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Abstract 

Optimisation appears in many aspects of day to day life and more often, involves integer 

optimisation of very large scales. Although technology advancements have enabled many 

combinatorial optimisation problems to be solved exactly, this is only true for small and some of 

the medium instances. For large instances, they require high computational times and worse, fail 

to be solved due to the massive usage of the machine’s memory. 

In this research, we aim to develop a hybrid technique, focusing on solving the MBIP problem 

rather than finding the best solution for individual problem’s application. Therefore, we proposed 

a general framework of a hybrid technique that may need minor adjustment when applied to 

various optimisation problems, in particular to the mixed binary integer programming (MBIP) 

problems. 

The hybrid approach proposed in this research is the collaborative combination of the linear 

programming (LP) relaxation with variable neighbourhood search (VNS). We use LP relaxation 

solutions to generate initial solutions and use VNS to improve the solutions obtained. To illustrate 

the flexibility of the proposed method, we implement the proposed method on two similar MBIP 

problems; the constrained index tracking problem (CITP) and the gas supply chain problem. 

The proposed hybrid technique generates satisfactory solutions within significantly shorter 

amount of computational time. For the CITP problem, we compare the obtained solutions with 

the solutions provided by the CPLEX solver (with time and solution limit imposed) and a genetic 

algorithm (GA) approach. For most of the instances, our proposed hybrid technique gives better 

solutions with significant reduction of the computational time compared to the time taken by the 

CPLEX solver and the GA approach. 

For the gas supply chain problem, the proposed hybrid technique manage to replicate the solutions 

generated by the CPLEX solver (with time and solution limit imposed) within a shorter 

computational time. When we decrease the number of locations that were allowed to supply gas 
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to a specific location, the proposed hybrid technique generated better solutions with lower total 

costs than the solutions given by the CPLEX solver. 

The proposed hybrid technique was successfully implemented for both problems by adjusting the 

optimal LP solutions of the decision variables that are used to guide the search process. 

Satisfactory solutions were obtained for both problems within a relatively shorter computational 

time.  
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Chapter 1.0: Introduction 

 

1.1 An optimisation problem 

An optimisation problem is a set of independent variables or parameters that often include 

conditions or restrictions termed as the constraints of the problem which define acceptable values 

of the variables (Gill et al, 1982). Many challenging applications in science and industry can be 

formulated as optimisation problems and optimisation occurs in the minimisation of time, cost, 

and risk or the maximisation of profit, quality, and efficiency (Talbi, 2009). 

The aim of an optimisation model is to find the value of the decision variables that will maximise 

or minimise an objective function among the set of all values for the decision variables that satisfy 

the given constraints and the following are the components of an optimisation model (Winston, 

2004):  

1. Objective function(s): Function which is to be maximised or minimised and in many 

situations, an organisation may have more than one objective function (multiple objective 

decision-making problems). Also known as the cost, utility or fitness function. 

2. Decision variables: Variables whose values are under the modeller’s control and 

influence the performance of the system. 

3. Constraints: Restrictions that are imposed on the values of the decision variables. 

 

In the context of this research1, an optimisation problem can be defined as (Rajab, 2012) 

𝑸 = 𝐦𝐢𝐧 {𝒇(𝒙)|𝒙 ∈ 𝑿 ⊆ 𝑺} 

                                                             
1 From this point onwards, all discussions assume a minimisation problem unless mentioned otherwise. 

(𝟏. 𝟎) 
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 where 𝑺 represents the solution space, 𝒇: 𝑺 → ℝ is the objective function to be minimised, and 

𝒙 ∈ 𝑿 is a feasible solution. The objective function 𝒇 assigns a real number value to each 

solution 𝒙 ∈ 𝑿 in the search space and a solution 𝒙∗ ∈ 𝑿 is said to be the global minimum if 

𝒇(𝒙∗) ≤ 𝒇(𝒙), ∀𝒙 ∈ 𝑿 

 

 

 

 

1.2 Combinatorial optimisation 

Combinatorial optimisation (CO) aims to use combinatorial techniques to solve discrete 

optimisation problems, and from the computer science perspective, CO seeks to reduce the size 

of the possible solutions’ size or making the search process faster by improving the algorithm 

with the use of mathematical methods (Brilliant.org, 2019). CO problems are concerned with a 

study of the best selection, arrangement, sequence, etc., subjected to some appropriately chosen 

objective function (Bennell, 2015). CO problems include cardinality constrained portfolio 

-3

-2

-1

0

1

2

3

local minimum 𝑥

global minimum  𝑥∗

Figure 1.0: Global minimum vs local minimum 

(𝟏. 𝟏) 
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tracking problem, supply chain planning problem, travelling salesman problem (TSP), timetable 

arrangements and many more. 

The solutions to CO problems may be in the form of arrangements, choices of objects, sequences, 

assignments, route in a network, job schedules, etc. In other words, CO problems can be described 

as searching for the best configurations from a countable set of candidate solutions. The following 

are some definitions taken from the literature, describing CO problems: 

1. CO is a coined term to describe the mathematical programming areas that are concerned 

with the solution of optimisation problems that have a pronounced combinatorial or 

discrete structure (Christofides et al, 1979).  

2. CO is a mathematical study to find an optimal arrangement, grouping, ordering, or 

selection of discrete objects that are usually finite in numbers (Osman and Laporte, 

1996). 

3. CO is a class of problems characterised by discrete decision variables and a finite search 

space (Talbi, 2009).   

Christofides et al (1979) pointed out that the areas covered are becoming increasingly important 

due to the large number of practical problems that can be formulated and solved as CO problems. 

However, CO problems are computationally challenging in nature due to their large sizes. Solving 

large CO problems using exact algorithms such as the simplex method can be really expensive, 

resulting in high computational time that is not practical for solving real life problems. 

 

1.3 Linear programming 

Linear programming (LP) is a powerful tool in modelling many real world applications due to its 

(MIT, 2013): 

1. Applicability to model real life problems. 
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2. Solvability with the existence of theoretically and practically efficient techniques for 

solving large-scale problems. 

 A simple way to describe LP is as an optimisation problem where the objective function and all 

the constraints (equalities or inequalities) are linear (Gil et al, 1982).  

 

 

 

The feasible region (ABCD) in Figure 1.1 represents the possible solutions that satisfy the 

problem constraints. LP is a commonly used model in mathematical programming (Talbi, 2009) 

and its history can be traced back to 1827 when Fourier published a method to solve a system of 

linear inequalities (Sierksma and Zwols, 2015).  

The standard LP can be formulated as: 

𝐌𝐢𝐧 𝒇(𝒙) =  𝒄𝑻𝒙 

 

 

Feasible 
region

Infeasible 
region

Figure 1.1: The feasible and infeasible region of a linear programming 

(𝟏. 𝟐) 

B 

C 

A 

D 



 

 

- 5 - 
 

subject to 

𝑨𝒙 ≥ 𝒃 

𝒙 ≥ 𝟎 

where 𝒙 is a vector of continuous decision variables, 𝑨 is a matrix and 𝒄𝑻 and 𝒃 are constant 

vectors of coefficients. The objective function in (1.2) and constraints in (1.3) are linear functions. 

Continuous LP problems can be efficiently solved using exact algorithms such as a simplex-type 

method or interior point methods because the feasible region of the problem and the objective 

function are convex (Talbi, 2009).  

However, many real-life applications must be modelled with discrete variables and noticeably in 

many practical optimisation problems, the resources such as machinery and people are indivisible 

(Talbi, 2009).  

 

1.4 Integer programming 

Integer programming (IP) is a mathematical optimisation problem that deals with solving linear 

models in which some of the decision variables are restricted to take only integer values. There 

are four types of IP problems based on the decision variables characteristics: 

(a) Pure integer programming: all of the decision variables have to be integer. 

(b) Binary integer programming: all the decision variables’ values are binary (0 or 1). 

(c) Mixed integer programming (MIP): some of the decision variables have to be integer. 

(d) Mixed binary integer programming (MBIP): some of the decision variables are binary 

variables. 

The importance of IP is that it allows the modelling of the indivisible decision variables that is 

not possible under LP. Another important feature of IP is that it permits the modelling of (McCarl 

and Spreen, 1997): 

(𝟏. 𝟑) 

(𝟏. 𝟒) 
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1. Fixed cost: usually arising in the production process. 

2. Logical conditions such as: 

(i) Conditional use 

(ii) Complementary products 

(iii) Complementary investment 

(iv) Sequencing 

3. Discrete levels of resources where variables are constrained by discrete resource 

conditions. 

4. Distinct variable values where situations may require that certain decision variables are 

only permitted to take certain distinct values. 

5. Nonlinear representations. 

6. Approximation of nonlinear functions. 

IP problems are difficult to solve. Compared to LP whose solutions are proven to be at the 

constraint intersections (Dantzig, 1963), an IP problem has an unknown number of possible 

solutions and no general statement can be made about the location of the solutions (McCarl and 

Spreen, 1997).   

 

1.5 Mixed integer programming 

Mixed integer programming (MIP) is an optimisation problem where the decision variables are 

both discrete and continuous, generalising LP and IP models (Talbi, 2009). There are two 

categories of MIP; the mixed integer linear programming (MILP) and mixed integer non-linear 

programming (MINLP). The difference between the two lies in the properties of the objective 

function and the constraints of the MILP and MINLP where they are linear in the former but non-

linear in the latter. Since MINLP is very difficult to solve, MIP usually refers to MILP.   
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MIP can be formulated as follows: 

𝐌𝐢𝐧 𝒇(𝒙, 𝒚) =  𝒄𝑻𝒙 + 𝒅𝑻𝒚 

subject to 

𝑨𝒙 + 𝑮𝒚 ≤ 𝒃 

𝒙 ≥ 𝟎 ∈ ℝ 

𝒚 ≥ 𝟎 ∈ ℤ 

where 𝒙 is a vector of continuous decision variables, 𝒚 is a vector of discrete decision variables, 

𝒄𝑻, 𝒅𝑻 and 𝒃 are constant vectors of coefficients, and 𝑨 and 𝑮 are matrices. 

 

1.5.1 Mixed binary integer programming 

Mixed Binary Integer Programming (MBIP) is the special case of the MIP where the discrete 

decision variables of the problem can only take either the value of 0 or 1. These binary variables 

are usually used to answer the yes/no question to the problem. The difference of MBIP can be 

seen if (1.8) is rewritten as follows:  

𝒚 ∈ [𝟎, 𝟏] 

The element of the integer variables in an optimisation problem makes the problem become more 

difficult to solve. This is due to the many combinations of the integer decision variables needed 

to be tested and the number of these combinations can rise exponentially with the problem’s size 

(Frontline Solvers, 2018). 

 

 

 

(𝟏. 𝟓) 

(𝟏. 𝟔) 

(𝟏. 𝟖) 

(𝟏. 𝟕) 

(𝟏. 𝟗) 
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1.5.2 MIP-solvers for MIP 

Many commercial MIP solvers give the flexibility to the users to have certain control to provide 

heuristic control over some of the parameters that affect exploration of the branching rules, the 

frequency of application of the internal heuristics, the fact of emphasizing the solution integrality 

rather than its optimality, etc (Fischetti and Lodi, 2003). Nevertheless, there are some cases where 

these flexibilities are inadequate, leaving the users to opt for a specialised ad-hoc heuristic, losing 

the advantage of working on the generic framework of MIP. 

One function of the general-purpose MIP solvers is to serve as a black-box for the local search 

metaheuristics to effectively explore the solution space.   

 

1.5.2.1 Large neighbourhood search using MIP-solvers 

Large neighbourhood search using the MIP-solvers offers the advantage of easy application for 

CO problems that can be expressed in the form of a MIP problem. With the availability of the 

effective general purpose MIP-solvers such as CPLEX, IBM ILOG, GUROBI, etc, these MIP-

solvers are based on a search tree framework but further include the solution of LP relaxations of 

a given MIP model for the given problem to obtain its lower and upper bounds (Blum et al., 2011). 

Although such MIP solvers work well for small and medium sized problems, often it will be too 

computationally challenging for them to solve large scale CO problems. This has always been an 

issue and raised interest among modellers and many research investigations have been dedicated 

to developing approaches to overcome this matter. Therefore, MIP can be very useful in searching 

large neighbourhoods within a metaheuristic framework. One approach is to partially fix values 

to some variables with the remaining unfixed variables being later determined through 

optimisation of the MIP. 

However, the percentage of variables to be fixed plays a crucial role in determining good 

neighbourhood search size because the number of variables left unfixed reflects the size of the 
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search space. Having too large a neighbourhood might result in high computational time whilst 

too small a neighbourhood may hinder the chances of getting good or near optimal solutions.  

 

1.6 Heuristics 

Many real life problems are typically complex and require settings or decision making to be made 

in a short amount of time. Thus, making it not possible or practical to rely on the exact methods 

that usually need high computational time, especially for large size problems, and often fail to 

solve them. Unlike the classical exact methods, heuristic techniques offer relatively good 

solutions within a reasonable amount of time but at the expense of the solution quality. 

Originating from the Greek verb heuriskein, the word heuristic means to find or search. Therefore, 

heuristic techniques can be viewed as the search techniques that depend on the past experience or 

knowledge to deliver reasonably good solutions. Despite the inability of providing optimality to 

the produced solutions, heuristic techniques continue to be a popular method among researchers 

due to the following reasons (Aickelin and Clark, 2011): 

1. The unlikeliness of finding optimal solutions in a reasonable time for large size complex 

problems. 

2. An optimal solution based on estimated data will almost certainly not be optimal for the 

actual data due to the problem be ill-defined or because of imprecise data. For such cases, 

obtaining a robust solution that will be near optimal over most scenarios is preferable. 

3. A mathematical model should be used as a guidance in a decision making process, and to 

make the final choice, the user may use several different solutions and in some cases, 

human justifications rather than technical measures to balance several criteria. 
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1.7 Metaheuristic 

Emerging from the success of the heuristic techniques, metaheuristics have become increasingly 

popular in recent years due to the many successful applications to a wide range of CO problems. 

The word meta carries the meaning of “beyond, in an upper level”. Setting apart from the heuristic 

techniques, a metaheuristic is a higher-level guided search technique, aiming to explore the search 

space for solutions that are near-optimal.  

Metaheuristics can be described as general frameworks to build heuristics for combinatorial and 

global optimisation problems (Hansen et al, 2008). Metaheuristics are a branch of optimisation in 

computer science and applied mathematics that are related to algorithm and computational 

complexity theory and have developed into various communities that sit at the intersection of 

several fields, including artificial intelligence, computational intelligence, soft computing2, 

mathematical programming, and operations research (Talbi, 2009).  

Talbi (2009) pointed out that for more than the past two decades, metaheuristics have become 

more popular in different research areas and industries, proven by the existence of a large number 

of sessions, workshops, and conferences that deal with the design and application of 

metaheuristics. In practice, metaheuristics have been gaining a lot of interest in diverse 

technologies, industries, and services due to their ability to solve a wide range of complex real-

life optimisation problems. These typically are in logistics, bioinformatics and computational 

biology, engineering design, networking, environment, transportation, data mining, finance, 

business to name but a few. 

Metaheuristics offer a more simple and easy to implement technique that makes this approach a 

popular choice among modellers. Hansen and Mladenović (2003) listed the following as the 

characteristics of a desired metaheuristic technique: 

                                                             
2 The use of approximate calculations to provide satisfactory solutions to the computationally hard 
complex problem and sometimes, referred to computational intelligence (Rouse, 2018). 
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1. Simplicity: the metaheuristic should be based on a simple and clear principle, which 

should be largely applicable. 

2. Precision: steps of a metaheuristic should be formulated in precise mathematical terms, 

independent from the possible physical or biological analogy which was an initial source 

of inspiration. 

3. Coherence: all steps of heuristics for particular problems should follow naturally from 

the metaheuristic’s principle.  

4. Efficiency: heuristics for particular problems should provide optimal or near-optimal 

solutions for all or at least most realistic instances. Preferably, they should find optimal 

solutions for most benchmark problems for which such solutions are known, when 

available. 

5. Effectiveness: heuristics for particular problems should take moderate computing time to 

provide optimal or near-optimal solutions. 

6. Robustness: the performance of heuristics should be consistent over a variety of instances, 

i.e. not just fine-tuned to some training set and less good elsewhere. 

7. User-friendliness: heuristics should be clearly expressed, easy to understand and, most 

important, easy to use. This implies they should have very few parameters and and ideally 

none. 

8. Innovation: preferably, the metaheuristic’s principle and/or the efficiency and 

effectiveness of the heuristics derived from it should lead to new types of applications. 

This list was later updated with the following additions (Hansen et al., 2010): 

9. Generality: the metaheuristic should lead to good results for a wide variety of problems. 

10. Interactivity: the metaheuristic should allow the user to incorporate his knowledge to 

improve the resolution process. 

11. Multiplicity: the metaheuristic should be able to present several near optimal solutions 

from which the user can choose one. 
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Although metaheuristic techniques offer simple application, significant knowledge is crucial to 

make sure effective implementation of the techniques to the studied problem. One aspect that 

needs careful consideration is the selection of the search space and the neighbourhood structure.  

 

1.7.1 Why metaheuristics for optimisation problems 

Talbi (2009) anticipated that metaheuristics will continuously gain more interest in the future due 

to the increasing of size as well as complexity in the optimisation problems. The author justifies 

the use of metaheuristics with the main characteristics of optimisation problems as follows: 

1. An easy problem with very large instances but the known exact polynomial-time 

algorithms are too expensive due to the size of the instances. 

2. An easy problem with hard real-time constraints where metaheuristics are widely used to 

reduce the search time in the real-time optimisation problems although efficient exact 

algorithms are available to solve the problem. 

3. A difficult problem with moderate size and/or difficult structures of the input instances. 

4. Optimisation problems with nonanalytic models that cannot be solved in an exhaustive 

manner and many of the practical problems are defined by a black box scenario of the 

objective function. 

5. Nondeterministic models of optimisation (problems with uncertainty and robust 

optimisation) may intensify those conditions and for some noisy problems, uncertainty 

and robustness cannot be modelled analytically. Exact algorithms are not the preferred 

approach due to the ambiguity of the model and given the fuzziness of the data, optimal 

solutions are not necessarily found. 

Gendreau and Potvin (2005) explained that, in solving the complex combinatorial 

optimisation problems, the challenge from developing specialised heuristics has shifted to 

adapt a metaheuristic to a specific problem or problem class, which usually requires much 
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less work compared to developing a specialised heuristic from scratch and a good 

metaheuristic implementation is likely to provide near-optimal solutions in a reasonable 

computational time. 

 

1.8 Research motivations and thesis structure 

This research is driven by the following reasons; 

1. The successes of many hybrid techniques that exploit the strengths of the exact and 

approximate methods. 

2. IP or MIP formulations are rarely solved by the metaheuristic techniques despite the fact 

that many combinatorial problems are solved exactly using IP. According to Gendreau 

and Potvin (2005), the exploitation of the IP or MIP formulations mostly involves tabu 

search. Motivated by this fact, this research attempts to exploit the MIP formulation of 

the studied problems using other metaheuristic search techniques in looking for a more 

powerful framework. 

3. Variable neighbourhood search (VNS) offers great potential as a metaheuristic search 

process. 

 

The contributions of this research will be twofold; 

1. Algorithm: to provide an alternative technique in approaching how to solve the CO 

problems studied. 

2. Computational results: generate satisfactory empirical results in reasonable 

computational time for the CO problems studied.  
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The remaining chapters of this thesis will be organised as follows. Chapter 2 will be focused on 

discussing the IP methods and local search methods (and its extension) used in solving CO 

problems. Some of the commonly used methods will be briefly discussed, focusing more on the 

LP relaxation and VNS. 

Chapter 3 introduce the readers to the general idea of the hybrid metaheuristics. Readers will be 

able to gain an overview of this technique and how it has been implemented in the literature. This 

chapter also provides the successful implementations of this technique in the previous researches 

and studies.  

To exhibit the flexibility of the proposed solution approach, two CO problems that are different 

yet similar are considered in this research; the constrained index tracking problem (CITP) and the 

gas supply problem. In Chapter 4 of this thesis, the properties of the two problems are described, 

to see the differences and similarities, and how the proposed method is adjusted to solve the CO 

problems. 

The proposed solution method is presented and elaborated on in Chapter 5. Readers will be able 

to see how the proposed hybrid technique is implemented on both of the studied MBIP problems 

discussed in the previous chapter. This chapter gives details on the general framework of the 

proposed technique and how it is modified to solve the two similar yet different MBIP problems. 

All the experimental results are discussed in Chapter 6 and Chapter 7 concludes the findings of 

this research. In Chapter 8 of this thesis, future direction of this research are discussed. 
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Chapter 2.0: Review of literature 

 

Many real-life problems can be formulated as a CO problem and with the numerous successes of 

applications, the CO field has increasingly become more important.  

 

2.1 Overview  

There have been numerous approaches dedicated to solving CO problems efficiently and they can 

be classified into two broad classes; exact and approximate methods. Whilst exact methods 

guarantee the optimality of the obtained solutions, they might be too expensive from a practical 

point of view due to the large computational time enumerating every possible combination of 

solutions. Exact methods obtain optimal solutions and can be successfully applied to small 

instances of difficult problems (Talbi, 2009). Approximate methods on the other hand provide 

potential suboptimal solutions but only an approximate-guarantee of the solution’s quality (Festa, 

2014; Galli, 2014). 

Dumitrescu and Stützle (2003) stated that CO problems are often easy to state but then might be 

difficult to be solved. In their paper, “A Survey of methods that combine local search and exact 

algorithm”, the authors identified that IP methods are the exact approach that has significant 

success in solving the CO problems and for the approximate methods, local search (and extension 

thereof) is the most successful method.  

The authors further discussed the important advantages that contribute to the success as well as 

the drawbacks that might limit the effectiveness of both methods. IP methods have the following 

important advantages: 

1. Given a successful algorithm, optimal solutions are guaranteed in the IP methods.  
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2. Even if the algorithms are stopped before completion, valuable information on the 

upper/lower bounds of the optimal solution can be obtained (IP methods can become 

approximate if a stopping criterion is defined before solving them). 

3. For the parts of the search space where optimal solutions cannot be found, IP methods 

allow provable pruning which many researchers find desirable as this will reduce the 

computational time.  

However, for large scale CO problems, IP methods might require extensive computational time 

which is not practical and due to the large memory consumption, the early abortion of a program 

is inevitable. For many cases of successful solutions to CO problems, the algorithms are problem 

specific that requires immense efforts by the IP experts and hence if the problem’s formulation 

changes, the algorithms are often hard to retune for solving the new problems.  

Local search methods yield high-quality solutions by iteratively applying small modifications to 

a solution, hoping to search for a better solution. This approach has proven to be successful in 

achieving near-optimal (and sometimes optimal) solutions to numerous difficult CO problems 

when being embedded into higher-level guidance mechanisms such as metaheuristics (Aarts and 

Lenstra, 1997; Toth and Vigo, 2003; Hoos and Stützle, 2004). The advantages of local search is 

that it is the best performing algorithm used in practice for many CO problems and can examine 

enormous amounts of possible solutions in a short computational time. Also, local search methods 

offer more flexibility as they are easily adapted to slight variants of problems and the algorithms 

are typically easier to understand and implement compared to the exact methods. Nevertheless, 

local search methods do have several disadvantages. Local search methods cannot guarantee 

optimality and the reduction of the search space is not provable. They do not have well defined 

stopping criteria and often have problems with highly constrained CO problems where feasible 

areas of the solution space are disconnected. In practice, there are no efficient general-purpose 

local search solvers available and although often less than the exact algorithms, considerable 

programming efforts are often required for most applications of the local search algorithms. 



 

 

- 17 - 
 

Blum et al (2011), explained that in general, MIP solvers use a tree search framework that includes 

the solution of LP relaxations of a given MIP model for the studied problem to obtain lower and 

upper bounds. Various kinds of additional inequalities are used to tighten the obtained bounds 

resulting in a branch and cut algorithm and this kind of MIP approaches are very effective for 

small to medium sizes of CO problems but often fail to solve large instances of CO problems in 

practice. Using MIP-solvers such as CPLEX, MIP is likely to be very useful in searching large 

neighbourhoods within a metaheuristic framework. 

The authors further stated that one way of defining the large neighbourhoods that are to be solved 

by the MIP-solver is to fix an appropriate portion of the decision variables to the values that they 

have in an incumbent solution and the remaining, referred to as free variables, to be determined 

by the MIP-solver. If there is an improvement in the solution obtained, it becomes the new 

incumbent solution and a new larger neighbourhood is defined around it and this process is 

repeated. The number of the free variables implies the size of the neighbourhood where too 

restricted neighbourhood might result in no improvement in the solution and too large a 

neighbourhood may require enormous run time. Therefore, selecting the number of fixed and free 

variables is crucial and this selection process can be random or found through a more 

sophisticated, guided way that considers the variables’ potential impact on the objective function. 
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2.2 IP methods 

Under this section, the discussion is focused on some of the popular IP methods including 

relaxation based methods, branch and bound, branch and cut, and cutting planes. 

 

2.2.1 Relaxation methods 

The most commonly used relaxation techniques are LP relaxation and Lagrangian relaxation. LP 

relaxation offers a much simpler application whilst the Lagrangian relaxation generally yields 

tighter bounds. 

 

2.2.1.1 LP relaxation 

LP relaxation is one of the commonly used IP methods. LP relaxation ignores the integrality 

conditions of an IP so that the optimisation problem can be solved using the LP solvers. If the 

solution found for the relaxed problem satisfies the integer conditions, which in general is not 

true; the solution is considered as the optimal solution to the IP problem. If the solution found is 

infeasible, then the IP problem is also infeasible. 

The main purpose of this technique is to obtain bounds and good approximate solutions for the 

original problem, by solving the related, simpler relaxed problem. 

The LP relaxation of ILP is obtained by relaxing the integrality constraint, yielding the LP (Blum 

et al., 2008) 

𝒛𝑳𝑷 = 𝐦𝐢𝐧 {𝒄𝑻𝒙|𝑨𝒙 ≥ 𝒃, 𝒙 ≥ 𝟎, 𝒙 ∈ ℝ𝒏} 

 

For large size LP problems in (2.1), the available exact algorithms such as the simplex method or 

interior-point algorithms can efficiently solve the problem to optimality. Observe that 𝒛𝑰𝑳𝑷 ≥ 𝒛𝑳𝑷 

(𝟐. 𝟏) 
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because the search space of ILP is contained within the LP search space. Therefore, the LP 

relaxation always provides lower bound to the original minimisation problem. 

In the context of MBIP, LP relaxations can be described as transforming (1.9) into the following:  

𝒚𝒊 ∈ (𝟎, 𝟏) 

Other than to satisfy the criterion of relatively easy computability, LP relaxation also gives a good 

approximation to the ILP solution for many cases (Christofides et al, 1979). LP relaxations 

provide a lower bound for the problem. Lin and Rardin (1977) demonstrated that the most 

important parameter in the success of branch-and-bound codes for ILP’s is the ‘distance’ from 

the LP optimum to the MILP optimum.   

 

2.2.1.1.1 LP relaxations for guiding metaheuristic search 

LP relaxations provide bounds and a good approximation to the original IP problems which 

indicate a promising search space or possibly where an optimal solution might lie. There are 

several ways of exploiting the LP relaxations (Blum et al., 2008): 

1. Creating promising initial solutions. 

2. Guiding local improvement or the repairing of infeasible candidate solutions. 

3. Exploiting dual variables. 

4. Variable fixing: reduction to core problems. 

Apart from securing the feasibility for the original IP problems, the repaired optimal solution 

(using a problem-specific procedure) of the LP relaxations is used as the starting point for the 

subsequent metaheuristics search. Usually, a simple rounding technique is chosen. Both Raidl and 

Feltl (2004) and Plateau et al. (2002) use simple rounding to respectively create an initial 

population of promising integer solutions and a population of different feasible candidate 

solutions. 

(𝟐. 𝟐) 
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2.2.1.2 Lagrangian relaxation 

Another popular relaxation technique is Lagrangian relaxation that often yields a tighter bound 

for the related CO problem. The main idea behind this technique is to remove some complicating 

constraints and incorporate them in the objective function (Talbi, 2009). 

Consider the ILP (Blum et al., 2008)  

𝒛𝑰𝑳𝑷 = 𝐦𝐢𝐧 {𝒄𝑻𝒙|𝑨𝒙 ≥ 𝒃, 𝑫𝒙 ≥ 𝒅, 𝒙 ≥ 𝟎, 𝒙 ∈ ℤ𝒏} 

 

where constraints 𝑨𝒙 ≥ 𝒃 are “nice” as the problem can be efficiently solved if the 𝒎ᇱ 

“complicating” constraints 𝑫𝒙 ≥ 𝒅 are dropped. But, simply dropping the constraints may result 

in a weak bound and hence the constraints 𝑫𝒙 ≥ 𝒅 are replaced by corresponding additional terms 

in the objective function 

𝒛𝑳𝑹 = 𝐦𝐢𝐧 {𝒄𝑻𝒙 + 𝝀(𝒅𝑻 − 𝑫𝒙)|𝑨𝒙 ≥ 𝒃, 𝒙 ≥ 𝟎, 𝒙 ∈ ℤ𝒏} 

 

The aim is now to find a specific vector 𝝀 that yields the best possible bound, leading to the 

Lagrangian dual problem 

𝒛𝑳𝑹
∗ = 𝐦𝐚𝐱

𝝀ஹ𝟎
{𝒛𝑳𝑹(𝝀)} 

 

This Lagrangian dual is a piecewise linear and convex function and can be solved by an iterative 

procedure such as a subgradient method. 

 

 

 

(𝟐. 𝟑) 

(𝟐. 𝟓) 

(𝟐. 𝟒) 
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2.2.2 Branch-and-bound methods 

Branch-and-bound methods (B&B) were first introduced by Land and Doig in 1960 to solve 

discrete programming problems. The name B&B however, was first used by Little et al (1963) in 

their work, “An algorithm for the travelling salesman problem” and since has been a widely used 

terminology. 

B&B methods are based on an implicit enumeration of all the solutions of the considered 

optimisation problem (Talbi, 2009). The search space is dynamically explored by building a tree 

whose root node represents the problem at hand and the leaf nodes are the potential solutions 

where the internal nodes are the sub problems of the total solution space. Subtrees containing no 

optimal solution are pruned from the search tree.  

This approach is usually referred to as the ‘divide and conquer’ method. The idea behind B&B is 

to subdivide the feasible region of the problem and solve a relaxed problem over each divided 

region, making this method rely on efficient solution methods for LPs (Gustavsson, 2015). It uses 

bounds on the optimal solution; instead of exploring the entire feasible solution space, it only 

considers certain parts of the set of the feasible solutions (Galli, 2014). 

The B&B mechanism can be described using the following fundamentals: 

a) Branching.  

