteristics for 

the specified material were achieved. In order to find the bandwidth for SSP, this 

information along with the frequency response of the transducers were employed and 

compared with the results obtained experimentally. The results showed that increasing the 

number of filters increased the overall bandwidth. Hence, Karpur et al. claimed that as the 

number of filters increased, the SNR enhancement reduced to zero, as the target 

information did not exist at higher frequencies. Hence, the maximum SNR enhancement 

was obtained by selecting the optimum number of filters (optimum bandwidth). 

Shankar et al. [159] proposed the PT algorithm of SSP for the reduction of coherent noise 

in a single target. They utilised the first deriving of the probability density function (PDF) 

of the output for evaluation and calculated the SNR theoretically and achieved superior 

noise suppression. Their results indicated that the SNR enhancement was a function of the 

number of filters as well as the input SNR. It was shown that the SNR experienced greater 
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improvement for smaller filter bandwidths. In addition, SNR enhancement was increased 

with the number of filters up to a certain point, beyond that SNR enhancement decreased. 

Furthermore, it was revealed that the detectability of the smaller targets could be seriously 

affected by multiple targets with different sizes of filters. Shankar et al. stated that the PT 

algorithm works well in conjunction with other SSP algorithms, such as minimisation. 

However, it should not be used when the input SNR is close to unity. 

Aussel [160] implemented SSP employing finite impulse response (FIR) filters ratio rather 

than filtering in the frequency domain, utilising DFT that gave a delay, to obtain a real-

time response. This method was more efficient for the processing of ultrasonic signals 

with wide frequency bandwidths or long time durations. The selection of filter bank 

parameters for UT signals was studied using the minimisation algorithm. However, the 

results were limited to fixed frequency-to-bandwidth ratio FIR filter response. 

Saniie et al. [161] investigated the performance of order statistic (OS) filters in 

conjunction with SSP in the context of ultrasonic flaw detection to improve the flaw-to-

clutter ratio of backscattered signals. They showed that an optimal rank could be obtained 

with a prior knowledge of the distribution of flaw and grain echoes. It has been claimed 

that the OS filter performs well where the flaw and clutter echoes have good statistical 

separation in a given quantile region representing a particular rank (e.g. minimum, 

median, maximum). However, its performance deteriorated with the contamination of 

unwanted statistical information. Thus, SSP is utilised to provide a set of observation 

features corresponding to different frequency bands. Through simulation and 

experimental studies, the robustness of OS filters was shown and the information utilised 

from different frequency bands to improve flaw detection. 

Laugier et al. [162] considered the use of SSP for a moving target in biological tissue, 

employing a minimisation algorithm. They implemented an SSP technique and compared 

it to linear band-pass filtering of the signals. Their results showed that SSP with a non-

linear minimisation algorithm gave a greater enhancement in SNR compared to linear 

band-pass filtering. In addition, the results indicated that the use of band-pass filters 

caused a loss of axial resolution, whereas the SSP did not have this problem. 

Gustafsson and Stepinski [163] employed adaptive an SSP method using an artificial 

neural network (ANN) to implement PT for UT signals. In order to allow the relative 

importance of the different sub-bands to be taken into account, weighting factors were 
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added to the input signal, and the signal values were fed into the ANN. The results showed 

better performance obtained compared to PT but only for one particular sample. 

Gustafsson [164] in 1995 extended the method by employing both the filter bank and non-

linear processing as an ANN for SSP. This method was time-consuming, although the 

results indicated that the ANN could “eliminate most of the noise”. 

Tian et al. [165] introduced the group delay moving entropy technique to enhance the 

performance of SSP in detecting multiple targets that exhibit different spectral 

characteristics in UT applications. The technique was based on the fact that reflections 

from noise have a random group delay, whereas reflections from features have a constant 

group delay. It stated that the group delay was the derivative of the phase response. They 

utilised SSP to reduce the scatter noise and the targets excluding the largest. Then the 

target was eliminated in the time domain windows and the procedure repeated until all the 

remaining targets were detected. The removal of the dominant target improved the 

detection of the remaining weaker targets. Hence, the combination of group delay moving 

entropy method and multistep SSP technique offered the potential for detecting multiple 

targets in complex environments. Tian & Bilgutay [166] considered a statistical analysis 

of the performance of SSP for the detection of multiple targets for two scenarios: i) where 

the bandwidth and centre frequency of the features were known, ii) where the processing 

frequencies were obtained using group delay moving entropy as defined above. They 

stated that the second scenario was more effective in multiple target detection. However, 

the probability of detection was slightly higher when the target bandwidth was known 

compared to the technique when the group delay moving entropy was used. 

Sun & Saniie [167] proposed the use of SSP combined with a neural network (NN) to 

develop a detection structure in NDE. The Gaussian bandpass filter was utilised to perform 

spectral splitting and an adaptive three-layer NN for the subsequent non-linear processing. 

They claimed that the SSP-NN technique was able to detect flaws when the SNR was 

0 𝑑𝑑𝐵𝐵 or greater. Sun & Saniie [168] developed a combination of SSP with an adaptive-

network-based fuzzy inference system (ANFIS) to classify features on UT signals. The 

inputs of ANFIS were the results of sub-bands signal that were filtered by a bank of 

bandpass filters. The ANFIS was trained to classify the signal from the sub-bands at a 

point in time as either reflection or noise. It was shown that the SNR improved only when 

the input signals had a SNR of 0dB or greater. 
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Grevillot et al. [169] proposed a moving bandwidth minimisation (MBM) method and 

mathematical morphology (MM) algorithms in SSP to detect multiple specular targets 

with different spectral characteristics in biological structures. They claimed that SSP using 

a minimisation algorithm could only detect a simple target or multiple targets having 

similar spectral characteristics. The main drawback of this algorithm was its high 

sensitivity to the localisation of the analysis bandwidth in the spectrum, as if the bandwidth 

and its position are selected incorrectly; no echo signal will be detected. They utilised SSP 

followed by MBM to process multiple target signals and obviate previous problems. They 

suggested that the MBM method could be improved by running phase thresholding in the 

case of the line amplitude information is lost to enhance low-level specular echoes. 

However, when the input SNR was less than 1dB, the detection efficiency was reduced. 

Zhenqing et al. [170] proposed the SSP based on phase standard deviation (PSD) of the 

sub-band signals. The output of this method was equal to the input divided by the PSD for 

each sub-band. Hence, regions that contained high variations in phase were reduced, as 

they are divided by a larger value than regions surrounded by lower variations in phase. 

They claimed that this method is less sensitive to the filter bank parameters and since it 

was not a gating method, it did not require a threshold for processing. 

Stepinski et al. [171] proposed Consecutive Polarity Coincidence (CPC) for determining 

the bandwidth for SSP. This algorithm makes use of the pulse characteristics of the target 

echo more easily to implement local bandwidth estimation for SSP. It was claimed that a 

feature exists across the bandwidth region where the sequence has a large range of 

consecutive values. Thus, the bandwidth was set to the region where the target signal was 

constant through it. Then, they considered a modified version of non-coherent detection 

technique for the detection of signals with additive Gaussian noise, and claimed that this 

technique in terms of SNR enhancement performed comparably with proposed SSP-CPC 

method. However, their method produced a lower temporal resolution as it offered the 

optimum processing parameters for a single target only. They suggested that the temporal 

resolution can be improved by increasing the total bandwidth but at the expense of SNR. 

Drai et al. [172] considered SSP and wavelet transform for SNR enhancement in UT. They 

considered the maximal amplitude of the ultrasonic echo that was collected to characterize 

defects in nature, size and orientation. They proposed a frequency diverse ensemble to 

overcome the resolution limitation of the constant bandwidth windows due to the fixed 

time-frequency resolution over the entire region. Hence, wideband windows were utilised 
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at high frequencies and narrowband windows at low frequencies. They achieved a good 

SNR enhancement employing minimisation and the square root of product algorithms. 

They considered discrete wavelet transform (DWT) to decompose the signal and then 

reconstructed the signal a number of times, each time using only certain decomposition 

levels. These reconstructed signals were averaged to give the output signal and achieved 

better detection of the defect of the echo but not much improvement in terms of SNR. 

Rubbers and Pritchard [30] gave an overview of SSP and a range of different algorithms 

for reconstruction in the field of UT. The selection of filter bank parameters had been 

discussed and the results for each algorithm for an experimental signal were shown. They 

stated that each of these algorithms had improved the SNR at the cost of linearity in the 

processed signal. However, it has been claimed that SSP does not allow for sizing of flaws 

as the amplitude of the processed signal is non-linear and therefore, the use of SSP 

application was limited, and further improvement was required. Rubbers [173] developed 

a complex-plane SSP (CSSP) technique for the ultrasonic inspection of castings, which 

was capable of suppressing SSP in terms of SNR enhancement while maintaining linearity 

in both the amplitude and the energy content of a flaw's signal. He measured the frequency 

specific phase differences in an ultrasonic signal to improve SNR without sacrificing 

linearity or sizing capabilities. However, further work was required for validation. 

Rubbers & Pritchard [174] extended CSSP further and introduced the idea of employing 

a weighting factor for thresholding. Hence, if the phase spread at a particular instant in 

time was greater than a threshold, then the output was set to zero. The input was multiplied 

by a weighting factor, depending on the phase spread, so if the phase spread was above 

the threshold, the weighting factor was linearly decreased to zero, and if it was less than 

the threshold, the weighting factor was equal to one. Therefore, the signal was only 

attenuated slightly if the threshold was not exceeded by much. Although some SNR 

enhancement has been achieved, in order to validate this technique, a number of criteria 

had to be met according to national standards of governing bodies. Rubbers & Pritchard 

[175] carried out a simulation of CSSP to measure its capabilities mathematically. They 

tried to improve the signal quality theoretically by comparing CSSP processing. They 

achieved a good result in reducing near-field effects, improving depth resolving power, 

angular resolving power and SNR. Their results showed that CSSP maintained amplitude 

linearity if truncation values were selected appropriately. However to achieve that, a 

bandwidth in excess of 100% was required. They generated a diagram of phase-spread, 



66 
 

presenting the spread of the sub-band phases throughout the material. Based on that, a 

weighting factor was applied to the simulated wave fronts that let to reducing the scattered 

signals from the simulation while maintaining the signal with in-phase sub-bands7. 

Johannes & Rubbers [176] continued with CSSP to improve SNR where CSSP utilised an 

additional mathematical dimension (the complex plane) for calculating the probability of 

a signal originating from a real reflector such as a flat bottom hole. They tried to validate 

the steps required to use this method for industrial application, such as UT technology. 

The CSSP system utilised was designed and manufactured by Eskom personnel to 

overcome problems encountered in coarse grain materials such as austenitic castings and 

cast materials. The aim was to assess CSSP in terms of increasing the detectability of 

features in the noise level and establish the procedures for selection of the CSSP frequency 

bands and phase spread depending on flaw size and material properties. The results 

showed that the improvement was significant only where the SNR was less than 6dB. 

Hence, CSSP is primarily a development tool and has no clear advantage for field use yet. 

Mallet [13] examined cross-correlation, wavelet de-noising and SSP, to post-process 

UGW signals to reduce the level of coherent noise. The results showed that the cross-

correlation and wavelet de-noising were not successful for the reduction of coherent noise 

since they removed the smaller amplitudes regardless of whether or not they are noise or 

signal. On the other hand, SSP was found more promising and showed great potential for 

improving the SNR. To the best of author’s knowledge, the use of SSP in UGW testing 

has to date only been studied by Mallet. Their results showed that SSP is highly sensitive 

to its selection of filter bank parameters. He claimed that although SSP was effective in 

reducing the effect of DWM in both synthesised and laboratory experiments on a pipe 

with a saw-cut, in some cases, the processing resulted in some small erroneous features. 

In addition, it was less effective for a field data that had more complex signals as obtained 

from real pipelines. He found out that when two features were close to each other they 

combined, which means only one feature was presented in the processed signal, indicating 

a loss of temporal resolution. However, he did not mention the minimum distance for that. 

He stated that SSP is not yet suitable for use in UGW as it could lead to the loss of features 

and a high number of false calls due to the introduction of erroneous features created by 

                                                 
7 Rubbers has a patent (US patent number 7,035,776, April 2006) that is entitled “low noise to signal 

evaluation” which is covers CSSP for a wide range of applications for complex signals. 
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the processing. Hence, further investigation is required to address these challenges. 

Donohue [177] reviewed the SSP technique to enhance ultrasonic flaw detection in 

materials consisting of grain-like microstructures, and with, classical approaches, such as 

Wiener, and matched filtering. He showed that SSP using nonlinear processing represents 

a unique approach relative to classical methods as it employs a statistical characterisation 

of the phase. SSP was examined in an automatic flaw detection scheme for multiple flaws 

embedded in non-stationary grain noise. The nonlinearities of the SSP effectively changed 

the flaw and grain echo distribution to enhance the separation of their amplitudes beyond 

that of simple envelope detection. He claimed that SSP is well-suited for detecting flaws 

embedded in large-grained material as it does not require specific knowledge of the 

spectral differences between the grain and flaw scatters. However, the results showed that 

the performance of matched filter compared to SSP is slightly better due to the statistical 

phase models of SSP, which was not as restrictive as the matched filter. 

Rodriguez and Vergara [178] proposed a new filter bank design for SSP, based on the use 

of variable bandwidth filters, where filters were equally spaced in frequency and their 

energy gain equalised. The pruning technique was employed to reduce the number of 

bands required to increase the algorithm’s efficiency. They carried out some simulation 

and experimental testing using stationary models for the grain noise with a single defect. 

They claimed that the simulation model was able to reproduce quite accurately the 

environment of the real test by simply adjusting properly the parameters involved in the 

design. They claimed that the frequency multiplication (FM) algorithm gave the greatest 

resolution and SNR enhancement when combined with the new filter bank design. They 

stated that this method reduced the number of filter bands compared to other algorithms; 

hence, it reduced the system complexity. However, this technique was not evaluated for 

non-stationary models, highly dispersive material, or a model with multiple defects. 

Therefore, further investigation with a more challenging scenario is required. In addition, 

the combination of a new filter bank design with another algorithm worsened the result. 

Rodriguez et al. [179] considered simulated ultrasonic signals using both stationary and 

non-stationary models for the grain noise, and real scans obtained in the laboratory from 

the low dispersive model (aluminium) and high dispersive model (cement) materials. The 

FM algorithm was revealed as the best choice among six popular recombination 
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algorithms8 when combined with the new extensions. The structure was the same as for 

the classical filter bank, i.e. once the width of the analysis band and the number of bands 

were fixed, the filters were equally distributed across the inspection bandwidth, but for the 

new design, the bandwidth of each filter was selected proportional to its central frequency. 

The bands were then energy gain equalised, which did not affect the frequency distribution 

of the energy at the input signal, as uniformity of that distribution is essential to distinguish 

the presence of a possible flaw. They stated that as the bandwidth of the filters was wider 

than in the classical design, the time resolution improved, thus leading to a better location 

performance and achieved the highest SNR. Thus, making the detection process easier. 

Rodriguez et al. [180] considered the performance of SSP combined with spread spectrum 

(SS) excitation and the use of frequency selective loss compensation (FSLC) techniques 

for ultrasonic imaging of new composites. Since the attenuation for these materials is 

highly frequency dependent, SS and FSLC techniques were used to increase the energy 

and equalise the received signal with the aim of minimising the probability of the false 

alarm (PFA) while maximising the probability of detection (PD). They stated that the 

classic criterions were not feasible for selecting the optimum parameters, mainly due to 

the complex structure of the materials and their highly dispersive behaviour. The 

advantage of SS and FSLC combination were: obtaining higher processing gains achieved 

with fewer filters and increasing the range of usable frequencies leading to an 

improvement in resolution. It was determined that the use of FSLC techniques allows 

equalising the attenuation as a function of distance and frequency, thus considerably 

improving the SNR and flaw detection while reducing the complexity of processing. 

Rodriguez et al. [181] studied the problem of automatic detection of ultrasonic echo pulses 

in a grain noise background considering split-spectrum (SS) algorithms as sub-optimum 

solutions. They calculated analytically the statistics of the detectors, i.e. the PFA and PD, 

summarised in the receiver operating characteristics (ROC) curves, which allowed them 

to assess the performance of the different recombination methods9 in terms of the number 

of bands and the input SNR or the defect amplitude. They tested the detectors using 

simulated and real scans, confirming the expectations generated from the results of the 

                                                 
8 The other five-recombination algorithms included: polarity thresholding (PT) and scaled polarity 

thresholding (SPT) – based on the phase observation – and three classical methods, based on order statistics 
(OS) such as minimisation (MIN), normalised minimisation (NORM) and geometric mean (GM).  

9 PT and SPT, minimisation, normalised minimisation and FM. 
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theoretical analysis. They concluded that in spite of some limitations, the detector based 

on the FM algorithm provides the best performance and reliability, which could be applied 

in the automatic detection of defects in highly dispersive materials. However, the 

technique was tested only for simple scenarios, hence; further investigation is required for 

non-stationary models with highly dispersive materials having more defects. 

Muthumari et al. [182] compared the Matlab simulation results of SSP using a PT 

algorithm over the classical approach of filtering for non-linear non-stationary time of 

flight diffraction (TOFD) welding defect signals. A-scan signals were used to enhance 

SNR while suppressing the grain noise. The results showed that the classical approach of 

filtering cannot remove the noise component completely due to scattering of 

microstructure material. Muthumari et al. stated that the high-frequency components did 

not have that much energy or useful information about flaws; therefore, they were filtered. 

In addition, the results showed that SSP was a powerful method for the easy identification 

of the defect location and back wall echo of the signal. However, only a simulated signal 

was considered that was mixed with white Gaussian noise, hence this method needs to be 

validated with the experimental data. 

Saniie et al. [183] suggested a neural network (NN) coupled to an SSP technique for target 

echo detection when the input SNR was around 0dB. They claimed that an SSP-NN target 

detection system was capable of improving the target-to-clutter ratio (TCR) by an average 

of 40dB. They designed a FPGA-based hardware platform for system-on-chip realization 

of a real-time ultrasonic imaging system. Furthermore, order statistics (OS) and NN were 

utilised to improve target echo visibility in the presence of clutter that was significantly 

intense compared with the target echo. They claimed that the SSP-NN technique when 

compared with conventional methods obtained more robust detection performance by 

calculating the TCR. The technique was sensitive to the frequency coverage of filters. 

Thus, a robust target detection technique was required to minimise the sensitivity. 

Syam and Sadanandan [184] employed a combination of SSP and order statistic filters to 

reduce the influence of reverberation for flaw detection in conventional UT. The 

reflections from the microstructure contribute to reverberation, which interferes with the 

signal being considered. They stated that by processing the multiple echoes corresponding 

to a set of transmitted signals, the effect of microstructure reflections could be suppressed 

with respect to the flaw echo. Reverberation has a complex interference structure that 

varies with the transmitted frequency. Therefore, a wideband signal was transmitted to 
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effectively reduce the influence of reverberation. It was assumed that the reflections from 

the flaw were insensitive to frequency and produce a steady output, which can be utilised 

for flaw detection. However, they did not mention which SSP parameters were selected 

and how they calculated the SNR. Furthermore, this technique only tested for a simulated 

signal, and no experimental result was given. 

To summarise, SSP challenges can be divided into two main categories as follows: 

i) Selection of optimum filter bank parameters, the combined effect of which were 

investigated and addressed for conventional UT to some extent by [156], [158], 

[185]. 

ii) Recombination algorithms for the use of SSP, such as minimisation [154], [156], 

Polarity thresholding [8], geometric mean [161] or other algorithms that are the 

combination of these three categories. Examples are PT with minimisation; 

frequency multiplication, etc., which are explained in more detail in Chapter 2. 

The literature clearly illustrates that the outcome of SSP application is sensitive to the 

selection of the filter bank parameters, and successful implementation depends on this. 

All literature cited investigating the use of SSP in conventional UT, NDT application, and 

radar. Most of the work discussed claimed that their selection of filter bank parameters 

improved the SNR of the signal. Thus, although the important issue of filter bank 

parameters has been addressed for the conventional UT signal, these values are not 

suitable for UGW signals that contain a combination of axisymmetric and non-

axisymmetric wave modes with different phase velocities operating in the kHz range. 

