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Abstract 19 
 20 

The growing burden of food losses has intensified the need for reliable and 21 

comparable data. This study extends the application of lean manufacturing practices 22 

and uses Value Stream Mapping (VSM) analysis with the Food Loss and Waste (FLW) 23 

Accounting and Reporting Standard to identify hotspots and analyze the magnitude of 24 

both food and nutritional losses in the food value chain. A case study on the dairy 25 

value chain in Uganda is utilized to understand the production configuration (primary 26 

production, processing and distribution). Through linking hotspots where food loss in 27 

milk production takes place to specific salient reasons, this case provides an 28 

estimation of the magnitude of losses occurring in yogurt and UHT milk production 29 

lines. Findings reaffirm the processing stage as a principle hotspot for discarding 30 

yogurt as well as UHT milk products. Throughout processing, from start to finish, food 31 

losses at chain level are estimated to be in the magnitude of up to 14%. This also 32 

translates to a substantial nutritional value disappearing from the food system, which 33 

compromises the ability of people to meet their nutrient recommendations. The case 34 

study represents a pragmatic assessment that combines the mapping advantages of 35 

VSM with accounting and reporting guidelines of FLW Accounting and Reporting 36 

Standard to contribute to a detailed assessment of food and nutritional losses. 37 

Thereby, reinforcing initiation of evidence-based and targeted reduction strategies 38 

along food supply chains. 39 
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1.0 Introduction 45 

Food Loss and Waste (FLW) is an endemic and growing global problem, estimated at 46 

over 30% of produced food that is not consumed (Gustavsson et al., 2011). Within 47 

vulnerable regions, FLW contributes to the dire state of food insecurity at a time when 48 

increased food production, as a solution, is costly and exploits scarce productive 49 

agricultural land and water (Godfray et al., 2010; Phalan et al., 2011). The widely 50 

accepted distinction between food loss and food waste, that is based on the point of 51 

occurrence along the supply chain, is derived from the Food and Agricultural 52 

Organization (Gustavsson et al., 2011). Thereby, food loss involves a decrease in the 53 

quantity of edible food observed at production, harvest, processing and distribution 54 

while food waste involves the removal of food that is fit for human consumption  at the 55 

retail and consumer levels of the chain (Parfitt et al., 2010; Richter & Bokelmann, 2016; 56 

Willersinn et al., 2015). Nonetheless, both elements point to a certain quantity of food, 57 

calories or nutrients that are disappearing from the food supply chain before 58 

consumption. 59 

There is an increasing interest in promoting efforts leveraging FLW reduction as a 60 

means of assuring adequate and equitable food availability, especially if surplus food 61 

could be redistributed appropriately to the hungry (Garrone et al., 2014). Tackling FLW 62 

in both developed and developing countries is associated with positive outcomes,  63 

particularly on food prices, thereby increasing economic access to food among people 64 

likely to experience hunger (Buzby & Hyman, 2012; Rutten, 2013). Actions that 65 

minimize FLW in food systems directly support their sustainability, contributing to food 66 

security to offset pressure on increased food production (Munesue et al., 2015; Smith, 67 

2013; West et al., 2014). The fight against FLW is reinforced by SDG target 12.3, 68 

which aims at halving food waste at retail and consumer levels, whilst simultaneously 69 

reducing food losses along production and supply chains (Hanson, 2017). This target 70 

primarily looks at quantifiable losses or wastes, equivalent to a quarter of available 71 

calories that are missed and never consumed (Pangaribowo et al., 2013). Such a loss 72 

is the equivalent of feeding close to 10% of the current 821 million undernourished 73 

people in developing countries (FAO et al., 2018; Munesue et al., 2015). The food 74 

insecurity situation is also worsened by considerable loss in nutritional value 75 

embedded within lost or wasted food that is never consumed (Sawaya, 2017). Yet the 76 

few studies that do link FLW with macro- or micro- nutrients lost from the supply chain 77 

are limited to developed countries (Cooper et al., 2018; Love et al., 2015; Spiker et al., 78 
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2017). Therefore, strategies to reduce FLW in developing countries are hindered by 79 

an absence of reliable data on FLW as well as nutritional losses that occurs within 80 

different food value chains (Affognon et al., 2015). This absence could impede 81 

evidence-based follow-up of SDG 12.3 indicators, especially in countries experiencing 82 

food and nutrition insecurity (Barrett et al., 2010; Francis et al., 2012; Gil et al., 2006).  83 

There exists additional obstructive factors to FLW data acquisition. FLW definitions 84 

and measurement methods are inconsistently used, exacerbating identification and 85 

quantification problems which ultimately affect mitigation efforts (Chaboud & Daviron, 86 

