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PREDICTIVE MODELS OF MIGRATION FOR LEGISLATIVE PURPOSES
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TECHNICAL SUMMARY

The principal aims of the report written on termination of this project are
(i) to summarize the most important mathematical models of migration that
have so far been used, (ii) to provide a critical commentary on these
models, and (iii) to assess what further work 1is necessary before
mathematical models can be used to their full potential in framing, and
monitoring, legislation on migration that is both scientifically sensible
and practical.

Chapter One of the report summarizes the principal classes of migration
behaviour, and the classification adopted is close, in physical terms, to
that adopted by Katan in 1971; however the precise definition of the
classes is given in terms of mathematical models.

The next Chapter deals first with the units and notation used throughout
the report. Then some relatively simple models are presented and used to
highlight several features that recur throughout the report and which have
crucial influences on the success, in both practical and scientific terms,
of any mathematical model of migration. The first of these is that
systematic use of non-dimensional quantities in data analysis and
presentation, and in mathematical predictions of migration, should be
routine procedure; unfortunately it is not. The second feature is that
the geometry of the food/package system is among its most important
properties in the sense that changes in the shape or size of the system can
cause large changes in the amount of migration; this point has largely
been ignored in the past. All workers are agreed on the final feature
which is the importance of correctly modelling the boundary and initial
conditions that apply to the migrant concentration. The description of
mathematical models, and commentary on them, are the subjects of Chapter
Three. This begins with a discussion of well-known formulae that give the
maximum possible concentration of the migrant in the food. The rest of
this Chapter deals with models that predict how the mass of migrant in the
food varies with time.

Most of the models in the literature apply to Class Il systems which,
roughly speaking, are those where the food may influence migration but does
not have a controlling influence. AIll the models assume that migration is
a diffusion process, and there is a substantial account in this Chapter of
the governing equations for such a process (and of useful approximations to
them). In view of the importance of geometry, this account gives the
equations in forms which apply in allgeometries and it also emphasizes the
need for further experiments, particularly on conditions during migration
at the interface between the food and the plastic. There then follows a
critical summary of the solutions of these equations that have been used in
migration work. All these solutions apply only in one-dimensional geometry
and may be reasonably accurate predictors of what occurs in most migration
test cells; however it is unlikely that they are quantitatively applicable
to most real-life food/package systems although they do enhance
understanding of the relative importance of the various physical processes
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that influence the quantity of migration, and this is valuable. This
section of the report also presents a new solution which includes all the
earlier ones as special cases.

Class III systems are considered next; in such systems migration is
controlled by the food (often as a result of the food penetrating the
plastic). Although such systems are believed to form the majority there
has been less effort on their mathematical modelling than on that of Class
IT systems. All known models are reviewed; the prime conclusion of this
is that much more work needs to be done, not least on comparison with data.
The Chapter concludes with a discussion of some complications, including
chemical change and inherent variability. One conclusion of this
discussion is that there should be more consideration than hitherto of
modelling migration as a stochastic process.

The first three Chapters emphasize (but not exclusively) the wuse of
mathematical models in scientific research. Their use in drafting
legislation and in designing food/package systems that meet legal standards
is the major concern of Chapter Four, the final Chapter of the report. It
is noted that legislative standards that are expressed in terms of total
transfer per unit area of the package surface, but with no reference to the
package geometry, should not be accepted since they do not control the
concentration of migrant which can be made arbitrarily high. The report
endorses standards expressed in terms of the concentration itself
(expressed as a mass-ratio) and supports the use of decision-trees.
However it is concluded that there is inadequate knowledge at present for
all branches in such a tree to be specified reliably.

We believe that it is very likely that work satisfying the requirements
established in the report will lead to a small group of mathematical models
covering most real situations, giving results reliable to at least an order
of magnitude. This should be perfectly adequate, when combined with
toxicity data of similar, or greater variability, to utilise as a basis for
legislation.



CHAPTER ONE: BACKGROUND

§1.1 Introduction

Plastics used in food packaging comprise a range of molecular species
from very high to very low molecular weights. It is generally accepted
that the higher molecular weight species (macromolecules) are so immobile
and insoluble that their migration into the food is so low that it can be
ignored, i.e. the migration of such molecules is, in practical terms,
zero. The remaining species can, potentially at least, migrate. Examples
of such substances are residual monomers or processing reagents, additives
such as antioxidants or plasticisers, colouring materials and decom-
position or reaction products formed in processing or work-up. Potential
migrants may or may not have any vapour pressure; in this regard it is
important to recognise the wide range of temperatures that packaged food
can be exposed to from the time at which containment occurs until the
package is finally removed or the food within it has been totally con-
sumed. Throughout this report, the term contaminant®* will be used to
denote a single potential migrant.

Some contaminants have undesirable effects on the consumer if they are
present in sufficient quantity in food. Such effects range from un-
pleasant (but harmless) taste and smell to the ingestion of dangerous
materials like heavy metals or VCM. Inevitably therefore legislators
wish to lay down standards which control both the manufactured plastic
packaging and its migration properties when it is in contact with food.
Considerable legislation is already in force and widespread consultation
is taking place on new draft proposals which, if adopted, are intended
to finalise the legislation. However it is obviously desirable that
such legislation, designed to protect the consumer, should be as soundly
based, scientifically speaking, as possible.

There are several, more or less distinct, themes to this scientific
research, and this report is a contribution to one of these, namely the
use of mathematical and physical models to describe and predict migration.

*Use of this term should not cause confusion even though, perhaps, ordinary

English usage would require it to be used only after migration has occurred.
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§1.2 Classification of migration behaviour

The use of mathematical models is potentially attractive because it may
be that a single model* can describe, to acceptable practical accuracy,
what occurs in many apparently different situations. If so, the need for
costly and time-consuming chemical analyses of innumerable special cases
will be significantly reduced; however the need for such analyses can
never disappear since we are concerned with science and the real world.
Mathematical models must be validated and tested against data, and physical
properties such as diffusion and partition coefficients will have to be
determined for new materials.

An additional advantage of mathematical models is that they will permit
the rigorous classification and quantification of migration behaviour.

It is fortunate that, in qualitative terms, there appear to be only a
moderate number of types of such behaviour; the summary below is based
on the treatment in Katan (1971) - see also Briston and Katan (1974) -
and further relevant discussion has been given by many authors, including
Figge (1980), Crosby (1981) and Shepherd (1982). Class I systems are
those in which essentially no migration takes place, and possible examples
include cases where the contaminant combines chemically with the polymer
that forms the basic plastic, and those involving some hard and/or dry
foods like salt and sugar. In considering this class, however, it must
be remembered that the surface of the packaging may contain some residual
toxic material from the manufacturing process and abrasion may occur.
Systems in Class II were defined to be those where the migration of con-
taminants occurs from the plastic whether or not it is in contact with
food. Although the food may accelerate migration, it does not have a
controlling influence. Katan (1971) - see Briston and Katan (1974,

pps. 145-149) - further subdivides this class; for the present it is
sufficient to note that it includes most monomers, water in all plastics

*The concept of a mathematical model is difficult to define concisely or
precisely. Roughly speaking, a model of a migration process involves a
set of hypotheses about the underlying physics and chemistry which, when
expressed in mathematical terms, enable quantitative deductions to be
made about quantities like the concentration of a contaminant in a food
and its dependence on time. These ideas should become clearer from later
work in this report, especially in Chapter Three.

1/2/3
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and some additives (such as antistatic agents and colourants). For the
purposes of the present report, the above definition will be slightly
modified to include all cases where any penetration of the plastic by
the food has an insignificant effect on migration. Finally Class III,
often referred to as leaching, includes all cases where migration is
controlled by the food with the implication that it is negligible in
the absence of food. An important group in this class is that in which
the food penetrates the plastic, perhaps with a change in volume, and
thereby enables substantial migration to occur. This class includes,
for example, most additives in most plastics in contact with oily or
fatty foods, or in hydrophilic plastics such as nylons in contact with
aqueous foods. Useful as it is, the above classification is not rigid;
for example, improvements in analytical techniques may result in a
system previously in Class I being transferred to Class II. Furthermore,
the classification is for a specific trio of food, polymer and con-
taminant. Since polymers normally contain many different contaminants
when they are used to form plastic packaging, it is often true that a
food/packaging system exhibits behaviour in all three classes.

§1.3 References
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Food Trade Press Ltd., London. 466pp.
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CHAPTER TWO: MATHEMATICAL AND PHYSICAL PRELIMINARIES

§2.1 Introduction

It has already been noted in Chapter One that legislation should be based
on the results of scientific research. The main purpose of this report is
to describe the role of the specific disciplines of physics and (especially)
mathematics in this regard: thus the Description of Work in the project
agreement includes the phrase: "To analyse by means of mathematical and
physical models the migration of additives and residual small chemical
species from plastics into foods with which they are in contact". At the
outset it has to be said that hitherto, and with some notable exceptions,
rather too much emphasis has been placed on research into the physical
chemistry of migration processes. Many authors have not considered
mathematical models and many others have quoted results from e.g. Crank
(1979) but have either not subsequently used these results or have not
used them efficiently. It is hoped that the outcomes of this report will

include

(a) convincing readers that good mathematical models can be much
more useful in studying migration than has been generally
recognised;

(b) persuading those embarking on future research that success in

this field requires full inter-disciplinary collaboration.

Although this chapter has the word "Preliminaries" in its title it is,
nevertheless, very important since it exposes certain principles which
not only underpin the remainder of the report but also, it is believed,
are central to any sound future application of mathematical models to

migration.

As far as possible, technical mathematics has been kept to a minimum so
that the report will be as accessible to as wide a readership as possible.
In any event, understanding the details of the formal mathematics per se
is less important than sympathising with the underlying philosophy which

is to unify, and to quantify, in a scientifically sensible way.
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§2.2 Units and notation

The field of migration research has used many different units, as well as
many different materials! Concentrations, for example, are expressed in
p.p.m. (parts per million), percentages, mg/kg and mg/litre to name but

a few; worse still, mongrel units like ing/square inch have been used to
describe transfer. In accordance with the desirability for unity (as
emphasized by Katan 1979) and with worldwide standard practice in physics,
engineering and mathematics, the SI (Systeme International) system of units
will be the primary one used throughout this report. This system is based
on the fundamental units of metre (m), kilogram (kg) and second (s). Thus
one milligram will normally be expressed as 10°°kg, and an overall migration
limit of 10mg/dm? as 10~ kg/m?* or - more commonly - as 10°kg m™? . The
standard unit of concentration used in this report will be kg m™ (kilograms
per cubic metre) since this can be unambiguously applied in all cases,
unlike, for example, percentages, where it is unclear whether the percentage
is by mass or by volume. Some states have, and the EEC proposes, a

migration limit of 60mg/kg. For food with a density of 10°kg m™ (the
density of water) this is a concentration of 6 x 10> kg m™, i.e. 0.06kg m™,
and similar conversions can be made, if necessary, for foods with other
densities. Note that in a later section - §2.4 - of this chapter, the con-
sistent and widespread use of non-dimensional quantities will be strongly
advocated. This means that many of the quantities will be pure numbers,

1.e. units become irrelevant.

Table 1 summarizes the principal notation that will be used throughout this
report. From time to time other notation will have to be introduced for
specific purposes; on such occasions full definitions will be given. In
addition to the entries in this table, standard mathematical notation will
be used for common constants (e.g. m,e) and functions. One function that

will often appear is the error function, abbreviated to erf, and defined

by the equation

erf x = ~ du. 2.1)

2]
The right-hand side of (2.1) involves an ordinary integral, and the factor
(2/\/;) is included for arithmetical convenience since, with the definition
(2.1), erfo =1. Tables of the error function are readily available and

its graph is sketched in Figure 1, together with that of the complementary
2/3/14




QUANTITY or PROPERTY SYMBOLS UNITS

Concentration of C Kgm
contaminant

Average concentration c Kg m™
of contaminant

Time t S
Cartesian coordinates X,VY,Z m
Radial coordinate m

1
r=(x"+y’+z%)>2

Mass m or M kg
Length lorhora m
Volume \Y m’
Area A m”
Density p kg m™
Temperature T K
Diffusion coefficient D m-s
Partition coefficient y NONE
Non-dimensional quantities Greek letters
(as 1'11'ustrated by the' (e.g.aorr) NONE
partition coefficient in
the line above
TABLE 1: List of the most common notation in the report.
error function erfc, defined by the equation
erfcx =1—erfx = ijooe_uz du (2.2)
Jr X | |

A convenient reference for the properties of these functions is Abramowitz
and Stegun (1965, Chapter 7) and a shorter account is given in Crank (1979,
Table 2.1 on p.375, and elsewhere). It will be noted from Figure 1 that,

like many functions relevant to migration, the curve with equation y = erf x
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<

y = erfx

v

X

FIGURE 1 Graphs of y = erf x (equation 2.1) and y = erfc x (equation 2.2)

has an asymptote as x approaches infinity, in this case the line y = 1%*.

*Quite deliberately, the variable x has been used in (2.1) and (2.2) to
denote the number at which erf and erfc are being evaluated, and it has

a quite different meaning from that in Table 1 (where x denotes a Cartesian
coordinate). This double use of one symbol to denote two unrelated
quantities is unfortunately sometimes inevitable because of the limited
number of symbols available; in this case of course both uses are entirely
in accord with standard conventions but, in general, the use has to be
deduced from context. Exactly the same situation occurs in ordinary English,

e.g. "The band played well" and "I put an elastic band round the packet".



§2.3 A class of simgle migration problems

Many of the general points to be made in the remainder of this chapter

can be illustrated by considering the mathematical structure of a class

of migration problems without, at this stage, enquiring about their
relevance to real applications. This will be considered later. Figure 2
illustrates the geometry for the first problem. Plastic occupies the
region X > 0 and food the region -a < x < 0. It will be supposed that the
thickness of the plastic is irrelevant, i.e. it can be regarded for
migration purposes as being of infinite thickness. Initially, att =0,
a contaminant is present in the plastic at uniform concentration C.
(Throughout this report the term "uniform" means "independent of position";
in this case - therefore - the initial concentration of contaminant in
the plastic is the same, viz. Cy, everywhere in the plastic.) Fort> 0
migration of contaminant takes place across the interface x = 0. Within
the plastic, assume that transfer of contaminant takes place according

to the standard constant-coefficient diffusion equation (Crank 1979)

oc 0’c
==D==, 2.3
ot ox’ 23)

where D is the diffusion coefficient of the contaminant in the plastic

and C is the concentration of contaminant. For t > 0, C is no longer
uniform and, indeed, depends on both x and t; when this dependence requires
emphasis, the notation C(x,t) is used instead of C. For the present exer-
cise, it will be assumed* that the diffusion coefficient of the contaminant
in the food is so large (compared with D) that, for t > 0, the concentration

of contaminant in the food is uniform. Its value will be denoted by Cx,

2/5/14

where C+ depends on t (i.e. the notation C+ = C«(t) may be adopted if required.)

