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Abstract. 4D printing is a technology that combines the capabilities of 3D printing with materials that can transform its geom-
etry after being produced (e.g. Shape Memory Polymers). These advanced materials allow shape change by applying different 
stimulus such as heating. A 4D printed part will usually have 2 different shapes: a programmed shape (before the stimulus is 
applied), and the original shape (which is recovered once the stimulus has been applied). Lightweight parametric optimization 
techniques are used to find the best combination of design variables to reduce weight and lower manufacturing costs. However, 
current optimization techniques available in commercial 3D CAD software are not prepared for optimization of multiple 
shapes. The fundamental research question is how to optimize a design that will have different shapes with different boundary 
conditions and requirements. This paper presents a new lightweight parametric optimization method to solve this limitation. 
The method combines the Latin Hypercube design of experiments, Kriging metamodel and specifically designed genetic algo-
rithms. The optimization strategy was implemented and automated using a CAD software. This method recognizes both shapes 
of the part as a single design and allows the lightweight parametric optimization to retain the minimum mechanical properties 
for both shapes. 
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1.  Introduction and problem definition 

1.1. Introduction 

Smart materials are defined as materials that can 
either change their shape or properties between dif-
ferent physical domains under the influence of certain 
stimuli from the environment [17]. Particularly, 
Shape Memory Materials (SMMs) have the ability to 
recover their original shape from a deformation when 
a particular stimulus is applied. This is known as the 
shape memory effect (SME). SMMs are either inor-
ganic (Shape Memory Alloys, SMAs) or organic 
(Shape Memory Polymers, SMPs) [10]. The shape 
recovery is usually activated by the surrounding tem-
perature (both in SMAs and SMPs), and other stimuli 

that have been used include an electric field, magnet-
ic field, pH, UV light, or specific chemicals, etc. [13]. 

Additive Manufacturing (AM) is defined as a pro-
cess of fusing materials layer upon layer to produce a 
three-dimensional object from CAD data [15]. The 
continuous evolution of these technologies and mate-
rials is expected to revolutionize the manufacturing 
industry. As conventional 3D printing technology 
matures, creeping up in the background is Four-
Dimensional (4D) Printing [7]. The fourth dimension 
in 4D printing refers to the ability of material objects 
to transform its geometry after being produced, 
thereby providing additional capabilities and offering 
potential for performance-driven applications [8]. 
The technology “4D printing” can be summarized as 
the combination of using the AM process and Shape 
Memory Polymer (SMP) materials which provides 
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far-reaching opportunities that go beyond the poten-
tial application of conventional AM parts. 

However, the design and optimization of 4D print-
ed parts has not been studied in detail and some ad-
vances are needed to boost their use in different ap-
plications. Most of the research related to 4D printing 
has been focused on discovering new materials and 
suggesting specific applications, but there are no ref-
erences associated with design optimization tools. In 
fact, only a few authors have considered the design, 
most of them focusing on design of alloy-based actu-
ators [29], self-folding sheets with SMAs for origami 
engineering [12,37] and design optimization for de-
formation of SMAs [23,24]. 

Current optimization techniques available in the 
commercial 3D CAD software with Finite Element 
Analysis (FEA) tools are not prepared for the new 
concept of optimization for multiple shapes. For ex-
ample, a specific 4D printed part may require a cer-
tain stiffness to hold a weight in its programmed 
shape, and releasing the weight when the stimulus is 
applied to recover its original shape, and finally sup-
porting another load in its original shape that may 
require another minimum value of stiffness for its 
correct function. The key research question is how to 
optimize a design that will have different shapes with 
different boundary conditions and requirements. 

The aim of a lightweight parametric optimization 
is to minimize the weight and thus reduce time and 
manufacturing costs. To achieve this, the optimiza-
tion process must take both shapes into consideration 
to fulfill the mechanical requirements needed in both 
shapes. However, this option is not possible with the 
current commercial CAD-FEA optimization methods. 

1.2. Problem definition (general approach) 

The objective is to find the best combination of de-
sign variables of a parametric design to minimize the 
weight of a shape memory part produced by AM.  
The designer must first propose the design variables 
(parameters) that will change during the optimization 
process. These design variables are mostly associated 
with the geometric dimensions or CAD features such 
as wall thicknesses, bar dimensions, angles, etc. 
Since any type of CAD feature can be used as a de-
sign variable, these will depend on the specific ge-
ometry that is required for optimization. On the other 
hand, the optimal design must fulfill certain mechani-
cal requirements for the boundary conditions related 
to the programmed shape (before the stimulus is ap-
plied), and other mechanical requirements associated 

with the original shape (once the recovery is com-
pleted). These mechanical requirements can be relat-
ed to different properties such as the maximum stress 
that the material can withstand in different directions 
or different failure criteria such as Von Mises, Tresca, 
etc., the maximum displacement/strain allowed under 
certain conditions, maximum displacement of a spe-
cific point of the part and so on. Therefore, the opti-
mization problem can be summarized as follows: 

Minimize Weight (VAR1, VAR2, VAR3…) 
Subject to: Constraint 1 (programmed shape) 
  Constraint 2 (programmed shape) 
  … 
  Constraint N-1 (original shape) 
  Constraint N (original shape) 
 
The optimal design will reduce the weight but 

keeping the minimum properties required according 
to the constraints desired in both shapes of the part. 

2. Methodology  

This section presents the methodology developed 
to solve the problem described in the previous section. 
Section 2.1. explains the overall optimization con-
cept., section 2.2. details how the methodology works 
with both shapes of the part during the optimization 
process to fulfill the mechanical requirements needed 
for each state, section 2.3. presents the strategies of 
the algorithm implemented to carry out the optimiza-
tion process, and section 2.4. presents the software 
description in terms of  automation of the methodolo-
gy and workflow between the different tools used in 
the optimization process. 