Therefore, the selection of optimum filter bank parameters requires a fuller investigation 

in terms of its capacity to provide such improvement in UGW signals. Thus, the core 

concept explored in this work in Chapters 5 and 6 is to find appropriate filter bank 

parameters for SSP to improve the SNR and enhance the spatial resolution of UGW 

signals and, as a result, a novel solution is presented in Chapter 5 to address these 

challenges. In addition, a variety of SSP recombination algorithms is examined to find an 

appropriate solution. 
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Chapter 4 

 Time-Varying Signal Models Using 

Spectral Motion Detection 
4.1 Chapter overview 

The focus of this chapter is the estimation/reconstruction of gaps (missing packets) in 

audio signals. To progress the study, two fundamental issues were identified; i) the 

appropriate domain for packet loss restoration, and ii) the methodologies for the gap 

reconstruction. In order to achieve this, a novel signal processing technique based on 

extrapolation and interpolation of lost audio segments is proposed to restore lost segments 

in audio recordings, which could be utilised for voice over IP (VoIP), streaming, voice 

communication over the Internet, mobile phone, audio broadcast, etc. The issue of 

modelling of a non-stationary frequency-spectrum is addressed in the context of packet 

loss concealment (PLC), and a novel solution is suggested in this part of the work by 

tracking and utilising the motion of spectral flow across time frames. The proposed 

technique employs a time-frequency motion (TFM) matrix representation of the signal, 

where each frequency is labelled with a motion vector estimate.  

The technique is applied to synthesise and real audio (e.g. speech and music) signal for 

the restoration of signals suffering from different packet loss rates or different patterns in 

order to reconstruct a loss packet. It is demonstrated throughout this chapter that the 

proposed technique, when compared to the popular conventional techniques reported in 

the literature, substantially improves the audio signal quality in terms of the performance 

evaluation of speech quality (PESQ) and mean opinion scores (MOS). 

The research conducted in this chapter has been presented in Signal Processing and 

Information Technology (ISSPIT), 2013 IEEE International Symposium, Athens, Greece 

on Dec. 2013 [7] and in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE 

International Conference, Florence, Italy on 4-9 May 2014 [8]. The background theory of 

this technique is described in Chapter 2. 
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In addition, the reader is provided with details of the systematic procedure for the 

employment of the signal processing techniques utilised in this section, along with the 

necessary mathematical implementation for each step. 

4.2 Introduction 

One of the core communication methods in the world is that of verbal communication, on 

which the telecommunication industry, one of the largest industries in the world as a result 

of its extreme growth and development over the last few decades, is based. VoIP 

technology has experienced rapid growth, leading to telecommunication clients utilising 

any network operation in any place over any distance. Reasonable prices and a good 

quality of service are the most important issues to clients regarding the use of such 

services, while the process of the techniques employed is not of importance to them. 

There are many studies, and much research that has been carried out in the past few 

decades to improve the quality of audio signals that are degraded by audio packet loss. In 

particular, various signal processing approaches have been applied in an effort to enhance 

the quality of audio signals by removing the effect of background noise or estimating lost 

segments. The enhancement of an audio signal is valuable in a variety of applications, 

such as VoIP, teleconferencing systems, etc. In this chapter, several aspects of the quality 

enhancement of audio signals that have reduced in performance and quality due to 

randomly lost segments at the receiver side in the telecommunication system are explored.  

PLC methods employ signal models that capture the correlations of audio parameters 

either on one or both sides of the gap. These models can be categorised into two different 

classes: i) Predictive or extrapolative methods, where only the past samples are available, 

ii) Estimative or interpolative methods, where some future samples are also available 

[108]. These methods mainly endeavour to estimate and/or predict two main parts of the 

audio features throughout the gap: the spectral envelope and the excitation  

As explained in background review in Chapter 2, packet-switching techniques are widely 

employed to deliver the audio signal in VoIP networks to maximise network efficiency. 

However, due to several reasons such as congestion at the routers, an overloaded server’s 

buffer, link failure, etc. audio packets may never reach their destination, which leads to 

degrading/deteriorate the performance and quality of signal, which may create an 

unpleasant sound at the receiver side. Therefore, the main aim of this chapter is to 
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determine a method to reconstruct the missing packets at the receiver side in order to be 

able to play the audio signal continuously without disruption so that the end user does not 

realise the loss. 

Several solutions [114][123]-[126] were suggested by the extant research in order to 

reconstruct audio packet losses. These solutions approach the signal with different terms 

of performances and different computational complexity requirements that are fully 

covered in the literature review in Chapter 3. The algorithm proposed in this chapter is a 

receiver-based PLC operation, based on a time-frequency model that is investigated, 

developed, evaluated and discussed. The algorithm employed extrapolation and/or 

interpolation techniques to estimate/reconstruct the lost audio packet. A novel 

contribution of this work is the introduction of the TFM matrix and its application to 

motion-compensated extrapolation and interpolation for audio signals [8]. Furthermore, 

the improvement of the quality of narrowband and wideband audio signals is considered 

in this chapter, and an advanced model-based PLC solution is proposed. 

The research is inspired by the method employed in motion-compensated image 

processing; however, in this work, the motion of frequencies across time frames are 

estimated and factored into the estimation process. In addition, the problem of the 

successful prediction of the signal’s phase, which has a substantial effect on the quality of 

the reconstructed audio signal, is investigated and a solution proposed to address this issue. 

4.3 Reconstruction of Lost Audio Samples 

This section gives a brief concept of extrapolation and interpolation process of a band-

limited signal, synthesised and real audio signals those effects by a number of missing 

samples that tried to reconstruct using extrapolation and/or interpolation algorithms. 

Extrapolation/Interpolation are the techniques that could be utilised to estimate or predict 

the unknown or the lost samples of the audio signal employing a weighted average of a 

number of known samples at the neighbourhood point of the missing part of the signal. 

These techniques are widely utilised in most communication and decision making 

structures including conversion of a discrete-time signal to a continuous-time signal, 

packet loss, dropouts, low-bit-rate speech coding, sampling rate conversion in multirate 

communication systems, and restoration of a sequence of samples irrevocably distorted 

by transmission errors, etc. [101], [108]. 
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4.3.1 Extrapolation/Interpolation Techniques  

Various forms of extrapolator/interpolator techniques are employed in the field of signal 

processing applications in particular, for audio/video PLC. Estimation of a sequence of 

missing samples and pattern recognition are the obvious examples of these techniques. 

The aim of this chapter is to reconstruct a sequence of lost audio samples using one of 

these reconstruction techniques. 

There is always a challenge to reconstruct a sequence of 𝑀𝑀 unknown/missing sample of a 

signal using a number of samples on one side or both side of the gap. The perfect 

reconstruction technique (with zero error) is only achievable if the missing samples are 

redundant. This means that they do not carry any information than that already carried by 

the known neighbouring samples. The example of this kind of signals that could be easily 

predicted is sine wave signals, or in the case of a band-limited random signal if the 

sampling rate is greater than 𝑀𝑀 times the Nyquist rate [31]. However, in reality and 

practical situations, the signals are typically have a random process and their sampling 

rate is typically slightly above the Nyquist rate. Therefore, predict the lost samples are not 

that easy and some interpolation error is inevitable. As a result, the aim is to find a solution 

to minimise the reconstruction error through utilisation of the signal models and the 

information confined in the neighbouring samples.  

The main concept of interpolation (which are also applied for extrapolation process) is to 

achieve an optimum fidelity reconstruction of unknown or missing samples of a signal 

and below is the list of factors that affected the accuracy of the interpolation process [108]. 

• The sampling rate: rising sampling rate improves the interpolation performance 

and made the near samples of the lost samples more correlated and increased the 

redundant information. 

• The predictability and/or correlation of the signal: the predictability of missing 

samples from their adjacent samples will be increased, (interpolation improves) 

by increasing the correlation structure of successive samples, or equivalently by 

decreasing the bandwidth of a signal. 

• Non-stationary characteristics of the signal: audio signals could change the 

characteristics of their behaviour completely during the time/distance because of 
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their time-varying behaviour. This needs to be considered for interpolation 

process especially for a large sequence of samples.  

• Finally, the length of the missing samples and the way of using the interpolator 

affected the quality of interpolation. The performance of interpolation will be 

reduced by increasing the length of the missing samples. 

There are varieties of interpolation techniques that could be utilised for audio PLC. The 

main aim of interpolation is to construct a polynomial interpolator function that passes 

through the known samples around the missing packets to estimate the missing segments. 

There are some different ways to construct a polynomial interpolator such as Newton, 

Lagrange interpolation, power series and Hermite [108].  

Cubic Spline Interpolation is another method of interpolation where the signal is divided 

into a number of smaller intervals. Then, in order to fit a large number of samples with a 

smooth curve, a low order interpolating polynomial is utilised for each interval to provide 

a better estimation. Hence, the cubic polynomial is fitted to each interval between two 

samples. However, these methods are not equipped well to make optimal use of the 

statistical structures of the signal. Thus they are not suitable for reconstructing a relatively 

large number of missing samples of the signal. 

Alternatively, there is a statistical signal processing techniques referred to model-based 

interpolation techniques that could be utilised for interpolation of a sequence of missing 

samples based on predictive and/or a probabilistic model of the signal. These techniques 

are typically good for interpolation of small/medium sized gaps of missing samples. The 

examples include a frequency-time interpolation technique, an autoregressive model-

based interpolation, and interpolation looking throughout a signal record to find the best 

matches. Furthermore, the two advanced interpolation techniques; interpolation through 

waveform substitution and frequency-time interpolation have the potential to replace 

relatively large gaps of missing samples. 

The optimal interpolation model should be able to employ predictive models of signal 

trajectory, as well as statistical models of the distribution of the signal process that could 

be referred to model-based interpolation techniques, comprise least square error 

interpolation and maximum a posteriori interpolation based on an autoregressive model. 

Lastly, interpolation through searching an adaptive signal codebook and time-frequency 

interpolation is developed to find the best-matching signal [108]. 
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4.3.2 Bandwidth Extension 

The extrapolation/interpolation techniques of missing segments in audio signals have 

applications in the telecommunication industry for the restoration of band-limited signals 

where the audio coders filter the signal using a low-pass filter before coding or 

transmission to maximise the number of subscribers. Therefore, the information above 

4kHz is generally not transmitted. However, the bandwidth of telephony speech is usually 

around 3.4kHz. Several techniques have been developed in last few decades to increase 

the bandwidth of telephony speech signals to a higher bandwidth (wideband) of broadcast 

quality to reconstruct the upper band contents of speech signals by employing the available 

surrounded spectrum of the speech at lower bands. The aim was to gain the sensation of 

higher bandwidth and higher quality of speech. Most of the approaches utilised the 

codebook mapping techniques to reproduce the expanded spectral envelop where the 

missing spectral envelope in the higher bands was achieved from codebooks trained on 

joint feature vectors of bandlimited and full band speech [139],[187], [188]. In addition, a 

similar approach is already applied and commercially available in high-quality audio 

compression techniques where the upper band signal is reconstructed from the lower-band 

as well as side information. 

The spectral envelope representation was mostly based on the line spectral frequencies 

parameters that derived from a linear prediction model of speech [188]. The spectral 

envelope that calculated above is combined with the estimation of the excitation signal to 

obtain a wideband speech signal. In order to estimate the excitation signal, variety of 

algorithms such as Gaussian modulation, spectral folding, etc. could be utilised [187], 

[189]. However, there is a challenge to recover those parts of the signal using the 

mentioned algorithms when the valuable information exists in the upper band rather than 

the lower band such as fricatives. Therefore, to address this issue, a new approach based 

on time-frequency method is studied, developed and proposed that be able to estimate the 

excitation of the missing parts of the signal’s spectrum.  

4.3.3 Phase Prediction 

The short-time phase spectrum is a key aspect to consider in the perceived naturalness and 

quality of the audio signal [190]. In order to attain an appropriate quality of the 

reconstructed signal, the phase estimation technique needs to be based on a model that 

could be able to exploit the continuity of the harmonics and preserves the randomness of 
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the non-harmonic sub-bands. A method employed in this work is similar to the one that 

used in [55] to estimate the phase in the time-domain reconstruction of the signal. This 

method estimates the phase spectrum entirely rather than estimating the phase of 

individual harmonics separately. The reason for that is because the signal is synthesised 

in the frequency domain; hence each frame is transformed to a waveform via the inverse 

Fourier transform at the final stage. The harmonics of voiced audio signal could be 

assumed of as a sequence of pitch parts that consistently combine at the time of occurrence 

of each pitch pulse [55]. The phase needs to be estimated appropriately to preserve inter-

frame and intra-frame continuousness of the reconstructed audio signal. 

As a result the following conditions need to be considered; i) Audio harmonics have phase 

continuity through successive frames, ii) Neighbouring frequency bins around each 

harmonic are in phase halfway across the frame, and iii) Level of randomness added to 

the phase of each channel rises with frequency as well as the distance from the nearest 

harmonic [55]. The first condition guarantees the inter-frame continuity of the harmonics. 

The optimistic support of the energy of signal elements around each harmonic will be 

provided by the second one, and the last condition is suitable for the unvoiced sub-bands 

reconstruction process which helps to avoid the generation of any artefacts. In addition, 

there are some other examples of phase reconstruction that the signal is synthesised in the 

time domain such as speech coding [191], text-to-speech synthesis [192] and speech 

morphing [190]. 

4.4 Spectral Flow and Motion in Time-Frequency Domain 

As mentioned in the literature in Chapter 3, there are many approaches to mitigating the 

degradation in quality due to audio packet loss. However, most of those methods do not 

specifically address the important issue of time-variation of the audio spectral parameters. 

A number of methods that may lend themselves to adaptation for time-varying of signals 

have not been fully investigated in terms of their capacity to provide an improvement in 

the reconstruction of a lost packet. Due to the challenges mentioned above, these methods 

are not suitable for wideband audio signals that contain a combination of inputs from 

several instruments with several fundamental frequencies and spectral envelopes. Hence, 

the aim of this part of the research is to develop an algorithm to reconstruct the packet loss 

in audio streaming to address these challenges.  
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AR model-based and time-domain interpolation techniques may utilise for interpolation 

of a short length of lost samples (exp. 100 samples at a 20kHz sampling rate), but they are 

not suitable for estimating of a large sequence of samples as they suffer severe 

performance degradations due to the numerical problems associated with the inversion of 

a large matrix. This is usually involved in the time-domain reconstruction of a large 

number of samples. Hence in this work, a time-frequency matrix is employed for audio 

PLC in the DFT domain. This reconstruction is based on modelling the time-varying 

correlation of temporal trajectories of the ST- DFT components of the audio signals using 

motion compensated.  

4.4.1 Fourier Transform and Spectrogram 

Discrete Fourier Transform (DFT) as described in Chapter 2, is employed to analyse the 

frequency content of a finite duration discrete time signal s(t) with N samples. By adding 

the DFT to the spectral time representation, the problem of extrapolation and/or 

interpolation of a gap of N samples in the time-domain could be transformed into the 

problem of the reconstruction of a gap of one sample, alongside the time, in each of N 

discrete frequency bins. The Short-time Fourier transform (STFT) technique is employed 

for this purpose, which is a practical and relatively simple technique for spectral-time 

representation of a signal in order to create a two-dimensional STFT from a one-

dimensional function of time s(t).  

As shown in the flowchart of Figure 4-1, the audio input stream s(t) is segmented into 

overlapping windowed segments. The segments are windowed separately to reduce the 

spectral leakage due to the effects of discontinuities at the edges of each one. In order to 

perform Fourier transform of those segments, discrete-time STFT is utilised. Successive 

segments are transformed to frequency by a Discrete STFT and stacked along to form a 

time-frequency matrix given by: 

𝑋𝑋(𝑙𝑙, 𝑘𝑘) = � 𝑠𝑠(𝑙𝑙 × 𝛾𝛾 + 𝑚𝑚)𝑤𝑤(𝑚𝑚)𝑒𝑒−𝑗𝑗2𝜋𝜋𝑚𝑚𝑘𝑘 𝑁𝑁⁄  
𝑁𝑁−1

𝑚𝑚=0

 (4.1) 

 

where 𝑁𝑁 is the segment length , 𝑚𝑚 is the discrete-time index, 𝑘𝑘 = 0, … ,𝑁𝑁 − 1 is the 

discrete-frequency index, 𝑙𝑙 is the frame index, 𝛾𝛾 is the segment overlap, and 𝑤𝑤 is the Hann 

window function. The spectrum vector 𝑋𝑋𝑙𝑙 could be defined as follows: 
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𝑋𝑋𝑙𝑙 = �

 𝑋𝑋(𝑙𝑙, 0)
𝑋𝑋(𝑙𝑙, 1)
⋮

𝑋𝑋(𝑙𝑙,𝑁𝑁 − 1)

� (4.2) 

Alternatively, the DCT or the MDCT can be utilised for forming TFMs [133], [193]. 

Theoretically, for time-varying signals, using a standard Kalman state-space formulation 

[56], [194], the spectral values can be formed as: 

𝑋𝑋𝑙𝑙 = 𝐴𝐴𝑙𝑙−1𝑋𝑋𝑙𝑙−1 + 𝑣𝑣𝑙𝑙 (4.3) 

where 𝑋𝑋𝑙𝑙 is the time spectrum vector, 𝐴𝐴𝑙𝑙−1 is the state transition matrix coefficient and 

𝑣𝑣𝑙𝑙 is the random driving variable. This spectral value can be also formed as an augmented 

matrix 𝑋𝑋(𝑙𝑙, 𝑘𝑘) that includes dynamic information on the spectral flow rates across time 

and frequency matrix where, 𝑘𝑘 = 0, … ,𝑁𝑁 − 1 is the discrete-frequency index and 𝑙𝑙 is the 

frame index. The standard Kalman filtering does not take into account the cross-flow 

among frequencies, i.e. the fact that frequencies and not just their magnitudes move 

up/down across the spectrogram. Taking this into account, we have a modified form of 

state-space model that includes a spectral motion vector that indicates the motion of 

frequency component within the state vectors across time frames as described in Section 

4.5. In practice, it is a challenging problem to solve (4.3) which is a modified form of 

state-space. The simplified solution proposed here is in the form of a TFM matrix of audio 

signals as shown in Figure 4-1. The audio input stream s(t) is segmented into overlapping 

windowed segments of length 𝑁𝑁 samples and each segment is transformed into an 

augmented matrix of the spectrogram  𝑋𝑋(𝑙𝑙, 𝑘𝑘) as is shown in this algorithm. The 

spectrogram matrix is appended with the estimates of the spectral motion vectors. 

Figure 4-2 shows a time domain audio signal with gaps together with the TFM 

representation of the signal. The received and lost audio packets can be transformed into 

a TFM, and then each frequency component of the lost packet is extrapolated from the 

previous available packets or interpolated from the previous and future frames. Note that, 

as shown in the illustration, a gap of 𝑁𝑁 missing time-domain samples is transformed into 

one or several frequency column vectors in the TFM matrix. 
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Figure 4-1: Time-frequency motion algorithms of audio signal 

 

Figure 4-2: Transformation of a time-domain signal with gaps into TFMs with spectral motion 
vectors for each sub-bands appended. 
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4.5 Time-Varying Spectral Motion Vector (SMV) Model 

In this section, the probability and temporal of the trajectory of the STFT elements are 

studied, examined, and as a result, a novel method is proposed for deriving a set of motion 

vectors that when combined with the spectral vector 𝑋𝑋(𝑙𝑙, 𝑘𝑘) indicates the direction along 

where the 𝑘𝑘𝑓𝑓ℎ  frequency of the 𝑙𝑙𝑓𝑓ℎ frame has moved relative to the previous frame 𝑙𝑙 − 1. 

As mentioned earlier, the STFT is employed in this work, hence it is presumed that the 

structure of the signal frequency is time-invariant throughout of each frame, but it could 

be vary through the frames. The 𝑘𝑘𝑓𝑓ℎ  spectral component of a signal has a time-varying 

character, i,e. it could be changed for some time, vanish, and then appears with a different 

intensity or different characteristic [108]. Therefore, it is nessasary to identify the more 

appropriate frames with the most similar frequency characteristics to the previous frames.  