Let 𝑿𝟎, 𝒀𝟎 = {𝒙 ∈ ℝ𝒎, 𝒚 ∈ ℤ𝒏: 𝑨𝒙 + 𝑮𝒚 ≤ 𝒃, 𝒍ᇱ ≤ 𝒙 ≤ 𝒖ᇱ, 𝒍ᇱᇱ ≤ 𝒚 ≤ 𝒖ᇱᇱ} be the 

feasible solutions to the MIP problem in (1.5) where 𝒍ᇱ, 𝒖ᇱ, 𝒍ᇱᇱ and 𝒖ᇱᇱ are the lower and 

upper bounds of the variables 𝒙 and 𝒚 respectively. 𝑿𝟎, 𝒀𝟎 is split into 𝒌 finite disjoint 

subproblems of (𝑿𝟏, 𝒀𝟏), (𝑿𝟐, 𝒀𝟐), … , (𝑿𝒌, 𝒀𝒌) and each subproblem is individually 

solved. 𝑿𝟎, 𝒀𝟎 is the root node of the search tree and the subproblems 

(𝑿𝟏, 𝒀𝟏), (𝑿𝟐, 𝒀𝟐), … , (𝑿𝒌, 𝒀𝒌) are the leaf nodes. The subproblems are further 

recursively split into smaller subproblems (each subproblems is denoted as 𝑰) and 𝒇(𝒙, 𝒚) 

is minimised using the smaller search space. 
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b) Bounding (Pruning). 

The objective function of each subproblem 𝑰 are calculated. Any subproblem that cannot 

contain the optimal solution or are infeasible will be discarded from the enumeration tree. 

The B&B method is widely used in many commercial software, such as CPLEX, to solve the 

MILP problems.  

 

2.2.3 Cutting planes 

Cutting plane algorithms for IP problems were introduced by Gomory in 1963 and were neglected 

for many years due to the slower convergence of these algorithms. In the 1980’s, due to the 

development of polyhedral theory and the consequent introduction of strong, problem specific 

cutting planes, this method was revived and has since become a popular choice among researchers 

(Mitchell, 2002).   

The basic idea of the cutting plane method is to cut off parts of the feasible region of the LP 

relaxation. The cuts are made so that the optimal integer solution 𝒙∗ becomes an extreme point 

that can be found by the simplex method (Pan, 2015). This method iteratively modifies the 

feasible solutions or objective function by adding linear inequalities, called cuts, that are valid for 

the IP problem but violated by the optimal solution 𝒙∗. 

In general, a cutting plane algorithm can be summarised as follows (Pan, 2015): 

Step 1: Solve the LP relaxation and obtain 𝒙∗. 

Step 2: If 𝒙∗ is integral, then stop. Else find a valid inequality that will exclude 𝒙∗. 

Step 3: Go to Step 1. 

Apart from the slower convergence to reach the optimum, this method is also subjected to the 

round-off errors that may cause serious problems in large size instances. 
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2.2.4 Branch-and-cut methods 

Branch-and-cut methods provide optimal solutions to many IP problems and by far are the most 

successful technique (Mitchell, 2002). Branch and cut is a hybrid of the following two techniques 

to tighten the LP relaxation: 

1. Cutting planes: Adding new constraints to repeatedly cut away the parts of the polytope 

to obtain an integer solution. 

2. Branch and bound: avoid parts of the search tree that are not possible in producing the 

optimal solution. 

To solve an IP problem, a branch and cut approach first solves the corresponding LP relaxation. 

Using the B&B method, the problem is recursively split into subproblems and solved using the 

simplex method. The cutting plane method is then used to eliminate any fractional solution to the 

LP by adding linear inequalities, without removing any integer solutions.  

One importance of the branch and cut method is that it can be used to provide a lower bound. This 

method can be used in conjunction with heuristics or metaheuristics especially for large sized 

problems where optimality is not guaranteed/proven, a lower bound on the optimal value can be 

deduced from the algorithm to provide a guarantee (on the distance from optimality) on the 

goodness of the solution obtained (Mitchell, 2002). 
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2.3 Local search methods 

Since its introduction in 1947, the local search (LS) method has inspired and has been extended 

to some of the very successful metaheuristics techniques; tabu search, simulated annealing, 

GRASP etc. 

LS improve the solutions using the iterative movement, searching for better solutions in other 

defined neighbourhoods of the given problem. A good selection of neighbourhoods is important 

for the LS methods to work efficiently. A neighbourhood structure is defined as follows (Blum et 

al, 2008); 

 

Definition 1: A neighbourhood structure is a function 𝓝: 𝑿 → 𝟐𝑿 that assigns to every 𝒙 ∈ 𝑿 a 

set of neighbours 𝓝(𝒙) ⊆ 𝑿. 𝓝(𝒙) is called the neighbourhood of 𝒙. Often, neighbourhood 

structures are implicitly defined by specifying the changes that must be applied to a solution 𝒙 in 

order to generate all its neighbours. The application of such an operator that produces a 

neighbour 𝒙ᇱ ∈ 𝓝(𝒙) of a solution 𝒙 is commonly called a move. 

 

The introduction of a neighbourhood structure allows the definition of the local minimum (local 

optimum in (1.3)) concept (Blum et al, 2008); 

 

Definition 2: A locally minimal solution (or local minimum) with respect to a neighbourhood 

structure 𝓝 is a solution 𝒙ෝ such that ∀ 𝒙 ∈ 𝓝(𝒙ෝ);  𝒇(𝒙ෝ) ≤ 𝒇(𝒙). We call 𝒙ෝ a strictly locally 

minimum solution if 𝒇(𝒙ෝ) < 𝒇(𝒙) ∀ 𝒙 ∈ 𝓝(𝒙ෝ). 
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The most basic local search method is the iterative improvement local search where a move is 

only made if there is a better solution than the current solution and the algorithm stops once a 

local minimum is found.  

LS starts at a given initial solution, 𝒙𝟎 replacing the current solution, 𝒙 by a neighbour 𝒙ᇱ that 

improves the objective function at each iteration and the search process stops when all the 

candidate neighbours are worse than the current solution, indicating the local minimum is reached 

(Talbi, 2009). Algorithm 2.0 illustrates the iterative improvement local search. 

There are a few possible termination conditions for LS (Consoli and Darby-Dowman, 2007): 

1. Maximum time is reached. 

2. Maximum total number of iterations is reached. 

3. Finding a solution with a better objective function compared to the threshold value. 

4. Maximum number of iterations is reached without any improvement in the objective 

value. 

 

 

 

 

 

 

 

 

 

Algorithm 2.0: Template of a local search algorithm  

𝒙 = 𝒙𝟎; /*Generate an initial solution 𝒙𝟎 */ 

Generate (𝑵(𝒙)); /*Generation of candidate neighbours*/ 

Repeat 

 𝒙 = 𝒙ᇱ; /*Select a better neighbour 𝒙ᇱ ∈ 𝑵(𝒙) */  

 If 𝒇(𝒙ᇱ) < 𝒇(𝒙) then 

  𝒙 ← 𝒙ᇱ 

End if 

Until 𝒇(𝒙ᇱ) ≥ 𝒇(𝒙); ∀𝒙ᇱ ∈ 𝑵(𝒙)  

Output Final solution found (local optimum) 
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LS methods are simple and require little usage of memory. Although it may be preferred for its 

simplicity, LS does possess some weaknesses.  

The most disadvantageous characteristic of LS is its inability to escape from the local minimum 

(Pirlot, 1996). The following Figure 2.0 illustrates the existence of a global minimum that cannot 

be obtained under the descent rule of LS.   

 

 

 

 

  

Initial solution

Final solution

Figure 2.0: Local search (steepest descent) behaviour in a given landscape (Talbi, 2009) 
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2.4 Metaheuristics based on local search 

Iterative improvement local search often resulted in unsatisfactory results because the quality of 

the solutions found relies heavily on the starting point of the local search process (Blum et al., 

2008). The search might end up in a low quality local minimum if the starting point is poorly 

chosen. 

Therefore, metaheuristics aimed to effectively and efficiently explore the search space. There is 

no standard definition of metaheuristics and the following are some definitions taken from the 

literature: 

“A metaheuristic is formally defined as an iterative generation process which guides a 

subordinate heuristic by combining intelligently different concepts for exploring and exploiting 

the search space, learning strategies are used to structure information in order to find efficiently 

near-optimal solutions.” 

I. Osman and G. Laporte (1996) 

 

“A metaheuristic is an iterative master process that guides and modifies the operations of 

subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a complete 

(or incomplete) single solution or a collection of solutions at each iteration. The subordinate 

heuristics may be high (or low) level procedures, or a simple local search, or just a construction 

method.”  

S. Vos et al.(1999) 

 

“Metaheuristics are typically high-level strategies which guide an underlying, more problem 

specific heuristic, to increase their performance. The main goal is to avoid the disadvantages of 

iterative improvement and, in particular, multiple descent by allowing the local search to escape 

from local minima. This is achieved by either allowing worsening moves or generating new 

starting solutions for the local search in a more “intelligent” way than just providing random 
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initial solutions. Many of the methods can be interpreted as introducing a bias such that high 

quality solutions are produced quickly. This bias can be of various forms and can be cast as 

descent bias (based on the objective function), memory bias (based on previously made decisions) 

or experience bias (based on prior performance). Many of the metaheuristic approaches rely on 

probabilistic decisions made during the search. But, the main difference to pure random search 

is that in metaheuristic algorithms randomness is not used blindly but in an intelligent, biased 

form.”  

Stützle (1999) 

 

“A metaheuristic is a set of concepts that can be used to define heuristic methods that can be 

applied to a wide set of different problems. In other words, a metaheuristic can be seen as a 

general algorithmic framework which can be applied to different optimization problems with 

relatively few modifications to make them adapted to a specific problem.”  

Metaheuristics Network (2000) 

 

“…metaheuristics are strategies, approximate and usually non deterministic, that guide the 

search process to efficiently explore the search space in order to find (near-) optimal solutions, 

using techniques which range from simple local search procedures to complex learning 

processes. They are not problem-specific, can incorporate mechanisms to avoid “traps” (local 

optima), may use domain-specific knowledge to explore the best promising areas and finally they 

can memorize the search experience in order to guide the future search (long/short-time form of 

memory).” 

Consoli and Darby-Dowman (2007) 

 

One characteristic that stands out from the definitions is that the authors describe metaheuristics 

to be a higher level of search technique. A good metaheuristic often aims to quickly find 
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promising regions containing high quality solutions but at the same time has to avoid spending 

too much time on a specific region by balancing the following concepts: 

(1) Diversification: focusing on the search space exploration at the global scale to generate 

more diverse solutions.  

(2) Intensification: exploiting the information of the current solution found, the search 

process focuses more in that specific local region. 

This section will continue with discussion on the important metaheuristics that were based on the 

local search methods. 

 

 

2.4.1 Simulated annealing 

Simulated annealing (SA) is a search technique that was inspired by a statistical physics 

procedure. The work by Kirkpatrick et al. in 1983 marks the beginning of the application of this 

technique on CO problems and has since been widely used in the CO field.  SA is based on the 

principles of statistical mechanics of the annealing process of the heating and cooling of a 

substance to obtain a strong crystalline structure (Talbi, 2009).  SA aims to escape the local optima 

by allowing some degradation of a solution under a certain condition.  

This search heuristic starts from an initial solution 𝒙 ∈ 𝑿 and proceeds in several iterations where 

at each iteration, a random neighbour 𝒙ᇱ is generated. Any move that improves the objective 

function is always accepted, 𝒇(𝒙ᇱ) < 𝒇(𝒙) and a non-improving neighbour whose solution is 

worse than the current solution is accepted given a probabilistic rule. The probabilistic rule uses 

a control parameter called temperature, 𝑻. The search heuristic ceases when the stopping criterion 

is met. One example of the stopping criteria is the final temperature. 

One important feature of SA is the cooling schedule. The cooling schedule plays an important 

role in the performance of SA and consists of the following parameters: 
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a) Initial temperature, 𝑻𝒎𝒂𝒙: must not be too high to enable random search but high enough 

to allow moves to the neighbouring state. 

b) Equilibrium state: a number of sufficient moves must be applied. 

c) A cooling function: better solutions are achieved when the temperature is slowly 

decreasing but with substantial computational time. 

d) Final temperature, 𝑻𝒎𝒊𝒏: in theory, the final temperature is equal to 0.  

 

The steps of a SA heuristic are illustrated in the following Algorithm 2.1. 

 

 

 

 

 

 

 

 

 

 

Apart from its ability to escape the local optima, SA also has the advantage of being simple and 

easy to implement. 

 

  

Input: Cooling schedule. 
𝒙 = 𝒙𝟎; /* Generation of the initial solution */ 
𝑻 = 𝑻𝒎𝒂𝒙; /* Starting temperature */ 
Repeat 
 Repeat /* At a fixed temperature */ 
     Generate a random neighbour 𝒙ᇱ; 
           If 𝒇(𝒙ᇱ) < 𝒇(𝒙) Then accept 𝒙 = 𝒙ᇱ /* Accept the neighbour solution */ 
     Else Accept 𝒙ᇱ using a probabilistic rule; 
  Until Equilibrium condition 
 /* e.g. a given number of iterations executed at each temperature 𝑻 */ 
 𝑻 = 𝒈(𝑻); /* Temperature update */ 
Until Stopping criteria satisfied /* e.g. 𝑻 < 𝑻𝒎𝒊𝒏 */ 
Output: Best solution found. 

Algorithm 2.1: Template of simulated annealing (Talbi, 2009). 
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2.4.2 Tabu search 

Tabu search (TS) is a deterministic local search strategy that was first proposed by Glover in 

1986. This search heuristic is best known for its characteristic of using the short-term memory 

tabu list that stores the knowledge of the previous search process. Since TS explores the 

neighbourhood in a deterministic way, it discards any previous visited solution or move to escape 

from the local optimum by managing the search through the information in the tabu list to prevent 

cycling. 

Another important feature of TS is the aspiration criterion. Since the tabu list may be too 

restrictive, there is a possibility of rejecting a “good” move that is tabu. The aspiration criterion 

enables the tabu solutions to be accepted under some condition. The commonly used aspiration 

criteria are (Talbi, 2009): 

a) selecting tabu solutions that generate better solutions than the best found solution. 

b) a tabu move that yields a better solution among the set of solutions of a given attribute. 

Some advanced mechanisms are commonly included to deal with the intensification and 

diversification of the search (Talbi, 2009): 

1. Intensification (medium-term memory): Stores the elite solutions found during the search 

to give priority to attributes of the set of elite solutions. 

2. Diversification (long-term memory): Stores the information of the visited solutions along 

the search and explores the unvisited areas in the solution space. 

TS starts by selecting an initial solution 𝒙𝟎. A move is made from the current solution 𝒙, whose 

neighbourhood 𝑵(𝒙) ⊂ 𝑿 to a better solution 𝒙ᇱ ∈ 𝑵(𝒙). At each iteration, the tabu list is 

updated. When the local optimum is reached, the search continues by selecting worse candidate 

solutions from a modified neighbourhood 𝑵∗(𝒙), composed by the short and long term memory 

structures by maintaining a selective history of the states encountered during search (Glover and 

Martí, 2006), until the stopping criteria are satisfied. Algorithm 2.2 demonstrates a TS process.  
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Usually, the stopping criteria can be the maximum number of iterations or the maximum number 

of consecutive iterations without any improvement to the incumbent (best known) solution 

(Gendreau and Potvin, 2005). 

 

2.4.3 Iterative local search 

A local search method often gets stuck in local optimum with no improving neighbourhood 

available. Iterative local search (ILS) is the modification of the LS technique with repeated calls 

to the LS routine, each time starting from a different initial solution.  

There are three basic elements that compose an ILS (Talbi, 2009): 

1. LS: Any S-metaheuristics3, either deterministic or stochastic, can be used in the ILS 

framework. The search procedure acts as the black box in the mechanism as illustrated in 

Figure 2.1. 

                                                             
3 Single-solution based metaheuristics such as simulated annealing, tabu search, variable neighbourhood 
search. 

𝒙 = 𝒙𝟎; /* Initial solution */ 

Initialise the tabu list, medium-term and long-term memories; 

Repeat 

 Find best admissible neighbour 𝒙, ; /*non tabu or aspiration criterion holds*/ 

 𝒙 = 𝒙ᇱ;  

 Update tabu list, aspiration conditions, medium and long-term memories; 

 If intensification_criterion holds Then intensification; 

 If diversification_criterion holds Then diversification; 

Until Stopping criteria satisfied 

Output: Best solution found. 

 
Algorithm 2.2: Template of tabu search algorithm (Talbi, 2009) 
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2. Perturbation method: The perturbation operator may appear as a large random move from 

the current solution but it should keep part of the current solution and perturb strongly 

the other part of the solution. 

3. Acceptance criteria: Defines the conditions that the new local optima must satisfy before 

replacing the current solution. 

 

 

 

 

 

 

Let 𝒇(𝒙) be the cost function of the optimisation problem to be minimised and 𝒙 ∈ 𝑿 are the 

candidate solutions. LS is applied to the initial solution 𝒙𝟎, usually picked at random or is a 

solution returned by a greedy construction heuristic, and always returned the same solution 𝒙∗ 

whose neighbourhood is 𝑿∗ ∈ 𝑿 (Gendrau and Potvin, 2010).  

A move to an intermediate state 𝒙ᇱ ∈ 𝑿 is obtained by applying a change or perturbation to the 

current 𝒙∗. LS is then applied to the 𝒙ᇱ, leading to the new local optimum 𝒙∗
ᇱ ∈ 𝑿∗. The solution 

𝒙∗
ᇱ  becomes the next element in 𝑿∗ if it passes an acceptance test. Otherwise, return to 𝒙∗. Figure 

2.2 illustrates the walks of ILS and Algorithm 2.3 gives the steps in ILS. 

 

 

Local 
optima 

Initial 
solution 

Search component: 
S-metaheuristics 

Acceptance 
criteria 

Perturbation 
method 

Figure 2.1: The search component as the black box in ILS (Talbi, 2009) 
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The potential power of ILS lies in its biased sampling of the set of the local optima that depends 

both on (Gendrau and Potvin, 2010; Rajab, 2012): 

1. the kinds of perturbations (change) – this can include as much possible problem-specific 

information by the modeller. Changes must not be too strong as it may lead to a random 

start, and not too small as it may return the same local optima. The perturbation strength 

Perturbed 
solution 𝑠ᇱ

Final solution

First local optimum 𝑥∗

Initial solution Perturbation

𝒙∗ = local search (𝒙𝟎); /* Apply a given local search algorithm */ 

Repeat 

 𝒙ᇱ = Perturb (𝒙∗, search history); /* Perturb the obtained local optima */ 

 𝒙∗
ᇱ  = Local search (𝒙ᇱ); /* Apply local search on the perturb solution */ 

𝒙∗ = Accept (𝒙∗, 𝒙∗
ᇱ , search memory); /* Accepting criteria */ 

Until Stopping criteria 

Output: Best solution found. 

Algorithm 2.3: Template of the iterated local search algorithm (Talbi, 2009) 

Figure 2.2: The principle of the iterated local search algorithm (Talbi, 2009) 

Objective 

Search space 
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may be viewed as the number of the solution components; appropriate perturbation 

strength depends on the instance size. For example, in the partial optimisation, the 

strength is the number or percentage of the variable fixing. 

2. the acceptance criteria – this can be adjusted empirically without knowing anything about 

the problem being optimised. An acceptance criteria decides on the move, whether to be 

taken or not, and can be used to control the balances between the intensification and 

diversification of the search process. An intensification of the search process is simply to 

accept a better solution while a diversification applies perturbation to the most recently 

visited local optima. 
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2.5 Other metaheuristics based on local search 

 

2.5.1 Guided local search 

Guided local search (GLS) is a method of escaping the local optimum by modification of the 

objective function to the problem. GLS is an intelligent search scheme for CO problems where 

the main feature of the approach is the iterative use of LS (Voudouris and Tsang, 1995). This 

method gathers information from various sources to guide the LS to promising parts of the search 

space. 

A set of 𝒎 features4 𝒇𝒕𝒊 (𝒊 = 𝟏, … , 𝒎) of a solution are first defined. GLS associates a cost 𝒄𝒊 

and a penalty 𝒑𝒊 with each for the problem (Gendrau and Potvin, 2010). The objective function 

𝒇(𝒙) associated with the solution 𝒙 is penalised if trapped by a local optimum as (Talbi, 2009): 

𝒇ᇱ(𝒙) = 𝒇(𝒙) + 𝝀𝜶  𝑰𝒊(𝒙)𝒑𝒊

𝒎

𝒊ୀ𝟏

 

where 𝝀 is the regularisation parameter and 𝑰𝒊(𝒙) is an indicator function that determine whether 

a feature is present in the solution 𝒙; 1 if 𝒇𝒕𝒊 ∈ 𝒙, 0 otherwise. The regularisation parameter 𝝀 

represents the relative importance of penalties with respect to the solution cost and is significantly 

important because it provides the means to control the influence of the information on the search 

process (Voudouris and Tsang, 1995). The coefficient 𝜶 is problem specific where it is used to 

balance the penalty in the objective function with the changes in the objective function. 

GLS balances the intensification and diversification of the search process by focusing the search 

in the promising regions defined by lower costs of the features and avoids the generated local 

optima by penalising the features to diversify the search (Talbi, 2009). 

                                                             
4A feature of the problem defines a given characteristic of a solution. Example of a feature is whether 
the candidate tour travels immediately from City A to City B (Gendrau and Potvin, 2010). 

(𝟐. 𝟔) 
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The selection of features and the way to penalise them play an important role. Given a local 

optimum 𝒙∗, utility 𝒖𝒊  associated with each feature 𝒊 is calculated as (Talbi, 2009): 

𝒖𝒊(𝒙∗) = ൝
𝑰𝒊(𝒙∗)

𝒄𝒊

𝟏 + 𝒑𝒊
; if a given feature i is present in the local optimum 𝒙∗ 

0 otherwise

 

 

Algorithm 2.4 gives the template of the GLS. 

 

 

 

 

 

 

 

 

 

 

 

2.5.2 GRASP 

The greedy randomised adaptive search procedure or more commonly known as GRASP was first 

introduced by Feo and Resende in 1989. GRASP is a set of solutions, generated from adding the 

best elements on the list ranked by the greedy function. 

Input: S-metaheuristic LS, 𝝀, Features 𝑰, Costs 𝒄. 

𝒙 = 𝒙𝟎; /* Generation of the initial solution */ 

𝒑𝒊 = 𝟎; /* Penalties initialisation */ 

Repeat 

 Apply S-metaheuristic LS; /* Let 𝒙∗ be the final solution obtained */ 

 For each feature 𝒊 of 𝒙∗ Do  

  𝒖𝒊 =
𝒄𝒊

𝟏ା𝒑𝒊
; /* Compute its utility */ 

 𝒖𝒋 = 𝒎𝒂𝒙𝒊ୀ𝟏,…,𝒎(𝒖𝒊); /* Compute the maximum utilities */ 

 𝒑𝒋 = 𝒑𝒋 + 𝟏; /* Change the objective function by penalising the feature 𝒋 */ 

Until Stopping criteria 

Output: Best solution found. 

Algorithm 2.4: Template of the iterated local search algorithm (Talbi, 2009) 
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GRASP is a multistart (or iterative) metaheuristic, which for each of its iterations, consists of two 

phases (Gendrau and Potvin, 2010): 

1. Construction: in this phase, an initial solution is constructed and a repair procedure is 

performed if the solution is not feasible.  

2. Local search: Using the obtained feasible solution, the neighbourhood is investigated 

until a local minimum is found in this phase. 

 

2.5.4 Variable neighbourhood search (VNS) 

VNS was first introduced in 1997 by Mladenović and Hansen and since has undergone various 

developments and has been applied in countless fields. VNS relies heavily upon the following 

observations (Hansen et al, 2008): 

 

Fact 1: A local minimum with respect to one neighbourhood structure is not necessarily a 

local minimum for another neighbourhood structure. 

Fact 2: A global minimum is a local minimum with respect to all possible neighbourhood 

structures. 

Fact 3: For many problems local minima with respect to one or several neighbourhoods are 

relatively close to each other. 
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Figure 2.3 illustrates Fact 1 in Section 2.3 where a local minimum for neighbourhood structure 

𝑵𝟏 (search landscape 1) is not necessarily a local minimum for neighbourhood 𝑵𝟐 (search 

landscape 2). Blum et al. (2008) outlined that the main idea of VNS is to define several 

neighbourhood structures and strategically swap between the different neighbourhood structures 

during the search process (diversification of search).  

VNS exploits the systematic changes of neighbourhoods both in  

(1) descent phase, to find a local minimum,  

(2) perturbation phase to emerge from the corresponding valley (Hansen et al, 2008).  

The basic schemes of VNS and its extensions are simple. VNS does not follow a trajectory but 

explores increasingly distant neighbourhoods of the current incumbent solution, jumping to a new 

solution if and only if there is an improvement (Hansen and Mladenović, 2001). Let 𝑵𝒍 , for 𝒍 =

𝟏, … , 𝒍𝒎𝒂𝒙 denote the set of neighbourhood structures selected for the heuristic search and 𝑵𝒍(𝒙) 

be the set of solutions in the 𝒍𝒕𝒉 neighbourhood of 𝑥. 

There are two main components in VNS; Variable Neighbourhood Descent (VND) and Reduced 

Variable Neighbourhood Search (RVNS). 

Figure 2.3: Two search landscapes defined by two different neighbourhood structures. On the landscape that 
is shown in (a), by the best-improvement local search stops at 𝑠ଵෝ , while it proceeds until a better local 
minimum 𝑠ଶෝ  on the landscape that is shown in (b). (Blum et al., 2008) 
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2.5.4.1 Variable neighbourhood descent (VND) 

VND can be translated as the deterministic component of VNS because the changes within the 

neighbourhood are performed in a deterministic way. To understand VND, it is crucial to 

understand the steepest descent heuristic. A steepest descent heuristic starts by choosing an initial 

solution 𝒙 within a neighbourhood 𝑵(𝒙) and travels in a steepest descending movement to the 

minimum of 𝒇(𝒙) within the neighbourhood 𝑵(𝒙). The heuristic stops if there is no descent 

movement available, otherwise it is iterated. 

VND relies on Fact 1 in Section 2.3; a local optimum 𝑥 within neighbourhood 𝑵𝒍(𝒙) does not 

mean that it is a local optimum within neighbourhood 𝑵𝒍ା𝟏(𝒙). Therefore, for all 𝒙 ∈ 𝑿, a 

neighbourhood 𝑵(𝒙) is defined, the heuristic search VND is the combination of the descent 

heuristic of the neighbourhoods. The algorithm of VND is given by Algorithm 2.5. 

 

 

 

 

 

 

 

 

 

  

Initialisation. 
Select the set of neighbourhood structures 𝑵𝒍 , for 𝒍 = 𝟏, … , 𝒍𝒎𝒂𝒙 , that will be used in the 
descent; find an initial solution 𝑥 (or apply the rules to a given 𝒙); 
Repeat the following sequence until no improvement is obtained; 

(1) Set 𝒍 ← 𝟏; 
(2) Repeat the following steps until 𝒍 = 𝒍𝒎𝒂𝒙; 

(a) Exploration of neighbourhood. 
Find the best neighbour 𝒙, of 𝒙(𝒙, ∈ 𝑵𝒍(𝒙)); 

(b) Move or not. 
If the solution 𝒙, thus obtained is better than 𝒙, set 𝒙 ← 𝒙, and 𝒍 ← 𝟏; 
otherwise, set 𝒍 ← 𝒍 + 𝟏; 

Algorithm 2.5: Steps of the basic VND (Hansen et al, 2008). 
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2.5.4.2 Reduced variable neigbourhood search (RVNS) 

Opposite to VND, RVNS can be viewed as the stochastic component of VNS. RVNS allows 

deeper exploration of those neighbourhoods close to the current local minimum 𝒙, providing an 

approach to exploit Fact 2 in Section 2.3. The initial point of this heuristic search is randomly 

selected in the 𝒍𝒕𝒉 neighbourhood. This random selection is to avoid cycling which might occur 

in a deterministic environment.  

After selecting the set of neighbourhoods  𝑵𝟏(𝒙), 𝑵𝟐(𝒙), … , 𝑵 𝒍𝒎𝒂𝒙
(𝒙) that are centred around the 

current local minimum 𝒙, an initial solution 𝒙, is picked at random from the first neighbourhood 

𝑵𝟏 and a stopping criterion is defined. If 𝒇(𝒙,) < 𝒇(𝒙), the search is then re-centred to be around 

𝒙, (𝒙 ← 𝒙,). Otherwise, the search proceeds to the next neighbourhood. The search process 

continues, and after exploring all the neighbourhoods, it starts over with the first neighbourhoods 

until the stopping criterion is met. Algorithm 2.6 demonstrates the step by step algorithm of 

RVNS. 

 

 

 

 

 

 

 

 

 

 

Algorithm 2.6: RVNS algorithm (Hansen et al, 2008). 

Initialisation.  
Select the set of neighbourhood structures 𝑵𝒍 , for 𝒍 = 𝟏, … , 𝒍𝒎𝒂𝒙 , that will be used in the 
search; find an initial solution 𝒙; choose a stopping condition; 
Repeat the following sequence until the stopping condition is met: 

(1) Set 𝒍 ← 𝟏 ; 
(2) Repeat the following steps until 𝒍 = 𝒍𝒎𝒂𝒙 ; 

(a) Shaking. Generate a point 𝒙ᇱ at random from the 𝒍th neighbourhood of 𝒙 (𝒙ᇱ ∈

𝑵𝒍(𝒙)); 
(b) Move or not. If this point is better than the incumbent, move there (𝒙 ← 𝒙ᇱ), 

and continue the search with 𝑵𝟏(𝒍 ← 𝟏); otherwise, set 𝒍 ← 𝒍 + 𝟏 ; 
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The differences between the VND and RVNS are summarised in the following Table 2.0. 

 VND RVNS 
Changes in 
neighbourhood 

In a deterministic behaviour. Randomly selected point from 
𝑵𝒍(𝒙). 

Iterations Repetition is made until no 
improvement in 𝒇. 

Repetition is made until the 
stopping criterion is met. 

Parameter Sole parameter usually the 
maximum number of 
neighbourhood 𝒍𝒎𝒂𝒙 

Have two or more parameters; 
number of neighbourhood; 𝒍𝒎𝒂𝒙 
stopping criterion (e.g.: time limit); 
𝒕𝒎𝒂𝒙 

Problem size Applicable to all sizes of 
instances.  

Useful for large instances where 
local search can be 
costly/expensive. 