The first general point is now relevant, namely that (2.3) is, in itself,
an insufficient piece of information for the problem to be solved completely.
Initial conditions and boundary conditions, specific to the problem, are
needed in addition. Here the initial conditions have, in fact, already been
given in words; in mathematical terms they are:

C(x,0)=Cyp forx>0; C«(0)=0. (2.4)

*It is worth emphasizing again that the validity, in practice, of the
assumptions made in this section will be discussed later.
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mpermeable
Boundaries

FOOD PLASTIC — X

FIGURE 2. Sketch of geometry for first problem in §2.3

PLASTIC

FIGURE 3.  Sketch of geometry for second problem
of §2.3. Diffusion takes place at each
place in the plastic in the direction
passing through the centre of the sphere
(as indicated by the arrowed lines).
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The boundary conditions have not yet been discussed. It will be supposed
in this example that the interface at x = - a is impermeable to contaminant

and that, for large positive x, C(x,t) is close to its initial value Cy, i.e.
C(x,t) > Cp as x > oo ., (2.5)

(Note that the notation C(x,t) in (2.5) emphasizes that (2.5) h olds for
all t > 0.) Conditions at the food-plastic interface x = 0 are of crucial
importance. First of all, since no contaminant is lost from the food to
the environment outside, the rate of increase of the mass of contaminant
in the food must equal the rate at which contaminant is crossing the
interface from the plastic. Let A be the area of the food-plastic inter-
face so that the total mass of contaminant in the food is Aa C+, and its
rate of increase with time is Aa (dC+/dt) since A and a are constant. Con-
sistent with (2.3), the rate at which contaminant is crossing from the

plastic to the food per unit area is D(0C/0x) evaluated x = 0. Hence

dc d
*_apll L % _pll
dt OX | x=0 dt 0X| x=0

Aa

(2.6)

where the conventional notation 0|X:0 denotes evaluation at (in this

case) x = 0. Finally, it will be assumed that the concentrations of
contaminant on either side of the interface satisfy the following con-
dition:

Cx =vCly g (2.7)

where vy is constant. More will be said later about the initial and boundary
conditions, particularly (2.7); for the moment it is sufficient to note
that the information that they contain is additional to (2.3) and that some

such conditions are essential before the solution can be determined.

"More formally (and more precisely) the phrase "evaluation at x = 0" means
"the limit as x — 0 through positive values". The point is that (2.3)
cannot hold at x = 0, since - according to the model - this is the interface.
However the model assumes (implicitly) that a good approximation to reality
can be obtained by assuming that the interface has zero thickness, and this
assumption, which can be tested in any real case only by reference to

experimental data, justifies the limit process implicit in (2.6).
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It is important to note also that it has been assumed that there is no
variation of C in the directions perpendicular to the x axis. This can
be true only if diffusion occurs as if the plastic is homogeneous and if
the lateral boundaries, as well as x = -a, are impermeable to plastic
and this is indicated schematically in Figure 2. The interfaces at x = 0
and x = -a must also be plane but their precise shape is irrelevant;

they could be square or rectangular or circular etc.

It can then be shown that

Cs = ﬂo{l—exp{ f d . ]erfc(ﬁ]}. 2.8)
y-a ra

This solution is given, for example, in Reid, Sidman, Schwope and Till

(1980) where further discussion can be found.

Consider now another problem which has different geometry, but identical
physics, to the one that has just been discussed. As illustrated in
Figure 3, the food is in the shape of a sphere of radius a completely
surrounded by plastic. However, and this illustrates the second general
point to be discussed later, the change in geometry is important. For
example, diffusion of contaminant in the plastic takes place (because of
spherical symmetry) along the radii, i.e. along the lines emanating from
the centre of the sphere. Therefore, as shown by the two arrows in
Figure 3, the direction of diffusion changes from place to place in the
sphere. This is in contrast to the first problem where the direction of
diffusion is always a direction fixed in space, viz. the x axis. This
basic geometrical difference causes changes in some of the equations.

In particular it is now appropriate to use r, distance from the centre of

the sphere, instead of x, and (2.3) is replaced by (see e.g. Crank 1979)*

"It is possible and correct, but mathematically inefficient, to use Cartesian

1
coordinates x,y,z instead of r (where - see Table 1-r=(x"+y’ +z)?) .

In this case the governing equation is
2 2 2
ot ox~ oy o0z
and this is, physically speaking, identical with (2.9) although the proof of
the truth of this statement requires some technical - but routine - mathematics.
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%=%%(rz%) (2.9)

There are corresponding changes in the mathematical formulation of

some of the initial and boundary conditions. Note first that now
C = C(r,t); thus (2.4) becomes

C(r,0) =Cyp for r>a, C«(0) =0, (2.10)
and (2.5) becomes
C(r,t) > Cp as r — «. (2.11)

As with (2.5), equation (2.11) holds for all t > 0. A more substantial

change is required in (2.6). The volume of the sphere is %nef and its

surface area is 4ma® . Thus, using the same physical principles that
led to (2.6),

4398 _4na2p® 98 _5poC (2.12)
3 dt Or |, dt Or | —p

and it is clear that the factor 3 arises entirely from the change in

geometry between Figures 2 and 3. Finally (2.7) is replaced by
Cx=yC|_, - (2.13)

The solution to this second problem turns out to be more complicated

than the first, and to have a mathematical structure that depends on

the value of y explained below in §2.4 and as illustrated in Figure 4.
For present purposes, it is sufficient to quote two special cases: for

small values of v,

Cs :yCO{I—exp[ 92Dt2]erfc(3ﬁ}, (2.14a)
a

¥ v
3
and for y==,
’ 4
C. =vC, 3 Dt 1+% exp 9]2)t2 erfc 3VDt . (2.14b)
va\l @ 2y°a 4y°a 2ya

(Whilst (2.14b) holds only if the constant y has the value %, it is

useful for present purposes not to make the numerical substitution.)
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§2.4 Discussion I: The imgortance of non—-dimensional numbers
Lt ¥ oW W o W W W o v ]

Suppose we wish to test whether the models above agree, for all t, with
experimental data. Thus, in line with normal scientific procedure, we

first hypothesize that the results of the mathematical model calculations
apply to a given dataset, and then we look for discrepancies. If the
discrepancies are judged to be too great, the hypothesis is rejected.

(Note that, in line with the principle of falsification, scientific hypo-
theses can never be proved, but only rejected.) In line with this method,
let us suppose that we have data from an experiment in which the geometry
is essentially that of Figure 2, and let us hypothesize that equation (2.8)
applies to the results. The values of a and Cy can be measured before the
experiment begins. On the other hand, the values of y and D may or may not
be known; suppose they are unknown. By hypothesis, we are entitled to
use the data to determine them. Now y be determined, at least in

principle, from the data by measuring the value that C«, the concentration
of contaminant in the food, approaches after a long time; according to
(2.8) this is yCp. It may also be shown from (2.8) that, for sufficiently
small values of t, a good approximation to Cx is given by (e.g. Reid,

Sidman, Schwope and Till 1980)
C.~C, 4Bt (2.15)

2
mTa

(It is noteworthy that (2.15) is independent of the value of y.) From

(2.15) it follows that a graph of C« against Jt has a slope of
C01/(4D)/(na2) at the origin and, as noted by many authors, this provides

a method of determining D.

Thus all the quantities appearing in (2.8) are known, or (in the case of
vy and D) can be calculated as indicated above, or (in the case of C+ and t)
can be measured as they vary. The results of the experiment can be plotted
in many ways; for example C« can be plotted against t. However, and this
is the key point of present concern, the resulting plots would change if
any of y, Co, D or a changed. This is undesirable and inefficient;
fortunately a far more satisfactory alternative is available. Define
new variables r and t by the equations

Cx Dt

I'= ,T= .
7Co yzaz

(2.16)
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Then r and t are non-dimensional quantities, i.e. they have no units and

are pure numbers whose values are independent of the particular system
of units chosen. We can refer to r and t as non-dimensional concentration
and non-dimensional time respectively. In terms of r and 1, equation (2.8)

can be written in the form
[={l-¢"erfc(v1)}. (2.17)

The graph of r against T given by (2.17) is the solid curve in Figure 4.

It represents the behaviour of all systems with the geometry of Figure 2
subject to the hypothesis that (2.8) holds. The single equation (2.17)

(or the single solid curve in Figure 4) describes all such systems
irrespective of the values (in any particular case) that y, Cy, D or a

may have. It is then easy to test whether the data agree with the hypothesis
that (2.8) holds by rescaling the measured values of C+ and t so that they

are in their non-dimensional forms r and t.

Use of non-dimensional quantities, as illustrated by the example just
discussed, therefore significantly reduces the labour involved in testing
experimental data using mathematical models. One important conclusion of
this project is that all data and all models should be expressed in appro-

priate non-dimensional terms.

2.5 Discussion II: The im]aortance of geometry

In line with the conclusion of §2.4, it is natural to express the results
(2.14a) and (2.14b) for the spherical geometry shown in Figure 3 in terms
of the non-dimensional concentration r and the non-dimensional time 1 de-

fined in (2.16). The results are:

(2.14a): I ={l-¢" erfc(3v1)}; (2.18a)

(2.14b): r={3\ﬁ+1 (1+ 2}: erfc(3\/_)} (2.18b)
TT

The dashed curves labelled (A) and (B) in Figure 4 show the result of
plotting r against t for (2.18a) and (2.18b) respectively.
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Two comments are in order. Unlike the plane geometry case of Figure 2,

the results for the spherical geometry case of Figure 3 do not collapse
onto a single curve when expressed in terms of r and t; there is in

fact a different curve for each value of y* . (However the use of non-
dimensional quantities, advocated in §2.4, still represents an enormous
gain in efficiency. Without such use the plots of C+ against t would
change if any of y, Cy, D or a changed whereas, with non-dimensional
quantities, only changes in y matter.) The second comment is that, what-
ever the value of y, the plot of r against t is always above the curve
labelled (A) in Figure 4. Thus, for a given value of 1, the value of r
for the spherical geometry case of Figure 3 is never below that value
given by curve (A), i.e. for this geometry, curve (A) represents the
lowest migration - not surprising when it is recalled that curve (A)
represents behaviour for small values of y. Furthermore curve (A) is above
the solid curve for all values of 7, i.e. for a given value of Tt migration
in the spherical geometry case is always more rapid (for given values of

vy and Cy) than in the plane geometry case.

These comments illustrate that migration behaviour depends on the geometry
of the food - package system. The literature pays little attention to
this fact, and the actual (and proposed) legislation almost none at all.
A recommendation of this report is therefore that explicit attention
should be given, both in planning research and in drafting legislation,
to this unfortunate omission. Suggestions as to how this recommendation

can be implemented will be made later in this report.

"Indeed this situation will be the norm. It can be shown that, whatever
the geometry, a migration system satisfying the physical laws described in
§2.3 will result in an equation of the form r = f(t,y), where the function
f depends on the geometry. It has been shown in §2.4 that a peculiarity
of the plane geometry of Figure 2 is that f, nominally a function of the
two variables T and y, does not in fact depend on y~ but this could not

have been anticipated.
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§2.6 Discussion III: The importance of boundary and initial conditions

In §2.3 it was emphasized that the diffusion equation (2.3) needed supple-
mentation by additional boundary and initial conditions before precise
predictions could be made. The same statement would be true whatever
(differential) equation were used. Furthermore, the difference between
curves (A) and (B) in Figure 4 can be ascribed entirely to a difference

in the value of y, which enters the mathematical formulation of the problem
via the boundary condition (2.13). It can therefore be seen that accurate
predictions can (in general) be made only if the proper boundary and

initial conditions are known with adequate precision. In migration problems
this statement has particular force in relation to conditions at the inter-
face between food and plastic, and a further recommendation is that more

research on this specific problem should be undertaken.

§2.7 Summaa

It is emphasized again here that the point of this chapter has been to
discuss, and therefore bring out, certain basic physical and mathematical
principles that will be crucial in the evaluation of mathematical models
in Chapter 3 of this report, and in the recommendations for development

in Chapter 4.
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CHAPTER THREE: CRITICAL DISCUSSION OF IMPORTANT MODELS

§3.1 Introduction

In the course of preparing this report several hundred papers and books
have been consulted, of which about 90 have been identified as of partic-
ular importance, and studied in depth. This chapter provides a coherent,
but critical, account of those mathematical models in this literature that
have proved most useful or appear to be most promising; there are also
some original contributions. The discussion will not be a piecemeal
annotated list of all papers that have quoted mathematical formulae but,
instead, an attempt at a logical development in which important work is
quoted where appropriate. (Consistent with this approach and also to
avoid useless repetition, not all the 90 or so sources will be referred

to in the text, but a full list is provided in §3.8.) Naturally the

account will be consistent with the principles laid down in Chapter 2;

in particular the great potential importance of geometry will be contin-

ually emphasized.

Before beginning the bulk of this Chapter, it is helpful to make a few
remarks about mathematical models and their use, additional to those in
the footnote on page 1/2/3. As there indicated, a mathematical model

of a migration process involves a set of hypotheses about the underlying
physics and chemistry which, when expressed in mathematical terms, enable
quantitative predictions to be made. The value of any mathematical model
can be assessed only by comparison with data. It requires separate
judgement, involving perhaps such matters as the costs of refining and
developing the model as well as obtaining data, and the perception of

the degree of discrepancy that is acceptable, to decide whether or not a
given model is a satisfactory predictor for a given set of migration
phenomena. (Such judgement of what is acceptable as a discrepancy does
not involve science alone; however this study aims to describe some
factors relevant to the exercise of this judgement.) It is important to
note also that any comparison between the predictions of a mathematical
model and appropriate data is not a test of any one of the set of several
individual hypotheses that, together, comprise the model. A single hypothesis
(e.g. that the contaminant concentrations on either side of a food-plastic

interface are in a constant ratio throughout the migration process as in
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(2.7)) must be tested directly since such an hypothesis may be invalid
even though the model as a whole is judged acceptable (and vice versa).
Of course, if a model is judged to be unacceptable, it is then sensible
to re-examine each of the individual hypotheses on which it is based,
but it is important also to note that errors in some hypotheses are
likely to be more critical (in the sense of significantly altering the
predictions of the mathematical model) than errors in others. There is

an analogy here with the concept of controlling factors, i.e. errors in

the modelling of the dominant process(es) are much the most significant.
However it is also important to note that, in general, any one mathematical
model has a limited range of validity. For example it may be valid only
for certain (non-dimensional) times or for a plastic-food-contaminant
system with certain physical properties. Outside the range of validity,
other factors (not included in the model) may become important — even
controlling - and an experimental test of a model ought to attempt assess-

ment of this range. Unfortunately many workers have assumed wrongly
1

that certain mathematical results (e.g. migration proportional to t2 )
have universal applicability.

Given a mathematical model, it is sometimes possible to obtain quantitative
predictions from it in the form of relatively simple formulae such as
(2.8), (2.14a) and (2.14b). Sometimes the predictions can be obtained
only in more complex mathematical form, e.g. as infinite series or compli-
cated integrals. In general, it is rare (because of features like compli-
cated geometry for example) for it to be possible to obtain mathematical
formulae (simple or complex) for the solution of the set of equations
forming the mathematical model”. In such a case the theory of the rapidly

expanding branch of mathematics called numerical analysis (universally

abbreviated to N.A.) would be employed to solve the set of equations numer-
ically using a computer. (In practice it would also normally be sensible

nowadays to use a computer to obtain numerical results in cases where the

“In such circumstances a mathematician would normally write "The set of
equations do not admit an analytical solution"; the word "analytical"
in its technical mathematical sense has however been avoided in this report

because of the different, also technical, meaning which it has in chemistry.



predictions of the mathematical model have been expressed in complex
mathematical form.) The purpose of numerical analysis when used in this
way is to ensure, as far as possible, that the numerical solution(s)

are obtained efficiently and accurately; it is important to note not

only that modern computers have greatly increased the potential useful-
ness of mathematical modelling of phenomena like migration but also, and

as a warning, that their use introduces further potential errors, namely
those associated with the numerical computation process. Such errors

are inevitable and numerical analysis is (partly) concerned with their
control. Despite this warning, it is certain that obtaining the accurate
numerical solutions of many of the mathematical models of migration dis-
cussed below will be fairly routine provided the task is carried out by

a person with appropriate training and skill. In this phase of the study
time and resources have not permitted the development of new computer
results but these should form a prominent part of the next phase. There-
fore the mathematical predictions that will be discussed will be for
simple geometries; fortunately such predictions, properly interpreted,
allow one to understand the interaction of the various processes contrib-
uting to migration and therefore to anticipate, at least qualitatively,
migration behaviour in the more complex geometries occurring in real life

situations. This is the real value of simple mathematical solutions.
Comments on page 106 (and elsewhere) of Reid, Schwope and Sidman (1983)

are relevant to the above discussion of mathematical models.