2.1.  Overall concept 

The overall optimization concept is illustrated in 
Figure 1. A commercial CAD-FEA software (Solid-
Works) was used to evaluate the constraints of the 
optimization process and the weight of the part. The 
data provided by the CAD-FEA software are stored 
and used by the optimization algorithm to drive the 
optimization process. 

The first step is to create a parametric design in the 
CAD software. The designer must define the geome-
try and the desired design variables to parameterize 
the model. Once the parameterization is completed, 
the next step is to set out the appropriate mechanical 
analysis (FEA) and the outputs of control (mechani-



cal constraints and weight) according to the condi-
tions that the part must withstand. 

The next step is to run the optimization algorithm. 
The algorithm will prompt some input data to carry 
out the optimization process which is explained fur-
ther in section 2.5. During the process of the optimi-
zation, the algorithm will define the values of the 
design variables and the design to be simulated. The 
geometry is updated in the CAD software and subse-
quently the simulations are carried out using the FEA 
tool. The results such as the weight and mechanical 
constraints are stored by the optimization algorithm 
and used internally to define the subsequent design. 
This is repeated as a continuous iterative process until 
an optimal solution is reached. The optimization 
strategies are explained in section 2.3. 
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Fig. 1. Overall optimization concept. 

2.2. Configurations to address the multiple shapes 

In order to evaluate the multiple shapes as different 
states, the method processes different ‘configura-
tions’ in the CAD model. 

Each part has a list of features that define the final 
geometry, but these features can be activated or sup-
pressed in an independent manner for each of the 
configurations, which means that the same part may 
have different shapes depending on the configuration. 
The use of ‘configurations’ allows better manage-
ment of different shapes for the same design. The 
software associates each finite element analysis with 
only one configuration, and the algorithm assumes 
that each constraint is related only to one analysis 
(Figure 2). 
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Fig. 2. Relation between different configurations, analysis and 
constraints in one design. 

As 4D printed parts usually have 2 different shapes, 
configuration 1 is associated with the programmed 
shape and configuration 2 is associated with the orig-
inal shape that will be recovered once a stimulus is 
applied. For each shape, the design must fulfill dif-
ferent constraints that may be related to different 
boundary conditions (analysis 1, analysis 2, etc.). For 
each design, the optimization process computes every 
single finite element analysis that is produced in 
terms of the programmed and original shape. 

Within 3D-CAD modeling, the flex feature is 
available in the CAD software to differentiate the 
programmed and original shapes (configuration 1 and 
2). This feature allows bending, twisting, tapering or 
stretching of the shape. For example, if the pro-
grammed shape has a ‘L’ profile (configuration 1) 
and the original shape a straight profile (configura-
tion 2) (Figure 3), a bending feature could be used so 
that configuration 1 would be activated to achieve the 
‘L’ shape, and suppressed in configuration 2 to obtain 
the straight shape, but always keeping the same val-
ues of the design variables. 

 
Fig. 3. Flex feature to define configuration 1 (left) and 2 (right). 

2.3. Optimization algorithm 

The optimization algorithm implemented in this 
paper is based on genetic algorithms (GAs) and FEA. 
There are several metaheuristic methods that are usu-
ally applied in optimization problems such as GAs 



[3,27], Differential Evolution (DE) [41], Particle 
Swarm Optimization (PSO) [40], Gene Expression 
Programming (GEP) [38] or Ant Colony Optimiza-
tion (ACO). These techniques have been applied in 
different fields, such as shape and topology optimiza-
tion for structures [1,14,19,20]. On the other hand, 
although GAs and FEA are widely used for optimiza-
tion purposes [39], they are commonly combined 
with metamodels to estimate the results of the FEA 
and then reducing the optimization time [28,34].  

There are several parametric optimization tools 
available in commercial CAD-FEA software based 
on this concept, such as Catia (conjugate gradients or 
simulated annealing) [21], SolidWorks (Box-
Behnken Design Of Experiments and the response 
surface method) [6,18], or ANSYS. This latter soft-
ware includes different strategies for Design Of Ex-
periments (DOE) such as a central composite or a 
Box-Behnken design, and also different metamodels 
such as the response surface method, Kriging [5] or 
Neural Networks. Among these, only the Kriging 
metamodel includes the refinement option, which is 
an interesting tool to enhance the accuracy of the 
estimations throughout the evolution of the algorithm. 

Although none of these tools are capable of pro-
cessing the optimization of multi-shape designs, the 
optimization strategies were analyzed to find the best 
strategies for this application. In this sense, the idea 
of the metamodel refinement (similar to ANSYS) 
was considered a key factor to improve the perfor-
mance of the final methodology. On the other hand, 
Kriging is commonly used in optimization 
[22,30,33,42,44] as it is able to provide the best linear 
unbiased predictions. For these reasons, the Kriging 
metamodel was selected for this methodology. How-
ever, the refinement criterion applied in the optimiza-
tion algorithm developed in this research was differ-
ent from the one used in ANSYS). Section 2.3.2. ex-
plains these details. 

In general terms, the optimization algorithm im-
plemented can be divided into three clear stages: 
DOE, feasible/unfeasible border approximation, and 
final optimization.  

The aim of the DOE is to simulate several designs 
of the search space to gather information about the 
behavior of the part such as the constraints and objec-
tive depending on the design variables. According to 
the tests carried out, the modified version of Latin 
Hypercube presented in this work was the best DOE 
as it was the one that allowed the metamodel creation 
with less sampling points. Section 2.3.1. explains 
these details. 

The second stage (feasible/unfeasible border ap-
proximation) is an approach to add more sampling 
points and to improve the accuracy of the metamodel, 
focusing on the feasible/unfeasible border to carry 
out the refinement of the metamodel in an efficient 
manner. This second stage uses the Kriging method 
to predict the results and it is driven by specifically 
designed GAs (proximity penalty concept) to explore 
new zones along the feasible/unfeasible border. 
Moreover, the Kriging metamodel is always generat-
ed with the highest order possible of the regression 
model according to the available data to improve the 
accuracy of the metamodel. 