 

 

2.5.4.3 Basic variable neighbourhood search (BVNS) 

Basic variable neighbourhood search (BVNS) explores the neighbourhoods both in a 

deterministic and a stochastic way. The pre-selected neighbourhood structures are centred around 

the selected initial solution point 𝒙 ∈ 𝑿. A random point 𝒙ᇱ is generated and a local search method 

is applied to find the local optimum 𝒙ᇱᇱ. If there is an improvement in the objective function 

𝒇; 𝒇(𝒙ᇱᇱ ) ≤ 𝒇(𝒙 ), then a move is made; 𝒙 ← 𝒙ᇱᇱ. Otherwise, the search process continues with 

the next neighbourhood. Algorithm 2.6 illustrates the steps of the BVNS. 

The characteristic of the deterministic component in BVNS allows an intensive search procedure 

within the neighbourhood, by using a local search method to increase the possibility of finding an 

improved solution from the randomly selected candidate solution 𝒙ᇱ. 

 

 

 

 

Table 2.0: Differences between VND and RVNS 
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One important step in VNS is shaking. To demonstrate the shaking process, consider a 4-

cardinality tree problem5 in Figure 2.4. The aim is to find 4 edges that give minimum weight. 

Figure 2.5 illustrates how BVNS solves a 4-cardinality tree problem. The figure at the bottom 

right in each square represents the total weight.  

In Step 0, the total weight given by a local search (LS) is 40. Shaking in Step 1, by removing and 

adding an edge at random, give the total weight of 60. After a LS, again the total weight is given 

as 40. Another shaking process is performed in Step 3 which led to the total weight of 39. This 

process is repeated to improve the solution obtained. Note that shaking in steps 1, 3, 5 and 7 helps 

the search process to escape from being stuck in the local minimum, leading to a better solution 

in step 8. 

 

 

                                                             
5 𝒌-cardinality tree problem is a CO problem of finding a subtree, in a given graph, of minimal weight 
with a fixed number of minimal 𝒌 edges. This illustration is taken from Jörnsten and Lokketangen (1997). 

Initialisation. Select the set of neighbourhood structures 𝑵𝒍 , for 𝒍 = 𝟏, … , 𝒍𝒎𝒂𝒙 , that will 
be used in the search; find an initial solution 𝒙 and improve it by using RVNS; choose a 
stopping condition; 
Repeat the following sequence until the stopping condition is met: 

(1) Set 𝒍 ← 𝟏 ; 
(2) Repeat the following steps until 𝒍 = 𝒍𝒎𝒂𝒙 ; 

(a) Shaking. Generate a point 𝒙ᇱ at random from the 𝑙th neighbourhood of 
𝒙 (𝒙ᇱ ∈ 𝑵𝒍(𝒙)) ; 

(b) Local search. Apply some local search method with 𝒙ᇱ as initial solution; 
denote with 𝒙ᇱᇱ the obtained local optimum; 

(c) Move or not. If the local optimum 𝒙ᇱᇱ is better than the incumbent 𝒙, move 
there (𝒙 ← 𝒙ᇱᇱ), and continue the search with 𝑵𝒍 (𝒍 ← 𝟏 ); otherwise, set 
 𝒍 ← 𝒍 + 𝟏 ;  

Algorithm 2.7: Steps of the BVNS (Hansen et al, 2008). 
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Figure 2.5: Steps of the BVNS for solving 4-cardinality tree problem (Hansen et al., 2009). 

Figure 2.4: 4-cardinality tree problem (Hansen et al., 2009). 
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2.5.4.4 General variable neighbourhood search (GVNS) 

When LS in Step 2(b) in Algorithm 2.7 is replaced with VND, general variable neighbourhood 

search (GVNS) is obtained. Algorithm 2.8 gives the details of GVNS. 

There are other extensions of VNS that are not covered in this research such as Skewed VNS and 

Variable neighbourhood decomposition search. For interested readers, please refer to Hansen et 

al. (2010) for details. 

 

 

 

 

 

 

 

 

 

 

 

 

There are occasions when the basic VNS does not provide desirable results and the following 

ways may aid in improving the VNS performance (Hansen et al., 2010):  

a) First vs. best improvement. 

Experimentally compare the first and best improvement strategies within a local search. 

Based on previous experience; use the first improvement rule if the initial solution is 

chosen at random but if some constructive heuristic is used, use the best improvement 

rule. 

Initialisation. Select the set of neighbourhood structures 𝑵𝒍 , for 𝒍 = 𝟏, … , 𝒍𝒎𝒂𝒙 , that will be 
used in the shaking phase, and the set of neighbourhood structures 𝑵𝒔

ᇱ  for 𝒔 = 𝟏, … , 𝒔𝒎𝒂𝒙 
that will be used in the local search; find an initial solution 𝒙 and improve it by using RVNS; 
choose a stopping condition; 
Repeat the following sequence until the stopping condition is met: 

(1) Set 𝒌 ← 𝟏 ; 
(2) Repeat the following steps until 𝒍 = 𝒍𝒎𝒂𝒙 ; 

(a) Shaking. Generate a point 𝒙ᇱ at random from the 𝒍th neighbourhood 𝑵𝒍(𝒙) of 𝒙 ; 
(b) Local search by VND. 

(b1) Set ← 𝟏 ; 
(b2) Repeat the following steps until = 𝒍𝒎𝒂𝒙 ; 

. Exploration of neighbourhood. Find the best neighbour 𝒙ᇱᇱ of 𝒙ᇱ in 𝑵𝒔
ᇱ (𝒙ᇱ) . 

. Move or not. If 𝒇(𝒙ᇱᇱ) < 𝒇(𝒙ᇱ)  set 𝒙ᇱ ← 𝒙ᇱᇱ and ← 𝟏 ; otherwise set 𝒔 ← 𝒔 + 𝟏 ; 
(a) Move or not. If this local optimum is better than the incumbent, move there 

(𝒙ᇱ ← 𝒙ᇱᇱ), and continue the search with 𝑵𝟏 (𝒍 ← 𝟏 ) ; otherwise, set 𝒍 ← 𝒍 + 𝟏 ;  

Algorithm 2.8: Steps of the GVNS (Hansen et al, 2008). 
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b) Reduce the neighbourhood. 

Unnecessary visits may lead to bad behaviour of the local search. Try to identify 

“promising” regions in the neighbourhood and focus visits to those regions; ideally, find 

a rule that automatically removes solutions with worse objective values than the current 

solution from the neighbourhood solutions. 

c) Intensified shaking. 

The trade-off between intensification and diversification is balanced in the shaking 

procedure. A completely random jump in the kth neighbourhood may be too diversified 

for some problem instances. Therefore, developing a more efficient VNS sometimes 

requires intensive effort in checking how sensitive the objective function is to small 

changes (shaking) of the solution. 

d) VND. 

Develop a VND to substitute the local search routine (changing BVNS to GVNS) to 

analyse several possible neighbourhood structures, estimate their sizes, order them, try 

them out and keep the most efficient one. 

e) Experiments with parameter settings. 

The single parameter of VNS is 𝒍𝒎𝒂𝒙, which should be tuned experimentally but the 

procedure often is not too sensitive to 𝒍𝒎𝒂𝒙. One can fix the parameter value to be the 

value of some input parameter to obtain a parameter-free VNS. For example, set 𝒍𝒎𝒂𝒙 =

𝒑 for the 𝒑-median6 problem. 

 

  

                                                             
6 The 𝒑-median problem concerns with locating 𝒑 facilities to minimise average distance between the 
demand nodes and the nearest of the selected facilities (Daskin and Maass, 2015). 
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2.6 Summary 

IP methods guarantee optimality of solutions. But to solely rely on IP methods may be too 

expensive for large scale CO problems, in terms of memory usage and computational time. This 

is because IP methods conduct search in an exhaustive manner by enumerating every possible 

solution for the CO problems. 

LS methods on the other hand require very minimum usage of memory. They offer simple and 

easy implementation. Most local search methods use randomisation, i.e. to start with randomly or 

heuristically generated candidate solution and iteratively improve this candidate solution. This is 

to ensure the search process does not stagnate with unsatisfactory candidate solution (Hoos and 

Tsang, 2006). However, to randomly pick an initial point may lead to low quality of solutions and 

the likeliness of being stuck in local minimum may as well produce unsatisfactory solutions. 

Both methods, exact algorithms and approximate approaches, have their strengths and 

weaknesses. In Section 2.1 of this chapter, the advantages and disadvantages of IP and LS 

methods have been discussed. The strength and weakness of both methods can be seen as 

complementary and this has led to another branch of metaheuristics techniques called hybrid 

metaheuristics. This technique has received a lot of interest in recent years and has become a more 

popular choice among modellers in solving CO problems.  

In the next chapter, the concept of hybrid metaheuristics will be introduced and discussed. The 

hybridisation of metaheuristics in this research is the collaborative combination of the LP 

relaxation (exact method) with VNS (metaheuristics technique). The next chapter will discuss 

how the strengths and weakness of the exact method and the metaheuristics technique become 

complementary to each other. 
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Chapter 3.0: Hybrid metaheuristics 

 

It is noticeable that research in metaheuristics for CO problems is now focused more on the 

problem instead of being algorithm-oriented, sparking a lot of interest in the hybridisation of 

metaheuristics with other techniques for optimisation. The general idea behind hybrid 

metaheuristics is to combine different search techniques. 

 

3.1 Introduction 

Blum et al. (2011) described hybrid metaheuristics as algorithms that do not purely follow the 

paradigm of a single traditional metaheuristic where these approaches combine various 

algorithmic components, often originating from algorithms of other research areas of 

optimisation. Benefiting from synergy, hybrid techniques exploit the complementary character of 

different optimisation strategies. The following items (i) and (ii) are the definition of hybrid taken 

from the Merriam Webster dictionary and the items (iii) and (iv) are the definitions given by 

Wiktionary (Raidl, 2006): 

i. Something heterogeneous in origin or composition 

ii. Something (such as a power plant, vehicle, or electronic circuit) that has two different 

types of components performing essentially the same function 

iii. Offspring resulting from cross-breeding different entities, e.g. different species 

iv. Something of mixed origin or composition 

There are several publications in the literature that provide taxonomies on hybrid metaheuristics 

or its subcategories (Cotta, 1998; Talbi, 2002; Blum et al., 2005; Cotta et al., 2005; El-Abd and 

Kamel, 2005; Puchinger and Raidl, 2005). Figure 3.0 exhibits the classifications of hybrid 

metaheuristics summarised by Raidl (2006). 
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  HYBRID METAHEURISTICS 

What is hybridised? Level of 
hybridisation 

Order of execution Control strategy 

 Metaheuristics with 
metaheuristics 

 Metaheuristics with problem-
specific 
algorithms/simulations etc. 

 Metaheuristics with other 
OR/AI techniques 

 With exact technique  
e.g. tree-based search, 
constraint programming, 
dynamic programming 
 With other heuristic/soft-
computing methods  e.g. 
neural networks, fuzzy logic 

 High-level weak coupling 
i.e. algorithms retain own identities 

 Low-level strong coupling 
i.e. individual components are 
exchanged 

 Batch (sequential) 
 Interleaved 
 Parallel 

 Architecture 
 SIMD 
 MIMD 

 Granularity 
 Fine-grained 
 Coarse-grained 

 Hardware 
 Homogeneous 
 Heterogeneous 

 Memory 
 Shared 
 Distributed 

 Task and data allocation 
 Static 
 Dynamic 

 Synchronization 
 Synchronous 
 Asynchronous 

 Integrative 
e.g.: 

 Local improvement of 
candidate solutions by an 
inner optimisation 
algorithm 

 Exact techniques for 
searching very large 
neighbourhoods 

 Indirect or incomplete 
representations and the 
use of decoders 

 Intelligent merging of 
solutions 

 Collaborative 
 Homogeneity 

 Several instances of 
the same type of 
metaheuristics 

 Different techniques 

 Space of decomposition 
 Implicit 

decomposition 
 Explicit 

decomposition Figure 3.0: A summarised classification of hybrid metaheuristics (Raidl, 2006). 
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Talbi (2009) categorised the hybridisation of metaheuristics into 4 types of combinations of 

metaheuristics with: 

a) Complementary metaheuristics. 

b) Exact methods from mathematical programming approaches. 

c) Constraint programming approaches. 

d) Machine learning and data mining techniques. 

 

3.1.1 Combining metaheuristics and ILP techniques for CO 

As far as this research is concerned, only the combinations of the metaheuristics with the exact 

techniques will be discussed, precisely the sequential collaborative combinations approach. Blum 

et al. (2008) categorised the existing techniques of combining exact and metaheuristic algorithms 

for CO problems into two main categories: 

1. Collaborative combinations: The algorithms only exchange information and are not part 

of each other. The two algorithms may be sequentially, intertwined, or be parallelly 

executed. 

2. Integrative combinations: One technique is a subordinate embedded component of 

another technique and there is a distinguished master algorithm which can either be exact 

or an approximate algorithm with at least one technique as an integrated slave. 

 
Figure 3.1: Combinations of Exact Algorithms and Metaheuristics (Blum et al, 2008). 
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Integer linear programming (ILP) is a promising combination for metaheuristic hybridisation in 

many ways including (Puchinger and Raidl, 2005; Raidl, 2006): 

 ILP can be used to search large neighbourhoods. 

 LP relaxations often generate valuable information that can be exploited to heuristically 

guide neighbourhood search, recombination, mutation, repair and/or local improvement. 

 ILP can serve as merging solutions; subspaces defined by the merged attributes of two or 

more solutions can be searched by ILP techniques. 

 A good lower and upper bound is important for techniques based on tree search. For a 

minimisation problem, relaxation methods often give the lower bound and heuristics or 

metaheuristics can be used to generate the upper bound. 

 The identification of inequalities that have been violated by the current solution to the LP 

relaxation (but valid for the integer optimum) is often hard but can be approached using 

metaheuristics. The addition of these inequalities to the system helps to improve the 

bounds when the related LP is resolved.  

 The identification of variables that are part of the model whose insertion improved the 

current solution but are currently not included when solving the problem is hard. 

Metaheuristics however manage to successfully do so when Puchinger and Raidl (2005) 

approached the multidimensional knapsack problem through the cooperation between the 

memetic algorithm and the branch-and-cut algorithm. 

 Some promising approaches that tried to bring the spirit of metaheuristics through the 

idea of local search based metaheuristics into linear programming based branch and 

bound; for example local branching.  
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3.1.2 Previous works on collaborative combinations of the metaheuristics 

hybridisation 

Applegate et al. (1998) create a restricted graph as the search space by merging the edge-sets of 

the solutions from deriving a set of diverse solutions by multiple runs of an iterated local search 

algorithm for the Traveling Salesman Problem (TSP). They solve the TSP to optimality and the 

solutions generated outperformed the best solution of the iterated local search.  

Joslin and Clements (1999) introduced a column generation approach that uses squeaky wheel 

optimisation (SWO) to generate feasible solutions for the production-line scheduling problem. 

This initial step helps to identify elements of that solution that work well or poorly which is useful 

in determining the search direction. The combined heuristic and exact algorithms allow many 

good and not so good schedules in the recombination process for a higher quality schedule. The 

authors took advantage of the randomness of the SWO heuristic to escape from local optima by 

making large coherent moves when the local search algorithm searches for good schedules. IP 

techniques provide a kind of global optimisation that has no counterpart in local search which 

allows the best parts of different solutions to be combined. The computational results show that 

this approach dominates a tabu search algorithm, providing better quality solutions with faster 

run time. 

In their work, Plateau et al. (2002) first generated a population of different feasible candidate 

solutions using an interior point method (IPM) with early termination. This set of solutions then 

serve as the initial population for a scatter search algorithm. Refinements concerning the use of 

improved directions given by several points of the population were introduced into the interior 

code process. The computational works on the 0-1 multiconstraint knapsack problems show that 

using IPM for IP allows the computation of the diversified fractional interior points in different 

parts of the constraint polyhedron. At the time of publication, the proposed method did provide 

attractive results where they compared their results to the best solution computed by Chu and 

Beasley (1998). The proposed hybrid method recorded an average execution time of 14.62 
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seconds compared to Chu and Beasley’s genetic algorithm results that have an average execution 

time of 1267.4 seconds. The authors believe that the presented algorithm is a promising research 

direction. 

Klau et al. (2004) combined the memetic algorithms (MA) with ILP to solve the prize-collecting 

Steiner tree problem. The objective function is to minimise the total cost of the edges in the subtree 

plus the total profit of all vertices outside of the subtree. Similar to the approach used by Applegate 

et al., the authors tightened the ILP relaxations by introducing cut constraints. They reduced the 

graph without changing the structure of the optimal solution by using the MA to provide the 

solution population as a starting point to solve the problem at hand. The modified ILP model is 

then solved by the branch-and-cut approach. The technique proposed by the authors managed to 

solve all of the benchmark instances from the literature to optimality, again proving that 

metaheuristic hybridisation is indeed a powerful tool.  

Raidl and Feltl (2004) extended the work of Chu and Beasley by replacing the pure random 

initialisation with the constraint-ratio heuristic and LP relaxation solutions to the generalised 

assignment problem (GAP) under consideration to create a candidate population. Due to capacity 

constraint violations, the population created are likely to be infeasible and hence randomised 

repair and improvement operations are applied to have more meaningful and often feasible initial 

solutions for the genetic algorithms (GA). They also use a more intelligent heuristic operator 

instead of the standard position-wise mutation that has smaller probability to make a feasible 

solution infeasible or to worsen the capacity excess of an infeasible solution. Empirical results 

indicate that the initial solutions provided by the constraint-ratio and LP heuristics are more 

promising and led to the speeding up of the GA, generating better solutions compared to the 

original work by Chu and Beasley. 
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For the 0-1 multidimensional knapsack problem (MKP01)7, Vasquez and Hao (2001) used LP 

relaxation to first obtain ‘promising’ continuous optima that served as the search space. Then, 

using tabu search, the binary areas within the designated search space are carefully and efficiently 

explored. They heuristically solved the MKP01 by introducing several additional constraints that 

fix the total number of items to be packed which resulted in the reduction and partition of the 

search space. Again, using the Chu and Beasley GA results as the benchmark, empirical work 

showed improved solutions for most of the instances. The authors suggest that their research is a 

good starting point in developing more improved algorithms for the MKP01 and the basic idea of 

the proposed algorithm could be explored to tackle other difficult CO problems.  

Lin et al. (2004) use the combination of a genetic algorithm and a mixed integer program 

(GAMIP) to construct the minimal set of affine functions which describe the value function of 

the finite horizon partially observed Markov decision process (POMDP). POMDP is a 

generalisation of a Markov decision process that allows for noise-corrupted and costly 

observations of the underlying system states. A set of points is first generated and then the 

redundant points are eliminated using a component-wise domination procedure. The problem is 

solved as a MIP, generating the missing points of the value function. Empirical works indicated 

that GAMIP used 60 percent less time to construct the minimal set compared to the most efficient 

LP based exact solution method in the literature. 

Heragu et al. (1994) developed several variants of the simulated annealing (SA) algorithm to solve 

the order picking problem. Some of the variants used optimisation techniques (convex hull 

algorithm and B&B) to guide the SA’s search. The convex hull algorithm is used to develop the 

initial solution and B&B is used to limit the neighbourhood search in the SA algorithm. The 

authors compared the developed algorithms with the convex hull algorithm (known to be the most 

                                                             
7 MKP01 consists in selecting a subset of 𝑛 given objects in such a way that the total profit of the 
selected objects is minimised while a set of 𝑚 knapsack constraints are satisfied (Vasquez and Hao, 
2001).  The classical knapsack problem 0-1 is the special case of the MKP01 with 𝑚 = 1 i.e. the capacity 
of the knapsack. 
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efficient to solve the order picking problem), 2-opt algorithm (known to provide reasonably good 

solutions) and pure SA. The results obtained show that the variants that use optimisation 

techniques as a guidance for the SA’s search do perform better than the convex hull or pure SA 

algorithms for most cases. 

For a two-machine flowshop scheduling problem, Nagar et al. (1995) introduced a branch-and-

bound (B&B) algorithm to guide the GA in its search for optimal solutions. The authors stated 

that if the machine’s processing times have a small gap between the upper-bound and lower-

bound, the problem can easily be solved using the B&B algorithm but if the gap is large, more 

computational time is required making the problem difficult to be solved. The presented B&B 

algorithm eliminates the schedules that are known to be sub-optimal, providing an initial 

population consisting of schedules that are likely to lead to optimal or near optimal solutions for 

the GA procedure. The elimination process also contributes to a faster convergence of the 

algorithm, reducing the run time of the problem. Computational works proved that the proposed 

algorithm is significantly superior to the pure approach of the B&B algorithm or the GA. 

 

3.2 Design 

Metaheuristics are reflected as a pre-processing or post-processing step for IP. Collaborative 

combinations of the hybrid metaheuristics is considered as a top level technique because the 

interactions between the different algorithms are strictly to exchange information from one 

algorithm to another, aiming to provide better solutions and no algorithm is contained or 

embedded within another algorithm (Puchinger and Raidl, 2006). 
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Instances of the information that is provided by the metaheuristics includes upper bounds, 

incomplete solutions, and subproblems while for the IP, the information provided can be partial 

solutions, optimal solutions for relaxed problems and many more (Figure 3.2)8.   

 

 

 

 

 

 

 

Talbi (2009) outlined the information provided by the exact algorithms (IP) and metaheuristics: 

 Information provided by exact algorithms: 

i. Partial solution: to first provide partial solution that is completed by a metaheuristic. 

ii. Problem reduction: carry out problem reduction before the metaheuristic solves the 

problem for example within a simplified objective function. 

iii. Relaxed optimal solutions and their duals: the exploitation by metaheuristics on the 

information of the relaxed formulation optimal solution and its dual. 

 Information provided by metaheuristics: 

i. Finding a good upper bound that will be used by the IP algorithm in the bounding phase. 

ii. Reduce the size of the original problem which then can be solved using the reduced 

problem. Reduction phase may be concerned with: 

                                                             
8 In the original source, mathematical programming (MP) is used instead of IP. In the context of this 
research, we focus on the IP and thus use the term IP for consistency and to avoid confusion. IP is a 
branch of MP. 

Figure 3.2: Information provided by metaheuristics to MP algorithms (Talbi, 2009). 
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(a) Partitioning of decision variables: the decision variables are partitioned into 𝑿 

and 𝒀 where metaheuristics will fix the variables of the set 𝑿 and the exact 

method will optimise the problem over the set 𝒀. 

(b) Domain reduction: Reduce the domain of values that the decision variables can 

take where a metaheuristic will perform a domain reduction for the decision 

variable and then an exact method is used over the reduced domains. 

 

In this chapter, the fundamental concepts of hybrid metaheuristics have been introduced. We 

discussed one approach of hybrid metaheuristic in particular, the combination of IP with 

metaheuristics. We also discussed why ILP is a promising technique for combination with 

metaheuristics.  

In the next chapter, the readers will be introduced to two CO problems. The structures of the two 

different yet similar problems will be discussed and most important of all how the two CO 

problems can be conveniently expressed as a MBIP problem.  
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Chapter 4.0: Descriptions of the studied MBIP problems 

 

There are two optimisation problems that are studied in this research. In the following section, 

we illustrate the characteristics of both problems and how to formulate them as MBIP problems. 

 

4.1 Constrained index tracking problem (CITP)  

Portfolio management is an investment activity that manages the asset allocation, aiming to 

achieve the investment objectives. It involves the activity of purchasing and selling assets, which 

incur transaction costs.  

There are two broad basic strategies that are adopted by fund managers in managing portfolios; 

active management and passive management. Active management relies heavily on the fund 

managers’ expertise and judgement to sell/purchase high performing assets, whilst passive 

management limits the fund managers’ flexibility to assets’ selection. Passive management 

focuses on the fund managers’ role to conform to a closely defined set of criteria, usually to have 

the fund achieve a target return, and index tracking (IT) is a popular form of passive management 

(Beasley et al., 2003). 

There are two types of index tracking model: full replication and partial replication. The investor 

will purchase all assets available in the index in the full replication whereas in the partial 

replication, only a subset of the assets will be purchased.  

Provided that there are no changes to the universe of securities (market), full replication may be 

the simplest way to track an index, offering the advantages of (Kwiatkwoski, 1992): 

 having no further transaction costs incurred 

 exact matching is achieved 

 easy management 
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However, this approach is subjected to some disadvantages (Beasley et al., 2003, Canakgoz and 

Beasley, 2009): 

 Certain stocks (assets) may be held in very small quantities and if there are restrictions 

on the stocks’ purchase/availability in the market, the purchase cost may become 

expensive. 

 The index composition may need to be revised at times due to several reasons, for 

example, the growth of certain company or companies’ mergers. When the index revision 

occurs, the stocks’ holdings may need to be changed, incurring possibly higher 

transaction costs. 

 Transaction costs relating to the sale and purchase of a stock need to be considered as 

they may be excessive as the full replication formulation does not have limits on the 

transaction costs.   

Partial replication on the other hand offers more flexibility on the selection of assets to be included 

in the tracking portfolio but is subjected to loss of accuracy in tracking the intended index and 

may require frequent assets rebalancing. Nevertheless, this approach allows (Kwiatkwoski, 

1992): 

 easier adjustment of new issuance of assets 

 smaller initial transaction costs compared to the full replication approach 

 if the fund generates net income, it is possible to avoid unnecessary transaction costs in 

investing the income during the assets rebalancing  

Canakgoz and Beasley (2009) described the constrained index tracking problem (CITP) as a 

decision problem of picking the subset of stocks (assets) to mirror/reproduce the performance of 

the index over time. Adopting the regression-based view, the index tracking problem can be 

formulated as a mixed binary integer linear program. 
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Beasley et al. (2003) presented an evolutionary heuristic technique to identify the best stocks to 

be placed in the portfolio. The authors made use of a population heuristic method to select the 

desirable solution for the index tracking problem. Their findings showed that holding 250 assets 

is a much more desirable proposition rather than replicating the full portfolio, holding 

approximately 7000 stocks. 

 

4.1.2 Approach to CITP 

The model represented in this research aims at solving the MIP rather than focusing on the 

problem’s formulation. Suppose that over time 𝒕 = 𝟎, 𝟏, 𝟐, … , 𝑻, the value of assets 𝒊 = 𝟏, 𝟐, … , 𝑵 

are observed, as well as the value of the index that we wish to track. Adopting partial replication, 

the aim is to choose the best subset of assets to be included and related appropriate weights of the 

assets in the portfolio i.e. 𝑲 < 𝑵 where 𝑲 is the limit on the unique assets and 𝑵 are the assets 

available. Looking back at the index historical performance, we want to know what would be the 

best set of assets and their appropriate weights that would best track the index over the time period 

[𝟏, 𝑻], assuming that the past is a guide to the future (Canakgoz and Beasley, 2009). 

 

4.1.2.1 Definition of notation 

 

4.1.2.1.1 Sets 

𝒊 = 𝟏. . 𝑵 be the universe of total assets available for investment 

𝒕 = 𝟏. . 𝑻 be the time period of the observed historical values for assets and index.  
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4.1.2.1.2 Data 

𝒍𝒊 be the minimum proportion of the total investment held in asset 𝒊 if investment 
is made on asset 𝒊 

𝒖𝒊 be the maximum proportion of the total investment held in asset 𝒊 if investment 
is made on asset 𝒊 

𝑹𝒕 be the single period continuous time return for the index at time 𝒕 

𝒓𝒕,𝒊 be the single period continuous time return for the asset 𝒊 at time 𝒕 

𝑲 be the maximum number of the total assets to be included in the tracking 
portfolio 

 

 

4.1.2.2 Decision variables 

𝒙𝒊   ≥ 𝟎 the proportion of asset 𝒊 to be held in the tracking portfolio if investment 
is made on asset 𝒊 
 

𝒚𝒊  = 𝟎, 𝟏 the binary decision variable indicating whether asset 𝒊 is held; 1 if asset 𝒊 
is held, 0 otherwise 

 

 

4.1.2.3 Objective function 

One way of calculating the objective for the index tracking problem is to use the tracking error 

(TE). TE is the absolute difference between the return of a portfolio with the returns of the index 

that it was supposed to replicate. In this research, the TE is obtained by subtracting the index’s 

returns, 𝑹𝒕 with the portfolio’s return, ∑ 𝒙𝒊𝒓𝒕,𝒊𝒊 ;  

 อ൭ 𝒙𝒊𝒓𝒕,𝒊 − 𝑹𝒕

𝒊

൱อ

𝒕

 (𝟒. 𝟎) 
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where 𝒙𝒊 is the weight (proportion) of asset 𝒊 in the portfolio. To best track the index, the aim is 

to minimise the cumulative difference between the two returns. We introduced the following 

variables into our formulation: 

1. 𝑶𝒕: indicates the difference between the two returns when the portfolio’s return, ∑ 𝒙𝒊𝒓𝒕,𝒊𝒊  

outperformed the index’s return, 𝑹𝒕; ∑ 𝒙𝒊𝒓𝒕,𝒊𝒊 > 𝑹𝒕 

2. 𝑼𝒕: indicates the difference between the two returns when the portfolio’s return, ∑ 𝒙𝒊𝒓𝒕,𝒊𝒊  

underperformed the index’s return, 𝑹𝒕; ∑ 𝒙𝒊𝒓𝒕,𝒊𝒊 < 𝑹𝒕 

 

The objective function to the CITP: 

𝑻𝑬 = 𝐦𝐢𝐧 (𝑶𝒕 + 𝑼𝒕)

𝒕

 

 

 

4.1.2.4 Constraints 

 

∑ 𝒓𝒕,𝒊
𝑵
𝒊ୀ𝟏 𝒙𝒊 = 𝑹𝒕 + 𝒐𝒕 − 𝒖𝒕      ∀ 𝒕 

𝒍𝒊𝒚𝒊  ≤ 𝒙𝒊 ≤ 𝒖𝒊𝒚𝒊      ∀ 𝒊      

∑ 𝒙𝒊𝒊 = 𝟏                     

 𝒚𝒊

𝒊

≤ 𝑲                     

 

 

(𝟒. 𝟏) 

(𝟒. 𝟐) 

(𝟒. 𝟑) 

(𝟒. 𝟒) 

(𝟒. 𝟓) 
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Equation 4.2 gives the definition of the TE. 

Equation 4.3 serves as a dual function. One is to ensure that the weight of any asset 𝒊 that is not 

chosen to be in the portfolio is 0; 𝒙𝒊 = 𝟎. The other function is that for any asset 𝒊 selected, the 

weight of the asset 𝒊 is between the minimum and maximum requirements of the asset proportion.  

Equation 4.4 defines that the portfolio is fully invested.  

The selection of assets should not exceed the maximum number 𝑲 that we wish to have in the 

new portfolio and Equation 4.5 ensures this.  
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4.2 Gas supply problem  

The gas supply problem is a CO problem and is computationally challenging in nature. Gas usage 

is a function of weather which is uncertain. Due to the uncertainty inherent in the input parameters, 

careful considerations are needed to model the gas supply problem to ensure these uncertainties 

are accounted for.  

