IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Incorporating Domain Knowledge into
Natural Language Inference on Clinical

Texts

MINGMING LU', YU FANG', FENGQI YAN', AND MAOZHEN LI?

' Department of Computer Science and Technology, Tongji University, Shanghai 201804, China

Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, UB8 3PH, UK

Corresponding author: Yu Fang (e-mail: fangyu@tongji.edu.cn).

This work was supported by the Fundamental Research Funds for the Central Universities under Grant 22120180117.

ABSTRACT Making inference on clinical texts is a task which has not been fully studied. With the
newly released, expert annotated MedNLI dataset, this task is being boosted. Compared to open domain
data, clinical texts present unique linguistic phenomena, e.g., a large number of medical terms and
abbreviations, different written forms for the same medical concept, which make inference much harder.
Incorporating domain-specific knowledge is a way to eliminate this problem, in this paper we assemble
a new Incorporating Medical Concept Definitions module on the classic enhanced sequential inference
model (ESIM) model, which first extracts the most relevant medical concept for each word, if it exists, then
encodes the definition of this medical concept with a bidirectional long short-term network (BiLSTM) to
obtain domain-specific definition representations, and attends these definition representations over vanilla
word embeddings. Empirical evaluations are conducted to demonstrate that our model improves the
prediction performance and achieves a high level of accuracy on the MedNLI dataset. Specifically, the
knowledge enhanced word representations contribute significantly to entailment class.

INDEX TERMS Attention mechanism, clinical text, medical domain knowledge, natural language

inference, word representation.

. INTRODUCTION

ATURAL Language Inference (NLI), also known as

Recognizing Textual Entailment (RTE), is a task con-
cerning semantic relationship (entailment, contradiction, or
neutral) between a premise and a hypothesis [1]. In re-
cent years, represented by the Stanford Natural Language
Inference (SNLI) [2] corpus and the Multi-Genre Natural
Language Inference (MultiNLI) [3] corpus, large-scale an-
notated datasets are made publicly available, which have
pushed the development of this task. In addition, many deep
neural network models are proposed to achieve the state-of-
the-art performance [4]-[6].

In the clinical domain, newly released MedNLI [7] dataset
focuses on NLI task on clinical texts. Owing to the spe-
cialty and particularity of this domain, clinical texts present
unique linguistic phenomena different from open domain
data: (1) the existence of a large number of medical terms
and abbreviations leads to the out-of-vocabulary (OOV)
issue; (2) a medical concept has different written forms in
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different vocabularies, though they have the same meaning.
Table 1 are some examples from the MedNLI dataset for
illustration. The key words in Example #1 are diaphoresis
and sweats, which express the same medical concept, but
they are written in different forms. Example #2 and #3 have
medical terms (lumbar puncture and coronary artery bypass
grafting), as well as standard medical abbreviations (LP
and STEMI) and not standard logogram words (pf, meaning
patient). If a system cannot understand these medical terms
and abbreviations correctly, it will misclassify the classes. In
general, these unique linguistic phenomena make inference
on MedNLI much harder.

Since processing of clinical texts requires domain-specific
knowledge, in this paper, we incorporate such knowledge
into the classic open domain model (ESIM) by encoding
the definitions of medical concepts with a bidirectional
LSTM [8] (BiLSTM) and attending the vanilla word em-
beddings to these domain-specific representations. Through
this way, computers are taught to, on one hand, learn the

1



IEEE Access

M. Lu et al.: Incorporating Domain Knowledge into Natural Language Inference on Clinical Texts

TABLE 1. Examples from the MedNLI dataset. P, H and
L stand for premise, hypothesis and label, respectively.
Domain-specific words for inference are in italics. LP is
the abbreviation for lumbar puncture, and STEMI stands for
ST segment elevation myocardial infarction.

Example #1

P: It was also associated with diaphoresis.
H: The patient has sweats.

L: entailment

Example #2

P: The pt was transfered to have an LP with neurosurg backup.
H: The patient has no neurological symptoms, or indication for
lumbar puncture

L: contradiction

Example #3

P: He presented preoperatively for coronary artery bypass
grafting.