It is assumed that the STFT trajectories of the audio signal are stationary for short periods 

of time. Thus the autocorrelation vector or matrix of STFT trajectories is required to be 

regularly updated. However, since the original frame is missing and is unavailable to 

estimate the autocorrelation vector in the STFT trajectory, thus a technique is proposed 

that obtains the result from the past received frames of the signal. In addition, it is assumed 

that there is not a massive change for one sample delay to estimate the autocorrelation 

function using previous frames. 

In general, the temporal correlation between DFT samples is related to the following 

conditions; i) the overlap between successive frames and ii) the relatively slow variation 

of formants of the excitation signal. In addition, the level of correlation between 

successive frames (temporal) of DFT/STFT varies for different frequencies and times. It 

is presented by Cohen [54] that the level of correlation between successive frames of 

speech (STSA) growths with the size of the overlap between successive windows. 

4.5.1 Spectral Motion Vector Estimation 

The proposed method divides the signal spectrum 𝑋𝑋(𝑙𝑙, 𝑘𝑘) into 𝐵𝐵 sub-bands  𝑋𝑋𝑆𝑆𝑆𝑆�𝑙𝑙, 𝑘𝑘�𝑆𝑆𝑆𝑆� to 

estimate the spectral motion vector, ℳ(𝑙𝑙, 𝑆𝑆𝐵𝐵) for each sub-bands individually where  𝑘𝑘 =

 0, … ,𝑁𝑁 − 1 is the discrete-frequency index, 𝑆𝑆𝐵𝐵 = 0, … ,𝐵𝐵 − 1 are the number of 

subbands, and frequency bandwidth 𝑘𝑘�𝑆𝑆𝑆𝑆 for each sub-band could be defined as:  

𝑘𝑘�𝑆𝑆𝑆𝑆 = { 
𝑆𝑆𝐵𝐵.𝑁𝑁
𝐵𝐵

 ,
𝑆𝑆𝐵𝐵.𝑁𝑁
𝐵𝐵

+ 1, … ,
(𝑆𝑆𝐵𝐵 + 1)𝑁𝑁

𝐵𝐵
 − 1} (4.4) 
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Using (4.4) the sub-bands could be rewritten as 𝑋𝑋𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑖𝑖) where 𝑖𝑖 ∈  𝑘𝑘�𝑆𝑆𝑆𝑆 , are the samples 

in each sub-bands as shows in Figure 4-3 . This figure presents the spectral-time of an 

audio signal with a missing gap. The y-axis presents the frequency components which are 

divided into 𝐵𝐵 subbands with equal number of samples 𝑖𝑖 in each frequency bins. The three 

previous and two future frames that surronded the missing frequency-time frames has been 

shown that are utilised for reconstracting (extrapolation/interpolation) the missing gap. 

Cross-correlation (CC) method is used to estimate the motion of the major frequency 

component in each sub-bands between two-time frames. To calculate a spectral motion 

vector, two successive spectral frames 𝑋𝑋𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑖𝑖),𝑋𝑋𝑆𝑆𝑆𝑆(𝑙𝑙 − 1, 𝑖𝑖) has been compared that 

quantifies the spectral flow motion over time.The motion movements of the spectral 

energy are calculated for each frequency sub-bands ℳ(𝑙𝑙, 𝑆𝑆𝐵𝐵), separately from the 

position of the CC lag corresponding to the peak of the CC function. This is the motion 

value of the 𝐵𝐵𝑓𝑓ℎ sub-bands of the 𝑙𝑙𝑓𝑓ℎ frame relative to the (𝑙𝑙 − 1)𝑓𝑓ℎ frame where there is 

a highest similarity in terms of frequency bins as: 

ℳ(𝑙𝑙, 𝑆𝑆𝐵𝐵) = 𝑎𝑎𝑎𝑎𝑁𝑁𝑚𝑚𝑎𝑎𝑥𝑥
�̈�𝑘

� � |𝑋𝑋𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑖𝑖)|�𝑋𝑋𝑆𝑆𝑆𝑆�𝑙𝑙 − 1, 𝑖𝑖 + �̈�𝑘��
((𝑆𝑆𝑆𝑆+1)𝑁𝑁 𝑆𝑆)−1⁄

𝑓𝑓=𝑆𝑆𝑆𝑆(𝑁𝑁) 𝑆𝑆⁄  

� (4.5) 

where 𝑆𝑆𝐵𝐵 = 0, … ,𝐵𝐵 − 1, are the number of subbands, 𝑘𝑘�𝑆𝑆𝑆𝑆 are the frequency bandwidths 

for each subbands in which the frequency resides, 𝑖𝑖 are the samples in each frequency bins 

and �̈�𝑘 ∈ �𝑘𝑘�𝑆𝑆𝑆𝑆−4 , … ,𝑘𝑘�𝑆𝑆𝑆𝑆+4� is the lag position that compares sub-bands between two 

successive time frames in order to find the best frame with highest similarity. 

The motion movement is obtained using Matlab‘s function “xcorr” by calculating the 

absolute values where the samples are aligned in the time axis and varies in the frequency 

axis. In addition, since the frequency partial and the frequency motion of the missing 

frame 𝑙𝑙 are clearly unavailable, in a case that if there is more than one lag position 

available with the same value, then the optimum lag position is the one that is closest to 

the frequency sub-bands of the missing frame 𝑙𝑙 using a first order approximation.  

As an alternative method, the spectral motion vector can be estimated by minimising the 

mean squared error (MMSE) distance between the spectral vectors similar to the algorithm 

that used for audio flow in [57]. However, the CC function compares with MMSE and 

audio flow methods provides a more robust measure. The estimates of a motion vector  
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Figure 4-3: Illustration of spectral time-frequency matrix of a signal with a missing gap. 

may be smoothed over time using a first order recursive equation as: 

ℳ� (𝑙𝑙, 𝑆𝑆𝐵𝐵) = 𝑎𝑎ℳ� (𝑙𝑙 − 1, 𝑆𝑆𝐵𝐵)  + (1 − 𝑎𝑎)ℳ(𝑙𝑙, 𝑆𝑆𝐵𝐵) (4.6) 

where ℳ� (𝑙𝑙, 𝑆𝑆𝐵𝐵) denotes the smoothed motion vector and the variable 𝑎𝑎 may be set to a 

value in the range of 0.95-0.99. Since the spectral motion over time would be quantised 

to the frequency resolution ∆𝑓𝑓 = 𝐹𝐹𝑠𝑠/𝑁𝑁, where 𝐹𝐹𝑠𝑠 = 1/𝑇𝑇𝑠𝑠 is the sampling frequency and 𝑁𝑁 

is the number of samples, the technique of zero-padded discrete Fourier transform is used 

to yeild a higher resolution interpolated spectrum and hence obtain a finer quantisation of 

the spectral motion variable. 

4.6 Reconstruction in TFM Matrix 

The main obstacle to reconstructing (extrapolate/interpolate) the signal is the time-varying 

nature of the spectral envelope and the fundamental frequencies of the audio signals. It 

would be incorrect to extrapolate a missing frequency partial 𝑋𝑋(𝑙𝑙, 𝑘𝑘�𝑆𝑆𝑆𝑆) from the same 

frequency bin, 𝑘𝑘�𝑆𝑆𝑆𝑆 , of the previous frames, 𝑙𝑙 − 𝑗𝑗,𝑋𝑋(𝑙𝑙 − 𝑗𝑗,𝑘𝑘�𝑆𝑆𝑆𝑆)  𝑗𝑗 = 1,2 ⋯, if, as shown in 

Figure 4-4, over the time frames, the spectral power is moving across the frequency bins. 

A more appropriate process would be to estimate the trajectory of motion of the frequency 

partials across time frames and to extrapolate the 𝑘𝑘𝑓𝑓ℎ frequency partial from 

𝑋𝑋 �𝑙𝑙 − 1, 𝑆𝑆𝐵𝐵 −ℳ� (𝑙𝑙 − 1, 𝑆𝑆𝐵𝐵)� ,𝑋𝑋�𝑙𝑙 − 2, 𝑆𝑆𝐵𝐵 −ℳ� (𝑙𝑙 − 2, 𝑆𝑆𝐵𝐵, )�, … where the variable 

ℳ� (𝑙𝑙 − 1, 𝑆𝑆𝐵𝐵)  indicates the relative motion of the 𝑘𝑘𝑓𝑓ℎ frequency partial between the 

frames 𝑙𝑙 − 1 and 𝑙𝑙.  
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Figure 4-4: Illustration of a speech segment where the spectral power is moving across the 

frequency over the time frames. 

In general, the aim is to fill in the missing frame especially at the beginning and at the end 

of the gap to maintain the continuity of both the magnitude and the phase of each 

frequency component of the signal. There are several choices for the formulation of the 

interpolator polynomials such as linear, quadratic, cubic spline polynomials, or a low-

order linear prediction model [195]. A moving average motion-compensated (MAMC) 

extrapolation/interpolation method was developed in this work. This method produced 

satisfactory results when a few adjacent blocks (three previous frames for extrapolation 

and adding two future frames for interpolation) employed on either side of the gap. 

4.6.1 Extrapolation in TFM Matrix 

Assume that the 𝑙𝑙𝑓𝑓ℎ packet is lost, and needs to be extrapolated using the previous 𝑄𝑄 

packets, the spectral motion-compensated extrapolation formula is expressed as;  

𝑋𝑋𝑆𝑆𝑆𝑆�𝑙𝑙, 𝑘𝑘�𝑆𝑆𝑆𝑆� =  �𝑐𝑐𝑗𝑗𝑋𝑋�𝑙𝑙 − 𝑗𝑗,𝑘𝑘�𝑆𝑆𝑆𝑆 −ℳ� (𝑙𝑙 − 𝑗𝑗, 𝑆𝑆𝐵𝐵)�
𝑄𝑄

𝑗𝑗=1

 (4.7) 

where 𝑐𝑐𝑗𝑗 are the coefficients of an extrapolation polynomial of order 𝑄𝑄. The polynomial 

coefficients can be calculated and updated from a least square error fit of an 𝑛𝑛𝑓𝑓ℎ order 

polynomial such as a linear, second order or spline function to the frequency tracks 

immediately preceding the missing gaps [55]. 

4.6.2 Interpolation in TFM Matrix 

Equation (4.7) can be modified to a spectral motion- compensated interpolation method, 

using 𝑄𝑄 past and 𝑃𝑃 future spectral vectors as; 



85 
 

𝑋𝑋𝑆𝑆𝑆𝑆�𝑙𝑙,𝑘𝑘�𝑆𝑆𝑆𝑆� = �𝑐𝑐𝑗𝑗𝑋𝑋 �𝑙𝑙 − 𝑗𝑗,𝑘𝑘�𝑆𝑆𝑆𝑆 −ℳ� (𝑙𝑙 − 𝑗𝑗, 𝑆𝑆𝐵𝐵)�
𝑄𝑄

𝑗𝑗=1

+�𝑐𝑐𝑄𝑄+𝑗𝑗𝑋𝑋 �𝑙𝑙 + 𝑗𝑗, 𝑘𝑘�𝑆𝑆𝑆𝑆 −ℳ� (𝑙𝑙 + 𝑗𝑗, 𝑆𝑆𝐵𝐵)�
𝑃𝑃

𝑗𝑗=1

 

(4.8) 

where the coefficient vector �𝑐𝑐1, … 𝑐𝑐𝑄𝑄, 𝑐𝑐𝑄𝑄+1, … 𝑐𝑐𝑄𝑄+𝑃𝑃�  operates on the available past and 

future frames [𝑙𝑙 − 1, …  𝑙𝑙 − 𝑄𝑄, 𝑙𝑙 + 1, … , 𝑙𝑙 + 𝑃𝑃]. This is useful in cases where a delay of 

one or two frames is not critical and when the future frames have not been lost. A linear 

extrapolator is used for this work that passing through the past 𝑄𝑄 = 3 frames for 

extrapolation of each frequency frame. For interpolation in TFM matrix, 𝑃𝑃 = 2 future 

frames are also included. These rules can be extended for burst losses and reconstructed 

in the same manner. 

4.7 Performance Evaluation 

4.7.1 Packet Loss Model 

There are two widely used packet loss models that introduce frame loss in speech signals: 

(i) Bernoulli distributed frame loss model for independent and identically distributed 

(i.i.d.) losses where the probability of a frame loss is 𝑝𝑝 and is independent from the state 

of other frames [55], and (ii) Gilbert-Elliott, 2-state hidden Markov model (HMM) [196], 

[197], for burst data loss as shown in Figure 4-5. In the Gilbert model, the duration and 

rate of burst loss are controlled by state transition probabilities, 𝑝𝑝 and  𝑞𝑞.  

Since the results of these methods are comparable, the Bernoulli model is operated for 

objective evaluation, and Gilbert model is employed for the subjective test. Note that, the 

Bernoulli model is a special case of the 2-state HMM when the  𝑞𝑞 = 1 −  𝑝𝑝. The loss 

rate, 𝛼𝛼𝐿𝐿 , and the average gap length, 𝛽𝛽𝐿𝐿 , of a 2-state model can be calculated as follow: 

 𝛼𝛼𝐿𝐿 = 𝑠𝑠
𝑠𝑠+𝑞𝑞

   and   𝛽𝛽𝐿𝐿 =  1
𝑞𝑞
 (4.9) 

 
Figure 4-5: Gilbert-Elliott 2-state HMM model for packet loss. 
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Furthermore, the performance of the algorithm for the restoration of different gap lengths 

is also evaluated. 

4.7.2 Experiment Setup 

The proposed PLC method is evaluated for both objective and subjective tests on audio 

(speech and music) signal with bandwidths of 10kHz to 20kHz and the corresponding 

sampling rates of 44kHz to 48kHz which were resampled to 8kHz or 16kHz to do the 

objective evaluation test. The segment length was set to 25ms and segment shift to a 

quarter the segment length. Each sample is represented by 16 bits. 

Note that, as shown in Figure 4-2, for the purpose of forming TFM, successive speech 

segments are overlapped. When a packet loss occurs, only one previous TFM frame that 

overlaps with the lost one is unavailable for extrapolation if half overlap is chosen, 

whereas three previous TFM frames that overlap with the lost one are unavailable for 

extrapolation if 75% speech segments overlap is selected. This rule is applied to the 

interpolation method as well. 

As declared before, the DFT format is developed for forming the TFMs and then compared 

with the DCT format. Furthermore, it is common practice to apply a window to signal 

segments to mitigate end-discontinuity effects. The Hann window is also engaged to 

perform a Fourier transform of signal segments. The signal before and after the gap is 

windowed using a 25ms long Hann window (segment length) with a 6.25ms overlap (a 

quarter of the segment length). The gap length is a multiple of 6.25ms. The parameters are 

then extracted from the overlapping frames and extrapolated-interpolated through the gaps 

that result in a smooth transition period of 6.25ms on each side of the gap. In addition, the 

packet loss model used for the objective test is the Bernoulli model with packet loss rates 

varying between 5% and 20%. To mitigate unnatural sound that was produced during the 

extrapolation of a long sequence of missing packets, attenuation technique is applied when 

more than one packet frames are lost. This method is common and similar to the one that 

is engaged in ITU standards such as G.711, G.729, and G7.28 [114], [116], [117]. 

The results are compared to some alternative methods including i) a LP-HNM model of 

speech where the spectral envelope is modelled using an LSF representation of a linear 

prediction (LP) model [55], ii) method proposed by Lindblom and Hedelin [128] which is 

based on interpolation of harmonics in a sinusoidal model (SM) for excitation, iii) The 

multirate technique [126] based on time-domain AR modelling of the signals, and iv) The 
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ITU standard packet loss concealment algorithm G.711 [114]. The results presented in 

this chapter relate to DFT and comparison with DCT. 

4.7.3 Experiments on Synthesised Time-Varying Signals 

The proposed method is tested and applied to a selection of synthesised time-varying 

signals to compare the proposed DFT-TFM technique with DFT method without motion 

as shown in Figure 4-6 and Figure 4-7. These figures provide a comparison of two 

synthesised time-varying signals. Both figures show part of the spectrogram of a 

synthesised signal with lost packets, the proposed DFT-TFM signal, and DFT method 

without motion. It is clear that the proposed technique improves performance especially 

when the loss occurred in different frequency bins.  

In addition, the DFT interpolation (DFTI) model without motion is also presented in 

Figure 4-7. The DFTI model utilises the future frames as well as previous frames for 

estimating a missing gap and achieves better result compared to the DFT method. 

However, since the frequency partial changes rapidly between time frames, the proposed 

DFT-TFM method performs better than both the DFTI and DFT methods. This is because 

the proposed method employs motion trajectory for reconstruction, although it only uses 

the previous frames. These figures clearly illustrated that the frequency bins of the spectral 

power could change across time frames and extrapolation/interpolation from the previous 

frequency frames or from previous and future frames for estimating the lost packets are 

not always give the correct result especially when the motion trajectory follows some 

movements. This is highlighted (circled) in all three reconstruction methods in Figure 4-7. 

In these experiments, the overlap between successive signal windows is set to three-

quarter overlap. Hence due to overlap, three previous and future frames are affected and 

cannot be used to estimate the lost frames. In terms of packet loss model, the Bernoulli 

frame loss model employed for objective tests and Gilbert model loss utilised for 

subjective tests. 

In addition, the DFT-TFM and DCT-TFM techniques were compared, and as we expected, 

both methods perform well and give a similar result. However, when two or more packet 

losses happen close to each other, the DFT-TFM method performs slightly better. Thus in 

this work, the result related to DFT-TFM model is presented. 
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Figure 4-6: Spectrogram of synthesised signal, from top: original signal, DFT-TFM, DFT, and signal 
with 20% Bernoulli frame loss 

 

Figure 4-7: Spectrogram of the synthesised time-varying signal, from top: original signal, lossy 
signal, DFT- Extrapolation, DFTI- Interpolation and DFT-TFM signal. 
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4.7.4 Experiments on Audio/Speech signals 

In this section, the proposed technique is applied to the database containing speech and 

music samples. Figure 4-8 shows part of the spectrogram of a Civil-Right’s speech signal, 

a signal with lost, DFT and DFT-TFM reconstructed signals. The result illustrates that the 

proposed technique performs well compared to DFT method, especially for reconstructing 

the first and last lost frames, where the spectral power moved across the frequency bins. 

Furthermore, Figure 4-9 displayed the time-domain signal of the Civil-Rights speech, a 

signal with three random lost packets, DFT without motion and proposed DFT-TFM 

reconstructed the signal. The result indicates that the DFT method is not effective as the 

proposed DFT-TFM method. This is because, in DFT method, the motion trajectory 

cannot be tracked as effectively as the proposed method. 

4.7.5 Objective Evaluation 

For this experiment, the signals that contain gaps employing the Bernoulli distributed 

random lost frames [55], [197], are reconstructed by using the proposed DFT-TFM 

method and the conventional methods mentioned earlier. Perceptual Evaluation of Speech 

Quality, (PESQ, ITU-T P.862) [198], is utilised for comparison. The results are calculated 

and averaged for one hundred sentences randomly selected from TIMIT database are 

summarised in Table 4-1.  

The results in Table 4-1 indicate that the proposed method performs well and achieves 

higher score compare to other algorithms in terms of PESQ measurement and improve 

performance by an average of 2.85% compared to the best conventional method [55]. The 

improvement calculated as: 

𝑖𝑖𝑚𝑚𝑝𝑝𝑎𝑎𝑁𝑁𝑣𝑣𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 =
𝑝𝑝𝑠𝑠 − 𝑐𝑐𝑠𝑠
𝑐𝑐𝑠𝑠

× 100 (4.10) 

where ps is the score of proposed method and cs is the score of best conventional 

technique. As an example for 10% loss rate according to Table 4-1 we have: 

𝐼𝐼𝑚𝑚𝑝𝑝𝑎𝑎𝑁𝑁𝑣𝑣𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 =  
3.28 − 3.20

3.20
 × 100 =  2.5% (4.11) 

where values 3.28 and 3.20 belong to the DFT-TFM and the LP-HNM “pesq” scores 

respectively. Moreover, Table 4-1 shows that the performance of G.711 and LP-HNM 
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Figure 4-8: Spectrogram of the Civil Rights speech from the - United States, from top: original 
signal, lossy signal, DFT-without motion and DFT-TFM signal. 

