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A Molecular Dynamics (MD) parallel to the Control Volume (CV) formulation of fluid mechanics is devel-
oped by integrating the formulas of Irving and Kirkwood, J. Chem. Phys. 18, 817 (1950) over a finite cubic
volume of molecular dimensions. The Lagrangian molecular system is expressed in terms of an Eulerian CV,
which yields an equivalent to Reynolds’ Transport Theorem for the discrete system. This approach casts the dy-
namics of the molecular system into a form that can be readilycompared to the continuum equations. The MD
equations of motion are reinterpreted in terms of a Lagrangian-to-Control-Volume (LCV) conversion function
ϑi, for each moleculei. TheLCV function and its spatial derivatives are used to express fluxes and relevant
forces across the control surfaces. The relationship between the local pressures computed using the Volume
Average (VA, Lutsko, J. Appl. Phys 64, 1152 (1988) ) techniques and the Method of Planes (MOP , Todd et al,
Phys. Rev. E 52, 1627 (1995) ) emerges naturally from the treatment. Numerical experiments using the MD CV
method are reported for equilibrium and non-equilibrium (start-up Couette flow) model liquids, which demon-
strate the advantages of the formulation. The CV formulation of the MD is shown to be exactly conservative,
and is therefore ideally suited to obtain macroscopic properties from a discrete system.
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I. INTRODUCTION

The macroscopic and microscopic descriptions of mechan-
ics have traditionally been studied independently. The former
invokes a continuum assumption, and aims to reproduce the
large-scale behaviour of solids and fluids, without the needto
resolve the micro-scale details. On the other hand, molecu-
lar simulation predicts the evolution of individual, but inter-
acting, molecules, which has application in nano and micro-
scale systems. Bridging these scales requires a mesoscopic
description, which represents the evolution of the averageof
many microscopic trajectories through phase space. It is ad-
vantageous to cast the fluid dynamics equations in a consis-
tent form for both the molecular, mesoscale and continuum
approaches. The current works seeks to achieve this objec-
tive by introducing a Control Volume (CV) formulation for
the molecular system.

The Control Volume approach is widely adopted in con-
tinuum fluid mechanics, where Reynolds Transport Theorem
[1] relates Newton’s laws of motion for macroscopic fluid
parcels to fluxes through a CV. In this form, fluid mechanics
has had great success in simulating both fundamental [2, 3]
and practical [4–6] flows. However, when the continuum as-
sumption fails, or when macroscopic constitutive equations
are lacking, a molecular-scale description is required. Exam-
ples include nano-flows, moving contact lines, solid-liquid
boundaries, non-equilibrium fluids, and evaluation of trans-
port properties such as viscosity and heat conductivity [7].

Molecular Dynamics (MD) involves solving Newton’s
equations of motion for an assembly of interacting discrete
molecules. Averaging is required in order to compute proper-
ties of interest, e.g. temperature, density, pressure and stress,
which can vary on a local scale especially out of equilib-
rium [7]. A rigorous link between mesoscopic and continuum
properties was established in the seminal work of Irving and
Kirkwood [8], who related the mesoscopic Liouville equa-
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tion to the differential form of continuum fluid mechanics.
However, the resulting equations at a point were expressed
in terms of the Diracδ function — a form which is difficult
to manipulate and cannot be applied directly in a molecular
simulation. Furthermore, a Taylor series expansion of the
Dirac δ functions was required to express the pressure ten-
sor. The final expression for pressure tensor is neither easy
to interpret nor to compute [9]. As a result, there have been
numerous attempts to develop an expression for the pressure
tensor for use in MD simulation [9–21]. Some of these ex-
pressions have been shown to be equivalent in the appropriate
limit. For example, Heyeset al. [22]) demonstrated equiva-
lence between Method of Planes (MOP Toddet al. [13]) and
Volume Average (VA Lutsko [16]) at a surface.

In order to avoid use of the Diracδ function, the current
work adopts a Control Volume representation of the MD sys-
tem, written in terms of fluxes and surface stresses. This ap-
proach is in part motivated by the success of the control vol-
ume formulation in continuum fluid mechanics. At a molecu-
lar scale, control volume analyses of NEMD simulations can
facilitate evaluation of local fluid properties. Furthermore,
the CV method also lends itself to coupling schemes between
the continuum and molecular descriptions [23–34].

The equations of continuum fluid mechanics are presented
in SectionII A , followed by a review of the Irving and Kirk-
wood [8] procedure for linking continuum and mesoscopic
properties in SectionII B . In sectionIII , a Lagrangian to Con-
trol Volume (LCV) conversion function is used to express the
mesoscopic equations for mass and momentum fluxes. Sec-
tion III C focuses on the stress tensor, and relates the cur-
rent formulation to established definitions within the litera-
ture [13, 16, 17]. In SectionIV, the CV equations are derived
for a single microscopic system, and subsequently integrated
in time in order to obtain a form which can be applied in MD
simulations. The conservation properties of the CV formula-
tion are demonstrated in NEMD simulations of Couette flow
in SectionIV C.
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II. BACKGROUND

This section summarizes the theoretical background. First,
the macroscopic continuum equations are introduced, fol-
lowed by the mesoscopic equations which describe the evolu-
tion of an ensemble average of systems of discrete molecules.
The link between the two descriptions is subsequently dis-
cussed.

A. Macroscopic Continuum Equations

The continuum conservation of mass and momentum bal-
ance can be derived in an Eulerian frame by considering the
fluxes through a Control Volume (CV). The mass continuity
equation can be expressed as,

∂

∂t

∫

V
ρdV = −

∮

S
ρu · dS, (1)

whereρ is the mass density andu is the fluid velocity. The
rate of change of momentum is determined by the balance of
forces on the CV,

∂

∂t

∫

V
ρudV = −

∮

S
ρuu · dS + Fsurface+ Fbody. (2)

The forces are split into ones which act on the bounding sur-
faces,Fsurface, and body forces,Fbody. Surface forces are
expressed in terms the pressure tensor,Π, on the CV sur-
faces,

Fsurface= −

∮

S
Π · dS. (3)

The rate of change of energy in a CV is expressed in terms of
fluxes, the pressure tensor and a heat flux vectorq,

∂

∂t

∫

V
ρEdV = −

∮

S
[ρEu+Π · u+ q] · dS, (4)

here the energy change due to body forces is not included.
The divergence theorem relates surface fluxes to the diver-
gence within the volume, for a variableA,

∮

S
A · dS =

∫

V
∇ ·AdV (5)

In addition, the differential form of the flow equations can be
recovered in the limit of an infinitesimal control volume [35],

∇ ·A = lim
V→0

1

V

∮

S
A · dS. (6)

B. Relationship Between the Continuum and the Mesoscopic
Descriptions

A mesoscopic description is a temporal and spatial average
of the molecular trajectories, expressed in terms of a proba-
bility function, f. Irving and Kirkwood [8] established the
link between the mesoscopic and continuum descriptions us-
ing the Diracδ function to define the macroscopic density at
a pointr in space,

ρ(r, t)≡
N∑

i=1

〈

miδ(ri − r); f

〉

. (7)

The angled brackets〈α; f〉 denote the inner product ofαwith
f, which gives the expectation ofα for an ensemble of sys-
tems. The mass and position of a moleculei are denotedmi

andri, respectively, andN is the number of molecules in a
single system. The momentum density at a point in space is
similarly defined by,

ρ(r, t)u(r, t)≡
N∑

i=1

〈

piδ(ri − r); f

〉

, (8)

where the molecular momentum,pi = miṙi. Note thatpi is
the momentum in the laboratory frame, and not the peculiar
valuepi which excludes the macroscopic streaming term at
the location of moleculei, u(ri), [7],

pi≡mi

(
pi
mi

− u(ri)
)

. (9)

The present treatment usespi in the lab frame. A discussion
of translating CV and its relationship to the peculiar momen-
tum is given in AppendixA.

Finally, the energy density at a point in space is defined by

ρ(r, t)E(r, t)≡
N∑

i=1

〈

eiδ(ri − r); f

〉

, (10)

where the energy of theith molecule is defined as the sum of
the kinetic energy and the inter-molecular interaction poten-
tial φij ,

ei≡
p2i
2mi

+
1

2

N∑

j 6=i

φij (11)

It is implicit in this definition that the potential energy ofan
interatomic interaction,φij , is divided equally between the
two interacting molecules,i andj.

As phase space is bounded, the evolution of a property,α,
in time is governed by the equation,

∂

∂t

〈

α; f

〉

=
N∑

i=1

〈

Fi ·
∂α

∂pi
+

pi
mi

·
∂α

∂ri
; f

〉

, (12)

whereFi is the force on moleculei, andα = α(ri(t), pi(t))
is an implicit function of time. Using Eq. (12), Irving and
Kirkwood [8] derived the time evolution of the mass (from
Eq. 7), momentum density (from Eq.8) and energy density
(from Eq.10) for a mesoscopic system. A comparison of the
resulting equations to the continuum counterpart provideda
term-by-term equivalence. Both the mesoscopic and contin-
uum equations were valid at a point; the former expressed in
terms of Diracδ and the latter in differential form. In the
current work, the mass and momentum densities are recast
within the CV framework which avoids use of the Diracδ
functions directly, and attendant problems with their practi-
cal implementation.

III. THE CONTROL VOLUME FORMULATION

In order to cast the governing equations for a discrete
system in CV form, a ‘selection function’ϑi is introduced,
which isolates those molecules within the region of interest.
This function is obtained by integrating the Diracδ func-
tion, δ(ri − r), over a cuboid in space, centered atr and
of side length∆r as illustrated in figure1(a) [37]. Using
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FIG. 1. (Color online) The CV function and its derivative applied to a system of molecules. The figures were generated using the VMD
visualization package, [36]. From left to right, (a) Schematic of ϑi which selects only the molecules within a cube, (b) Locationof cube
centerr and labels for cube surfaces, (c) Schematic of∂ϑi/∂x which selects only molecules crossing thex+ andx− surface planes.