H: Patient has had a STEMI

L: neutral

meanings of medical terms and abbreviations, on the other
hand, identify similarities and differences between medical
concepts. We conduct experiments on the MedNLI dataset,
and the results showing that our model outperforms all
baselines done by Romanov and Shivade [7], achieving the
state-of-the-art performance. In addition, we present ablation
study and case study to learn how domain knowledge
contribute to our model.
Our work has three main contributions:

« We propose a knowledge enhanced model for natural
language inference on clinical texts, which combines
BiLSTM and attention to enhance vanilla word em-
beddings with definitions of medical concepts.

e We study of the effectiveness of our model on the
MedNLI dataset, and achieve a higher level of accuracy
than those models without knowledge enhanced.

o Our ablation study and case study reveal some useful
insights for the contributions of knowledge enhanced
word representations.

The rest of this paper is organized as follows. Section II
reviews the related work for natural language inference.
Section III details the design of the proposed model. Sec-
tion IV and V present and discuss the experimental settings
and results, respectively. Finally, we draw conclusion in
Section VI.

Il. RELATED WORK

There are two types of approaches for natural language
inference task: encoding-based models and interaction-
based models [9]. Encoding-based models [2], [4], [10],
[11] use Siamese architecture [12] to learn vector represen-
tations of the premise and hypothesis, and then calculate
the semantic relationship between two sentences based on
a neural network classifier. One representative model is
InferSent [4], which is one baseline model of the MedNLI
dataset.
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Interaction-based models [5], [13], [14] utilize some
sorts of word alignment mechanisms, e.g., attention [15],
then aggregate inter-sentence interactions. As shown in the
SemEval-2016 task of interpretable semantic textual similar-
ity [16], the semantic relations of aligned chunks contribute
a lot to sentence pair modeling, interaction-based models
have better performance than encoding-based models. Chen
et al. [5] proposed an enhanced sequential inference model
(ESIM), which contains three main components, i.e., input
encoding, co-attention matching, and inference composition.
ESIM is another baseline model of the MedNLI dataset.

Unlike previous work [6] that enriches NLI models
with lexical-level semantic knowledge about synonymy,
antonymy, hypernymy, hyponymy and co-hyponymy be-
tween words, we focus on medical domain and explore the
incorporation of extra knowledge on clinical texts for natural
language inference. Romanov and Shivade [7] also studied
two ways of incorporating domain-specific knowledge into
their baseline models. In one way, they modified pre-trained
word embeddings by retrofitting [17], so the input to models
could carry clinical information. However, this way only
degrades the performance. Because retrofitting works only
on directly related concepts, while medical concepts are
more complex, and medical inferences require more steps
of reasoning. Another way is knowledge-directed attention,
which is beneficial to the InferSent and ESIM models. Our
model is similar to the first way, modifying model’s inputs,
but we utilize definition representations to enhance the word
embeddings of medical terms and abbreviations, alleviating
the OOV issue and bridging the semantic gap between
different written forms of a medical concept.

lll. MODEL DESIGN

In this section, we will explain the NLI task and describe
our domain knowledge, i.e., definitions of medical concepts.
Then, we study how to incorporate these definitions into the
ESIM model for natural language inference on clinical texts.

A. PROBLEM DEFINITION

Given the MedNLI dataset D, an example of the dataset can
be represented as a (p, h,y) triplet consisting of premise
p, hypothesis h, and ground truth label y. Specially, the
premise is represented as p = {a;}, and the hypothesis
is h = {b;j}}_,, where M and N are the lengths of
the sentences. y € {0,1,2} is the corresponding label of
the given triple which takes a value of O if the premise
entails the hypothesis (entailment), 1 if they contradict each
other (contradiction), and 2 if they are unrelated (neutral).
Our goal is to learn a predictive distribution p(y|p, h; 6)]
parameterized by 6 from D. That is, given a premise p and
hypothesis h, we would like to infer the probability that they
will be classified as entailment, contradiction, or neutral.