 
Figure 4-9: Time-domain signal of Civil Rights speech, from top: original signal, lossy signal, DFT-

without motion and DFT-TFM (with motion) signal 
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models are good at lower loss rates, but deterioration is increased for higher loss rates. 

The LP-HNM and SM algorithms interpolated the envelopes throughout the gap and 

performed better than the multirate method and G.711 at higher loss rates or longer gaps.  

Furthermore, the proposed technique illustrates better performance to longer frame loss 

compared to other methods. It should be considered that the G.711 method is designed to 

cope with 60ms of loss and deteriorates quickly for loss periods more than that. 

4.7.6 Subjective Listening Test  

A set of five random wideband speech and music samples that are used for this experiment 

are listed in Table 4-2. Signals are about 14-18 seconds long, with a fixed packet loss rate 

of 20% and different average gap lengths of 2, 5 and 7 frames employing the Gilbert model 

introduced in the previous section. The reason that 20% gap has been chosen because this 

range of packet loss rate is more difficult and challenging to reconstruct by the 

conventional methods and it is one of the worst-case scenarios. In particular, when the 

average gap length is 7 frames, that equivalent to 70ms, which may represent a burst of 

packet loss in telecommunication system.   

To evaluate the result after applying the gaps, each sample was reconstructed using the 

proposed DFT-TFM and DCT-TFM techniques, LP-HNM method [55] and G.711 [114] 

algorithm. Subjective tests were carried by 12 subjected listeners aged between 22 to 31 

years in a quiet room using headphones. The listeners were asked to compare the quality 

of the speech that degraded by packet losses with the enhanced speech where the lost 

packets were replaced using DFT-TFM, DCT-TFM, LP-HNM and G.711 algorithms in 

random order. Listeners’ preferences were recorded by using the mean opinion score 

(MOS) point-based assessment where the scores vary from 1 (bad) to 5 (imperceptible 

degradation). Table 4-3 displays the score results of this analysis where the average of 

corresponding confidence intervals for  95% was ± 0.25. The result verifies that the 

proposed technique performs better than other methods and achieves higher subjective 

quality. Note that, the extent of validity of these outcomes is limited by the number of 

listeners and audio samples employed. The average improvement of 5.9% has been 

achieved in terms of MOS using (11) where 𝑝𝑝𝑠𝑠 was the score of proposed algorithm and 

𝑐𝑐𝑠𝑠 was the score of LP-HNM method from Table 4-3. Furthermore, Table 4-3 indicates 

that the proposed DFT-TFM method achieves slightly better result than the DCT-TFM 

technique. 
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Table 4-1. Performance of different algorithms for restoration of Bernoulli generated gaps (PESQ 
Result) 

Loss Rate % 5% 10% 15% 20% 

Av.Gap Length 1.05 1.11 1.18 1.25 

Distorted Signal 3.43 2.71 2.49 2.28 

LP-HNM [13] 3.82 3.20 3.02 2.81 

G.711 [7] 3.80 3.19 2.97 2.73 

SM [15] 3.60 2.98 2.71 2.56 

Multirate [16] 3.58 2.75 2.54 2.35 

DFT-TFM 3.91 3.28 3.10 2.92 

 
Table 4-2. Audio, speech and music samples 

No. File Name Sampling Rate Type of Audio 

1 Barack Obama - Berlin 22050  

2 Speech on Women’s Right  Speech 

3 Civil Rights – United States 44100  

4 Abraham Lincoln   

5 Adele – Take It All 48000 Music 

 
Table 4-3. Comparative subjective results of proposed methods with a loss rate of 20% against LP-HNM 

and G.711 

(q,p) (0.5,0.3) (0.2,0.13) (0.14,0.95) 

Loss Rate% 6.67 16.67 23.33 

Av.Gap Length 2 5 7 

DFT-TFM 4.17 3.42 3.00 

DCT-TFM 4.08 3.33 2.92 

LP-HNM [13] 3.92 3.25 2.83 

G.711 [7] 4 3.25 2.75 
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4.8 Conclusions 

In this chapter, a technique is proposed for the enhancement of audio signals that have 

been degraded in quality and performance by missing segments. The proposed algorithm 

is shown to improve the audio signal’s quality particularly in Figure 4-7 and Figure 4-8. 

Time-frequency matrix algorithms developed and discussed in this chapter and industry 

were explored. The time-frequency algorithm of spectral motion was the main focus of 

this chapter. This algorithm utilised short time DFT components and tried to reconstruct 

the lost segments in the received audio signal.  

The problem of the restoration of gaps in an audio signal was addressed and a novel 

solution of packet loss concealment is presented in connection with audio signals based 

on a time-frequency motion (TFM) matrix. It is observed that the proposed technique gives 

better performance compared to the conventional methods in terms of objective and 

subjective quality evaluations for audio enhancement.  

The novel aspect of this methodology is the introduction of TFM and its application to 

spectral motion-compensated extrapolation and/or interpolation for audio signals. The 

spectral motion vectors were estimated by dividing the signal bandwidth into several sub-

bands. The cross-correlation of the frequency bands across time frames has been used for 

motion estimation. The objective and subjective evaluation experiments reveal that the 

proposed method compares well with conventional methods, with the results superior in 

output quality in terms of PESQ and MOS measurement scores.  

The PESQ scores were utilised as the objective quality measurement of the audio 

enhancement technique as according to Zavarehei [199] (appendix. A) it is highly 

correlated with MOS scores. 

Moreover, there are some complex statistical algorithms that may estimate the lost packets 

more accurately, but the majority of these algorithms are very computationally 

demanding, to the extent that they are not feasible in practical applications.  
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Chapter 5 

 Optimisation of SSP input parameters 

for Synthesised UGW Signals 
5.1 Chapter overview 

The motivation of this chapter is to find a solution to address the problem of coherent 

noise10 in UGW signals that can obscure reflections from features in the pipe under 

inspection. Therefore, the main concern of this part was to find a post-processing solution 

to reduce the level of coherent noise in the received signal. The literature review in Chapter 

3 confirmed that conventional signal processing approaches are not fully successful in 

reducing/removing the coherent noise of UGW signals and therefore an advanced method 

is required. As a result, in this chapter, a novel signal processing technique, based on time-

frequency analysis, called split-spectrum processing (SSP) is proposed for the reduction 

of coherent noise due to the presence of dispersive wave modes (DWM) and enhanced the 

spatial resolution for such signals. To progress the study of SSP, two fundamental issues 

have been identified; i) the selection of optimum filter bank parameter values, and ii) its 

appropriate recombination algorithms for the use of SSP in UGW testing. 

The SSP technique that we have developed is applied to the synthesised experimental 

UGW signal for the restoration of signals suffering from coherent noise, to increase the 

sensitivity and inspection range of UGW testing. The fundamental knowledge and 

literature review of SSP is fully explained in Chapter 2 and Chapter 3 respectively. In this 

chapter its implementation, including an explanation of selecting optimum filter bank 

parameters, and processing of filter sub-bands is fully covered. In addition, the initial 

signal processing of generating synthesised signals is described in this chapter, which is 

required to analyse and find the limitations of SSP application. 

It is demonstrated throughout this chapter that the proposed technique, when compared to 

the conventional techniques reported in the literature, substantially improves the 

                                                 
10 10 The explanation of coherent noise in the UGWs testing is given in Chapter 2. 
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sensitivity and spatial resolution of signals in terms of signal-to-noise ratio (SNR), 

detecting smaller defects hidden below the noise level, as well as increasing the inspection 

range. The research conducted in this chapter has been presented at the International 

Congress of Ultrasonics (ICU), Metz, France, 2015 and the 1st National Structural 

Integrity Research Centre (NSIRC) Annual Conference, TWI Cambridge, United 

Kingdom, 23 June 2015. Moreover, the result of this chapter is published on Special Issue 

of Ultrasonics Journal paper on ‘‘Ultrasonic advances applied to materials science”, Feb 

2017. The background theory of this technique is described in Chapter 2. In addition, the 

reader is provided with a step-by-step procedure for the employment of the SSP 

application utilised in this section, followed by the necessary mathematical 

implementation for each step.  

5.2 Split-Spectrum Processing (SSP)  

Reducing coherent noise is not only a challenging task for UGW inspection. It is also a 

problem for many other applications, such as NDE, medical ultrasound, radar, etc., where 

many studies and much research have been applied for over a decade to address the issue 

of coherent noise. SSP is one of the most advanced post-processing techniques to gain 

recent attention, particularly for grain noise suppression in NDE applications. 

The background and the literature review of SSP application are described in Chapter 2 

and Chapter 3 respectively. This chapter covers the development of SSP applications. 

Then, the structure of the fundamental parameters that are the key elements in the use of 

SSP is described, followed by an explanation of the selection of the filter-bank parameter 

values. Furthermore, the calculation methods are discussed and the optimised filter-bank 

parameters are proposed to improve the SNR and the spatial resolution of the UGW signal. 

The selection of filter-bank parameter values was first inspired by the values introduced 

for the use of SSP application in conventional ultrasonic testing (UT). The performance 

of the SSP technique is highly sensitive to the selection of filter-bank parameter values. 

The literature review of SSP clearly shows that the selection of filter-bank parameter 

values for the use of SSP in conventional UT are not suitable for use in GWT. Therefore, 

the core concept of this chapter is to investigate and propose suitable filter-bank parameter 

values in order to optimise the results of SSP by quantifying the enhancement of SNR and 

spatial resolution of signals. To obtain this, an empirical approach is utilised, whereby the 

parameter values are varied, and the test performed more than 100 times for synthesised 
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UGW signals to investigate the optimum values, and then in order to validate the results 

experimental tests are carried out in the lab, as will be explained in Chapter 6. In addition, 

the proposed technique with the optimum filter-bank parameter values is applied to the 

synthesised signals in order to find a distance limitation of SSP application when a feature 

(i.e. defect) with small amplitude is close to a dominant feature (i.e. welds, flange) with 

high amplitude. 

In GWT, the velocity of DWM is a function of frequency, so dispersive components of 

the received signal will vary across the SSP sub-bands, whereas the non-dispersive 

components stay constant. Therefore, SSP technique may be used to suppress regions of 

the signal that vary across the bandwidth, reducing the effects of DWM. Since the coherent 

noise mostly appears to be due to the presence of DWM, thus, the SSP technique has the 

potential to improve the SNR and enhance the spatial resolution of the received UGW 

signals. The use of SSP in UGW testing is relatively new and to the best of the author’s 

knowledge, this technique has not been fully investigated previously in the field of UGW. 

5.3 Implementation of SSP 

In this section, the implementation of SSP application is explained in more detail. The 

input signal is the unprocessed UGW signal in the time domain, converted to the frequency 

domain for post-processing. This signal is filtered in the frequency domain to generate a 

set of sub-band signals, as described in Section 5.2. The result is then multiplied by a 

Gaussian window function in each sub-band signal individually to produce the sub-band 

outputs. Subsequently, in order to create the output signal, a number of different SSP 

recombination algorithms are introduced to the outputs of the sub-band signals. 

Furthermore, to achieve a good SNR enhancement, the selection of the SSP filtering 

scheme is studied. 

5.3.1 Filter Bank Parameters 

The SSP filter-bank parameter values were first investigated by trial-and-error for NDT 

applications as they were processed. However, this was not very practical for field 

inspection as there are typically large amounts of data to analyse; therefore, several 

researchers sought to find the optimum value of the filter-bank parameters in the use of 

NDT, and particularly for conventional UT. Hence, the optimum values of filter bank 

parameters have been proposed, developed and examined for the conventional UT 
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techniques, as described in the literature review in Chapter 3. However, these values are 

not suitable for UGW signals due to the long duration and narrow bandwidth of the UGW 

signal that operates in the kHz range, whereas the traditional UT operates in the MHz 

range [200]. Therefore, further investigation was required to find an optimum value, 

suitable for UGW testing. As a result, the rules and key factors of parameter selection for 

conventional UT have been reviewed, followed by a discussion of the selection of the 

optimum filter-bank parameter values for UGW testing. 

The general SSP filtering scheme is displayed in Figure 5-1. The parameters that require 

to be specified for spectral splitting are: i) the number of filters (N), ii) the total bandwidth 

for processing (B), iii) the filter bandwidth (Bfilt), iv) the filter crossover point (δ), and v) 

the filter separation (F). These parameters are listed in Table 5-1 with its recommended 

values that are briefly explained here. These parameters are dependent on each other, 

which mean that their values have a direct effect on other parameter values. Therefore, it 

is necessary to search for the optimum parameters and select them appropriately. As an 

example, increasing the number of filters (N), would require to increase the total 

bandwidth for processing (B) or reduce the filter separation (F), or a combination of both. 

Therefore, according to Figure 5-1 the number of filters (N), could be calculated as 

follows:  

𝑁𝑁 = 𝐵𝐵/𝐹𝐹 + 1 (5-1) 

5.3.1.1 Total Bandwidth for Processing 

The total operating bandwidth for processing (B) should be such that the signal’s reflection 

from features in the specimen are constant across this range and the reflection from 

coherent noise varies. If the bandwidth is too wide then at least one of the filter outputs 

will not include the feature signal, and this may cause the feature to be lost and reduce the 

 
Figure 5-1: SSP filter bank parameters 
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Table 5-1: The recommended values for SSP parameters 

SSP parameters Symbols Recommended values 
The total bandwidth 𝐵𝐵 99% of total energy 

Sub-band filter bandwidth Bfilt 𝐵𝐵/11 
Filter crossover point 𝛿𝛿 Bfilt/3.5 
Filter separation 𝐹𝐹 1 𝑑𝑑𝐵𝐵 
Number of filters 𝑁𝑁 𝐵𝐵 ⁄ 𝐹𝐹 + 1 

spatial resolution in the processing. In conventional UT, the transmitted signal is usually 

an impulse function and, therefore, the bandwidth is limited by the frequency response of 

the transducers. As a result, the processing bandwidth in conventional UT is often the 

frequency response of the ultrasonic transducers. 

Many researchers have investigated the effect of the material on the bandwidth of the 

transmitted pulse in conventional UT signals, such as Karpur et al. [158] who proposed 

the optimum processing bandwidth for this purpose. 

In order to reduce the effect of unwanted wave modes and to suppress the dispersion effect 

in UGW testing, narrowband waveforms (such as Hann windowed sine waves of 5 to 10-

cycles in length) were used as the excitation signals. Therefore, the bandwidth of the 

transmitted signal can be used for SSP total bandwidth of processing while considering 

the frequency response of the transducers. Alternatively, Stepinski et al. [171] proposed 

consecutive polarity coincidence, which involved identifying the region in time where the 

signal was constant across the largest frequency range and setting the total bandwidth for 

processing equal to this frequency range. This was an adaptive method to define the 

optimum processing bandwidth from the input signal. 

5.3.1.2 Sub-band Filter Bandwidth 

Sub-band filter bandwidth (Bfilt) is the width to be used for each filter in the filter bank. It 

was recommended by many researchers, such as Shankar et al. [159], Aussel [160], and 

Rose et al. [157] that the value of the filter bandwidth (Bfilt), needs to be set at three to 

four times the filter separation (F). It should be noted that a bandpass filter could reduce 

the temporal resolution of the signal. This is because reducing the bandwidth of a time-

limited signal will increase its duration. This means that applying the SSP filter banks 

could lead to a reduction in temporal resolution if not chosen appropriately, as the pulses 

that correspond to reflections from features spread out in time and mask one another. 
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Mallet [13] investigated the effect of band-pass filtering on the temporal resolution of a 

signal and looked at the changes in duration of a simulated reflection after filtering. The 

result of filtering showed that the pulse became lengthened in time and its amplitude was 

reduced. The Gaussian filters in SSP are spread across the total processing bandwidth, 

which leads to poorer temporal resolution. This result is unchanged regardless of whether 

the deviation is negative or positive. Therefore it was suggested that the centre frequency 

that can use for the filters needs to be equal to the upper 3dB cut-off frequency of the input 

signal. This is the maximum deviation that can be used for a bandpass filter in SSP from 

the signal centre frequency. 

Additionally, the filter overlap could affect the correlation between adjacent sub-bands, 

such that as the overlap increases, the correlation increases [156]. However, little or no 

overlap can lead to loss of information. In SSP, the noise signal in adjacent filters should 

be uncorrelated, and the features should be correlated. Therefore, the overlap chosen 

should minimise the correlation between coherent noise regions in adjacent sub-bands 

without losing information. Furthermore, the cosine filters have been investigated by 

Karpur and Canelones [185], who found that compared to Gaussian window function, 

cosine filters achieved a better result in terms of correlation without losing any 

information. 

5.3.1.3 Filter Separation 

Filter Separation (F) is the distance between sub-band filters, as is shown in Figure 5-1. 

Karpur et al. [21] in 1987 developed a theoretical scheme of parameter selection in SSP 

for conventional UT. It was reported that optimum spectral splitting could be achieved 

using the frequency-sampling theorem. The frequency-sampling theorem says that the 

spectrum of a time-limited signal can be reconstructed from its sample points in the 

frequency domain separated by 2π/T rad/s or 1/T Hz, where T is the total duration of the 

signal; based on this, the SSP filter separation for UT is calculated as: 

𝐹𝐹 = 1
𝑇𝑇�  

(5-2) 

However, this is based on the use of Sinc functions, whereas in practice the Gaussian filter 

is employed for the filter bank because of its simplicity, and, as a result, some parameters 

obtain a larger value than expected. 
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5.3.2 Implementation of the Filter Bank 

A Matlab program is developed throughout the research that takes an unprocessed signal 

in time domain and converts it to the frequency domain. Then it filters the signal in the 

frequency domain to generate a set of sub-bands signal and applies a number of different 

SSP recombination algorithms, as explained in Chapter 2, into these sub-bands. The filter 

bank covers the total bandwidth, (B) as illustrated in Figure 5-1. The received unprocessed 

signal is filtered using a Gaussian bandpass filter in the frequency domain by multiplying 

its Fourier transform by a Gaussian window. The input to this function is the signal to be 

filtered, its sampling frequency and the upper and lower 3dB cut-off frequencies. In order 

to implement the filter bank, a set of 3dB cut-off frequencies for the Gaussian filters are 

applied. The lower cut-off frequency 𝑓𝑓𝑙𝑙 and the higher cut-off frequency 𝑓𝑓ℎ for each sub-

band filters are calculated as follows: 

      𝑓𝑓𝑙𝑙𝑛𝑛 = �𝑓𝑓𝑚𝑚𝑓𝑓𝑚𝑚 −  
𝐵𝐵𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓

4
                        𝑛𝑛 = 1            

𝑓𝑓𝑙𝑙𝑛𝑛−1 + 𝐹𝐹                              𝑛𝑛 = 2,3, …𝑁𝑁
 

 

(5-3) 

 

       𝑓𝑓ℎ𝑛𝑛 =  𝑓𝑓𝑙𝑙𝑛𝑛 +  𝐵𝐵𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓                           𝑛𝑛 = 1,2, …𝑁𝑁   (5-4) 

where N is the number of filters, F is the filter separation, Bfilt is the sub-band filters and 

fmin is the lower cut off frequency of B. The lower cut off frequency for the first sub-band 

𝑓𝑓𝑙𝑙1 needs to cover the start point of the signal, thus it is selected as shown in (5-3). The 

selections of these values are inspired by the values that have been employed in 

conventional UT. In order to find the optimum values for UGW testing, a brute force 

search is applied. The selection of filter bank parameters is explained in this Section. 

However, as stated before, these parameters are interrelated, hence, it is required to 

specified some parameters and check the others and vice versa to find the optimum values. 

The filter bandwidth (Bfilt) in a case where the 3dB cut off frequencies send to the 

Gaussian filter function is calculated as follows: 

𝐵𝐵𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓  =  
𝐵𝐵
𝑁𝑁

 (5-5) 

This equation (5-5) is only applicable to the crossover point values of δ=3dB while for 

other crossover point values it is necessary to find a new filter bandwidth (Bnew−filt) as: 
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𝐵𝐵𝑚𝑚𝑠𝑠𝑛𝑛−𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓 = �
𝑝𝑝3𝑑𝑑𝑆𝑆 −  𝑥𝑥𝑐𝑐
𝑝𝑝𝛿𝛿 −  𝑥𝑥𝑐𝑐

� × 𝐵𝐵𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓 (5-6) 

where 𝑝𝑝𝛿𝛿 is a new crossover point, and 𝑝𝑝3𝑑𝑑𝑆𝑆 is the crossover point when δ=3dB for a 

Gaussian filter function, as presented in Figure 5-2. 