δ(ri − r) = δ(xi − x)δ(yi − y)δ(zi − z), the resulting triple
integral is,

ϑi≡

x+∫

x−

y+∫

y−

z+∫

z−

δ(xi − x)δ(yi − y)δ(zi − z)dxdydz

=

[[[

H(xi − x)H(yi − y)H(zi − z)

]x+

x−

]y+

y−

]z+

z−

=
[
H(x+ − xi)−H(x− − xi)

]

×
[
H(y+ − yi) − H(y− − yi)

]

×
[
H(z+ − zi) − H(z− − zi)

]
,

(13)

whereH is the Heaviside function, and the limits of integra-
tion are defined as,r−≡ r − ∆r

2
andr+≡ r + ∆r

2
, for each

direction (see Fig.1(b)). Note thatϑi can be interpreted as
a Lagrangian-to-Control-Volume conversion function (LCV)
f̃or moleculei. It is unity when moleculei is inside the
cuboid, and equal to zero otherwise, as illustrated in Fig.
1(a). Using L’Hôpital’s rule and defining,∆V ≡∆x∆y∆z,
theLCV function for moleculei reduces to the Diracδ func-
tion in the limit of zero volume,

δ(r − ri) = lim
∆V→0

ϑi
∆V

.

The spatial derivative in thex direction of theLCV function
for moleculei is,

∂ϑi
∂x

= −
∂ϑi
∂xi

=
[
δ(x+ − xi)− δ(x− − xi)

]
Sxi, (14)

whereSxi is

Sxi≡
[
H(y+ − yi) − H(y− − yi)

]

[
H(z+ − zi) − H(z− − zi)

]
. (15)

Eq. (14) isolates molecules on a 2D rectangular patch in the
yz plane. The derivative∂ϑi/∂x is only non-zero when
moleculei is crossing the surfaces marked in Fig.1(c), nor-
mal to thex direction. The contribution of theith molecule
to the net rate of mass flux through the control surface is ex-
pressed in the form,pi · dSi. Defining for the rightx surface,

dS+
xi≡ δ(x+ − xi)Sxi, (16)

and similarly for the left surface,dS−
xi, the total flux Eq. (14)

in any directionr is then,

∂ϑi
∂r

= dS+i − dS−
i ≡ dSi. (17)

The LCV function is key to the derivation of a molecular-
level equivalent of the continuum CV equations, and it will
be used extensively in the following sections. The approach
in sectionsIII A , III B andIII D shares some similarities with
the work of Serrano and Español [38] which considers the
time evolution of Voronoi characteristic functions. However
theLCV function has precisely defined extents which allows
the development of conservation equations for a microscopic
system. In the following treatment, the CV is fixed in space
(i.e.,r is not a function of time). The extension of this treat-
ment to an advecting CV is made in AppendixA.

A. Mass Conservation for a Molecular CV
In this section, a mesoscopic expression for the mass in a

cuboidal CV is derived. The time evolution of mass within
a CV is shown to be equal to the net mass flux of molecules
across its surfaces.

The mass inside an arbitrary CV at the molecular scale can
be expressed in terms of theLCV as follows,

∫

V
ρ(r, t)dV =

∫

V

N∑

i=1

〈

miδ(ri − r); f

〉

dV

=
N∑

i=1

x+∫

x−

y+∫

y−

z+∫

z−

〈

miδ(ri − r); f

〉

dxdydz

=

N∑

i=1

〈

miϑi; f

〉

. (18)

Taking the time derivative of Eq. (18) and using Eq. (12),

∂

∂t

∫

V
ρ(r, t)dV =

∂

∂t

N∑

i=1

〈

miϑi; f

〉

=

N∑

i=1

〈
pi
mi

·
∂

∂ri
miϑi + Fi ·

∂

∂pi
miϑi; f

〉

. (19)

The term∂miϑi/∂pi = 0, asϑi is not a function ofpi.
Therefore,

∂

∂t

∫

V
ρdV = −

N∑

i=1

〈

pi ·
∂ϑi
∂r

; f

〉

, (20)
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where the equality,∂ϑi/∂ri = −∂ϑi/∂r has been used.
From the continuum mass conservation given in Eq. (1), the
macroscopic and mesoscopic fluxes over the surfaces can be
equated,

6∑

faces

∫

Sf

ρu · dSf =

N∑

i=1

〈

pi · dSi; f

〉

. (21)

The mesoscopic equation for evolution of mass in a control
volume is given by,

∂

∂t

N∑

i=1

〈

miϑi; f

〉

= −

N∑

i=1

〈

pi · dSi; f

〉

. (22)

AppendixB shows that the surface mass flux yields the Irving
and Kirkwood [8] expression for divergence as the CV tends
to a point (i.e.V → 0), in analogy to Eq. (6).

B. Momentum Balance for a Molecular CV
In this section, a mesoscopic expression for time evolution

of momentum within a CV is derived. The starting point is to
integrate the momentum at a point, given in Eq. (8), over the
CV,

∫

V
ρ(r, t)u(r, t)dV =

N∑

i=1

〈

piϑi; f

〉

. (23)

Following a similar procedure to that in sectionIII A , the for-
mula (12) is used to obtain the time evolution of the momen-
tum within the CV,

∂

∂t

∫

V
ρ(r, t)u(r, t)dV =

∂

∂t

N∑

i=1

〈

piϑi; f

〉

=

N∑

i=1

〈
pi
mi

·
∂

∂ri
piϑi

︸ ︷︷ ︸

KT

+Fi ·
∂

∂pi
piϑi

︸ ︷︷ ︸

CT

; f

〉

, (24)

where the termsKT andCT are the kinetic and configura-
tional components, respectively. The kinetic part is,

KT =

N∑

i=1

〈
pi
mi

·
∂

∂ri
piϑi; f

〉

=

N∑

i=1

〈
pipi
mi

·
∂ϑi
∂ri

; f

〉

,

(25)

wherepipi is the dyadic product. For any surface of the CV,
herex+, the molecular flux can be equated to the continuum
convection and pressure on that surface,

∫

S+x

ρ(x+, y, z, t)u(x+, y, z, t)ux(x
+, y, z, t)dydz

+

∫

S+x

K+
x dydz =

N∑

i=1

〈
pipix
mi

dS+
xi; f

〉

,

whereK+
x is the kinetic part of the pressure tensor due to

molecular transgressions across thex+ CV surface. The av-
erage molecular flux across the surface is then,

{ρuux}
+ + K+

x =
1

∆A+
x

N∑

i=1

〈
pipix
mi

dS+
xi; f

〉

, (26)

where the continuum expression{ρuux}+ is the average flux
through a flat region in space with area∆A+

x = ∆y∆z. This
kinetic component of the pressure tensor is discussed further
in SectionIII C.

The configurational term of Eq. (24) is,

CT =

N∑

i=1

〈

Fi ·
∂

∂pi
piϑi; f

〉

=

N∑

i=1

〈

Fiϑi; f

〉

, (27)

where the total forceFi on particlei is the sum of pairwise-
additive interactions with potentialφij , and from an external
potentialψi.

ϑiFi = −ϑi
∂

∂ri





N∑

j 6=i

φij + ψi



 .

It is commonly assumed that the potential energy of an inter-
atomic interaction,φij , can be divided equally between the
two interacting molecules,i andj, such that,

N∑

i,j

ϑi
∂φij
∂ri

=
1

2

N∑

i,j

[

ϑi
∂φij
∂ri

+ ϑj
∂φji
∂rj

]

, (28)

where the notation
∑N

i,j =
∑N

i=1

∑N
j 6=i has been introduced

for conciseness. Therefore, the configurational term can be
expressed as,

CT =
1

2

N∑

i,j

〈

fijϑij ; f

〉

+

N∑

i=1

〈

fiextϑi; f

〉

, (29)

where fij = −∂φij/∂ri = ∂φji/∂rj and fiext =
−∂ψi/∂ri. The notation,ϑij ≡ϑi−ϑj , is introduced, which
is non-zero only when the force acts over the surface of the
CV, as illustrated in Fig.2.

FIG. 2. (Color online) A section through the CV to illustratethe
role of ϑij in selecting only thei andj interactions that cross the
bounding surface of the control volume. Due to the limited range of
interactions, only the forces between the internal (red) moleculesi
and external (blue) moleculesj near the surfaces are included.
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Substituting the kinetic (KT ) and configurational (CT )
terms, from Eqs. (25) and (29) into Eq. (24), the time evo-
lution of momentum within the CV at the mesoscopic scale
is,

∂

∂t

N∑

i=1

〈

piϑi; f

〉

= −
N∑

i=1

〈
pipi
mi

· dSi; f

〉

+
1

2

N∑

i,j

〈

fijϑij ; f

〉

+

N∑

i=1

〈

fiextϑi; f

〉

. (30)

Equations (22) and (30) describe the evolution of mass and
momentum respectively within a CV averaged over an en-
semble of representative molecular systems. As proposed by
Evans and Morriss [7], it is possible to develop microscopic
evolution equations that do not require ensemble averaging.
Hence, the equivalents of Eqs. (22) and (30) are derived for
a single trajectory through phase space in sectionIV A , inte-
grated in time in sectionIV B and tested numerically using
molecular dynamics simulation in sectionIV C.

The link between the macroscopic and mesoscopic treat-
ments is given by equating their respective momentum Eqs.
(2) and (30),

−

∮

S
ρuu · dS + Fsurface+ Fbody

= −

N∑

i=1

〈
pipi
mi

· dSi; f

〉

+
1

2

N∑

i,j

〈

fijϑij ; f

〉

+

N∑

i=1

〈

fiextϑi; f

〉

. (31)

As can be seen, each term in the continuum evolution of mo-
mentum has an equivalent term in the mesoscopic formula-
tion.

The continuum momentum Eq. (2) can be expressed in
terms of the divergence of the pressure tensor,Π, in the con-
trol volume from,

∂

∂t

∫

V
ρudV = −

∮

S
[ρuu+Π] · dS + Fbody (32a)

= −

∫

V

∂

∂r
· [ρuu+Π] dV + Fbody. (32b)

In the following subsection, the right hand side of Eq. (31)
is recast first in divergence form as in Eq. (32b), and then in
terms of surface pressures as in Eq. (32a).

C. The Pressure Tensor

The average molecular pressure tensor ascribed to a con-
trol volume is conveniently expressed in terms of theLCV
function. This is showninter alia to lead to a number of
literature definitions of the local stress tensor. In the first
part of this section, the techniques of Irving and Kirkwood
[8] are used to express the divergence of the stress (as with
the right hand side of Eq. (32b)) in terms of intermolecu-
lar force. Secondly, the CV pressure tensor is related to the
Volume Average (VA) formula ([16, 17]) and, by considera-
tion of the interactions across the surfaces, to the Method Of
Planes (MOP) [13, 14]. Finally, the molecular CV Eq. (30)
is written in analogous form to the macroscopic Eq. (32a).

