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Abstract
Genome-wide association studies (GWAS) have identified many common single nucleotide

polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag corre-

lated variants with biological importance. Fine-mapping around GWAS loci can facilitate

detection of functional candidates and additional independent risk variants. We analyzed
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11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer

Consortium and the Colon Cancer Family Registry. To fine-map genomic regions contain-

ing all known common risk variants, we imputed high-density genetic data from the 1000

Genomes Project. We tested single-variant associations with colorectal tumor risk for all

variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified

SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser

to examine evidence for biological function. Index SNPs did not show the strongest associa-

tion signals with colorectal tumor risk in their respective genomic regions. Bioinformatics

analysis of SNPs showing smaller P-values in each region revealed 21 functional candi-

dates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13,

18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional inde-

pendent association signals in GWAS-identified regions. Our results support the utility of

integrating data from comprehensive fine-mapping with expanding publicly available geno-

mic databases to help clarify GWAS associations and identify functional candidates that

warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of

disease-causing variant(s).

Introduction
Genetics play a key role in colorectal cancer (CRC) development [1, 2]; genome-wide associa-
tion studies (GWAS) have successfully identified many common genetic variants that predict
risk [3–19]. Although these variants have modest associations (i.e., per-allele odds ratio less
than 1.3), their discovery has reinforced the importance of suspected disease pathways as well
as suggested novel ones [20].

An important next step is to characterize the biological importance of these loci. However,
single nucleotide polymorphisms (SNPs) identified by GWAS (i.e., index SNPs) are themselves
unlikely to be the underlying disease-causing variants; instead, they are expected to tag geno-
mic regions containing correlated SNPs, which may have functional consequences [21, 22].
Laboratory evaluation of all these variants is prohibitively cost- and labor-intensive. Fine-map-
ping efforts can help inform these experiments by narrowing the size of associated genomic
regions likely to contain functional variation [22, 23]. Several recent studies have shown the
utility of this approach to refine regions of interest and propose promising functional candi-
dates [14, 17, 24–31].

In addition, some loci may harbor multiple independent risk variants, rather than a single
variant. As genomic regions surrounding index SNPs may span more than one linkage disequi-
librium block, it is possible these loci harbor additional variants that predict risk independent
of the index SNPs. Fine-mapping studies, when conducted within a broader region, can help
identify these novel independent risk variants for cancer [14, 31, 32].

In this study of 11,900 colorectal tumor cases and 14,311 controls of European ancestry, we
fine-mapped genomic regions harboring 31 known CRC risk variants using both genotyped
data and data imputed from the 1000 Genomes Project [33]. This high-density genetic data
allowed us to comprehensively examine common (>5%) as well as less common or rare (<5%)
genetic variation in these regions. We aimed to narrow the likely region containing the func-
tional variant(s) based on results from association testing, as well as search for novel risk alleles
independent of the index SNP. Further, to help inform follow-up laboratory studies, we used a
comprehensive bioinformatics-based approach to annotate potential functional candidates.
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Materials and Methods

Ethics statement
All participants gave written informed consent and this study has been approved by the Fred
Hutchinson Cancer Research Center (FHCRC) Institutional Review Board.

Study population
Details of this study population have been described previously [3, 34] and study-specific
descriptions are provided in S1 Text. The study population was derived from studies in the
Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) (13 total: 7 case-con-
trol studies nested in prospective cohorts and 6 case-control studies) and the Colon Cancer
Family Registry (CCFR) [3, 34]. Study case, control, age, and sex distributions are listed in
Table A in S1 Text. We excluded participants of non-European ancestry as determined by prin-
cipal component analysis [35]. The final study population comprised 11,900 cases (11,074
colorectal cancers, 826 advanced colorectal adenomas) and 14,311 controls.

Colorectal tumor case definition
Detailed information on case and control definitions is provided in S1 Text. Colorectal cancer
cases were defined as colorectal adenocarcinoma confirmed by medical records, pathologic
reports, or death certificates. Controls for colorectal cancer cases were population-based or
selected from cohort participants who provided a blood sample and had no previous diagnosis
of colorectal cancer. Advanced colorectal adenoma cases in the Nurses' Health Study and
Health Professionals Follow-Up Study were confirmed by medical records, histopathology, or
pathologic reports. Controls for advanced adenoma cases had a negative colonoscopy (except
for controls matched to cases with distal adenoma, which either had a negative sigmoidoscopy
or colonoscopy exam).