§3.2 An imEortant test

It is sensible first to note some simple formulae that give the maximum

possible concentration in food of a specific contaminant. The formulae
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have universal validity provided only that the contaminant does not undergo

chemical change during the migration process. Suppose a plastic package

of volume V contains food (or food simulant) of volume V+, and that, when

containment occurs, there is a mass M of a specific contaminant in the

plastic at concentration Cy where, by definition,

c,=M (3.1)

\Y%
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Whatever happens to the package between initial containment and ultimate
consumption of the food, the mass of the contaminant in the food-package
system at no time exceeds M (making the reasonable assumption that no

further contaminant is added to the system). Although some contaminant

may in practice be lost (e.g. by handling or by migration to the atmosphere),
it is simplest and safest to ignore any such loss; if required, corrections
can always be made later. The total mass of this specific contaminant in

the system is therefore taken to be M for all time.

Irrespective of the mechanism of mass transfer, migration acts to equalise
the contaminant concentrations between the two different parts of the
system; provided an ultimate steady temperature T is reached, the system
will approach an equilibrium whose properties depend, in general, on T.
In this equilibrium, the concentrations C and C+« of the contaminant in

the plastic and food respectively are uniform and, since mass is conserved,

At equilibrium the ratio of C+«to C is equal to the partition coefficient

Y, 1.€.

Elimination of C from (3.2) and (3.3) gives

™M vCo Co

C*: = = s
V+yVe  1+79(Vx/V) y_1+(V*/V)

(3.4)

where (3.1) has been used to express C+ in terms of Cy rather than M.

Equation (3.4) and close equivalents have a long history in migration
research. A special case was apparently first introduced by Garlanda
and Masoero (1966), and other workers who have discussed this result
include Sanchez (1979), Katan (1979), Senich (1981) and Reid, Schwope
and Sidman (1983). Since (3.4) gives the maximum possible concentration
C+« of the contaminant in the food, it is easy, provided y is known, to
use it to assess in a specific case whether the concentration of the
contaminant in the food will ever exceed a specified limit (e.g. legal

or toxic). Only if the value of C+ given by (3.4) exceeds such a limit
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will it be necessary to use more complex mathematical models of migration
like those discussed in later sections of this Chapter. This point is
made by Katan (1979). Reid, Schwope and Sidman (1983) also make the
same point but for a special case of (3.4) with plane geometry; this

restriction is quite unnecessary.

But it has been noted that (3.4) can be used, as it stands, only if the
value of the partition coefficient y is known for the particular trio of
plastic, food and contaminant and this is, in practice, often not so.
Many authors, including Sanchez (1979), Sanchez, Chang and Smith (1980)
and Keinhorst and Niebergall (1986b)have discussed the dependence of y
on temperature and other properties. In particular Sanchez discusses
how vy can be estimated for Class III systems, and Keinhorst and
Niebergall demonstrate good agreement between theory and experiment

for some particular sets of materials. For aqueous foods and lyophilic
plastics (which are the majority and include polyolefins) values of y

are typically very small; thus Reid, Schwope and Sidman (1983) quote

y~7.1x107 for styrene monomer migrating from polystyrene into 50%

aqueous ethanol and y~2x10~ for BHT migrating from HDPE into a

water gel. On the other hand much higher values, some greater than
unity, have been measured, especially with oily foods and lyophilic
plastics. In view of the importance of y, but the uncertainty about

its value in many circumstances, a major conclusion of this report is
that a suggestion of Schwartz (1983) should be given high priority,
namely that "a data base for parameters such as diffusion and partition

coefficients" should be "developed".

Fortunately, use can be made of (3.4) even when the value of y is not
known because, whatever the value of y, the value of C« in (3.4). never
exceeds Cxx, where

Coer = CO(VLJ . (3.5)

The concentration of the contaminant in the food must always be less

than Cs» since such a concentration would be achieved only in the physic-
ally unrealistic circumstances when the plastic is completely denuded of
contaminant. Neverthless C«+ can easily be calculated in any specific

case since it does not involve v, and this should always be done since,
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when C+«+ is less than the specified limit, no further use of mathematical
models is required. The difference, in practice, between (3.4) and (3.5)
can be illustrated by a numerical example. Suppose a 50g bottle holds

1 litre of liquid food so that V/Vs = 0.05 if both substances have the
density of water. Table 2 shows values of C+/Cy obtained from (3.4)

for several values of y, and of C«+/Cy obtained from (3.5). It will be

noted, in particular, that there is little difference between C««/Cy

C,/C,
Eqn. (3.4)

-1

10 107"

10~ 0.0083

1 0.0476

**/co

Eqn. (3.5)

0.05

TABLE 2: Numerical examples from equations (3.4) and (3.5). Other
examples are given by Reid, Schwope and Sidman (1983).

and the value of C+/Cy when y > 1 . Equation (3.5) can also be used

in an inverse design sense. Suppose there is a specified legal or
toxic limit Cp on the concentration of a specific contaminant in a
specific food. According to (3.5) this is bound not to be exceeded
provided the initial concentration Cy of the contaminant in the plastic
is less than Cp(V+/V), and there is presumably some scope in designing
plastic containers so that (V+/V) can be made as large as possible
(bearing in mind other constraints such as cost, strength and, above
all, consumer acceptability.)” Pursuing this point a little further
is instructive, and illustrates again the potential importance of
geometry. Suppose a plastic film of fixed thickness h is to be used
to make a container for a fixed volume V+ of liquid food. In line with

the discussion above it is desirable, other things being equal, to make

"Conversely problems are most likely to occur when V+/V is small as in

miniature bottles of spirits.
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the shape of the container such that (V+/V) is as large as possible,
i.e. such that V is as small as possible. The best possible shape
from this point of view is a sphere, and it can be shown that the value
1
of (V«/V) for a sphere is about 0.207 (v 3 5,y . The best possible cylinder
1
has its radius equal to half its height and (V«/V) about 0.181 (y 3 ) ,

1
and the best possible cuboid is a cube with (V«/V) about 0.167 (v 3 ) .

In concluding this section it is worth noting that, according to (3.4),
C.=yC, when (V+/V) is small, i.e. when the volume of the plastic is

effectively infinite. Reference to (2.8), (2.14a) and (2.14b) in
Chapter 2 will confirm that the model problems there considered satisfy
this result. This simple result can also be very useful in estimating

C«+ when V+/V is not known precisely.

§3.3 Mathematical models of Class II systems

Scientific basis of the models

As noted in Chapter 1, Class Il systems are those where migration properties
do not depend on penetration of the plastic by the food. Almost all the
mathematical models of these systems that appear in the literature are

based on classical diffusion theory, and this section begins with some
background to that subject. More substantial treatments do of course

exist; the most familiar of these is likely to be the book by Crank (1979).
It should be noted that, historically, many of the models considered

here for Class Il systems were intended for application in all systems.

The models in the literature all make simplifying assumptions about the
structure of both the plastic and the food. In particular they assume

that the length scales of concern in migration are much larger than those
which characterise the micro-molecular structure. This is the continuum
hypothesis which is explained in, for example, Chapter 1 of Batchelor (1967),
and its satisfaction enables the definition of properties like concen-
tration (temperature, density, ...) as continuous functions of position

and time (except - perhaps - at discontinuities between different media).
Such properties are defined as spatial averages over regions large enough

to contain many molecules but with dimensions smaller than those of direct
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concern for migration. The characteristic length scale of such regions

is known as the continuum scale. Two further assumptions are universally

made. First, it is assumed by modellers that the structure in both media
is isotropic on the continuum scale (except at boundaries and interfaces),
i.e. when the media are in equilibrium all directions are equivalent at
every point. The second assumption concerns the geometry of migration
systems. Although the boundaries and interfaces between different media
are not smooth and sharp in real life, it is hypothesised that adequate
predictions can be obtained by supposing that they are. It might be
reassuring to note that the assumptions described in this paragraph have
been universally applied to almost all motions of solids, liquids and

gases for over 100 years with excellent results.

Consider the migration of a specific contaminant. Consistent with the
notation in §2.3 and §3.2, the concentrations of this contaminant in

the plastic and the food will be denoted by C and C+ respectively, where
(in general) C and C+ depend on time t and all three space coordinates
X,y,z. (Note that in the special examples considered in §2.3, C« happen-
ed to be uniform, i.e. independent of x,y,z.) On the basis of the con-
tinuum hypothesis, it is legitimate to suppose that C and C« are well-

behaved functions. Consider a small surface in the interior of the

small area
SA normal
to X axis

\ .

Q\

Cc ? * C
\:\ OR //
: '
C <0 at P => flux C > 0 at P => flux
0x 0x
positive (left to right) negative (right to left)

FIGURE 5. Schematic sketch illustrating equation (3.6)
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plastic whose area is 0A and whose normal (perpendicular) is in the
direction of the x axis. If C depends on x in the neighbourhood of
this surface there will be a net flux of contaminant across it;
According to Pick's first law or on the basis of more general phen-
omenonological arguments given in Chapter 3 of Batchelor (1967), the
rate of transfer of contaminant mass across this surface in the

direction in which x increases is

D 5a, (3.6)
ox

where D is known as the diffusion coefficient (or mass transfer co-

efficient) . The minus sign in (3.6) is necessary because transfer
takes place from regions where C is larger to regions where C is
smaller. The units of the important parameter D are m?s ', and D

is an intrinsic property of the plastic-contaminant system and of
the position where the flux is evaluated. In particular D may depend
on C and properties like temperature for example; however the depend-
ence on C is likely to be small when C is small, and most modellers
have ignored such dependence for Class Il systems (even in cases
where C is not small). The philosophy adopted is that such dependence
should be included only if the results of models that assume D is
independent of C are unacceptable. If there is systematic variation
of structure on the continuum scale D will also depend on x,y,z, but —
again - modellers have not considered the influence of such variation,

i.e. they have assumed that the media can be regarded as homogeneous

on the continuum scale. For the moment, however, it is not necessary
to assume that D is constant and uniform. The flux in the food will
also be assumed to be given by (3.6), but with C and D replaced by
C« and D+; the flux across small surfaces normal to the y and z axes
is likewise given by (3.6) but with 0/0x replaced by 0/0y and 0/0z
respectively. In mathematical terms it is actually most efficient to

use vector notation, and the flux across a small surface of area 6A
is written - D n. VC 0A, where VC is the concentration gradient and n

is a unit vector normal to the surface. (The assumption of isotropy
ensures that D has the same value for all surface areas whatever

their orientation.)

It is a straightforward exercise now to show that Fick's first law is
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consistent with conservation of mass provided C satisfies the partial

differential equation

55053 0E)

One derivation of this equation is given on pages 2 to 4 of Crank (1979).

In the language of vectors (3.7a) can be written in either of the follow-

ing two forms:

oC _
2o =VDVO), (3.7b)

or (Crank 1979, page 5)
%C — div(DgradC), (3.7¢)

and the shortness of either of (3.7b) or (3.7¢c) compared with (3.7a)
shows why mathematicians prefer vector formulations. It may happen

for geometrical reasons in an application that C (and D) are independent
of one or more of x,y,z. In such a case the general equation (3.7a)
simplifies; suppose, for example, that C (and D) are independent of y

and z. Then (3.7a) reduces to

oac_a(poc) (3.8)
ot Ox ox
It has also been noted earlier that many modellers have assumed that

D is constant and uniform; in such a case (3.7a) becomes

2 2 2
6_C=D6§+6(2?+62C , (3.92)
ot Ox oy 0z
or (in vector notation)
€ _pvc, (3.9b)
ot
and (3.8) becomes
2
€ _poC, (3.10)

ot ox*

Crank (1979) points out that (3.10) is usually referred to as Fick's
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second law. It is hoped that the account here will make clear two
points:
(a) Fick's second law is a direct consequence of his first law
and of conservation of mass together with - in the case of
(3.10) - certain simplifying assumptions. It therefore
hardly merits identification as a separate law.
(b) Fick's second law in the form (3.10) is valid only when
the geometry of the problem being considered is particularly
simple. In real life this will be so only very rarely and
it is then necessary to use (3.7a) or - perhaps - (3.9a).
Unfortunately many users of mathematical models in migration
have ignored this fact, already highlighted in §2.5 and §3.2,
with the consequence that many formulae in the literature,
though valuable for understanding, do not apply quantitatively

to real-life situations.

Boundary and initial conditions

The task of the modeller is to find - normally nowadays by use of a
computer as explained in §3.1 - the solution of (3.7a) or (3.9a) that
applies to the problem with which he/she is concerned. As explained
and stressed in §2.3 and §2.6, this cannot be done without the spec-
ification of boundary and initial conditions that contain information
additional to (3.7a) and (3.9a), and specific to the problem.

Initial conditions are easy to state for migration pr*oblems. Let the
time when containment occurs be designated as t = 0 . The initial
conditions give the distribution of the contaminant within the plastic
and the food at t =0. All modellers assume that the contaminant is
distributed uniformly within the plastic; denoting this uniform

concentration by Cy as in §2.3 gives
C(x,y,z,0) = Cy (3.11)

for all values of (x,y,z) corresponding to points within the plastic.

"Other choices, e.g. t = to, simply complicate the algebra without -

in any way - changing the results.
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Similarly it is supposed that, initially, there is no contaminant

within the food. Thus
C«(x,y,z,0) =0 (3.12)

for all points within the food. Amendments to (3.11) and (3.12) will
have to be made should other conditions occur initially, e.g. the con-
taminant is not distributed uniformly within the plastic or there is

some contaminant within the food.

Boundary conditions are required at all boundaries with the medium

(e.g. the atmosphere) external to the food-package system and at the
interface (or interfaces) between the food and the plastic package.
Consider the former conditions first. In real life there is undoubtedly
some loss of contaminant to the external medium; however this is
difficult to quantify (and - even if done - would lead to great com-
plications). As explained in §3.2, it is simplest from the mathematical
point of view and safest from the hazard assessment point of view to
assume that no such loss occurs. Mathematically this is expressed

either as

a—C—O oC.
on  on

=0 at all external boundaries , (3.13a)

where 0/0n denotes differentiation in the direction along the local

normal to the external boundary, or (in vector form) as
n .VC=0,n .VC.=0 at all external boundaries . (3.13b)

In some circumstances, it is possible to express the same physical
condition in another way. Usually diffusion of the contaminant in the
plastic is a slow process and, as a consequence, the period of time
for which migration predictions are required may be (relatively) short
enough for little of the contaminant near the external boundaries of
the plastic to have migrated. From the point of view of migration,

it is then possible to regard the plastic as of infinite extent with
no change in the concentration of contaminant far away from the food-

package interface(s), i.e.
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1
C(x,y,z) > C, as (x* +y> +2°)? >0, (3.14)
It is important to emphasize that (3.14) replaces the first condition

in (3.13a) - or (3.13b) - but that the condition on C+« is unchanged,

and also that (3.14) is an approximation to the first condition in

(3.13a). It is possible to assess the periods of time for which (3.14)

is a good approximation since, in a time t, the thickness of the region
1
of the plastic that has lost contaminant has order of magnitude (Dt)?.

Provided this is much less than the thickness h of the plastic film
forming the packaging, equation (3.14) will be a valid approximation.
Thus, for example, consider a film of thickness 5 x 10”m (50 microns)
and a value of D of 5 x 107'°m?s™" (5 x 107"2cm?s™"), typical of the

migration of styrene monomer in polystyrene. For t = 86400s (1 day),

1
(Dt)? is about 6.6 x 10 °m, i.e. about h/8 , and (3.14) is likely to be

1
reasonable. On the other hand (Dt)2=h when t = 5 x 10%s, i.e. about

58 days. Use of (3.14) in this case is therefore likely to give accept-
able results for migration times not exceeding a day or two, but (3.13a)

should be used for longer times.