The pressure tensor,Π, can be decomposed into a kinetic
κ term, and a configurational stressσ. In keeping with the

engineering literature, the stress and pressure tensors have
opposite signs,

Π = κ− σ. (33)

The separation into kinetic and configurational parts is made
to accommodate the debate concerning the inclusion of ki-
netic terms in the molecular stress [9, 39, 40].

In order to avoid confusion, the stress,σ, is herein de-
fined to be due to the forces only (surface tractions). This,
combined with the kinetic pressure termκ, yields the total
pressure tensorΠ first introduced in Eq. (3).

1. Irving Kirkwood Pressure Tensor

The virial expression for the stress cannot be applied lo-
cally as it is only valid for a homogeneous system, [12]. The
Irving and Kirkwood [8] technique for evaluating the non-
equilibrium, locally-defined stress resolves this issue, and is
herein extended to a CV. To obtain the stress,σ, the inter-
molecular force term of Eq. (31) is defined to be equal to the
divergence of stress,

∫

V

∂

∂r
· σdV ≡

1

2

N∑

i,j

〈

fijϑij ; f

〉

=
1

2

N∑

i,j

∫

V

〈

fij
[
δ(ri − r)− δ(rj − r)

]
; f

〉

dV. (34)

Irving and Kirkwood [8] used a Taylor expansion of the Dirac
δ functions to express the pair force contribution in the form
of a divergence,

fij
[
δ(ri − r)− δ(rj − r)

]
= −

∂

∂r
· fijrijOijδ(ri − r),

whererij = ri− rj , andOij is an operator which acts on the
Diracδ function,

Oij ≡

(

1−
1

2
rij

∂

∂ri
+ . . .−

1

n!

(

rij
∂

∂ri

)n−1

+ . . .

)

.

(35)

Equation (34) can therefore be rewritten,

∫

V

∂

∂r
· σdV = −

1

2

N∑

i,j

∫

V

〈
∂

∂r
· fijrij

Oijδ(ri − r); f

〉

dV. (36)

The Taylor expansion in Diracδ functions is not straightfor-
ward to evaluate. This operation can be bypassed by integrat-
ing the position of the moleculei over phase space [11], or by
replacing the Diracδ with a similar but finite-valued function
of compact support [15, 18, 19, 21]. In the current treatment,
theLCV function,ϑ, is used, which is advantageous because
it explicitly defines both the extent of the CV and its surface
fluxes. The pressure tensor can be written in terms of the
LCV function by exploiting the following identities (see Ap-
pendix of Ref. [8]),

Oijδ(ri − r) =

1∫

0

δ(r − ri + srij)ds, (37)
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Equation (36) can therefore be written as,

∫

V

∂

∂r
· σdV = −

∫

V

1

2

N∑

i,j

〈
∂

∂r
· fijrij

×

1∫

0

δ(r − ri + srij)ds; f

〉

dV. (38)

Equation Eq. (38) leads to the VA and MOP definitions of
the pressure tensor.

2. VA Pressure Tensor

definition of the stress tensor of Lutsko [16] and Cormier
et al. [17] can be obtained by rewriting Eq. (38) as,

∂

∂r
·

∫

V
σdV = −

∂

∂r
·

∫

V

1

2

N∑

i,j

〈

fijrij

×

1∫

0

δ(r − ri + srij)ds; f

〉

dV. (39)

Equating the expressions inside the divergence on both sides
of Eq. (39), [41], and assuming the stress is constant within
an arbitrary local volume,∆V , gives an expression for the
VA stress,

VA
σ = −

1

2∆V

∫

V

N∑

i,j

〈

fijrij

1∫

0

δ(r − ri + srij)ds; f

〉

dV.

(40)

Swapping the order of integration and evaluating the integral
of the Diracδ function over∆V gives a different form of the
LCV function,ϑs,

ϑs≡

∫

V
δ(r − ri + srij)dV =

[
H(x+ − xi + sxij)−H(x− − xi + sxij)

]

×
[
H(y+ − yi + syij) − H(y− − yi + syij)

]

×
[
H(z+ − zi + szij) − H(z− − zi + szij)

]
, (41)

which is non-zero if a point on the line between the two
molecules,ri − srij , is inside the cubic region (c.f.ri with
ϑi). Substituting the definition,ϑs (Eq. 41), into Eq. (40)
gives,

VA
σ = −

1

2∆V

N∑

i,j

〈

fijrij lij ; f

〉

, (42)

wherelij is the integral fromri (s = 0) to rj (s = 1) of the
ϑs function,

lij ≡

∫ 1

0

ϑsds.

Therefore,lij is the fraction of interaction length betweeni
andj which lies within the CV, as illustrated in Fig.3. The
definition of the configurational stress in Eq. (42) is the same
as in the work of Lutsko [16] and Cormieret al. [17]. The
microscopic divergence theorem given in AppendixA can be

FIG. 3. (Color online) A plot of the interaction length givenby the
integral of the selecting functionϑs defined in Eq. (41) along the
line betweenri and rj . The cases shown are for two molecules
which area) both inside the volume (lij = 1) andb) both outside
the volume with an interaction crossing the volume, wherelij is the
fraction of the total length betweeni andj inside the volume. The
line is thin (blue) outside and thicker (red) inside the volume.

applied to obtain the volume averaged kinetic component of
the pressure tensor,KT , in Eq. (25),

N∑

i=1

〈
pipi

mi
· dSi; f

〉

=
∂

∂r
·

N∑

i=1

VA
{ρuu}+

VA
κ

︷ ︸︸ ︷
〈

pipi
mi

ϑi; f

〉

.

Note that the expression inside the divergence includes both

the advection,
VA

{ρuu}, and kinetic components of the pres-
sure tensor. The VA form [17] is obtained by combining the

above expression with the configurational stress
VA
σ ,

VA

{ρuu}+
VA
κ −

VA
σ =

VA

{ρuu}+
VA
Π

=
1

∆V

N∑

i=1

〈
pipi
mi

ϑi +
1

2

N∑

i,j

fijrij lij ; f

〉

. (43)

In contrast to the work of Cormieret al. [17], the advection
term in the above expression is explicitly identified, in order
to be compatible with the right hand side of Eq. (32b) and
definition of the pressure tensor,Π.

3. MOP Pressure Tensor

The stress in the CV can also be related to the tractions
over each surface. In analogy to prior use of the molecular
LCV function,ϑi, to evaluate the flux, the stressLCV func-
tion, ϑs, can be differentiated to give the tractions over each
surface. These surface tractions are the ones used in the for-
mal definition of the continuum Cauchy stress tensor. The
surface traction (i.e., force per unit area) and the kineticpres-
sure on a surface combined give the MOP expression for the
pressure tensor [13].
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In the context of the CV, the forces and fluxes on the six
bounding surfaces are required to obtain the pressure inside
the CV. It is herein shown that each face takes the form of
the Han and Lee [14] localization of the MOP pressure com-
ponents. The divergence theorem is used to express the left
hand side of Eq. (38) in terms of stress across the six faces
of the cube. The mesoscopic right hand side of Eq. (38) can
also be expressed as surface stresses by starting with theLCV
functionϑs,

6∑

faces

∫

Sf

σ · dSf = −
1

2

N∑

i,j

〈

fijrij ·

1∫

0

∂ϑs
∂r

ds; f

〉

.

The procedure for taking the derivative ofϑs with respect to
r and integrating over the volume is given in AppendixC.
The result is an expression for the force on the CV rewritten
as the force over each surface of the CV. For thex+ face, for
example, this is,
∫

S+x

σ · dS
S+x

= −
1

4

N∑

i,j

〈

fij
[
sgn(x+ − xj)

− sgn(x+ − xi)
]
S+
xij ; f

〉

.

The combination of the signum functions and theS+
xij term

specifies when the point of intersection of the line betweeni
andj is located on thex+ surface of the cube (see Appendix
C). Corresponding expressions for they andz faces are de-
fined byS±

αij whenα = {y, z} respectively.
The full expression for the MOP pressure tensor, which

includes the kinetic part given by Eq. (26), is obtained by
assuming a uniform pressure over thex+ surface,

∫

S+x

Π · dS+
x = [κ− σ] · n+x ∆A

+
x

≡
[
K+
x − T+

x

]
∆A+

x = P+
x ∆A

+
x , (44)

wheren+x is a unit vector aligned along thex coordinate axis,
n+x = [+1, 0, 0]; T+

x is the configurational stress (traction)
andP+

x the total pressure tensor acting on a plane. Hence,

P+
x =

1

∆A+
x

N∑

i=1

〈
pipix
mi

δ(xi − x+)S+
xi; f

〉

+
1

4∆A+
x

N∑

i,j

〈

fij
[
sgn(x+−xj)− sgn(x+−xi)

]
S+
xij ; f

〉

,

(45)

where the peculiar momentum,pi has been used as in Todd
et al. [13]. If the x+ surface area covers the entire domain
(S+

xij = 1 in Eq. (45)), the MOP formulation of the pressure
is recovered [13].

The extent of the surface is defined throughS+
xij , in Eq.

(45) which is the localized form of the pressure tensor con-
sidered by Han and Lee [14] applied to the six cubic faces.
For a cube in space, each face has three components of stress,
which results in18 independent components over the total
control surface. The quantity,

dSαij ≡
1

2

[
sgn(r+α − rαj)− sgn(r+α − rαi)

]
S+
αij

−
1

2

[
sgn(r−α − rαj)− sgn(r−α − rαi)

]
S−
αij ,

FIG. 4. (Color online) Representation of those molecules selected
throughdSxij in Eq. (46) with moleculesi on the side of the surface
inside the CV (red) and moleculesj on the outside (blue). The CV
is the inner square on the figure.

selects the force contributions across the two opposite faces;
similar notation to the surface molecular flux,dSij = dS+

ij −

dS−ij (c.f. Eq. (17)), is used. The case of the twox planes
located on opposite sides of the cube is illustrated in Fig.4.

Taking all surfaces of the cube into account yields the final
form,

6∑

faces

∫

Sf

σ · dSf = −
1

2

N∑

i,j

〈

fij
3∑

α=1

dSαij ; f

〉

= −
1

2

N∑

i,j

〈

fij ñ · dSij ; f

〉

=
1

2

N∑

i,j

〈

ςij · dSij ; f

〉

. (46)

The vector̃n, obtained in AppendixC, is unity in each direc-
tion. The tensorςij is defined, for notational convenience, to
be the outer product of the intermolecular forces withñ,

ςij ≡−fij ñ = −fij
[
1 1 1

]
= −





fxij fxij fxij
fyij fyij fyij
fzij fzij fzij



 .