Genotyping and quality control
Detailed information on genotyping and quality control procedures has been described [3, 34]
and are available in S1 Text. Briefly, DNA from blood or buccal samples was genotyped using
either Affymetrix (Gene Chip 10K, Mendel) (Affymetrix, Santa Clara, CA) or Illumina arrays
(HumanHap550K, 610K, combined 300K and 240K, Human1M, HumanCytoSNP, Huma-
nOmniExpress) (Illumina, Inc., San Diego, CA). Genotyped SNPs were excluded based on call
rate (<98%), lack of Hardy-Weinberg Equilibrium in controls (P<1x10-4), and low minor
allele frequency (MAF). All analyses were restricted to samples clustering with the Utah resi-
dents of Northern andWestern European ancestry, using 1000 Genomes populations as refer-
ence, from the Centre d’etude du polymorphisme humain (CEPH) collection (CEU)
population in principal component analysis [35].

Genotype imputation to 1000 Genomes Project
We imputed genotype data to increase the density of genetic variants. As the reference panel
we used the haplotypes of 1,092 samples (all populations) from release version 2 of the 1000
Genomes Project Phase I (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521)
[36]. Combining reference data from all populations helps improve imputation accuracy of
low-frequency variants [37]. The target panel comprised genome-wide genotype data obtained
using the methods described above. The target panel was phased using Beagle [38], and the
phased target panel was imputed to the 1000 Genomes reference panel using Minimac [39].
We used Rsq as the imputation quality measure for imputed SNPs [40]. For imputed SNPs, we
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required that variants with low MAFs had higher imputation quality: For SNPs with
MAF>0.01, we excluded those with Rsq�0.3; for MAFs of 0.005–0.01, we excluded Rsq<0.5;
and for MAF<0.005, we excluded Rsq<0.99.

Statistical analysis
Variant selection. To determine genomic regions for fine-mapping, we identified 31 auto-

somal SNPs (index SNPs) in 22 loci previously associated with CRC risk in GWAS conducted
in European ancestry individuals (Table B in S1 Text) [3–18]. Through fine-mapping, we
aimed to (1) refine the location of potential functional candidate(s) tagged by these index SNPs
and (2) identify novel or independent signals near these loci, the latter being hypothesis-gener-
ating. We thus defined a broad genomic region of interest as that spanning 250-kb upstream
and downstream of each index SNP and evaluated all variants in this 500-kb interval.

Association testing. All statistical analyses were conducted centrally at the GECCO coor-
dinating center on individual-level data to ensure a consistent analytical approach. Unless oth-
erwise indicated, as appropriate, we adjusted for age at the reference time, sex, study center,
smoking status (PHS only), batch effects (ASTERISK only: upon quality control there were
slight variations in genotyping quality across batches, which were not observed in other stud-
ies), and the first three principal components from EIGENSTRAT [35] to account for popula-
tion substructure.

For each study, we estimated the association between individual variants and colorectal
tumor risk by calculating odds ratios (ORs) and 95% confidence intervals (CIs) using uncondi-
tional logistic regression assuming log-additive genetic effects. Each genotyped SNP was coded
as 0, 1 or 2 copies of the variant allele. For imputed SNPs, we used the expected number of cop-
ies of the variant allele (the dosage), which gives unbiased effect estimates [41]. To combine
study-specific estimates across studies, we obtained summary estimates using inverse-variance
weighted fixed-effects meta-analysis. Colorectal cancer cases and their controls were analyzed
separately from advanced adenoma cases and their controls before meta-analysis. We calcu-
lated heterogeneity P-values using Cochran's Q statistics [42]. Quantile-quantile (Q-Q) plots
were used to assess whether the distribution of P-values was consistent with the null distribu-
tion (except for the extreme tail). In each region, we searched for additional independent asso-
ciation signals by testing each of the other variants conditioned on the top SNP in that region
(i.e., 2 variants included in each model); variants are expected to be less correlated after condi-
tioning on the top SNP. When testing for additional independent signals, we determined the P-
value threshold for statistical significance by using the number of SNPs in each 500-kb region
as the Bonferroni correction factor (α-level for a region = 0.05/# SNPs in that region). We used
this approach to correct for multiple testing while also accounting for the knowledge that
genetic variation in these regions is known to influence predisposition to CRC.