The final stage of optimization uses the data gath-
ered in the previous stages to accomplish an optimi-
zation based on the trained Kriging and GAs. Section 
2.3.3. explains this stage. 

2.3.1. Design of experiments (DOE) 
The DOE is a stage in which different designs are 

simulated by FEA to gather data that will be useful 
for the metamodel generation. In previous studies 
[35], a more specific DOE was implemented to focus 
the sampling on specific areas close to the optimum, 
thus improving the performance of the metamodel. 
This DOE was driven by a GA with binary and ter-
nary encoding. This coding was used to provide 2 and 
3 level values respectively so that all the designs gen-
erated during this DOE had their design values in the 
minimum, maximum or middle values according to 
the limits selected. However, the coding of the GAs 
of other stages of the algorithm was with real num-
bers as the domain is continuous. This flexibility in 
terms of encoding was one of the reasons why GAs 
were used. To successfully create the metamodel with 
1-order polynomial regression models, the sampling 
needed in the DOE is too high for this application 
where each sampling needed more computational 
time due to the simulation of both shapes (configura-
tion 1 and 2). Moreover, the accuracy of the meta-
model can be improved by using a higher order in the 
regression model, but this would result in more sam-
pling (more computational time) or using a different 
DOE with a similar sampling effort but enhanced 
distribution of sampling points. 

For this reason, a different DOE using the Latin 
Hypercube was implemented. This DOE is common-
ly combined with Kriging [26,32] because the distri-
bution of data is appropriate for Kriging and conse-
quently the sampling needed to define the metamodel 
can be reduced. It divides the domain search into dif-
ferent equal spaces and allocates randomly sampling 



points so that there is only one sampling point in each 
row and column of the search domain. In an n-
dimensional problem, each sample would be the only 
one in each axis-aligned hyperplane containing it. 
Figure 4 represents this in a 2D example. If the num-
ber of sampling points is 4, then each dimension is 
divided into 4 equal parts. The Latin Hypercube will 
first add one random point and then the following 3 
sampling points will also be randomly placed but 
keeping only one sample in each row and column, 
which guarantees an appropriate distribution of the 
sampling points all over the search domain. 

 
Fig. 4. Latin Hypercube DOE. 

Further some modifications were implemented in 
the DOE of the methodology to improve its perfor-
mance. First of all, the DOE consists of 2 steps. 

Firstly, the minimum, central and maximum points 
of the search domain are added. This means that all 
the design variables will have the minimum value, 
then the middle value, and finally the maximum val-
ue. This first stage provides an initial database of the 
search domain. 

Secondly, a Latin Hypercube DOE is applied using 
a Matlab function [25]. The number of sampling 
points added is ‘n’, being ‘n’ the number of design 
variables of the parametric design. Therefore, the 
sampling effort is proportional to the number of de-
sign variables. On the other hand, the Latin Hyper-
cube is applied following the criterion of maximizing 
the minimum distance between points. After several 
tests, it was observed that the closer the points were 
to the border of the search domain, the more success-
ful the Kriging generation and the more accurate the 
results (because interpolation is more accurate than 
extrapolation). In this sense, the minimum and max-
imum points added in the first step are important to 
reduce the use of extrapolations in favor of interpola-
tions. To take this into account, the Latin Hypercube 
was modified to move the sampling points to the bor-
ders of the search domain. The optimization algo-

rithm identifies the points of the standard Latin Hy-
percube DOE that are aligned to the border, and mod-
ifies the correspondent variables to their maximum or 
minimum values to place them on the border. Figure 
5 shows the modified Latin Hypercube in the same 
problem depicted in Figure 4. The black points are 
the final sampling points according to the modified 
Latin Hypercube. The grey points are the points from 
the standard Latin Hypercube where the location was 
modified. For example, the point located in the last 
row and column was moved to the corner. In this 
process, only the points placed in ‘squares’ adjacent 
to the border are modified, and only within the con-
straints of the corresponding variables. Section 2.3.4. 
summarizes the improvements of this concept. 

 

 
Fig. 5. Modified Latin Hypercube DOE. 

2.3.2. Feasible/unfeasible border approximation 
The next step in the optimization algorithm is to 

add more sampling points next to the feasi-
ble/unfeasible border. Since the objective (minimum 
weight) is always opposite to the mechanical con-
straints (stiffness, stress, etc.) the optimum solution 
will always be in the feasible/unfeasible border. This 
stage of the algorithm, through the use of the Kriging 
metamodel combined with a specific strategy based 
on genetic algorithms, allows the addition of new 
sampling points along the feasible/unfeasible border, 
improving the accuracy of the metamodel in the 
zones where the optimum points will be located. Tak-
ing a step further, we also include a refinement loop 
that follows a similar idea to the ANSYS metamodel. 
However, in this case the refinement is focused on 
the zones close to the location of the optimum (feasi-
ble/unfeasible border) and not in the zones with the 
highest estimation error. This allows the operator to 
improve the metamodel accuracy only in the zones of 
interest, thus reducing the sampling and the optimiza-
tion time. 



The first task consists of creating the Kriging met-
amodel from the data gathered in the previous stage. 
A Matlab subroutine process is used to create the 
metamodel [31]. Among the available correlation 
models (exponential, generalized exponential, Gauss-
ian, linear, spherical and cubic spline), the general-
ized exponential model was selected as it is the most 
flexible in terms of shape of the function and com-
monly used when the spatial correlation between data 
is unknown (as it happens in this application). Re-
garding the regression model, the function will be 
always polynomial. However, there are several orders 
available (2, 1 and 0-order). 