Most difficulty concerns the specification of the boundary conditions
at the interface between the food and the plastic - and this is very
important. It is assumed to be valid, as explained above, to regard
this interface as sharp and smooth - at least for the Class Il systems
that are currently under consideration. At this interface the rate

at which contaminant leaves the plastic must be equal to the rate at
which it enters the food. By Fick's first law - equation (3.6) — this

requires

D% D O0Cx
on on

There is a widely used alternative to (3.15), based on the fact that

at every point on the interface . (3.15)

for many systems diffusion in. the food is much more rapid than diffusion
in the plastic; this is normally true, for example, when the food is
liquid. In those circumstances it is consistent to suppose that the
concentration C« of contaminant in the food is uniform at all times.
Any internal bulk motion in the food, caused e.g. by convection, would
of course greatly accelerate this tendency of C» to approach uniformity.

This is discussed later. The rate of increase of contaminant mass
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within the food is therefore d/dt(C+V+), and this must be equal to the
rate at which contaminant is leaving the plastic. This is equal to the
surface integral of D(6C/0n) over the interface where 0/0n denotes diff-
erentiation along the local normal to the interface in the direction

from the food into the plastic. Thus

Vo3& _ip%a (3.16a)
t A On
or, in vector notation,
ve & _ipve.da . (3.16b)
dt A ~

In fact, this condition has been used in all models in the literature
in simplified form, appropriate for the idealized geometries of the
problems that have been studied. For example, suppose the interface is
a plane, and take its equation as x = 0 with plastic occupying the
region x > 0. If, in addition, D and C are independent of y and z (and
thus depend only on x and t), the integral on the right-hand side of
(3.16a) or (3.16b) can be evaluated with the result that

dCx _pa%C (3.17)

Vx ,
dt OX |x=0

where A is the area of the interface. The special case of (3.17) when
the food has the shape of a cuboid with cross-sectional area A and
thickness a (so that V« = Aa) is equation (2.6). Another special case
of (3.16a), for a spherical interface, is equation (2.12).

Before the mathematical model is (at least in principle) soluble, more

information is needed about conditions at the interface. At equilibrium,

the concentrations C+ and C have a fixed ratio (the partition coefficient)

at points very close to the interface (but on opposite sides). Users
of mathematical models of migration have invariably assumed that this
equilibrium condition holds throughout the migration process, i.e. they

have assumed that there is a constant y such that

g:y at all points of the interface for all time, i.e. (0.9 =y
C C(0,¢)

(3.18)
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This extension of the partition coefficient concept to non-equilibrium
situations is central to the whole problem of modelling migration.

Roughly speaking, the assumption can be justified on the grounds that
migration is normally a (relatively) slow process and that, therefore,

at each time during the migration process, conditions on either side of

the interface are in quasi-equilibrium. (This type of argument is common

in fluid mechanics; for example, the equilibrium gas laws are used to

link pressure, density and temperature in the atmosphere with good results.)
More particularly, it should be noted that y is the ratio of chemical
activities and these do not change greatly with concentrations if these

are well removed from saturation concentrations. This is not always so,
and the authors of this report wish to stress that real progress in
migration research requires that the validity of (3.18) should be tested
experimentally; they are unaware of any such tests having been conducted.
Obviously such experiments will not be easy to design or execute, given
also that they should aim at discovering the correct interfacial condition
should (3.18) be found to be invalid.

It was mentioned in §1.1 that, in general, packaged food is exposed to a
wide and fluctuating range of temperatures between containment and con-
sumption. From the point of view of the model equations discussed in

this section, changes in temperature T cause changes in the values of y
and D. Other effects (such as volume changes due to thermal expansion/con-
traction) are likely to be much less significant - probably negligible —
for practical prediction purposes. References for the dependence of y

on T were given in §3.2, and the dependence of D on T is mathematically
similar (van Amerongen 1965; Garlanda and Masoero 1966). It would be
possible, but extremely expensive in terms of computer resources and also
much more difficult in terms of controlling numerical errors, to use the
model equations with the explicit dependence of y and D on T included;
one reason for the expense and difficulty is that it would then be
necessary to include partial differential equations for T in the model.
No authors have so far included such dependence in their mathematical
models and it is therefore necessary to adopt the hypothesis, consistent
with the philosophy of mathematical modelling outlined in §3.1, that
there are some constant values of y and D which give, on comparison of
the mathematical/numerical results with data, acceptable predictions of

migration from the practical point of view. If so, it would be necessary
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to regard these constants as appropriate averages over the relevant
temperature range. For the sake of completeness and clarity, it is
necessary to emphasize one point in connection with temperature dependence.
Nearly all experiments have been conducted under isothermal conditions,
and legislative standards specify a constant temperature for the analytical
tests of migration that they include™. In these ideal cases there are
no changes in y and D during the migration process and these parameters
therefore have constant values (dependent on the specified/controlled
temperature). The complications discussed in the first part of this
paragraph are then irrelevant. However, this remark suggests to the
authors of this report that inadequate attention may so far have been
paid to the possible effects of temperature changes during migration,
and it is therefore recommended that some migration tests be conducted
under non-isothermal conditions typical of those that real foods and
packaging undergo. For example, tests should examine cases where the
food changes phase during the migration process due, for instance, to

freezing.

A few authors have used an empirical "mass transfer resistance" law
instead of (3.18). This will be dealt with when their models are dis-
cussed below. With this exception, all the equations that have been used
in the formulation of mathematical models of migration in Class Il systems
have been given.

Remark
The remainder of this section will highlight some special solutions of
the equations discussed above that have already been used in migration
research. However, in the view of the authors of this report, the most
important part of this section has already been seen by the reader.
The point is that the special solutions that follow apply only in specific
circumstances and cannot be used in other circumstances (e.g. different
geometries), except - perhaps - approximately; then proper justification
must be given. On the other hand, the model equations derived and dis-
cussed above apply (at least as a promising hypothesis) to all Class II
systems and, for any given geometry, it is a matter of technique (often

routine technique) to derive the appropriate solution in numerical form

"Strictly isothermal tests are of course impossible because of "come-up"

and "come-down" times.
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using a computer. Perhaps an analogy with chemical analysis is useful.
The migration characteristics for each trio of food/polymer/contaminant
in a given geometrical configuration have to be measured in a specific-
ally designed experiment; likewise, for a specific situation, the
solution of the set of equations forming the mathematical model has, in
general, to be derived ab initio. (A difference is that the mathematical
solution is expressible for given geometry in non-dimensional form and
this reduces the potential labour as explained in §2.4.) The point above
is important, and experience shows that it is often not understood by
non-mathematicians who attach too much significance (and often the wrong
significance) to special solutions.

Special solutions for well-mixed food

It has already been noted that one of the most comprehensive accounts of
special solutions of the mathematical model equations for Class II
systems is given by Crank (1979). Many of those solutions have been
known for many years, and van Amerongen (1965) discusses some of them
from the particular viewpoint of migration from rubber and the determin-

ation of the diffusion coefficient D.

The first specific application of mathematics to migration from plastic
packaging into food is by Garlanda and Masoero (1966). The special solu-
tions are for three situations of ascending complexity but each is one-

dimensional, i.e. diffusion takes place only in the direction of one

axis - taken to be the x-axis. In the first, illustrated in Figure 6,
both plastic and food have infinite extent. The initial concentration of
contaminant in the plastic is Cy and in the food is zero. Garlanda and
Masoero suppose that diffusion in the food is so rapid that the concen-
tration of contaminant within the food is uniform throughout migration,
i.e. they assume the conditions leading to (3.17). However, since the
volume V=« of the food is infinite, the boundary condition (3.17) can be
further reduced to C+ = 0 for all t. The interpretation of this is that,
in an infinite extent of food, a uniform concentration can never be de-
tectably different from zero, given that at any time the food contains a

finite mass M=« of contaminant. Garlanda and Masoero show that

Mx = 2C0A(2J2 : (3.19)
T
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where A is the area of the interface and D is the diffusion coefficient

of the contaminant in the plastic.

Despite the unrealistic nature of the geometry in Figure 6, there are
two features of (3.19) that happen to apply in all situations where the

model equations are as given in the earlier sub-section. First of all,
M= is proportional to Cy, the initial concentration of contaminant within

the plastic. (This important result is also illustrated by the work in
1

§§2.3 - 2.5 and in §3.2.) Secondly, M« in (3.19) is proportional to t2.
This is not true for all t in more realistic situations than that illus-

trated in Figure 6 but, in fact, in all situations covered by the model

1
equations, M« is proportional to t? for sufficiently short times after

migration starts. (This is illustrated by (2.15) in §2.4.)

The next situation considered by Garlanda and Masoero is shown in
Figure 7. The plastic now has thickness h so that migration takes place
across two interfaces (x = 0 and x=h). The food is still supposed to
have infinite extent so that C« = 0 for all t, where, as always, C+ is
the concentration of contaminant within the food. The major difference
from the situation of Figure 6 is that now there is only a finite mass
of contaminant available for migration into the food. Indeed all the
contaminant initially in the plastic eventually migrates into the food
so that, finally, the total mass M+, of contaminant within the food is

given by
My, = CpAh. (3.20)

Garlanda and Masoero show that, at time t after migration starts, the
mass M=+ of contaminant within the food is given by the formula
g e—(2n+l)2nzr+

Mx = M, 1——2 > 5 , (3.21)
n°n=0 (2n+1)

where 14 is a non-dimensional time defined by

T, :%, (3.22)

i.e. like the second definition in (2.16), but with y = 1 and h replacing
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a. It can be shown that, for small values of 1+, a good approximation
to (3.21) is

1 1
M ~ My .4[Ej2 _ 4C0A[2J2. (3.23)
T T

Given that there are now two interfaces, this is what would have been
predicted from (3.19), and the interpretation of (3.23) is, of course,
that in the early stages of migration, the fact that the plastic has

finite thickness is irrelevant since it is contaminant near the inter-

faces that passes into the food.

Finally Garlanda and Masoero consider the situation shown in Figure 8.
Now the food has finite extent, with total width 2a, and is symmetrically
distributed about the plastic. They also assume that, at the interface,
(3.18) holds, i.e. C+/C = y for all t where y is assumed to be the equi-
librium partition coefficient. Eventually the concentration C+ of con-
taminant within the food is given by (3.4) with V«/V = 2a/h. Thus M+,

the total mass of contaminant that is finally in the food, satisfies
Co.2yda  CpAh

My = = , (3.24)
T qep!
where the non-dimensional constant  is defined by
B =%. (3.25)

It will be seen later that f can be interpreted as the ratio of the
capacities of the food and the plastic for containing contaminant.

It is the product of %, the volume ratio, and y, which is a measure

of the relative "attraction" of the two media for the contaminant. For

this case, Garlanda and Masoero do not give the formula for M+ for
arbitrary t. This is rather surprising since they remark, quite correctly,
that it has wider application than either (3.19) or (3.21). However

the formula is given by Crank (1979), and is discussed in the specific
context of migration by Reid, Schwope and Sidman (1983) and others.

The result can be written in many forms, of which two are recorded here.
First

- 442
M =M*w{l—2B(1+B) » %‘137;)}, (3.26)
n=1 1+B+p"q;
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where 14, M+, and B are defined in (3.22), (3.24) and (3.25) respectively,

and the q, (n=1,2,...) are the positive roots in ascending order of

magnitude of the equation

tanq, =—fBq, - (3.27)

Secondly, replacing t- by T = Dt/(y*a?) as in (2.16), (2.17) and (2.18)
gives
o0 e_BZQrle
M =M1 1-2B(1+B) X —
n=114+B+p"q;
where the q, continue to be defined by (3.27). (Note that (3.26) and

(3.28) are not different results but a single result expressed in two

, (3.28)

slightly different ways.)

The result in (3.26), or (3.28), may well appear complicated to a non-
mathematician but it is as straightforward to him/her as the formula

of a protein expressed in terms of individual atoms is to a chemist.
In both cases the symbolism used leads to a rather long expression in
detail, but the professional can "see" the structure and form. The
description of a typical house in terms of individual components would
need much more length. The authors ask the reader to accept that the
expressions do not involve very advanced or novel mathematics, and to
continue into the discussion that follows which should clarify their

meaning. The same comment applies to later expressions like (3.37).

Since e¢* tends to zero as s approaches infinity, it can be seen
immediately from either formula that M« tends to M+, as of course it
should. Less obvious perhaps is the fact that (3.26), or (3.28), in-
cludes many of the earlier results given in this report as special cases.
For example, consider the situation of Figure 7 which results from that
of Figure 8 by letting a, i.e. B in. (3.25), approach infinity while
keeping h fixed. For large B, the solutions of (3.27) are approximately
those of cosq, = 0, remembering that tanq, = sinq,/cosq, . Thus

qn ~ (2n+1)n/2 (n = 0,1,2, ...). Moreover, when P is large, 2 p (1+ p) =2 p*
and 1+B+B’q ~B*’q.. Thus, for large 6, (3.26) becomes (3.21) after

some routine algebra. It has already been seen that (3.19) is a special

case of (3.21), and therefore of (3.26). It can also be shown that when
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h approaches infinity keeping a fixed, i.e. when  in (3.25) approachess
zero, the result in (3.28) approaches that in (2.8) which applies to the
situation illustrated in Figure 2. In summary therefore, (3,26) — or
(3.28) - includes all the cases of one-dimensional migration so far con-
sidered in this report. In particular, it may be noted here that for
small values of T or 1+, and irrespective of the value of B, the result
in (3.26) gives

Dt

Mo ~ 4C0A(—j2 , (3.29)
T

which would have been predicted from (3.23) - an approximation to
(3.26) for large B - and from (2.15) - an approximation to (3.26) for

small B when it is multiplied by 2 (because there are two interfaces
1 1

in Figure 8). Equation (3.29) can be rewritten M*zCO.2A.(4/7t)5(Dt)E

when it can be seen that in the early stages of migration, the material

that passes into the food is from surface layers of thickness of order
1
(Dt)?. This result extends to plastic containers of arbitrary shape

in the early stages of migration. It also has important implications

in its own right, e.g. for repeat extraction tests with the same container.
The result (3.29) eventually ceases to be valid because these surface
layers increase in thickness and coalesce in the centre of the plastic;
once that occurs the concentration in the plastic is everywhere less

than Cyp. These remarks apply directly to total immersion tests of e.g.
global migration. Similarly (3.19) can be applied to one-sided extraction

from a plastic film (with the other interface impermeable to contaminant)
1

only for short times. It ceases to be applicable once (Dt)E becomes
comparable with the film thickness and, consequently, when the contaminant

concentration in the plastic is everywhere less than Cy.

Plotting results in dimensignless form

For the reasons given in §2.4, all the graphs in this report will be given
in non-dimensional form. There remains some choice about the exact non-
dimensional variables to use in a plot, and two possibilities are given

in Figures 9 and 10. Crank (1979) points out that B, defined in (3.25),

is simply related to the proportion of the total quantity of contaminant
that is eventually in the food. This proportion is M«./(CoAh), which
from (3.24), is given by
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FIGURE 9. The behaviour of M+/(CyAh) predicted by (3.26) for 3 values of B, where 1. and P are defined in (3.22)

and (3.25) respectively. Note that Ma,, in (3.26) is equal to CoAh/(1+ B) - see (3.24). Also shown

is the approximate behaviour predicted by (3.23); evidently the accuracy of this approximation depends

on B (as well as t.).
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FIGURE 10. A comparison, for p =9, of the exact result (3.26)
with the approximation (3.21).
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M,

TAD}I:%. (3.30)
(Recall, as noted before (3.24), that (3.30) is consistent with the dis-
cussion in §3.2 and with (3.4) in particular.) Figure 9 gives plots of
M=:/(CpAh) against 1+ as predicted by (3.26) for three values of B, viz.
9, 1 and 1/9 corresponding to final uptakes of 90%, 50% and 10% respect-
ively. Reid, Schwope and Sidman (1983) give more extensive graphs of
the same relationship in Figures 4, 5 and 6 of their work. (There are
certain differences between these figures and Figure 9 of this report.
Their axes have logarithmic scales and there are trivial changes in
notation. For example Reid, Schwope and Sidman use a for the present
B and y for the present 4t .) Figure 9 illustrates well the importance
of the parameter 3. For large values of B (which could be caused by a
large value of the partition coefficient y, or by a large value of the
ratio a’h of the volumes of the food and plastic, or by both possibilities),
the food is effectively a large reservoir for the contaminant so that
equilibrium takes a long time to be achieved and a large proportion of
contaminant is eventually transferred to the food. The converse state-
ments hold when B is small as Figure 9 well illustrates. Also shown on
Figure 9 is the approximation (3.29), and it is clear that it is adequate
for a range of non-dimensional times 1. whose length increases with f3,
consistent again with the interpretation that the size of B is a measure

of the capacity of the food as a reservoir for the contaminant.