We used R (Version 2.15.1, R Foundation for Statistical Computing, Vienna, Austria) to
conduct the statistical analysis, and LocusZoom [43] to visualize results. To determine the min-
imum detectable effect estimates in the present analysis, we estimated statistical power using
Quanto Version 1.2.4 (http://hydra.usc.edu/gxe/).

Functional annotation using bioinformatics
Detailed information on functional annotation and various databases is provided in S1 Text. In
brief, compared with variants that are either non-functional or not in linkage disequilibrium
with the underlying functional variant(s), colorectal tumor association signals are expected to
be strongest (show the smallest P-value) for the functional variant(s), or variants in high link-
age disequilibrium with the functional variant(s). Thus we selected the following for

Fine-Mapping Common Susceptibility Loci for Colorectal Tumors

PLOS ONE | DOI:10.1371/journal.pone.0157521 July 5, 2016 4 / 18

http://hydra.usc.edu/gxe/


bioinformatics follow-up: 1) the variant showing the strongest evidence for association (small-
est P-value) in each region (i.e., top SNP), 2) the index SNP in each region, 3) among the top
10 variants with the smallest P-values in each region, those that were correlated (r2>0.5 in
1000 Genomes European populations) with the index SNP, and 4) any SNP completely corre-
lated (r2 = 1 in 1000 Genomes European populations) with any SNP listed in parts 1–3. In addi-
tion, after performing conditional analyses that simultaneously included the index SNP(s) in
multivariable models, we annotated SNPs showing P� 5E-05 and any SNPs completely corre-
lated with these.

We annotated the potential function of variants in coding regions using PolyPhen-2 [44].
For variants in non-coding regions, we used HaploReg [45, 46] and the University of Califor-
nia, Santa Cruz (UCSC) Genome Browser [47] to align each SNP to the reference genome and
annotate them with multiple datasets generated from the Encyclopedia of DNA Elements
(ENCODE) Project [48, 49] or the NIH Roadmap program on Epigenomics [50] as detailed in
S1 Text. Annotation using these databases assumes that the disease-causing variant(s) affects
disease by altering gene transcription through multiple regulatory mechanisms [48, 49]. Such
mechanisms include indicators for regions that may influence transcriptional regulation of tar-
get genes, such as chromatin accessibility (open chromatin), histone modification, binding of
regulatory proteins, and alteration of regulatory motifs [45, 51, 52]. Conservation across verte-
brates can provide further evidence of biologically important regions [53, 54]. To identify vari-
ants showing any of these indicators of functional importance, we first queried HaploReg [45,
46], which provides an overview of available annotations. We further interrogated variants
with any functional evidence using the UCSC Genome Browser [47] to examine signal enrich-
ment in regions harboring these variants, which helps correct for false positive signals for each
assay (https://sites.google.com/site/anshulkundaje/projects/idr). Specifically, we examined
whether variants were located in functionally important regions using the following datasets
compiled by HaploReg [46] or UCSC Genome Browser [47]: DNAse I hypersensitivity data in
ENCODE cell lines, including two for CRC (HCT-116 and Caco-2), to assess open chromatin
structure; ChIP-seq data in ENCODE cell lines as well as Roadmap data in normal colon and
rectal tissues for histone enhancer or promoter modifications; ChIP-seq data in ENCODE cell
lines to determine regions that bound to important regulatory proteins (e.g., promoters,
enhancers, silencers, and insulators); change in log-odds score based on position weight matri-
ces [45] to predict whether a sequence harboring either the reference or alternate allele would
exhibit altered binding affinities for regulatory proteins; and PhastCons scores [53, 54] to pre-
dict genomic regions conserved across vertebrates. As intergenic variants often regulate the clos-
est downstream gene [48, 49], we predicted the gene regulated by each variant based on
proximity of each variant to a gene as well as the orientation (3’ or 5’) relative to the nearest
end of the gene [45]. Recognizing that cis-regulatory elements can also skip the closest gene, in
exploratory analyses we integrated expression quantitative trail locus (eQTL) analysis to iden-
tify other potential tissue-specific target genes from the Genotype-Tissue Expression (GTEx)
database [46], GEUVADIS [55], and other recent studies [56–60] using HaploReg and the
GTEx Portal. Further, we evaluated variants in potential splice sites using Genie [61].