The 2-order regression model can achieve better 
estimations but requires more sampling or better dis-
tribution of the data to be able to create the metamod-
el. As the order of the regression model lowers, the 
metamodel can be created more easily (without so 
many data and poorer distribution) but the accuracy is 
reduced. For this reason, the optimization algorithm 
includes a loop that makes an attempt to generate a 2-
order regression model. If this fails, then the 1-order 
regression model is used automatically, and finally 
the 0-order. This system enables a simpler regression 
model when the data is minimal and consequently, 
more complex regression models are produced when 
there are enough data. 

Once the metamodel is created, a genetic algorithm 
(GA) drives the optimization. The genetic algorithm 
uses 100 generations with a 100 individual popula-
tion size. The first population is randomly created. 
The estimations of the metamodel are used to calcu-
late the fitness value of each individual being pro-
posed during the GA evolution. In this case, the fit-
ness function (‘F’) includes the weight (‘w’) of the 
design and different penalty factors that increase the 
value to penalize the individual when one or more 
constraints are not fulfilled (according to the meta-
model predictions). This penalty factor (‘PF’) is cal-
culated as the absolute error between the estimated 
value of the constraint (‘EC’) and its limit value 
(‘LV’). This error is multiplied by 10E99 to amplify 
the penalization and it must be applied in all the con-
straints that are not fulfilled.  

F = w + PF 
PF = |EC – LV| · 10E99 
Once the fitness function of each individual is 

known, the GA applies a tournament selection of 2 
individuals, an arithmetic crossover with 50% proba-
bility, mutation with 60% probability and 50% of 
maximum mutation amplitude, reparation and elitism. 
The arithmetic crossover is applied according to the 
following expression: 

Children_1 = α · Parent_1 + (1-α) · Parent_2 
Children_2 = (1-α) · Parent_1 + α · Parent_2 
α = random value between -0.5 and 1.5 
The mutation is applied by randomly selecting a 

gene or the design variable (‘DV’) of the individual 
that will suffer a “mutation”. Its initial value of the 
gene or design variable (‘DV0’) will be modified by 
adding a value that will randomly change from -0.5 to 
0.5 times the domain of that variable, which is calcu-
lated as the difference between the maximum and 
minimum values of the design variable (‘DVmax’ 
and ‘DVmin’ respectively). 

DV = DV0 + (DVmax - DVmin)·A 
A = amplitude (random value between -0.5~ 0.5) 
When the GA finishes its evolution, the best de-

sign is simulated by FEA and the results of weight 
and constraints are stored to update the metamodel 
using all the available data. Subsequently, the GA 
that has been produced earlier is applied again using 
the updated Kriging. This is repeated in a loop until 
‘n+1’ points have been simulated and added to the 
database (being ‘n’ the number of design variables, 
so that the sampling is proportional to the number of 
design variables). 

In the first ‘n’ iterations, the GA uses another pen-
alty factor in the fitness function (proximity penalty 
factor, ‘PPF’). The aim of this penalty factor is to 
penalize those individuals close to points already 
simulated. If the individual is close to a previously 
simulated point, then the fitness function will be pe-
nalized and consequently, the individual will not sur-
vive in the tournament selection. To apply this, the 
algorithm internally calculates a niche radius or ‘ra-
dius of influence’ (‘Ri’) that depends on the dimen-
sions of the search domain (equivalent radius, ’Req’) 
and on the number of ‘niches’ desired in the domain, 
which was established in ‘2n’. 

Req =1/2· Ʃn(DVmax - DVmin)1/2 

Ri = Req / (2n)1/n 
Once the radius of influence is defined, the algo-

rithm calculates the distance between each individual 
proposed by the GA and the sampling points that 
have been added. If the distance between the individ-
ual of the GA and any of the sampling points (‘Di’) is 
lower than the radius of influence, then the proximity 
penalty factor is applied according to the following 
expression: 

PPF = Ʃi  1/Di · 10E99 
This strategy forces the algorithm to explore new 

zones of the domain along the feasible/unfeasible 
border. The inspiration of this idea comes from the 
resource sharing method used in multimodal optimi-
zation [4,9]. Once ‘n’ points have been added in this 



stage, the exploration is considered enough and the 
optimization algorithm stops the application of the 
proximity penalty to enable more freedom for the 
optimum search. 

In the iteration ‘n+1’, the GA evolves to an opti-
mal design that is then simulated by FEA. Next, the 
accuracy of the predictions of the metamodel are 
checked. If the mean absolute percentage error 
(MAPE) of the estimations compared with the simu-
lation results (weight and constraints) is higher than 
5%, then the last point is added to the database and 
the metamodel is updated to improve its accuracy. 
Subsequently, the GA is run again. This is repeated in 
a loop until the MAPE of the estimations of the last 
point is lower than 5%, which guarantees a minimum 
accuracy of the metamodel the zones close to the 
location of the final solution. 

2.3.3. Final optimization 
In this final stage, the same GA is run again but us-

ing the metamodel updated with all the available data 
and without applying proximity penalty. This GA 
allows the new optimal solution to be generated ac-
cording to the metamodel created with all the data 
gathered so far. The optimal design obtained accord-
ing to the GA is simulated by FEA, and if it is the 
best design simulated so far, then it will be the final 
design. Otherwise, the metamodel is updated with 
this new point and the GA is run again. This is re-
peated until the algorithm achieves a design better 
than the existing solution obtained from the previous 
stages of the algorithm. However, if more than ‘5+n’ 
points are added in this stage and at least one of them 
is a feasible design by fulfilling all of the constraints, 
then the best design of the previous stages will be 
considered as the final solution. This condition was 
added because on some occasions, the algorithm can 
achieve a very good design in the previous stages that 
is difficult to improve afterwards. 