5.3.3 Selection of SSP Filter Bank Parameters for UGW testing  

The SSP parameter selection rules utilised for conventional UT signals were soon found 

to be unsuitable for UGW applications. This is due to the long duration and narrow 

bandwidth of the UGW signal, which operates in the kHz range whereas the traditional 

UT operates in MHz range [200]. Karpur et al. [156] described a way to calculate the filter 

separation using (5-2). This led to a large number of sub-band filters, requiring either a 

large overlap or a narrow bandwidth. The large overlaps between the sub-band filters 

mean that the filters are highly correlated, which can compromise the performance of SSP 

at removing coherent noise. On the other hand, using narrowband filters can lead to the 

loss of signal responses when applied to the sub-band filters and subsequently in the output 

of SSP application. 

Therefore, the optimum SSP parameters are determined synthetically using a brute force 

search through the essential SSP parameters, i.e. the total operating bandwidth (B), the 

sub-band filter bandwidth (Bfilt), the filter crossover point (δ), and the filter separation 

(F). Moreover, the number of filters (N) is calculated using (5-1). As mentioned before, 

the filter bank parameters are interdependent, hence it is necessary to search for the 

optimum parameters in parallel and select them appropriately. The ranges of values 

selected for the brute force search algorithm are inspired by the values employed for 

conventional UT. This offers the benefit of having an appropriate bandwidth that can be 

applied to different frequencies or different pulse lengths signals. Note that, the operation 

bandwidths of processing will be increased by selecting the shorter pulse lengths or higher  

 
Figure 5-2: A Gaussian filter function 
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frequency signal. However, this condition is not valid when the operation bandwidth is 

defined in Hertz. It would be an advantage to select the sub-band filter bandwidth (Bfilt) 

as a portion of the total operation bandwidth, thus the optimum values could be fixed for 

any UGW signal. 

Therefore, to start searching for the optimum filter bank parameter values, a portion of the 

frequency spectrum of the signal selected as the total operating bandwidth (B) and fed into 

the brute-force search algorithm as follows: 

 Step 1: The range of the total operating bandwidth of processing (B) is altered from 

the signal bandwidth containing 84% to 100% of the frequency spectrum in steps of 

3%. 

 Step 2: The sub-band filter bandwidth (Bfilt) is varied from the total operating 

bandwidth value (B) divided by 3 to the total operating bandwidth value divided by 

15 in steps of 2. The selection of the sub-band filter bandwidth range is a tradeoff 

between loss of temporal resolution and the number of filters.  

 Step 3: The filter separation (F) is varied from the value of sub-band filter bandwidth 

(Bfilt) divided by 1 to 7 in steps of 1.  

 Step 4: The filter crossover point (δ) is varied from 1 dB down from the filter peak 

to 9 dB down. 

The performance of SSP is quantified by measuring the SNR and spatial resolution of the 

output UGW signals. 

5.4 Signal Synthesis 

The initial development and implementation of synthesised UGW data employed for 

analysis of SSP application are explained in this section. 

5.4.1 Synthesised UGW Data 

The signal synthesis presented by Wilcox [141] is employed in order to synthesise the 

propagation of the DWM in time/space [73], [96]. The technique is based on applying a 

frequency-dependent phase shift to the wave packet of interest. This phase shift depends 

on the phase velocity of the wave mode, which is a function of frequency. This can be 

extracted from the dispersion curves generated via DISPERSE software, which is 
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developed by Imperial College [100]. It is assumed that the dispersive wave packet g(t), 

has been propagated at a distance of  x= 0. This signal has been converted to the frequency 

domain by taking the fast Fourier transform as follows: 

𝐺𝐺(𝑗𝑗) =  � 𝑁𝑁(𝑡𝑡)𝑒𝑒−𝑗𝑗𝑗𝑗𝑓𝑓𝑑𝑑𝑡𝑡
∞

−∞

 (5-7) 

where ω=2πf, is the angular frequency and f is the frequency. A transfer function, H(ω), 

is then required to find g(t)  at a given distance, x = d, related to g(t)  at x= 0 which for the 

dispersion of a single wave mode can be calculated as [100]: 

𝑘𝑘(𝑗𝑗) =  
[𝐺𝐺(𝑗𝑗)]𝑥𝑥=𝑑𝑑
[𝐺𝐺(𝑗𝑗)]𝑥𝑥=0

 (5-8) 

the transfer function for a single DWM is: 

𝑘𝑘(𝑗𝑗) =  𝑒𝑒
𝑗𝑗𝑗𝑗 𝑥𝑥

𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑎𝑎(𝑗𝑗) (5-9) 

where 𝑣𝑣𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗) is the phase velocity of the wave mode, which is a function of frequency, 

thus: 

[𝐺𝐺(𝑗𝑗)]𝑥𝑥=𝑑𝑑 = [𝐺𝐺(𝑗𝑗)]𝑥𝑥=0 × 𝑒𝑒
−𝑗𝑗𝑗𝑗 𝑥𝑥

𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑎𝑎(𝜔𝜔) (5-10) 

𝑘𝑘(𝑗𝑗) is the circular wave number as given in (5-11): 

𝑘𝑘(𝑗𝑗) =  
𝑗𝑗

𝑣𝑣𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗) (5-11) 

Then (5-10) can be written as: 

[𝐺𝐺(𝑗𝑗)]𝑥𝑥=𝑑𝑑 = [𝐺𝐺(𝑗𝑗)]𝑥𝑥=0 × 𝑒𝑒−𝑗𝑗𝑘𝑘(𝑗𝑗)𝑥𝑥 (5-12) 

So, the inverse Fourier transform could be defined as: 

𝑓𝑓(𝑡𝑡) =  
1

2𝜋𝜋
� 𝐹𝐹(𝑗𝑗)𝑒𝑒𝑗𝑗𝑗𝑗𝑓𝑓𝑑𝑑𝑗𝑗
∞

−∞

 (5-13) 

Therefore, the dispersive wave packet at a distance of  x = d, [g(t)]x=d , could be 

calculated as by employing the inverse FFT as below: 
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[𝑁𝑁(𝑡𝑡)]𝑥𝑥=𝑑𝑑 =  
1

2𝜋𝜋
� 𝐺𝐺(𝑗𝑗)𝑒𝑒𝑗𝑗(𝑗𝑗𝑓𝑓−𝑘𝑘(𝑗𝑗)𝑥𝑥)𝑑𝑑𝑗𝑗
∞

−∞

 (5-14) 

Figure 5-3 shows the phase velocity dispersion curve for the axisymmetric signal,  T(0,1) 

wave mode, with its family of flexural wave modes: F(1,2), F(2,2),  F(3,2), F(4,2), F(5,2), 

and F(6,2) using DISPERSE software. This is a six-inch diameter steel pipe with an 

outside diameter of 168.28 mm and a wall thickness of 7.11mm. The combination of these 

wave modes is used in a single complicated waveform. Figure 5-3 presents the behaviour 

of phase velocity of these wave modes in terms of frequency; for instance, it is shown that 

the phase velocity of the T(0,1) wave mode is constant across the frequency bandwidth of 

interest, whereas all the flexural wave modes’ velocities are frequency dependent.  The 

excitation centre frequency of 50kHz is employed for this test and a dashed line illustrates 

the behaviour of all wave modes around this particular centre frequency. Higher order 

flexural wave modes also exist, but as they are more dispersive in this region; the first six 

orders modes employed here, which are more difficult to remove. 

Figure 5-4 illustrates the propagation of a dispersive wave mode F(5,2), using the 

aforementioned synthesised modelling technique for a nominal six-inch steel pipe. The 

distance incrementally varies from x=1 to x=5 metres. It is clearly shown that as the 

propagation time increases, the signal’s energy spreads out over space. 

 

Figure 5-3: Phase velocity dispersion curves for a six-inch pipe overlaid with the frequency spectrum 
of a 50kHz 10-cycle Hann windowed pulse. The main and first side lobes are displayed to clarify that the 
pulse will have a frequency bandwidth corresponding to a phase velocity bandwidth of each wave modes. 
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Figure 5-4: Synthesised dispersive propagation of, F(5,2) wave mode. Frequency = 50kHz 

5.4.2 Implementation of Synthesised UGW Signals 

The technique described above is used to generate a synthesised UGW signal [11], [141]. 

Figure 5-5 illustrates a 10-cycles pulse with a centre frequency of 50kHz including T(0,1) 

and its flexural wave modes family up to F(6,2). These wave modes are propagated three 

meters along a six-inch steel pipe with an outside diameter of 168.28mm and a wall 

thickness of 14.3mm.  

A synthesised ideal reflection signal from T(0,1) is shown in Figure 5-6-(a). The input 

pulse is a 50kHz, 10-cycles, Hann windowed sine signal. The received signal illustrated 

in Figure 5-6-(c) is the sum of the abovementioned wave modes as shown in Figure 5-5 

containing T(0,1) and its flexural wave modes family up to F(6,2). Since the flexural wave 

modes are dispersive and frequency dependent, the received signal is spread out in time 

and converts to background (coherent) noise. The spectra of the ideal reflection signal and 

the received signal are presented in Figure 5-6-(b) and Figure 5-6-(d) respectively. It is 

notable that the received signal occupies the same bandwidth as the ideal reflection signal, 

which makes the interpretation difficult.  

For techniques based on a single axisymmetric mode, other wave modes present in the 

signal (generally dispersive ones) can be considered as noise. These dispersive modes 
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Figure 5-5: Synthesised UGW signals: Torsional T(0,1) and its family of flexural wave modes: 
F(1,2), F(2,2), F(3,2), F(4,2), F(5,2) ,F(6,2). 

 

Figure 5-6: Synthesised UGW signal: a) ideal reflection signal T(0,1), b) spectrum of ideal reflection 
signal c) received signal including T(0,1) and its family of flexural wave modes: F(1,2),…, F(2,6), and d) 

spectrum of received signal 
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degrade the spatial resolution and SNR of the axisymmetric wave mode of interest, i.e. 

T(0,1). The synthesised UGW signal illustrated in Figure 5-6-(c) is employed to 

investigate the SSP application with different recombination algorithms. 

The advantage of using a synthesised signal is to generate the particular wave modes that 

must be considered in the signal, whereas in the experimental data there are always other 

wave modes that are not clearly identified in the signal. In addition, the synthesised signal 

does not contain any unwanted wave modes, so it is an ideal signal. In reality, and 

especially in field data, there are always some dispersive and non-dispersive wave modes 

that travel at different velocities. Therefore, the synthesised signals are very useful to 

begin the analysis of a signal processing technique as all the wave modes that exist are 

known and are no undefined peaks or unwanted wave modes in the signal. Furthermore, 

the typical attenuation effect of the UGW signal is not included in the synthesised signal. 

However, the attenuation only affects the amplitude of the signal and, as the signal 

processing technique is investigated in this work, this it is not an issue. 

5.5 SSP of Synthesised UGW Signal 

5.5.1 First Synthesised Signal Analysis 

The synthesised UGW signal generated in the previous section is employed to test the SSP 

application using the Matlab program. In order to find the optimum SSP filter-bank 

parameter values,11 their values must be varied during the test to find an optimum value 

for each parameter. Therefore, the brute force search is applied, as explained in Section 

5.3.3 for this purpose. In addition, five different SSP recombination algorithms, described 

in Chapter 2, are utilised that non-linearly sum the outputs of the sub-band filters. These 

algorithms include: polarity thresholding (PT), PT with minimisation (PTM), mean, 

minimisation, and frequency multiplication (FM), which are applied to each set of SSP 

parameters on the signal displayed in Figure 5-7-(a) to find: i) the best recombination 

algorithms for UGW inspection, and ii) identify the most suitable parameter values of 

SSP. The spectrum of the synthesised signal, which is split into several sub-band signals 

using Gaussian band-pass filters, is shown in Figure 5-7-(b). The performance of SSP, as 

                                                 
11 The filter-bank parameters that vary are: the total bandwidth (𝐵𝐵), the filter bandwidth (𝐵𝐵𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓) and 

the start points of total bandwidth (𝑓𝑓𝑚𝑚𝑓𝑓𝑚𝑚). The number of filters (𝑁𝑁) and their peak separation (𝐹𝐹) are 
inferred from these values. 
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a) 

 

b) 

Figure 5-7: Received synthesised UGW signal: a) Time domain, b) frequency domain with Gaussian 
band-pass filters 

mentioned earlier, is quantified by measuring the SNR and spatial resolution of the output 

UGW signals. The highest SNR is obtained when the parameters have been set as follow: 

 99% of the total operation frequency, 

 A sub-band filter bandwidth that is equal to the total operating bandwidth divided by 

11,  

 A filter separation that is equal to sub-band filter bandwidth divided by 3.5,  

 A filter crossover of 1dB. 

 

These values are therefore selected as the optimum SSP parameters for UGW testing. In 

addition, the aforementioned parameters are subsequently used in the processing of the 

synthesised data, as described in the following section. 

Moreover, using the optimum SSP filter bank parameter values, different SSP 

recombination algorithms are employed to combine the output signals from each sub-band 

signal to obtain an output signal. The results are displayed in Figure 5-8. In order to 

quantify the performance of the synthesised signal and find the optimum SSP parameters, 

the SNR of the original (unprocessed) signal and the received signal after applying 

different SSP recombination algorithms has been calculated as follows:  

𝑆𝑆𝑁𝑁𝑅𝑅 = 20 ×  log10 �
𝑆𝑆
𝑁𝑁�

 (5-15) 

where S is the maximum amplitude of the signal and N is the noise level, which is taken 

as the root mean square (RMS) of the whole signal. The SNR value of the unprocessed 

synthesised signal before applying SSP is 15.6dB.  
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Figure 5-8 illustrates the unprocessed signal and the results of applying different SSP 

recombination algorithms on the signal. The outputs from all of the SSP recombination 

algorithms illustrate a dominant wave, which arrives at a particular time for all of the 

algorithms i.e. T(0,1), however; the level of coherent noise caused by the flexural wave 

modes is different.  

It can be seen that all of the algorithms have improved the SNR significantly, except for 

the mean algorithm. Figure 5-8 demonstrates that the PTM gives the highest SNR 

enhancement with the proposed parameters, followed by the PT. It also represents that 

although the FM and minimisation algorithms have improved the SNR, the spatial 

resolution of the result compared to PT and PTM algorithm is poorer. This is due to the 

presence of DWM. In addition, it should be noted that the SNR enhancement depends on 

the level of input noise as well as the level of dispersion, therefore, when the signal is less 

noisy or less dispersive then the performance of the other algorithms will be improved. 

The improvement is regarded as the increase in SNR due to SSP using the optimum 

parameters that were proposed in Section 5.3.3. Table 5-2 gives the SNR enhancement 

achieved by each SSP recombination algorithm, as given in (5-16): 

𝑆𝑆𝑁𝑁𝑅𝑅𝑓𝑓𝑚𝑚𝑠𝑠𝑔𝑔𝑇𝑇𝑣𝑣𝑚𝑚𝑠𝑠𝑚𝑚𝑓𝑓 =  𝑆𝑆𝑁𝑁𝑅𝑅𝑇𝑇𝑜𝑜𝑓𝑓𝑠𝑠𝑜𝑜𝑓𝑓 −  𝑆𝑆𝑁𝑁𝑅𝑅𝑓𝑓𝑚𝑚𝑠𝑠𝑜𝑜𝑓𝑓 (5-16) 

where SNRoutput and  SNRinput are the SNR after and before applying SSP, respectively. 

Table 5-2 shows that taking the mean of the sub-bands has negative results in the 

improvement of the SNR, whereas the remaining algorithms have all improved the SNR 

of the received UGW signal, with PTM giving the greatest SNR enhancement, followed 

by the PT and the FM.  

Although the FM and minimisation algorithms give reasonably good SNR enhancement, 

they are not able to remove the presence of DWM entirely and therefore they have a 

distorting effect on the signal as shown in Figure 5-8. On the other hand, PTM and PT, 

which are the best algorithms in terms of SNR, do not have such a distorting effect. 

Therefore, PTM and PT were selected as the most appropriate SSP recombination 

algorithms for the remainder of this thesis. 
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Table 5-2: SNR enhancement of synthesised UGW signal 

SSP Recombination Techniques SNR Enhancement (dB) 

Mean 
Minimisation 
Frequency Multiplication 
Polarity Thresholding (PT) 
PT with Minimisation (PTM) 

-0.26 
9.61 
16.82 
29.30 
30.61 

 
Figure 5-8: Results of synthesised UGW signal before and after applying SSP: a) Unprocessed input 

signal, b) Mean, c) Minimisation, d) Frequency Multiplication, e) Polarity Thresholding, f) Polarity 
Thresholding with Minimisation 

5.5.2 Second Synthesised Signal Analysis 

The core concept of this section is to identify the limitation of SSP in terms of finding the 

smallest defect size that can be detected by the proposed technique; and in addition, to 

find the distance limitation when the location of the defect is close to a dominant feature 

with high amplitude such as weld, flange, etc. In order to achieve this, 10-cycles pulse 

with a centre frequency of 44kHz with the axisymmetric torsional T(0,1) wave mode is 

excited using the synthesised model, as explained in Section 5.4, and it is assumed that 

there are only two reflections, from i) the defect, and ii) the pipe’s end respectively. Since 

the proposed method has already demonstrated the capability to remove the DWM  
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(Section 5.5), in this part it is assumed that only the axisymmetric T(0,1) signal is reflected 

from the features on the pipe. 

According to Böttger et al. [91], there is a linear relationship between the amplitude of the 

reflected signal of T(0,1) wave mode and the CSA of its defect. Hence, the attenuation of 

T(0,1) is linear, which means if 10% of the excited signal reflects from the defect, then 

the rest of the energy (90%) will reflect from the pipe end. 

The set-up of this synthesised experiment is shown in Figure 5-9. The distances of the 

defect and end of the pipe are X=3m and X=4.5m from the excitation signal, respectively. 

It is assumed that the defect reflects 10 % of the total energy and the rest of the energy 

(90%) is reflected by pipe end, as displayed in Figure 5-10 (a). The reflection from defects 

are reduced gradually in order to find the smallest size of defect that can be recognised by 

the proposed method. These are illustrated in Figure 5-10, where the defect sizes are 

gradually reduced from 10% CSA to 1% CSA by steps of 2%. The results shown in Figure 

5-10 demonstrate that the proposed method has the potential to detect defects down to 1% 

CSA when the distance between two features is 1.5m. 

Furthermore, in order to find the distance limitation, it is assumed that the defect (10% 

CSA) is 1m from the end of the pipe and it is moving towards the pipe’s end by steps 

of 0.1 𝑚𝑚 as illustrated in Figure 5-11. It is clearly illustrated that the defect is recognisable 

until its distance from the pipe’s end is around 0.7m, as illustrated in Figure 5-11-(d). 

Then, the resolution is gradually reduced until the distance is 0.5 𝑚𝑚, as shown in Figure 

5-11-(f). Afterward, the defect reflection starts to superpose with the pipe’s end reflection 

and as a result reduces the temporal resolution. Therefore, according to this result, SSP 

technique can detect small amplitudes close to the dominant amplitude only when the 

distance between them is greater than 0.5m. However, this is the result for 10-cycles 

excitation signal modulated by Hann window with a defect size of 10% CSA and centre 

frequency of 50kHz. 

 
Figure 5-9: Synthesised setup for eight-inch pipe with WT =8.179 mm and OD=219.08 mm. 

3 m 1.5 m 

Tx signal T (0, 1) Defect (from 1% CSA to 10% CSA) 

8.179 
mm 

219.08 
mm 

Move toward 
the end pipe 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Figure 5-10: Results for synthesised UGW signal before and after applying SSP (PT & PTM 
algorithms). The defect and the pipe end are located at X=3 m and X=4.5 m from the excitation signal. 