The relative strength of functional candidates was determined based on the accumulation of
evidence from each of these datasets. A priori, we defined a score to summarize the amount of
functional evidence for each variant using the following algorithm: showed (+1) histone modi-
fication, (+1) open chromatin, (+1) protein binding, (+1) protein binding in the presence of
open chromatin or histone modification, (+1) different patterns of histone modification in
cancerous vs. noncancerous cell lines/ tissues, (+1) regulatory evidence in a CRC cell line (e.g.
Caco-2 or HCT-116) or normal colon/rectal tissue, (+0.5) altered binding motif, and (+0.5) a
conserved region across vertebrates. Thus, variants were assigned a maximum score of 7.
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Although not observed in our data, any variant in a coding region predicted by PolyPhen to be
“possibly damaging” or “probably damaging” would have been assigned a score of 8 or 9,
respectively. Variants in coding regions predicted by PolyPhen to be “benign” or “unknown”
were scored as a non-coding regulatory variant, as DNA sequences can act as coding exons in
one tissue and enhancers of nearby gene(s) in another [62]. Caution should be exercised when
interpreting these scores as there is a degree of uncertainty when relating annotation data to
SNP function. These data are based on transformed cell lines or tissues instead of living organ-
isms, and regulatory mechanisms may vary temporally as well as across different types of cells
or tissues. However, bioinformatics analysis is primarily useful for prioritizing a large number
of variants for more onerous laboratory follow-up; to this end, we used these scores to create 3 cate-
gories that ranked the strength of functional evidence for each variant: score of 3–3.5 =“weak”,
4–4.5 =“moderate”, and�5 =“strong”.

Results
The mean age of the 26,211 participants was 64.2 years, ranging from 19 to 99 years (Table A
in S1 Text). Two studies (HPFS, PHS) comprised only males, and 3 studies (NHS, PMH, WHI)
only females. The proportion of females in the remaining studies ranged from 30.8% to 52.0%.

For the 31 previously reported CRC-related variants (index SNPs), 17 showed P-
values� 0.001, 22 showed P-values� 0.01, and 27 showed P-values� 0.05 (Table B in S1
Text). Further, ORs for 30 of 31 SNPs showed directions consistent with previous findings.

Across the 31 genomic regions encompassing index SNPs, there were on average 1,807
SNPs per 500-kb region, ranging from 967 to 2,364 SNPs per region. SNPs with the strongest
evidence of CRC-associations may more likely be functional or strong proxies for functional
candidates. To help refine regions harboring functional candidates, we identified the SNP
showing the smallest P-value in each region (i.e., top SNP) (Table 1). The initial index SNP did
not show the strongest association signal in any genomic region (Fig 1). For loci that harbored
more than 1 index SNP, the regions encompassing each index SNP sometimes overlapped,
yielding regions in which the top SNP was the same (e.g., at 1q41, the top SNP rs143030473
showed the smallest P-value in 2 regions, defined by index SNPs rs6687758 and rs6691170).
This was observed in 1q41, 12p13.32, 14q22.2, and 15q13. Thus for the 31 regions studied
there were 25 unique top SNPs (note 12p13.32 and 15q13 each contained 3 index SNPs); of
these, 20 had an association with P-values� 0.001 and all 25 showed P-values� 0.01. For
these 25 variants, the top SNP was correlated with an index SNP in European populations at
r2 � 0.8 for 8 SNPs, 0.6� r2 < 0.8 for 6 SNPs, 0.4� r2 < 0.6 for 4 SNPs, 0.2� r2 < 0.4 for 1
SNP, and r2 < 0.2 for the remaining 6 SNPs.