 

4.2.1 Approach to the gas supply problem 

The focus in solving this problem will be on the strategic decisions of buying and storing gas as 

well as the setup of the storage facilities across the locations that will minimise the total cost in 

supplying gas. The formulation of the model is a large stochastic mixed binary integer 

programming problem, which aims to select potential locations to open the gas storage facilities. 

The formulation given is a simplified version of Koberstein et al (2011) formulation. The purpose 

of this model is to get an insight idea in developing an approach to solving the complex model of 

the combinatorial problem. Although simplified, the model does incorporate realistic features of: 

1. The multi distribution system from facilities to customers 

2. The capacity capabilities of the facilities 

3. Transportation costs 

 

The resulting formulation is a large stochastic mixed binary integer programming problem, 

involving a huge number of decision variables and constraints which are difficult to manage. 
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4.2.1.1 Definition of notation 

 

4.2.1.1.1 Sets 

𝒕 = 𝟏. . 𝑻 be the time periods 

𝒍 = 𝟏. . 𝑳 be the locations 

𝒇 = 𝟏. . 𝑺 be the forecasted scenarios of the weather 

𝑲𝒍 the subset of locations that can supply location 𝒍   ∀ 𝒍 = 𝟏. . 𝑳 

  

 

4.2.1.1.2 Data 

𝑫𝒕,𝒍,𝒔
ᇱ  the amount of the forecasted gas demand at time 𝒕 under forecasted scenario 

𝒔 at location 𝒍   ∀ 𝒕, 𝒍, 𝒔 
 

𝑷𝒕,𝒍,𝒔
ᇱ  the forecasted gas price at time 𝒕 under forecasted scenario 𝒔 at location 𝒍   

∀ 𝒕, 𝒍, 𝒔 
 

𝒅𝒍,𝒍𝟏 distance between location 𝒍 and 𝒍𝟏   ∀ 𝒍, 𝒍𝟏 ∈ 𝑲𝒍 
 

𝑪 the cost per unit gas to store gas  

𝑭 the cost to set up a storage facility 

𝑺𝑪𝒍,𝒍𝟏 the cost per unit gas to ship gas from location 𝒍 to location 𝒍𝟏 ∀ 𝒍𝟏 ∈ 𝑲𝒍, ∀𝒍 
 

𝝅𝒔 the probability of forecasted scenario 𝒔 occurring 

𝑴 the maximum storage allowed during any time period 𝒕 
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4.2.1.1.3 Decision variables 

𝒙𝒕,𝒍,𝒔 ≥ 𝟎 the amount of gas purchased at time 𝒕 under forecasted scenario 𝒔 at 
location 𝒍   ∀ 𝒕, 𝒍, 𝒔 
 

𝒛𝒕,𝒍,𝒔 ≥ 𝟎 the amount of gas stored at time 𝒕 under forecasted scenario 𝒔 at location 
𝒍   ∀ 𝒕, 𝒍, 𝒔 

  
𝒊𝒕,𝒍𝟏,𝒍,𝒔 ≥ 𝟎 the amount of gas shipped from location 𝒍1 to 𝒍 under forecasted scenario 

𝒔 at time 𝒕 (given that it is possible to ship from location 𝒍𝟏 to 𝒍)    
∀ 𝒕, 𝒔, 𝒍𝟏 ∈ 𝑲𝒍, 𝒍 and 𝒍 ≠ 𝒍𝟏 
 

𝒚𝒍  = 𝟎, 𝟏 the binary decision variable indicating whether to install a facility at 
location 𝒍; 1 if facility is installed at 𝒍, 0 otherwise 

 

 

4.2.1.1.3 Objective function 

Minimise 

   𝒙𝒕,𝒍,𝒔  ×  𝑷𝒕,𝒍,𝒔
ᇱ  ×  𝝅𝒔

𝑺

𝒔ୀ𝟏

𝑳

𝒍ୀ𝟏

𝑻

𝒕ୀ𝟏

+    𝒛𝒕,𝒍,𝒔  ×  𝑪 × 𝝅𝒔

𝑺

𝒔ୀ𝟏

𝑳

𝒍ୀ𝟏

𝑻

𝒕ୀ𝟏

+      𝒊𝒕,𝒍𝟏,𝒍,𝒔  × 𝒅𝒍,𝒍𝟏  ×  𝑺𝑪𝒍,𝒍𝟏 × 𝝅𝒔

𝑺

𝒔ୀ𝟏𝒍𝟏 ∈ 𝑲𝒍

𝑳

𝒍ୀ𝟏

𝑻

𝒕ୀ𝟏

+  𝒚𝒍  ×  𝑭

𝑳

𝒍ୀ𝟏

   

 

 

4.2.1.3 Constraints 

 

𝑫𝟏,𝒍,𝒔
ᇱ + 𝒛𝟏,𝒍,𝒔 + ∑ 𝒊𝟏,𝒍𝟏,𝒍,𝒔𝒍𝟏 ∈ 𝑲𝒍

= 𝒙𝟏,𝒍,𝒔  + ∑ 𝒊𝟏,𝒍,𝒍𝟏,𝒔𝒍𝟏 ∈ 𝑲𝒍
       ∀ 𝒍, 𝒔 

𝑫𝒕,𝒍,𝒔
ᇱ +  𝒛𝒕,𝒍,𝒔 +  𝒊𝟏,𝒍𝟏,𝒍,𝒔

𝒍𝟏 ∈ 𝑲𝒍

= 𝒙𝒕,𝒍,𝒔 + 𝒛𝒕ି𝟏,𝒍,𝒔 +  𝒊𝟏,𝒍,𝒍𝟏,𝒔

𝒍𝟏 ∈ 𝑲𝒍

 ∀ 𝒕 ≥ 𝟐, 𝒍, 𝒔   

𝒛𝒕,𝒍,𝒔 ≤ 𝑴 ×  𝒚𝒍         ∀ 𝒕, 𝒍, 𝒔   

       𝒙𝟏,𝒍,𝟏 = 𝒙𝟏,𝒍,𝒔                ∀ 𝒍, 𝒔          

  

(𝟒. 𝟔)
) 

(𝟒. 𝟏𝟎)
) 

(𝟒. 𝟗)
) 

(𝟒. 𝟖)
) 

(𝟒. 𝟕)
) 
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Equation 4.6 represents the objective function of the model, where we represent the as total cost 

being the cost of buying the gas units, cost of storing the gas units, cost of transporting the gas 

units from location 𝒍𝟏 to location 𝒍 and the cost of setting up the storage facility at location 𝒍. 

Equations 4.7 and 4.8 ensure that all the buying, storing and transporting gas units meet the 

demands at each location 𝒍. 

Equation 4.9 is the constraint on the maximum units of gas that can be stored at time 𝒕 which can 

be translated as the capacity of the storage and determines whether a gas storage facility is 

installed. 

Equation 4.10 involves the non-anticipativity constraints where under the Here and Now theory, 

all the decisions made today must be the same for each forecasted scenario 𝒔. 

 

4.2.2 Representation of uncertainty 

The decisions on gas purchases and the storing of gas as well as the gas storage facility set up 

depend heavily on the gas price and gas demand. These two parameters however are uncertain 

and thus we rely heavily on the future predictions based on the historical data. In order to capture 

these uncertain elements in a proper manner, we create a model to forecast the future prices and 

demands. We have created 100 possible scenarios for corresponding gas prices and gas demands. 

The gas supply model proposed is divided into two stages. Stage 1 deals with the activities that 

are deterministic where the gas demand and gas price are known beforehand. Also, the decision 

to set up the storage facilities is made at this stage. Stage 2 takes into consideration the stochastic 

part of the gas supply problem where the activities are decided upon using the scenarios generated 

of the gas demand and gas price. 
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4.2.3 Motivation for the reduction of shipping variables  

The shipping variable denoted by 𝒊𝒕,𝒍𝟏,𝒍,𝒔 represents the amount of gas that can be injected to 

location 𝒍 when the gas supply at location 𝒍 is not sufficient. However, this activity would only 

be considered when the cost of shipping the gas from location 𝒍𝟏 is cheaper than purchasing the 

gas at location 𝒍 itself. 

Due to the complexity issues, the shipping variable 𝒊𝒕,𝒍𝟏,𝒍,𝒔 is reduced in dimension by allowing 

only the 𝒏 nearest locations to ship gas to location 𝒍. The reason for limiting only the 𝒏 nearest 

locations 𝒍𝟏 to supply gas to the location 𝒍 is that the cost of supplying gas does depend on the 

distance between location 𝒍 and 𝒍𝟏. The further the distance between the two locations, the higher 

the transportation cost will be and this will cause the cost of supplying gas to be more expensive, 

making that location as a poor or less desirable option.  For each location 𝒍, 𝑲𝒍 is the set of 

potential connections and let 𝒅𝒍,𝒌 be the 𝒏𝒌 farthest distance from location 𝒍; 

𝑲𝒍
ᇱ = ൛𝒋 ∈ 𝑳|𝒅𝒍,𝒍𝟏 ≤ 𝒅𝒍,𝒌ൟ            ∀ 𝒍 

 

Another reason for introducing this constraint is that due to the availability of at each location, it 

is not possible for the cheapest location to be the sole supplier for all of the other locations. 

Therefore for practical purposes, only those locations 𝒍𝟏 that are near to the location 𝒍 should be 

considered.  

Before a constraint is implemented on the shipping amount variable 𝒊𝒕,𝒍𝟏,𝒍,𝒔, the dimension of 

this variable is: 

𝒊𝒕,𝒍𝟏,𝒍,𝒔 = 𝟐𝟎 × 𝟓𝟎 × 𝟓𝟎 × 𝟏𝟎𝟎 = 𝟓 𝟎𝟎𝟎 𝟎𝟎𝟎 

(𝟒. 𝟏𝟏) 
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After we allowed only the 15 nearest locations to supply gas to the location 𝒍, the dimension of 

this shipping variable 𝒊𝒕,𝒍𝟏,𝒍,𝒔 is reduced to 70 percent of its original size: 

𝒊𝒕,𝒍𝟏,𝒍,𝒔 = 𝟐𝟎 × 𝟏𝟓 × 𝟓𝟎 × 𝟏𝟎𝟎 = 𝟏 𝟓𝟎𝟎 𝟎𝟎𝟎 

 

4.2.4 Assumptions and limitations 

Time 1 purchase decisions 

At time 1, the gas price and gas demand are known with certainty. The deterministic decision at 

this stage is a single purchase decision at each location that minimises the total cost. 

 

Storage facility set up decisions 

The decision variable on setting up the storage facility is deterministic as well. This is a large 

capital investment decision and is hence a strategic decision. In an earlier version of the model, 

we considered this to be time dependent. All of our investigations showed that the decision it 

made in the first time period remained constant throughout later time periods. Hence, the model 

has been simplified by considering this set up decision only in the first time period. 

 

Ad hoc purchase decisions 

The ad hoc purchase depends on the forecasted spot price. This activity only happens given that 

the spot price is relatively cheaper compared to other available alternatives which are injections 

from other locations. 
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Storage amount decisions 

The amount of the gas stored depends on the forecasted future gas price and the capacity of the 

storage facility.  

 

Shipping amount decisions 

This activity only occurs given that other alternatives are more expensive. 

 

Due to the absence of real data of the gas price and gas demand, the data used in the model is 

generated using a Uniform distribution. The scenario generation for the gas price and gas demand 

are given in the appendix.  

The consideration of deliverability is ignored where it is assumed that gas is easily extracted from 

storage. 

 

This chapter detailed the two CO problems used in this research. Both problems can be modelled 

as MBIP problems and the next chapter illustrates how the proposed method is designed to solve 

the MBIP problems.  
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Chapter 5.0: The proposed hybrid technique 

The idea of the proposed method is to suggest a simple implementation to the computationally 

hard MBIP problems that are too expensive to solve for exact methods, requiring high 

computational time and worse, failing to solve due to high memory usage. The method proposed 

in this research is a hybrid metaheuristic, a collaborative combination of the following: 

i. IP method: LP relaxation 

ii. Metaheuristics: VNS  

 

The proposed method uses the relaxation of the MBIP at each iteration, providing flexibility to 

reselect the binary variables that need to be fixed. This technique does not only consider any 

possibility of discovering potential variables but also keeps the priority of the variables that have 

high impact on the objective function.   

VNS possesses, to a greater extent, all the properties listed in Section 1.5 and the interest in VNS 

is rapidly growing with the increasing number of published papers (Hansen et al., 2008). Driven 

by this fact, VNS is intended to serve as the search agent to explore the search space of the 

problem at hand. 

 

5.1 LP relaxation in this research  

From (1.7), the basic MBIP model is formulated as follows: 

𝐌𝐢𝐧 𝒇(𝒙, 𝒚) = 𝒄𝑻𝒙 + 𝒅𝑻𝒚  

 

 

(𝟓. 𝟎) 
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subject to 

𝑨𝒙 + 𝑮𝒚 ≤ 𝒃 

𝒙 ≥ 𝟎 

𝒚 ∈ [𝟎, 𝟏] 

where 𝒇(𝒙, 𝒚) is the objective function to be minimised, 𝒙 is a vector of the continuous decision 

variables, 𝒚 is the vector of binary decision variables, 𝑨 and 𝑮 are matrices and 𝒄𝑻, 𝒅𝑻 and 𝒃 are 

the constant vectors of coefficients. 

In this research, the relaxation of IP is exploited in a sense to: 

1. gather information for the initial solution construction. 

2. to guide search in promising directions of the search area.  

The important idea is to reduce the computational time by preventing searching in the areas that 

are not producing good solutions. In CO problems studied, the decision variable 𝒚𝒊 is the binary 

variable that will either take the value 0 or 1. By allowing a weaker condition, this binary decision 

variable 𝒚𝒊 can take values ranging from 0 to 1. The relaxed LP problem is then solved to 

optimality using the CPLEX solver. The information gained from the optimal solutions of the LP 

relaxation is then observed. This information will not only be used in generating the partial 

solution (1) but also to allow early pruning of the sub-optimal solutions to the studied CO problem 

(2).  

The selection on the partial fixing of variable 𝒚𝒊 is made based on the observation of the optimal 

solutions of the decision variable that have a direct impact towards the objective function 𝒇. We 

denote 𝒒𝒊 to be the observed continuous decision variable of interest. It is important to note that 

there must be a link between the binary variable 𝒚𝒊 and the chosen decision variable 𝒒𝒊 that is 

being observed. The higher the value of 𝒒𝒊 indicates that the object 𝒊 has more impact towards the 

objective value 𝒇.  

(𝟓. 𝟏) 

(𝟓. 𝟐) 

(𝟓. 𝟑) 



 

 

73 
 

For the CITP problem, 𝒒𝒊ୀ𝒙𝒊 since the portion of asset 𝒊 does impact the return on the portfolio. 

While for the gas supply problem, 𝒒𝒊ୀ𝒚𝒊, the binary variable of opening the facility at location 𝒍. 

The cost of opening the facility does impacts the total cost. 

 

5.1.1 Defining the neighbourhood 

The first step is to construct the partial solution using a similar approach to variable fixing, 

discussed by Atamtürk and Savelsbergh (2005) in “Integer-programming software system”. In 

the MBIP problems considered, the binary variable 𝒚𝒊 is used to answer the yes/no question; 

whether to include an asset 𝒊 in the portfolio for the CITP problem or to install a facility at a 

potential location 𝒍 for the gas supply problem. The number of the binary variables 𝒚𝒊 to be chosen 

i.e. to be fixed to 1, is constrained to be 𝒌 out of 𝒏 object 𝒊. 

To generate the initial solutions, we assign 𝜶𝒌 fixed values of the decision variable 𝒚𝒊 where 𝜶 

is the percentage of the total 𝒌 objects to be chosen. The remaining (𝟏 − 𝜶)𝒌 decision variables 

𝒚𝒊 are left unfixed and will be optimised in the subsequent stage, along with the remaining (𝒏 −

𝒌)𝒚𝒊. We denote 𝑭 to be the set of fixed 𝜶𝒌 of the variable 𝒚𝒊. 

 

Applying the relaxation to decision variable 𝒚𝒊 

𝟎 ≤ 𝒚𝒊 ≤  𝟏    ∀𝒊 

 

gives the relaxed LP problem to the original problem. Solving exactly using the CPLEX solver 

will yield the information on the optimal solutions 𝒒𝒊
∗ of the decision variable 𝒒𝒊. 

 

 

(𝟓. 𝟒) 
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Steps to generate the initial solutions: 

1. Apply integrality relaxations on the binary decision 𝒚𝒊 and solve the related LP problem. 

The optimal solutions of 𝒒𝒊
∗ are analysed as mentioned earlier.  

2. The binary variables 𝒚 are then sorted in a descending manner with respect to the 

corresponding relaxed variable 𝒒𝒊
∗. We denote this ordered set of object 𝒊 as 𝑸. 

3. Select the 𝜶𝒌 highest 𝒚𝒊 and fixed 𝒚𝒊 = 𝟏 leaving the others unfixed. We denote 𝑭 as the 

set of the variables to be fixed to 1. 

4. The integrality is then forced back on the decision variable 𝒚𝒊. 

5. The revised problem 𝑷ᇱ is optimised using the CPLEX solver. 

 

5.2 VNS in this research 

VNS offers great potential as a search technique to explore the search space in finding better 

solutions. By dynamically changing the neighbourhood, we reselect the partial fixing. One 

important characteristic is shaking. The initial solution generated will be used as the starting point 

and the information gathered from the LP relaxation will be used to guide the search at this stage. 

From the obtained revised problem 𝑷ᇱ, we select  (𝟏 − 𝜶)𝒌 of the unfixed 𝒚𝒊 variables and fix 

them to 1. This is the set of the binary variable 𝒚𝒊 that is found by the solver. We then fix this 

𝒚𝒊 = 𝟏 and optimise the 𝑷ᇱ. The newly obtained problem is denoted as 𝑷ᇱᇱ. 

Steps to improve the solutions: 

1. From 𝑷ᇱ, set 𝑭: = {𝒊 ∈ 𝑰 − 𝑭|𝒚𝒊 = 𝟏} and fix these values. Let the remaining variables 

be unfixed. 

2. Optimise the problem using the solver to obtained 𝑷ᇱᇱ. 
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5.2.1 Searching the neighbourhood 

There are two stopping criterion used in the search process; 

1. Time limit/CPU time (𝒕𝒎𝒂𝒙) and solution limit 

By definition (AMPL webpage), the solution limit is the limit on the feasible solutions found 

before the search terminates and if there is no specification made on the solution limit, the 

optimiser will search for an optimal solution. Time limit is the CPU time spent before terminating 

the search and by default there is no time limit imposed. Balancing these two elements is crucial. 

Although we want to avoid spending too much time on solving the problem (intensification) but 

at the same time we have to make sure that a diversified search is conducted (have enough feasible 

solutions). 

 

2. The upper bound of the objective function 𝒇 

Each time the problem is solved, the upper bound of the objective function will be updated to be 

equal to the value of the objective function of the current incumbent solution. The search process 

will continue if the objective value of the current solution is smaller than the upper bound 

otherwise it terminates once the current solution yields a higher objective function value.   

 

5.3 Enhancing the model performance 

 

5.3.1 Intensified shaking 

One function that enables the search process to escape from being trapped in the local minimum 

is shaking. We use 𝜷, the combination of several values of the fixing percentage. 
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Neighbourhoods shaking: At this point, we set 𝜶 = 𝜷. At each iteration, the LP relaxation is 

performed and a new 𝜷𝒌 of binary variables that need to be fixed to 1 is selected. However, any 

binary solution previously determined by the solver with the value of 1 is kept and added to the 

new set of the partial solution fixing. 

We set 𝜷 = {𝟎. 𝟕𝟓, 𝟎. 𝟖, 𝟎. 𝟗𝟓}. At the first iteration the 𝜶 value will be replaced by 𝜷 = 𝟎. 𝟕𝟓 

and for the second iteration 𝜷 = 𝟎. 𝟖. For iteration 3 onwards, the value of 𝜷 = 𝟎. 𝟗𝟓. 

 

5.3.2 Bound tightening 

LP relaxation provides information of 𝒍𝒊
∗ and 𝒖𝒊

∗ of the variable 𝒒𝒊
∗. Using the information 

provided, we wish to tighten the bounds value on the variable 𝒒𝒊 by determining the new values 

on 𝒖𝒊. Bound tightening in this research aims not only to improve the objective function, but also 

to reduce the computational time.  

 

5.4 The general framework 

Figure 5.1 shows the steps of the proposed approach and Figure 5.2 illustrates the general 

framework of the proposed approach. 
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Function (𝒕𝒎𝒂𝒙, 𝒒𝒊
∗, 𝜶 = 𝟎. 𝟓, 𝜷 = 𝟎. 𝟕𝟓, 𝟎. 𝟖, 𝟎. 𝟗𝟓) 

1   Solve LP 

 If CITP 

     Let 𝒒 = 𝒙 

 Else  

     Let 𝒒 = 𝒚 

 End if 

2   Let  𝑸: = 𝐬𝐨𝐫𝐭𝐞𝐝(𝒒∗) 

3   Let  𝑭: = { } 

4   For {𝒊 ∈ 𝑸||𝑭| ≤ 𝒇 𝐚𝐧𝐝 𝒒𝒊
∗ > 𝟎} /*apply VNS to improve the solution*/ 

 Let 𝑭: = 𝑭 ∪ { 𝐢 } 

     End for 

5   Solve MIP  

6   While 𝒕 < 𝒕𝒎𝒂𝒙 do /*enhancing the solution with intensified shaking*/ 

7   For {𝒋 𝐢𝐧 𝟏. . 𝟑} 

 If CITP 

     Let 𝒒 = 𝒙 

 Else  

     Let 𝒒 = 𝒚 

 End if 

 If 𝒋 = 𝟏 

     Let 𝒇 = 𝟎. 𝟕𝟓 

 Else if 𝒋 = 𝟐 

     Let 𝒇 = 𝟎. 𝟖 

 Else 

     Let 𝒇 = 𝟎. 𝟗 

 End if 

Figure 5.1: The algorithms of the proposed approach 
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Figure 5.1: The algorithms of the proposed approach (cont) 

8   Let 𝑸: = 𝐬𝐨𝐫𝐭𝐞𝐝(𝒒∗) 

9   Let 𝑭: = {𝒊 ∈ 𝑰 − 𝑭|𝒚𝒊 = 𝟏} 

10      For {𝒊 ∈ 𝑸||𝑭| ≤ 𝒇 𝐚𝐧𝐝 𝒒𝒊 > 𝟎}  

           Let 𝑭: = 𝑭 ∪ { 𝐢 } 

      End for 

11 Solve MIP 

     End for 

12 if 𝒇 < 𝒇∗ then  

13  𝒇∗  ← 𝒇, go to line 7 

       until 𝒇 > 𝒇∗ 

14 End while 
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Solve a LP relaxation corresponding to the IP 

Intensified shaking (Let 𝜶 = 𝛽ାଵ)  

Apply VNS  

Better objective?  

Figure 5.2: The general framework of the proposed approach 

YES 

NO 

Select 𝛼𝑘 of the 𝑦 to be equal to 1 

Optimise 
the IP 

CPLEX 

Information 
on 𝑞∗ 

CPLEX 

Optimise the IP 

Return as the 
best solution 
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5.5 Hybrid approach to CITP 

In this section, we give details of the proposed hybrid approach and the modifications made to 

solve the CITP. 

 

5.5.1 Partial fixing of 𝒚𝒊 

For the CITP problem, the decision variable that was observed is the weight of the assets held, 𝒙𝒊 

in selecting the binary variable 𝒚𝒊 for the asset 𝒊 to be included in the new portfolio. This is 

because the decision variable 𝒙𝒊 influences the objective function, TE (since the amount of the 

asset 𝒊 held contributes to the portfolio’s return).  

We use 𝜶 to partially fix the binary variables 𝒚𝒊. The value of 𝜶 is defined by the user, ranging 

from 0 to 1. The impact of this value will be closely observed by testing several initial 𝜶 values 

(0.25, 0.5, and 0.75) to determine the value that yields the minimum value of the objective 

function TE.  

 

5.5.2 Stopping criteria 

The stopping criteria that used for the search process are: 

1. The maximum time allowed for the search process 𝒕𝒎𝒂𝒙 

2. The upper bound of the tracking error, TE. 
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5.5.3 Enhancing the model performance 

To improve the solutions obtained, the following parameters will be experimented with: 

1. The upper bound 𝒖𝒊 of the variable 𝒙𝒊. 

We performed bound tightening on 𝒖𝒊 to enhance the performance of the proposed 

technique. By setting different values of the upper threshold 𝒖𝒊, the performance of the 

model is analysed to determine the best value of 𝒖𝒊 that yields the best TE. 

2. Intensified shaking 

At this stage, we replace the 𝜶 value with the 𝜷. We allow a higher percentage of the 

partial fixing of the binary variable 𝒚𝒊. 

 

5.5.4 Variants of shaking 

Intensified shaking, Step 10 in Figure 5.1 was performed by forcing some assets into the partial 

solution. These assets were picked based on their weight in the related LP relaxed solution. We 

developed two ways of performing the intensified shaking procedure in this proposed hybrid 

technique. The following subsections explain how the shaking procedure works under each 

variant. 

 

5.5.4.1 Shaking variant 1 

From Section 5.1.1, we denote 𝑸: = 𝒔𝒐𝒓𝒕𝒆𝒅(𝒙∗) where 𝒙∗ is the related LP relaxed value of 𝒙 

and from Section 5.2, we denote 𝑰 ≔ 𝐚𝐬𝐬𝐞𝐭𝐬 𝒊 𝐭𝐡𝐚𝐭 𝐰𝐞𝐫𝐞 𝐜𝐡𝐨𝐬𝐞𝐧 𝐛𝐲 𝐭𝐡𝐞 𝐬𝐨𝐥𝐯𝐞𝐫. This set 

𝑰 is updated each time the solver solves the MBIP (Step 5 and Step 11 in Figure 5.1).  
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The following Figure 5.3 exhibits how the modification of the general algorithm in Figure 5.1 

was done under Shaking Variant 1 in order to solve the CITP. 

 

 

Initial shaking 

• Let  𝑭: = { } 

• Let  𝑭: = {𝒊 ∈ 𝑰|𝒚𝒊 = 𝟏}      /*assets picked by solver in the initial solution*/ 

 

 

5.5.4.2 Shaking variant 2 

The difference between Shaking Variant 1 and Shaking Variant 2 is that in Shaking Variant 

2, the assets were reordered each time the problem was solved. By fixing the assets in set 𝑰 equal 

to 1, the integrality of the binary assets is relaxed and after the problem is solved, a new set 𝑸 is 

obtained. The reselection of assets on the next run is based on this set 𝑸.  

The following Figure 5.4 shows how the shaking process works under Shaking Variant 2. 

 

 

 

 

 

 

8   Let 𝑸: = 𝐬𝐨𝐫𝐭𝐞𝐝(𝒙𝒊
∗) 

9   Let 𝑭: = {𝒊 ∈ 𝑰 − 𝑭|𝒚𝒊 = 𝟏} 

10      For {𝒊 ∈ 𝑸||𝑭| ≤ 𝒇 𝐚𝐧𝐝 𝒙𝒊
∗ > 𝟎}  

           Let 𝑭: = 𝑭 ∪ { 𝐢 } 

      End for 

11 Solve MIP 

     End for 

Figure 5.3: Shaking Variant 1 
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8    Let 𝑸: = 𝐬𝐨𝐫𝐭𝐞𝐝(𝒙𝒊
∗) 

9    Let 𝑭: = {𝒊 ∈ 𝑰 − 𝑭|𝒚𝒊 = 𝟏} 

10      For {𝒊 ∈ 𝑸||𝑭| ≤ 𝒇 𝐚𝐧𝐝 𝒙𝒊
∗ > 𝟎}  

           Let 𝑭: = 𝑭 ∪ { 𝒊 } 

      End for 

11  Solve the MIP 

       End for 

12   Let 𝑸: =  { } 

       Fix 𝒚𝒊 = 𝟏 for 𝒊 ∈ 𝑭 

       Allow weaker integrality on 𝒚𝒊 for 𝒊 ∉ 𝑭 

       Solve MIP 

        Let 𝑸: = 𝐬𝐨𝐫𝐭𝐞𝐝(𝒙∗) for 𝒊 ∈ (𝑰 − 𝑭) 

        Force the integrality back into the problem 

        Go to line 10  

13 if 𝒇 < 𝒇∗ then  

14  𝒇∗  ← 𝒇, go to line 10 

       until 𝒇 > 𝒇∗ 

15 End while 

 
Figure 5.4: Shaking Variant 2 
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5.6 Hybrid approach to the gas supply problem 

 

5.6.1 Initial partial fixing of 𝒚𝒍 

In the gas supply problem, the binary decision variable is the decision on opening the storage 

facility at location 𝒍, denoted by 𝒚𝒍. Since the cost to open the facility is included in the objective 

function, the binary variable 𝒚𝒍 does impact the objective function 𝒇.  

To partially fix the binary variables 𝒚𝒍 to 1, we use the information on the relaxed solutions of the 

variable 𝒚𝒍
∗. Since the value of 𝒌 is not in the formulation, we set the 𝒌 value to be: 

𝒌 =  𝒚𝒍
∗

𝒍

 

Partial fixing of 𝒚𝒍 is done similar to the partial fixing of 𝒚𝒊 in the CITP problem, using 𝜶 values 

(0.25, 0.5, and 0.75) to determine the value that yields the minimum value of the total cost.  

 

5.6.2 Stopping criteria 

The stopping criteria: 

1. The maximum time allowed for the search process 𝒕𝒎𝒂𝒙 

2. The upper bound of the cost function 𝒇. 

 

 

 

 

 

(𝟓. 𝟓) 
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5.6.3 Enhancing the model performance 

The parameters that will be used to enhance the model performance: 

1. The upper value 𝒎𝒍 of the maximum storage 𝑴. 

We performed bound tightening on 𝒎𝒍 to enhance the performance of the proposed 

technique. With the information obtained on 𝑴 ∗, we analyse the value of 𝑴 that will 

improve the cost function 𝒇. 

2. Intensified shaking 

At this stage, we replace the 𝜶 value with the 𝜷. We allow a higher percentage of the 

partial fixing of the binary variable 𝒛𝒍. 

 

5.6.4 Variants of initial partial fixing 

In Section 5.6.1, we discussed how the initial partial fixing is done. In this section, we explain an 

alternative way to perform the initial partial fixing of the binary variables. Instead of fixing the 

binary variables to be 1, we now choose which binary variables that will be fixed to 0. We 

determine the value of 𝒌 the same way we did in the partial fixing explained in Section 5.6.1 and 

fix the lowest 𝒌 − 𝟏 of 𝒚𝒍
∗ to 0. In the CITP, we have two different variants of shaking. In the gas 

supply chain problem, we have two ways of the initial partial fixing. 