B. DOMAIN KNOWLEDGE
First, we collect the definitions of medical concepts from
Unified Medical Language System (UMLS) [18]. In UMLS,

VOLUME 4, 2016



IEEE Access

M. Lu et al.: Incorporating Domain Knowledge into Natural Language Inference on Clinical Texts

Incorporating
Medical
Concept

{a’i}?il

=<

Definitions

Heuristic (a"" M
M Matching i Sl
{af} L,

{e. o i=1

€ij '

wisma
=

<

Incorporating

b
maz

b
'mean

Medical
Concept

{0,371

Co-Attention
Matrix

c\ N
{b]}]:1 Heuristic {bm}N
Matching Jri=1

=1
s\ N
Definitions b3y

Input Encoding Layer

Co-Attention Matching Layer Inference Composition Layer

FIGURE 1. An overview of our model. Similar to the ESIM model, our model consists of three layers, i.e., input encoding
layer, co-attention matching layer, and inference composition layer. The difference is that we incorporate medical concept

definitions in the first layer. {a;}}, {b;}},,

and {c.;}7_, are the inputs to the model, representing the premise sentence,

hypothesis sentence, and the definitions of extracted medical concepts from two sentence, respectively. y is the output. G

means concatenation of vectors.

TABLE 2. Some examples of medical concepts and their definitions from UMLS.

Word Medical Concept Definition

diaphoresis  Increased sweating Profuse sweating.

LP Spinal Puncture Tapping fluid from the subarachnoid space in the lumbar region, usually
between the third and fourth lumbar vertebrae.

STEMI ST segment elevation myocardial infarction A clinical syndrome defined by MYOCARDIAL ISCHEMIA symp-

toms; persistent elevation in the ST segments of the ELECTROCAR-
DIOGRAM; and release of BIOMARKERS of myocardia NECROSIS
(e.g., elevated TROPONIN levels).

for a medical concept, there would be multiple definitions
coming from different source vocabularies. To simplify the
model, we choose the shortest one as the only definition
of this medical concept. In the end, we collect a total of
198,042 definitions that make up our domain knowledge
base, denoted as .

Second, following the previous work [7], we use
Metamap [19] to extract medical concepts from premise
and hypothesis sentences, and map them to standard ter-
minologies in the UMLS. For each extracted phrase, there
may be more than one related concepts, which are sorted
by MetaMap Indexing (MMI) score. The higher the score,
the greater the relevance of the medical concept to its
extracted phrase. In this paper, we only consider the concept
with the highest score for each word, and discard those
with the lower scores. As a result, every word has zero or
one corresponding medical concept. Through this way, we
know exactly what concept the medical term or abbreviation
stands for, and different written forms could be mapped to
the same concept. Finally, we associate words with concept
definitions. For example, if one word a; in the premise
sentence extracts a medical concept, then we search our
domain knowledge base /C for its definition. We denote
word a; associated definition as {c; ;}7_,. Table 2 shows the
extracted medical concepts of some domain-specific words
of Example #1 to #3, and their definitions from UMLS.
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C. MODEL OVERVIEW

We present here our model for natural language inference
on clinical texts. It consists of three layers: input encoding
layer, co-attention layer, and inference composition layer.
Fig. 1 shows an overview of our model.

The model takes the premise sentence, the hypothesis
sentence, and the definitions of extracted medical concepts
from two sentences as inputs, and then first constructs
respective word representations with pre-trained word em-
beddings. These pre-trained word embeddings can be either
publicly available open domain word embeddings, or trained
on a domain-specific corpora. Then, each word in two
sentences are attended over their corresponding definition
if it exists, which is done by the Incorporating Medical
Concept Definitions module. Furthermore, the enhanced
word embeddings are fed into a parameters shared BiLSTM
to obtain a set of contextualized representations of premise
and hypothesis sentences.

In the co-attention matching layer, we use soft-alignment
of contextualized word representations between the premise
and hypothesis to obtain aligned representation, followed by
a heuristic matching approach [20] to collect local inference
vectors for each word. Finally, to determine the overall
inference relationship between the premise and hypothesis,
another BiLSTM is utilized to compose the collected local
inference vectors, which is part of the inference composition
layer. The output hidden vectors of the second BiLSTM are
converted to fixed-length vectors with max and mean pool-
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ing operations and put into the final multi-layer perceptron
(MLP) classifier to determine the inference class.

Details about each layer and the Incorporating Medical
Concept Definitions module are provided in the following
sections.