Variants carried forward for functional annotation spanned a median interval of 32-kb. We
scored 21 variants in 12 loci as having “strong” functional evidence (Table 2, additional details
in S1 Table). At 4 loci (8q24, 11q13.4, 19q13.1, 20p12.3) the index SNP was among the SNPs
with the highest functional scores. All 21 candidates were located in regions that were non-cod-
ing (15 intronic and 6 intergenic) with open chromatin structure (i.e., accessible to regulatory
factors). Twenty of 21 candidates (all except for 18q21/rs34007497) bound to multiple tran-
scription factors. Fifteen variants were predicted to disrupt transcription factor binding. Several
candidates showed different patterns of histone enhancer or promoter marks when comparing
cancer cells vs. normal cells or tissues. Only 3 variants (8q24/rs6983267, 18q21/rs4939567,
20p12.3/rs4813802) were located in an evolutionarily conserved region, suggesting that most
of the predicted regulatory regions may be dynamic through evolution.

In each region, after conditioning on the top SNP and accounting for the number of tests,
we did not observe any statistically significant SNPs.
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Discussion
In this large study population of over 26,000 participants of European ancestry, we used high-
density genetic data imputed from the 1000 Genomes Project to comprehensively fine-map
genomic regions harboring 31 GWAS-identified CRC risk variants. In association tests, the
index SNP did not show the smallest P-value in any genomic region. Using bioinformatics-
based annotation to follow-up variants with the strongest association signals, we showed strong
evidence for 21 functional candidates in 12 CRC-related loci. We observed limited evidence of
additional independent CRC association signals within GWAS-identified regions.

Although the index SNP did not show the smallest P-value in any genomic region, all func-
tional candidates were correlated with the index SNP (r2 of at least 0.57). Interestingly, how-
ever, the index SNP was a strong functional candidate in only 4 of the 12 loci harboring a
strong functional candidate. Combined, these data from our association testing and functional
annotation support the hypothesis that most GWAS-identified index SNPs are not the under-
lying functional variant, but may instead act as proxies of correlated variants with biological
importance.

Eight previous studies have fine-mapped a limited number of GWAS-identified CRC loci in
individuals of European ancestry [14, 17, 24–29]; these studies have reported 34 candidate
SNPs showing functional evidence (summarized in Table C in S1 Text). In addition, 2 recent
studies have comprehensively fine-mapped known CRC loci: Whiffin et al. [31] identified 4
additional candidates in 1q41, 15q13, 18q21, and 20q13.33 in European ancestry individuals
(5,626 cases; 7,817 controls); Wang et al. [30] identified 1 additional candidate in 1q41 in Afri-
can Americans (1,894 cases; 4,703 controls). Of these 39 reported candidates in 11 loci, 36
passed genotyping quality control in our study. In the present analysis, 16 of these SNPs had P-
values� 0.001, 5 had P-values>0.001 and� 0.01, and 7 had P-values>0.01 and� 0.05. Simi-
lar to our findings, only 5 of 39 previously reported functional candidates were GWAS-identi-
fied SNPs. We observed 3 exonic candidates out of an expanded list of 51 variants showing
“weak”, “moderate”, or “strong” functional evidence (see S1 Table for an expanded list of func-
tional candidates); similarly, only 2 previously reported candidates (rs706793, rs28626308)
were in coding regions [24, 25]—highlighting the importance of non-coding effects on CRC
[63].