For both variants, the partial fixing for the shaking process was done similar to the CITP, where 

binary variables with higher relaxed value of 𝒚𝒍
∗ are forced into the partial solutions. 
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Chapter 6.0: Experimental results 

 

This chapter provides a comprehensive analysis of the proposed technique’s performance. One of 

the most commonly adopted approaches to measure the performance of a proposed technique is 

to compare the results obtained by the proposed technique with the results available in the 

literature. However, due to several factors, it is not possible to make a fair comparison of the 

results generated by the proposed techniques with the results available in the literature. For 

example, the capacity of the machine used may not be the same or no information on the 

machine’s capacity, and the approach taken to solve the studied problem is different. 

 

6.1 Computer support 

The code was written using AMPL running the CPLEX solver (version 12.6.0). The program was 

run on an Intel® Core ™ i5-2500 at 3.30 GHz with 16 GB of RAM. 
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6.2 Constrained index tracking problem (CITP)  

 

6.2.1 Data 

To test the performance of the proposed method, we used the data set taken from the Beasley OR 

Library. There were 6 sets of data and for each data set, there were 3 instances tested, making a 

total of 18 instances used to test the efficiency and effectiveness of the proposed technique. The 

following Table 6.0 provides the information of each of the data sets, where the readers can gain 

some overview. 

 

Data set Total 
number of 

assets 

Non-zero 
assets9 

Instances 
(cardinality) 

Indtrack3 89 81 30 
35 
40 

Indtrack4 98 83 30 
35 
40 

Indtrack5 225 159 50 
75 

100 
Indtrack6 457 144 50 

75 
100 

Indtrack7 1418 229 50 
75 

100 
Indtrack8 2151 234 50 

75 
100 

 

 

                                                             
9 These are the assets 𝒊 with positive weights 𝒙𝒊

∗ > 𝟎 in the relaxed LP. 

Table 6.0: Information of each data set for CITP 
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From the table, we can see that the number of the cardinality picked is about 30 to 50 percent 

from the total number of non-zero assets, with the exception for 5 instances where the percentage 

does not fall into this range. We based the cardinality percentage on the non-zero assets because 

the intelligence that was introduced in the proposed technique was based on the non-zero assets, 

where we forced some of the assets based on their weight in the related relaxed solution.  

Therefore, for indtrack8, if we were to take 30 percent from the total number of assets, about 537 

assets should be picked. This is not possible since the number of non-zero assets for indtrack8 is 

234. 

 

6.2.2 Empirical results 

After running several tests, it is concluded that the best combination of the parameters values that 

yields the best results were found as follows: 

1) Solution limit is 35 for the first run and 25 for the subsequent runs. 

2) Time limit is best set at 300 seconds for the first run and 150 seconds for the subsequent 

runs. 

3) The 𝜶 value is 0.5. 

4) The combination of the 𝜷 (intensified shaking) values are 0.75, 0.8, 0.9. 

5) The upper value 𝒖𝒊 of the variable 𝒙𝒊 is 𝒖𝒊 = 𝟎. 𝟎𝟏𝟓 for 𝒙𝒊
∗ = 𝟎 and 𝒖𝒊 =

𝐦𝐚𝐱 (𝟒. 𝟑𝒙𝒊
∗, 𝟎. 𝟎𝟏𝟓) for 𝒙𝒊

∗ > 𝟎 

 

Due to the limitations imposed on both the solution limit and time limit, different results were 

generated each time we solved the problem. Therefore, for each instances, we ran 5 times and the 

following Table 6.1 and Table 6.2 give the best found, mean and mode of the solutions that were 

generated by the proposed method using Shaking Variant 1 and Variant 2. The full results are 

provided in Appendix B of this thesis. 
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The mode of the solution were the value of TE that appeared more than once when we solved the 

problem for 5 different times. The mode of the solution gives the likely value of the TE that we 

will obtain when we solved the problem. Best found is the lowest TE generated among the 5 times 

we solved the problem. 

Figure 6.0, Figure 6.1 and Figure 6.3 illustrate the number of wins and draws (both shaking 

procedure give the same TE) of best found, mean and mode of the solutions between Shaking 

Variant 1 and Shaking Variant 2. From this point onwards, we denote the proposed hybrid 

technique using Shaking Variant 1 and Shaking Variant 2 as Hybrid Variant 1 and Hybrid 

Variant 2 respectively. 
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  total 
assets10 

Cardinality 
Hybrid Variant 1 

Best Mean Mode 
TE seconds TE seconds TE seconds 

indtrack3 89 30 0.489247450 415.801 0.489247450 416.133 0.489247450 416.133 
    35 0.429655449 764.113 0.429655449 764.123 0.429655449 764.123 

  40 0.378027573 744.800 0.378027573 749.130 0.378027573 749.130 
indtrack4 98 30 0.440715907 323.701 0.443689184 316.274 0.444432504 321.032 

  35 0.375229507 320.572 0.383282648 328.420 0.386013452 330.706 
    40 0.344979505 370.247 0.344979505 370.325 0.344979505 370.325 
indtrack5 225 50 0.319647027 1134.432 0.322500563 1084.840 0.319647027 1140.867 
    75 0.230784396 1371.642 0.230784396 1380.915 0.230784396 1380.915 

  100 0.194837657 1055.679 0.195204407 1107.544 0.195187017 1193.793 
indtrack6 457 50 0.550234487 1087.177 0.550234487 1088.077 0.550234487 1088.077 

  75 0.449535004 998.186 0.449535004 998.101 0.449535004 998.101 
    100 0.422325618 840.514 0.422325618 842.361 0.422325618 842.361 
indtrack7 1418 50 0.761432001 1503.114 0.768103691 1341.828 0.769771614 1301.506 
    75 0.492734947 1144.066 0.508353423 1030.434 0.505182551 901.909 

  100 0.359056561 1333.960 0.372651092 1001.381 0.376049725 918.237 
indtrack8 2151 50 0.521914474 1484.288 0.545190203 1019.532 0.551009136 903.343 

  75 0.365493892 903.214 0.365493892 903.296 0.365493892 903.296 
    100 0.267110930 1587.021 0.267110930 1749.182 0.267110930 1749.182 

 

 

                                                             
10 The total number of assets available in the portfolio 

Table 6.1: The best found, mean and mode of the solutions generated by Hybrid Variant 1 
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  total 
assets 

Cardinality 
Hybrid Variant 2 

Best Mean Mode 
TE seconds TE seconds TE seconds 

indtrack3 89 30 0.48924745 600.982 0.48924745 601.7504 0.48924745 601.7504 
    35 0.431925095 715.127 0.431925095 715.38 0.431925095 715.38 

  40 0.380424531 661.247 0.380424531 667.7252 0.380424531 667.7252 
indtrack4 98 30 0.43270049 528.986 0.43270049 533.1558 0.43270049 533.1558 

  35 0.375229507 613.476 0.382855382 632.9588 0.38476185 637.8295 
    40 0.344979505 670.527 0.344979505 670.6842 0.344979505 670.6842 
indtrack5 225 50 0.327314345 900.703 0.326234847 907.393 0.327314345 900.76 
    75 0.231418232 1078.839 0.231418232 1080.1916 0.231418232 1080.1916 

  100 0.191327665 1843.689 0.194112834 1169.1264 Do not exist 
indtrack6 457 50 0.551165494 886.689 0.551165494 887.5808 0.551165494 887.5808 

  75 0.449535004 1006.345 0.449535004 1009.0958 0.449535004 1009.0958 
    100 0.422325618 826.364 0.422325618 838.773 0.422325618 838.773 
indtrack7 1418 50 0.725226933 1582.103 0.771262735 1118.1138 0.786002718 901.937 
    75 0.505182551 901.939 0.50964396 901.9404 0.505182551 901.97733 

  100 0.381857299 1361.567 0.400532569 1074.9484 0.406079358 903.854 
       0.404323415 1102.7335 

indtrack8 2151 50 0.52586196 1502.932 0.526898491 1344.2708 0.527157624 1304.6055 
  75 0.365493892 903.595 0.365493892 903.6934 0.365493892 903.6934 

    100 0.295978968 903.412 0.295978968 903.5018 0.295978968 903.5018 

         
 
Table 6.2: The best found, mean and mode of the solutions generated by Hybrid Variant 2 
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Hybrid Variant 1
9

Hybrid Variant 2
3

draw
6

best

Hybrid Variant 1 Hybrid Variant 2 draw

Hybrid Variant 1
9

Hybrid Variant 2
4

draw
5

mean

Hybrid Variant 1 Hybrid Variant 2 draw

Figure 6.1: Number of wins and draws (mean) between Hybrid Variant 1 and Hybrid Variant 2 

Figure 6.0: Number of wins and draws (best found) between Hybrid Variant 1 and Hybrid Variant 2 
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Comparing the results obtained by both Hybrid Variant 1 and Hybrid Variant 2, Hybrid 

Variant 1 has the most number of wins in all of the three comparisons. On average (mean), 

Hybrid Variant 1 outperformed Hybrid Variant 2 in 9 instances (out of 18 instances) and 

obtained the same result for 5 instances.  

The following Table 6.3 compares the performance of the mean solutions of Hybrid Variant 2 

to Hybrid Variant 1. We calculated the relative error and the changes in the computational time 

using the following formulations:  

𝐫𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐞𝐫𝐫𝐨𝐫 =
𝑻𝑬𝑽𝟐 − 𝑻𝑬𝑽𝟏

𝑻𝑬𝑽𝟏
 

 

𝐜𝐡𝐚𝐧𝐠𝐞𝐬 𝐢𝐧 𝐭𝐢𝐦𝐞 =
𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟐 − 𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟏

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟏
 

Hybrid Variant 1
8

Hybrid Variant 2
3

draw
6

mode

Hybrid Variant 1 Hybrid Variant 2 draw

Figure 6.2: Number of wins and draws (mode) between Hybrid Variant 1 and Hybrid Variant 2 

(𝟔. 𝟎) 

(𝟔. 𝟏) 
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𝑻𝑬𝑽𝟏 and 𝑻𝑬𝑽𝟐 are the TE generated using Hybrid Variant 1 and Hybrid Variant 2 

respectively. 𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟏 is the computational time recorded by Hybrid Variant 1 and 

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟐 is the computational time recorded by Hybrid Variant 2. 

 

  total assets cardinality 

Mean  
𝑻𝑬𝑽𝟐ି𝑻𝑬𝑽𝟏

𝑻𝑬𝑽𝟏
  

(%) 

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟐ି𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟏

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟏
 

(%) 
indtrack3 89 30 0.00 44.61 
    35 0.53 (6.38) 

  40 0.63 (10.87) 
indtrack4 98 30 (2.48) 68.57 

  35 (0.11) 92.73 
    40 0.00 81.11 
indtrack5 225 50 1.16 (16.36) 
    75 0.27 (21.78) 

  100 (0.56) 5.56% 
indtrack6 457 50 0.17 (18.43) 

  75 0.00 1.10 
    100 0.00 (0.43) 
indtrack7 1418 50 0.41 (16.67) 
    75 0.25 (12.47) 

  100 7.48 7.35 
indtrack8 2151 50 (3.36) 31.85 

  75 0.00 0.04 
    100 10.81 (48.35) 

 

 

From Table 6.3, we can see that, in the case where both Hybrid Variant 1 and Hybrid Variant 

2 generated the same TE, Hybrid Variant 2 required a significantly higher running time 

compared to Hybrid Variant 1 for 2 out of the 5 instances. In the remaining 3 instances, the 

difference of the running time is relatively small and in 1 of the instances, the reduction in the 

running time in Hybrid Variant 1 is only 0.43 percent.  

Table 6.3: Relative error of Hybrid Variant 2 to Hybrid Variant 1 
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We concluded that Hybrid Variant 1 performed better than Hybrid Variant 1. The shaking 

under Hybrid Variant 2 may have redirected the search farther than the neighbourhood with 

good solutions, hence generating less desirable solutions.
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6.2.3 Comparison of the proposed hybrid technique to other methods 

 

To evaluate the performance of the proposed technique, the results obtained are compared to: 

1) an exact method (CPLEX) with some limitations imposed 

2) a heuristic technique 

 

6.2.3.1 Hybrid VS exact method (brute force) 

 

We first compare the generated results with the results produced using the exact method. One 

exact method available is the CPLEX solver. However, the CPLEX solver used in the experiments 

was unable to solve the problem to optimality due to the massive computational efforts required. 

Therefore, the brute force method with the following limitations were imposed: 

1) Solution limit: The solution limit in the first run was set to 20 solutions and this limit was 

increased by 10 solutions in each subsequent run whenever the current solutions were 

better than the previous solution and the programme terminated when there was no 

improvement in the current solution. 

2) Time limit: The time limit was fixed at 300 seconds for each run. 

 

In the first run, the solution limit was 20 and the time limit was 300 seconds. Now, in the second 

run, the solution limit is 30 and the time limit is still 300 seconds. If there is an improvement in 

the solution generated, the progamme will continue to run for the third time with solution limit 

40 and time limit 300 seconds. Table 6.4 gives the best found, mean and mode of the solution 

generated by the CPLEX solver. The running time given in the table is the accumulated time for 

all of the runs.  
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  total 
assets 

cardinality 
Solver 

Best Mean Mode 
TE seconds TE seconds TE seconds 

indtrack3 89 30 0.481754067 679.126 0.481754067 679.8148 0.481754067 679.8148 
    35 0.427148057 608.289 0.428688435 904.2884 0.427148057 754.1335 

  40 0.378027573 655.099 0.37994514 654.7428 0.380424531 654.6538 
indtrack4 98 30 0.429386982 639.348 0.433192267 639.4724 0.433717321 639.236 

  35 0.387476607 658.922 0.387476607 659.695 0.387476607 659.695 
    40 0.351930283 1248.879 0.352012285 888.5724 0.352066953 648.2723 
indtrack5 225 50 0.336470332 1099.05 0.337833567 1099.4732 0.336470332 1099.311 
    75 0.233221442 1636.469 0.237321315 1276.2558 0.239218337 1036.001 

  100 0.192830675 1924.459 0.194152056 1143.641 0.194960159 873.334 
indtrack6 457 50 0.561663663 1740.073 0.561663663 1740.5826 0.561663663 1740.583 

  75 0.447960169 2291.379 0.449802306 1571.0194 0.45026284 1390.93 
    100 0.424167101 480.108 0.424167101 480.4504 0.424167101 480.4504 
indtrack7 1418 50 1.054647903 900.717 1.054647903 900.7666 1.054647903 900.7666 
    75 0.686114743 1200.932 0.735953341 960.7924 0.748412991 900.7575 

  100 0.420452453 900.51 0.420452453 900.746 0.420452453 900.746 
indtrack8 2151 50 0.731449872 900.847 0.731449872 900.8882 0.731449872 900.8882 

  75 0.428562345 600.695 0.428562345 600.842 0.428562345 600.842 
    100 0.308858348 600.582 0.308858348 600.6108 0.308858348 600.6108 

 

 
Table 6.4: Best found, mean and mode of the TE generated by the CPLEX solver 
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Figure 6.3, Figure 6.4 and Figure 6.5 illustrate the number of wins of best found, mean and 

mode of the solutions between Hybrid Variant 1, Hybrid Variant 2 and the CPLEX solver. 
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Figure 6.4: Number of wins and draws (mean) between Hybrid Variant 1, Hybrid Variant 2 and CPLEX solver 

Figure 6.3: Number of wins and draws (best found) between Hybrid Variant 1, Hybrid Variant 2 and CPLEX solver 
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No draws in the TE were recorded between the proposed hybrid technique (both variants) and the 

CPLEX solver. There was only 1 instance (indtrack3 with cardinality 40) where Hybrid Variant 

1 generated the same with the CPLEX solver under the best found solutions comparison. 

We can see that Hybrid Variant 1 outperformed Hybrid Variant 2 and the CPLEX solver in all 

of the three comparisons with a significant number of wins. Although Hybrid Variant 2 did not 

perform as well as Hybrid Variant 1, it still outperformed the results given by the CPLEX solver.  

Table 6.5 analysed how well on average (mean) Hybrid Variant 1 and Hybrid Variant 2 

performed compared to the CPLEX solver while Table 6.6 shows how the three approaches 

performed when being compared to the best (mean) solutions among the three. The error and 

speed were calculated using the formulations given in (6.0) and (6.1). 

 

 

 

 

Hybrid Variant 1
12

Hybrid Variant 2
8

solver
3

mode

Hybrid Variant 1 Hybrid Variant 2 solver

Figure 6.5: Number of wins and draws (mode) between Hybrid Variant 1, Hybrid Variant 2 and solver 
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total 

assets cardinality 

Hybrid Variant 1 Hybrid Variant 2 
𝑻𝑬𝑽𝟏ି𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓

𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓
  

(%) 

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟏ି𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒔𝒐𝒍𝒗𝒆𝒓

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒔𝒐𝒍𝒗𝒆𝒓
 

(%) 

𝑻𝑬𝑽𝟐ି𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓

𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓
  

(%) 

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟐ି𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒔𝒐𝒍𝒗𝒆𝒓

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒔𝒐𝒍𝒗𝒆𝒓
 

(%) 
indtrack3 89 30 1.56 (38.79) 1.56 (11.48) 
    35 0.23 (15.50) 0.76 (20.89) 

  40 (0.50) 14.42 0.13 1.98 
indtrack4 98 30 2.42 (50.54) (0.11) (16.63) 

  35 (1.08) (50.22) (1.19) (4.05) 
    40 (2.00) (58.32) (2.00) (24.52) 
indtrack5 225 50 (4.54) (1.33) (3.43) (17.47) 
    75 (2.75) 8.20 (2.49) (15.36) 

  100 0.54 (3.16) (0.02) 2.23 
indtrack6 457 50 (2.03) (37.49) (1.87) (49.01) 

  75 (0.06) (36.47) (0.06) (35.77) 
    100 (0.43) 75.33 (0.43) 74.58 
indtrack7 1418 50 (27.17) 48.97 (26.87) 24.13 
    75 (30.93) 7.25 (30.75) (6.13) 

  100 (11.37) 11.17 (4.74) 19.34 
indtrack8 2151 50 (25.46) 13.17 (27.97) 49.22 

  75 (14.72) 50.34 (14.72) 50.40 
    100 (13.52) 191.23 (4.17) 50.43 

 

 

 

Table 6.5: Relative error of the proposed techniques to the CPLEX solver 
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total 

assets cardinality 

Hybrid Variant 1 Hybrid Variant 2 solver 
𝑻𝑬𝑽𝟏ି𝑻𝑬𝒃𝒆𝒔𝒕

11

𝑻𝑬𝒃𝒆𝒔𝒕
  

 (%) 

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟏ି𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒃𝒆𝒔𝒕
12

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒃𝒆𝒔𝒕

 (%) 

𝑻𝑬𝑽𝟐ି𝑻𝑬𝒃𝒆𝒔𝒕

𝑻𝑬𝒃𝒆𝒔𝒕
  

 (%) 

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟐ି𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒃𝒆𝒔𝒕

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒃𝒆𝒔𝒕
 

(%) 

𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓ି𝑻𝑬𝒃𝒆𝒔𝒕

𝑻𝑬𝒃𝒆𝒔𝒕
  

 (%) 

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒔𝒐𝒍𝒗𝒆𝒓ି𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒃𝒆𝒔𝒕

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒃𝒆𝒔𝒕

 (%) 
indtrack3 89 30 1.56 (38.79) 1.56 (11.48) 0.00 0.00 
    35 0.23 (15.50) 0.76 (20.89) 0.00 0.00 

  40 0.00 0.00 0.63 (10.87) 0.51 (12.60) 
indtrack4 98 30 2.54 (40.68) 0.00 0.00 0.11 19.94 

  35 0.11 (48.11) 0.00 0.00 1.21 4.22 
    40 0.00 0.00 0.00 81.11 2.04 139.94 
indtrack5 225 50 0.00 0.00 1.16 (16.36) 4.75 1.35 
    75 0.00 0.00 0.27 (21.78) 2.83 (7.58) 

  100 0.56 (5.27) 0.00 0.00 0.02 (2.18) 
indtrack6 457 50 0.00 0.00 0.17 (18.43) 2.08 59.97 

  75 0.00 0.00 0.00 1.10 0.06 57.40 
    100 0.00 0.43 0.00 0.00 0.44 (42.72) 
indtrack7 1418 50 0.00 0.00 0.41 (16.67) 37.31 (32.87) 
    75 0.00 0.00 0.25 (12.47) 44.77 (6.76) 

  100 0.00 0.00 7.48 7.35 12.83 (10.05) 
indtrack8 2151 50 3.47 (24.16) 0.00 0.00 38.82 (32.98) 

  75 0.00 0.00 0.00 0.04 17.26 (33.48) 
    100 0.00 0.00 10.81 (48.35) 15.63 (65.66) 

 

 

                                                             
11𝑻𝑬𝒃𝒆𝒔𝒕 is the TE given by the best solutions obtained among the three approaches 
12𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒃𝒆𝒔𝒕 is the computational time of the best solutions obtained among the three approaches 

Table 6.6: Relative error of Hybrid Variant 1, Hybrid Variant 2 and the CPLEX solver compared to the best solutions (mean) found among the three approaches 
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From Table 6.5, we can see that, except for 3 to 4 instances, the TE generated using the proposed 

hybrid technique showed a decrease in the value, especially for larger data sets. For indtrack7 

and indtrack8, all of the instances showed a better TE compared to the ones generated by the 

CPLEX solver with a decrease of more than 10 percent for most of the instances. The required 

running time to achieve these results showed a moderate increase (about 10 to 50 percent) except 

for 1 instance where the running time recorded an increase of 191.23 percent. 

In Table 6.6, the TE generated by the solver increased about 12 to 45 percent for all of the 

instances in both of the larger data sets, indtrack7 and indtrack8. The decrease in the running 

time did not show an immense change since the largest percentage of decrease recorded was 65.66 

percent. Both Table 6.5 and Table 6.6 indicate that a better TE was achieved using the proposed 

hybrid technique without requiring a large change of running time. 

We then increased the time limit imposed on the solver to 2000 seconds to see if the solver can 

perform better and provide more competitive results to the results generated by the proposed 

hybrid technique. Table 6.7 gives the mean results generated by the CPLEX solver when the time 

limit is increased and Table 6.8 compares the average results generated by the CPLEX solver 

with 2000 seconds of time limit with the one with 300 seconds time limit. 
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total 

assets 
cardinality 

Solver 
Best Mean Mode 

TE seconds TE seconds TE seconds 
indtrack3 89 30 0.481754067 4081.7 0.481754067 4083.0522 0.481754067 4083.0522 
   35 0.427148057 4010.429 0.428828461 4372.5212 0.427148057 4677.658 

  40 0.378027573 4057.55 0.37994514 4057.2168 0.380424531 4057.1335 
indtrack4 98 30 0.429386982 4041.764 0.433842715 4041.9346 do not exist 

  35 0.387476607 4061.598 0.387476607 4063.2372 0.387476607 4063.2372 
   40 0.351930283 6052.248 0.351957617 6453.2968 0.351930283 7054.0135 
indtrack5 225 50 0.3262242 6037.928 0.329979584 6562.5776 0.330172034 6190.7205 
   75 0.230377212 6018.324 0.235501797 5670.2916 do not exist 

  100 0.191397623 6052.919 0.192852076 6423.068 do not exist 
indtrack6 457 50 0.553554599 14250.481 0.561186166 8552.7564 do not exist 

  75 0.448097106 8198.638 0.450452564 7797.4722 do not exist 
   100 0.424167101 2181.703 0.424167101 2182.1914 0.424167101 2182.1914 
indtrack7 1418 50 0.788738237 21828.03 0.836067921 14206.7174 do not exist 
   75 0.492241966 31836.885 0.504439822 24204.046 do not exist 

  100 0.362909001 22418.574 0.364239725 22006.1488 do not exist 
indtrack8 2151 50 0.509472133 28016.323 0.53144998 22413.7172 do not exist 

  75 0.325592283 20994.889 0.343899392 11386.815 0.34847617 8984.7965 

   100 0.252870911 20587.671 0.259625893 11771.5206 
0.258746597 

0.2638826793 
10568.2815 
8566.6845 

 

 

 

Table 6.7: Best found, mean and mode of the TE generated using the CPLEX solver with 2000 time limit 



 

 

104 
 

  total 
assets 

cardinality 

Mean 
𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓𝟐

13ି𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓

𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓
  

(%) 

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒔𝒐𝒍𝒗𝒆𝒓𝟐
14ି𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒔𝒐𝒍𝒗𝒆𝒓

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒔𝒐𝒍𝒗𝒆𝒓
 

(%) 
indtrack3 89 30 0.00 500.61 
   35 0.03 383.53 

  40 0.00 519.67 
indtrack4 98 30 0.15 532.07 

  35 0.00 515.93 
   40 (0.02) 626.25 
indtrack5 225 50 (2.32) 496.88 
   75 (0.77) 344.29 

  100 (0.67) 461.63 
indtrack6 457 50 (0.09) 391.37 

  75 0.14 396.33 
   100 0.00 354.20 
indtrack7 1418 50 (20.73) 1477.18 
   75 (31.46) 2419.18 

  100 (13.37) 2343.10 
indtrack8 2151 50 (27.34) 2387.96 

  75 (19.76) 1795.14 
   100 (15.94) 1859.92 

 

 

The results generated by the CPLEX solver with the time limit of 2000 seconds showed a decrease 

in the TE for most of the instances and performed significantly better in the large data set, 

indtrack7 and indtrack8, showing a reduction of about 13 to 32 percent in the TE for all of the 6 

instances. However, an enormous increase in the running time, about 1400 to 2500 times than the 

time of the CPLEX solver with 300 seconds time limit is required to obtain these significantly 

better TE. 

Because the mode for most of the instances did not exist, we compare only the best found solutions 

and the solutions mean of the CPLEX solver with 2000 seconds time limit with the results 

generated by the proposed hybrid technique using Hybrid Variant 1 and Hybrid Variant 2. 

                                                             
13𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓𝟐 is the TE obtained using the CPLEX solver with 2000 time limit 
14𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝒔𝒐𝒍𝒗𝒆𝒓𝟐 is the computational time using the CPLEX solver with 2000 time limit 

Table 6.8: Relative error of the TE (mean) using the CPLEX solver with 2000 time limit to the TE 
generated using the CPLEX solver with 300 time limit 



 

 

105 
 

 

 

 

 

 

From Figure 6.6, we can see that on average, Hybrid Variant 1 managed to outperform the 

CPLEX solver with the time limit of 2000 seconds. Hybrid Variant 1 has the best TE for 8 of 

the instances compared to the solver that has 7.  

Hybrid Variant 1
8

Hybrid Variant 2
6

solver
7

mean

Hybrid Variant 1 Hybrid Variant 2 solver

Hybrid Variant 1
7

Hybrid Variant 2
5

solver
10

best

Hybrid Variant 1 Hybrid Variant 2 solver

Figure 6.5: Number of wins (mode) between Hybrid Variant 1, Hybrid Variant 2 and CPLEX solver using 2000 time 
limit 

Figure 6.6: Number of wins (best found) between Hybrid Variant 1, Hybrid Variant 2 and CPLEX solver using 2000 
time limit 
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However, the solver has 10 wins for the best solutions found while Hybrid Variant 1 only has 7 

wins. We may have better TE if we increased the time limit used for the proposed hybrid 

technique. But as we can see from Table 6.4, the running time required might increase immensely 

to achieve a better TE. 
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6.2.3.2 Hybrid VS metaheuristic technique (genetic algorithm) 

In Chapter 5 of this thesis, we discussed how the hybridisation of the metaheuristic intended to 

improve the solutions generated by a single metaheuristic technique. Therefore, in this section, 

we compare the results generated by the proposed technique with the results generated using a 

metaheuristic technique. The metaheuristic technique chosen is a genetic algorithm (GA). 

 

6.2.3.2.1 Genetic algorithms (GA) 

GA is a metaheuristic technique that imitates the biological phenomena by producing better 

offspring, through a mutation process of two parents where it maintains the best traits from the 

two parents. We created 100 parents and chose the best 10 percent that have the best fitness value 

(smallest TE values) for the mutation process. The solution limit and the time limit were set to 

35 solutions and 300 seconds for each mutation process between Parent A and Parent B. 

Table 6.9 gives the best found, mean and mode of the TE values obtained for all of the instances 

using the GA technique. The following Table 6.10 compares the performance of the solutions 

(mean) obtained using the GA approach with Hybrid Variant 1 and Hybrid Variant 2. 