D. INPUT ENCODING LAYER

Input encoding layer takes as inputs the premise {a;}M,
the hypothesis {b;}}_,, and associated medical concept
definitions {c.;}7_;, where - can be replaced with i or j.
Pre-trained word embeddings E € R%*IV| are first used
to converted word inputs to vector sequences af$, ..., aS;],
[bS,...,b5], and [¢fq, ..., c p], where [V] is the vocabu-
lary size and d. is the dimension of the word embedding. In
the experiments, we explore six different word embeddings,
one publicly available open domain word embedding, two
trained on domain-specific corpus, and three initialized with
open domain word embeddings and further fine-tuned on
one or two domain-specific corpus:

¢ GloVe|cc): GloVe embeddings [21], trained on Com-
mon Crawl.

o fastTextgioasq): fastText embeddings [22], trained on
PubMed abstracts from the BioASQ challenge [23].

o fastTextpvimvirc-n: fastText embeddings, trained on pa-
tient clinical notes from the MIMIC-III database [24].

e GloVejcc) — fastTextgioasq): GloVe embeddings for
initialization and further fine-tuned on the BioASQ
data.

. GloVe[CC] — fastText[BioAsQ] — faStTeXt[M[M[c-[H]Z GloVe
embeddings for initialization and further fine-tuned on
the BioASQ and MIMIC-III data in succession.

. fastText[Wiki] — fastText[MIMIC_m]: fastText Wikipedia
embeddings for initialization and further fine-tuned on
the MIMIC-III data.

All of the domain-specific word embeddings are down-
loaded from the MedNLI dataset!.

1) Incorporating Medical Concept Definitions

Inspired by the work of [25] and [26], we incorporate
medical concept definitions into word embeddings, as shown
in Fig. 2.

The bidirectional long short-term memory (BiLSTM) net-
work has been proven to be good at modeling dependencies
coming from both the past and the future in sequences. So
we employ it to encode definition embeddings in forward
and backward directions. Take Fig. 2 for example, cf is the
input to the BiLSTM at time step ¢. To simplify notation,
we omit the subscript ¢ in this section. The hidden states in

Uhttps://jgc128.github.io/mednli/
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FIGURE 2. An illustration of incorporating medical concept
definition embeddings {c¢,}7_; into the vanilla word em-
bedding a$ of one medical term or abbreviation in the
premise. From the output, we will get the enhanced word
representation as;.

the forward direction are updated as follows:

i = o(Wick + U Ry +b) (1)
fi=o(W/ct + U+ b )
01 = o(W°eS + Uh(_y +b°) 3)
@ = tanh(Wiet + UTh 1 + b7) @)
Pt = fitoPit—1+10q; )
T+ = 0, o tanh(ps) 6)

where %;, f;, o; are the input gate, forget gate and output
gate of LSTM, respectively. o is the sigmoid function, and
p: is the cell state. Accordingly, in the forward direction, the
hidden state h; at time step ¢ depends on input word and
the preceding hidden state h ;_;. Similarly, in the backward
direction, the hidden state ﬁt is updated based on current
input and the hidden state from the next time step. At the
t-th time step, the output of BiLSTM is usually obtained
by concatenation of the hidden states from both directions,
formally, h; = [h; h]. Especially, the above process can
be simplified as a BILSTM function:

hi,..., hy = BiLSTM(cS, . .., c5) 7)

To obtain definition enhanced word embeddings, we
utilize a multi-layer perceptron attention [15] mechanism
to aggregate the outputs of BiLSTM and then add them to
the vanilla word embeddings. In particular, attention first
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computes the alignment score between h; and a® by a
function f(h¢, a®):

f(hy,a®) = vTo(Whh, + Wea®) (8)

where W, W€ are weight matrices and v is a weight
vector. This alignment score measures the attention of a® to
h;. Subsequently, a softmax function normalizes alignment
scores to form a vector z € RT:

)
t T T
> p—1 exp(f(he, a®))

Here, z; is an indicator of the importance of h; to a®. So,
the output of attention is a weighted sum of {h;}._;, where
the weights are given by z.

By adding the output of attention and the vanilla word
embedding, we obtain definition enhanced word embedding
in the premise:

)

T
a®=> zh +a (10)
t=1

The above approach of incorporating medical concept defi-
nitions also applies to the hypothesis.