Figure 10 compares the dependence of M+/M=x, on t+ for f =9 (as predicted
by (3.26)) with that predicted by (3.21), already noted as an approxi-
mation to (3.26) for large B. Even for this relatively small value of f,

the agreement is remarkably good.

In contrast with the presentation in §§2.3 - 2.6, the discussion above
has been in terms of M+, the mass of contaminant in the food, rather than
C«, its concentration. However the difference can be trivially accounted
for because C+ approaches Cs,, where

c, =M ¥ o (3.31)
V. 1+
(It can easily be verified that this formula for C«, is, in the different

notation, identical with (3.4). It will also be noted that C«,/Cy can
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be reduced, for a fixed y, by increasing B, i.e. by increasing V«/V = 2a/h.)

Thus (3.26) can be rewritten as

C_ v )i _ et
C. IB{I (+B)zl B+B } (3.32)

and other formulae above can be rewritten using the same technique.
Among the many authors who have quoted one or more of the formulae

above are Briston and Katan (1974), vom Bruck, Eckert and Rudolph (1976),
Sanchez, Chang and Smith (1980), Messadi, Taverdet and Vergnaud (1983),
Miltz and Rosen-Doody (1980) and Keinhorst and Niebergall (1986a). In
most cases, many of the experimental results are apparently consistent
with the quoted formulae. (Cases where there is clearly disagreement
are not Class Il systems, or there is chemical change.) We say "apparently"
because, having quoted the formula(e), most authors do not give the
experimental values of the parameters in the formulae, and the reader

is consequently unable to check the agreement (or otherwise) between
theory and experiment. This point has been made previously by one of

the authors of this report (Katan 1979); unfortunately that recommend-
ation has not been generally followed and practice that is (frankly) un-
professional continues, although there are welcome signs of recent improve-
ment. A further criticism of many papers, including those cited above,
is that the graphs are not plotted in non-dimensional form and therefore,
as explained in §2.4, can only be used for the specific trio of food/
polymer/contaminant for which the data were measured.

Fortunately there are exceptions to the strictures made above. These
include Reid, Schwope and Sidman (1983) who give many practical numerical
examples. In general, values of f for these examples are much less than
1. For one case (water/polystyrene/styrene monomer at 40°C(313K)) the
values of y, a and h were 3.3 x 104,3.1x10%°mand 1.2 x 10*m,
giving p = 2ya/h ~ 1.7 x 102, Sometimes higher values of B occur;

in another case (50% aqueous ethanol/polystyrene/styrene monomer at
40°C(313K)) v, a and h were 7.1 x 107, 1.05 x 10m and 9.3 x 10°m,

"Reid, Schwope and Sidman actually quote a value of 1.6 x 107> for p;
while this is not consistent with the values they give for y, a, h (which

are quoted above), the difference is not important.
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giving B = 1.6. A value of  of order 10 can be inferred from experiments
reported by Messadi, Taverdet and Vergnaud (1983) in which 20 circular
discs of a commercial PVC compound containing dioctyl phthalate as a
plasticiser were immersed in 2 x 10 m*(200ml) of two food simulant liquids
(n-heptane and peanut oil). It is stated that y "was found to be about 1",
and each disc had radius 9 x 10 m and thickness 3.4 x 107 m, giving
BrVe/Vr=(2x10"20xnx81x10°x3.4x107°) ~ 11 .6.

Results for immobile foods

All the models considered so far have assumed that the food is "well-mixed",
i.e. that the concentration C+ of contaminant in the food is uniform. As
noted above in the discussion following (3.15), this can occur because

the diffusion coefficient D« of the contaminant in the food is much greater
than D, or because the food is liquid and is in convective motion.
(Messadi, Taverdet and Vergnaud (1983) and others discuss the effect

of stirring and show it to be significant.) For completeness, we record
now another special solution which applies when there is no motion in

the food, and when no assumption is made about the relative magnitudes

of D and D+. For example, this solution is likely to apply to many cases
where the food is solid. The geometry is that of Figure 8 and, for clarity,
the equations, and boundary and initial conditions, will on this occasion
be listed in full. As usual the concentrations of contaminant in the
plastic and the food are denoted by C and C+ respectively where, now, C«
(as well as C) depends on x. Both C and C+ still of course depend on t.

The equations governing C and C+ are

2 2
8—C:Da—gfor O<x<h;aC*=D*a—C2*for —a<x<0 and h<x<a+h.
ot O0x ot 0x
(3.33)
No contaminant is lost from the system so that - see (3.13a) -
D*aC*:O at x=-a and x=a+h. (3.34)
At each interface (x = 0 and x =h) we have - see (3.15) and (3.18) -
p_p, % and c. = ycC. (3.35)
ox ox

Finally there is the normal initial condition, viz.

C=Coand C-=0att=0. (3.36)
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It can then be shown after some algebra that

© 2 —4qr21‘c+
Ma = M, 1—2(1+BJ2 . fan” qy € ——— 1 (3.37)
n=1q2[(1+B)+ (1+a’B)tan> q, |

where M+, B and 1+ have their usual meanings and are defined in (3.24),
(3.25) and (3.22) respectively, and o is another non-dimensional constant

defined by

1

o =%(D2j2. (3.38)

Finally, it is necessary to know that the q, (n = 1,2,...) in (3.37) are
the positive roots in ascending order of magnitude of the equation
oatanq, +tanafq, =0. (3.39)
One of the outcomes of the algebra leading to (3.37) is an expression
giving the dependence of C+ on x (and t). This is more complicated than
(3.37) and will not be given here. It is sufficient to note now that
the average concentration C- of contaminant in the food at time t is
M:+/V+ = M+/(2Aa).
Whilst it seems unlikely that (3.37) is an original result, we are not
aware of a previous derivation, nor has it apparently been used in
work on migration. (However Carslaw and Jaeger (1959) discuss many
solutions of the same type in the context of heat conduction.) It is
useful briefly to note certain properties of (3.37). The value of
M+, is, of course, given by the simple theory of §3.2 and is independent

of D and D+. For small values of 1+, it can be shown that

1

this result is given by Reid, Sidman, Schwope and Till (1980). Compar-
ison of (3.40) with (3.29) shows that when D+«/D is large, i.e. when
a<<l1, these results are approximately the same as, indeed, they should
be. For larger values of a, the diffusion in the food is less rapid

and M+« is a factor (1+ a)”' less than when the food is well-stirred. In
the extreme case, when a is very large, the early time approximation

(3.40) can itself be approximated by
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1
D.
M. z4(yC0)A( tjz, (3.41)
T

and this is a result which forms an interesting counterpoint to (3.29)
since, in this limit, the concentration in the plastic is uniform and

the migrated contaminant (with concentration yCy) occupies a layer of
1

thickness of order (D*t)E within the food (Reid, Sidman, Schwope and
Till 1980). A possible practical application of (3.41) is to the

migration of plasticiser from PVC film into cheese (Sandberg and Vaz

1984; Ashby 1986). In discussing (3.26) above, it was noted that it
included many earlier results as special cases; likewise (3.37) is

the most general result so far obtained and can be shown to include

(3.26) as a special case for a<<I.

There is a separate special case of (3.37) that is given explicitly by
Reid, Sidman, Schwope and Till (1980, equations (23) to (25)*). This
special case is when the plastic is effectively infinite in extent,

i.e. the set-up at each interface is as in Figure 2, and can be obtained
from (3.37) by letting p — 0 appropriately. (The reader should note
once more that there are differences of notation between the present
report and Reid, Sidman, Schwope and Till's work. In particular our
parameter  plays no role in their 1980 paper since the plastic is there
taken to be effectively infinite throughout, and our parameter o is the
reciprocal of what they call B.) In the present notation, the special
case of (3.37) when the plastic is effectively infinite (very small B)

is written in the following form by Reid, Sidman, Schwope and Till (1980):

1

— © _A\n-l
M = My, 20 |7 )2 1_(2_(1)2 [l_ocj £l , (3.42)
I+a )\ n I+a /h=1\1+a 1

w2

where 1; is another non-dimensional time defined by

D.
=t (3.43)
a
1
and, for any quantity u (where, in (3.42), u=n/1?),
1
f(u)=e™" —n?uerfcu, (3.44)

"Unfortunately this result is misquoted in equation (36) of Reid, Schwope
and Sidman (1983).
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with the function erfc defined in (2.2). Actually, in the course of
deriving and investigating (3.37), an alternative (and more elegant)

way of writing (3.42) was discovered, namely

.2 2
M :M*w{1_2_°‘ s s U e ! T*du}. (3.45)

T uz(sinquroc2 cos’u

(It may reassure the reader who is not a mathematician to learn that

it is not obvious to a mathematician that (3.42) and (3.45) are diff-
erent ways of expressing the same result, or that either is a special
case of (3.37). Establishing these results requires fairly sophisticated
mathematical techniques.) In practice, (3.42) and (3.45) are of com-
plementary value since they will be useful for small and large values of

T, respectively.

Reid, Sidman, Schwope and Till (1980) discuss typical values of the
parameter o, and argue that (3.37) - or (3.42) - should be used instead

of (3.26) (or one of its special cases) for values of a greater than

about 0.1 or 0.2. They base.this conclusion on graphs of (3.42) in

Figure 2 of their paper and they remark that a is normally much less

than 0.1 for solid oily foods, but that (because of low values of y)
values of a greater than 0.1 are often encountered with solid "watery"
foods. Time has not permitted use of a computer to obtain numerical
results from (3.37) and it is recommended that this task should be under-
taken, with the major aim of refining (if necessary) the estimates by
Reid, Sidman, Schwope and Till (1980) of the values of a for which (3.37)
should be used instead of (3.26). (In this context it will be noted

that the term in curly brackets in (3.37) is a function of two non-
dimensional constants a and 3, as well as of non-dimensional time 1+,
whereas - for geometrical reasons - (3.42) involves only one non-dimensional
constant o. It would therefore be expected in general that the values of

a for which (3.37) is significantly different from (3.26) would depend
on f3.)

Models involving a mass transfer coefficient

The concept of a "well-mixed" liquid food is discussed further by Reid,
Sidman, Schwope and Till (1980) and by Reid, Schwope and Sidman (1983).
On the basis of the immediately preceding work, it would seem natural to

argue that a liquid food is "well-mixed" (in the sense that the contaminant
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within it can be regarded as being of uniform concentration) if
1

OL:y*I(D/D*)E is less than about 0.1 or 0.2. However these authors
adopt another criterion. They assume that the degree of resistance
of the food to the migrating contaminant can be quantified by a constant

mass transfer coefficient k (a quantity with the units of velocity).

Suppose that the food occupies the region x > 0 and is of infinite

extent so that, as discussed above before (3.19), the concentration

in the bulk of the food can be taken as zero for all t. Then instead

of (3.13a) and (3.18), the interface condition at x = 0 is taken to be
Dg—gz—kyc at x = 0 for all t . (3.46)

This is an empirical relationship with little support from fundamental
scientific principles. It is explained by reference to the motion of
the liquid food and, in particular, to the concept of a boundary layer
of thickness 0 adjoining the interface where k = D«/6. The size of

0 is dependent on the liquid motion in an unspecified way and it is
stated that "values of k are normally estimated from generalized
correlations"(Reid, Schwope and Sidman 1983) . The boundary layer inhibits
the transfer of migrated contaminant into the bulk of the food so that
large values of 8 (small values of k) represent the case of large re-
sistance to migration. Other authors who have used the same concept
include Chan, Anselmo, Reynolds and Worman (1978), Sanchez, Chang and
Smith (1980), and Zieminski and Peppas (1983a).

For the geometry of Figure 6 (infinite plastic and food with one inter-

face), use of (3.46) gives (Crank 1979)
1 1

exp Tk erfcrﬁ +2(T—kj2 -1, (3.47)
T

DCoA
M. = 20

where the new non-dimensional time 1y, is given by:
k?y’t
K
(In the notation of Reid, Sidman, Schwope and Till (1980) and Reid,

(3.48)

Schwope and Sidman (1983), our 1y is their y*.) For small values of

Ty, it is easy to show that (3.47) reduces to
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M. ~ KyC At. (3.49)
The expression for M+ for the geometry of Figure 7 (finite plastic
and infinite food with two interfaces) is also given but will not
be recorded here. It is sufficient to note that (3.49) again holds
(when multiplied by 2 because there are now two interfaces) for small

values of tx. For large 1k, on the other hand, (3.47) becomes
1

M, ~ 2C0A(mj2, (3.50)
T

which is exactly (3.19). For large times therefore the extent of the
migration is independent of the value of k.

Reid, Schwope, Sidman and Till (1980) and Till, Reid, Schwartz, Sidman,
Valentine and Whelan (1982) discuss some experimental evidence to

support (3.47) which, in particular, illustrates that M« is proportion-
1

al to t, rather than tE, for small 1, but that the rate of growth slows
down for larger 1y, consistent with (3.50). On the basis of this limit-
ed evidence, Reid, Schwope and Sidman (1983) propose that solutions like
(3.47) that are derived by use of (3.46) - rather than (3.13a) and
(3.18) - should be employed for predicting migration in liquid foods

1

only for values for 1, such that t2 <10. They indicate that this con-

dition is rarely encountered in practice but one important exception is
noted, namely aqueous food/plasticized PVC/adipate (or phthalate) esters.
The numerical examples quoted show furthermore that the differences between
(3.47) and the corresponding solutions based on (3.13a) and (3.18) are
noticeable only when the concentrations of contaminant in the food are
extremely low. Given the empirical nature of (3.46) and the difficulty

of a priori estimation of k, the authors of this report conclude that the
use of (3.46) in practical predictions of migration into liquid food for
Class II systems simply introduces unnecessary complications, and we
believe that this conclusion could only be changed if it were contra-

dicted by substantially more data than are currently available’.

“There can be no dispute in qualitative terms with the basic physical idea
that motivates (3.46), namely the influence of a liquid boundary layer.
Our scepticism is about the practical importance of this phenomenon and,
incidentally, about the quantitative accuracy of (3.46). For instance,
there is little reason why k should be a constant; this is in fact
acknowledged by Reid, Sidman, Schwope and Till (1980,p.586).
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Concluding comments on models of Class Il systems

Essentially all the mathematical models that have appeared in the liter-
ature have now been presented and discussed; in addition a new solution,
viz. (3.37), that includes many others as special cases has been derived.
In concluding this section of the report, there are two recurrent

points that, even at the risk of undue repetition, we wish once more to
emphasize. In the first place, all the solutions are for plane geometries
only, i.e. they have gquantitative relevance to very few real migration
problems since commercial plastic containers are rarely plane. Exceptions
exist, e.g. some flat packets of cooked meat and cheese; furthermore

the results of the models seem likely to apply reasonably well to migration
in many of the test cells used in laboratories. Nevertheless it is
difficult to understand - and impossible to condone - the failure of
mathematical modellers of migration to derive results for more realistic
geometries. The work in §§2.3 - 2.5 shows unambiguously that different
geometries lead to significant differences in migration behaviour even
when there are no changes in the materials involved. Whilst there would
be no real difficulty in deriving the analogues of most of the results

in this section for cylindrical and spherical geometry, these results
would also be special. The real need is for numerical solutions of
migration models for realistic geometries. Secondly, most of the papers
on migration that have been studied in preparing this report contain very
little, if any, mathematics and, in general, the few to which this comment
does not apply have inadequate connections between the mathematics and

the experimental results. The latter are not usually plotted in non-
dimensional form, and it deserves emphasis that this should be done even
when the authors of the papers have no direct or immediate concern with
mathematical models. Also insufficient details are given to enable the
reader to make his/her own comparison between theory and experiment.

