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1. Introduction

In 1896 A. Sommerfeld obtained an exact closed form solution to the problem
of plane wave diffraction by a half plane. He used the method of images on Riemann
surfaces corresponding to multivalued solutions of the reduced wave equation, and
indicated how this method could be used to obtain exact closed form solution for the
problem of diffraction by a wedge. The method of constructing the required many-
valued solution of the wave equation was simplified in a subsequent paper, Sommerfeld
(1897). Subsequently Carslaw (1919) replaced the image method by a direct con-
struction of the solution which yields simpler formulae for various type of wave
sources. These solutions had been obtained independently by Macdonald (1902), (1915)
by summing the Fourier series representation of the Green's function. Other methods
of obtaining some or all of the principal results have since been put forward by
various authors, including Bromwich (1915), Whipple (1917), Garnir (1952) and
Oberhettinger (1958). The last two authors give extensive bibliographies.

Recently Rawlins (1986a,b,c) derived some new representations for the Green's
function for plane, cylindrical and spherical wave diffraction by a rational wedge.
The results for the cylindrical and spherical wave Green's function were based on
the plane wave Green's function. Here we derive in a different, more direct, and
simpler manner the Green's function for a spherical point source. The method used
here can be applied without difficulty to deal with more general types of sources,
in particular the plane wave and cylindrical wave source already considered.

In section 2 we shall give the geometry of the physical diffraction problems.
In section 3 we shall define a periodic Green's function as the solution of a
periodic boundary value problem for a wedge of open angle 2o.. By means of this
periodic Green's function we show in section 4 that one can obtain expressions for
the Green's function for Dirichlet, Neumann or mixed Dirichlet/Neumann boundary
value problems for a wedge of open angle a. In section 5 we give a general complex
integral representation for the periodic Green's function. This complex integral
representation for the periodic Green's function is not new. It has appeared in
various guises in the papers already cited. In section 6 we show how this Green's
function can be reduced to source terms and real integrals representing the
diffracted waves for the special case of a rational wedge o =pn/q (p and q positive

integers).

2. Geometry of diffraction problems.

We shall be interested in finding solution to diffraction problems in wedge
shaped regions. To be specific we shall consider acoustic diffraction by time

1wt

harmonic waves (with harmonic time variation e assumed, but not shown explicitly,

in the rest of the paper).
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We shall work in Euclidean space of three dimensions with cylindrical polar
coordinates (r,0,z). In this space we shall assume there is a wedge of open angle «a
with faces defined by the planes 6 = 0 and 6 = a. For a = 0 the wedge disappears;
for oo = m it becomes a half space. For a = 2n the wedge becomes a semi-infinite
plane whose upper and lower faces are considered as distinct.

In physical problems o is necessarily not greater than 2n. However, in the
mathematical analysis that follows we shall be dealing with functions that make
mathematical sense for all real a. Therefore it is of interest to consider wedge
angle a which are virtual with opening o >2n, their existence is purely
mathematical.

We shall consider two points P =(r,0,z) and P, = (1,,0,,z,) which both lie

within the open angle region 0 < 6 < a, and let

R(P,Po):\/ro2 + 1% + (z—24)% — 211, cos (8-8,),

D(P,Py) = \r+1,)° + (z—2,)

R(P,Py) is the shortest distance (in the Euclidean plane) between Py and P; and
D(P,Py) is the shortest distance of the broken line from P, to the edge of the wedge
and thence to P .

We shall assume that a time harmonic point wave source is situated at Py.

3. Periodic boundary value problem defining a Green's function.
We shall define a periodic Green's function for the reduced wave equation

operator V2 +k?(k=w/c, where ¢ is the velocity of sound) by means of a periodic
boundary value problem posed on a wedge, real or virtual, of open angle 2a.
We shall denote this periodic Green's function by Ga(r,G,z;ro,GO,ZO;k) or

Ga(P,PO;k) for an angular opening 2a. Ga (P,Py;k) which is a function of P and Py,

is defined uniquely by the following periodic boundary value problem.
(a) It is a solution of

(V2 +K)G,, (P,Pysk) = 5(P,Py)

O<r<o, 0<0<2a, —© <z< oo

(b) It satisfies the periodic boundary conditions
Ga(raoaz;IO’e():Z();k) = Ga(razaaz;rO,e()JZO;k) b

(c) It satisfies the Sommerfeld radiation condition

0G g (P, Py; k)

lim (P, )( L kG (P,P;k)J - 0.
R(P,Py)—e0 0’| OR(P,Py) ar

(d) It satisfies the edge condition

Gy (P,Py;k) = 0(1), and |grad Gy (P,Py;k)| = o(1/1) as r — 0.
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We remark that, if follows from the above properties that the Green's function
will be symmetric i.e.