Figure 6 summarizes the structure of the optimiza-
tion algorithm. It is noted that stage 2 (Feasi-
ble/unfeasible border approximation) and stage 3 
(Final optimization) use GAs to select the design that 
will be simulated by FEA. In the first ‘n’ iterations of 
stage 2, proximity penalty is applied to explore the 
feasible/unfeasible border. Therefore, the optimiza-
tion algorithm draws on GAs applied in different iter-
ative processes and with different purposes. 
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Fig. 6. Structure of the optimization algorithm 

2.4. Comparison of results between the algorithm 
presented and previous versions 

This section has presented a short summary of the 
comparison between the proposed algorithm and the 
previous versions. The final algorithm is the result of 
several versions that were improved step by step by 
testing them in different applications. The sampling 
strategy, refinement and metamodels used were mod-
ified according to the conclusions obtained from the 
results of the tests. On the other hand, although there 
are many different metaheuristic techniques to opti-
mize, the preliminary tests carried out with GAs 
found that there were several configuration that ob-



tained similar results and very close to the theoretical 
optimum. These tests depicted that the configuration 
of parameters of the GA was not crucial for the per-
formance of the methodology, which meant that some 
parameters such as the number of generations may be 
high (conservative values) and the performance of the 
methodology will not be affected. This is because the 
time needed by the GA to evolve is not relevant com-
pared with the sampling or metamodel refinement 
strategy. Therefore, the use of GAs provided enough 
accuracy and speed, apart from flexibility and robust-
ness to accomplish different ideas to drive the opti-
mization process according to the requirements for 
each step. The tuning of the GA was carried out by 
changing several parameters such as the type of pen-
alty factor, the number of generations, the crossover 
and mutation probability and the mutation amplitude. 
After multiple tests, although several configurations 
obtained similar results, the parameters presented in 
section 2.3.2. were the ones selected. 

Although this algorithm is the result of more than 
15 versions, only the last ones are presented in this 
section, starting from a version already tested in pre-
vious work [35]. The first modification carried out 
was to implement a loop to use the highest order of 
regression model possible in the Kriging metamodel. 
This idea improved the results in terms of the quality 
of the optimal solution. The resulting version was 
selected as a reference to compare with the new ver-
sions developed. All the versions were tested in five 
different case studies with 5, 10, 15, 20 and 25 design 
variables respectively. Each version was run 15 times 
to obtain an average value of optimization time and 
weight of the optimum. We also applied the Mann-
Whitney U-test between each version and version 1 
to assess if the weight of the optimal solutions were 
statistically different. The overall purpose was to re-
duce the sampling to cut down the optimization time 
and to maintain the quality of the optimal solution. 

The first modification that was applied was to re-
duce the number of sampling points of the DOE. As 
version 1 used a ‘3+n+n=3+2n’ approach, in version 
2, the number of sampling points of the DOE was 
reduced to ‘3+n/2+n2=3+n’. However, this reduction 
led to problems in the metamodel generation in stage 
2. In the exploration stage, the algorithm evolved to 
produce designs that were already simulated and 
therefore almost the same design was unnecessarily 
simulated twice. 

In order to avoid this, in version 3, the proximity 
penalty in stage 2 was applied to all the sampling 
points added before instead of just being applied to 

the points added in stage 2. The sampling was the 
same used in the previous version. 

In version 4, the radius of influence (niche radius) 
to apply the proximity penalty was reduced for the 
sampling points added in the DOE, while the proxim-
ity penalty used for the points added in stage 2 was 
kept. This approach aims to allow more freedom of 
exploration in stage 2 but avoiding the repetition of 
sampling points of the DOE. 

In version 5, the DOE strategy was changed to use 
Latin Hypercube. Moreover, the number of sampling 
points was increased to keep the same number as 
version 1, which means 3 points and 2n points of the 
Latin Hypercube DOE (3+2n). 

In version 6 the number of sampling points was 
further reduced to establish the same sampling effort 
used by versions 2-4. Therefore, in the first stage, the 
sampling was ‘3+n’. 

In version 7, the number of sampling points of the 
DOE was again set to ‘3+2n’, but the Latin Hyper-
cube strategy was modified to move the sampling 
points to the borders of the search domain. The aim 
was to avoid the extrapolation of results and to use 
interpolation instead. 

Finally, in version 8, the previous approach was 
applied again but reducing the number of sampling 
points of the initial stage to ‘3+n’. Therefore, ver-
sions 2, 3, 4, 6 and 8 have the same sampling effort in 
the first stage (‘3+n’), and versions 1, 5 and 7 have 
additional numbers of sampling points (‘3+2n’). 

Table 1 summarizes the results for each version. 
The columns show the version, the number of sam-
pling points used in the DOE, percentage increase of 
optimization time compared with the results obtained 
with version 1 and the percentage increase of opti-
mum’s weight compared with the results of version 1. 
The values presented are the average values of the 15 
runs of each version for the 5 different case studies 
(15·5=75 runs for each version).  

- Version 1: DOE based on binary and ternary 
encoding (‘3+2n’ points). 

- Version 2: ‘3+n’ sampling points in the 
DOE. 

- Version 3: Proximity penalty applied in all 
the sampling points added before. 

- Version 4: Radius of influence reduced in 
the proximity penalty of sampling points 
added in the DOE. 

- Version 5: DOE based on Latin Hypercube 
(‘3+2n’ points). 

- Version 6: DOE based on Latin Hypercube 
(‘3+n’ points). 



- Version 7: DOE based on Latin Hypercube 
(‘3+n’ points). 