2017; Redlingshöfer et al., 2017). The lack of harmonized or integrated FLW 87 

assessment is a historical problem limiting acquisition of reliable and comparable FLW 88 

data. This is partly the reason for inconsistencies in the approximation of the 89 

magnitude of FLW around the world (Xue et al., 2017). To solve this problem, the Food 90 

Loss and Waste Accounting and Reporting Standard was developed for consistent 91 

and transparent accounting and reporting on the definitions and amount of FLW 92 

(Hanson et al., 2016). It facilitates comparison across regions, countries and between 93 

other smaller entities like companies and organizations. While the FLW Standard 94 

provides a firm set of requirements and common language, users determine what is 95 

within the scope of their FLW inventory. For example, a user is required to state and 96 

decide whether inedible parts (i.e. the part of a product not intended for human 97 

consumption, such as bones or pits) are included or excluded. Similarly, there are 10 98 

possible destinations where food may go when it leaves the human food supply chain. 99 

Which destinations are included in an inventory is up to the user of the FLW Standard 100 

and its particular goals. If seeking to meet the target of SDG 12.3, the best practices 101 

is to reduce by 50% the amount of food and/or associated inedible parts to all 102 

destinations except that which goes to the higher value destinations of animal feed 103 

and bio-based materials/biochemical processing (e.g. industrial products) (Hanson, 104 

2017). The FLW accounting and reporting standard is based on the idea that what 105 

gets measured can also be managed, making quantification crucial to the design and 106 

development of appropriate FLW mitigation strategies. Although the standard 107 

proposes ten FLW quantification methods, it does not provide guidance on how to 108 

identify FLW hotspots. Such complementary identification approaches could form the 109 

basis to successfully guide decisions about where and why FLW is being generated 110 

and reductions may be most relevant. This could strengthen FLW measurements and 111 

improve subsequent mitigating efforts along the supply chain, while considering a life 112 
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cycle perspective of FLW (Corrado et al., 2017). Because the supply chain constitutes 113 

various hotspots where FLW occur, a Life Cycle Assessment (LCA) further lays the 114 

foundation and facilitates holistic analysis of products, processes, or activities (Roy et 115 

al., 2009). Approaches that transverse the entire supply chain should also improve 116 

stakeholder awareness and establish strategic actor partnerships so as to increase 117 

success (Aschemann-Witzel et al., 2017; Muriana, 2017; Parmar et al., 2017; Richter 118 

& Bokelmann, 2016).  119 

In a previous study, the potential of Value Stream Mapping (VSM) as a method that 120 

can be used to identify and map hotspots of FLW along the agri-food value chains has 121 

been established (De Steur et al., 2016). VSM is part of lean manufacturing, an 122 

operations business strategy that was developed to eliminate wastes in production 123 

systems (Womack et al., 1990). Since its inception in the automobile sector, it has 124 

been utilized in other sectors including the agri-food industry (Dora et al., 2014; 125 

Panwar et al., 2015; Zokaei & Simons, 2006). The VSM approach involves mapping 126 

the production configuration in order to identify lean wastes (i.e. defects, 127 

overproduction, inappropriate processing, unnecessary inventory, unnecessary 128 

motion, transport and waiting), which De Steur et al. (2016) have linked to the 129 

occurrences of food related losses and wastes, in particular discarded food and 130 

nutrient losses. As VSM holds the potential to systematically identify FLW and 131 

hotspots where they occur, there is need to translate this theoretical understanding 132 

into practice, specifically in the context of nutrition sensitive value chains, i.e. by 133 

assessing food and nutritional losses along a nutrient-rich food supply chain (Morgan 134 

et al., 2018). 135 

Therefore, the aim of this study is to apply VSM analysis at chain level, based on the 136 

FLW Accounting and Reporting standard. This is expected to lead to a reliable and 137 

systematic mapping of hotspots to facilitate subsequent food and nutritional loss 138 

measurement and reporting. As a consequence, mitigation approaches could be 139 

initiated along food supply chains. Currently there are few peer-reviewed studies that 140 

use the FLW Accounting and Reporting standard (Chaboud, 2017; Tostivint et al., 141 

2017), while none of them has used a systematic mapping approach in an agri-food 142 

chain of a nutrient-rich food product.  143 

 144 
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This study used the dairy value chain in Uganda as a case. The dairy sector was 145 

selected mainly because milk is an important source of essential nutrients needed for 146 

improved nutrition, hence fits within the concept of nutrition sensitive value chains. In 147 