The defect sizes are a)10% CSA, b)8% CSA, c)6% CSA, d)4% CSA, e)2% CSA and f)1% CSA 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

g) 

 

h) 

 

Figure 5-11: Results for synthesised UGW signal before and after applying SSP (PT & PTM). The defect 
location (X=3.5m) is moved towards the pipe end (X=4.5 m) with steps of 0.1m. 
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In addition, the results of the PT and PTM recombination algorithms as shown in Figure 

5-11, are almost identical, while the distance between two peaks is greater than 0.8m but 

the PT algorithm, when compared to the PTM algorithm, gives a better spatial resolution 

result when the distance is around or less than 0.5m (Figure 5-11-(f)). In these regions, the 

PT algorithms identify defects with poor resolution, whereas the PTM loses the 

information. In order to validate the outcome of these synthesised results, the experimental 

test was carried out in the lab followed by the field data analysis, which are described in 

the next chapter. 

5.6 Discussion of Initial SSP Studies  

The result of the synthesised signal analysis showed that SSP application has the potential 

to reduce the level of coherent noise significantly due to the presence of dispersive wave 

modes in UGW signals. Therefore it can considerably improve the SNR and spatial 

resolution of the received such signals. The optimum filter bank parameter values were 

applied by trial and error, using the brute force search algorithms to find the optimum 

parameter values by checking the SNR and spatial resolution of the received signal. The 

initial values tested for SSP application were inspired by the values introduced for 

conventional UT and then modified. The results obtained from this chapter showed that, 

among the other recombination algorithms, the PT and PTM algorithms give the best SNR 

enhancement, and both algorithms significantly reduced the effects of dispersive wave 

modes without distorting the signal. 

In addition, in order to address the distance limitation of SSP when two features are close 

together, a threshold has been defined, below which threshold the temporal resolution will 

be reduced. To sum up, SSP application as it is implemented here could be applied for 

UGW inspection. However, further work is required to test the SSP application for 

different scenarios. Furthermore, in order to validate the results obtained in this chapter, 

SSP has been applied to experimental data in the lab and field data. These validations are 

fully covered in Chapter 6. 
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5.7 Conclusions 

A novel solution based on advanced signal processing technique is proposed in this 

chapter to address the problem of coherent noise in UGW signals using SSP as a post-

processing technique. The fundamental knowledge and the literature review of SSP is 

explained in details in Chapter 2 and Chapter 3 respectively. In addition, the fundamental 

development of SSP is fully covered within this chapter, which mostly related to 

conventional UT for SNR enhancement. Two main challenges of SSP were investigated 

for synthesised UGW signals, which were: i) finding the optimum filter bank parameter 

values, and ii) selecting the appropriate recombination algorithms for the use of SSP in 

GWT. Furthermore, the initial signal processing of generating synthesised UGW signals 

is described in the chapter, with regard to the analysis and determination of the limitation 

of SSP application. 

In order to address above issues, SSP application is applied to two different synthesised 

experimental signals for the restoration of signals suffering from coherent noise and the 

reduction of the effect of dispersive wave modes to increase the sensitivity, SNR and 

inspection range of UGW testing. Theses synthesised signals were utilised to find the 

optimum filter bank parameter values which were varied during the tests. The brute force 

search algorithms is employed to find the optimum parameter values by checking the SNR 

and spatial resolution of the received signal. The five most common SSP recombination 

algorithms are employed for each set of parameters to find the appropriate one. Result 

showed that the polarity thresholding (PT) and PT with minimisation (PTM) among the 

other recombination algorithms achieved the highest SNR enhancements in both scenarios 

without distorting the signal. 

It is demonstrated throughout this chapter that the proposed method has the potential to 

improve the sensitivity and spatial resolution of UGW signals in terms of SNR (enhancing 

the SNR approximately by 30dB), detecting smaller defects (down to 2% CSA), finding 

the distance limitation when the location of the defect is close to a dominant feature with 

high amplitude as well as increasing the inspection range. 

Therefore, this chapter shows that SSP application as it is implemented here could be 

applied for UGW inspection. However, further work is required to validate the SSP 

application for experimental and field data which are covered in the next chapter. 
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Chapter 6 

 Application of SSP to experimental 

GWT data and field trials for validation 
6.1 Chapter overview 

The focus of this chapter is to validate the proposed SSP application with the optimum 

parameters that were proposed in Chapter 5 for the reduction of coherent noise in the 

UGW signal. The synthesised analysis in Chapter 5 confirmed that the proposed method 

has the potential to enhance the SNR and spatial resolution of the UGW signal. This 

chapter presents the details of two experiments have were undertaken in the lab on six-

inch and eight-inch diameter steel pipes, followed by a presentation of field data to 

validate the proposed method experimentally. The technique applied uses pitch-catch and 

pulse-echo methods. In addition, a different type of SNR calculation is defined here in 

order to address the challenges identified in the literature about SSP with regard to 

reducing the temporal resolution and creating erroneous features in the processed signal. 

It is verified throughout this chapter that the proposed technique, when compared to the 

conventional techniques reported in the literature, substantially improves the sensitivity 

and spatial resolution of UGW signals in terms of SNR, detecting smaller defects that 

might be hidden below noise level as well as increasing the inspection range. Fundamental 

to SSP, the development of GWT is explained in Chapter 2; while, the step by step 

procedures for the implement of SSP is covered in Chapter 5. 

6.2 Application of SSP to Experimental Signal 

To validate the proposed technique for the reduction of the presence of dispersive wave 

modes (coherent noise) in UGW signals and enhance the spatial resolution, it is necessary 

to perform experimental testing. This section discusses, two laboratory experiments 

implemented in the lab to gather experimental data, following which SSP was applied to 

these data to validate the proposed technique. These experiments have been carried out 

using the following methods for gathering data;  
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i) Vibrometry measurement using the pitch-catch method and 

ii) Guided wave inspection system employing the pulse-echo method 

6.2.1 Experiment #1: using Pitch-Catch Technique 

In this experiment, the pipe under investigation was a nominal six-inch, six-meter long 

steel pipe, with an outside diameter of 168.28mm and 14.3mm wall thickness. The pipe 

included an axisymmetric defect of 12.5% depth, which represented a loss in cross-section 

area (CSA) of 13.5%. Figure 6-1 displays the experimental set-up using the pitch-catch 

method to maintain directionality during the experiment in order to achieve an accurate 

experimental result. 

The Teletest Focus+ system pulser/receiver [14] was employed to transmit a signal (Tx) 

and a Polytec 3D Laser Doppler Vibrometer (3D-LDV) [15] was utilised to receive the 

signal (Rx). The laser vibrometry was engaged to measure the vibration of the surface of 

a spatial position of the wave packets of interest (i.e. flexural wave modes family of T(0,1) 

that spread out in time/space). This was a specific project set-up plan, used in this research 

as a first experimental result to validate the proposed technique regarding reducing the 

effects of DWM (coherent noise) in the received UGW signal. 

The optical receiver has the capability to remove the uncertainty of the coupling and to 

receive the transfer function of the piezoelectric ceramic. Also, the vibrometry could be 

used to perform a circumferential variation analysis to determine what modes are present. 

Thus, the presence of wave modes that are generated purely by transmission could be 

validated. The 3D-LDV is equipped with three laser heads, as illustrated in Figure 6-1, to 

detect the motions of the surface that are produced by the circumferential excitation of the 

UGW signal at 60kHz. This pulse is 10-cycles Han-windowed sine wave pulse, 

transmitted into the pipe specimen, as illustrated in Figure 6-2, to generate a pure T(0,1) 

wave mode. 

The Teletest system has an external trigger that initiates synchronisation with the 3D-LDV 

during data collection. To remove/reduce any random noise, the collection was averaged 

on the vibrometer and set to 512. The vibrometer was focused at a distance of two-metres 

and in line with the transducers that deliver the input signal. In addition, the sampling 

frequency of the received signal was set to 1MHz. As shown in Figure 6-1, the transducers 

(Tx) are located at the very end of the pipe to avoid receiving any backwards propagation 

complicating the received signals.  
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Figure 6-2: Excitation Time-domain signal 

 

An array comprised of 64 laterally polarised piezoelectric transducer elements equally 

distributed around the circumference was used. The elements create circumferential 

displacement and can be used in-phase to generate torsional wave modes. The elements 

are glued to the pipe specimen using Araldite epoxy. The vibrometer receives at one 

circumferential point, and the test is repeated to gather received points around the 

circumference. The pipe is rotated 3° each time to gather 118 vibrometry points during 

the scan to capture the UGW signal. The results of this scan are illustrated in Figure 6-3-

(a), summing all results of 118 points to generate the pure T(0,1), and Figure 6-3-(b), a 

single point scan. 

The aim of the proposed method is to obtain a fairly pure T(0,1) signal by utilising only 

one point of scan and removing/reducing the coherent noise. Since the transducers are 

2 m 2.5 m 1.5 m 

Tx signal 
(Transducer location) Rx signal 

(3D –LDV point location) 
Axisymmetric defect 

 (12.5% depth) 

Right Laser Head Left Laser Head 

Top Laser Head 

0° 

90° 

180° 

270° 

118 rotations:   
3° each time 

Vibrometry Coordinate systems 

168.28 
mm 

X 
Y 

Z 

Figure 6-1: Illustration of 3D-LDVexperimental set-up 
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a) 

 

b) 

 

Figure 6-3: Experimental signal using 3D-LDV: a) sum of 118 points b) one point scan 

placed at the end of the pipe, the wave peaks represent the incident T(0,1), the defect 

response, and the reflection from the pipe-end respectively. As shown in Figure 6-3-(b) 

the level of coherent noise between these wave packets is clearly noticeable that mainly 

caused by the presence of dispersive wave modes and needs to be reduced. In order to 

quantify the improvement given by the different SSP recombination algorithms, the SNR 

of the UGW response is calculated as follows: 

𝑆𝑆𝑁𝑁𝑅𝑅 = 20 ×  log10 �
𝑆𝑆
𝑁𝑁�

 (6-1) 

where S is the peak value of the defect’s reflection and N is the RMS value of the coherent 

noise region, as illustrated in Figure 6-3-(b). The SNR of the unprocessed signal is 21.9dB. 

The selection of SSP recombination algorithms with the proposed filter bank parameters 

are applied to the experimental data and the results are displayed in Figure 6-4. Since the 
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reflections of the excitation signal and the pipe-end have high amplitude, it is required to 

re-scale the results to see the coherent noise and reflection from the defects more clearly. 

Therefore, Figure 6-4 is re-scaled (zoomed-in) to highlight the presence of the coherent 

noise and the defect’s reflection for a better representation in different SSP recombination 

algorithms, as illustrated in Figure 6-5. This figure clearly illustrates that the PTM has 

resulted in the greatest spatial resolution without distortion, followed by PT and 

minimisation. These three SSP algorithms enhanced the spatial resolution of the signal by 

reducing/removing the noise level significantly. In addition, taking the mean of sub-bands 

and FM have a distorting effect on the unprocessed signal where the FM algorithms have 

removed the defect’s reflection completely and reduced the amplitudes of the pipe end’s 

reflection considerably. 

Table 6-1 displays the SNR enhancement of each recombination algorithm using equation 

(6-1). The improvement is regarded as the increase in SNR due to SSP. The results 

illustrate that the PTM algorithms have the greatest increase in SNR, 32dB, without 

distortion the signal. The second best performing method was the PT algorithm, which 

gave a 23dB enhancement. On the other hand, FM algorithms removed the defect’s 

reflection signal and reduced the pipe-end amplitude. This distortion is caused by 

multiplying the frequency of each sub-band without considering the sign of their signals. 

As a result, PTM and PT are chosen as the most appropriate SSP recombination algorithms 

for UGW data.  

Additionally, another comparison similar to that used in [201] is employed for 

performance evaluation, which calculates the strength of the defect’s reflection to the 

largest surrounding coherent noise signal. This is referred to as defect-to-coherent noise 

ratio (DCR) and is measured in dB as: 

𝐷𝐷𝐷𝐷𝑅𝑅 = 20 × log10 �
𝐹𝐹
𝐷𝐷�

 (6-2) 

where F and C are the maximum output echo amplitude of the defect and the largest 

amplitude of the coherent noise respectively. The improvement is calculated as the rise in 

the DCR due to SSP. The DCR enhancement is calculated as follows:  

𝐷𝐷𝐷𝐷𝑅𝑅𝑓𝑓𝑚𝑚𝑠𝑠𝑔𝑔𝑇𝑇𝑣𝑣𝑚𝑚𝑠𝑠𝑚𝑚𝑓𝑓 = 𝐷𝐷𝐷𝐷𝑅𝑅𝑇𝑇𝑜𝑜𝑓𝑓𝑠𝑠𝑜𝑜𝑓𝑓 −  𝐷𝐷𝐷𝐷𝑅𝑅𝑓𝑓𝑚𝑚𝑠𝑠𝑜𝑜𝑓𝑓 (6-3) 

where  DCRinput  and  DCRoutput calculates the DCR enhancement before and after 

applying the SSP technique respectively. 
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Figure 6-4: Results from applying various SSP techniques: a) unprocessed signal, b) result of mean, 
c) result of minimisation, d) result of frequency multiplication, e) result of polarity thresholding f) result of 

polarity thresholding with minimisation 

 

Figure 6-5: Re-scaled results from applying various SSP techniques: a) unprocessed signal, b) result 
of mean, c) result of minimisation, d) result of FM, e) result of PT f) result of PTM 
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Table 6-1: SNR and DCR enhancement of experimental UGW signal 

SSP Recombination algorithms SNR Enhancement (dB) DCR Enhancement (dB) 

Mean 
Minimisation 
Frequency Multiplication 
Polarity Thresholding (PT) 

     PT with Minimisation (PTM) 

-1.92 
7.78 
- 39.97 
22.87 

     32.14 

- 
- 
- 
14.29 

      22.34 

 

Since the PTM and the PT algorithm have produced the most promising results among 

others in terms of SNR with the same filter bank parameters, thus, the DCR is calculated 

only for these algorithms and the results are presented in Table 6-1. As expected, the PTM 

and PT have improved the DCR by 22.3dB and 14.3dB respectively. 

6.2.2 Experiment #2: using Pulse-Echo Technique 

The second experiments were conducted in the lab using a nominal eight-inch pipe, six 

meters long with a wall thickness of 8.28mm and outer diameter of 219.08mm. The setup 

for the experiment is illustrated in Figure 6-6. The signal is excited using a ‘5 Ring 

Torsional’ Teletest system [14] to transmit a 10-cycles, Hann window modulated tone 

burst of  T(0,1) wave mode. The ring spacing between transducers was 30mm. 

The frequencies that give the best result for this particular pipe size according to the 

dispersion curve are 27kHz, 36kHz, 44kHz, 64kHz and 72kHz. Therefore, the data has 

been collected on these frequencies for analysis. The Teletest Collar placed at 1.5m away 

from the near pipe-end and a saw cut defect is created 1.5m away from the far pipe-end. 

The size of the defect has incrementally increased from 0.5% CSA to 8% CSA. In total, 9 

defects have been created, the flaw size plan is displayed in Table 6-2. Although the pipe 

length is six metres, in order to see the attenuation, the test runs for 25m to collect more 

data. 

In order to reduce incoherent noise, the collection is repeated 512 times, and the received 

signals averaged. The sampling frequency of the received signal is set to 1MHz. A pulse-

echo method is employed for this experiment and the Teletest system is utilised to 

excite/receive (Tx/Rx) the signal. Since PT and PTM algorithms gave the best results 

regarding SNR and spatial resolution for the synthesised and the vibrometry experiments, 

both are utilised in this experiment. 
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a) 

 

b) 

 

Figure 6-6: Experimental setup up for eight-inch steel pipe with a wall thickness of 8.179 mm and OD 

of 219.08 m 

Compressor

5 ring tool

Saw cut defects 
0.5% to 8% CSA 

Teletest

1.5 m 1.5 m 3 m 

Saw Cut (0.5% to 
8% CSA) 

Teletest Collar 

219.08 
mm 
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Table 6-2: Flaw size plan for eight-inch steel pipe 

 

In addition, the same SSP filter bank parameters as defined, recommended in Table 5-1 in 

Chapter 5 are employed here. 

As mentioned earlier, the experiment has been run for different frequencies, and the result 

of each frequency compared with the same frequency of the conventional model that is 

currently employed in the Teletest system. However, the comparison for 44kHz is 

presented in greater detail in this section. The results indicate that defects smaller than 2% 

CSA are almost impossible to identify before and/or after applying the proposed 

technique. Therefore, the investigation and comparison takes place only when the defect 

size is greater than 2% CSA. It is notable that the current sensitivity for reliable detection 

of Teletest system is 9% CSA which is equivalent to 5% amplitude reflection. 

Figure 6-7 illustrated a) the actual scale result, and b) the zoomed-in result of the 

unprocessed signal and the proposed SSP technique with PT and PTM algorithms 

respectively when the saw cut defect size is 3% CSA. The results show that the 

unprocessed signal has less chance and certainly to identify defects of a similar level to 

the surrounding coherent noise produced by the presence of DWM.  

By contrast, the proposed SSP method, both PT and PTM, removes the noise entirely and 

only the defect’s reflection remains, without distortion of the signal or creating artefacts. 

Therefore, as a result, the proposed technique has the potential to detect a defect with 

confidence down to 3% CSA. These data are gathered using the Teletest unit, collected by  
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a) 

 

b) 

 

Figure 6-7: Result of unprocessed signal vs. SSP- 3% CSA defect - 44kHz: a) result b) zoom-in 

PC and then analysed using Matlab program to generate the output signal for both 

unprocessed and SSP signal. In addition, to quantify the improvements shown by the 

proposed technique, the SNR enhancement is calculated by using (6-1) where S is the 

maximum amplitude of the defect’s reflection and N is the RMS value of the noise region 

as defined in Figure 6-7-(b). The SNR of the unprocessed signal is 13.25dB. The results 

presented in Table 6-3 show that both algorithms enhanced the SNR by 38.9dB and 

36.9dB respectively.  
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Table 6-3: SNR enhancement of experimental UGW signal with 3% CSA 

SSP recombination techniques SNR enhancement (dB) 

Polarity thresholding (PT) 36.9 

PT with minimisation (PTM) 38.9 

 

Furthermore, a comparison of the amplitude of the pipe-end reflection and the defect 

reflection was undertaken in order to evaluate how well the SSP maintains the amplitude 

of the signal features of interest. The results are given in Table 6-4 and indicate that no 

significant amplitude proportionality changes occurred for either method. However, since 

the PTM used the sum of minimum amplitudes of the PT for each individual sub-band, 

the amplitude of the defect’s reflection reduced slightly. This is the main reason that the 

PTM gives a slightly higher value than PT for peak-to-peak comparison of pipe-end to 

defect. 

The same scenario is then applied to check the proposed method when the saw cut defect 

size is 2% CSA.  Figure 6-8 presents a) the actual scale result and b) the zoomed-in result 

of the unprocessed signal and the proposed SSP technique, with the PT and PTM 

algorithms respectively. It is clear that the defect is almost hidden by the noise level and 

it is impossible to identify it with the conventional technique used in the Teletest system. 

The result of proposed technique clearly indicates that the SSP technique with PT 

algorithm is able to identify defects down to 2% CSA. It is shown that the amplitude of 

the defect’s reflection is at the level of coherent noise amplitude for the unprocessed data, 

whereas the PT algorithms has removed all the surrounding noises and only the defect’s 

reflection remains. In addition, while the PTM algorithm removed the coherent noise 

significantly, the defect amplitude is also reduced.  

The SNR of the unprocessed signal is 7.8dB and the result of SNR enhancement is shown 

in Table 6-5. The PT algorithm, as illustrated in Figure 6-8, gives the highest SNR 

enhancement (33.9dB), and although the PTM gives 25dB SNR enhancement it reduced 

the defect’s reflection considerably. 
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Table 6-4: Peak to peak measurement of pipe-end to defect with 3% CSA 

Received signal Pipe-end to defect (dB) 

Unprocessed signal 37.15 

Polarity thresholding (PT) 37.35 

PT with minimisation (PTM) 38.95 

 

 

 

Figure 6-8: Result of unprocessed signal vs. SSP- 2% CSA defect- 44kHz: a) result b) zoom-in 
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Figure 6-9 illustrates the Hilbert transform zoom-in of the defect’s reflection from baseline 

up to 8% CSA, obtained by a) Teletest system before applying SSP and b) the proposed 

SSP technique using PT algorithms. 