2) Sentence Encoding

To represent words in their context, the enhanced word em-
beddings of premise and hypothesis are fed into a parame-
ters shared BILSTM to obtain contextualized representations
a’ and b°:

al,... a3, = BILSTM, (&S, ..., a5,) (11)
bs,..., b3 = BILSTM, (bS,...,b%) (12)

E. CO-ATTENTION MATCHING LAYER
Modeling the interactions is the critical component for
deciding the inference relationship between the premise and
hypothesis. In this layer, a co-attention matrix is computed
using dot-product to produce aligned word representations,
and then by comparing with contextualized representations,
we collect matching information at the word level.

First, the co-attention score between each representation
tuple (a;, b‘;-) is calculated as follows:

eij = (aj)"b; (13)

Then for the ¢-th word in the premise, its relevant represen-
tation carried by the hypothesis is identified and composed
using e;; as

exp(esy)
i = —— (14)
> jr—1 exp(eijr)

N
ai => a;b; (15)

Jj=1
where o € RM*N jg the normalized co-attention matrix
w.r.t. the column-axis, and af is a weighted sum of {b; é\’:l,

meaning the contents related to aj are selected to form asf.
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The same calculation is performed for each word in the
hypothesis as

exp(e;;)
Bij = ————— (16)
! Zfil eXp(ei’j)
M
b5 = bija; (17)
i=1

where 5 € RM*N ig the normalized co-attention matrix
w.r.t. the row-axis. We denote aj and bf as aligned word
representations.

To further enhance inference information, followed the
heuristic matching approach proposed by Mou et al. [20],
we concatenate contextualized and aligned word represen-
tations with the differences and element-wise products be-
tween each other, resulting local inference vectors. Formally,
local inference vectors a;" and b} are calculated as follows:

a" = G([a$; ag; af — af; as o af)) (18)

where G is one-layer feed-forward neural network with the
ReLU [27] activation function to reduce dimensionality.

F. INFERENCE COMPOSITION LAYER

In this layer, a parameters shared BiLSTM followed by max
and mean pooling operations is typically employed as the
aggregation method to compose the local inference vectors
collected above:

aj,...,a}y; = BiLSTMz(al, ..., al}) (20)

by, ..., by =BiLSTMs(a?’, ..., bY) 21
a) ..= max a; (22)
ar = 8% i
a, .on = mean a; (23)
1<i<M
b s = 12‘2?1\7 b; 24)
bmean = 12?21/]{7 bj (25)

Again we use BiLSTM here, but the role is completely
different from that presented in Section III-D2. The BiL-
STM here learns to discriminate critical local inference
vectors for obtaining the overall sentence-level inference
relationship between the premise and hypothesis. The pool-
ing vectors are concatenated together and fed into the
final multi-layer perceptron (MLP) classifier which has one
hidden layer with tanh activation and softmax output layer:

y =MLP([a}, ..; Gv ecan; Ornan; Ornean)) (26)

mean’ “maxr’) T mean

The entire model is trained via minimizing the cross-entropy
loss in an end-to-end manner.

IV. EXPERIMENTS

In this section, we first briefly introduce the MedNLI
dataset, a newly released dataset for natural language infer-
ence on clinical texts, followed by detailed training settings.
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TABLE 3. Accuracies of our model (ESIM w/ Knowledge) compared to baselines using different word embeddings on
MedNLI. Baseline results are directly copied from Romanov and Shivade [7].

Word Embeddings

InferSent Baselines

ESIM Baselines ESIM w/ Knowledge

GloVejcc;

fastText[pioasq]

fastTextimmmic.

GloVecc) — fastTextpioasq)

GloVejccy — fastTextpioasq) — fastTextpvmvic-my
fastTextiwiki) — fastTextivmvic-n

0.735 0.731 0.742
0.741 0.733 0.753
0.758 0.743 0.778
0.742 0.745 0.765
0.762 0.749 0.776
0.766 0.748 0.771

A. MEDNLI DATASET

We evaluated our model on the MedNLI dataset [7], which
contains 13k expert annotated sentence pairs. The premise
sentences were drawn from clinical notes contained in the
MIMIC-III v1.3 database [24], and the hypothesis sentences
were generated by four clinicians. We use the same data split
as provided in Romanov and Shivade [7] and classification
accuracy as an evaluation metric.