To identify potential variants for laboratory follow-up, we compared all previously reported
candidates (in 11 loci) with variants in the present analysis that showed “moderate” or “strong”
functional evidence (Table C in S1 Text). In 5 loci (8q23.3, 8q24, 15q13, 18q21, and 19q13.1)
our data confirmed previously reported functional candidates [25, 27, 29, 31]. In addition, in
11q23 and 16q22.1 we observed candidate(s) that highly correlated and were within 5-kb of a
previously reported candidate variant [25, 28]. Fine-mapping can be limited in distinguishing

Fig 1. Comparison of P-values for GWAS-identified variants (index SNPs) vs. variants with the
smallest P-values (top SNPs) in 31 regions. The height of each bar reflects the–log10 P-value of each SNP
in our study population. A grey bar indicates the index SNP, and a black bar indicates the top SNP.

doi:10.1371/journal.pone.0157521.g001
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which of several highly correlated SNPs located very close together is the true causal variant.
Our candidates in these 2 loci, 11q23/rs7130173 and 16q22.1/rs9929218, showed stronger
functional evidence compared with reported candidates, which either were not selected for
functional annotation or showed less than “weak” functional evidence (scored less than 3).
These data show that to avoid missing functional variation, laboratory studies should follow-
up not just the strongest candidates, but also variants showing any evidence of biological
importance that are very close and highly correlated. Our data did not show functional evi-
dence for reported candidates in the remaining 4 loci. In 1q41 we did not identify a functional
candidate; in 12q13.13 and 14q22.2 we predicted functional candidates that were>150-kb
from those previously reported [14, 24]; and in 20q13.33 our candidates were>5-kb away and
did not show high correlation with those previously reported (r2 = 0.59–0.60) [31]. In 3 of
these loci (1q41, 12q13.13, 14q22.2) only 1 of 7 previously reported candidates showed P<0.05
in our study population, suggesting they may be false positives. In 20q13.33 the reported candi-
dates, rs1741640 and rs2236202, were not selected for functional annotation in our study based
on their P-values relative to other variants in the region. Taken together, these data support the
utility of fine-mapping to reveal potential functional variation, but also highlight that these
studies only serve as an initial step toward determining the underlying causal variant(s) that
lead to disease. Results from bioinformatics-based annotation depend on various factors (e.g.,
queried variants, queried databases, choice of cell lines and tissues, uncertainty in interpreting
data from qualitative assays, among others), which vary between studies. It is likely these differ-
ences in methodology and interpretation when annotating variants account in part for incon-
sistencies in results. Consequently, replication of fine-mapping findings is useful, and only
targeted functional studies can provide more definitive evidence of SNP function [22, 23].

In our study, for instance, the 500-kb region containing rs6983267 (8q24) harbored 2,257
SNPs. Based on association testing, we narrowed this region to a 13-kb interval that included 7
correlated SNPs showing stronger association signals (Figure A panel A in S1 Text). After bio-
informatics analysis, the best functional candidate was the index SNP rs6983267, which was
predicted to alter the binding of TCF4 transcription factor. Consistent with this, Tuupanen
et al. [27] showed in vitro and in vivo that rs6983267 resulted in differential TCF4 binding,
which may result in enhanced responsiveness to Wnt signaling and a subsequent increase in
risk. Further, several other laboratory experiments support the biological importance of this
variant in CRC [64–66]. Similarly, the 500-kb region containing rs3802842 (11q23) harbored
1,830 SNPs. Association tests narrowed this region to an 18-kb interval that included 9 corre-
lated SNPs for which we performed bioinformatics follow-up (Figure A panel B in S1 Text).
Among these, rs7130173 showed strong regulatory evidence in our study. Consistent with
these findings, Biancolella et al. [67] recently showed that the risk allele of rs7130173 reduced
enhancer activity and resulted in reduced transcription factor binding affinity in CRC cells. A
combination of fine-mapping and laboratory functional follow-up has also shown similar suc-
cesses for other cancers and chronic diseases [23, 68, 69]. Taken together, these data suggest
that by combining association testing and bioinformatics analysis, fine-mapping can reduce
the size of relevant genomic regions and successfully prioritize candidates for molecular char-
acterization, which greatly reduces the cost, time, and labor associated with testing a large
number of variants in the laboratory.