 
Table 1. Comparison between the different versions of optimiza-
tion algorithm developed 

Version No. points 
(DOE) 

Increase of opti-
mization time 

Increase of opti-
mum’s weight 

1 3+2n - - 
2 3+n -31.0% 1.4% 
3 3+n -29.5% 1.5% 
4 3+n -38.1% 1.3% 
5 3+2n -7.7% 0.3% 
6 3+n -14.5% 0.8% 
7 3+2n -35.4% 1.9% 
8 3+n -40.2% 1.5% 

 
Version 8 (algorithm presented in section 2.3.) 

achieves an average reduction of 40.2% on the opti-
mization time compared with version 1, while the 
quality of the optimum is worsened by 1.5%. It can 
be observed that the use of Latin Hypercube im-
proved the results compared with version 1. The 
modification proposed to the Latin Hypercube signif-
icantly enhanced the results in terms of the optimiza-
tion time compared to the standard Latin Hypercube 
(around 25 points). However, the quality of the solu-
tion is worsened by 1.6 points. 

2.5. Software description 

The optimization algorithm with the strategies de-
scribed before was implemented in the Application 
Programming Interface (API) of the CAD-FEA soft-
ware using Visual Basic. Through this tool, the opti-
mization is driven in a completely automated manner, 
which means that the multiple geometry updating and 
FEA simulations needed for the optimization process 
are automatically generated once the code is run and 
the input data is established. 

Some specific tasks that are carried out by the 
Matlab Windows Application are automatically acti-
vated during the optimization process. The API sends 
the available data to Matlab such as the design varia-
bles, constraints and weight of all the points simulat-
ed to create the Kriging metamodel and to calculate 
the predictions. These results are sent back to the API 
and used for the fitness function evaluation in the 
GAs. Apart from the creation of the metamodel and 
calculation of the predictions, Matlab is also used to 
sort the data in the GAs as well as to save the final 
results and create some graphics that summarize the 
evolution of the optimization process. Figure 7 repre-
sents the overall workflow. 

 

SolidWorks

Matlab

API
Optimization code and 
control of the process

CAD tool
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(variables/configurations) 
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Mechanical analysis 
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- Metamodel creation and predictions
- Data sorting
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- Metamodel creation and predictions
- Data sorting
- Data saving and representation

 
Fig. 7. Workflow of the optimization process. 

The sequence to apply the optimization method is 
as follows (Figure 8): 
− Parameterization of the geometry: Definition of 

the geometry in the CAD software, including the 
design variables. The design variables must be 
linked to the global variables with the right no-
menclature (‘VAR1’, ‘VAR2’, etc.). The global 
variables must be defined in the equation man-
ager of the CAD software in the right order and 
before the rest of equations. The API will access 
the equation manager to change the value of the 
variables, which are linked to the corresponding 
dimensions of the part. 

− Definition of the 2 configurations of the geome-
try: The programmed and original shapes must 
be defined using two different configurations 
that must be named with integers. One configu-
ration will have the flex feature ‘suppressed’ and 
the other being ‘activated’. 

− Definition of the mechanical analysis related to 
each configuration: Definition of the boundary 
conditions (loads, constraints, contacts, materi-
als, etc.) of the analysis associated with each 
configuration. The name of the analysis must 
follow a certain convention (Analysis 1, Analy-
sis 2, etc.) to guarantee the workflow between 
the API and the FEA tool. 



− Definition of sensors to get the relevant data 
from the FEA results: Definition of the sensors 
to store the FEA data is needed for the optimiza-
tion process (constraints and objective). The 
sensors must be named also following certain 
conventions (Constraint 1, Constraint 2… and 
Mass). 

− Running of the optimization program: Once the 
optimization is run, the program prompts some 
input data such as the number of design varia-
bles, the lower and upper limit values of each 
variable, the number of FEAs, the number of 
constraints, limit values, feasible zones and as-
sociated analysis of each constraint, the maxi-
mum element size for the mesh of each analysis 
and finally the configuration number related to 
each analysis. 

− Final result: The optimization algorithm auto-
matically changes the geometry, accomplishes 
the FEA simulations and manages the dataflow 
between the CAD, FEA and API tools and 
Matlab. Once the optimization is finished, the 
CAD shows the optimal design on the screen. 

Parameterization

Definition of 
configurations

Conf. 2Conf. 1

Definition of 
mechanical analysis

Conf. 1 Conf. 2

Definition of 
sensors

Running of the 
optimization 

program

Final result

The optimization algorithm 
drives the process

 Fig. 8. Sequence to apply the optimization method. 

3. Case study 

This section presents a simple case study in which 
the new optimization algorithm was applied. 

3.1. Geometry and design variables 

The geometry of this case study is a simple paral-
lelepiped (a prism whose external faces are all paral-
lelograms) that will have a programmed ‘L’ shape 
(configuration 1) and then will be stimulated to re-



cover its original straight shape (configuration 2). 
The part will have a hollow geometry with an internal 
longitudinal wall (Figure 9). The geometry will be 
longitudinally symmetrical. The thickness of the ex-
ternal walls will be homogenous (the same thickness 
in all the points), while the thickness of the central 
wall will change linearly. A total of 8 design varia-
bles (parameters) were defined to control the dimen-
sions of the part, the external walls of the part (5 var-
iables) and the dimensions of the internal wall (3 de-
sign variables). These dimensions will be the parame-
ters to be modified during the optimization process. 
The global dimensions were fixed (90x10x8mm). 
The center of the part, which is the zone where the 
shape memory will be applied, was kept solid (11mm 
length), as well as the end where the part will be 
fixed for the mechanical tests (10mm length). 

 
Fig. 9. Geometry to be optimized (internal wall and 4 hollows). 

 
The design variables and limits must be set out ac-

cording to the manufacturing capabilities, so that any 
design of the search domain can be manufactured. 
This is a main advantage of the parametric optimiza-
tion. The designer can adapt the limits of the parame-
ters according to the manufacturing limitations. 