B. TRAINING DETAILS
Following all baselines’ settings on the MedNLI dataset, we
chose the dimension of word embeddings and hidden states
of BiLSTMs of 300, except for the BiLSTM in the Incor-
porating Medical Concept Definitions module, which was
150. We restricted the lengths of the premise and hypothesis
sentences by a maximum of 50 words, and that of medical
concept definitions by 200. All word embeddings were fixed
during training. Adam [28] was used for optimization with
an initial learning rate of 0.001. The mini-batch size was
set to 64. We set a dropout rate of 0.5 for input and output
of hidden layer of the final MLP classifier. We also used
variational dropout [29] for input of BiLSTMs, which was
also set to 0.5. We trained our model for a maximum of
20 epochs. The training was stopped when the development
loss did not decrease after 5 subsequent epochs.

All hyper-parameters were strictly selected on the devel-
opment set, and then tested on the corresponding test set.
We used PyTorch? and AllenNLP? to implement our model.

V. RESULTS

In this section, we will analyze the performance of our
model from three aspects. First, we will compare our model
with baseline models for different word embeddings. Then,
ablation study and case study are conducted to inspect how
domain knowledge contributes to the model.

A. COMPARISON AGAINST BASELINES

We compare our model, referred to as ESIM w/ Knowl-
edge, against InferSent and ESIM baseline models tested
by Romanov and Shivade [7] for six different word
embeddings stated in Section III-D. The results are re-
ported in Table 3. Our model outperforms all baseline

Zhttps://pytorch.org/
3https://allennlp.org/

Predicted Label

True Label

(b)

FIGURE 3. Confusion matrix without normalization: (a)
InferSent baseline using fastTextwikij — fastTextpvmvic-i
embedding*; (b) ESIM w/ Knowledge using
fastText[MIMIC_m] embedding.

models and achieves the state-of-the-art performance, in-
dicating that incorporating medical concept definitions
can significantly improve the performance. Compared to
the best baseline (i.e., InferSent using fastTextpwikij —
fastTextvmvic.i; embedding), we observed an absolute gain
of 0.012 corresponding to 1.6% relative gain in the model
using fastTextpvmvic; embedding. Actually, a total of
three results for different word embeddings (others are
GlOVC[CC] — fastText[BioAsQ] — fastText[MIMIC_m] embedding
and fastText;wiki; — fastTextpvmvic.i embedding) exceed
the best baseline.

In baseline models, all results except one of InferSent
are better than those of ESIM. However, for each word
embedding, our result goes beyond all two baselines,
proving the effectiveness of ESIM integrated with do-
main knowledge. The greatest gain of our model is for
GloVejcc) — fastTextgioasq) embedding (0.765 compared to
0.745), where we obtain an absolute gain of 0.02 and a
relative gain of 2.7%.

Besides comparing the overall performance, we also draw
the confusion matrix to visualize the classification results
of three classes (entailment, contradiction and neutral). As
shown in Fig. 3, there are two confusion matrices without
normalization, the left belongs to best baseline* and the right

4Results were predicted by model parameters released by Romanov and
Shivade [7], which only obtained an accuracy of 0.759, different from the
accuracy of 0.766 stated in the paper.
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TABLE 4. Ablation study using fastTextpvmvrc-ni; embedding.
For each entry in the table, accuracies of the development
and test set are divided by a slash, and the number in
parentheses is the best training epoch.

LSTM

0.778 / 0.763 (10)
0.776 / 0.768 (8)

BiLSTM

0.767 / 0.770 (9)*
0.779 / 0.778 (12)

w/o Attention
w/ Attention

#This is a group of amended values, and the original values
were 0.759 / 0.759 (6).