In some papers the situation is even worse; some mathematical formulae

are given but are not used, nor even referred to, subsequently!

§3.4 Mathematical models of Class IIT systems

Introductory remarks

In §1.2 Class III systems were defined (Katan 1971) as those in which the

migration of the contaminant is controlled by the food. While the
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implication of this definition is that migration is negligible in the
absence of food, it is possible in this report on mathematical models
of migration to be slightly more flexible by requiring simply that the
presence of the food substantially increases migration. In fact all
models of Class III systems have dealt with one type, namely that in
which the food (or food simulant) is liquid and penetrates the plastic,
with consequent changes in its physical properties. The penetration may,
or may not, be accompanied by substantial swelling of the plastic. In
what is apparently the first paper on the theory of Class III systems,
Knibbe (1971) describes the features that all subsequent modellers have
incorporated. There is a "sharp front" between the part of the plastic
(adjacent to the original food/plastic interface) that has been penetrated
by food, and the part that has not. This front advances into the plastic

as time increases, and within the penetrated plastic (i.e. behind the
front) the transfer of contaminant is greatly enhanced relative to what
occurs in the original. Whilst Knibbe (1971) and Katan (1971) both
assume that no migration takes place in the absence of penetration

(i.e. that D = 0 or y = 0 in the notation of §3.3), this assumption is un-
necessarily restrictive and has not been made by some subsequent modellers.
Other useful qualitative discussions of migration in Class III systems
are given by Figge (1980)" and Shepherd (1982).

Mathematical models

Figure 11 illustrates the situation considered by Knibbe (1971) and Katan

(1971), where b(t) denotes the penetration distance at time t after

i

migration starts'. Both authors cite experimental evidence which is stated

"However Figge's paper contains an instructive non-sequitur in its discussion
of its Figures 3 and 4 on its pp.190-192. On the abscissae are plotted
times in units of hours and days, and not non-dimensional times. Understand-
ably therefore the graphs in these Figures of migration for different systems
are different, but it cannot be judged from these Figures whether the graphs
would be different if plotted in appropriate non-dimensional form. Therefore
these Figures cannot legitimately be used to claim that certain food simulants
are unsuitable (although that conclusion may well be correct).

"It is actually unclear what the precise definition of b(t) is. The point of
this remark is that in certain circumstances the penetration front is not
"sharp" in the mathematical sense, whereas in others it is. See p. 122 of
Crank (1979).
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to support the theoretical prediction that

1

b(t) oo(Kt)? (3.51)
where K is a constant with the same units (m®s™') as an ordinary diffusion
coefficient. Knibbe assumes without discussion that the penetration is
a diffusion process, and emphasizes that the diffusion coefficient is
"strongly dependent” on the concentration of the food in the plastic.
He does not state what he assumes about this dependence but writes that
K in (3.51) is proportional to the maximum value of the diffusion coeffic-
ient. It seems unlikely that (3.51) holds for all possible dependencies,
especially in more realistic geometries than that of Figure 11, but a full
mathematical treatment of the point would be very difficult, if not im-

possible. Some of the later models use different formulae than (3.51).

b(t)

x
NN NN\

Original interface

Penetration front

PLASTIC

FIGURE 11
Knibbe now supposes that the migration of contaminant in the penetrated
plastic is a diffusion process with diffusion coefficient Dy, where D+
depends on the concentration of the food in the plastic. He considers
two possibilities. When D is much less than K, the penetration front
advances much more rapidly than the migration front so that all the
migrated contaminant originates in the penetrated region. Provided Dy

can be regarded as constant, it is then possible to use (3.19) so that

1
M*=2C0A[D+tj2 , (3.52)
T

where - as usual — M« is the mass of contaminant in the non-penetrated



3/36/56
food at time t. (For two-sided extraction (3.52) has of course to be
doubled, and it is assumed both that the food is well-mixed and that the
food and the plastic are effectively infinite.) Knibbe discusses the
assumption that Dy in (3.52) is constant, arguing that, although D
increases with the quantity of penetrated food, so also does the thickness
of the penetrated plastic due to "swelling" and that these two effects
are in balance so that both D, and the thickness of the penetrated plastic
can be regarded as constant. Unfortunately when D, << K the thickness of
the penetrated plastic does not enter the expression for M« in (3.52) and
this argument seems invalid. (Expansion does of course cause a reduction
in the concentration of the contaminant but this can be incorporated
trivially into (3.52) by redefining Cy to be the concentration in the
penetrated plastic rather than the original plastic.) Katan (1971)
avoids use of (3.52) by arguing that it is prudent for safety evaluation
to suppose that all the contaminant in the region of penetrated plastic

has migrated into the food; this gives

M %C g Ab(t) (3.53)

and is obviously (and deliberately) an over-estimate. The second case
considered by Knibbe is when D is comparable with or greater than K.
In this case migration occurs relatively fast and contaminant from all
the penetrated plastic is involved in migration. Some graphs in Knibbe's
paper illustrate the type of migration behaviour then expected. Penetration
becomes unimportant for values of D. much greater than K, and predictions

can be made as for Class II systems.

The basic ideas used in the work by Knibbe and Katan were incorporated
in. two more complicated models by Frisch (1978) and Rudolph (1979). These
models have differences of approach but, in our judgement, both merit
further attention here. Unfortunately neither Frisch nor Rudolph seems

aware of the work of the other!

Both authors consider the geometry of Figure 11, and suppose that all
the mass transfer processes are diffusion processes. Frisch (1978) assumes
that the region occupied by pure food (x < 0) is well-mixed, and also
treats the region occupied by plastic, and by plastic plus food, as one
single region within which the concentration of food ¢ varies from its
equilibrium solubility value c; at the interface x = 0 to zero far away

from the interface (i.e. x —>o ). (Where necessary in this section lower



3/37/56

case letters will be used to denote properties of the food in the plastic
that have been denoted by the corresponding upper case letters for pro-
perties of the contaminant; in particular ¢ and d will denote the con-
centration and diffusion coefficient, respectively, of the food in the
plastic.) Thus Frisch's model does not include the sharp front as an
explicit feature. However it could be obtained from his general model
equations by considering appropriate limits. The model includes variable

diffusion coefficients so that the equation for c(x,t) is (3.8) in the
oc _ 0 (40¢ , (3.54)
ot 0x ox

with the obvious boundary and initial conditions which are

present report, viz.

c(0,t) =cg, c(o0,t) =0, c(x,0)=0 (3.55)

Similarly the equation used for the contaminant concentration C(x,t) is

0C _ 0 D 0C ’ (3.56)
ot 0X 00X
With
C(0,t)=0,C(o,t)=C, , C(x,0) =C, (3.57)

The first condition in (3.57) is the same as that used for the geometry
of Figure 6 and applies because C+ = 0 throughout the food for all t for the
reason given in the discussion preceding (3.19). Frisch now supposes

that d and D are functions of c¢; specifically he takes

d=dgexp {G(é— 1)} ,D = pdy exp [cv(cc—s— 1)} : (3.58)

where dy is the value of d when ¢ = Cg, and o, pu ,v are positive dimension-

less constants whose values, like d , depend on the specific materials in
the system. (Frisch uses the notation Ds ,B, o and a for what in our

notation are d, ,Ci,u and v respectively.) Justification for (3.58) is
S

given in the paper. Wagner (1952) showed how the solution of (3.54) and

(3.55) could be obtained numerically (no simple formula exists), and

Crank (1979, pp.112-117) gives a lengthy summary of Wagner's work with a
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table (Table 7.3 on p.384) from which good approximations can be obtained.
When c(x,t) is known so is D via the second equation in (3.58). Hence
(3.56) can be solved for C(x,t) as Frisch shows; of course the results
are available only in numerical form. It is then possible to determine
the flux (i.e. the rate of transfer) of contaminant into the food, and
Frisch gives an expression for this. By integrating this expression with

respect to t it follows that
1

M, =d(o,1,v) AC,(d,t)? (3.59)

where the function ¢ can be determined from Wagner's and Frisch's work

for any values of a, u, v. Whilst it is not appropriate nor necessary to
give numerical details here, there is one interesting special case that

is worth attention. Frisch suggests that contaminant molecules are some-
times much larger than food molecules so that D/d = p is small; he there-
fore states that, in certain special cases, p is less than 10, and shows

1

that (I)(cs,u,v)z2(u/7r)E for such small values of p, so that (3.59) reduces

to
1

M*z2C0A(Md°tj2 . (3.60)
T

Since, according to (3.58), ud, is the value of D at the interface (where

C = Cs ), this result is very reminiscent of (3.52) and of earlier results
for Class II systems like (3.19), as would be expected. Frisch shows
further that (3.60) can be written

ls
M, ~M,qe? (3.61)

where M, is the value of M+ when the food is insoluble in the plastic,
1
i.e. when the system is behaving as a Class II system. Since e >1

for all positive a, (3.61) shows clearly that food penetration enhances
the migration, and this provides a consistency check on his model.
Frisch considers some other special cases in his paper but gives no com-
parison with any data, and we are not aware of any subsequent attempt -

which seems unfortunate.

There are several differences between Frisch's work and that of Rudolph

(1979), but, as already noted, Rudolph also assumes the geometry is
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that in Figure 11. However Rudolph supposes that the diffusion coefficient
d of the food in the plastic is a constant and the appropriate solution
of (3.54) then has the well-known form

C(x,t) = klerf{L}mz : (3.62)

24/dt

where k; and k, are constants to be determined by the boundary conditions.
Rudolph supposes that at x = 0, the concentration of the food in the plastic
is a constant, say 7y,, times the concentration, say Cy , of the uncon-
taminated food. He thus extends the partition coefficient concept of
(3.18) to the food. This yields ko = YoCq on substitution in (3.62).
The position of the sharp front at x = b(t) - see Figure 11 - is determined
by assuming that there is an abrupt discontinuity there at which ¢ falls

from C; to zero. This leads to ki =—Ciir exp(4®) where the non-dimensional

constant A is the solution of the equation
1

v, Cy —C, = C,An 2 exp( A )erfr (3.63)
and the position of the front is given in terms of A by

b(t) = 21 (dt )2 . (3.64)

Before proceeding it is important to make two comments. First, there
is a sign error in equation (20) of Rudolph's paper; this is the equation
in his paper that corresponds to (3.63) . Secondly, while (3.63) has to
be solved numerically for A for given values of ¢cp and c; , Rudolph does
not indicate how c; is to be determined. (Of course ¢y is fixed by the
food.) This seems to us to be a severe shortcoming of his work. It is
more satisfactory to adopt a second possibility which Rudolph refers to
on p.1710 of his paper, namely to suppose there is no jump in concentration.
This means that ¢; = 0 and that

X
C(x,t)—yoC{l—erf{z—MH . (3.65)

*The differences in notation between Rudolph's original paper and this
report are so numerous that they are not listed here; it is hoped that

no confusion results.
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In mathematical terms there is now no sharp front. However, in practical
terms, there is at any time t only a region of finite thickness within
which c is effectively non-zero. The point is that for any given method
of chemical analysis there is a limit, say cp , such that concentrations
below cp are undetectable and are therefore recorded as zero. From (3.65)
it now follows that c is detectably non-zero only for x < by (t) , where

1
b, (t)=2A, (dt)* (3.66)
and the non-dimensional quantity A, is the solution of the equation

C.

erf A, =1- .
’YOCO

(3.67)

Therefore, even when there is no sharp front, measurements would, in
effect, indicate the existence of one, and its rate of advance depends
on d and t exactly as if there were a sharp front and (3.64) held. (The
reader may wish to refer again to the footnote associated with the text
immediately before (3.51).) In summary, the question of whether a sharp
front exists is much less important than the order of magnitude in

practical terms of the thickness of the penetrated region, and all models
so far considered predict that this is proportional to t, as in (3.51)
and (3.64).

Rudolph (1979) now deals with the concentration of contaminant. He
assumes standard diffusion processes, with constant diffusion coefficients
in the non-penetrated food and in the unpenetrated plastic, and a diffusion
coefficient in the penetrated plastic that depends on c(x,t), the concen-
tration of food in the plastic discussed above. His boundary and initial
conditions are standard, i.e. they are based on (3.18) and conservation
of mass. In formal mathematical terms the distribution of contaminant
concentration can be found everywhere; naturally the formula contains an
integral involving the variable diffusion coefficient in the penetrated
plastic which can be evaluated only when the dependence of this coefficient
on c is prescribed. The algebraic details are routine, but fairly lengthy
and complicated, and reference can be made to the original paper if
required. From the point of view of migration, the important result is
that M+, the mass of migrated contaminant at time t, satisfies

1
M x =21//C0A(D—tj2 , (3.68)
T
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where D is as usual the diffusion coefficient of the contaminant in the
pure plastic, and y is a non-dimensional constant which depends on all
the material properties (e.g. diffusion and partition coefficients, C,/C,)
and can be determined when these are known (and when the dependence of
the diffusion coefficient on ¢ is prescribed) by the methods given by

Rudolph. Some typical graphs are given in Rudolph's paper.

More importantly the Hamburg group to which Rudolph belongs has made
extensive comparisons of his theory with their experimental data (vom
Bruck, Rudolph, Figge and Eckert 1979; Figge and Rudolph 1979; Figge
1980; vom Bruck, Figge and Rudolph 1981). It was found that the
migration results for a wide range of systems in which the food penetrated
the plastic could be fitted by curves predicted from Rudolph's theory.
Figge (1980) explains that the measurements were used to select the un-
known constants in Rudolph’s theory, using trial and error, so that
the resultant theoretical curves gave a good fit to the data. Such
constants included the partition coefficients, the diffusion coefficients
of the food and the contaminant in the unpenetrated plastic, and the con-
stant A in (3.63). Of course this method of selecting unknown theoretical
parameters from data is commonly used, but it does nothing to solve the
major problem of how the theory can be used subsequently to make acceptably
accurate predictions for new systems. In particular the method, when
adopted in the present situation, does nothing to explain how the con-
centration ¢; in (3.63) is determined. Careful study of Figure 34 in
Figge (1980) shows in fact little evidence that there is a sharp front
between the penetrated and unpenetrated plastics, thus providing support
for the earlier remarks associated with (3.65) and (3.67). In particular,
Rudolph's algebra, like that of Knibbe (1971), Katan (1971) and Frisch
(1978), supports the comment after (3.67) above that what matters in
practice is the order of magnitude of the thickness of the penetrated
region, not whether there is a sharp front. There is one other general
point that ought to be made, namely that the number of unknown constants
that have to be selected is so high that reasonable agreement between
theory and experiment is almost guaranteed. Figge (1980) does not explain
how the dependence of D, the diffusion coefficient of the contaminant

in the penetrated plastic, on ¢, the concentration of food, is determined,
but he indicates that the curves shown in his Figure 34, for the system
tricaprylin/HDPE/BHT, were obtained by using the formula
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D=D,+k |, (3.69)

where the values of the constants Do (the diffusion coefficient of BHT
in the unpenetrated HDPE) and k were determined from the data. The
expression in (3.69) is of course derived in standard fashion from the
Taylor series expansion of D about ¢ = 0; this technique is widely
used throughout physics, e.g. in using virial coefficients for gases.
All the data of the Hamburg group using tricaprylin/HDPE or plasticized
PVC/additive could be fitted by Rudolph's theory.