In this case, the design variables and limits (in 
mm) were defined as follows: 
− VAR1: upper thickness [0.8-3.5] 
− VAR2: lower thickness [0.8-3.5] 
− VAR3: lateral thickness [1.5-2.5] 
− VAR4: thickness in the fixed end [1.5-5] 
− VAR5: thickness in the end of the load [1.5-5] 
− VAR6: half of the thickness of the reinforcing 

wall in the fixed end [0.75-2] (symmetry ap-
plied) 

− VAR7: half of the thickness of the reinforcing 
wall in the middle of the part [0.75-2] (sym-
metry applied) 

− VAR8: half of the thickness of the reinforcing 
wall in the end of the load [0.75-2] (symmetry 
applied) 

The parameterization is carried out by first defin-
ing VAR1, VAR2, etc. as global variables in the 
equation manager (and in the correct order), and then 
link the dimensions we want to parameterize with the 
associated global variable. 

3.2. Material 

The material used was Polylactic Acid (PLA) for 
3D printing, which has shape memory properties. The 
material was characterized using standard flexural 
tests applied in 3D printed samples. These samples 
were produced with the same manufacturing parame-
ters described in section 3.5. Therefore, imperfections 
related to manufacturing are considered through the 
appropriate definition of the flexural modulus. Ac-
cording to the experimental results, the flexural mod-
ulus was 2950.83MPa. The Poisson’s ratio was 0.36 
[16]. The density of PLA was established according 
to measurement of several 3D printed samples 
(1.176g/cm3). These values were introduced in the 
FEA tool to define the material properties. 

3.3. Objective and constraints 

The part must support a load of 160N (applied at 
2.5mm from the border) in its L-shape state (configu-
ration 1) with a maximum deflection of 8.5mm (con-
straint 1). Once the original shape (configuration 2) is 
recovered, the part must support a maximum load of 
40N keeping the deflection under 6.5mm (constraint 
2). Symmetry was applied in order to simplify the 
FEA simulations. No penetration contact was estab-
lished between the punch and the part. Figure 10 
shows the boundary conditions of configuration 1 
(programmed shape). Figure 11 depicts the analysis 
of configuration 2 (shape recovered after the stimulus 
application). The mesh was defined by using a curva-
ture-based mesher with parabolic tetrahedral solid 
elements. The maximum and minimum element size 
was 2mm and 0.4mm respectively. 

 



 
Fig. 10. FEA of configuration 1 (‘L’ shape). 

 

 
Fig. 11. FEA of configuration 2 (original shape). 

The optimization problem of this case study can be 
summarized as follows: 

Minimize      Weight (VAR1, VAR2, …, VAR8) 
Subject to:   Const.1<8.5mm (programmed shape) 
           Constraint 2<6.5mm (original shape) 
As the mathematical formulas of the objective and 

constraints are not known, the weight and constraints 
of each design are obtained from the CAD model and 
FEA results respectively. This can lead to high CPU 
time. However, the proposed methodology takes ad-
vantage of the Kriging metamodel to evaluate the 
values of the weight and constraints from the availa-
ble data without changing the geometry or accom-
plishing the FEA simulations. 

3.4. Optimization and results 

The optimization was run on a Dell Precision 
T3500 CPU model with an Intel(R) Xeon(R) W3530-
2.80GHz processor and 6GB RAM. The optimum 
solution was obtained in 102 minutes with a total 
number of 23 designs evaluated. The computational 
time needed in the DOE was 48 minutes (11 sam-
pling points). In the second stage (feasible/unfeasible 
border approximation), the time needed was 41 
minutes, with 9 sampling points. Finally, the last 
stage took 13 minutes, with 3 new sampling points. 
The optimal design was the last one, with a total mass 
of 3.448g (real weight of 2x3.448g due to the sym-

metry applied). The deflection with the programmed 
‘L’ shape (configuration 1) was 8.498mm (constraint 
1), while the limit value was 8.5mm. The deflection 
with the straight shape (original shape after recovery, 
configuration 2) was 5.952mm (constraint 2). How-
ever, the limit value for this constraint was 6.5mm, 
which means that constraint 1 was more restrictive. 
As expected, the optimum fulfills all the constraints 
established in the problem definition. Table 2 shows 
the values of constraint 1, constraint 2 and mass ob-
tained for each design simulated during the optimiza-
tion process. All the designs that did not fulfill con-
straint 2, also did not fulfill constraint 1, which veri-
fies the previous statement (constraint 1 was more 
restrictive). 

 
Table 2. Values of the constraints and mass of the designs evaluat-
ed during the optimization process. 

Design no. Constraint 1 
(mm) (<8.5) 

Constraint 2 
(mm) (<6.5) 

Mass 
(g) 

1 9.542 7.056 2.851 
2 7.909 5.481 3.769 
3 7.731 5.344 4.174 
4 8.285 5.787 3.652 
5 8.002 5.555 3.717 
6 7.988 5.582 3.813 
7 7.750 5.355 4.099 
8 8.155 5.755 3.701 
9 7.791 5.386 3.938 
10 8.059 5.606 3.706 
11 7.885 5.457 3.710 
12 9.162 6.432 3.050 
13 9.464 6.829 2.978 
14 9.513 6.989 2.925 
15 8.588 6.147 3.417 
16 8.788 6.125 3.454 
17 8.369 5.916 3.560 
18 8.521 6.099 3.424 
19 8.557 6.194 3.411 
20 8.601 6.264 3.384 
21 8.548 6.137 3.423 
22 8.600 6.250 3.474 
23 8.498 5.952 3.448 

  
The design variables of the optimum are shown in 

Table 3. 
 

Table 3. Values of the design variables of the optimum design. 

VAR1 
(mm) 

VAR2 
(mm) 

VAR3 
(mm) 

VAR4 
(mm) 

VAR5 
(mm) 

VAR6 
(mm) 

VAR7 
(mm) 

VAR8 
(mm) 

0.806 1.566 1.743 5.000 1.582 1.973 0.750 2.000 
 
Figure 12 shows the relative value of the con-

straints and mass of the designs evaluated in the last 2 
stages of the algorithm (points 12-23). The relative 
values of the constraints were calculated dividing the 



value obtained by the associated limit value. There-
fore, the values of constraint 1 were divided by 8.5 
and the values of constraint 2 by 6.5. In the case of 
the mass, the reference value is the mass of the opti-
mum. Consequently, the mass values were divided by 
3.448. 