  

  



 

 

108 
 

  
total 

assets cardinality 
GA 

Best Mean Mode 
TE seconds TE seconds TE seconds 

indtrack3 89 30 0.481754067 2754.086 0.484804798 2508.5464 0.484766765 2357.9415 
    35 0.429886484 1862.885 0.429886484 1866.0688 0.429886484 1866.0688 

  40 0.38692187 2673.548 0.387316979 2780.5576 0.387415756 2807.31 
indtrack4 98 30 0.430703819 2016.925 0.430703819 2051.24 0.430703819 2051.24 

  35 0.373900849 2331.39 0.373900849 2347.869 0.373900849 2347.869 
    40 0.344656988 3722.255 0.344915609 3056.0724 0.345057156 2947.586 
indtrack5 225 50 0.340397742 6774.716 0.340397742 6779.3784 0.340397742 6779.3784 
    75 0.235488117 11472.411 0.236500593 11796.7578 do not exist 

  100 0.19215004 11242.348 0.193017908 11073.6412 do not exist 
indtrack6 457 50 0.595205771 6026.084 0.595205771 6032.3394 0.595205771 6032.3394 

  75 0.451718519 8749.587 0.453791761 8776.6182 0.454464484 8785.559667 
    100 0.422014697 8724.308 0.422014697 8733.4948 0.422014697 8733.4948 
indtrack7 1418 50 0.899214481 13511.784 0.899214481 13512.8946 0.899214481 13512.8946 
    75 0.694055155 13512.061 0.734802815 13513.6536 0.754136812 13513.419 

  100 0.460963271 13511.154 0.460963271 13511.5564 0.460963271 13511.5564 
indtrack8 2151 50 0.731449789 13520.666 0.731449789 13521.3644 0.731449789 13521.3644 

  75 0.428562345 13522.5 0.428562345 13522.7598 0.428562345 13522.7598 
    100 0.308146556 13516.216 0.308146556 13517.6894 0.308146556 13517.6894 

 

 

 

 

 

Table 6.9: Best found, mean and mode of the TE generated using the GA approach 
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  total 
assets 

cardinality 

GA compared to Hybrid Variant 1 GA compared to Hybrid Variant 2 
𝑻𝑬𝑮𝑨

15ି𝑻𝑬𝑽𝟏

𝑻𝑬𝑽𝟏
   𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑮𝑨

16ି𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟏

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟏
  

(%) 

𝑻𝑬𝑮𝑨ି𝑻𝑬𝑽𝟐

𝑻𝑬𝑽𝟐
   𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑮𝑨ି𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟐

𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑽𝟐
 

(%) (%) (%) 
indtrack3 89 30 (0.91) 502.82 (0.91) 316.87 
    35 0.05 144.21 (0.47) 160.85 

  40 2.46 271.17 1.81 316.42 
indtrack4 98 30 (2.93) 548.56 (0.46) 284.74 

  35 (2.45) 614.90 (2.34) 270.94 
    40 (0.02) 725.24 (0.02) 355.66 
indtrack5 225 50 5.55 524.92 4.34 647.13 
    75 2.48 754.27 2.20 992.10 

  100 (1.12) 899.84 (0.56) 847.17 
indtrack6 457 50 8.17 454.40 7.99 579.64 

  75 0.95 779.33 0.95 769.75 
    100 (0.07) 936.79 (0.07) 941.22 
indtrack7 1418 50 17.07 907.05 16.59 1108.54 
    75 44.55 1211.45 44.18 1398.29 

  100 23.70 1249.29 15.09 1156.95 
indtrack8 2151 50 34.16 1226.23 38.82 905.85 

  75 17.26 1397.05 17.26 1396.39 
    100 15.36 672.80 4.11 1396.14 

 

                                                             
15𝑻𝑬𝑮𝑨 is the TE obtained using the GA technique 
16𝒔𝒆𝒄𝒐𝒏𝒅𝒔𝑮𝑨 is the computational time using the GA technique 

Table 6.10: Relative error of solutions (mean) obtained by the GA approach to the solutions (mean) obtained using Hybrid Variant 1 and Hybrid Variant 2  
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From Table 6.9, we can see that the solutions generated using the GA approach required large 

computational time compared to the computational time under the proposed hybrid approach. For 

the small data sets, indtrack3 and indtrack4, the GA approach recorded around 2000 to 3000 

seconds for most of the instances. In the case of larger data set, indtrack7 and indtrack8, the 

computational time was up to 13500 seconds for all of the instances. These big number of 

computational time were due to the fact that under the GA approach, the model will have to 

complete all of the mutation processes in order to find the best solution. Even if the best solution 

has actually been found in the early stage of the mutation processes, there is no stopping criteria 

incorporated into the model to exit the process unlike the hybrid approach where it terminates the 

search process once there is no improvement in the current solution. 

We then compare the solutions generated using the GA technique with the solutions obtained 

using the proposed hybrid technique. Table 6.10 gives the relative error and the speed of the 

solutions generated using the GA approach to the solutions obtained under Hybrid Variant 1 and 

Hybrid Variant 2. It can be observed that the quality for most of the solutions obtained using the 

GA approach were outperformed by the solutions generated by Hybrid Variant 1 and Hybrid 

Variant 2, especially for all of the instances in the larger data sets. For indtrack7 and indtrack8, 

the difference in the TE recorded about 15 to 45 percent of increase with noticeably huge gap in 

the computational time, about 1100 to 1400 times more compared to the computational time under 

Hybrid Variant 1 and Hybrid Variant 2 for most of the instances. 

In the following Figure 6.7, Figure 6.8 and Figure 6.9, comparisons are made on the best found, 

mean and mode of the solutions generated using the proposed hybrid technique, the CPLEX solver 

and the GA approach. 
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Figure 6.7: Number of wins (mean) between Hybrid Variant 1, Hybrid Variant 2, the GA technique and 
the CPLEX solver 

Figure 6.8: Number of wins (best found) between Hybrid Variant 1, Hybrid Variant 2, the GA 
technique and the CPLEX solver 
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We can see that Hybrid Variant 1 outperformed the other approaches with significant number 

of wins in all of the 3 comparisons. Although Hybrid Variant 2 did not record much number of 

wins, the quality of the solutions generated using this approach were actually better than the 

solutions generated using the CPLEX solver and the GA approach. The low number of wins was 

actually due to the better quality provided by the solutions generated using Hybrid Variant 1. If 

we refer to Table 6.5 and Table 6.10, Hybrid Variant 2 outperformed 15 out of 18 instances of 

the solutions (mean) obtained using the CPLEX solver and 11 out of 18 instances of the solutions 

obtained under the GA approach. 

The quality of the solutions provided by the GA technique can be enhanced by increasing the 

number of the parents set to undergo the mutation process or by increasing the time limit. This 

however will record a much larger computational time. As we mentioned earlier, the larger 

computational time recorded by the GA technique was due to the mutation processes that need to 

be completed between the parents. Therefore, by increasing the number of parents set will require 

more mutation processes, leading to larger computational time. 

Hybrid Variant 1
10

Hybrid Variant 2
5

solver
2

GA
3

mode

Hybrid Variant 1 Hybrid Variant 2 solver GA

Figure 6.9: Number of wins (mode) between Hybrid Variant 1, Hybrid Variant 2, the GA technique and 
the CPLEX solver 
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6.2.4 Comparison to the relaxed LP solutions 

Another way to measure the quality of the solutions generated is to see how far they are from the 

relaxed LP solutions. The following Table 6.11 compares the solutions (mean) of the proposed 

hybrid technique, the CPLEX solver and the GA approach with the solutions obtained from the 

LP relaxation.  

For indtrack3, indtrack4, indtrack5 and indtrack6, all of the approaches recorded similar 

differences to the relaxed LP solution for all of the instances tested. For the biggest cardinality 

for each of the data sets, 40 for indtrack3 and indtrack4 and 100 for indtrack5 and indtrack6, the 

TE generated compared to the relaxed LP solutions showed tolerable differences. For indtrack3 

and indtrack4, the differences ranges from 28 to 36 percent and the difference in the TE for 

indtrack5 is around 15 percent. indtrack6 showed incredibly small differences to the TE in the 

relaxed LP solutions, about 7 percent increase on average under each approach. 

In the larger data sets, indtrack7 and indtrack8, the gap between the TE generated by all of the 

approaches to the TE of the relaxed LP was quite noticeable. The differences range from 80 to 

500 percent. However, it is noticeable that the differences showed by the proposed hybrid 

technique were almost half from the differences recorded by the CPLEX solver and the GA 

approach for most of the instances. 

Readers should note that the TE generated by the approaches discussed in this research were 

obtained using only smaller percentage of the total assets, especially for the larger data sets. From 

Table 6.0, the relaxed LP solutions used 229 and 234 assets for indtrack7 and indtrack8, 

respectively. The largest number of the cardinality picked was 100 which is less than half of the 

number of assets in the relaxed LP solutions. There are some other elements that were not included 

in the models such as the transaction fees which could affect the return of the index since more 

number of assets requires higher transaction fees.
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total 

assets 
relaxed LP 
solution 

cardinality 

Hybrid Variant 1 Hybrid Variant 2 CPLEX solver GA 
𝑻𝑬𝑽𝟏ି𝑻𝑬𝑳𝑷

17

𝑻𝑬𝑳𝑷
  

(%) 

𝑻𝑬𝑽𝟐ି𝑻𝑬𝑳𝑷

𝑻𝑬𝑳𝑷
  

(%) 

𝑻𝑬𝒔𝒐𝒍𝒗𝒆𝒓ି𝑻𝑬𝑳𝑷

𝑻𝑬𝑳𝑷
  

 (%) 

 𝑻𝑬𝑮𝑨ି𝑻𝑬𝑳𝑷

𝑻𝑬𝑳𝑷
  

(%) 

indtrack3 89 0.285511633 
30 71.36 71.36 68.73 69.80 
35 50.49 51.28 50.15 50.57 
40 32.40 33.24 33.08 35.66 

indtrack4 98 0.268240316 
30 65.41 61.31 61.49 60.57 
35 42.89 42.73 44.45 39.39 
40 28.61 28.61 31.23 28.58 

indtrack5 225 0.168588219 
50 91.29 93.51 100.39 101.91 
75 36.89 37.27 40.77 40.28 

100 15.79 15.14 15.16 14.49 

indtrack6 457 0.394932939 
50 39.32 39.56 42.22 50.71 
75 13.83 13.83 13.89 14.90 

100 6.94 6.94 7.40 6.86 

indtrack7 1418 0.203944621 
50 276.62 278.17 417.12 340.91 
75 149.26 149.89 260.86 260.30 

100 82.72 96.39 106.16 126.02 

indtrack8 2151 0.124590627 
50 337.59 322.90 487.08 487.08 
75 193.36 193.36 243.98 243.98 

100 114.39 137.56 147.90 147.33 

                                                             
17𝑻𝑬𝑳𝑷 is the TE of the relaxed LP solutions 

Table 6.11: Relative error of solutions (mean) obtained under Hybrid Variant 1, Hybrid Variant 2, the GA approach and the CPLEX solver to the relaxed LP solution 
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Looking at the solutions generated using the CPLEX solver and the GA approach, the proposed 

hybrid technique did extremely well in larger data sets, showing significant differences in the 

instances tested with huge gap in computational time. For other data sets, the proposed hybrid 

technique produce better TE than the other approaches for most of the instances, although the 

differences in the TE were small. The solutions obtained under the proposed hybrid technique 

were also the closest to the relaxed LP solutions for most of the instances. 

From the comparisons made, it can be concluded that the proposed hybrid technique was indeed 

capable of providing good solutions in a relatively short amount of computational time, especially 

for large size problems. 
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6.3 Gas supply chain problem 

  

6.3.1 Data 

Due to the absence of the real data, we generated our own set of data where the details of how the 

data is generated are provided in the Appendix A of this thesis. 

The gas supply chain problem is more complex since it has more decision variables compared to 

the CITP. There were two sets of decision variables involved in the CITP. For the gas supply 

chain problem, there were four sets of decision variables, making the matrix of this problem much 

larger than the CITP. 

 

6.3.2 Empirical results  

6.3.2.1 The proposed hybrid technique 

6.3.2.1.1 Initial partial fixing variant 1 

We tested 3 different 𝜶 values to determine which fixing yields the best result i.e. the minimum 

total cost. The results are given in the following Table 6.12. 

Partial 
fixing 

Initial solution 
(LP) 

Initial 
shaking 

Number of 
facility 
opened 

𝜶 = 𝟎. 𝟐𝟓 335635.3705 335458.1823 34 

𝜶 = 𝟎. 𝟓 335860.7784 335419.0757 33 

𝜶 = 𝟎. 𝟕𝟓 336110.2965 335562.2318 34 

 

 

Table 6.12: The total cost generated using different values of 𝜶 under initial partial fixing variant 1 
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Partial 
fixing 

Improvement 
in the total cost 

% of 
decrease in 
total cost 

𝜶 = 𝟎. 𝟐𝟓 177.19 0.05 

𝜶 = 𝟎. 𝟓 441.70 0.13 

𝜶 = 𝟎. 𝟕𝟓 548.07 0.16 
 

 

From Table 6.12, it shows that the 𝜶 value that yields the best result is 0.5. It is also interesting 

to note that, the hybridisation of the LP relaxation and the VNS did show improvement in the 

objective function, total cost. In the first stage where we use the LP relaxation to partially fix the 

value of the binary variable, the total cost was 335860.78. When we apply the VNS technique by 

changing the neighbourhood of the current solution, the total cost showed a decrease of 441.70 to 

335419.08, about 0.13 percent difference. The improvement in the total cost also can be seen in 

the other two cases where each case recorded a decrease of 0.05 percent and 0.16 percent. 

Although 𝜶 = 𝟎. 𝟕𝟓 showed the biggest improvement among the three cases as shown in Table 

6.13, it still gave a higher total cost than 𝜶 = 𝟎. 𝟓, a difference of 143.15. Furthermore, it suggest 

to open storage facilities at 34 locations, compared to 𝜶 = 𝟎. 𝟓 that suggest to open the facilities 

at 33 locations. The cost of maintaining the storage was not considered in this model and thus it 

might not be beneficial in the long run. The time period considered in the model was based on the 

4 seasons in a year. With time period 𝒕 = 𝟐𝟎, the amount calculated was to cover the operational 

cost for 5 years. The maintenance cost may show a significant difference in the total cost in a 

longer time period. 

 

 

 

 

Table 6.13: The decrease in the total cost using different values of 𝜶 under initial partial fixing variant 1 
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6.3.2.1.2 Initial partial fixing variant 2 

 

  
Initial 

solution (LP) 
Initial 

shaking 

Number of 
facility 
opened 

Locations 

Initial partial 
fixing variant 

1 
335860.78 335419.08 33 

3,4,5,6,7,9,10,11, 
12,14,15,16,20,21,22,23, 
24,25,26,28,31,32,35,36, 

37,38,41,42,43,45,48,49,50 
 

Initial partial 
fixing variant 

2 
335400.05 335399.74 33 

2,4,5,6,7,8,9,10,11, 
12,14,15,16,20,21,22,23, 
25,26,28,31,32,35,36,37, 
38,41,42,43,45,48,49,50 

 
 

 

From Table 6.14, the initial partial fixing variant 2 performed better than variant 1 with a decrease 

in total cost of 19.34. Although the difference in the total cost is small, about 0.0058 percent, it 

might bring a significant impact in the long run. 

Both variants suggest the same number of storage facilities should be open. However, some of 

the suggested locations were different. Under the initial partial fixing variant 1, the model 

suggests locations 3 and 24 but not under initial partial fixing variant 2 where it suggests locations 

2 and 8 instead. Further analysis showed that on average, locations 2 and 8 did offer a cheaper 

gas price than locations 3 and 24. This most likely contributed to the lower amount of total cost 

under initial partial fixing variant 2 and may highly impacts the total cost in the long run. 

 

6.3.2.2 CPLEX solver and brute force method 

The gas supply chain problem has more decision variables compared to the CITP. Like the CITP, 

the CPLEX solver also failed to solve the gas supply chain problem due to the excessive usage of 

Table 6.14: The comparison of the total cost generated by initial partial fixing variant 1 and initial partial fixing 
variant 2 
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memory.  Hence, we took the same approach, the brute force method by implementing some 

limitations on the time limit and solution limit. We used the same time limit that we imposed 

under initial partial fixing variant 2, 10 000 seconds. For the solution limit, we used 20 and 

increased the limit by 10 for the next run each time the CPLEX solver managed to find an 

improved solution in the current run. The programme terminated once the current solution is the 

same or worse than the one in the previous run.  

We then compared the quality of the solutions generated by the CPLEX solver with the solutions 

found by the proposed hybrid technique using initial partial fixing variant 2. The computational 

time given is the cumulative of all of the runs. 

  Total costs seconds 
Number 

of facility 
opened 

Locations 

Initial partial 
fixing variant 

2 
335399.74 15980.40 33 

2,4,5,6,7,8,9,10,11,12,14, 
15,16,20,21,22,23,25,26,28,31,32, 
35,36,37,38,41,42,43,45,48,49,50 

 

CPLEX solver 335399.74 19987.27 33 
2,4,5,6,7,8,9,10,11,12,14, 

15,16,20,21,22,23,25,26,28,31,32, 
35,36,37,38,41,42,43,45,48,49,50 

 

 

The proposed hybrid technique using initial partial fixing variant 2 managed to replicate the 

solutions found by the CPLEX solver in relatively shorter computational time, about 20 percent 

less time required by the CPLEX solver.  

The results obtained in Table 6.15 were obtained when we allowed a maximum of 15 locations 

of 𝒍𝟏 to supply the gas to location 𝒍. We then reduce this number to 10 and Table 6.16 shows the 

solutions generated by initial partial fixing variant 2 and the CPLEX solver. 

 

 

Table 6.15: The comparison of the total cost generated by initial partial fixing variant 2 and the CPLEX solver 
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  Total costs seconds 
Number 

of facility 
opened 

Locations 

Initial partial 
fixing variant 

2 
335418.22 12379.00 33 

2,4,5,6,7,9,10,11,12,13,14,15, 
16,20,21,23,24,25,26,28,31,32,35, 

36,37,38,41,42,43,45,48,49,50 
  

CPLEX solver 335825.83 20090.00 34 
3,4,5,6,7,9,10,11,12,15,16,20, 

21,22,23,24,25,26,28,31,32,34,35, 
36,37,38,41,42,43,44,45,48,49,50 

 

 

The proposed hybrid technique provides better solutions than the CPLEX solver, giving lower 

total costs with a difference of 407.61 or about 0.12 percent decrease in the total costs. The 

computational time required by the proposed method also was a lot shorter compared to the time 

recorded by the CPLEX solver.  

Furthermore, the solutions suggested by the CPLEX solver requires 34 locations of storage 

facilities should be open but for only 33 locations were suggested under the proposed hybrid 

technique.  

  

Table 6.16: The total cost generated by initial partial fixing variant 2 and the CPLEX solver when the number of 
locations allowed to supply gas was reduced to 10 
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6.3.3 Enhancing the solutions 

6.3.3.1 Bound tightening 

One way to enhance the solutions is to tighten the bounds. We set a new upper value 𝒎𝒍 to the 

maximum value of storage, 𝑴 and observed the solutions generated. The following Table 6.15 

shows the solutions obtained using initial partial fixing variant 1 under different values of upper 

value 𝒎𝒍.  

 

  Total cost 
Number of 

storage facility 
opened 

 𝒖𝒍 = 𝟏. 𝟓𝒎𝒍
∗ 338424.58 37 

𝒖𝒍 = 𝟐. 𝟎𝒎𝒍
∗ 336868.39 37 

𝒖𝒍 = 𝟐. 𝟓𝒎𝒍
∗  336071.60 36 

𝒖𝒍 = 𝟑. 𝟎𝒎𝒍
∗ 335873.15 36 

𝒖𝒍 = 𝟒. 𝟑𝒎𝒍
∗  336078.29 35 

 

 

From the solutions obtained, it is clear that tightening the bound did not help in improving the 

solutions for the gas supply problem. This may imply that the original value of the maximum 

value of storage, 𝑴 is optimum and reducing the capacity of the storage facility will force the 

model to opt for opening more facilities, as reflected in Table 6.15. This led to the increase in the 

total costs. 

 

6.3.3.1 Intensified shaking 

The following Table 6.16 shows the comparison in the solutions before and after the shaking 

process. The 𝜷 values were set at 𝜷 = 𝟎. 𝟔, 𝟎. 𝟕, 𝟎. 𝟖. 

Table 6.15: Comparison of the solutions using different 𝒎𝒍 
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Hybrid Initial 
solution (LP) Initial shaking Intensified 

shaking 
Initial partial 
fixing variant 

1 
335860.78 335419.08 335419.08 

Initial partial 
fixing variant 

2 
335400.05 335399.74 335399.74 

 

 

Applying intensified shaking also did not help in improving the solutions obtained. Both variants 

did not show any improvement in the total cost. 

In conclusion, the proposed method was successfully implemented to solve the gas supply 

problem and did generate satisfactory solutions in a considerable amount of computational time. 

There was no improvement made when bound tightening and intensified shaking were performed. 

The absence of the real data may be the contributing factor to the solutions obtained. 

  

Table 6.16: Comparison of the solutions before and after the intensified shaking process 
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Chapter 7.0: Conclusions and findings 

 

7.1 Conclusions 

The research presented in this thesis focuses on the development of a hybrid metaheuristic 

between an exact method and a metaheuristic technique for CO problems. 

In Chapter 1, we introduced IP, a form of CO problems. We discussed about the types of IP with 

more focus on the MBIP. Then, we introduced the concept of heuristics and metaheuristics, a 

framework of search methods that have become increasingly popular in solving computationally 

hard IP problems. The contributions of this research are also discussed at the end of this chapter. 

Dumitrescu and Stützle (2003) concluded that IP methods and local search methods have the most 

significant success in solving CO problems. In Chapter 2, we presented a survey on some of the 

most commonly used IP methods and local search methods, as well as its extensions. A brief 

introduction to the techniques enables the readers to gain some basic idea on the methods. 

Hybrid metaheuristics are relatively new but are enjoying much popularity among researchers 

due to their ability to exploit the complementary character of different optimisation techniques. 

In Chapter 3, the concept of hybrid metaheuristics was presented, focusing on the collaborative 

combinations between metaheuristics and ILP techniques. Readers are able to gain some insight 

about this technique as well as the existing literature available. 

To demonstrate the flexibility of our proposed method, two similar yet different MBIP problems 

were studied. In Chapter 4, the structures of the CITP and the gas supply chain problem were 

discussed where readers could see the characteristics of the two problems. The two problems were 

formulated as MBIP problems. 

In Chapter 5, the proposed solution method, the hybrid of LP relaxations and VNS, was 

presented. The complementary combinations of the two techniques were described. Readers were 
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able to see how the LP relaxation was used to generate an initial point. VNS was then used to 

redirect the search into promising directions of the search space where better optimum may be 

found.   

The experimental results of both studied problems were presented in Chapter 6 of this thesis. 

Comparisons were made with other techniques to analyse the performance of the solutions 

generated using the proposed hybrid technique.  

 

7.2 Findings 

The aim of this research was to provide an alternative method to solve the computationally hard 

MBIP problems. A hybrid between the LP relaxation and the VNS was proposed. The proposed 

hybrid method used LP relaxation of the MBIP to generate initial solutions and guide the search 

process. VNS was then used to improve the solutions guided by the information provided by the 

LP relaxation. 

For the CITP, the results provided and the comparisons made to the other methods showed that 

our proposed method did provide satisfactory solutions. In most instances, our proposed method 

dominates the results obtained by the CPLEX solver and the GA approach with significantly 

shorter amount of time. It is difficult to compare our results with other authors’ works since few 

authors use the same data set, the approach taken also is different. Therefore, the results from the 

literature are not comparable to the results obtained in this research. 

In the gas supply problem, since the real data is absent, we generated our own set of data by 

incorporating some of the important features of the gas supply chain problem such as the gas 

price, gas demand, and the cost of opening a facility. Therefore, apart from comparing our results 

with the performance of the CPLEX solver, we cannot compare the results with other works in 

the literature. From the results provided in Section 6.3, it is clear that the proposed method did 

provide better solutions compared to the CPLEX solver. 
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The main motivation of this research was to build a general framework of a solution approach 

that can be easily implemented for different classes of CO problems, particularly in this research, 

to MBIP problems. Our aim was to demonstrate the flexibility of the proposed method, focusing 

more on solving the MBIP at hand, with satisfactory solutions, rather than finding the best 

solutions to the problem. 

VNS offers great potential as a search agent and compared to other LS based metaheuristics 

methods, VNS is easier to implement and more user-friendly. To overcome the randomness, we 

used LP relaxation as a guide to search in more promising areas that may lead to better solutions. 

We want to maintain the simplicity of the VNS characteristics but at the same time to provide 

satisfactory solutions.  

There are several characteristics of a good metaheuristic maintained in our proposed method:  

1. Simplicity and easy implementation. 

2. Generality that demonstrates the flexibility/ability of implementing the technique to 

different classes of CO problems by minor adjustments.  

3. Precision where the steps of our proposed method can be formulated in precise 

mathematical terms. 

4. Effectiveness where the proposed method was able to produce satisfactory solutions in 

moderate computing time. 

5. User-friendliness where the proposed method is clearly expressed, easy to understand 

and, easy to use.  

6. Interactivity which means that the proposed method allows the user to incorporate this 

knowledge to improve the resolution process. 

 

From the results obtained, we managed to demonstrate the flexibility of our proposed method to 

be implemented for different types of CO problems. With minor adjustments, the proposed 

method yields satisfactory solutions for both problems. The only adjustment needs was the 
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decision variables that were used to guide the search process; the weight of asset 𝒊, 𝒙𝒊 for the 

CITP problem and the relaxed binary decision variable of opening a facility at location 𝒍, 𝒛𝒍 for 

the gas supply problem. 

  



 

 

127 
 

Chapter 8.0: Future research 

 

8.1 Effects of the heuristic controls 

This research focuses on proposing a method that can solve a variety of MBIP problems rather 

than finding the best solution for a specific problem. The integer element in the decision variables 

of the MBIP problems often caused these problems become computationally challenging and too 

expensive for the exact method to solve. More often than not, MIP solvers such as CPLEX ran 

out of memory while enumerating the combinations of the possible solutions to the MBIP problem 

being solved. 

As mentioned under Section 1.5.2, Fischetti and Lodi (2003) stated that many commercial MIP 

solvers provide some flexibility to have certain heuristic controls over some parameters that 

affect: 

1) the exploration of the branching rules 

2) the frequency of application of the internal heuristics 

3) the fact of emphasizing the solution integrality rather than its optimality 

and many more. However, the authors also stressed that the flexibility given may not be adequate 

for some cases which led to many opted for specialised heuristics.  

In this research, a hybrid technique between a metaheuristics and an exact method was proposed. 

The hybrid technique is a collaborative combination of the VNS (a metaheuristics technique) with 

LP relaxation (an exact method). It uses the information provided by the LP relaxation to guide 

the search for solutions in the neighbourhood by VNS. This specialised heuristic uses the 

flexibility provided by the MIP solver to exploit item (1) above. It is interesting to see if the 

hybridisation of the LP relaxation and the VNS introduced in this research will be able to exploit 

item (2) and (3) in solving the MBIP problems. 
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8.2 Implementations to the other MBIP problems 

The general framework of the proposed hybrid technique that was designed to give the flexibility 

to the technique being implemented to different types of the MBIP problems. The proposed hybrid 

technique was successfully implemented on both of the problems studied in this research. This 

proved that the motivation of this research to propose a technique that focuses on solving the 

MBIP in general rather than achieving the best solutions to a specific studied problem was 

accomplished. 

There are many other MBIP problems that are widely studied by many researchers in various 

fields of researches.  One direction that this research may take is to implement the proposed hybrid 

technique as an alternative technique to the other MBIP problems, especially for researchers that 

is looking for a technique that requires a short amount of computational time. 

 

8.3 Consistency of the solutions generated (CITP) 

The proposed hybrid technique provides good solutions to both problems in a relatively shorter 

computational time, as discussed in Chapter 6 of this thesis. From the empirical results and 

comparisons made to the other techniques, it showed that the proposed hybrid technique does 

provide a promising potential as a solution method to the CO problems, in particular to the MBIP 

problems. 

However, due to the limitations imposed both on the solution limit and time limit, the model 

showed variations in the solutions each time we solved the problem (for the CITP). Although the 

variations recorded an average of 0.42 and 0.41 of differences between the solutions generated 

for Hybrid Variant 1 and Hybrid Variant 2 respectively, it is more desirable if the model is 

able to produce the same TE value each time we solve the problem. Interested readers or 

researchers can focus on making the model more robust by finding the method to fix this issue. 
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8.4 Partial solution construction 

One important features that was introduced in the proposed method was the way of selecting and 

forcing some of the variables into the partial solution. This feature showed a promising potential 

of aiding the search process for better solutions to the studied problems as well as reducing the 

computational time needed. Future researches may consider this feature to be applied in other 

techniques and observed whether the same results obtained in this research can be achieved. 

 

8.5 Element of risk 

One of the limitations in the models used to solve the CITP and the gas supply chain problem in 

this research is that none of them incorporate the element of risk into the models. The work of 

this research can be expanded to study the incorporation of risk into the models. One of the risk 

measure that may be considered is the conditional value of risk, CVaR. 

 

  



 

 

130 
 

Bibliography 
 
Aarts, E.H.L., and Lenstra, J.K. (1997). Local search in combinatorial optimization. Chichester: 

Wiley. 
 
Aickelin, U., and Clark, A. (2011). Heuristic optimisation. Journal of the Operational Research 

Society, 62 (2), 251-252. 
 
Applegate, D. L., Bixby, R. E., Chvátal, V., and Cook, W. J. (1998). On the solution of the travelling 

salesman problem. Documenta Mathematica Extra Volume ICM III, 645-656. 
 
Atamtürk, A., and Savelsbergh, M. W. P. (2005). Integer-programming software systems. Annals 

of Operations Research, 140(1), 67-124. doi: https://doi.org/10.1007/s10479-005-3968-2 
 
Beasley, J. E. (1990). OR-Library: Distributing test problems by electronic mail. Journal of the 

Operational Research Society, 41(11), 1069-1072, doi: 10.1057/jors.1990.166 
 
Beasley, J. E., Meade, N., and Chang, T., -J. (2003). An evolutionary heuristic for the index tracking 

problem. European Journal of Operational Research, 148(3), 621-643. Retrieved from 
https://doi.org/10.1016/S0377-2217(02)00425-3 

 
Bennell, J. (2015). Part 1. Combinatorial optimization problems [Class handout]. Southampton,  

United Kingdom. University of Southampton, Combinatorial Optimization. 
 
Blum, C., Blesa Aguilera, M.J., Roli, A., and Samples, M. (2008). Hybrid metaheuristics - An 

emerging approach to optimization. Volume 114 of Studies in Computational Intelligence. 
Berlin, Germany: Springer Verlag. 

 
Blum, C., Puchinger, J., Raidl, G., and Roli, A. (2011). Hybrid metaheuristics in combinatorial  

optimization: A survey. Applied Soft Computing, 11 (6), 4135-4151. 
 
Blum, C., Roli, A., and Alba, E. (2005). An introduction to metaheuristic techniques. In: Parallel 

Metaheuristics: A New Class of Algorithms, 47, 3-42. New York, USA: John Wiley & Sons. 
doi: 10.1002/0471739383.ch1 

 
Brilliant.org (2019). Combinatorial optimization. Retrieved from 

https://brilliant.org/wiki/combinatorial-optimization/  
 
Canakgoz, N. A., and Beasley, J. E. (2009). Mixed-integer programming approaches for index 

tracking and enhanced indexation. European Journal of Operational Research, 196(1), 384-
399. Retrieved from https://doi.org/10.1016/j.ejor.2008.03.015 

 
Christofides, N., Mingozzi, A., Toth, P., and Sandi, C. (1979). Combinatorial optimization. Bath, 

Great Britain: John Wiley & Sons. 
 
Chu, P., and Beasley, J. (1998). A genetic algorithm for the multidimensional knapsack problem. 

Journal of Heuristics, 4(1), 63-86. doi: https://doi.org/10.1023/A:1009642405419 
 
Consoli, S., and Darby-Dowman, K. (2007). Combinatorial optimization and metaheuristics. 

Annals of Operations Research, 140(1), 189-213. 



 

 

131 
 

Cotta, C. (1998). A study of hybridisation techniques and their application to the design of 
evolutionary algorithms. AI Communications ,11, 223-224. 

 
Cotta, C., Talbi, E-G., and Alba, E. (2005). Parallel metaheuristics – A new class of algorithms.  

Hoboken, New Jersey: Wiley & Sons. 
 
Dantzig, G.B. (1963). Linear programming and extensions. Princeton, New Jersey: Princeton 
 University Press. 
 