In this form, theϑij function for all interactions over the
cube’s surface is expressed as the sum of six selection func-
tions for each of the six faces, i.e.ϑij = −

∑3
α=1 dSαij .

4. Relationship to the continuum

The forces per unit area, or ’tractions’, acting over each
face of the CV, are used in the definition of the Cauchy stress
tensor at the continuum level. For thex+ surface, the traction
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vector is the sum of all forces acting over the surface,

T+
x = −

1

4∆A+
x

N∑

i,j

〈

fij
[
sgn(x+ − xj)

− sgn(x+ − xi)
]
S+
xij ; f

〉

, (47)

which satisfies the definition,

T±
x = σ · n±x ,

of the Cauchy traction [42]. A similar relationship can be
written for both the kinetic and total pressures,

K±
x = κ · n±

x ,

P±
x = Π · n±

x ,

wheren±x is a unit vector,n±x = [±1 0 0]T .
The time evolution of the molecular momentum within a

CV ( Eq. (30)), can be expressed in a similar form to the
Navier-Stokes equations of continuum fluid mechanics. Di-
viding both sides of Eq. (30) by the volume, the following
form can be obtained; note that this step requires Eqs. Eq.
(26), Eq. (45) and Eq. (47):

1

∆V

∂

∂t

N∑

i=1

〈

pαiϑi; f

〉

+
{ρuαuβ}

+ − {ρuαuβ}
−

∆rβ
=

−
K+

αβ −K−
αβ

∆rβ
+
T+
αβ − T−

αβ

∆rβ
+

1

∆V

N∑

i=1

〈

fαiextϑi; f

〉

,

(49)

where index notation has been used (e.g.T±
x = T±

αx) with
the Einstein summation convention.

In the limit of zero volume, each expression would be simi-
lar to a term in the differential continuum equations (although
the pressure term would be the divergence of a tensor and not
the gradient of a scalar field as is common in fluid mechan-
ics). The Cauchy stress tensor,σ, is defined in the limit that
the cube’s volume tends to zero, so thatT+ andT− are re-
lated by an infinitesimal difference. This is used in contin-
uum mechanics to define the unique nine component Cauchy
stress tensor,dσ/dx ≡ lim∆x→0[T+ +T−]/∆x. This limit
is shown in AppendixB to yield the Irving and Kirkwood [8]
stress in terms of the Taylor expansion in Diracδ functions.

Rather than defining the stress at a point, the tractions
can be compared to their continuum counterparts in a fluid
mechanics control volume or a solid mechanics Finite Ele-
ments (FE) method. Computational Fluid Dynamics (CFD)
is commonly formulated using CV and in discrete simula-
tions, Finite Volume [4]. Surface forces are ideal for coupling
schemes between MD and CFD. Building on the pioneering
work of O’Connell and Thompson [23], there are many MD
to CFD coupling schemes – see the review paper by Mo-
hamed and Mohamad [43]. More recent developments for
coupling to fluctuating hydrodynamics are covered in a re-
view by Delgado-Buscalioni [44]. A discussion of coupling
schemes is outside the scope of this work, however finite vol-
ume algorithms have been used extensively in coupling meth-
ods [31, 32, 45–47] together with equivalent control volumes
defined in the molecular region. An advantage of the herein
proposed molecular CV approach is that it ensures conser-
vation laws are satisfied when exchanging fluxes over cell

surfaces — an important requirement for accurate unsteady
coupled simulations as outlined in the finite volume coupling
of Delgado-Buscalioni and Coveney [45]. For solid coupling
schemes, [30], the principle of virtual work can be used with
tractions on the element corners (the MD CV) to give the
state of stress in the element [48],

∫

V
σ ·∇NadV =

∮

S
NaTdS, (50)

whereNa is a linear shape function which allows stress to
be defined as a continuous function of position. It will be
demonstrated numerically in the next section,IV, that the CV
formulation is exactly conservative: the surface tractions and
fluxes entirely define the stress within the volume. The trac-
tions and stress in Eq. (50) are connected by the weak formu-
lation and the form of the stress tensor results from the choice
of shape functionNa.

D. Energy Balance for a Molecular CV
In this section, a mesoscopic expression for time evolution

of energy within a CV is derived. As for mass and momen-
tum, the starting point is to integrate the energy at a point,
given in Eq. (10), over the CV,

∫

V
ρ(r, t)E(r, t)dV =

N∑

i=1

〈

eiϑi; f

〉

. (51)

The time evolution within the CV is given using formula (12),

∂

∂t

∫

V
ρ(r, t)E(r, t)dV =

∂

∂t

N∑

i=1

〈

eiϑi; f

〉

=

N∑

i=1

〈
pi
mi

·
∂

∂ri
eiϑi + Fi ·

∂

∂pi
eiϑi; f

〉

. (52)

Evaluating the derivatives of the energy andLCV function
results in,

∂

∂t

N∑

i=1

〈

eiϑi; f

〉

= −
1

2

N∑

i,j

〈[
pi
mi

· fij +
pj
mi

· fji

]

ϑi; f

〉

−
N∑

i=1

〈

ei
pi
mi

· dSi − Fi ·
pi
mi

ϑi; f

〉

.

Using the definition ofFi, Newton’s 3rd law and relabelling
indices, the intermolecular force terms can be expressed in
terms of the interactions over the CV surface,ϑij ,

∂

∂t

N∑

i=1

〈

eiϑi; f

〉

= −

N∑

i=1

〈

ei
pi

mi
· dSi; f

〉

+
1

2

N∑

i,j

〈
pi
mi

· fijϑij ; f

〉

+

N∑

i=1

〈
pi
mi

· fiextϑi; f

〉

.
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The right hand side of this equation is equated to the right
hand side of the continuum energy Eq.4,

energy flux
︷ ︸︸ ︷

−

∮

S
ρEu · dS−

heat flux
︷ ︸︸ ︷∮

S
q · dS−

pressure heating
︷ ︸︸ ︷∮

S
Π · u · dS

= −
N∑

i=1

〈

ei
pi
mi

· dSi; f

〉

+
1

2

N∑

i,j

〈
pi
mi

· ςij · dSij ; f

〉

, (53)

where the energy due to the external (body) forces is ne-
glected. Thefijϑij has been re-expressed in terms of surface
tractions,ςij · dSij , using the analysis of the previous sec-
tion. In its current form, the microscopic equation does not
delineate the contribution due to energy flux, heat flux and
pressure heating. To achieve this division, the notion of the
peculiar momentum at the molecular location,u(ri) is used
together with the velocity at the CV surfacesu(r±), follow-
ing a similar process to Evans and Morriss [7].

IV. IMPLEMENTATION

In this section, the CV equation for mass, momentum and
energy balance, Eqs. (22), (30) and (53), will be proved to ap-
ply and demonstrated numerically for a microscopic system
undergoing a single trajectory through phase space.

A. The Microscopic System
Consider a single trajectory of a set of molecules through

phase space, defined in terms of their time dependent coor-
dinatesri and momentumpi. TheLCV function depends on
molecular coordinates, the location of the center of the cube,
r, and its side length,∆r, i.e., ϑi ≡ ϑi(ri(t), r,∆r). The
time evolution of the mass within the molecular control vol-
ume is given by,

d

dt

N∑

i=1

miϑi(ri(t), r,∆r) =
N∑

i=1

mi
∂ϑi
∂t

=

N∑

i=1

mi
dri
dt

·
∂ϑi
∂ri

= −

N∑

i=1

pi · dSi, (54)

using,pi = midri/dt. The time evolution of momentum in
the molecular control volume is,

∂

∂t

N∑

i=1

pi(t)ϑi(ri(t), r,∆r)

=

N∑

i=1

[

pi
∂ϑi
∂t

+
dpi

dt
ϑi

]

=

N∑

i=1

[

pi
dri
dt

·
∂ϑi
∂ri

+
dpi
dt
ϑi

]

.

As, dpi/dt = Fi, then,

∂

∂t

N∑

i=1

piϑi =
N∑

i=1

[

−
pipi
mi

· dSi + Fiϑi

]

= −

N∑

i=1

pipi
mi

· dSi +
1

2

N∑

i,j

fijϑij +
N∑

i=1

fiextϑi, (55)

where the total force on moleculei has been decomposed into
surface and ‘external’ or body terms. The time evolution of
energy in a molecular control volume is obtained by evaluat-
ing,

∂

∂t

N∑

i=1

eiϑi =
N∑

i=1

[

ei
∂ϑi
∂t

+
∂ei
∂t
ϑi

]

= −

N∑

i=1

ei
pi
mi

· dSi +
N∑

i=1

ṗi · pi
mi

ϑi

−
1

2

N∑

i,j

[
pi
mi

· fij +
pj

mj
· fji

]

ϑi

using,dpi/dt = Fi and the decomposition of forces. The
manipulation proceeds as in the mesoscopic system to yield,

∂

∂t

N∑

i=1

eiϑi = −
N∑

i=1

ei
pi
mi

· dSi

+
1

2

N∑

i,j

pi
mi

· fijϑij +
N∑

i=1

pi
mi

· fiextϑi, (56)

The average of many such trajectories defined through Eqs.
(54), (55) and (56) gives the mesoscopic expressions in Eqs.
(22), (30) and (53), respectively. In the next subsection, the
time integral of the single trajectory is considered.