In addition to confirming previous candidates, we suggest several novel candidates with
strong functional evidence. These, located in 4 loci with previously reported functional candi-
dates (12q13.13, 14q22.2, 15q13, 20q13.33) and 5 loci without any previously reported candi-
dates (5q31.1, 11q13.4, 12p13.32, 12q24.21, 20p12.3), implicated genes expected to be involved
in CRC development as well as those that were unexpected. For instance, duplication in the
GREM1 (gremlin 1) promoter has been linked to hereditary mixed polyposis syndrome [70],
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suggesting it is a candidate gene for colorectal tumorigenesis. In our analysis rs2293582, an
intronic SNP in GREM1 (15q13), showed the smallest P-value in this region and was among
our best functional candidates. The region containing rs2293582 exhibited open chromatin
and bound RNA Polymerase 2 in vivo (ENCODE tracks shown in Figure B in S1 Text). This
region also showed strong promoter marks in colon cancer cell lines, but greatly reduced sig-
nals in normal colon and rectal tissues. These data suggest rs2293582 warrants experimental
follow-up, along with two highly correlated variants within 1-kb, rs2293581 (r2 = 0.94) and a
previously reported candidate rs1406389 (r2 = 0.94) [31], located in regions showing histone
marks, open chromatin, and binding to the repressive transcription factor SUZ12 [71]. Fine-
mapping can also help identify functional candidates that implicate unexpected genes for fur-
ther functional study. LAMA5 (laminin, alpha 5), for instance, is involved in maintaining the
extracellular matrix [72], which may not be expected to predict cancer risk. The SNP showing
the smallest P-value in the 20q13.33/LAMA5 region, rs1760073, was completely correlated (r2

= 1) with the best functional candidate, rs1741634, which was located in an intron of LAMA5.
The region containing rs1741634 exhibited open chromatin, bound the glucocorticoid receptor
transcription factor, which has been implicated in cancer [73], and interestingly, was located in
a region showing different enhancer marks in CRC cell lines vs. normal colon and rectal tissues
(Figure C in S1 Text). In addition, Whiffin et al. [31] recently reported other functional candi-
dates in this region. Thus, although unexpected, these data, along with those from GWAS
showing associations with a variant in another laminin gene, LAMC1 (laminin, gamma 1) [3,
19], support the role of laminin proteins in colorectal carcinogenesis.

Particular strengths of this study included the large study population, high-density genetic
data, as well as systematic approach to fine-mapping all GWAS-identified CRC risk variants;
however, limitations should be noted. As we aimed to comprehensively investigate both common
and less common genetic variation, we examined directly genotyped SNPs as well as SNPs
imputed from the 1000 Genomes Project. Imputed genotypes can be called with varying accu-
racy, and we accounted for this using the genotype dosage, which have been shown to yield unbi-
ased estimates [41]. However, lower imputation accuracy may attenuate the estimated
significance of association signals [74, 75], and thus relative P-values for individual variants may
not necessarily correspond to their functional importance. Accordingly, rather than only assess-
ing the SNP showing the smallest P-value in each region we identified a set of SNPs showing
stronger association signals for bioinformatics analysis, which enabled us to reduce considerably
the number of potential functional SNPs per region and still be able to identify promising func-
tional candidates. Even within our large study, limited statistical power may have accounted for
the absence of less common independent association signals at known CRC susceptibility loci,
particularly for regions where the initial GWAS showed weak effects. For common genetic vari-
ants (allele frequency = 20%), the present analysis had 80% power to detect a per-allele OR of
1.12; for less common variants (allele frequency = 1%), there was 80% power to detect a per-allele
OR of 1.51 (Figure D in S1 Text). These estimates suggest that although larger populations are
likely needed to detect weaker associations with less common variants, our data provided suffi-
cient statistical power to detect less common SNPs with larger effect sizes.

In this large population, we comprehensively fine-mapped known common variants that pre-
dict CRC risk. We refined genomic regions harboring risk variants and proposed novel functional
candidates, as well as confirmed several regions previously reported to contain functional variation.
These findings support the utility of a systematic fine-mapping approach that integrates informa-
tion from expanding publicly available databases to help refine regions surrounding GWAS-identi-
fied risk variants and identify a limited number of functional candidates. These insights may help
establish a framework for follow-up laboratory studies, which are necessary to yield definitive evi-
dence of functional SNPs that drive common genetic predisposition to CRC.
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