0.80

> 0.75 4 ==

© —&— Dev Loss

§ 0.70 4 Test Loss

< =& Dev Accuracy

; 0.65 9" —pe— Test Accuracy

8

- 0.60 4 ./‘__“/
055 T T T T T

6 7 8 9 10
Training Epoch

FIGURE 4. Loss and accuracy curve of the development and
test set using fastTextpvmrc-m; embedding.

belongs to the best result of our model. By comparing these
two confusion matrices, the following conclusions can be
drawn:

(1) Our model improves the performance in entailment
and neutral classes, of which it contributes a lot to entail-
ment class, and the misclassifications to contradiction and
neural classes are reduced by 12 and 14 respectively. We
think this is because the incorporated domain knowledge
enhances the word representations of medical terms and ab-
breviations and bridges the semantic gap between different
written forms of the same medical concept. The incorporated
knowledge also reduces the possibility of neural class being
mistakenly classified as contradiction class.

(2) Our model beats the performance in contradiction
class. After reviewing the misclassified examples, we found
that the errors mainly occurred in those requiring numerical
reasoning, e.g., a premise as In the ED, initial VS revealed
T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA. Our
model tends to mistake such numerical reasoning examples
for entailment class. This is also true in neural class. We
think ensemble methods using InferSent and ESIM w/
Knowledge will take advantages of each model and obtain
better predictive performance.

B. ABLATION STUDY

The main difference between our model and the vanilla
ESIM is the newly added Incorporating Medical Concept
Definitions module: it uses a bidirectional LSTM to encode
the definitions of medical concepts, and another attention
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FIGURE 5. Normalized Co-attention matrix of Example #1 to
#3. (a) Example #1 with normalization over row-axis. (b)
Example #2 with normalization over row-axis. (c) Example
#3 with normalization over column-axis.

mechanism to enhance vanilla word embeddings. To an-
alyze the contributions of these two components to the
overall performance, we conducted an ablation study using
fastTextpvviicn embedding. Three model variants were
studied: one that removed only the attention mechanism,
another that changed the bidirectional LSTM to unidirec-
tional, and the last that did both. The results of the study
are presented in Table 4. The values of model variant w/o
attention are amended, because this variant stopped so early
compared to others. It was only iterated for 6 epochs, hasn’t
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been fully trained, and did not have good generalization
performance in both development set and test set, as shown
in Fig. 4. Based on the loss and accuracy curve, we found
the 9th epoch was the optimal iteration stop, whose loss was
second minimum and best generalization performance.

From Table 4, we can conclude that models w/ attention
are better than those w/o attention and bidirectional LSTM is
better than unidirectional LSTM. All of these findings reflect
the importance of the Incorporating Medical Concept Defi-
nitions module, and domain-specific knowledge contributes
to natural language inference on clinical texts.

C. CASE STUDY

Finally, we qualitatively inspect examples listed in Table 1
and visualize their normalized co-attention matrix, as in
(13). For more examples with attention visualizations, see
Appendix A.

The key words of Example #1 for inference are di-
aphoresis and sweats. By enhancing word embeddings with
knowledge, our model learns to focus on these two medical
terms and knows that they have the same meaning. As
shown in Fig. 5 (a), in premise, diaphoresis has the highest
weight to sweats. In Fig. 5 (b) (corresponding to Example
#2), for the abbreviation LP, our model pays attention to it’s
full name of lumbar puncture. In Fig. 5 (c) (corresponding to
Example #3), our model learns to make inference based on
the relationship between STEMI and coronary artery bypass
grafting. Because the definition of STEMI (i.e., ST segment
elevation myocardial infarction) is incorporated, our model
learns they are unrelated, and the prediction is neutral class.

VI. CONCLUSION

We have present a novel model for natural language in-
ference on clinical texts by incorporating medical concept
definitions into vanilla word embeddings. Our experiment
results demonstrated that the model outperforms all base-
lines, achieving the state-of-the-art performance in accuracy,
due to the contributions of domain knowledge.

Further improvement might be made by expanding med-
ical concept definitions dictionary, to cover more medical
terms and abbreviations. For simplicity, we only employed
the shortness definition for each concept. However, a con-
cept might have a number of definitions. Therefore, we will
study how to encode multiple definitions in the future.

APPENDIX A SUPPLEMENTAL MATERIAL

In this supplemental material, we show more examples
(Table 5) with their normalized co-attention matrix (Fig. 6—
14). Our model classifies all these examples correctly.
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FIGURE 12. Co-attention matrix of Example #10 with normalization over column-axis.
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FIGURE 13. Co-attention matrix of Example #11 with normal-
ization over column-axis.
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