 

12 14 16 18 20 22

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Number of design

Relative values

 

 
Constraint 1 (relative)
Constraint 2 (relative)
Mass (relative)

 
Fig. 12. Relative values of the designs 12-23. 

From Figure 12, it can be observed that constraint 
1, which was the most restrictive, tends to show val-
ues close to 1 as the algorithm evolves. At the same 
time, constraint 2 tends to show values lower than 1. 
Therefore, the algorithm evolves to the design with 
the lower mass that fulfills the constraints. 

Figure 13 shows the results (displacements) of the 
FEA simulation of the optimum design in its pro-
grammed shape (configuration 1). Figure 14 shows 
the displacement results of the optimum in its original 
shape (configuration 2). 

 

 
Fig. 13. Displacements of the optimum (configuration 1). 

 
Fig. 4 Displacements of the optimum (configuration 2). 

 

3.5. Manufacturing 

The optimum design was manufactured in a BQ 
Prusa i3 extrusion-based 3D printer. The filament 
diameter was 1.75mm, the nozzle diameter 0.4mm, 
the temperature for the layer deposition was 220°C 
(225°C for the first layer), the layer thickness 0.4mm, 
3 perimeters in the contour, 3 solid layers at the top 
and bottom, 100% fill density and manufacturing 
speed of 40mm/s in the perimeter and 50mm/s in the 
infill (travel at 80mm/s). 

 
 

3.6. Experimental tests 

The part was heated at 65°C to deform it and ob-
tain the ‘L’ shape of configuration 1. Subsequently, 
the part was tested (Figure 15). The results of the test 
of configuration 1 are shown in Figure 16. 

 

 
Fig. 15. Mechanical test of configuration 1. 
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Fig. 16. Results of the test of configuration 1. 

 
The deflection obtained for 160N load was 

10.92mm. However, the result according to the FEA 
simulations was 8.5mm. This difference was due to a 
loss of the material property of the PLA component 
during the programming of the ‘L’ shape when it 
encountered a large deformation. 

Next, the part was heated again to recover its orig-
inal straight shape (configuration 2) and it was tested 
(Figure 17). The results of this test are shown in Fig-
ure 18. 

 

 
Fig. 17. Mechanical test of configuration 2. 
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Fig. 18. Results of the test of configuration 2. 

 
The deflection obtained for 40N load was 8.04mm, 

while the result according to the FEA simulations 
was 5.94mm. After several subsequent tests with 
standard flexural samples, it was observed that the 
main cause of this difference was the loss of material 
property during the programming stage. The large 
displacements and strains applied in the L-shape pro-
gramming led to delamination process (Figure 19), 
reducing the properties of the sample. Further, tests 
revealed that the loss of stiffness was around 20% 
after the shape programming was applied. On the 
other hand, it was observed that the ratio between the 
displacement in configuration 1 and 2 was 1.4, for 
both simulations and experimental results, which 
confirmed that the difference between the experi-
mental and simulation results is related to this loss of 
property. Therefore, if the material definition is 
properly fitted according to the real properties of the 
programmed material, the proposed optimization al-
gorithm can be successfully applied to optimize the 
weight of the 4D part. 

 

 
Fig. 19. Sample delaminated in the deformed zone during the pro-

gramming stage. 

4. Conclusions 

The design methodology proposes a novel light-
weight parametric optimization of shape memory 
parts taking into account both shapes of the design 
(programmed and original shapes). This tool, which 
was implemented in a commercial 3D CAD and FEA 
software, can be effectively used to optimize the 
weight and consequentially reduce material and man-
ufacturing costs, but yet ensuring that the minimal 



mechanical requirements is maintained for both states 
of the shape memory part (programmed and original 
shapes). Through the use of this algorithm, users will 
be able to optimize a design that has different shapes 
with different boundary conditions and requirements 
to fulfill the mechanical requirements needed in both 
instances. This approach of optimization was devel-
oped further by automating the work flow which 
would encourage and promoted the uptake of 4D 
printing. 

While this paper focuses on 2 different configura-
tions, the algorithm is capable of handling many 
more configurations as desired. This tool can be very 
powerful to model several situations involved in the 
shape recovery. For example, a third configuration 
could be defined with an appropriate configuration 
and associated Finite Element Analysis conducted to 
examine whether the part is able to recover under 
certain boundary conditions. Therefore, this optimi-
zation algorithm optimizes the design variables ac-
cording to the mechanical requirements needed in the 
programmed and original shapes, and also optimizes 
the design variables to achieve the shape recovery 
force needed during the recovery process. If the re-
covery process is to be analyzed in detail, it can be 
discretized in different steps related to different con-
figurations, each of which represents a different situa-
tion/shape during the recovery. On the other hand, 
some shape memory materials can retain 3 different 
shapes and a third configuration could also be very 
useful. Further research will be carried out to investi-
gate more complex geometries and bending methods. 
In the case of very complex 4D products, the com-
puter processing time may be too high. As multi-core 
CPUs and GPUs become more available with higher 
performance and lower cost, this methodology could 
be accelerated [2,11,43]. Although SolidWorks was 
used due to the availability of the flex feature and the 
configurations module, more advanced FEA software 
such as Abaqus could also be investigated to allow 
the simulation of more complex parts and include 
acceleration techniques.  

This proposed methodology can be applied in 
many different sectors such as medical, automotive, 
toy, furniture, interior design, textile or telecommuni-
cations. The capabilities of 4D printing combined 
with this methodology have the potential to become 
useful in areas of high-value engineering [36]. 
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