However Figge (1980) notes that the theory could not fit data taken with
any system of the form tricaprylin/HIPS/additive, a system in which
penetration of the food was stated to be accompanied by significant
swelling of the plastic. (See Figure 32 and the bottom of p. 234 of
Figge’s paper.) In a later theoretical paper Rudolph (1980) extended
his earlier work to allow the penetrated plastic to swell into the region
originally occupied by pure food. Mathematically, the model has very
similar structure to the earlier one by Rudolph that was summarized
immediately above, and it can be criticized in the same way. Vom Bruck,
Figge and Rudolph (1981) appear to indicate (although the wording is not
clear) that Rudolph's (1980) model can be fitted to the data from the
tricaprylin/HIPS/additive system that the earlier model could not allegedly
cope with.

In essence all authors since 1971 have extended, but not developed in
any significant way» the basic framework laid down then by Knibbe and
Katan. For completeness, it should also be noted that some papers
(Peterlin 1977; Enscore, Hopfenberg and Stannett 1977; Astarita and
Sarti 1978; Joshi and Astarita 1979) have dealt with the penetration
of the plastic by the food and the consequent swelling, but did not
consider the implications for migration. It seems to the authors of
this report that the work in some of these papers may ultimately provide
a more useful framework for predicting migration in Class III systems
than does, for example, that of Rudolph, but much more research (both
theoretical and experimental) needs to be done to establish the truth
(or otherwise) of this opinion.

A phenomenon, not strictly in Class III behaviour as defined above, that
has certain similarities with penetration of the plastic by the food is



3/43/56

change in the plastic structure due entirely to migration of an additive;
any penetration of the plastic by food is relatively minor, or a secondary
effect which can be considered separately. The phenomenon is important
because it occurs with plastic softeners (plasticizers, impact modifiers
etc.), e.g. PVC flexible film and RCF, but is scientifically exceptional
and should not be allowed to influence unduly development of a model (or
models) applicable to all Class III systems.Zieminski and Peppas (1983a)
postulate the existence of an advancing interface in the plastic separating
a glassy region (plastic from which the plasticizer has migrated into

the food) from a rubbery region (plastic that retains its plasticizer
either wholly or substantially). Migration is modelled by an equation
with a variable diffusion coefficient, i.e. (3.56), but, in addition,
migration in the glassy region contains a convection term. This is diff-
icult to understand. Zieminski and Peppas (1983a) present some numerical
solutions of their model equations and some experimental data for water/
PVC/DEHP (di(2-ethyl hexyDphthalate) or BBP (benzyl butyl phthalate)
systems. Unfortunately they are unable to compare their theory with
their data.

§3.5 The PIRA model

Work undertaken at the PIRA Laboratories (Adcock, Hope and Paine 1980a,
1980b; Adcock, Hope, Sullivan and Warner 1984) included the development
of an extremely novel physical model ("pictorial concept") for the
assessment of the migration of additive(s) in Class III systems. This
model, described fully in Adcock, Hope and Paine (1980b), is based on
the representation of the plastic as a matrix of molecules of different
sizes. A typical molecular weight distribution curve for plastics pro-
duced by free-radical polymerization is represented by a histogram with
19 groups containing a total of 857 molecules. (These figures are arb-
itrary.) Molecules in each group are modelled as squares whose area is
proportional to the molecular weight for that group; the 857 squares
are then arranged randomly in a rectangle, but the precise method of
arrangement is such that the squares of different areas fit tightly
together within this rectangle. It is then assumed that one of the longer
edges of the rectangle is the interface between the plastic and the food.
A food is divided into 19 groups, one for each range of molecular weights.
Food group 1 is capable of "penetrating" all molecules in group 1, but

not those in any higher group; food group 2 can penetrate all molecules
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in groups 1 and 2 but not those in any higher group, and so on. (Group

1 consists of the lightest molecules, group 2 of. the next lightest etc.)
Food of a given group actually penetrates all those molecules which (a) it is
capable of penetrating, and (b) are reachable from the interface by
pathway(s) through penetrable molecules. Given a particular rectangle
representation of the plastic, it is then a simple (but very time-consuming)
task to evaluate, for each of the 19 groups of food, the proportion of the
area of the rectangle that is penetrated. Note that the model contains

no prescription for predicting time evolution so that the 19 proportions

are estimates of equilibrium penetration.

It is assumed that the contaminant (additive) molecules (which play no

part in the rectangular representation of the polymer matrix) are distributed
uniformly within the rectangle and that all those within the penetrated
region migrate into the uncontaminated food. It follows that the mass

of contaminant that ultimately migrates, denoted elsewhere in the present
report by M=, is proportional to the area of the penetrated region accord- ing
to the PIRA model. A graph of M+«, against group number is stated to

be of the "same shape" as curves obtained from data, and given in Adcock,
Hope and Paine (1980a).

Unfortunately no attempt is made to quantify the shape similarity or to
calibrate the model against data. It appears that it can be used for
predictive purposes only if the following information is known (or can be
estimated):

(a) the initial concentration Cy of contaminant within the plastic;

(b) the true molecular weight distribution within the plastic;

(c) the "group" to which the food belongs;

(d)the corrections needed to the model to account for the fact
that migration really occurs in three dimensions not two,
i.e. cubes and cuboids should replace the squares and rectangles
of the model.

(¢) how to account for other structural factors such as polarity
and crystallinity which affect penetration, i.e. replacement
of molecular weight by compatibility/solubility.

Nevertheless the PIRA model provides an interesting qualitative explan-
ation of the likely role of the plastic structure on migration, an explan-
ation that is lacking in other accounts.
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§3.6 Some’ comgl ications

Introduction

Some complications like temperature dependence and spatial inhomogeneity
due to penetration have been discussed above. For completeness, it is
desirable to mention others that are important and which, in some cases,
have received attention.

Chemical change

None of the "mainstream" models of Class II and III systems that have
been summarized earlier consider the possibility of chemical change either
within the plastic (before migration) or in the food (after migration).
We are unaware of any mathematical treatment of the former important aspect
of migration. Several workers allude to the latter; for example
Schonert and Monshausen (1978) model certain "abnormal diffusion patterns"
of a polyacid in aqueous solution by assuming a step change in the diff-
usion coefficient as the polyacid structure changes suddenly from a
statistical coil formulation to one involving the a-helix. It is our
opinion, however, that for practical purposes the abrupt change in the
value of the diffusion coefficient in situations of this sort probably
has relatively little effect on behaviour in the sense that satisfactory
predictions could be obtained using standard Class II models with an
appropriate average (but constant and uniform) diffusion coefficient.

Reid, Schwope and Sidman (1983) discuss some experiments with more serious
implications for mathematical modelling. They noted that the migration
of BHT and of Irganox 1010 from polyolefines into certain aqueous solutions
showed no sign of approaching any asymptotic limit, such as that illus-
trated by their Figures 9 and 10 for large values of 1., even though such
behaviour had been anticipated. Analysis of the aqueous solution after
the experiments had terminated showed significantly less BHT or Irganox
1010 there than had been lost from the plastic so that chemical degradation
of the contaminant must have occurred in the solution after migration.
Thus the concentration C,(t) of contaminant in the aqueous solution was
always less than the equilibrium value of yC predicted by (3.18) for

effectively infinite plastic but finite food. Hence the aqueous solution
was never saturated with the original contaminant. This effect was modeled
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by assuming that the degradation occurred by a first-order mechanism
with C, satisfying dc,/dt = —k.c, for some chemical reaction rate con-

stant k.. A slightly different model was presented in a later paper
(Schwope, Till, Ehntholt, Sidman, Whelan, Schwartz and Reid 1987) and

further data were presented and discussed. However, mainly because of
substantial experimental scatter (see next paragraph), the available
data were not sufficient to test either model adequately. It should be
noted that, even in this situation, migration must eventually approach
a limit because, in practice, there is only a finite amount of contamin-
ant within the plastic. Hence M,, can never exceedC,V (where V is the
volume of the plastic), but this may of course be a substantial over-
estimate, although the limit is reached very nearly in some important
practical cases. Note finally that the occurrence of chemical change

requires separate assessment of the degradation products for hazard.

Repeatability, reproducibility and variability

Many workers have noted that the results of several, nominally identical,
migration experiments are not the same and that the differences between
the results of separate experiments are unpredictable even when the
whole set of experiments is conducted within a single laboratory. For
example, in the last paper referred to in the previous paragraph Schwope,
Till, Ehntholt, Sidman, Whelan, Schwartz and Reid (1987) comment (p.320)
that "satisfactory replication of results could not be achieved in
migration measurements of BHT from LDPE into water at 49°C" and "the
results show a disconcerting scatter". The degree of scatter is evident

in their Figure 4.

A major study of the repeatability (which refers to experiments within
a single laboratory) and reproducibility (which refers to experiments

in different laboratories) of the results of migration tests was under-
taken under the auspices of the EEC with the work centred at their Joint
Research Centre, Petten in the Netherlands. A full report of the study
is given in Karcher, Haesen and Le Goff (1983), and the main findings

are also in Haesen, Le Goff and Karcher (1984). A total of nine labor-
atories (including that at Petten) participated in the work which included
four phases. For present purposes it is sufficient to concentrate on

the findings of the first two phases. In the first phase eight laboratories

from six European countries (including Switzerland) analysed, using high
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performance liquid chromatography, samples (centrally prepared at Petten)
of two test liquids (water and HB307) containing two plastic additives
(Irganox 1010 and DHBP) at three different concentrations. The con-
centrations were in the p.p.m. range, i.e. of the order of 107 kgm™,
There was considerable scatter in the results with standard deviations
ranging from 10 - 16% for DHBP in HB307 to greater than 70% for Irganox
1010 in HB307. Haesen, Le Goff and Karcher (1984) summarize the con-
clusions of this phase as follows: "The considerable scatter observed
showed a major problem. It was clear that the overall objective was
not being achieved, and another identification method had to be found to
obtain satisfactory repeatability and reproducibility"*. A second phase
was undertaken with the principal aim of determining the repeatability
and reproducibility of migration data. (The first phase did not deal with
migration.) Analytical problems arising in the first phase of the study
were said to be "eliminated" by use of '*C - labelled additives. The
laboratory at Petten distributed samples of centrally prepared HDPE,
each sample containing one of the same two additives used in phase one,
to the participating laboratories. Migration tests, each for 10 days

at 40°C (313K), were conducted in Petri dishes with three test liquids
(90: 10 v/v water-ethanol; HB 307; olive oil). Samples of the resulting
liquid were, in each case, analysed both at the laboratory conducting
the test, and at Petten. There were some problems with evaporation of
ethanol for the water-ethanol mixture, and some "outlying" results were
rejected. (It is noted later that the proper statistical treatment of
outlying results - outliers - is a controversial topic, and not one to
be taken lightly.) The standard deviations for repeatability (within
laboratory) ranged from 2 - 9% and this was judged to be acceptable.
However the standard deviations for reproducibility (between laboratory)
were generally much higher, ranging from 5 - 47% with an average of about
28% (Haesen, Le Goff and Karcher (1984), Table 3). Karcher, Haesen and
Le Goff (1983) find these values surprisingly high. Further phases of

the study were concerned with one-sided test cells (in phase two the

*No comment was made on an even more striking feature of the results
than the degree of scatter, namely that in all cases the average measured
concentration was below the actual (nominal) concentration by amounts
between 10 and 50%.
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plastic laminates were totally immersed in the test liquid) and with
measurements of migration under tightly controlled conditions. The

results of these phases are like those of phase two, in terms of the
orders of magnitude of the standard deviations for repeatability and

reproducibility.

This important study, and earlier ones conducted under EEC auspices
(Rossi, Waibel and Vom Bruck 1980), have serious implications both for
drawing up legislation and for surveillance of foods. For one thing,
the reductions in standard deviations between phases one and two were
achieved by use of scintillation counters with radioactively labelled
additives, and this technique cannot be used for practical surveillance.

It follows, for the authors of this report at least, that legislative
standards for migration in foods, and consequent monitoring procedures,
should take explicit account of statistical fluctuations if they are to
be scientifically satisfactory. The EEC studies provide abundant evidence
of the existence of such fluctuations even when test conditions are care-
fully controlled. In real life the fluctuations will have much greater
magnitudes. There is an important point to be made here. Much scientific
work (both experimental and theoretical) is conducted on the basis of an
implicit premise, namely that the process(es) being investigated is(are)
deterministic and that, consequently, fluctuations of any sort must be

no more than annoying imperfections. Occasionally this view may be
acceptable in practice, but this is rare. Most scientific processes of
any degree of complexity have associated with them unavoidable and
inherent variability. The causes of such variability may be intrinsic

to the process (e.g. turbulent flow in the atmosphere) or they may arise
for practical reasons. For example, in migration in real food with real
packaging, the amount of migration occurring for any one package will
depend on a host of factors such as the exact structure of both media,
the exact original distribution of the contaminant in the plastic, the
detailed geometry (including air pockets for example) of the contact
region between food and plastic, the history (including temperature) of
the package between containment and consumption etc. It is obvious that,
practically (or even ideally), these factors cannot be precisely quantified
nor, since each package is unique, would there be any point in attempting
such quantification. It inevitably follows that, practically at least,
migration has to be regarded as a statistical phenomenon, a stochastic
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(or random) process. It may be, for certain foods in certain packages,

that the degree of variability, as measured by the magnitude (e.g. the
standard deviation) of the fluctuations, is so small that it is negligible
in practice, but the evidence of the EEC studies suggests that this will
be rare. Since the ultimate aim of all migration estimation is health
safety, it should also be noted that the degree of variability associated
with toxicity data is as large as (if not larger than) that associated
with migration data.

One of the major recommendations of this report is therefore that, in
order to establish legislation and monitoring procedures that are
scientifically satisfactory, assessment of the degree of variability
in the migration occurring in real life should be undertaken. Further-
more success in this major task will require statistical expertise to
be available at all stages from planning onwards. Unfortunately this
did not occur in the EEC studies*; consequently the full potential of

these was not realized.

In view of these conclusions it is proper to enquire into the status
of the mathematical models discussed elsewhere in this Chapter. With
the exception of the PIRA model (§3.5) these have all been deterministic.
Indeed, the fact that this is so is one example of the implicit assumption
of determinism referred to earlier. More positively, the predictions

of such models can be regarded as predictions of the mean (expected)
migration over a population of migration phenomena or, less specifically,
as estimates of the order of magnitude of the expected migration. It is
very likely, in any case, that such models provide accurate indications

of the dependence of the order of magnitude of the migration on key
parameters like D and key variables like t. Only further experiments
will tell whether these beliefs are correct.

*This is immediately apparent from perusal of the cited references. For
examples (there are many), note that there is no discussion of the
statistical significance (a technical term) of the results nor of the
decisions taken about outliers. The latter point is both important
and controversial (see e.g. Barnett and Lewis 1984).
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§3.7 Summary

At the end of this Chapter it is appropriate to emphasize that among its
conclusions are that, hitherto, the mathematical modelling of migration
has been rather restricted in its range. Realistic geometries have,
wrongly, been ignored and almost all models have assumed that migration
is, for practical purposes, a deterministic process. Given these provisos,
it may be claimed that there is substantial theoretical support for the
modelling of Class Il systems but rather less for that of Class III
systems and those in which there are additional complications. However
there has been inadequate comparison between the predictions of existing
models and experimental data; systematic use of non-dimensional numbers
and variables would facilitate such comparisons and also enhance their

value.
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CHAPTER FOUR: RECOMMENDED FUTURE WORK AND CONCLUSIONS
§4.1 Introduction

The previous Chapters of this report have dealt with the features required
for a successful practical model of migration, and have critically summar-
ized what appear to be the most promising existing models with this in
mind. That work responded directly to the first part of the remit for

this report. The selection of models for discussion, the relative

emphasis paid to them, and the comments made on them also took into

account legislative need as expressed in the second part of our remit,
namely "It is hoped that a limited number of models will cover the behaviour
of most cases of practical interest leading to a basis for legislation".