G, (P.P;K) = G (Py,P;K) .

Once the above periodic Green's function has been obtained, it is a simple matter
to obtain Green's functions for acoustically hard, soft or mixed hard/soft boundary
value problems for wedges of half this open angle.

4. Green's functions for hard and soft bounderies for a wedge of open angle a.
To simplify notation in this section we shall let the periodic Green's function
Ga(r,e,z;ro,ﬁo,zo;k)be denoted by Gy(0) or equivalently Gy (0,). Then it is not

difficult to show, (using the fact that Gg(2na+0) = Gy(0) where n is any integer)
that:
The Green's function G?I(P,Po;k) for a soft wedge of open angle a is given by

Gg (P,Py;k) = Gg(0) + G (20— 0);
the Green's function GI&(P,PO;k) for a hard wedge of open angle a is given by
GR(P,Py;k) = Gg(0) + Gy (20— 0).
In the same way it can be shown that
G (PP k) =Gy (0) + Goy(24—0) — Go (20+0) — Gy (40 —0)

is the appropriate Green's function for the wedge which is soft on the face 6 = 0,
and hard on the face 8 = a. The corresponding Green's function for a hard boundary
on the face 8 = 0 and a soft boundary on the face 6 = a is given by

Gg/s (P,P k) = Gy (00— Gy (20—0) — Gyq (20+60) + Gy (40—0) .

For m< o <2rn and w2 < a < 2n the functions Gu(8) and G, () respectively,

mathematically relate to a virtual wedge angle, which explains the necessity to
consider such wedges.

5. A complex integral representation of the periodic Green's function,
A complex integral representation for the periodic Green's function defined
in section 3 for d(P,P,) = —-4nd(|P—-P,|), has been shown by Carslaw and others (1919)

to be given by

1 sin( {in a) d¢
Gy (5,0, 7310,00,203K) = 32 (SO S0 con(0- 0w (1)
where
o IkR(C) 1
G() = , R(Q) = (P +15+(z—2)* —2rrycosl)?. (2)

R(©)
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The square root is defined uniquely by R(0)=D(P,Py), so that R({) is analytic

everywhere except along branch cuts that extend vertically up and down from branch
points above and below the real axis, respectively. These branch points are located
at 2/ +iB, where p = cosh ™" { (r’ +r] +(z—z,)°/ (2rr,) }, and / is any integer, see
fig.1. In the chosen cut plane —n/2 < argR({) £ n/2. The contour of integration C
in the expression (1) is such that the starting point is given byc, +1io, and the
termination point is given by ¢, +io, where —n<c,<0,n<c,<2mn; and the
contour lies between the branch points (=+ip and does not intersect any of the
other branch cuts which run parallel to the imaginary axis, see fig.1.

We shall now use the complex integral representation (1) to obtain a different
representation for the special case of a being a rational multiple ofx,
i.e. a =pn/q (p and q positive integers). This new representation will be in
terms of point source terms and real integrals. From the results we have already
given in section 4 this means we can represent the acoustic field scattered by a
soft, hard, or mixed soft/hard wedge with an open angle a=pn/q in terms of point

sources and real integrals representing the diffracted field.

6. Green's function for a rational wedge.
If the anglea=pn/q, where p and q are positive integers the expression

(1) becomes

1 sin ( g/ d
oo i | 60 o @t )
By using the identity
asin G _ G sin_(¢/p) @
cos (C/q)—cos(@=00)p/a)  H=p « /p)_cos[e—eo .\ m}
q
see Rawlins (1986), we can rewrite (3) in the form
GM(P,PO;k) = qZ‘j 1,(6—6, +2mmp/q), (5)
q m=0
where
5 J' Il)sin €/p) d¢
) =5 e GO — 0 (6)

We now distort the path of integration C, in the integral (6), so that it
takes up the new path C', as shown in fig.1. The new path of integration C' lies
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along regions where the integral is uniformly convergent. In distorting the
contour C to take up the contour C' the line 0 < Re{ < n, Im{ =0, is crossed,

and therefore if any zeros of cos ({/p)—cos(V/p), (viz {==H(y+2npN) where N is

an integer) are captured then they will give rise to pole contributions.
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Diagram of the paths of integration in the -plane. The shaded regions

show where the integral (6) is uniformly convergent. The squiggly lines
are the branch cuts for the function G( Q).

fig.1.