These results indicate that defects up to 2% CSA can be identified with both Teletest and 

SSP techniques. However, as explained earlier and illustrated in Figure 6-7 and Figure 

6-8, the conventional technique utilised in Teletest system was unable to identify defects 

below 4% CSA, as they are hidden in the noise level, whereas the SSP identified defects 

down to 2% CSA as it reduced/removed the effect of DWM. Therefore, SSP reduced the 

coherent noise level around the signal of interest.  

Since SSP divides the frequency bandwidth to a set of overlapping sub-bands signal and 

then non-linearity sums up entire sub-bands together to obtain the output signal, as 

illustrated in Figure 6-9-(b), it is slightly narrower/stretched compared to the conventional 

results, as displayed in Figure 6-9-(a). 

In addition, Figure 6-10 shows the zoom-in plot around the defects area from 0.5% CSA 

to 8% CSA using Matlab software for both unprocessed data (blue) and the SSP technique 

with PT algorithm (red). The figure confirms that the SSP technique using optimum 

parameters with PT algorithm enhances defect sensitivity down to 2% CSA, which was 

hidden below the noise level.  Even for 3% CSA, as shown in Figure 6-10, is still difficult 

to identify it using conventional techniques, whereas after using SSP it is easily noticeable 

and can with confidence be identified as a defect. This size flaw is typical of that which 

can be challenging to reliably detect with UGW inspection systems. 

Furthermore, in order to show how the proposed SSP technique removes/reduces the 

coherent noise on the received UGW signal, and as a result has the potential to increase 

the inspection range, the unprocessed signal (blue) and SSP signal using PT (red) with 8% 

CSA at 44kHz is displayed in Figure 6-11. It can be seen in the unprocessed signal that 

there some coherent noise exists between peaks and the level of the noise increases as the 

distance increases.  

This proves that it is more difficult to find a small defect in a longer distance. By contrast, 

the result of SSP clearly shows that this technique has removed the entire coherent noise 

and only the signal of interest remains, without distorting the signal, therefore it increases 

the sensitivity as well as increasing the inspection range. 
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Table 6-5: SNR enhancement of experimental UGW signal with 2% CSA 

SSP recombination techniques SNR enhancement (dB) 

Polarity thresholding (PT) 33.9 

PT with minimisation (PTM) 25 

 

 

 

Figure 6-9: Illustrates the zoom-in result of experimental data for the defect’s reflection from baseline 
up to 8% CSA, obtained by a) Teletest unit and b) the proposed SSP technique using PT algorithms. 
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Figure 6-10: Zoom in around defect area from 0.5% CSA up to 8% CSA 

 
Figure 6-11: Result with 8% CSA; Unprocessed Signal (blue) and SSP Signal (red)   
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6.2.3 SNR Calculations  

In order to determine how the proposed technique improves the performance and enhances 

the spatial resolution of the UGW response, the SNR has been calculated for different 

frequencies to see which improves the SNR most. Three types of SNR are calculated for 

this purpose, using equation (6-1) as follows: 

i)   The peak amplitude of the defect (S) to the RMS value of the noise region (N) 

ii)   The peak amplitude of the pipe-end (S) to the RMS value of the noise region (N) 

iii)   The peak amplitude of the pipe-end (S) to the peak amplitude of the defect (N) 

Figure 6-12 illustrates those parts of the signal which are utilised to calculate the SNR for 

the above cases. This figure presents the response of the experimental data for the eight-

inch pipe with 8% CSA defect, as described in the previous section.  

In the first SNR calculation, the peak amplitude of the defect is selected as (S) and the 

RMS value of the noise region is selected as (N) and the SNR is calculated for all 

frequencies, which as mentioned earlier are 28kHz, 36kHz, 44kHz, 64kHz and 72kHz. 

Note that, since the PT algorithm gave the best SNR enhancement as well as spatial 

resolution, only the result of the PT is presented for this analysis. Figure 6-13 illustrates 

the result of the unprocessed signal (blue) and SSP–PT algorithm (red) for the above 

experiment when there is no defect (baseline) up to a defect size of 8% CSA. 

The results clearly illustrate that the performance of the proposed technique massively 

improves the SNR of the UGW response compared to the unprocessed data for each 

frequency tested, achieving a 30dB improvement for 44kHz. However, as mentioned 

 
Figure 6-12: Regions to calculate SNR  
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Figure 6-13: SNR calculation - peak amplitude of the defect (S) to the RMS value of the noise region 
(N) for 28 kHz, 36 kHz, 44 kHz, 64 kHz and 72 kHz. 
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earlier, the comparison commences when the defect size is at least 2% CSA. Hence, in 

order to clarify, we show a dotted line at 2% for each frequency response.  

In addition, Figure 6-14 illustrates the SNR results for both unprocessed UGW data and 

SSP–PT technique for the selected frequencies and indicates that overall the result of 

44kHz gives the best enhancements, although the SSP-PT improves the SNR for each 

frequency from 2% CSA upwards. The reason that 44kHz gives the highest SNR even 

before applying the SSP technique is that this frequency is in the peak of dispersion curve 

for this particular pipe size and geometry as explained in Section 2.6.6. 

Figure 6-15 illustrates the results of two other SNR calculations. Figure 6-15-(a) calculates 

the SNR by selecting the peak amplitude of the pipe end to RMS value of the noise region, 

and clearly demonstrates that in all cases the proposed technique improves the SNR 

significantly, in particular at 44kHz, which improves the frequency approximately by 

30dB. Figure 6-15-(b) presents the SNR of the peak amplitude of the pipe end reflection 

to the peak amplitude of the defect reflection, and as shown, the SNR for the UGW 

response before and after applying SSP follows the same trend. This means that no 

information is lost in terms of reducing the noise.  

It is very important in UGW testing that the post-processing technique does not remove 

any small features. The results above evidently present that the SSP with the proposed 

optimum parameters has the potential to remove coherent noise while preserving small  

 
Figure 6-14: Result of SNR for original respond and SSP respond for different frequencies  
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Figure 6-15: Result of SNR calculation a) peak of pipe end to RMS of noise region, b) peak of pipe 
end to peak of defect 

features down to 2% CSA. Therefore, as a result of this experiment, SSP shows great 

potential to enhance the SNR, increase the sensitivity and spatial resolution of UGW 

response and identify potential defects down to 2% CSA. 
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6.3 Experiment with Two Saw Cut Defects  

6.3.1 Objectives 

The aim of the work within this section is to investigate the spatial resolution (distance 

limitation) of SSP where a small feature (i.e. defect) is close to a dominant features (such 

as a weld, pipe end and flange). The initial investigation starts with the proposed optimum 

SSP parameters utilised for a single saw cut defect, as explained in Section 6.2.2, to 

evaluate the outcome of the SSP distance limitation, obtained for the synthesised signal 

defined in Chapter 5. 

6.3.2 Overview 

To find the SSP distance limitation, experiments were carried out in the lab on the same 

eight-inch steel pipe that was utilised for the previous experiments, presented in Section 

6.2.2. It has been claimed by Mallet [13] that when two features are close to each other, 

the SSP technique will remove the one that has a smaller amplitude. However, he did not 

mention the exact parameters that produce this result, or the exact distance limitation, etc. 

In the synthesised test described in Chapter 5, it was revealed that when the distance 

between two features is less than 50cm, then the reflection of those signals will be 

superposed and the output of SSP technique is the combination of those signals as a single 

peak. However, other techniques, such as pulse compression, dispersion compensation, 

etc. offer the separation of superposed signals, as already mentioned in the literature. 

6.3.3 Experiment Setup Up 

The experiments setup up was the same as for the previous experiment, using the same 

eight-inch pipe, six meters long with a wall thickness of 8.28mm and outer diameter of 

219.08mm. In this experiment, another saw cut defect is added to the pipe at a location 

48cm from end of the pipe, as shown in Figure 6-16. The size of the defect is incrementally 

increased from 1% CSA to 8% CSA. Note that another 8% CSA saw cut defect already 

exists 1.5m from the pipe end. The signal is excited using a ‘5 Ring Torsional’ Teletest 

system [14] to transmit a 10-cycles, Hann window modulated tone burst of  T(0,1) wave 

mode. The ring spacing between transducers was 30mm. The Teletest Collar was placed 

1.5m from the near end of the pipe, using the pulse/echo method to excite/receive (Tx/Rx) 

the signal. The same frequencies as for the previous experiment were used to collect the 
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data, but only the results relating to 44kHz are presented here because, according to the 

previous experiment, this frequency gives the best SNR enhancement. 

6.3.4 Implementation of SSP 

In this section, the proposed SSP technique was applied to the UGW response of the 

experimental data gathered with two defects. The SSP parameters were the same as those 

utilised for the previous experiment for this pipe with one defect. The initial result 

obtained with these parameters was not as successful and was only able to identify defects 

down to 4% CSA.  

Therefore, the brute force search was applied to find the optimum parameter values for 

this scenario, again in order to improve the performance/resolution of the defects and 

capability to find smaller defect size. As a result, the optimum values were discovered that 

give the chance to detect defects down to 2% CSA for a second defect while the pipe 

already had another 8% CSA. The unprocessed signal and signal after applying SSP with 

the new optimum parameters are presented in Figure 6-17. This figure clearly 

demonstrates that the data after applying SSP are tidier in general and, in terms of defect 

detection, down to 2% CSA is noticeable. However, it can be seen that the coherent noise 

is hardly removed/reduced by the new parameters and SNR is slightly improved. The SNR 

enhancement is presented in Table 6-6 for 2% CSA and 3% CSA. Therefore, it is 

confirmed that there is a trade-off between detecting small features next to a dominant 

signal and improving the SNR. 

The result shows that the same as synthesised analysis the distance limitation of SSP to 

identify any features is around 50cm when using 10-cycles Hann windowed at 44kHz. 

1.5 m 1.5 m 3 m 

First Saw Cut 
(8% CSA) 

Teletest Collar 

219.08 
mm 

Second Saw Cut 
(1% to 8% CSA) 

48 m 

Figure 6-16: Experimental setup for the same eight-inch pipe with two saw cut defects. 
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Figure 6-17: Zoom in result with two defects a) Unprocessed Signal b) SSP -PT 

Table 6-6: SNR enhancement of experimental UGW signal with two defects 

SSP recombination techniques 2% CSA 3% CSA 

Polarity thresholding (PT) 1.5 2.2 

PT with minimisation (PTM) 2.1 3.1 

6.4 Application of SSP to field data 

The set of experiments in the previous section had the purpose of applying the proposed 

SSP technique to the GWT data gathered in the lab. In this section, the technique is tested 

for actual GWT field inspection data. These data were gathered in different areas and at 

different frequencies. A key point of this section is to show how the proposed technique 

can improve the SNR and enhance the spatial resolution of the field GWT signal compared 

to the conventional results obtained from the Teletest system. 

This section presents field inspection data collected using the Teletest system with the 

standard narrowband excitation routine. The narrowband data responses were examined 

by a trained GWT inspection to identify damage such as corrosion during the field 

inspection before the data were processed using the proposed SSP technique with PT and 

PTM, which were found to be the best SSP algorithms regarding SNR enhancement.  
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It is notable that these data only cover a torsional tool configured in three/five rings, 10-

cycles Hann windowed. 

6.4.1 Objectives 

The main motivation of the work within this section is to study the SSP technique that 

proposed throughout this thesis to actual GWT field inspection data. Thus, the specific 

objectives are as follow: 

• Define an optimum SSP filter bank parameters that could be applied in the Teletest 

system for all the data that obtained in the field inspection. 

• Implement the SSP with PT and PTM algorithms that proposed in Chapters 6, to the 

data gathered in the field. 

• Extract quantitative information from the inspection plots to assess the performance 

of SSP technique within an actual GWT field inspection data. 

6.4.2 Field data collection 

The data used in this section were collected during inspections using a commercial 

Teletest system and covering a variety of sizes of pipes at several locations, mainly in 

Alaska. There were many data available for processing. However only eight scenarios 

have been presented, and a summary of these inspections is presented in Table 6-7: 

Table 6-7: Schedule of field tests 

Test ID 

Pipe size 

(inch) 

Ring Spacing 

(mm) 
Frequency 

(kHz) Plot Number Test Direction 

TK104 8 30 36 Figure 6-18 Backward 

Tank 13 16 30 36 Figure 6-19 Forward 

Tank 13 16 30 36   Figure 6-20 Backward 

C9 Sewage 12 30 44   Figure 6-21 Forward 

C9 Sewage 12 30 44  Figure 6-22 Backward 

GW SES 12 30 64 Figure 6-23 Forward 

153 14 30 36 Figure 6-24 Backward 

516 12 45 54 Figure 6-25 Forward 
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6.4.3 Pre-Processing  

To assess the data, a function written in Matlab received the field data and processed it to 

generate the output signal. Note that a GWT inspection contains a few wave modes that 

are overlaid on the same plot, but in our processing we have only used the result of T(0,1) 

wave mode, and the SSP technique is applied to these data. In addition, the Hilbert 

transform is used to present the absolute value of a sinusoidal signal and to display its 

envelope. 

6.4.4 Data Analysis and Results 

The results presented in this section belongs to the eigth sets of data that are summarised 

in Table 6-7 among the many data available to the author for post-processing which 

contains different level of coherent noise. The results of Test 1 are shown in Figure 6-18. 

This test utilised an eight-inch pipe with a wall thickness (WT) of 8.18mm and an outside 

diameter (OD) of 8.625 inches. This figure presents the logarithmic A-Scan in the distance 

domain that the operator employs to analyse the data and decide whether there are any 

features within the pipeline or not. The logarithmic A-scan is preferred over a linear A- 

     

 

Figure 6-18: Comparison between unprocessed signal and proposed SSP with PT and PTM 
algorithms. Test ID: TK104, 8-inch pipe with OD: 8.625 and WT: 8.18mm at 36 kHz. 
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Scan, as the linear results usually do not show up the data effectively due to material 

attenuation, which has a negative exponential effect on amplitude with propagated 

distance from mechanical waves in this type of material. The black trace is the 

axisymmetric, T(0,1) wave mode, response in both plots. The blue and red traces are 

flexural responses of F(1,2) in Figure 6-18 (top plot), where the blue trace presents the 

vertical cross-section displacement of F(1,2) and the red trace displays the horizontal trace 

of F(1,2) in terms of cross-section displacement. Distance amplitude correction (DAC) is 

used in the Teletest system to set the reference signals for measuring the sensitivity of the 

scan, which is explained by many researchers (such as [81], [95]). In addition, responses 

from flaws are categorised as follow: 

• Category 3: where the line is set at -20dB and used for a severe anomaly that is -

6dB below the weld line. 

• Category 2: where the line is set at -26dB and used for a moderate anomaly that 

is -12dB below the weld line. 

• Category 1: Any response that exceeds the general noise level by 6dB and below 

category 2 are categorised as Cat.1. 

Test file 1, as illustrated in Figure 6-18, contains four features identified by the inspector, 

and no anomalies were identified throughout inspected length. The results show that the 

proposed method enhanced the SNR and spatial resolution of this test by approximately 

5dB. The SNR enhancement of all test files is presented in Table 6-8. 

Table 6-8: SNR of all test files 

Test file number Unprocessed signal SNR PT SNR PTM SNR 

1 – TK104 21.8 25.6 26.8 

2 – Tank 13 22.3 26 26 

3 – Tank 13 22.8 26.1 27 

4 - C9 Sewage 18.7 26.4 27.2 

5 – C9 Sewage 20.9 25.7 28.8 

6 – GW SES 28.1 31.6 31.8 

7 – 153 24.4 26 26.8 

8 – 516 18.5 24.5 24.7 
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Test file 2, shown in Figure 6-19, states that the signal identified as welds on the A-scan 

cannot be confirmed, so a degree of assumption has been made. This was a noisy signal 

within the tested range. Hence, the inspection length is down to 5.5 meters from the tool 

location. Note that the grey colour indicated the end of the inspection range by the site 

engineer. The proposed method identified the weld, reduced the coherent noise, and only 

a few peaks remained that required further investigated. In addition, the SNR was 

improved by 4dB for both PT and PTM algorithms. 

 

 

 

Figure 6-19: Comparison between unprocessed signal and proposed SSP with PT and PTM 
algorithms. Test ID: Tank 13, 16-inch pipe with at 36kHz, forward direction. 
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Two category 2 anomalies were reported in the inspection length of Test file 3, as shown 

in   Figure 6-20. This was a 16-inch tank, which was inspected at 36kHz. In general, 36kHz 

is an optimum frequency for the tool configuration. Both PT and PTM algorithms 

identified these flaws as well as the weld and enhanced the SNR approximately by 4dB. 

 

         

 

  Figure 6-20: Comparison between unprocessed signal and proposed SSP with PT and PTM 

algorithms. Test ID: Tank 13, 16-inch pipe with at 36 kHz, backward direction. 
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The report of Test 4, as shown in Figure 6-21, stated that this pipe had high levels of noise. 

However, the inspection engineer identified one Cat.2 flaw, a weld, and the pipe end was 

on the diagnostic length for the 12-inch pipe at 44kHz. The results of the proposed method 

illustrated that the reported features are recognised by the proposed SSP method and the 

SNR was improved by approximately 9dB. 

 

 

 

  Figure 6-21: Comparison between unprocessed signal and proposed SSP with PT and PTM algorithms. 
Test ID: C9 Sewage, 12-inch pipe with OD: 12.75 and WT: 19.05mm at 44kHz, forward direction. 
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A-scan in  Figure 6-22, illustrates for Test file 5 at 44kHz that the level of noise was high; 

hence, the length of inspection was reduced. One Cat.1 flaw was identified by the 

inspector, which was also detected by SSP. The results showed that SSP reduced the 

coherent noise while preserving all features, and increased the SNR by 8dB for PTM 

algorithm. 

 

 

 

Figure 6-22: Comparison between unprocessed signal and proposed SSP with PT and PTM algorithms. 

Test ID: C9 Sewage, 12-inch pipe with OD: 12.75 and WT: 19.05mm at 44kHz, backward direction. 

-10 -9 -8 -7 -6 -5 -4 -3 -2

Distance (m)

10 -3

10 -2

10 -1

10 0

10 1

dB

Cat 1.
BranchIgnore (mirror signals)

Weld



145 
 

The data collected for Test 6 contain three responses, which were classified as two welds 

and one Cat.1 anomaly, as shown in Figure 6-23. The inspection engineer identified these 

features, which were also detected by SSP. The SNR was improved by about 3.5dB for 

both PT and PTM algorithms. 

 

         

 

Figure 6-23: Comparison between unprocessed signal and proposed SSP with PT and PTM algorithms. 
Test ID: GW SES, 12-inch pipe with OD: 12.75 and WT: 5.16mm at 64kHz, forward direction. 
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A-Scan of Test file 7 is presented in Figure 6-24. The figure shows that no usable data 

were obtained. It is suggested by the inspector that the pipe may have Denso wrap applied. 

The proposed method identified the clamp, weld, reduced the coherent noise level, and 

enhanced the SNR by 2dB.  

 

         

 

Figure 6-24: Comparison between unprocessed signal and proposed SSP with PT and PTM algorithms. 
Test ID: 153, 14-inch pipe with OD: 14 and WT: 7.92mm at 36kHz, forward direction. 
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Finally, Test file 8 presents the A-Scan of a 12-inch pipe at 54kHz containing two Cat. 2 

defects and a few other peaks, as illustrated in Figure 6-25, where the signal contains a 

high level of noise. The proposed SSP increased the SNR by approximately 6dB due to 

removing the coherent noise. Also, it detected most of the features identified by the 

inspection engineer, but was unable to identify the second defect. This could be the result 

of a distance limitation of SSP, as defined in the previous section.  

 

         

 
Figure 6-25: Comparison between unprocessed signal and proposed SSP with PT and PTM algorithms. 

Test ID: 516, 12-inch pipe with OD: 12.75 and WT: 10.31mm at 54kHz, forward direction. 
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6.5 Discussion  

The use of SSP in GWT and identification of its optimum set of parameters carried out in 

this chapter follows a relatively new approach [13]. The signal synthesis presented in the 

previous chapter showed that SSP with the proposed parameters has generated promising 

results to enhance the SNR and spatial resolution of GWT signals by minimising the 

coherent noise. Hence to validate the synthesised outcome, laboratory experiments were 

carried out to assess the suitability of those proposed parameters.  