B. Time integration of the microscopic CV equations
Integration of Eqs. (54), (55) and (56) over the time inter-

val [0, τ ] enables these equations to be usable in a molecular
simulation. For the conservation of mass term,

N∑

i=1

mi [ϑi(τ) − ϑi(0)] = −

τ∫

0

N∑

i=1

pi · dSidt. (57)

The surface crossing term,dSi, defined in Eq. (16), involves
a Diracδ function and therefore cannot be evaluated directly.
Over the time interval[0, τ ], moleculei passes through a
givenx position at times,txi,k, wherek = 1, 2, ..., Ntx [49]
. The positional Diracδ can be expressed as,

δ(xi(t)− x) =

Ntx∑

k=1

δ(t− txi,k)

|ẋi(txi,k)|
, (58)

where|ẋi(txi,k)| is the magnitude of the velocity in thex
direction at timetxi,k. Equation Eq. (58) is used to rewrite
dSi in Eq. (57) in the form,

dSαi,k ≡
[

sgn(t+αi,k− τ) − sgn(t+αi,k −0)
]

S+
αi,k(t

+
αi,k)

−
[

sgn(t−αi,k−τ)− sgn(t−αi,k −0)
]

S−
αi,k(t

−
αi,k),

(59)

whereα = {x, y, z}, and the fluxes are evaluated at times,
t+αi,k andt−αi,k for the right and left surfaces of the cube, re-
spectively. Using the above expression, the time integral in
Eq. (57) can be expressed as the sum of all molecule cross-
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ings,Nt = Ntx +Nty +Ntz over the cube’s faces,

Accumulation
︷ ︸︸ ︷

N∑

i=1

mi [ϑi(τ) − ϑi(0)] = −

N∑

i=1

Nt∑

k=1

mi

3∑

α=1

pαi
|pαi|

dSαi,k

︸ ︷︷ ︸

Advection

.

(60)

In other words, the mass in a CV at timet = τ minus its
initial value att = 0 is the sum of all molecules that cross its
surfaces during the time interval.

The momentum balance equation Eq. (55), can also be
written in time-integrated form,

N∑

i=1

[pi(τ)ϑi(τ) − pi(0)ϑi(0)] =

−

τ∫

0





N∑

i=1

pipi
mi

· dSi −
1

2

N∑

i,j

fijϑij −
N∑

i=1

fiextϑi



 dt,

and using identity (59),

Accumulation
︷ ︸︸ ︷

N∑

i=1

[pi(τ)ϑi(τ)−pi(0)ϑi(0)] +

Advection
︷ ︸︸ ︷

N∑

i=1

Nt∑

k=1

pi

3∑

α=1

pαi
|pαi|

dSαi,k

=

N∑

i,j

τ∫

0

fij(t)ϑij(t)dt+
N∑

i=1

τ∫

0

fiext(t)ϑi(t)dt

︸ ︷︷ ︸

Forcing

.

(61)

The integral of the forcing term can be rewritten as the sum,

τ∫

0

fij(t)ϑij(t)dt ≈ ∆t

Nτ∑

n=1

fij (tn)ϑij (tn) ,

whereNτ is the number time steps. Equation (61) can be
rearranged as follows,

N∑

i=1

pαi(τ)ϑi(τ)− pαi(0)ϑi(0)

τ∆V

+
{ρuαuβ}

+ − {ρuαuβ}
−

∆rβ
= −

K
+

αβ −K
−
αβ

∆rβ

+
T

+

αβ − T
−
αβ

∆rβ
+

1

Nτ∆V

N∑

i=1

Nτ∑

n=1

fαiext(tn)ϑi(tn), (62)

where the overbar denotes the time average. The time-
averaged traction in (62) is given by,

T
±
αβ = −

1

Nτ

1

4∆Aβ

N∑

i,j

Nτ∑

n=1

fαij(tn)dS
±
βij(tn),

The time-averaged kinetic surface pressure in (62) is,

K
±
αβ =

1

τ

1

2∆Aβ

N∑

i=1

Nt∑

k=1

pαi(tk)pβi(tk)

|pβi(tk)|
dS±

βi,k(tk)

−{ρuαuβ}
±.

The Eq. (62) demonstrates that the time average of the fluxes,
stresses and body forces on a CV during the interval0 to τ ,
completely determines the change in momentum within the
CV for a single trajectory of the system through phase space
(i.e. an MD simulation). The time evolution of the micro-
scopic system, Eq. (62), can also be obtained directly by
evaluating the derivatives of the mesoscopic expression (49)
and invoking the ergodic hypothesis, hence replacing

〈
α; f

〉

with 1
τ

∫ τ
0
αdt. The use of the ergodic hypothesis is justified

provided that the time interval,τ , is sufficient to ensure phase
space is adequately sampled.

Finally, there are no new techniques required to integrate
the energy Eq.56,

N∑

i=1

[ei(τ)ϑi(τ) − ei(0)ϑi(0)]

= −

τ∫

0





N∑

i=1

ei
pi
mi

· dSi −
1

2

N∑

i,j

pi
mi

· fijϑij



 dt (63)

which gives the final form, written without external forcing,

Accumulation
︷ ︸︸ ︷

N∑

i=1

[ei(τ)ϑi(τ)−ei(0)ϑi(0)]+

Advection
︷ ︸︸ ︷

N∑

i=1

Nt∑

k=1

ei

3∑

α=1

pαi
|pαi|

dSαi,k

=
1

2

N∑

i,j

τ∫

0

pi(t)
mi

· fij(t)ϑij(t)dt

︸ ︷︷ ︸

Forcing

.

(64)

As in the momentum balance equation, the integral of the
forcing term can be approximated by the sum,

τ∫

0

pi(t)
mi

· fij(t)ϑij(t)dt

≈ ∆t

Nτ∑

n=1

pi(tn)
mi

· fij (tn)ϑij (tn) ,

whereNτ is the number time steps.
In the next section, the elements, Accumulation, Advec-

tion and Forcing in the above equations are computed indi-
vidually in an MD simulation to confirm Eqs. (60), (61) and
(64) numerically.

C. Results and Discussion
Molecular Dynamics (MD) simulations in 3D are used in

this section to validate numerically, and explore the statisti-
cal convergence of, the CV formalism for three test cases.
The first investigation was to confirm numerically the con-
servation properties of an arbitrary control volume. The sec-
ond simulation compares the value of the scalar pressure ob-
tained from the molecular CV formulation with that of the
virial expression for an equilibrium system in a periodic do-
main. The final test is a Non Equilibrium Molecular Dy-
namics (NEMD) simulation of the start-up of Couette flow
initiated by translating the top wall in a slit channel geom-
etry. The NEMD system is analyzed using the CV expres-
sions Eqs. (60), (61) and (64), and the shear pressure was
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computed by the VA and CV routes. Newton’s equations of
motion were integrated using the half-step leap-frog Verlet
algorithm, [50]. The repulsive Lennard-Jones (LJ) or Weeks-
Chandler-Anderson (WCA) potential [51],

Φ(rij) = 4ǫ

[(
ℓ

rij

)12

−

(
ℓ

rij

)6
]

+ ǫ, rij ≤ rc, (65)

was used for the molecular interactions, which is the
Lennard-Jones potential shifted upwards byǫ and truncated
at the minimum in the potential,rij = rc ≡ 21/6ℓ. The
potential is zero forrij > rc. The energy scale is set byǫ,
the length scale byℓ and molecular mass bym. The results
reported here are given in terms ofℓ, ǫ andm. A timestep of
0.005 was used for all simulations. The domain size in the
first two simulations was13.68, which containedN = 2048
molecules, the density wasρ = 0.8 and the reduced tem-
perature was set to an initial value ofT = 1.0. Test cases
1 and 2 described below are for equilibrium systems, and
therefore did not require thermostatting. Case 3 is for a non-
equilibrium system and required removal of generated heat,
which was achieved by thermostatting the wall atoms only.

1. Case 1

In case 1, the periodic domain simulates a constant energy
ensemble. The separate terms of the integrated mass, mo-
mentum and energy equations given in (60), (61) and (64)
were evaluated numerically for several sizes of CV. The mass
conservation can readily be shown to be satisfied as it simply
requires tracking the number of molecules in the CV. The
momentum and energy balance equations are conveniently
checked for compliance at all times by evaluating the resid-
ual quantity,

Residual = Accumulation− Forcing+ Advection, (66)

which must be equal to zero at all times for the CV equations
to be satisfied. This was demonstrated to be the case, as may
be seen in Figs.5(a)and5(b), for a cubic CV of side length
1.52 in the absence of body forces. The evolution of momen-
tum inside the CV is shown numerically to be exactly equal
to the integral of the surface forces until a molecule crosses
the CV boundary. Such events give rise to a momentum flux
contribution which appears as a spike in the Advection and
Accumulation terms, as is evident in Fig.5(a). The residual
nonetheless remains identically zero (to machine precision)
at all times. The energy conservation is also displayed in
Fig. 5(b). The average error over the period of the simulation
(100 MD timeunits) was less than 1%, where the average er-
ror is defined as the ratio of the mean|Residual| to the mean
|Accumulation| over the simulation. The error is attributed
to the use of the leapfrog integration scheme, a conclusion
supported by the linear decrease in error as timestep∆t→ 0.

2. Case 2

As in case 1, the same periodic domain is used in case 2
to simulate a constant energy ensemble. The objective of this
exercise is to show that the average of the virial formula for
the scalar pressure,Πvir , applicable to an equilibrium peri-
odic system,

Πvir =
1

3V

N∑

i=1

〈
pi · pi
mi

+
1

2

N∑

i 6=j

fij · rij ; f

〉

, (67)
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FIG. 5. The various components in Eq. 66, ‘Accumulation’ (—),
the time integral of the surface force, ‘Forcing’ (×), and momen-
tum flux term, ‘Advection’ (- - -) are shown. ‘Forcing’ symbols are
shown every 4th timestep for clarity and the insert shows thefull
ordinate scale over the same time interval on the abscissa. From
top to bottom, (a) Momentum Control Volume, (b) Energy Control
Volume.

arises from the intermolecular interactions across the periodic
boundaries [12]. The CV formula for the scalar pressure is,

ΠCV =
1

6

(
P+
xx+P

−
xx+P

+
yy+P

−
yy+P

+
zz+P

−
zz

)
, (68)

where theP±
αα normal pressure is defined in Eq. (45) and

includes both the kinetic and configurational components
on each surface. Both routes involve the pair forces,fij .
However, the CV expression which uses MOP counts only
those pair forces which cross a plane while VA (Virial) sums
fijrij over the whole volume. It is therefore expected that
there would be differences between the two methods at short
times, converging at long times. A control volume the same
size as the periodic box was taken. The time averaged control
volume, (ΠCV ) and virial (Πvir) pressure values are shown
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FIG. 6. Πvir andΠCV from Eqs. (67) and (68) respectively. The
configurational and kinetic pressures are separated with configura-
tional values typically having greater magnitudes (∼ 4.0) than ki-
netic (∼ 0.6). Continuous lines are control volume pressures and
dotted lines are virial pressure.