Daskin, M. S., and Maass, K., L. (2015). The p-median problem. In: Laporte, G., Nickel, S., 

Saldanha da Gama, F. (Eds) Location Science, 21-45. Springer International Publishing. doi: 
https://doi.org/10.1007/978-3-319-13111-5_2 

 
Dumitrescu, I., and Stützle, T. (2003). Combinations of local search and exact algorithms. In: 

Raidl, G. R. et al. (Eds.), Applications of Evolutionary Computing, Vol. 2611 of Lecture Notes 
in Computer Science. Berlin, Germany: Springer.  

 
El-Abd, M., and Kamel, M. (2005). A taxonomy of cooperative search algorithms. In: Blesa, M. J., 

Blum, C., Roli, A., and Samples, M. (Eds), HM 2005: Hybrid Metaheuristics, Lecture Notes in 
Computer Science, 3636, 32-41. Berlin : Springer. 

 
Feo, T. A., and Resende, M. G. C. (1989). A probabilistic heuristic for computationally difficult set 

covering problem. Operations Research Letters, 8, 67-71. 

 
Festa, P. (2014, July). A Brief Introduction to Exact, Approximation, and Heuristic Algorithms for  

Solving Hard Combinatorial Optimization Problems. Paper presented at 2014 16th 
International Conference on Transparent Optical Networks (ICTON): IEEE. doi: 
10.1109/ICTON.2014.6876285 

 
Fischetti, M., and Lodi, A. (2003). Local branching. Mathematical Programming Series B, 98, 23-

47. 
 
Frontline Solvers. (2018). Retrieved from  

https://www.solver.com/integer-constraint-programming 
 
Galli, L. (2018). Algorithms for integer programming [Class handout]. Retrieved from  
 http://www.di.unipi.it/optimize/Courses/RO2IG/aa1617/ROII1617.html 
 
Gendreau, M., and Potvin, J, -Y. (2005). Metaheuristics in combinatorial optimization. Annals of  

Operations Research, 140, 189-213. 
 
Gendreau, M., and Potvin, J, -Y (Eds). (2010). Handbook of metaheuristics. New York, USA: 

Springer. 
 
Gill, P.E., Murray W., and Wright, M.H. (1982). Practical optimization. London, United Kingdom: 

Academic Press. 
 
Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. 

Computers & Operations Research, 13(5), 533-549. 



 

 

132 
 

Glover, F., and Martí, R. (2006). Tabu search. In: Alba, E., and Martí, R. (Eds), Metaheuristic 
Procedure for Training Neutral Networks, Operations Research/Computer Science 
Interfaces Series, Volume 36. Boston, Massachusetts: Springer.  

 
Gomory, R. E. (1963). An algorithm for integer solutions to linear programs. In Graves, R. L., and 

Wolfe, P. (Eds), Recent Advances in Mathematical Programming (pp 269-302). New York: 
McGraw-Hill. 

 
Gustavsson, E. (2015). Topics in convex and mixed binary linear optimization. (Doctoral 

dissertation). Retrieved from http://hdl.handle.net/2077/38634 
 
Hansen, P., and Mladenović, N. (2001). Variable neighbourhood search: Principles and 

applications. European Journal of Operational Research, 130, 449-467. 
 

Hansen, P., Mladenović, N., and Moreno Pérez, J. A. (2008). Variable neighbourhood search: 
Methods and applications. 4OR, 6(4), 319-360. doi: https://doi.org/10.1007/s10288-008-
0089-1 

 
Hansen, P., Mladenović, N., and Moreno Pérez, J. A. (2010). Variable neighbourhood search: 

Algorithms and apllications. Annals of Operations Research, 175, 367-407. 
 
Heragu, S. S., Mazacioglu, B., and Fuerst, K. D. (1994). Meta-heuristic algorithms for the order 

picking problem. International Journal in Industrial Engineering, 1(1), 67-76. 
 

Hoos, H., and Stützle, T. (2004). Stochastic local search: Foundations and applications. San 
Francisco, California: Morgan Kaufmann Publishers Inc. 

 
Joslin, D. E., and Clements, D. P. (1999). Squeaky wheel optimization. Journal of Artificial 

Intelligence Research, 10, 353-373. 
 
Jörnsten, K., and Lokketangen, A. (1997). Tabu search for weighted k-cardinality trees. Asia-

Pacific Journal of Operations Research, 14(2), 9-26. 

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by simulated annealing. Science, 
220(4598), 671-680. Retrieved from http://www.jstor.org/stable/1690046 

 
Klau, G., Ljubić, I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Raidl, G., and Weiskircher, R. 

(2004). Combining a memetic algorithm with integer programming to solve the prize-
collecting Steiner tree problem. In: Deb, K. (Eds), Genetic and Evolutionary Computation – 
GECCO 2004. Lecture Notes in Computer Science, 3102, 1304-1315. Berlin: Springer, 
Heidelberg. doi: https://doi.org/10.1007/978-3-540-24854-5_125 

 
Koberstein, A., Lucas, C., Wolf, C., and König, D. (2011). Modeling and optimizing risk in the 

strategic gas-purchase planning problem of local distribution companies. Journal of Energy 
Markets, 4(3), 47-68. doi: 10.21314/JEM.2011.061 

 
Kwiatowski, J.W. (1992). Algorithm for index tracking. Journal of Mathematics Applied in 

Business and Industry, 4, 279-299. 
 
Land, A. H., and Doig, A. G. (1960). An automatic method of solving discrete programming 

problems. Econometrica, 28(3), 497-520. doi: 10.2307/1910129 



 

 

133 
 

Lin, A. Z. –Z., Bean, J., and White, I. C. C. (2004). A hybrid genetic/optimization algorithm for 
finite horizon partially observed markov decision process. Journal on Computing, 16(1), 27-
38. 

 
Lin, B.W.Y., and Rardin, R. L. (1977). Development of parametric generating procedure for 

integer programming test problems. Journal of the ACM, 24(3), 465-472. 
 
Little, J.D. C., Murty, K. G., Sweeney, D. W., and Karel, C. (1963). An algorithm for the traveling 

salesman problem. Operations Research, 11(6), 972-989. doi: 10.1287/opre.11.6.972 
 
McCarl, B. A., and Spreen, T. H. (1997). Applied mathematical programming using algebraic 

systems. Retrieved from  
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm 

 
Metaheuristic Networks. (2000). Retrieved from 

http://www.metaheuristics.org/index.php%3Fmain=1.html 
 
MIT (2015). Introduction to LP formulations [Power point slides]. Retrieved from  

https://ocw.mit.edu/courses/sloan-school-of-management/15-053-optimization-
methods-in-management-science-spring-2013/tutorials/MIT15_053S13_tut01.pdf 

 
Mitchell, J. E. (2002). Branch-and-cut algorithms for combinatorial optimization. In: Handbook 

of Applied Optimization (pp 65-77). Oxford, United Kingdom: Oxford University Press. 
 
Mladenović, N., and Hansen, P. (1997). Variable neighbourhood search. Computers & Operations 

Research, 24, 1097-1100. 
 
Nagar, A., Heragu, S. S., and Haddock, J. (1995) A meta-heuristic algorithm for a bi-criteria 

scheduling problem. Annals of Operations Research, 63, 397-414. 
 
Osman, I.H., and Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations 

Research, 63(5), 511-623. 
 
Pan, L. (2015). Cutting plane method [Power Point slides]. Retrieved from  

https://www.math.cuhk.edu.hk/course_builder/1415/math3220/L5.pdf 
 
Pirlot, M. (1996). General local search methods. European Journal of Operational Research, 

9(23), 493-511. 
 
Plateau, A., Tachat, D., and Tolla, P. (2002). A hybrid search combining interior point methods 

and metaheuristics for 0-1 programming. International Transactions in Operations 
Research, 9, 731-746. 

 
Puchinger, J., and Raidl, G. (2005). Combining metaheuristics and exact algorithms in 

combinatorial optimization: A survey and classification. In: Artificial Intelligence and 
Knowledge Engineering Applications: A Bioinspired Approach, 41-53. Berlin, Germany: 
Springer. 

 
 



 

 

134 
 

Raidl, G. R. (2006). A unified view on hybrid metaheuristics. In: Almeida, F., Blesa Aguilera, M. J., 
Blum, C., Moreno Vega, J. M., Pérez, M. P., Roli, A., and Samples, M. (Eds), Proceedings of 
HM 2006 – Third International Workshop on Hybrid Metaheuristics, Vol. 4030 of Lecture 
Notes in Computer Science (pp 1–12). Berlin, Germany: Springer Verlag. 

 
Raidl, G. R., and Feltl, H. (2004). An improved hybrid genetic algorithm for the generalized 

assignment problem. In: Haddadd, H. M., Omicini, A., Wainwright, R. L., and Liebrock, L. M. 
(Eds.), Proceedings of the 2004 ACM Symposium on Applied Computing (pp 990-995). 
Nicosia: Cyprus: ACM New York. 

 
Rajab, R.S. (2012). Some applications of continuous variable neighbourhood search 

metaheuristic (mathematical modelling) (Doctoral dissertation). Retrieved from Brunel 
University Research 
Archive. 

 
Rouse, M. (2018, February). Definition soft computing. Retrieved from  

https://whatis.techtarget.com/definition/soft-computing 
 
Sierksma, G., and Zwols, Y. (2015). Linear and integer optimization: Theory and practice (3rd ed.). 

Boca Raton, Florida: CRC Press. 
 
Stützle, T. (1999). Local search algorithms for combinatorial problems: Analysis, improvements, 

and new applications, Volume 220 of DISKI. Sankt Augustin, Germany: Infix.  
 
Talbi, E.G. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8, 541-564. 
 
Talbi, E.G. (2009). Metaheuristics: From design to implementation. Hoboken, New Jersey: John 

Wiley & Sons.  
 
Toth, P., and Vigo, D. (2003). The granular tabu search and its application to the vehicle-routing 

problem. INFORMS Journal on Computing, 15, 333-346. 
 
Vasquez, M., and Hao, J. K. (2001). A hybrid approach for the 0-1 multidimensional knapsack 

problem. In: Proceedings of the International Joint Conferences on Artificial Intelligence 
Organization, 1, 328-333. Seattle. 

Voss, S., Martello, S., Osman, I. H., and Roucairol, C. (1999). Meta-heuristics: Advances and 
Trends in Local Search Paradigms for Optimization. Boston, Massachusetts: Kluwer 
Academic Publishers. 

 
Voudouris, C., and Tsang, E.P.K. (1995). Guided local search (Technical Report CSM-247).  
 
Winston, W.L. (2004). Operations research: applications and algorithms (4th ed.). Belmont,  
 California: Duxbury Press. 

  



 

 

135 
 

Appendix A 

DEMAND AND PRICE SCENARIOS GENERATION OF THE GAS SUPPLY PROBLEM 

Prices for natural gas are mainly influenced by the weather, demographics, economic growth, fuel 

competition, storage and exports. However, in this problem, the projection of the gas prices and 

demands are only affected by the weather.   

The demand and price of gas are the random variables that bring the uncertainty factor into the 

gas supply modelling problem. These two elements have to be properly considered in the 

decision-making model. With a known probability distribution (from statistical data), the future 

values of the two random variables are predicted by generating scenarios. A probabilistic model 

or simulation generates a batch of scenarios to represent how the demand and price will unfold in 

the future. 100 scenarios of gas price and demand are forecasted based on the three major weather 

outcomes; normal, cold and very cold.  

 

DISTRIBUTION OF THE GAS DEMAND AND GAS PRICE 

Under this model, we assume that the price and demand of gas follow a Uniform distribution 

based on the outcomes of weather. 

 

THE SCENARIO GENERATION ALGORITHM 

We define 

i. 𝒇 = 𝟏. . 𝟏𝟎𝟎 are scenarios 

ii. 𝒔 = 𝟏. . 𝟑 are the major outcomes of winter 

iii. 𝑷𝒕,𝒍,𝒔 is the expected value of price for major outcome 𝒔 at location 𝒍 at time 𝒕  
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iv. 𝑫𝒕,𝒍,𝒔 is the expected value of demand for major outcome 𝒔 at location 𝒍 at time 

𝒕 

v. 𝑷𝒕,𝒍,𝒇
ᇱ  is the generated price value of scenario 𝒇 at location 𝒍 at time 𝒕  

vi. 𝑫𝒕,𝒍,𝒇
ᇱ  is the generated demand value of scenario 𝒇 at location 𝒍 at time 𝒕 

vii. 𝑷𝒔 is the minimum value of price for major outcome 𝒔 

viii. 𝑫𝒔 is the minimum value of demand for major outcome 𝒔 

 

Then we define 𝒂 = 𝑨, 𝒃 = 𝑩 and let 𝒌 = 𝒇 − |
𝒇

𝟑
| × 𝟑 where 𝒌 is sampled 100 times; 𝒌 takes 

the value of either 0, 1 or 2 where each represents either warm, cold or very cold forecasted winter 

scenarios respectively and 𝒇 is the scenario number. The two boundaries of 𝒂 and 𝒃 are the lower 

and upper value of the uniform distribution. 

 

We let  

𝑷𝟏,𝒍,𝒇
ᇱ = 𝑷𝟏,𝒍,𝒄𝒐𝒍𝒅          ∶ ∀ 𝑓, 𝑙   

𝑫𝟏,𝒍,𝒇
ᇱ = 𝑫𝟏,𝒍,𝒄𝒐𝒍𝒅         ∶ ∀ 𝑓, 𝑙 

 

Given 𝒌 then for 𝒕 ≥ 𝟐 

𝑷𝒕,𝒍,𝒇
ᇱ = 𝒎𝒂𝒙൫𝑷𝒔 , 𝑼(𝒂, 𝒃) × 𝑷𝒕,𝒍,𝒌൯            ∶ ∀ 𝑡 ≥ 2, 𝑙, 𝑓 

𝑫𝒕,𝒍,𝒇
ᇱ = 𝒎𝒂𝒙൫𝑫𝒔 , 𝑼(𝒂, 𝒃) × 𝑫𝒕,𝒍,𝒌൯           ∶ ∀ 𝑡 ≥ 2, 𝑙, 𝑓 
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Appendix B 

Full results of Hybrid Variant 1 

     best 
error speed 

mean 
error speed 

dataset cardinality time 
(n) 

TE seconds TE seconds TE seconds 

indtrack3 

30 

1 0.4892474495 415.801 

0.4892474495 415.801 

0.00% 0.00% 

0.4892474495 416.133 

0.00% -0.08% 
2 0.4892474495 415.843 0.00% 0.01% 0.00% -0.07% 
3 0.4892474495 416.392 0.00% 0.14% 0.00% 0.06% 
4 0.4892474495 416.343 0.00% 0.13% 0.00% 0.05% 
5 0.4892474495 416.286 0.00% 0.12% 0.00% 0.04% 

35 

1 0.4296554491 764.278 

0.4296554491 764.113 

0.00% 0.02% 

0.4296554491 764.1232 

0.00% 0.02% 
2 0.4296554491 764.268 0.00% 0.02% 0.00% 0.02% 
3 0.4296554491 764.113 0.00% 0.00% 0.00% 0.00% 
4 0.4296554491 764.194 0.00% 0.01% 0.00% 0.01% 
5 0.4296554491 763.763 0.00% -0.05% 0.00% -0.05% 

40 

1 0.3780275727 747.299 

0.3780275727 744.8 

0.00% 0.34% 

0.3780275727 749.1302 

0.00% -0.24% 
2 0.3780275727 745.845 0.00% 0.14% 0.00% -0.44% 
3 0.3780275727 747.447 0.00% 0.36% 0.00% -0.22% 
4 0.3780275727 744.8 0.00% 0.00% 0.00% -0.58% 
5 0.3780275727 760.26 0.00% 2.08% 0.00% 1.49% 

indtrack4 

30 

1 0.444432504 294.573 

0.440715907 323.701 

0.84% -9.00% 

0.4436891842 316.274 

0.17% -6.86% 
2 0.440715907 323.701 0.00% 0.00% -0.67% 2.35% 
3 0.4444325035 321.145 0.84% -0.79% 0.17% 1.54% 
4 0.4444325035 321.001 0.84% -0.83% 0.17% 1.49% 
5 0.4444325035 320.95 0.84% -0.85% 0.17% 1.48% 

35 

1 0.3829354839 327.984 

0.3752295070 320.572 

2.05% 2.31% 

0.3832826480 328.4198 

-0.09% -0.13% 
2 0.3860134519 330.717 2.87% 3.16% 0.71% 0.70% 
3 0.3862213451 332.132 2.93% 3.61% 0.77% 1.13% 
4 0.3860134519 330.694 2.87% 3.16% 0.71% 0.69% 
5 0.3752295070 320.572 0.00% 0.00% -2.10% -2.39% 

40 

1 0.3449795047 370.417 

0.3449795047 370.247 

0.00% 0.05% 

0.3449795047 370.3254 

0.00% 0.02% 
2 0.3449795047 370.247 0.00% 0.00% 0.00% -0.02% 
3 0.3449795047 370.329 0.00% 0.02% 0.00% 0.00% 
4 0.3449795047 370.286 0.00% 0.01% 0.00% -0.01% 
5 0.3449795047 370.348 0.00% 0.03% 0.00% 0.01% 
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Full results of Hybrid Variant 1 (cont) 
 

     best 
error speed 

mean 
error speed 

dataset cardinality 
time 
(n) TE seconds TE seconds TE seconds 

indtrack5 

50 

1 0.3196470269 1146.535 

0.3196470269 1134.432 

0.00% 1.07% 

0.3225005629 1084.8396 

-0.88% 5.69% 
2 0.3196470269 1141.635 0.00% 0.63% -0.88% 5.24% 
3 0.3273143445 900.741 2.40% -20.60% 1.49% -16.97% 
4 0.3196470269 1134.432 0.00% 0.00% -0.88% 4.57% 
5 0.3262473894 1100.855 2.06% -2.96% 1.16% 1.48% 

75 

1 0.2307843963 1392.761 

0.2307843963 1371.642 

0.00% 1.54% 

0.2307843963 1380.9148 

0.00% 0.86% 
2 0.2307843963 1371.642 0.00% 0.00% 0.00% -0.67% 
3 0.2307843963 1383.926 0.00% 0.90% 0.00% 0.22% 
4 0.2307843963 1373.54 0.00% 0.14% 0.00% -0.53% 
5 0.2307843963 1382.705 0.00% 0.81% 0.00% 0.13% 

100 

1 0.1951870169 1253.633 

0.1948376568 1055.679 

0.18% 18.75% 

0.1952044074 1107.5438 

-0.01% 13.19% 
2 0.1948376568 1055.679 0.00% 0.00% -0.19% -4.68% 
3 0.1951870169 1082.744 0.18% 2.56% -0.01% -2.24% 
4 0.1951870169 1245.002 0.18% 17.93% -0.01% 12.41% 
5 0.1956233293 900.661 0.40% -14.68% 0.21% -18.68% 

indtrack6 

50 

1 0.5502344866 1087.837 

0.5502344866 1087.177 

0.00% 0.06% 

0.5502344866 1088.0768 

0.00% -0.02% 
2 0.5502344866 1087.177 0.00% 0.00% 0.00% -0.08% 
3 0.5502344866 1087.578 0.00% 0.04% 0.00% -0.05% 
4 0.5502344866 1089.122 0.00% 0.18% 0.00% 0.10% 
5 0.5502344866 1088.67 0.00% 0.14% 0.00% 0.05% 

75 

1 0.4495350040 999.646 

0.4495350040 998.186 

0.00% 0.15% 

0.4495350040 998.1014 

0.00% 0.15% 
2 0.4495350040 998.186 0.00% 0.00% 0.00% 0.01% 
3 0.4495350040 997.346 0.00% -0.08% 0.00% -0.08% 
4 0.4495350040 997.631 0.00% -0.06% 0.00% -0.05% 
5 0.4495350040 997.698 0.00% -0.05% 0.00% -0.04% 

100 

1 0.4223256180 841.973 

0.4223256180 840.514 

0.00% 0.17% 

0.4223256180 842.3612 

0.00% -0.05% 
2 0.4223256180 840.756 0.00% 0.03% 0.00% -0.19% 
3 0.4223256180 840.514 0.00% 0.00% 0.00% -0.22% 
4 0.4223256180 841.052 0.00% 0.06% 0.00% -0.16% 
5 0.4223256180 847.511 0.00% 0.83% 0.00% 0.61% 
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Full results of Hybrid Variant 1 (cont) 
 

     best 
error speed 

mean 
error speed 

dataset cardinality 
time 
(n) TE seconds TE seconds TE seconds 

indtrack7 

50 

1 0.7697716141 1298.58 

0.7614320007 1503.114 

1.10% -13.61% 

0.7681036914 1341.8278 

0.22% -3.22% 
2 0.7697716141 1302.459 1.10% -13.35% 0.22% -2.93% 
3 0.7697716141 1302.566 1.10% -13.34% 0.22% -2.93% 
4 0.7614320007 1503.114 0.00% 0.00% -0.87% 12.02% 
5 0.7697716141 1302.42 1.10% -13.35% 0.22% -2.94% 

75 

1 0.5051825509 901.966 

0.4927349473 1144.066 

2.53% -21.16% 

0.5083534229 1030.4344 

-0.62% -12.47% 
2 0.5233793614 1302.512 6.22% 13.85% 2.96% 26.40% 
3 0.5152877038 901.777 4.58% -21.18% 1.36% -12.49% 
4 0.5051825509 901.851 2.53% -21.17% -0.62% -12.48% 
5 0.4927349473 1144.066 0.00% 0.00% -3.07% 11.03% 

100 

1 0.3760497253 918.28 

0.3590565612 1333.96 

4.73% -31.16% 

0.3726510925 1001.3812 

0.91% -8.30% 
2 0.3760497253 918.12 4.73% -31.17% 0.91% -8.31% 
3 0.3590565612 1333.96 0.00% 0.00% -3.65% 33.21% 
4 0.3760497253 918.163 4.73% -31.17% 0.91% -8.31% 
5 0.3760497253 918.383 4.73% -31.15% 0.91% -8.29% 

indtrack8 

50 

1 0.5510091358 903.172 

0.5219144736 1484.288 

5.57% -39.15% 

0.5451902034 1019.5316 

1.07% -11.41% 
2 0.5219144736 1484.288 0.00% 0.00% -4.27% 45.59% 
3 0.5510091358 903.447 5.57% -39.13% 1.07% -11.39% 
4 0.5510091358 903.462 5.57% -39.13% 1.07% -11.38% 
5 0.5510091358 903.289 5.57% -39.14% 1.07% -11.40% 

75 

1 0.3654938924 903.214 

0.3654938924 903.214 

0.00% 0.00% 

0.3654938924 903.2956 

0.00% -0.01% 
2 0.3654938924 903.313 0.00% 0.01% 0.00% 0.00% 
3 0.3654938924 903.353 0.00% 0.02% 0.00% 0.01% 
4 0.3654938924 903.323 0.00% 0.01% 0.00% 0.00% 
5 0.3654938924 903.275 0.00% 0.01% 0.00% 0.00% 

100 

1 0.2671109300 1989.575 

0.2671109300 1587.021 

0.00% 25.37% 

0.2671109300 1749.182 

0.00% 13.74% 
2 0.2671109300 1592.906 0.00% 0.37% 0.00% -8.93% 
3 0.2671109300 1989.376 0.00% 25.35% 0.00% 13.73% 

4 0.2671109300 1587.021 0.00% 0.00% 0.00% -9.27% 
5 0.2671109300 1587.032 0.00% 0.00% 0.00% -9.27% 
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Full results of Hybrid Variant 2 
 

     best found 
error speed 

mean 
error speed 

dataset cardinality time 
(n) 

TE seconds TE seconds TE seconds 

indtrack3 

30 

1 0.4892474495 602.124 

0.4892474495 600.982 

0.00% 0.19% 

0.4892474495 601.7504 

0.00% 0.06% 
2 0.4892474495 602.655 0.00% 0.28% 0.00% 0.15% 
3 0.4892474495 601.885 0.00% 0.15% 0.00% 0.02% 
4 0.4892474495 601.106 0.00% 0.02% 0.00% -0.11% 
5 0.4892474495 600.982 0.00% 0.00% 0.00% -0.13% 

35 

1 0.4319250954 715.689 

0.4319250954 715.127 

0.00% 0.08% 

0.4319250954 715.38 

0.00% 0.04% 
2 0.4319250954 715.282 0.00% 0.02% 0.00% -0.01% 
3 0.4319250954 715.127 0.00% 0.00% 0.00% -0.04% 
4 0.4319250954 715.55 0.00% 0.06% 0.00% 0.02% 
5 0.4319250954 715.252 0.00% 0.02% 0.00% -0.02% 

40 

1 0.3804245312 677.647 

0.3804245312 661.247 

0.00% 2.48% 

0.3804245312 667.7252 

0.00% 1.49% 
2 0.3804245312 661.247 0.00% 0.00% 0.00% -0.97% 
3 0.3804245312 661.339 0.00% 0.01% 0.00% -0.96% 
4 0.3804245312 661.682 0.00% 0.07% 0.00% -0.91% 
5 0.3804245312 676.711 0.00% 2.34% 0.00% 1.35% 

indtrack4 

30 

1 0.4327004895 528.986 

0.4327004895 528.986 

0.00% 0.00% 

0.4327004895 533.1558 

0.00% -0.78% 
2 0.4327004895 549.028 0.00% 3.79% 0.00% 2.98% 
3 0.4327004895 529.197 0.00% 0.04% 0.00% -0.74% 
4 0.4327004895 529.154 0.00% 0.03% 0.00% -0.75% 
5 0.4327004895 529.414 0.00% 0.08% 0.00% -0.70% 

35 

1 0.3752295070 613.476 

0.3752295070 613.476 

0.00% 0.00% 

0.3828553817 632.9588 

-1.99% -3.08% 
2 0.3847618504 637.855 2.54% 3.97% 0.50% 0.77% 
3 0.3847618504 637.815 2.54% 3.97% 0.50% 0.77% 
4 0.3847618504 637.822 2.54% 3.97% 0.50% 0.77% 
5 0.3847618504 637.826 2.54% 3.97% 0.50% 0.77% 

40 

1 0.3449795047 670.547 

0.3449795047 670.527 

0.00% 0.00% 

0.3449795047 670.6842 

0.00% -0.02% 
2 0.3449795047 670.987 0.00% 0.07% 0.00% 0.05% 
3 0.3449795047 670.705 0.00% 0.03% 0.00% 0.00% 
4 0.3449795047 670.655 0.00% 0.02% 0.00% 0.00% 
5 0.3449795047 670.527 0.00% 0.00% 0.00% -0.02% 
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Full results of Hybrid Variant 2 (cont) 
 

     best found 
error speed 

mean 
error speed 

data set cardinality 
time 
(n) TE seconds TE seconds TE seconds 

indtrack5 

50 

1 0.3273143445 900.824 

0.3273143445 900.703 

0.00% 0.01% 

0.3262348469 907.393 

0.33% -0.72% 
2 0.3273143445 900.703 0.00% 0.00% 0.33% -0.74% 
3 0.3246156005 917.271 -0.82% 1.84% -0.50% 1.09% 
4 0.3273143445 900.753 0.00% 0.01% 0.33% -0.73% 
5 0.3246156005 917.414 -0.82% 1.86% -0.50% 1.10% 

75 

1 0.2314182321 1081.753 

0.2314182321 1078.839 

0.00% 0.27% 

0.2314182321 1080.1916 

0.00% 0.14% 
2 0.2314182321 1079.887 0.00% 0.10% 0.00% -0.03% 
3 0.2314182321 1080.814 0.00% 0.18% 0.00% 0.06% 
4 0.2314182321 1079.665 0.00% 0.08% 0.00% -0.05% 
5 0.2314182321 1078.839 0.00% 0.00% 0.00% -0.13% 

100 

1 0.1953191901 1097.172 

0.1913276648 1843.689 

2.09% -40.49% 

0.1941128342 1169.1264 

0.62% -6.15% 
2 0.1953192140 1069.471 2.09% -41.99% 0.62% -8.52% 
3 0.1951870155 919.071 2.02% -50.15% 0.55% -21.39% 
4 0.1934110865 916.229 1.09% -50.30% -0.36% -21.63% 
5 0.1913276648 1843.689 0.00% 0.00% -1.43% 57.70% 

indtrack6 

50 

1 0.5511654938 888.071 

0.5511654938 886.689 

0.00% 0.16% 

0.5511654938 887.5808 

0.00% 0.06% 
2 0.5511654938 887.062 0.00% 0.04% 0.00% -0.06% 
3 0.5511654938 887.769 0.00% 0.12% 0.00% 0.02% 
4 0.5511654938 886.689 0.00% 0.00% 0.00% -0.10% 
5 0.5511654938 888.313 0.00% 0.18% 0.00% 0.08% 

75 

1 0.4495350040 1016.309 

0.4495350040 1006.345 

0.00% 0.99% 

0.4495350040 1009.0958 

0.00% 0.71% 
2 0.4495350040 1007.456 0.00% 0.11% 0.00% -0.16% 
3 0.4495350040 1008.256 0.00% 0.19% 0.00% -0.08% 
4 0.4495350040 1007.113 0.00% 0.08% 0.00% -0.20% 
5 0.4495350040 1006.345 0.00% 0.00% 0.00% -0.27% 

100 

1 0.4223256180 842.098 

0.4223256180 826.364 

0.00% 1.90% 

0.4223256180 838.773 

0.00% 0.40% 
2 0.4223256180 841.556 0.00% 1.84% 0.00% 0.33% 
3 0.4223256180 841.636 0.00% 1.85% 0.00% 0.34% 
4 0.4223256180 842.211 0.00% 1.92% 0.00% 0.41% 
5 0.4223256180 826.364 0.00% 0.00% 0.00% -1.48% 
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Full results of Hybrid Variant 2 (cont) 
 

     best found 
error speed 

mean 
error speed 

data set cardinality 
time 
(n) TE seconds TE seconds TE seconds 

indtrack7 

50 

1 0.7730785858 1302.655 

0.7252269332 1582.103 

6.60% -17.66% 

0.7712627347 1118.1138 

0.24% 16.50% 

2 0.7860027182 901.94 8.38% -42.99% 1.91% -19.33% 
3 0.7860027182 901.93 8.38% -42.99% 1.91% -19.33% 
4 0.7252269332 1582.103 0.00% 0.00% -5.97% 41.50% 
5 0.7860027182 901.941 8.38% -42.99% 1.91% -19.33% 

75 

1 0.5051825509 902.05 

0.5051825509 901.939 

0.00% 0.01% 

0.5096439604 901.9404 

-0.88% 0.01% 
2 0.5051825509 901.939 0.00% 0.00% -0.88% 0.00% 
3 0.5173844457 901.665 2.42% -0.03% 1.52% -0.03% 
4 0.5152877038 902.105 2.00% 0.02% 1.11% 0.02% 
5 0.5051825509 901.943 0.00% 0.00% -0.88% 0.00% 