Thus I(y(=)_ Hlm—|y+2npN|] G(y+2mpN)
N

B o -p 1 sinh (y/p)i dy
1 . p
i 2n i 15 +J‘B +I_w G) cosh (y/p) — cos (y /p)

| 0 lsin (m+1y)/p)idy
+ j o Gl +iy) 2

A ‘
p P

lsin (x—=1p)/p) dx

p
cos[x_lpJ— cos(wj
p p

p—>0

T
1
+ lim —J. G(x—1
2ni 0 ( P)

0 for x < O

where gpx]= ! fr x = 1\ isthe Heaviside step function,
2
1 for x > 1

and where the symbol z means summation is performed for all integer values of N
N

which satisfy the inequality -t <y + 2npN < =.
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In the above expression the first integral has had its limits of integration
broken up, because the path traverses branch cuts. It can be shown, using the
appropriately defined values of G (iy) on the branch cuts that this whole term

vanishes because the integrand is odd in y. The last integral in the above
expression also gives zero contribution because lim |G(x —ip)| —> 0, 0 <x <m.Thus
p—©

Ip(v :%“ H[TC—|\|I+21‘CPN|] G(y+2npN)

3 o0 Ly sin((w +1y)/p) 1 dy
j Gm+iy)

2 i iy+m ' @
cos( Y j — COS(W]
p p

By using the identity (see Rawlins 1986)

p—2
;sin(g/p) a, 1 (w)sinC/p)+ Zo ap(y){sin( C(p—n)/p)—sin(C(p—2-n)/p)}
— n=
cps(C/p)—cos(y/p) B cos(—cosy

where ap(y) =sin((n+1y/p)/{psin(y/p)}, in the expression (7) we have
Lp(y) =Y H[n - |y + 27pN[]G(y + 21pN)
N

1 j © G(n+iy) sin (n+iy)/p) dy
- ap—] (\V)
27 - coshy +cos vy

p—2 ® ~
b Z an(y j_oo M{sin((n + iy)uj sm((n +1y) (p=2-n) J}
27’[ n=0 p p

coshy+cosy

Now by using the fact that G(n+1y)=G(n—1y) we can write the above expression as
Ip(w) = Z H[n - |\|1 + 2npN|]G(\|J + 2mpN)
N

1, 1(w)s1n( ] [ Gta-iy)cosh yrpray
T coshy+cosy

_1 Pf . (W)Sin[n p- n)j I G(n —iy)cosh(y(p — n)/p)dy
o p

coshy + cos y

—an_l(w)sin[ T

coshy+cosy

ol n)] [ Ga—iycoshiyp-1- n)/p)dy} ®

So that finally on substituting (8) into (5) we get
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Gpr(P,Pyk) = %% H[—[0—6,, +2mmp/q+2mpN]G(0 -6, +2mmp/q + 2mpN)
q 10X

1L sin@©-0, + 2mmpg)sin(wp) cosh(y/p)Ga—iy) dy
Pt £ sin((0—-6, +2amp/q)/p) 0 coshy+cos(0—0, +2mmp/q)

1 qz_l pi:z{sin((n +1)(0 -6, +2mmp/ q)sin(n/p) (© cosh(p—n)y/p)G(n—1iy) dy
pPr

=0 N sin((0—-0, +2nmp/q)/p) 0 coshy+cos(0—0,+2mmp/q)

_ sin((0—0, + 2zmp/ q)sin(( +1)x/p) T cosh—1-n)y/p)G(n—iy) dy} ©)

sin(0—6, +2nmp/q)/p) o, coshy+cos®-6, +2mmp/q)

where the summation over N is for all integer values of N which can make the
argument of the Heaviside step function non negative; and G({) is given by equation (2).
In conclusion we remark that if we replace G( ) in the expression (9) by

eikr cos G or H 62 ) (kR(EZ)) we get the appropriate Green's function for a plane or

cylindrical wave source, respectively. If we replace G({) by 1/R(C{) we obtain
the Green's function for Laplace's equation, which has applications in incompressible
fluid mechanics, and electrostatics. Inversion of this problem will give the
Green's function for a len's problem as well. The author hopes to pursue this
aspect in a later paper.
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