in Fig. 6 to converge towards the same value with increasing
time. The simulation is started from an FCC lattice with a
short range potential (WCA) so the initial configurational
stress is zero. It is the evolution of the pressure from this
initial state that is compared in Fig.6. The virial kinetic
pressure makes use of the instantaneous values of the domain
molecule’s velocities at every time step. In contrast, the
CV kinetic part of the pressure is due to molecular surface
crossings only, which may explain its slower convergence
to the limiting value than the kinetic part of the virial
expression. To quantify this difference in convergence for
the two measures of the pressure, the standard deviation,
SD(x), is evaluated, ensuring decorrelation [47] using block
averaging [51]. For the kinetic virial, SD(κvir) = 0.0056,
and configurational, SD(σvir) = 0.0619. For the kinetic
CV pressure SD(κCV ) = 0.4549 and configurational
SD(σCV ) = 0.2901. The CV pressure, which makes
use of the MOP formula, would therefore require more
samples to converge to a steady state value. However, the
MOP pressures are generally more efficient to calculate
than the VA. More usefully, from an evaluation of only the
interactions over the outer CV surface, the pressure in a
volume of arbitrary size can be determined.
Figure7 is a log-log plot of the Percentage Discrepancy (PD)
between the two (PD = [100× |ΠCV −Πvir |/Πvir]).
After 10 million timesteps or a reduced time of5 × 104,
the percentage discrepancy in the configurational part has
decreased to0.01%, and the kinetic part of the pressure
matches the virial (and kinetic theory) to within0.1%. The
total pressure value agrees to within0.1% at the end of this
averaging period. The simulation average temperature was
0.65, and the kinetic part of the CV pressure was statis-
tically the same as the kinetic theory formula prediction,
κCV = ρkBT = 0.52 [51]. The VA formula for the pressure
in a volume the size of the domain is by definition formally
the same as that of the virial pressure. The next test case
compares the CV and VA formulas for the shear stress in a
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FIG. 7. The percentage relative difference between the virial and
control volume time-accumulated scalar pressures (PD defined in
the text). Values for the kinetic, configurational and totalPD are
shown.

system out of equilibrium.

3. Case 3

In this simulation study, Couette flow was simulated by
entraining a model liquid between two solid walls. The top
wall was set in translational motion parallel to the bottom
(stationary) wall and the evolution of the velocity profile to-
wards the steady-state Couette flow limit was followed. The
velocity profile, and the derived CV and VA shear stresses are
compared with the analytical solution of the unsteady diffu-
sion equation. Four layers of tethered molecules were used
to represent each wall, with the top wall given a sliding ve-
locity of, U0 = 1.0 at the start of the simulation, timet = 0.
The temperature of both walls was controlled by applying the
Nosé-Hoover (NH) thermostat to the wall atoms [52]. The
two walls were thermostatted separately, and the equations
of motion of the wall atoms were,

ṙi =
pi
mi

+ U0n+
x , (69a)

ṗi = Fi + fiext − ξpi, (69b)

fiext = ri0

(

4k4r
2
i0

+ 6k6r
4
i0

)

, (69c)

ξ̇ =
1

Qξ

[
N∑

n=1

pn · pn
mn

− 3T0

]

, (69d)

wheren+x is a unit vector in thex−direction,mn ≡ m, and
fiext is the tethered atom force, using the formula of Petravic
and Harrowell [53] (k4 = 5 × 103 andk6 = 5 × 106). The
vector,ri0 = ri−r0, is the displacement of the tethered atom,
i, from its lattice site coordinate,r0. The Nosé-Hoover ther-
mostat dynamical variable is denoted byξ, T0 = 1.0 is the
target temperature of the wall, and the effective time constant
or damping coefficient, in Eq. (69d) was given the value,
Qξ = N∆t. The simulation was carried out for a cubic do-
main of sidelength27.40, of which the fluid region extent
was20.52 in they−direction. Periodic boundaries were used
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FIG. 8. (Color online) Schematic diagram of the NEMD simulation
geometry consisting of a sliding top wall and stationary bottom wall,
both composed of tethered atoms. The simulation domain contained
a lattice of contiguous CV used for pressure averaging (shown by the
small boxes) while the thicker line denotes a single CV containing
the entire liquid region.

in the streamwise (x) and spanwise (z) directions. The re-
sults presented are the average of eight simulation trajecto-
ries starting with a different set of initial atom velocities. The
lattice contained16384 molecules and was at a density of
ρ = 0.8. The molecular simulation domain was sub-divided
into 4096 (163) control volumes, and the average velocity
and shear stress was determined in each of them. A larger
single CV encompassing all of the liquid region of the do-
main, shown bounded by the thick line in Fig.8, was also
considered.

The continuum solution for this configuration is consid-
ered now. Between two plates, there are no body forces and
the flow eventually becomes fully developed, [54] so that Eq.
(2) can be simplified and after applying the divergence theo-
rem from Eq. (5) it becomes,

∂

∂t

∫

V
ρudV = −

∫

V
∇ ·ΠdV,

which is valid for any arbitrary volume in the domain and
must be valid at any point for a continuum. The shear pres-
sure in the fluid,Πxy(y), drives the time evolution,

∂ρux
∂t

= −
∂Πxy

∂y
.

For a Newtonian liquid with viscosity,µ, [54],

Πxy = −µ
∂ux
∂y

, (70)

this gives the 1D diffusion equation,

∂ux
∂t

=
µ

ρ

∂2ux
∂y2

, (71)

assuming the liquid to be incompressible. This can be solved
for the boundary conditions,

ux(0, t) = 0 ux(L, t) = U0 ux(y, 0) = 0,
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FIG. 9. They− dependence of the streaming velocity profile at
timest = 2

n for n = 0, 2, 3, 4, 5, 6 from right to left. The squares
are the NEMD CV data values and the analytical solution to the
continuum equations of Eq. (72) is given at the same six timesas
continuous curves.

where the bottom and top wall-liquid boundaries are aty = 0
andy = L, respectively. The Fourier series solution of these
equations with inhomogeneous boundary conditions [55] is,

ux(y, t) =







U0 y = L
∞∑

n=1

un(t)sin
(nπy

L

)

0 < y < L

0 y = 0

(72)

whereλn = (nπ/L)2 andun(t) is given by,

un(t) =
2U0(−1)n

nπ

[

exp

(

−
λnµt

ρ

)

− 1

]

.

The velocity profile resolved at the control volume level
is compared with the continuum solution in Fig.9. There
were16 cubic NEMD CV of side length1.72 spanning the
system in they direction, with each data point on the figure
being derived from a local time average of0.5 time units.
The analytic continuum solution was evaluated numerically
from Eq. (72) with n = 1000 andµ = 1.6, the latter a
literature value for the WCA fluid shear viscosity atρ = 0.8
andT = 1.0, [56]. There is mostly very good agreement
between the analytic and NEMD velocity profiles at all
times, although some effect of the stacking of molecules
near the two walls can be seen in a slight blunting of the
fluid velocity profile very close to the tethered walls (located
by the horizontal two squares on the far left and right of the
figure) which is an aspect of the molecular system that the
continuum treatment is not capable of reproducing.

The VA and CV shear pressure, given by Eqs. (43)
and (45), are compared at timet = 10 in Fig. 10. The
comparison is for a single simulation trajectory resolved
into 16 cubic volumes of size1.72 in they−direction, with
averaging in thex andz directions and over0.5 in reduced
time. The figure shows the shear pressure on the faces of the
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FIG. 10. They−dependence of the shear pressure att = 10, aver-
aged over100 timesteps and for a single simulation trajectory. The
VA value from Eq. (43) are the squares. The CV surface traction
from Eq. (45) is indicated by× and◦ for the top and bottom sur-
faces, respectively. The solid gray line displays the resulting pres-
sure field using Eq. (50) with linear shape functions.

CV. Inside the CV, the pressure was assumed to vary linearly,
and the value at the midpoint is shown to be comparable
to the VA-determined value. Figure10 shows that there
is good agreement between the VA and CV approaches.
Note that the CV pressure is effectively the MOP formula
applied to the faces of the cube, and hence this case study
demonstrates a consistency between MOP and VA. We have
shown previously that this is true for the special case of an
infinitely thin bin or the limit of the pressure at a plane [22].
Practically, the extent of agreement in this exercise is limited
by the inherent assumptions and spatial resolution of the two
methods; a single average over a volume is required for VA,
but a linear pressure relationship is assumed for CV to obtain
the pressure tensor value corresponding to the center of the
CV.

The continuum analyticalxy pressure tensor component
can be derived analytically using the same Fourier series ap-
proach for∂ux/∂y,[55],

Πxy(y, t) = −
µU0

L

[

1 + 2

∞∑

n=1

(−1)ne
−
λnµt
ρ cos

(nπy

L

)
]

,

(73)

which is valid for the entire domain0 ≤ y ≤ L.
A statistically meaningful comparison between the CV,

VA and continuum analytic shear pressure profiles requires
more averaging of the simulation data than for the streaming
velocity, [57], and eight independent simulation trajectories
over 5 reduced time units were used. Figure11 shows
that the three methods exhibit good agreement within the
simulation statistical uncertainty.

As a final demonstration of the use of the CV equations,
the control volume is now chosen to encompass the entire
liquid domain (see Fig.8), and therefore the external forces
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FIG. 11. As Fig. 10, except that the NEMD results are averagedover
a set of eight independent simulations of1, 000 timesteps (5 reduced
time units) each. The simulation-derived VA and CV shear pres-
sures are compared with the continuum analytical solution given in
Eq. (73) (solid black line). The jump in the profile on the right of
the figure is due to the presence of the tethered wall.

arise from interactions with the wall atoms only. The mo-
mentum equation, Eq. (55), is written as,

∂

∂t

N∑

i=1

piϑi = −

N∑

i=1

1©
︷ ︸︸ ︷
pipi
mi

· dSi+
N∑

i=1

3©
︷ ︸︸ ︷

fiextϑi .

−
1

2

N∑

i,j

[
fijdSxij
︸ ︷︷ ︸

2©

+ fij
︸︷︷︸

4©

dSyij + fijdSzij
︸ ︷︷ ︸

2©

]
,

which can be simplified as follows. For term,1© in the
above equation, the fluxes across the CV boundaries in the
streamwise and spanwise directions cancel due to the peri-
odic boundary conditions. Fluxes across thexz boundary
surface are zero as the tethered wall atoms prevent such cross-
ings. The force term,2©, also vanishes because across the
periodic boundary,fijdS

+
xij = −fijdS

−
xij , (similarly for z).