100 

1 0.3818572993 1361.567 

0.3818572993 1361.567 

0.00% 0.00% 

0.4005325688 1074.9484 

-4.66% 26.66% 
2 0.4060793577 905.708 6.34% -33.48% 1.38% -15.74% 
3 0.4043234147 1102.742 5.88% -19.01% 0.95% 2.59% 
4 0.4060793577 902 6.34% -33.75% 1.38% -16.09% 
5 0.4043234147 1102.725 5.88% -19.01% 0.95% 2.58% 

indtrack8 

50 

1 0.5258619602 1502.932 

0.5258619602 1502.932 

0.00% 0.00% 

0.5268984910 1344.2708 

-0.20% 11.80% 
2 0.5271576237 1304.588 0.25% -13.20% 0.05% -2.95% 
3 0.5271576237 1304.611 0.25% -13.20% 0.05% -2.95% 
4 0.5271576237 1304.625 0.25% -13.19% 0.05% -2.95% 
5 0.5271576237 1304.598 0.25% -13.20% 0.05% -2.95% 

75 

1 0.3654938924 903.595 

0.3654938924 903.595 

0.00% 0.00% 

0.3654938924 903.6934 

0.00% -0.01% 
2 0.3654938924 903.682 0.00% 0.01% 0.00% 0.00% 
3 0.3654938924 903.787 0.00% 0.02% 0.00% 0.01% 
4 0.3654938924 903.693 0.00% 0.01% 0.00% 0.00% 
5 0.3654938924 903.71 0.00% 0.01% 0.00% 0.00% 

100 

1 0.2959789679 903.58 

0.2959789679 903.412 

0.00% 0.02% 

0.2959789679 903.5018 

0.00% 0.01% 
2 0.2959789679 903.454 0.00% 0.00% 0.00% -0.01% 
3 0.2959789679 903.572 0.00% 0.02% 0.00% 0.01% 
4 0.2959789679 903.412 0.00% 0.00% 0.00% -0.01% 
5 0.2959789679 903.491 0.00% 0.01% 0.00% 0.00% 
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Full results of CPLEX solver 
     best 

error speed 
mean 

error speed 
dataset cardinality time 

(n) 
TE seconds TE seconds TE seconds 

indtrack3 

30 

1 0.4817540665 679.126 

0.4817540665 679.126 

0.00% 0.00% 

0.4817540665 679.8148 

0.00% -0.10% 
2 0.4817540665 680.534 0.00% 0.21% 0.00% 0.11% 
3 0.4817540665 680.192 0.00% 0.16% 0.00% 0.06% 
4 0.4817540665 679.569 0.00% 0.07% 0.00% -0.04% 
5 0.4817540665 679.653 0.00% 0.08% 0.00% -0.02% 

35 

1 0.4271480572 899.978 

0.4271480572 608.289 

0.00% 47.95% 

0.4286884345 904.2884 

-0.36% -0.48% 
2 0.4307490080 1208.62 0.84% 98.69% 0.48% 33.65% 
3 0.4271480572 608.289 0.00% 0.00% -0.36% -32.73% 
4 0.4299569129 903.472 0.66% 48.53% 0.30% -0.09% 
5 0.4284401372 901.083 0.30% 48.13% -0.06% -0.35% 

40 

1 0.3804245312 654.584 

0.3780275727 655.099 

0.63% -0.08% 

0.3799451395 654.7428 

0.13% -0.02% 
2 0.3804245312 654.486 0.63% -0.09% 0.13% -0.04% 
3 0.3780275727 655.099 0.00% 0.00% -0.50% 0.05% 
4 0.3804245312 654.709 0.63% -0.06% 0.13% -0.01% 
5 0.3804245312 654.836 0.63% -0.04% 0.13% 0.01% 

indtrack4 

30 

1 0.4384358902 639.758 

0.4293869816 639.348 

2.11% 0.06% 

0.4331922668 639.4724 

1.21% 0.04% 
2 0.4337173213 639.222 1.01% -0.02% 0.12% -0.04% 
3 0.4293869816 639.348 0.00% 0.00% -0.88% -0.02% 
4 0.4337173213 639.25 1.01% -0.02% 0.12% -0.03% 
5 0.4307038194 639.784 0.31% 0.07% -0.57% 0.05% 

35 

1 0.3874766074 661.483 

0.3874766074 658.922 

0.00% 0.39% 

0.3874766074 659.695 

0.00% 0.27% 
2 0.3874766074 659.227 0.00% 0.05% 0.00% -0.07% 
3 0.3874766074 659.296 0.00% 0.06% 0.00% -0.06% 
4 0.3874766074 658.922 0.00% 0.00% 0.00% -0.12% 
5 0.3874766074 659.547 0.00% 0.09% 0.00% -0.02% 

40 

1 0.3519302829 1249.166 

0.3519302829 1248.879 

0.00% 0.02% 

0.3520122849 888.5724 

-0.02% 40.58% 
2 0.3520669529 648.468 0.04% -48.08% 0.02% -27.02% 
3 0.3520669529 648.066 0.04% -48.11% 0.02% -27.07% 
4 0.3520669529 648.283 0.04% -48.09% 0.02% -27.04% 
5 0.3519302829 1248.879 0.00% 0.00% -0.02% 40.55% 
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Full results of CPLEX solver (cont) 

     best 
error speed 

mean 
error speed 

dataset cardinality time 
(n) 

TE seconds TE seconds TE seconds 

indtrack5 

50 

1 0.3364703323 1099.809 

0.3364703323 1099.05 

0.00% 0.07% 

0.3378335668 1099.4732 

-0.40% 0.03% 
2 0.3432865047 1100.124 2.03% 0.10% 1.61% 0.06% 
3 0.3364703323 1099.236 0.00% 0.02% -0.40% -0.02% 
4 0.3364703323 1099.147 0.00% 0.01% -0.40% -0.03% 
5 0.3364703323 1099.05 0.00% 0.00% -0.40% -0.04% 

75 

1 0.2392183371 1035.608 

0.2332214418 1636.469 

2.57% -36.72% 

0.2373213146 1276.2558 

0.80% -18.86% 
2 0.2392183371 1036.656 2.57% -36.65% 0.80% -18.77% 
3 0.2357301199 1636.807 1.08% 0.02% -0.67% 28.25% 
4 0.2392183371 1035.739 2.57% -36.71% 0.80% -18.85% 
5 0.2332214418 1636.469 0.00% 0.00% -1.73% 28.22% 

100 

1 0.1928306749 1924.459 

0.1928306749 1924.459 

0.00% 0.00% 

0.1941520556 1143.641 

-0.68% 68.27% 
2 0.1951126599 723.11 1.18% -62.43% 0.49% -36.77% 
3 0.1928966252 1323.968 0.03% -31.20% -0.65% 15.77% 
4 0.1949601590 1023.655 1.10% -46.81% 0.42% -10.49% 
5 0.1949601590 723.013 1.10% -62.43% 0.42% -36.78% 

indtrack6 

50 

1 0.5616636628 1740.242 

0.5616636628 1740.073 

0.00% 0.01% 

0.5616636628 1740.5826 

0.00% -0.02% 
2 0.5616636628 1740.073 0.00% 0.00% 0.00% -0.03% 
3 0.5616636628 1741.102 0.00% 0.06% 0.00% 0.03% 
4 0.5616636628 1741.096 0.00% 0.06% 0.00% 0.03% 
5 0.5616636628 1740.4 0.00% 0.02% 0.00% -0.01% 

75 

1 0.4502628404 1390.309 

0.4479601694 2291.379 

0.51% -39.32% 

0.4498023062 1571.0194 

0.10% -11.50% 
2 0.4502628404 1392.202 0.51% -39.24% 0.10% -11.38% 
3 0.4479601694 2291.379 0.00% 0.00% -0.41% 45.85% 
4 0.4502628404 1391.057 0.51% -39.29% 0.10% -11.46% 
5 0.4502628404 1390.15 0.51% -39.33% 0.10% -11.51% 

100 

1 0.4241671005 481.532 

0.4241671005 480.108 

0.00% 0.30% 

0.4241671005 480.4504 

0.00% 0.23% 
2 0.4241671005 480.108 0.00% 0.00% 0.00% -0.07% 
3 0.4241671005 480.117 0.00% 0.00% 0.00% -0.07% 
4 0.4241671005 480.342 0.00% 0.05% 0.00% -0.02% 
5 0.4241671005 480.153 0.00% 0.01% 0.00% -0.06% 
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Full results of CPLEX solver (cont) 
 

     best 
error speed 

mean 
error speed 

dataset cardinality time 
(n) 

TE seconds TE seconds TE seconds 

indtrack7 

50 

1 1.0546479030 900.787 

1.0546479030 900.717 

0.00% 0.01% 

1.0546479030 900.7666 

0.00% 0.00% 
2 1.0546479030 900.717 0.00% 0.00% 0.00% -0.01% 
3 1.0546479030 900.79 0.00% 0.01% 0.00% 0.00% 
4 1.0546479030 900.809 0.00% 0.01% 0.00% 0.00% 
5 1.0546479030 900.73 0.00% 0.00% 0.00% 0.00% 

75 

1 0.6861147431 1200.932 

0.6861147431 1200.932 

0.00% 0.00% 

0.7359533412 960.7924 

-6.77% 24.99% 
2 0.7484129907 900.77 9.08% -24.99% 1.69% -6.25% 
3 0.7484129907 900.865 9.08% -24.99% 1.69% -6.24% 
4 0.7484129907 900.638 9.08% -25.01% 1.69% -6.26% 
5 0.7484129907 900.757 9.08% -25.00% 1.69% -6.25% 

100 

1 0.4204524529 900.684 

0.4204524529 900.51 

0.00% 0.02% 

0.4204524529 900.746 

0.00% -0.01% 
2 0.4204524529 900.682 0.00% 0.02% 0.00% -0.01% 
3 0.4204524529 900.51 0.00% 0.00% 0.00% -0.03% 
4 0.4204524529 901.093 0.00% 0.06% 0.00% 0.04% 
5 0.4204524529 900.761 0.00% 0.03% 0.00% 0.00% 

indtrack8 

50 

1 0.7314498723 900.886 

0.7314498723 900.847 

0.00% 0.00% 

0.7314498723 900.8882 

0.00% 0.00% 
2 0.7314498723 900.89 0.00% 0.00% 0.00% 0.00% 
3 0.7314498723 900.923 0.00% 0.01% 0.00% 0.00% 
4 0.7314498723 900.847 0.00% 0.00% 0.00% 0.00% 
5 0.7314498723 900.895 0.00% 0.01% 0.00% 0.00% 

75 

1 0.4285623453 600.712 

0.4285623453 600.695 

0.00% 0.00% 

0.4285623453 600.842 

0.00% -0.02% 
2 0.4285623453 600.699 0.00% 0.00% 0.00% -0.02% 
3 0.4285623453 600.712 0.00% 0.00% 0.00% -0.02% 
4 0.4285623453 600.695 0.00% 0.00% 0.00% -0.02% 
5 0.4285623453 601.392 0.00% 0.12% 0.00% 0.09% 

100 

1 0.3088583478 600.582 

0.3088583478 600.582 

0.00% 0.00% 

0.3088583478 600.6108 

0.00% 0.00% 
2 0.3088583478 600.621 0.00% 0.01% 0.00% 0.00% 
3 0.3088583478 600.615 0.00% 0.01% 0.00% 0.00% 
4 0.3088583478 600.624 0.00% 0.01% 0.00% 0.00% 
5 0.3088583478 600.612 0.00% 0.00% 0.00% 0.00% 
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Full results of CPLEX solver (2000 time limit) 
 

     best 
error speed 

mean 
error speed 

dataset cardinality time 
(n) 

TE seconds TE seconds TE seconds 

indtrack3 

30 

1 0.4817540665 4088.126 

0.4817540665 4081.7 

0.00% 0.16% 

0.4817540665 4083.0522 

0.00% 0.12% 
2 0.4817540665 4081.801 0.00% 0.00% 0.00% -0.03% 
3 0.4817540665 4081.786 0.00% 0.00% 0.00% -0.03% 
4 0.4817540665 4081.848 0.00% 0.00% 0.00% -0.03% 
5 0.4817540665 4081.7 0.00% 0.00% 0.00% -0.03% 

35 

1 0.4271480572 4010.589 

0.4271480572 4010.429 

0.00% 0.00% 

0.4288284607 4372.5212 

-0.39% -8.28% 
2 0.4307304420 3819.137 0.84% -4.77% 0.44% -12.66% 
3 0.4271480572 4010.429 0.00% 0.00% -0.39% -8.28% 
4 0.4271480572 6011.956 0.00% 49.91% -0.39% 37.49% 
5 0.4319676901 4010.495 1.13% 0.00% 0.73% -8.28% 

40 

1 0.3780275727 4057.55 

0.3780275727 4057.55 

0.00% 0.00% 

0.3799451395 4057.2168 

-0.50% 0.01% 
2 0.3804245312 4057.193 0.63% -0.01% 0.13% 0.00% 
3 0.3804245312 4056.983 0.63% -0.01% 0.13% -0.01% 
4 0.3804245312 4057.228 0.63% -0.01% 0.13% 0.00% 
5 0.3804245312 4057.13 0.63% -0.01% 0.13% 0.00% 

indtrack4 

30 

1 0.4384358902 4042.023 

0.4293869816 4041.764 

2.11% 0.01% 

0.4338427148 4041.9346 

1.06% 0.00% 
2 0.4365712738 4042.025 1.67% 0.01% 0.63% 0.00% 
3 0.4316850168 4041.987 0.54% 0.01% -0.50% 0.00% 
4 0.4293869816 4041.764 0.00% 0.00% -1.03% 0.00% 
5 0.4331344114 4041.874 0.87% 0.00% -0.16% 0.00% 

35 

1 0.3874766074 4068.638 

0.3874766074 4061.598 

0.00% 0.17% 

0.3874766074 4063.2372 

0.00% 0.13% 
2 0.3874766074 4062.045 0.00% 0.01% 0.00% -0.03% 
3 0.3874766074 4062.151 0.00% 0.01% 0.00% -0.03% 
4 0.3874766074 4061.598 0.00% 0.00% 0.00% -0.04% 
5 0.3874766074 4061.754 0.00% 0.00% 0.00% -0.04% 

40 

1 0.3519302829 6052.486 

0.3519302829 6052.248 

0.00% 0.00% 

0.3519576169 6453.2968 

-0.01% -6.21% 
2 0.3520669529 4050.43 0.04% -33.08% 0.03% -37.23% 
3 0.3519302829 6052.248 0.00% 0.00% -0.01% -6.21% 
4 0.3519302829 8057.117 0.00% 33.13% -0.01% 24.85% 
5 0.3519302829 8054.203 0.00% 33.08% -0.01% 24.81% 
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Full results of CPLEX solver (2000 time limit) (cont) 
 

     best 
error speed 

mean 
error speed 

dataset cardinality time 
(n) 

TE seconds TE seconds TE seconds 

indtrack5 

50 

1 0.3262242002 6037.928 

0.3262242002 6037.928 

0.00% 0.00% 

0.3299795845 6562.5776 

-1.14% -7.99% 
2 0.3358173832 6209.233 2.94% 2.84% 1.77% -5.38% 
3 0.3275122720 8184.286 0.39% 35.55% -0.75% 24.71% 
4 0.3301720335 6209.279 1.21% 2.84% 0.06% -5.38% 
5 0.3301720335 6172.162 1.21% 2.22% 0.06% -5.95% 

75 

1 0.2361913582 4144.317 

0.2303772115 6018.324 

2.52% -31.14% 

0.2355017966 5670.2916 

0.29% -26.91% 
2 0.2355475211 5996.649 2.24% -0.36% 0.02% 5.76% 
3 0.2303772115 6018.324 0.00% 0.00% -2.18% 6.14% 
4 0.2361745552 8053.79 2.52% 33.82% 0.29% 42.03% 
5 0.2392183371 4138.378 3.84% -31.24% 1.58% -27.02% 

100 

1 0.1933674189 6040.9 

0.1913976229 6052.919 

1.03% -0.20% 

0.1928520757 6423.068 

0.27% -5.95% 
2 0.1932859769 5992.46 0.99% -1.00% 0.22% -6.70% 
3 0.1930081938 8071.2 0.84% 33.34% 0.08% 25.66% 
4 0.1913976229 6052.919 0.00% 0.00% -0.75% -5.76% 
5 0.1932011661 5957.861 0.94% -1.57% 0.18% -7.24% 

indtrack6 

50 

1 0.5800727299 4140.453 

0.5535545988 14250.481 

4.79% -70.95% 

0.5611861660 8552.7564 

3.37% -51.59% 
2 0.5535545988 14250.481 0.00% 0.00% -1.36% 66.62% 
3 0.5554091199 6081.436 0.34% -57.32% -1.03% -28.90% 
4 0.5631437585 8187.802 1.73% -42.54% 0.35% -4.27% 
5 0.5537506228 10103.61 0.04% -29.10% -1.32% 18.13% 

75 

1 0.4480971056 8198.638 

0.4480971056 8198.638 

0.00% 0.00% 

0.4504525637 7797.4722 

-0.52% 5.14% 
2 0.4528131606 6196.514 1.05% -24.42% 0.52% -20.53% 
3 0.4508800938 4193.152 0.62% -48.86% 0.09% -46.22% 
4 0.4487814937 12201.735 0.15% 48.83% -0.37% 56.48% 
5 0.4516909649 8197.322 0.80% -0.02% 0.27% 5.13% 

100 

1 0.4241671005 2182.583 

0.4241671005 2181.703 

0.00% 0.04% 

0.4241671005 2182.1914 

0.00% 0.02% 
2 0.4241671005 2181.703 0.00% 0.00% 0.00% -0.02% 
3 0.4241671005 2182.296 0.00% 0.03% 0.00% 0.00% 
4 0.4241671005 2182.173 0.00% 0.02% 0.00% 0.00% 
5 0.4241671005 2182.202 0.00% 0.02% 0.00% 0.00% 
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Full results of CPLEX solver (2000 time limit) (cont) 
 

     best 
error speed 

mean 
error speed 

dataset cardinality 
time 
(n) TE seconds TE seconds TE seconds 

indtrack7 

50 

1 0.8348347767 15812.003 

0.7887382371 21828.03 

5.84% -27.56% 

0.8360679215 14206.7174 

-0.15% 11.30% 
2 0.8690301543 7791.06 10.18% -64.31% 3.94% -45.16% 
3 0.8305198688 15802.474 5.30% -27.60% -0.66% 11.23% 
4 0.8572165704 9800.02 8.68% -55.10% 2.53% -31.02% 
5 0.7887382371 21828.03 0.00% 0.00% -5.66% 53.65% 

75 

1 0.4922419658 31836.885 

0.4922419658 31836.885 

0.00% 0.00% 

0.5044398222 24204.046 

-2.42% 31.54% 
2 0.5326039350 13761.298 8.20% -56.78% 5.58% -43.14% 
3 0.5081437705 19792.285 3.23% -37.83% 0.73% -18.23% 
4 0.4934420080 27814.186 0.24% -12.64% -2.18% 14.92% 
5 0.4957674316 27815.576 0.72% -12.63% -1.72% 14.92% 

100 

1 0.3656001852 18395.292 

0.3629090012 22418.574 

0.74% -17.95% 

0.3642397247 22006.1488 

0.37% -16.41% 
2 0.3635149517 22400.927 0.17% -0.08% -0.20% 1.79% 
3 0.3629090012 22418.574 0.00% 0.00% -0.37% 1.87% 
4 0.3655342920 24421.952 0.72% 8.94% 0.36% 10.98% 
5 0.3636401935 22393.999 0.20% -0.11% -0.16% 1.76% 

indtrack8 

50 

1 0.5094721331 28016.323 

0.5094721331 28016.323 

0.00% 0.00% 

0.5314499795 22413.7172 

-4.14% 25.00% 
2 0.5374485779 16009.389 5.49% -42.86% 1.13% -28.57% 
3 0.5471905919 22012.441 7.40% -21.43% 2.96% -1.79% 
4 0.5502560210 22012.586 8.01% -21.43% 3.54% -1.79% 
5 0.5128825737 24017.847 0.67% -14.27% -3.49% 7.16% 

75 

1 0.3484761695 8982.795 

0.3255922828 20994.889 

7.03% -57.21% 

0.3438993922 11386.815 

1.33% -21.11% 
2 0.3484761695 8988.997 7.03% -57.18% 1.33% -21.06% 
3 0.3255922828 20994.889 0.00% 0.00% -5.32% 84.38% 
4 0.3484761695 8986.46 7.03% -57.20% 1.33% -21.08% 
5 0.3484761695 8980.934 7.03% -57.22% 1.33% -21.13% 

100 

1 0.2638826793 8568.2 

0.2528709111 20587.671 

4.35% -58.38% 

0.2596258929 11771.5206 

1.64% -27.21% 
2 0.2528709111 20587.671 0.00% 0.00% -2.60% 74.89% 
3 0.2587465974 10568.162 2.32% -48.67% -0.34% -10.22% 
4 0.2587465974 10568.401 2.32% -48.67% -0.34% -10.22% 
5 0.2638826793 8565.169 4.35% -58.40% 1.64% -27.24% 
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Full results of GA 

     best 
error speed 

mean 
error speed 

dataset cardinality time 
(n) 

TE seconds TE seconds TE seconds 

indtrack3 

30 

1 0.4827071149 2678.164 

0.4817540665 2754.086 

0.20% -2.76% 

0.4848047982 2508.5464 

-0.43% 6.76% 
2 0.4900292799 2394.599 1.72% -13.05% 1.08% -4.54% 
3 0.4847667649 2363.902 0.63% -14.17% -0.01% -5.77% 
4 0.4847667649 2351.981 0.63% -14.60% -0.01% -6.24% 
5 0.4817540665 2754.086 0.00% 0.00% -0.63% 9.79% 

35 

1 0.4298864841 1865.912 

0.4298864841 1862.885 

0.00% 0.16% 

0.4298864841 1866.0688 

0.00% -0.01% 
2 0.4298864841 1867.026 0.00% 0.22% 0.00% 0.05% 
3 0.4298864841 1866.965 0.00% 0.22% 0.00% 0.05% 
4 0.4298864841 1867.556 0.00% 0.25% 0.00% 0.08% 
5 0.4298864841 1862.885 0.00% 0.00% 0.00% -0.17% 

40 

1 0.3874157560 2785.62 

0.3869218700 2673.548 

0.13% 4.19% 

0.3873169788 2780.5576 

0.03% 0.18% 
2 0.3869218700 2673.548 0.00% 0.00% -0.10% -3.85% 
3 0.3874157560 2817.714 0.13% 5.39% 0.03% 1.34% 
4 0.3874157560 2816.173 0.13% 5.33% 0.03% 1.28% 
5 0.3874157560 2809.733 0.13% 5.09% 0.03% 1.05% 

indtrack4 

30 

1 0.4307038194 2018.706 

0.4307038194 2016.925 

0.00% 0.09% 

0.4307038194 2051.24 

0.00% -1.59% 
2 0.4307038194 2129.487 0.00% 5.58% 0.00% 3.81% 
3 0.4307038194 2068.525 0.00% 2.56% 0.00% 0.84% 
4 0.4307038194 2016.925 0.00% 0.00% 0.00% -1.67% 
5 0.4307038194 2022.557 0.00% 0.28% 0.00% -1.40% 

35 

1 0.3739008486 2347.229 

0.3739008486 2331.39 

0.00% 0.68% 

0.3739008486 2347.869 

0.00% -0.03% 
2 0.3739008486 2334.5 0.00% 0.13% 0.00% -0.57% 
3 0.3739008486 2348.307 0.00% 0.73% 0.00% 0.02% 
4 0.3739008486 2377.919 0.00% 2.00% 0.00% 1.28% 
5 0.3739008486 2331.39 0.00% 0.00% 0.00% -0.70% 

40 

1 0.3447495884 2715.349 

0.3446569876 3722.255 

0.03% -27.05% 

0.3449156089 3056.0724 

-0.05% -11.15% 
2 0.3450571562 3101.476 0.12% -16.68% 0.04% 1.49% 
3 0.3450571562 2611.205 0.12% -29.85% 0.04% -14.56% 
4 0.3450571562 3130.077 0.12% -15.91% 0.04% 2.42% 
5 0.3446569876 3722.255 0.00% 0.00% -0.07% 21.80% 

 



 

 

150 
 

 

Full results of GA (cont) 

     best 
error speed 

mean 
error speed 

dataset cardinality time 
(n) 

TE seconds TE seconds TE seconds 

indtrack5 

50 

1 0.3403977416 6784.186 

0.3403977416 6774.716 

0.00% 0.14% 

0.3403977416 6779.3784 

0.00% 0.07% 
2 0.3403977416 6783.362 0.00% 0.13% 0.00% 0.06% 
3 0.3403977416 6779.285 0.00% 0.07% 0.00% 0.00% 
4 0.3403977416 6774.716 0.00% 0.00% 0.00% -0.07% 
5 0.3403977416 6775.343 0.00% 0.01% 0.00% -0.06% 

75 

1 0.2358116789 12073.042 

0.2354881166 11472.411 

0.14% 5.24% 

0.2365005930 11796.7578 

-0.29% 2.34% 
2 0.2359161390 12405.629 0.18% 8.13% -0.25% 5.16% 
3 0.2354881166 11472.411 0.00% 0.00% -0.43% -2.75% 
4 0.2366700747 11684.921 0.50% 1.85% 0.07% -0.95% 
5 0.2386169559 11347.786 1.33% -1.09% 0.89% -3.81% 

100 

1 0.1934441783 10047.003 

0.1921500400 11242.348 

0.67% -10.63% 

0.1930179078 11073.6412 

0.22% -9.27% 
2 0.1933787607 11393.803 0.64% 1.35% 0.19% 2.89% 
3 0.1929032642 11258.798 0.39% 0.15% -0.06% 1.67% 
4 0.1921500400 11242.348 0.00% 0.00% -0.45% 1.52% 
5 0.1932132958 11426.254 0.55% 1.64% 0.10% 3.18% 

indtrack6 

50 

1 0.5952057714 6040.738 

0.5952057714 6026.084 

0.00% 0.24% 

0.5952057714 6032.3394 

0.00% 0.14% 
2 0.5952057714 6034.62 0.00% 0.14% 0.00% 0.04% 
3 0.5952057714 6028.658 0.00% 0.04% 0.00% -0.06% 
4 0.5952057714 6026.084 0.00% 0.00% 0.00% -0.10% 
5 0.5952057714 6031.597 0.00% 0.09% 0.00% -0.01% 

75 

1 0.4544644840 8769.938 

0.4517185186 8749.587 

0.61% 0.23% 

0.4537917612 8776.6182 

0.15% -0.08% 
2 0.4544644840 8793.128 0.61% 0.50% 0.15% 0.19% 
3 0.4544644840 8793.613 0.61% 0.50% 0.15% 0.19% 
4 0.4538468355 8776.825 0.47% 0.31% 0.01% 0.00% 
5 0.4517185186 8749.587 0.00% 0.00% -0.46% -0.31% 

100 

1 0.4220146967 8724.308 

0.4220146967 8724.308 

0.00% 0.00% 

0.4220146967 8733.4948 

0.00% -0.11% 
2 0.4220146967 8742.488 0.00% 0.21% 0.00% 0.10% 
3 0.4220146967 8730.724 0.00% 0.07% 0.00% -0.03% 
4 0.4220146967 8731.788 0.00% 0.09% 0.00% -0.02% 
5 0.4220146967 8738.166 0.00% 0.16% 0.00% 0.05% 
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Full results of GA (cont) 

     best 
error speed 

mean 
error speed 

dataset cardinality time 
(n) 

TE seconds TE seconds TE seconds 

indtrack7 

50 

1 0.8992144805 13516.844 

0.8992144805 13511.784 

0.00% 0.04% 

0.8992144805 13512.8946 

0.00% 0.03% 
2 0.8992144805 13512.101 0.00% 0.00% 0.00% -0.01% 
3 0.8992144805 13511.936 0.00% 0.00% 0.00% -0.01% 
4 0.8992144805 13511.784 0.00% 0.00% 0.00% -0.01% 
5 0.8992144805 13511.808 0.00% 0.00% 0.00% -0.01% 

75 

1 0.7541368122 13515.27 

0.6940551550 13512.061 

8.66% 0.02% 

0.7348028153 13513.6536 

2.63% 0.01% 
2 0.7541368122 13511.892 8.66% 0.00% 2.63% -0.01% 
3 0.6940551550 13512.061 0.00% 0.00% -5.55% -0.01% 
4 0.7175484851 13515.95 3.38% 0.03% -2.35% 0.02% 
5 0.7541368122 13513.095 8.66% 0.01% 2.63% 0.00% 

100 

1 0.4609632707 13511.462 

0.4609632707 13511.154 

0.00% 0.00% 

0.4609632707 13511.5564 

0.00% 0.00% 
2 0.4609632707 13511.154 0.00% 0.00% 0.00% 0.00% 
3 0.4609632707 13511.178 0.00% 0.00% 0.00% 0.00% 
4 0.4609632707 13511.514 0.00% 0.00% 0.00% 0.00% 
5 0.4609632707 13512.474 0.00% 0.01% 0.00% 0.01% 

indtrack8 

50 

1 0.7314497887 13520.666 

0.7314497887 13520.666 

0.00% 0.00% 

0.7314497887 13521.3644 

0.00% 0.07% 
2 0.7314497887 13523.241 0.00% 0.02% 0.00% 0.09% 
3 0.7314497887 13521.021 0.00% 0.00% 0.00% 0.07% 
4 0.7314497887 13521.128 0.00% 0.00% 0.00% 0.07% 
5 0.7314497887 13520.766 0.00% 0.00% 0.00% 0.07% 

75 

1 0.4285623453 13522.899 

0.4285623453 13522.5 

0.00% 0.00% 

0.4285623453 13522.7598 

0.00% 0.00% 
2 0.4285623453 13522.536 0.00% 0.00% 0.00% 0.00% 
3 0.4285623453 13523.213 0.00% 0.01% 0.00% 0.00% 
4 0.4285623453 13522.5 0.00% 0.00% 0.00% 0.00% 
5 0.4285623453 13522.651 0.00% 0.00% 0.00% 0.00% 

100 

1 0.3081465555 13516.216 

0.3081465555 13516.216 

0.00% 0.00% 

0.3081465555 13517.6894 

0.00% -0.01% 
2 0.3081465555 13521.627 0.00% 0.04% 0.00% 0.03% 
3 0.3081465555 13516.786 0.00% 0.00% 0.00% -0.01% 
4 0.3081465555 13517.161 0.00% 0.01% 0.00% 0.00% 
5 0.3081465555 13516.657 0.00% 0.00% 0.00% -0.01% 

 