6.5.1 Experiment #1: Pitch-catch using Teletest Focus+ and 3D-LDV scan 

(axisymmetric defect) 

The first experiment used the pitch-catch method on a six-inch, six-meter long steel pipe 

with an outside diameter of 168.28mm and 14.3mm wall thickness. The pipe included an 

axisymmetric defect of 12.5% depth, which represented a loss in CSA of 13.5%. The 

Teletest Focus+ system pulser/receiver was employed to transmit a signal (Tx) and a 

Polytec 3D Laser Doppler Vibrometer (3D-LDV) was utilised to receive the signal (Rx). 

The excitation signal was a 10-cycles Han-windowed sine wave pulse at 60kHz that 

transmitted into the pipe specimen to generate a pure T(0,1) wave mode. The aim of this 

experiment was to analyse a scan point captured by 3D-LDV and minimise the coherent 

noise using SSP. 

The level of coherent noise in this experiment was noticeable, mainly caused by the 

presence of dispersive wave modes. To quantify the improvement given by different SSP 

recombination algorithms, the SNR of the UGW response was calculated. 
The results illustrated that the PTM algorithms have the greatest increase in SNR, 32dB, 

without distortion of the main signal arising from T(0,1) wave mode. The second best 

performing method was the PT algorithm, which exhibited 23dB enhancements. On the 

other hand, the FM algorithm removed the defect’s reflection signal and reduced the pipe-

end amplitude. This distortion is caused by multiplying the frequency of each sub-band 

without considering the sign of the signal. As a result, PTM and PT are chosen as the most 

appropriate SSP recombination algorithms for GWT data. 
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6.5.2 Experiment #2: Pulse-echo using Teletest Focus+ system (single saw 

cut defect) 

The second experiment was carried out on an eight-inch steel pipe, six meters long with a 

wall thickness of 8.28mm and outer diameter of 219.08mm using a pulse-echo technique. 

The ‘5 Ring Torsional’ Teletest system was utilised to transmit a 10-cycles, Hann window 

modulated tone burst of T(0,1) with a centre frequency of  44kHz. The Teletest Collar was 

placed 1.5m from the near pipe-end, and a saw cut defect was created 1.5m from the far 

pipe-end. Nine-saw cut defects were created, the sizes of which gradually increased from 

0.5% CSA to 8% CSA. Since the PT and PTM algorithms gave the best results in terms 

of SNR and spatial resolution for the synthesised and the pitch-catch method, these 

algorithms were employed here. 

The results of this experiment demonstrate that the SNR was improved by approximately 

30dB compared to the unprocessed signal. The results indicated that defects smaller than 

2% CSA cannot be identified both before and after SSP. This is due to the sensitivity of 

the system12. Therefore, the investigation and comparison were conducted only when the 

defect size was greater than 2% CSA. It was shown that the 2% CSA defect’s reflection 

was almost masked by the coherent noise level and identification of responses using 

conventional signal interpretations is not feasible. However, SSP removed all the 

surrounding coherent noise but the defect’s reflection. Therefore, this provides a good 

evidence that SSP has the potential to identify defects down to 2% CSA and enhance the 

spatial resolution. 

6.5.3 Experiment #3: Pulse-echo using Teletest Focus+ system, (two saw 

cut defects) 

The third experiment was carried out on the same eight-inch pipe mentioned in the 

previous experiment. In this test, a new saw cut defect was created which varied in size 

1% CSA to 8 % CSA in each test, in addition to the already existing 8% CSA defect. The 

aim was to find and validate the distance limitation of SSP, as proposed in the synthesised 

UGW exercise with two adjacent features. Therefore, the defects were created 48cm from 

                                                 
12 Sensitivity of Teletest monitoring system vary in different applications. However, typically a -32dB signal 
to coherent noise (100% reflector to coherent noise level) is considered in the field of guided waves [203]. 
This is the reason where a defect response remains unnoticed where its relative amplitude falls below -32dB. 
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the far pipe-end. The results illustrated that defects up to 4% CSA are detectable with the 

same filter bank parameters as used for the previous scenarios. However, in terms of 

identifying smaller defects, the parameters were required to be modified and was 

undertaken using brute force search algorithm described in Chapter 6. As a result, new 

filter bank parameters were introduced to identify defects down to 2% CSA. However, 

this was achieved at the cost of reducing the SNR enhancement. 

6.5.4 Field data analysis using SSP  

Furthermore, the proposed technique was applied to a series of field data using pipelines 

of different dimensions, collected in Alaska. These pipelines had a few known features, 

which were employed to assess the proposed parameters, where signal responses were 

more complex than those previously examined. The excitation signal in all test files was 

a 10-cycles Han-windowed sine wave pulse at different frequencies that were transmitted 

into the pipe specimen to generate a pure T(0,1) wave mode. The results showed that the 

proposed method significantly reduced the coherent noise in all test files and increased the 

SNR and spatial resolutions of the UGW response. 

In addition, some peaks were identified that corresponded to unidentified peaks in the 

unprocessed signals. It is unclear if these are actual features or erroneous features 

introduced by the SSP technique. However, in some cases the proposed method reduced 

the amplitude of the features, in particular the response of defects. Therefore, this requires 

further investigation as the relative amplitude of the defect is required for flaw sizing. 

Moreover, although the SNR of the PTM algorithm was slightly higher than the SNR of 

the PT algorithm in most cases, in terms of identifying features and preserving the 

amplitudes, PT achieved the greatest response. Therefore, SSP using PT algorithm as 

implemented in this work, is suitable for GWT; however, the pre-defined parameters that 

can be applied for any inspection are not yet defined. As a result, further investigation is 

required to address this issue. In addition, more field data sets are required to assess the 

proposed method by utilising all known features in the A-Scan to ensure that SSP 

technique does not produce any erroneous features. 
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6.6 Conclusions 

This chapter presents the GWT experimental and field data containing features and a high 

coherent noise level. The SSP technique is applied to these data to assess the outcome of 

synthesised signal analysis, as presented in Chapter 5. The main concern was to reduce 

the coherent noise by minimising the effect of DWM, hence, improving the SNR and the 

spatial resolution of UGW response.  

A selection of commercial GWT tools, such as Teletest system and a 3D-LDV were 

utilised to demonstrate the advantage of the proposed method compared to the current 

inspection process. To meet the objective, three sets of experiments were conducted in the 

lab on six and eight-inch diameter steel pipes, followed by field tests, to validate the 

proposed SSP filter bank parameters, using the best recombination algorithms. The 

proposed parameters were tested for T(0,1) wave mode and its flexural wave modes family 

using different frequencies. 

The experimental results confirmed that the proposed technique considerably reduces the 

level of DWM in UGW response, and significantly enhances the SNR up to 38.9dB for 

pulse-echo measurement in Section 6.2.2. These levels of SNR improvement can 

potentially make signal interpretations easier and lead the users to do more reliable UGW 

inspections. Enhancements in UGW sensitivity and spatial resolution can pave the way to 

detecting smaller defects and increasing the inspection range. It is shown that the proposed 

technique identified defects down to 2% CSA that were hidden below the noise level. 

Thus, it is suggested that these parameters are suitable for UGW signal using T(0,1) wave 

mode for this specific application. To the best of the author’s knowledge, this technique 

has not previously been used successfully in the field of GWT.  

Furthermore, in order to validate the distance limitation of SSP, as illustrated for the 

synthesised signal in Chapter 5, another experiment was conducted in the lab, where a saw 

cut defect was created 48cm from the pipe-end, the size of defect gradually increased from 

1% to 8% CSA. To start the investigation, the same SSP filter bank parameters as utilised 

for the first experiments were tested. The results indicated that the proposed method, with 

those parameters defined earlier, was able to identify defects only when the size of the 

defect was larger than 4% CSA. Therefore, in order to check the ability of SSP to find 

smaller defects in this case, a brute force search was applied. As a result, new optimum 

values were discovered enabled the detection of defects down to 2% CSA when the defect 

was close to the pipe end. However, this achievement is at the cost of losing resolution 
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and SNR enhancement, as this set of parameters were unable to remove the coherent noise 

entirely. 

Moreover, some field data were processed in this chapter, where the signal was much 

more complex. The results showed that the SNR and spatial resolution were improved for 

the majority of the features. However, in some cases, particularly when the features were 

close to one another, SSP combined the features, and hence reduced the temporal 

resolution.  

To sum up, it is shown throughout the synthesised, experimental and field data results that 

the performance of SSP technique is sensitive to the selection of filter-bank parameters. 

The optimum parameters are proposed that significantly reduced the effect of DWM, as a 

result; removing/minimising the coherent noise, enhancing the SNR, and spatial 

resolution. However, it was shown in some cases that the SSP parameters need to be 

modified, and further investigation is required to find the best parameters for every 

scenario. Also, the limitation of SSP regarding a distance limitation should be studied and 

a solution proposed to address it. Although SSP shows great promise for use in the 

industry, the pre-defined parameters need further investigation, which could result in a 

more reliable application to cover every scenario. 

.  
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Chapter 7 

 Conclusions and Recommendations for 

Future Work 
7.1 Main Finding of this Thesis 

The focus of the work presented in this thesis was to develop advanced signal processing 

techniques for acoustic (sonic and ultrasonic) applications. In these applications, signal 

responses are usually incomplete, distorted and noisy. Therefore, reconstructing the 

signal, noise reduction and the removal of any distortion/interference were the main goals 

of signal processing techniques presented. The primary aim was to study and develop an 

advanced time-frequency signal processing technique for acoustic applications to enhance 

the quality of the signals. The phenomenon was studied in detail with useful 

recommendations for future works. 

7.1.1 Signal processing technique applied to Audio Signal 

A time-varying signal model based on time-frequency analysis was introduced using 

motion detection to reconstruct the audio packet loss signal. The literature related to the 

audio signal was provided and the limitation of conventional techniques was highlighted. 

The proposed algorithm was a receiver-based that is designed for wide-band and narrow-

band audio signals to address the problem of the restoration of gaps in the signal. 

The problem of modelling the time-varying frequency spectrum in the context of packet 

loss concealment (PLC) was addressed, and a novel solution therefore is proposed for 

tracking and using the temporal motion of spectral flow to reconstruct the signal based on 

a time-frequency motion (TFM) matrix. The novel aspect of this methodology was the 

introduction of TFM and its application to motion-compensated extrapolation or 

interpolation algorithms using a discrete Fourier transform (DFT) or discrete cosine 

transform (DCT).  

The spectral motion vectors are estimated by dividing the signal bandwidth into several 

sub-bands. The cross-correlation of the frequency bands across time frames is used for 

motion estimation. The proposed algorithm is applied to synthesised and real audio signals 
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that contain random frame loss or gaps, in order to reconstruct/estimate the missing frames 

and enhance the quality of audio signals that have been degraded by packet loss.  

To compare the proposed method with conventional approaches both objective and 

subjective evaluations tests, in packet loss range of 5% to 20% were carried out, the details 

of which were fully discussed in Section 4.7. The evaluation results demonstrated that the 

proposed algorithm improved performance by an average of 2.85% and 5.9%, regarding 

PESQ and MOS scores respectively. Furthermore, the proposed algorithms are being 

considered for commercial applications by Brunel Innovation Centre. 

7.1.2 Signal processing method applied to Ultrasonic Guided Wave Signal 

A slightly different signal processing technique has been extended and applied to address 

another challenging problem in the Guided Wave Testing (GWT) industry, where 

shortcomings in pipeline inspections could result in catastrophe. Therefore, the focus was 

on a signal processing technique that could be utilised as the post-processing technique 

for Ultrasonic Guided Waves (UGW) response. This has been achieved by employing the 

modified version of time-frequency algorithms that were proposed and developed for 

audio signals. 

The proposed signal processing technique, called split-spectrum processing (SSP), was 

investigated for the reduction of coherent noise in GWT due to multi-modality and the 

presence of unwanted dispersive wave modes (DWM). The SSP method with respect to 

its application in UGW inspection has been reviewed quantitatively to measure the 

enhancement regarding SNR and spatial resolution.  

The research into this application of SSP demonstrated that the performance of the 

technique was sensitive to the parameter values employed in its implementation. This 

research therefore investigated a parametric study of the filter bank parameter values to 

determine their influence on SSP performance for pipe inspection using GWT. Parameters 

such as processing bandwidth, filter bandwidth, and filter separation with resultant 

estimated optimum values were investigated for pipeline inspection.  

Initial signal processing of generating synthesised UGW signals was developed, to address 

challenges of excessive coherent noise arising from ultrasonic signals gathered during 

inspection, which was required to analyse the SSP application. Once the synthesised signal 

was generated, a brute force search algorithm was used to find the optimum values of the 

SSP parameters to give the highest SNR. 
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In addition, a range of SSP recombination algorithms was studied in this research, before 

being selected for synthesised experimental data. Polarity Thresholding (PT) and PT with 

Minimisation (PTM) algorithms among other recombination algorithm were found to be 

the best SSP methods recombining the signal. An SNR improvement of up to 30dB of 

received synthesised UGW signal was observed with the proposed optimal filter bank 

parameters employing PTM. To the best of the author’s knowledge, these optimum 

parameters have not previously been recognized or identified in the field of GWT. It also 

represents that although the Frequency Multiplication (FM) and Minimisation algorithms 

have improved the SNR, the spatial resolution of the result compared to PT and PTM 

algorithm was poorer as they were unable to remove the presence of DWM entirely and 

therefore they have a distorting effect on the signal. The limitations of each SSP 

algorithms are investigated in this research. The research identifies that if the distance of 

two features (e.g. defect and weld) was less than 0.4cm; the SSP algorithm may combine 

the reflection of two features as a single feature and presents a single peak. The amplitude 

of this single peak was the value of the larger of the two original peaks this effect reduces 

the temporal resolution. A minimum distance of 0.5cm was found to be effective with the 

proposed technique.  

It should be mentioned that this examination utilised an excitation frequency of 44kHz 

with 10-cycles modulated with Hann window. However, this result may vary slightly for 

different excitation frequencies and pulse width. The frequency optimisation study 

indicated that the distance limitation could be reduced up to 0.35cm by increasing the 

excitation frequency up to 70kHz. 

A range of experimental data was introduced to validate the proposed filter bank. The 

usefulness of SSP to minimise the coherent noise was tested in different scenarios, with 

two different types of defects (axisymmetric and saw cut defects), using the commercial 

GWT tools, “Teletest”, designed/manufactured by Plant Integrity Ltd. The optimum 

parameters obtained were validated using these experiments. The experimental set up used 

three-rings of torsional transducers to generate T(0,1) wave mode (the only non-dispersive 

wave mode). The results for a selection of frequencies showed that SSP using the optimum 

parameters successfully minimised the coherent noise and helped identifying defects 

down to 2% Cross-Sectional Area (CSA), where it was hidden below noise level for the 

unprocessed signal. An SNR improvement of up to 38dB of received UGW signal was 

observed in pulse-echo experiment in Section 6.2.2 However, it was revealed that when 
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the defect was close to the pipe-end (48cm), the defect identification for that particular 

defect, close to the anomaly signal, reduced to 4% CSA.  

Therefore, another brute force search algorithm was applied to find the optimum 

parameters to identify smaller defects. The results showed that the new parameters have 

the potential to identify defects down to 2% CSA, even when the defect was close to the 

pipe-end. However, in terms of SNR enhancement and temporal resolution, the new 

parameters when compared to the previous optimum parameters were less effective as 

shown in Figure 6-17., which the SNR is improved by an average of 2dB for 2% and 3% 

CSA defect. In addition, the results of SSP algorithms revealed that the SSP in terms of 

defect sensitivity has the potential to identify defects down to 2% CSA. Hence, SSP 

showed good potential to increase the inspection range from a single test location as it 

significantly reduced the level of coherent noise, enhanced the SNR, and improved the 

spatial resolution of UGW response. Furthermore, the development of the SSP technique 

was considered in respect of its application to sets of field data, which were more complex 

and difficult to analysis. It was revealed that SSP with optimum parameters has the 

potential to remove/reduce the coherent noise and significantly enhance the SNR and 

spatial resolution of field data, leading to the identification of smaller defects that may be 

hidden below the noise level.  

The field data were extracted from raw data collected at different locations, and of 

different areas, pipe sizes, etc. the post-processing methods were applied to make 

comparison of the Teletest result and the result of proposed technique that explained 

earlier. The results showed that the proposed method significantly reduced the coherent 

noise in all test files and the SNR and spatial resolutions were improved for the majority 

of the features. However, in some cases, particularly when the features were close to one 

another, SSP combined the features, and hence reduced the temporal resolution. 

The conclusions reached in this thesis will contribute to the progression of the GWT 

technique through more reliable signal interoperation and defect detection. Moreover, 

since this thesis has highlighted the performance of SSP in minimising the coherent noise 

and enhancing the SNR, this technique is being considered as a potential candidate to be 

used in the next release of Teletest software, produced by Plant Integrity (TWI Ltd). 

However, before software integration, the distance limitation needs to be addressed after 

future validations.  



157 
 

7.2 Recommendation for Future Works 

 

7.2.1 Time-Frequency Motion Matrix using Modified Discrete Cosine 

Transform or Wavelet Transform 

The proposed TFM matrix was designed to reconstruct audio packet loss with application 

to VOIP. The parameters defined in this work can be varied for better resolution, such as 

changing the frame length and reducing the overlap between adjacent frames. 

There is strong potential to examine the proposed TFM method using either MDCT 

domain or wavelet transforms. In addition, the comparison between the proposed DFT 

method with MDCT and wavelet transform may result in a better solution for enhancing 

the signal quality regarding packet loss. This approach may result in significant reduction 

in computational complexity of the system. 

Since the proposed technique is computationally demanding in terms of recent technology 

development, certain adjustments are required in order to implement the proposed 

algorithm on real-time embedded applications. This will involve tailoring and adjustment 

include numerical shortcuts, in particular with regards to matrix and vector calculations.  

In order to reduce the complexity, it may worth to pre-define the optimal frequency bins. 

This can be done by investigating the optimum frequency bandwidth and using either 

cross-correlation or autocorrelation for estimating the motion movement. In addition, the 

choice of interpolation algorithms is further area that could be the subject of future 

research. 

Furthermore, adding side information to the coded signal at a sender-side such as 

information about the signs of the DFT, DCT and MDCT coefficients, or a polynomial 

approximation of the coefficients (along frequency or time) needs to be investigated as it 

may improve the reconstruction process. 
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7.2.2 Automation of SSP Algorithm 

A set of synthesised, experimental data, as well as field data, were investigated in this 

work. Since the result showed promise regarding SNR enhancement and spatial resolution 

of GWT data, there is clear potential to automate the SSP technique based on pre-defined 

parameters. For this reason, further investigation is required in respect of different asset 

frequencies for each pipe’s size and geometry. Furthermore, the possibility of creating a 

procedure that can be utilised for working out the optimum parameters without using a 

brute force search. In addition, the use of a chirp signal (larger bandwidth excitation) may 

improve the results of SSP in terms of temporal resolution; however increasing the 

bandwidth increases the number of possible wave modes in the test, which can worsen the 

result. 

 

7.2.3 Application of the SSP Method on Flexural Wave Modes 

The proposed SSP method is designed to reduce the effect of coherent noise and increase 

the SNR and spatial resolution of GWT data. Dispersive wave modes (DWM) are one of 

the main sources of coherent noise, which occupies the same bandwidth as the signal of 

interest. Flexural wave modes are all dispersive, whereas higher order flexural wave 

modes are more dispersive as their energy is spread further over space/time during 

propagation. However, fundamental flexural wave modes are less dispersive (i.e. F(1,2)), 

as is presented in the Teletest software plot for field data in Chapter 6. Therefore, as most 

of the time defects were identified by looking at the trace of these wave modes, future 

work can concentrate on applying the SSP method on these wave modes. 

 

7.2.4 Apply the SSP Method on Hybrid Active Focusing Technique 

Initial test of SSP application on Hybrid Active Focusing technique [202] shows promise 

result to improve the SNR and spatial resolution of focused GWT up to 6dB when 

applying with the PT algorithms as shown in Figure 7-1. Therefore, further investigation 

is required in this area to enhance the sensitivity of inspections.  
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Figure 7-1: Focusing technique a) HTRF set up b) HTRF signal c) result of SSP-PT 
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