The external force term,3©, is zero because all the forces
in the system result from interatomic interactions. The sum
of the fyij force components across the horizontal bound-
aries will be equal and opposite, and by symmetry the two
fzij terms in 4© will be zero on average. The above equation
therefore reduces to,

∂

∂t

N∑

i=1

piϑi = −
1

2

N∑

i,j

[

fxijdS
+
yij − fxijdS

−
yij

]

. (74)

As the simulation approaches steady state, the rate of change
of momentum in the control volume tends to zero because
the difference between the shear stresses acting across the
top and bottom walls vanishes. The forces on thexz plane
boundary and momentum inside the CV are plotted in Fig.
12 to confirm Eq. (74) numerically. The time evolution of
these molecular momenta and surface stresses are compared
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FIG. 12. The evolution of surface forces and momentum change
for a molecular CV from Eq. (74), (points) and analytical solution
for the continuum (Eqs. (77), (78) and (76)), presented as lines on
the figure. TheResidual, defined in Eq. (66), is also given. Each
point represents the average over an ensemble of eight independent
systems and 40 timesteps.

to the analytical continuum solution for the CV,

∂

∂t

∫

V
ρuxdV = −





∫

S+
f

ΠxydS
+
f −

∫

S−
f

ΠxydS
−
f



 .

(75)

The normal components of the pressure tensor are non-zero
in the continuum, but exactly balance across opposite CV
faces, i.e.Π+

xx = Π−
xx. By appropriate choice of the gauge

pressure,Πxx does not appear in the governing Eq. (75). The
left hand side of the above equation is evaluated from the an-
alytic expression forux,

∂

∂t

∫

V
ρuxdV = 2∆x∆z

µU0

L

∞∑

n=1

[1− (−1)n] e
−
λnµt
ρ .

(76)

The right hand side is obtained from the analytic continuum
expression for the shear stress, for the bottom surface aty =
0,

∫

S+
f

ΠxydS
+
f = −2∆x∆z

µU0

L

∞∑

n=1

e
−
λnµt
ρ , (77)

and for the topy = L,

∫

S−
f

ΠxydS
−
f = −2∆x∆z

µU0

L

∞∑

n=1

(−1)ne
−
λnµt
ρ . (78)

In Fig 12, the momentum evolution on the left hand side of
Eq. (74) is compared to Eq. (76). Equations (77) and (78) are
also given for the shear stresses acting across the top and bot-
tom of the molecular control volume (right hand side of Eq.
(74)). The scatter seen in the MD data reflects the thermal
fluctuations in the forces and molecular crossings of the CV

boundaries. The average response nevertheless agrees well
with the analytic solution, bearing in mind the element of
uncertainty in the matching state parameter values. This ex-
ample demonstrates the potential of the CV approach applied
on the molecular scale, as it can be seen that computation of
the forces across the CV boundaries determines completely
the average molecular microhydrodynamic response of the
system contained in the CV. In fact, the force on only one of
the surfaces is all that was required, as the force terms for
the opposite surface could have been obtained from Eq. (74).

V. CONCLUSIONS

In analogy to continuum fluid mechanics, the evolution
equations for a molecular systems has been expressed within
a Control Volume (CV) in terms of fluxes and stresses across
the surfaces. A key ingredient is the definition and manipula-
tion of a Lagrangian to Control Volume conversion function,
ϑ, which identifies molecules within the CV. The final ap-
pearance of the equations has the same form as Reynolds’
Transport Theorem applied to a discrete system. The equa-
tions presented follow directly from Newton’s equation of
motion for a system of discrete particles, requiring no ad-
ditional assumptions and therefore sharing the same range of
validity.

Using theLCV function, the relationship between Volume
Average (VA) [16, 17] and Method Of Planes (MOP) pres-
sure [13, 14] has been established, without Fourier transfor-
mation. The two definitions of pressure are shown numer-
ically to give equivalent results away from equilibrium and,
for homogeneous systems, shown to equal the virial pressure.

A Navier–Stokes-like equation was derived for the evo-
lution of momentum within the control volume, expressed
in terms of surface fluxes and stresses. This pro-
vides an exact mathematical relationship between molecular
fluxes/pressures and the evolution of momentum and energy
in a CV. Numerical evaluations of the terms in the conserva-
tion of mass, momentum and energy equations demonstrated
consistency with theoretical predictions.

The CV formulation is general, and can be applied to de-
rive conservation equations for any fluid dynamical property
localised to a region in space. It can also facilitate the deriva-
tion of conservative numerical schemes for MD, and the eval-
uation of the accuracy of numerical schemes. Finally, it al-
lows for accurate evaluation of macroscopic flow properties,
in a manner consistent with the continuum conservation laws.

Appendix A: Discrete form of Reynolds’ Transport Theorem
and the Divergence Theorem

In this appendix, both Reynolds’ Transport Theorem and
the Divergence Theorem for a discrete system are derived.
The relationship between an advecting and fixed control vol-
ume is shown using the concept of peculiar momentum.

The microscopic form of the continuous Reynolds’ Trans-
port Theorem [1] is derived for a propertyχ = χ(ri, pi, t)
which could be mass, momentum or the pressure tensor. The
LCV function,ϑi, is dependent on the molecule’s coordinate;
the location of the cube center,r, and side length,∆r, which
are all a function of time. The time evolution of the CV is
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therefore,

d

dt

N∑

i=1

χ(t)ϑi(ri(t), r(t),∆r(t))

=

N∑

i=1

[
dχ

dt
ϑi + χ

dri
dt

·
∂ϑi
∂ri

+ χ
dr
dt

·
∂ϑi
∂r

+ χ
d∆r
dt

·
∂ϑi
∂∆r

]

.

The velocity of the moving volume is defined asũ = dr/dt,
which can be different to the macroscopic velocityu. Sur-
face translation or deformation of the cube,∂ϑi/∂∆r, can be
included in the expression for velocitỹu. The above analysis
is for a microscopic system, although a similar process for a
mesoscopic system can be applied and includes terms for CV
movement in Eq. (12).

Hence Reynolds treatment of a continuous medium [1] is
extended here to a discrete molecular system,

d

dt

N∑

i=1

χ(t)ϑi(ri(t), r(t),∆r(t))

=

N∑

i=1

[
dχ

dt
ϑi + χ

(

ũ−
pi
mi

)

· dSi

]

. (A1)

The conservation equation for the mass,χ = mi, in a moving
reference frame is,

d

dt

N∑

i=1

miϑi =

N∑

i=1

[

mi

(

ũ−
pi
mi

)

· dSi

]

. (A2)

In a Lagrangian reference frame, the translational velocity of
CV surface must be equal to the molecular streaming veloc-
ity, i.e., ũ(r±) = u(ri), so that,

N∑

i=1

[

mi

(

u−
pi
mi

)

· dSi

]

= −

N∑

i=1

pi · dSi.

The evolution of the peculiar momentum,χ = pi, in a mov-
ing reference frame is,

d

dt

N∑

i=1

piϑi =
N∑

i=1

[

Fiϑi + pi

(

u−
pi
mi

)

· dSi

]

=

N∑

i=1

[

Fiϑi −
pipi
mi

· dSi

]

.

Here an inertial reference frame has been assumed so that
dpi/dt = dpi/dt = Fi. For a simple case (e.g. one dimen-
sional flow) it is possible to utilize a Lagrangian description
by ensuring,̃u(r±) = u(ri), throughout the time evolution.
In more complicated cases, this is not always possible and
the Eulerian description is generally adopted.

Next, a microscopic analogue to the macroscopic diver-
gence theorem is derived for the generalized function,χ,

∫

V

N∑

i=1

∂

∂r
·

[

χ(ri, pi, t)δ(ri − r)
]

dV

=

∫

V

N∑

i=1

χ(ri, pi, t) ·
∂

∂r
δ(ri − r)dV.

The vector derivative of the Diracδ followed by the integral
over volume results in,

∫

V

∂

∂r
δ(xi − x)δ(yi − y)δ(zi − z)dV

=





[δ(xi − x)H(yi − y)H(zi − z)]V
[H(xi − x)δ(yi − y)H(zi − z)]V
[H(xi − x)H(yi − y)δ(zi − z)]V





=





[
δ(xi − x+)− δ(xi − x−)

]
Sxi[

δ(yi − y+)− δ(yi − y−)
]
Syi[

δ(zi − z+)− δ(zi − z−)
]
Szi



 = dSi,

where the limits of the cuboidal volume are,r+ = r+∆r
2

and
r− = r − ∆r

2
. The mesoscopic equivalent of the continuum

divergence theorem (Eq. (5)) is therefore,

∫

V

∂

∂r
·

N∑

i=1

χδ(ri − r)dV =

N∑

i=1

χ · dSi.

Appendix B: Relation between Control Volume and
Description at a Point

This Appendix proves that the Irving and Kirkwood [8]
expression for the flux at a point is the zero volume limit of
the CV formulation. As in the continuum, the control volume
equations at a point are obtained using the gradient operator
in Eq. (6). the flux at a point can be shown by taking the zero
volume limit of the gradient operator of Eq. (6). Assuming
the three side lengths of the control volume,∆x,∆y and∆z,
tend to zero and hence the volume,∆V , tends to zero,

∇ · ρu = lim
∆x→0

lim
∆y→0

lim
∆z→0

1

∆x∆y∆z

×

N∑

i=1

〈

pix
∂ϑi
∂x

+ piy
∂ϑi
∂y

+ piz
∂ϑi
∂z

; f

〉

. (B1)

from Eq. (21). For illustration, consider thex component
above, where

∂ϑi
∂x

=

xface
︷ ︸︸ ︷
[
δ(x+ − xi)− δ(x− − xi)

]
Sxi. (B2)

Using the definition of the Diracδ function as the limit of two
slightly displaced Heaviside functions,

δ(ξ) = lim
∆ξ→0

H
(

ξ + ∆ξ
2

)

−H
(

ξ − ∆ξ
2

)

∆ξ
,

the limit of theSxi term is,

lim
∆y→0

lim
∆z→0

Sxi = δ(yi − y)δ(zi − z)

The∆x → 0 limit for xface (defined in Eq. (B2)) can be
evaluated using L’Hôpital’s rule, combined with the property
of theδ function,

∂

∂(∆ξ)
δ

(

ξ −
∆ξ

2

)

= −
1

2

∂

∂ξ
δ

(

ξ −
∆ξ

2

)

,

so that,

lim
∆x→0

xface =
∂

∂x
δ (x− xi) .
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Therefore, the limit of∂ϑi/∂x as the volume approaches
zero is,

lim
∆x→0

lim
∆y→0

lim
∆z→0

∂ϑi
∂x

=
∂

∂x
δ (ri − r) ,

Taking the limits for thex, y andz terms in Eq. (B1) yields
the expected Irving and Kirkwood [8] definition of the diver-
gence at a point,

∇ · ρu =

N∑

i=1

〈
∂

∂r
· piδ(ri − r); f

〉

.