However some further attention to this need is appropriate.

In fact the points to be made in this context are closely linked both

with our recommendations for future work, and with our conclusions. More-
over there is no clear or natural separation between the latter two points.
Hence it is best to deal with all three matters in a single (and final)

Chapter of the report.

§4.2  The use of mathematical models in formulating legislation

The scientific input to legislation

A fundamental assumption is central to the views expressed in this section,
namely that legislation on matters (like migration) that involve science
should be framed in terms that make sense, scientifically speaking.
Obviously other factors, such as legal practicality, and mode and cost

of implementation, are also important. Although we are not competent to
express a profesional view on such matters, we are entitled to assert,
both as scientists and as citizens, that we would never support legislation
that was scientifically nonsensical. (An example of nonsensical legis-
lation would be any that insisted that there should be zero migration

in all circumstances.)

The first conclusion, of the present investigation (that should not be
surprising) is that further work is needed before mathematical models

can be used to anything like their full potential in framing (and monitoring)
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legislation. Nevertheless there are many positive points that can
already be made about the proper place of mathematics (and physics)

in this regard.

Perhaps the most immediate such point is that legislation must take
account of the geometry, i.e. the shape and size, of the plastic package
and the food it contains. Work in Chapters 2 and 3 shows why these
factors are important, but further numerical examples will reinforce this
very well-known argument. A draft proposal from the EEC (1978) (quoted
for example by Ashby (1979)) is that "the value of the overall migration
limit shall be equal to 10mg/dm? of the surface of the article in the
following cases:- (a) containers greater than 250ml; (b) ..... ". For
specificity suppose the food has a density of 10°kg m™ (the density of
water), and consider two containers of different shape each containing
250ml, one a sphere (of radius about 0.039m) and one a cube (of side
about 0.063m). Routine calculations, using equation (4.1) below, show
that an overall migration limit of 10mg/dm? gives an overall average
concentration 0+ in the food of 77mg/kg* for the sphere and 95mg/kg for
the cube. The difference is due entirely to the difference in shape of
the containers. Lest it be argued that the difference between 77 and

95 is so small that the effect of the shape of the container can be
ignored in practice, it should be noted that shapes that are more
realistic for actual packages give much higher values of 0.. For example
a cuboid containing 250ml with length, width and depth in the ratio 10:5:1
gives 0. = 152mg/kg. Changing the size of the container without changing

“In this section it seems appropriate in view of existing and draft legis-
lation to express concentration as a mass-ratio (mass of contaminant per
unit mass of food). Elsewhere in this report the symbol C (with suffixes
etc. where appropriate) has always been used to denote concentration
expressed in the units of mass per unit volume. This explains the use

of the new symbol 6. Consistent with Table 1, the Greek symbol indicates

that concentration, expressed as a mass-ratio, is a non-dimensional
quantity. The conversion from 0 to C is simple since C = p.f as explained
on page 2/2/14, where p,_ is the density of the food. As usual the

asterisk suffix on 0 in 5* denotes concentration in the food and the

overbar denotes the average over the whole volume occupied by the food.
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its shape also changes 0« by, as it happens, a factor equal to the

reciprocal cube root of the volume ratio (i.e. inversely proportional
to the ratio of corresponding linear dimensions). Thus, still with

the overall migration limit of 10mg/dm? and with the food density that

_ 1
of water, 04 is (77/10%)= 36mg/kg for a spherical container holding

1
2500ml and (77x10°)~ 166mg/kg for one holding 25ml. (The draft

proposal does not of course apply to containers holding less than 250ml

but that fact in no way negates the point of principle.)

Further discussion of the illogical effects of a migration limit of
10mg/dm? is given by Katan (1980). Table 3 is taken from this refer-

ence, and applies to foods with densities equal to that of water.

Volume of cube (ml) | Concentration (mg/I)
200 103
250 95
1000 60
10000 28

TABLE 3: The concentration of contaminant in
food for cubes of different volumes with a
migration limit of 10mg/dm? (Katan 1980).

These numerical examples also illustrate another fundamental point,
namely that the reporting of scientific investigations of migration -
and, therefore, the wording of legislation on migration - should be in

terms that are dimensionally sensible. (This point has recurred frequently

in this report in the different, but equivalent, guise of the importance
and usefulness of non-dimensional quantities.) For this reason, the use
of a quantity with units of mass per unit area, i.e. the overall migration
limit of 10mg/dm?, in draft legislation is scientific nonsense since the
size and shape of the container (and the food) to which it applies are

not precisely specified*. The following arguments demonstrate the validity

of this severe criticism.

"But were such precise specification to be provided, the legislation would
be totally impractical since separate specification would be required for
each separate container shape and size (as well as - perhaps - for each

food and plastic).
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Suppose a package contains a volume V=« of food of density p. and that
there is a surface area A of the package in contact with the food. Let
the transfer of contaminant from the plastic to the food be S (where S =
10mg/dm? for the numerical examples above). Then 0- is obviously given

by the formula
AS

Viepx '

0, = (4.1)

The aim of legislation is to ensure that, for each harmful contaminant,

0+ is below a limit determined by health safety considerations. Legis-
lation which attempts to ensure this by controlling S is doomed to
failure since, whatever legal limit is imposed on S, the shape of a
container of fixed volume V=« can always be found so that 8, is arbitrarily
high. In fact, consider a cuboid of square base of side b and of depth d;
then V+ = b?d and A = 2b*> + 4bd (assuming both top and base are in contact
with the food but, otherwise, A = b> + 4bd and the argument is changed

only in algebraic detail but not in its important conclusion). Use of
(4.1) then leads, after a few lines of elementary algebra, to

Ge S 2b2+i:S 2, (7=
px | Vs b px | d d

Thus 6- tends to infinity for fixed S, p. and V=« both when b tends to

;} . (4.2)

infinity and d tends to zero (short flat cuboid), and when b tends to
zero and d tends to infinity (tall narrow cuboid). The same conclusion
is reached if a circular cylinder (like a bottle), or - indeed - any one
of a set of more complicated geometrical structures - is investigated

instead of a cuboid.

This fault, which is fundamental, has been exposed previously and its

continued tolerance is inexcusable.

Before discussing possible formats of satisfactory legislation, it is
necessary to make a further critical comment about the wording in the
part of the draft proposal that was quoted above, and which is still
present in many current legislative instruments and proposals. These
assume that the transfer S of contaminant (e.g. 10mg/dm? for global
migration) is the same at all points on that part of the surface of the

plastic that is in contact with food. This is true only in idealized
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mathematical models such as those in §3.3. and §3.4, and may be approx-
imately true in some migration test cells (in the sense that those parts
of the plastic/food interface where the transfer differs markedly from
the average form a small proportion of the total interfacial area). In
real packages the implied assumption is unlikely to be true because of
factors like changes in surface curvature and the occurrence of an air/
food interface. The proposal should therefore refer to an average
migration limit, where the average is over the area of plastic in contact
with the food. (For this reason, it would have been more correct to

have replaced S in (4.1) by S; this was not done because replacement

might have caused confusion.)

Much legislation includes reference to a "limit value" expressed as a
mass ratio (e.g. mg/kg). For the reason given above, it should have been
made clear that this also can only be an average concentration (in this
case over the volume occupied by food or uniformly mixed food simulant).,

and this omission has led to confusion in at least one case highlighted
by Ashby 1986. In fact, such a limit is a limit value of 0, and there

is no objection on dimensional grounds to legislation expressed (exclusively)
in terms of this non-dimensional quantity. It is therefore recommended
that all legislation be framed in terms of 04, and the remainder of this

Chapter will assume the acceptance of this recommendation”. (Use of a
concentration expressed in other, not non-dimensional, units in legislation
can be criticized on the same scientific grounds as those adduced against
use of 10mg/dm?*. The detailed argument will not be given here but involves
the fact that different foods have different densities. Although the vari-
ation of density across the range of food and drink is small enough for
this point to have relatively minor practical significance, the scientific
argument is important enough for the use of concentrations expressed as

mass per unit volume (e.g. 60mg/l) in (draft) legislation to be discouraged.)

Before discussing frameworks for legislation it is necessary to state one
further assumption that will be made in this report. This is that when

two (or more) contaminants migrate from a single container, they do so

1t is recognized that the precise value of the legal limit on 0, will

have to recognize, for semi-solid foods, that there are great variations
in concentration within the food. See the earlier discussion on immobile
foods beginning on p3/29/56.
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independently. This may well be a good assumption when each migration
process is as in a Class Il system. But in a Class III system, it is
much less clear that the assumption will be valid since most models are
non-linear, and there is little experimental evidence available. Further

laboratory studies are desirable.

Mathematical models and legislation

Consider as before a plastic package of given shape containing food, and
suppose that containment occurs at time t = 0 when a contaminant is dis-
tributed uniformly throughout the plastic with concentration Cy (where as
throughout this report the units of Cy are mass per unit volume). Suppose
that there is no contaminant within the food at time t = 0 and (for sim-
plicity and safety) that subsequently no contaminant is lost to the
environment outside the food/package system. After containment the con-
taminant migrates into the food. Let C+ denote the concentration of the
contaminant in the food in units of mass per unit volume, and let 6« denote
the same concentration as a mass-ratio. As noted above, C+ and 0« are very
simply related by the equation

_ Cx

O« .
ol

(4.3)

In general C+ and 0+ vary both with time and with position in the food.

It was advocated above that legislation should be framed in terms of 0-,

the average of 6+ over the region occupied by food. Obviously

pr = &8 M
- P _p*V*’

(4.4)

where M+ is the mass of contaminant that has migrated into the food and

V. is the volume occupied by food (so that p.V. is the mass of the food).

In (4.4), 0- (and M+) depend on time t; this can, and will, be emphasized

or 0+(x,y,z,t) will be used to highlight the dependence of 8« on position

in the food when required, where the vector x (or - equivalently — the

Cartesian coordinates x, y, z) pinpoints a particular point in the food.

and then - by averaging (integrating) over all x, provided:
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(a) The set of equations, including both differential equations
and boundary and initial conditions, that constitutes the
model is an adequate (in practical terms) representation of

the important physical and chemical processes.

(b) The values of the relevant parameters are known. Which para-
meters are relevant depends on the model but important examples
are diffusion and partition coefficients and those that define

the size and shape (i.e. the geometry) of the system.

(¢) The model is sufficiently simple (in mathematical structure)
for it to be solvable, either in the form of an exact formula
or by use of a computer, and hence to be capable of giving
numerical predictions of 0.4 (t).

Most mathematical models discussed in this report do not conform with

one or more of the above conditions, especially (b) .

There are two related roles for mathematical modelling in framing and

obeying legislation on migration. These are:

(i) formulating legislation and, specifically, providing the means of
calculating the composition of a plastic in terms of 0y4;

(i1) assisting in conforming with legislation and, specifically,
(1) design of food/package systems;
(2) quality control;

(3) surveillance and policing.

Provided conditions (a), (b) and (c) above are satisfied it is possible

to test any proposed design for a food/package system to ensure, or show
otherwise, that, if the design is implemented, the value of 0, will be

less than the legislative limit for all times t of practical interest.
This test will in general require use of a computer to solve the full
set of model equations for the proposed geometry. In certain circumstances

however this will be unnecessary.

It will be recalled that, in §3.2, some simple formulae for the equilibrium

value of C+ were derived. In equilibrium the concentration in the food is
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uniform so that C. =C, and 6* =0,. It then follows from (3.2), (3.5)
and (4.3) that 0x =(t)satisfies

(Colp+) _ CoV
v R (VaV) Ve

where 7 is the true partition coefficient and V is the volume of the plastic

0, (1)< (4.5)

in the package. The procedure to be adopted is to calculate (CoV) /(p+V+)
for the proposed design. If this is less than the legislative limit,

the design can be accepted forthwith. If not, and if it is known that
chemical changes do not occur, the second term in (4.5) should be calculated.
Once more no further testing is required if this is less than the legislative
limit. However further work is necessary if both of the limits in (4.5)

are greater than the legislative limit.

Several sets of workers (Katan 1971; Chang, Senich and Smith 1982;
Reid, Schwope and Sidman 1983) have argued that the type of testing dis-

cussed here should be conducted via a decision tree or algorithm, and this

approach is endorsed by the authors of this report. The previous paragraph

has discussed the first two branches or gates in this decision-tree.

Unfortunately the later branches in existing schemes all assume one-dimensional
diffusion and this is not adequate for realistic geometries. However there

is no doubt of the structure of the next gate, at least for Class II systems.

All the models discussed in §3.3 predict the same type of behaviour for

M= (t), the mass of contaminant that has migrated into the food after time

t, for sufficiently small values of non-dimensional time. The most general
formula for this behaviour is obtained from (3.40) by dividing by 2 since
extraction from real closed packages is one-sided. Hence for sufficiently

small values of non-dimensional time,

1
M, (1) ~ 250 (Ejz , (4.6)
(I+o)\ =

where D is the diffusion coefficient of the contaminant in the plastic,

A is the surface area of the package that is exposed to food, and a is
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the non-dimensional parameter defined in (3.38)*. Use of (4.4) then gives

1
%)= (1+a)p*v*( - j | (%7

(The distinction between 0% and 04 is important in (4.7); when (4.6) applies

the contaminant is less likely to be distributed uniformly within
the food.) Arguments given following (3.14) and (3.29) in §3.3 show that

1
(4.7) can be used only when (Dt)2 /h is sufficiently small. Whilst Reid,

Schwope and Sidman (1983) derive precise criteria for assessing what con-
stitutes "sufficiently small" in one-dimensional geometry, there is no
justification for assuming that these criteria are correct for real package
situations. The same comment applies even more forcibly to later gates
in the Reid, Schwope and Sidman (1983) scheme, where decisions are all
based on formulae derived from the one-dimensional solutions discussed in

§3.3.

It will be clear also from work in §3.4 and §3.6 that there is at present
inadequate knowledge for a precise decision tree approach to be adopted
now, even in one-dimensional geometries, for Class III systems and for
situations where chemical change and/or variability are important. Note
however that Katan (1971) describes a complete decision tree aimed not

at precise estimates of migration but at safe upper limits.

*To avoid interrupting the development of the argument, several small
but important points about (4.6) are considered in this footnote. Although

(3.40) was derived only for one-dimensional geometry, it is clear that
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§4.3 Recommendations for future work and conclusions

Many isolated recommendations and conclusions have been made in the body
of this report. In this final brief section the authors attempt a coherent

summary of these points.

Our principal overall recommendation is that further research be undertaken

with the aim of using mathematical models to their full potential in:

(a) planning experiments and analysing data;
(b) formulating legislation;

(c) designing food/package systems that meet legal limits.

Several shortcomings of previous work on migration that uses mathematics
have been identified. It is recommended that these should be rectified in
all future work. The most serious faults are (i) exclusive emphasis in
both experiments and mathematical modelling on one-dimensional geometries
which are not representative of real packages; (ii) a failure to. express
experimental results and legislative proposals in terms of non-dimensional
variables and parameters; (iii) the reluctance of some experimentalists
to give sufficient details for it to be possible to assess whether their
results are consistent, or otherwise, with a proposed model; (iv) limit-
ation, either of model or of experimental verification, to a narrow range

of applicability.

The work in §3.3 suggested that, on available evidence, an adequate set of
equations for predicting migration in Class Il systems exists. Following
comments in the previous paragraph, it is important to develop solutions
for more realistic geometries and to compare these solutions with data.
Other urgent needs are to test the validity of (3.18) experimentally and
to develop a data base for parameters such as diffusion and partition co-
efficients. The situation with Class III systems, and with those exhibiting
other complications such as chemical change or variability, is much less
satisfactory, and we recommend that (relatively) more attention be given
to such systems in future by both experimentalists and modellers. We hope

that this report gives clear guidelines for such studies.
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