This zero volume limit of the CV surface fluxes shows that
the divergence of a Diracδ function represents the flow of
molecules over a point in space. The advection and kinetic
pressure at a point is, from Eq. (25),

∇ · [ρuu+ κ] =
N∑

i=1

〈
∂

∂r
·

pipi
mi

δ(ri − r); f

〉

.

The same limit of zero volume for the surface tractions de-
fines the Cauchy stress. Using Eq. (6) and taking the limit of
Eq. (46), written in terms of tractions,

∇ · σ= lim
∆V→0

1

∆V

6∑

faces

∫

Sf

σ · dSf = lim
∆rx→0

lim
∆ry→0

lim
∆rz→0

×

[

T+
x − T−

x

∆rx
+

T+
y − T−

y

∆ry
+

T+
z − T−

z

∆rz

]

.

For ther+x surface, and taking the limits of∆ry and∆rz
using L’Hôpital’s rule,

lim
∆V→0

T+
x

∆rx
= − lim

∆rx→0

1

2∆rx

N∑

i,j

〈

fαij̟
+
xyz ; f

〉

.

where̟ is

̟
†
βκγ ≡

[

H(r
†
β − rβj)−H(r

†
β − rβi)

]

×δ

(

rκ − rκi −
rκij
rβij

(

r†β − rβi

))

×δ

(

rγ − rγi −
rγij
rβij

(

r†β − rβi

))

. (B3)

The indicesβ, κ andγ can bex, y or z and† denotes the top
surface (+ superscript), bottom surface (− superscript) or CV
center (no superscript). The̟ selecting function includes
only the contribution to the stress when the line of interaction
betweeni andj passes through the pointr† in space. The
difference betweenT+

x andT−
x tends to zero on taking the

limit ∆rx → 0, so that L’Hôpital’s rule can be applied. Using
the property,

∂

∂(∆ξ)
δ

(

ξ −
1

2
∆ξ

)

H

(

ξ −
1

2
∆ξ

)

= −
1

2

∂

∂ξ
δ

(

ξ −
1

2
∆ξ

)

H

(

ξ −
1

2
∆ξ

)

,

then,

lim
∆V→0

T+
x − T−

x

∆rx
= −

1

2

N∑

i,j

〈

fαij
∂̟xyz

∂rx
; f

〉

.

wherer+ → r and r− → r. The̟βκγ function is the
integral between two molecules introduced in Eq. (37),

1∫

0

δ(r − ri + srij)ds = sgn

(
1

rxij

)
1

|rxij |

×
[
H(rx − rxj)−H(rx − rxi)

]

×δ

(

ry − ryi −
ryij
rxij

(rx − rxi)

)

×δ

(

rz − rzi −
rzij
rxij

(rx − rxi)

)

.

where the sifting property of the Diracδ function in therx
direction has been used to express the integral between two
molecules in terms of the̟ xyz function. Hence,

1∫

0

δ(r − ri + srij)ds =
̟xyz

rxij
.

As the choice of shifting direction is arbitrary, use ofry or
rz in the above treatment would result in̟yzx and̟zxy, re-
spectively. Therefore, Eq. (38), without the volume integral,
can be expressed as,

1

2

N∑

i,j

〈

fαijrβij
∂

∂rβ

1∫

0

δ(r − ri + srij)ds; f

〉

=
1

2

N∑

i,j

〈

fijα

[
∂̟xyz

∂rx
+
∂̟yxz

∂ry
+
∂̟zxy

∂rz

]

; f

〉

.

As Eq. (38) is equivalent to the Irving and Kirkwood [8]
stress of Eq. (36), the Irving Kirkwood stress is recovered in
the limit that the CV tends to zero volume.
This Appendix has proved therefore that in the limit of zero
control volume, the molecular CV Eqs. (22) and (49) recover
the description at a point in the same limit that the contin-
uum CV Eqs. (1) and (2) tend to the differential continuum
equations. This demonstrates that the molecular CV equa-
tions presented here are the molecular scale equivalent of the
continuum CV equations.

Appendix C: Relationship between Volume Average and
Method Of Planes Stress

This Appendix gives further details of the derivation of the
Method Of Planes form of stress from the Volume Average
form. Starting from Eq. (38) written in terms of the CV func-
tion for an integrated volume,

−

6∑

faces

∫

Sf

σ · dSf =
1

2

N∑

i,j

〈

fijrij ·

1∫

0

∂ϑs
∂r

ds; f

〉

=
1

2

N∑

i,j

〈

fij

1∫

0

[

xij
∂ϑs
∂x

+ yij
∂ϑs
∂y

+ zij
∂ϑs
∂z

]

ds; f

〉

.

(C1)

Taking only thex derivative above,

xij
∂ϑs
∂x

= xij
[

x+
face

︷ ︸︸ ︷

δ(x+ − xi + sxij)

−δ(x− − xi + sxij)
]
G(s) (C2)
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whereG(s) is,

G(s)≡
[
H(y+ − yi + syij)−H(y− − yi + syij)

]

×
[
H(z+ − zi + szij)−H(z− − zi + szij)

]
.

As δ(ax) = 1
|a|
δ(x) thexijx

+
faceG(s) term in Eq. (C2) can

be expressed as,

xijx
+
faceG(s) =

xij
|xij |

δ

(
x+ − xi
xij

+ s

)

G(s). (C3)

The integral can be evaluated using the sifting property of the
Diracδ function [58] as follows,

1∫

0

xijx
+
faceG(s)ds =

xij
|xij |

1∫

0

δ

(
x+ − xi
xij

+ s

)

G(s)ds

= sgn(xij)

[

H

(
x+ − xj
xij

)

−H

(
x+ − xi
xij

)]

S+
xij .

where the signum function,sgn(xij)≡ xij/|xij |. TheS+
xij

term is the value ofs on the cube surface,

S+
xij = G

(

s = −
x+−xi
xij

)

which is,

S+
xij ≡

[

H

(

y+ − yi −
yij
xij

(
x+ − xi

)
)

− H

(

y− − yi −
yij
xij

(
x+ − xi

)
)]

×

[

H

(

z+ − zi −
zij
xij

(
x+ − xi

)
)

− H

(

z− − zi −
zij
xij

(
x+ − xi

)
)]

. (C4)

The definitionS+
xij (analogous toSxi in Eq. (15)) has been

introduced as it filters out thoseij terms where the point
of intersection of linerij and planex+ hasy and z com-
ponents between the limits of the cube surfaces. The cor-
responding terms,S±

ijα, are defined forα = {y, z}. Tak-

ing H(0) = 1
2
, the Heaviside function can be rewritten as

H(ax) = 1
2
(sgn(a)sgn(x)− 1), and,

H

(
x+ − xj
xij

)

−H

(
x+ − xi
xij

)

=
1

2
sgn

(
1

xij

)
[
sgn(x+ − xj)− sgn(x+ − xi)

]
,

so the expression,xijx
+
faceG(s) in Eq. (C2) becomes,

xij

1∫

0

x+faceG(s)ds =
1

2
sgn(xij)sgn

(
1

xij

)

×
[
sgn(x+ − xj)−sgn(x

+ − xi)
]
S+
xij .

The signum function,sgn

(

1
xij

)

, cancels the one obtained

from integration alongs, sgn(xij). The expression for the
x+ face is therefore,

−

∫

S+x

σ · dS
S+x

=
1

2

N∑

i,j

〈

fijxij

1∫

0

x+faceG(s)ds; f

〉

=
1

4

N∑

i,j

〈

fij
[
sgn(x+ − xj)− sgn(x+ − xi)

]
S+
xij ; f

〉

Repeating the same process for the other faces allows Eq.
(C1) to be expressed as,

6∑

faces

∫

Sf

σ · dSf = −
1

2

N∑

i,j

〈

fijrij ·

1∫

0

∂ϑs
∂r

ds; f

〉

= −
1

4

N∑

i,j

〈

fij

3∑

α=1

ñα

[

dS+
αij − dS−

αij

]

; f

〉

,

where dS±
αij ≡

1
2

[
sgn(r±α − rαj)− sgn(r±α − rαi)

]
S±
αij

andñα≡ sgn(rαij)sgn

(

1
rαij

)

= [1 1 1]. This is the force

over the CV surfaces,Eq. (46), in sectionIII C.
To verify the interpretation ofS+

xij used in this work,
consider the vector equation for the point of intersection of
a line and a plane in space. The equation for a vectora
betweenri and rj is defined asa = ri − s

rij
|rij |

. The

plane containing the positive face of a cube is defined by
(
r+ − p

)
· n wherep is any point on the plane andn is nor-

mal to that plane. By settinga = p and upon rearrangement

of

(

r+ − ri + s
rij
|rij |

)

·n, the value ofs at the point of inter-

section with the plane is,

s = −

(
r+ − ri

)
· n

rij
|rij |

· n
,

The point on linea located on the plane is,

a+p ≡ ri + rij

[(
r+ − ri

)
· n

rij · n

]

.

Takingn as the normal to thex surface, i.e.
n → nx = [1, 0, 0], then,

x+αp =





x+xp
x+yp
x+zp



 =







x+

yi +
yij
xij

(
x+ − xi

)

zi +
zij
xij

(
x+ − xi

)







written using index notation withα = {x, y, z}. The vector
x+p is the point of intersection of linea with thex+ plane. A
function to check if the pointx+p on the plane is located on the
region betweeny± andz±, would use Heaviside functions
and is similar to the form of Eq. (15),

S+
xij =

[
H
(
y+ − x+yp

)
−H

(
y− − x+yp

)]

×
[
H
(
z+ − x+zp

)
−H

(
z− − x+zp

)]
,

which is the form obtained in the text by direct integration of
the expression for stress,i.e. Eq. (C4).
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