2011, the per capita consumption of milk was approximated at 35 liters, but it has since 148 

increased to 54 liters (Balikowa, 2011; Ekou, 2014). This can be attributed to a number 149 

of interventions that have been implemented by government and other organizations 150 

to increase milk production in the country. Many farmers have crossbred local breeds 151 

with the Holstein Friesian breed to enhance productivity and milk is mainly supplied 152 

through informal and formal market channels. While the informal channel is the largest, 153 

it is not well organized and unprocessed milk is directly sold to consumers. The formal 154 

channel is more structured and is made up of milk processors, wholesalers and 155 

retailers (Ekou, 2014). As a consequence, the formal supply chain allows each actor 156 

to obtain an economic value that is generally higher than in the informal channel. There 157 

are over 40 milk processing plants, producing UHT milk, yogurt, pasteurized milk, 158 

powdered milk, cheese, butter, ice cream and ghee. These products are largely 159 

consumed locally but a proportion is exported to neighboring countries, even though 160 

the local demand for milk is higher than available supply (Kabwanga & Atila, 2015). 161 

Although milk production has been increasing over the years, processors still lack 162 

enough raw milk to operate at full capacity. The failure to satisfy local demand is further   163 

worsened by losses at various stages of the supply chain, that are estimated at around 164 

25% of the total production, translating to an economic loss of 23 million dollars per 165 

year (Kabwanga & Atila, 2015; TechnoServe, 2008). This situation therefore 166 

necessitates loss reduction measures implemented along the whole chain to 167 

complement strategies used to increase production of milk in the country. 168 

 169 

  170 
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2.0 Methodology 171 

Data were collected in August 2017, using a case study approach at a vertically 172 

integrated dairy chain (not named because of confidentiality), located in the western 173 

region of Uganda. It operates a dairy farm, a processing plant and various distribution 174 

channels, and therefore was suitable to apply VSM methodology for a holistic 175 

assessment of food and nutritional losses whilst adhering to the FLW standard 176 

(Hanson et al., 2016; Womack, 2006). With reference to the guidelines of this 177 

standard, the “scope” of this study, in figure 1, included the period of data collection 178 

(i.e. one day in August 2017), specified “type of material” targeted (i.e. only edible 179 

(milk) products), “destinations” (i.e. landfill, refuse/discard and sewer) as well as 180 

“setting boundaries” for data collection (i.e. three stages of the supply chain, one dairy 181 

company, (milk-) products). “Destinations” of lost or wasted products were observed 182 

during data collection and were reported as findings.  183 

 184 

 185 

Figure 1: The scope of dairy loss inventory in Uganda, based on the FLW standard  186 



7 
 

Interviews were conducted with different personnel that worked at the three supply 187 

chain levels of the dairy company. In addition, observations of processes were made 188 

so as to confirm key informants’ responses. In case of inconsistencies in responses, 189 

the observed situation took precedence. A semi-structured questionnaire was used to 190 

guide data collection. It’s development was based on the VSM practice of lean 191 

manufacturing and comprised three sections (Hines et al., 2004; Womack, 2006). The 192 

first included general information about the stage of the supply chain, process name 193 

and constituent step. The second sought information on cycle time (i.e. time a process 194 

takes from start to finish), waiting or non-value adding time and the number of 195 

operators managing a process. The third section was used to detail losses and wastes 196 

observed along different stages of the supply chain and included types of loss and 197 

waste based on the seven lean wastes (i.e. defects, waiting, transport, over 198 

processing, motion, over production and unnecessary inventory) (Hines & Rich, 1997; 199 

Womack, 2006). This information was used to create a “current state map” depicting 200 

the present situation along the dairy supply chain with an emphasis on steps, 201 

processes and occurrence of FLW. Microsoft Visio 2016 was used to design the 202 

current state map. Lastly, lead time was also calculated using cycle time and 203 

waiting/non-value adding time observed by following operations along the supply 204 

chain.  205 

Furthermore, the magnitude of FLW was calculated following the load tracking method 206 

developed by the Food and Agriculture Organization (FAO, 2016). Thereby, the 207 

quantity of milk or its products was recorded before and after an activity, from which 208 

the difference constituted the magnitude of FLW. Additionally, the nutritional value 209 

embedded in FLW was evaluated based on the Tanzania food composition table, 210 

which is closer to the diet in Uganda (Lukmanji et al., 2008), for which no tables exist 211 

(yet). Macronutrients assessed included; energy (kcal), protein (g), fat (g) and 212 

carbohydrate (g). Micronutrients (mg or µg) investigated included; Calcium, 213 

Phosphorus, Magnesium, Potassium, Sodium, Iron, Zinc, Vitamin A, Vitamin E, 214 

Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12 and Vitamin B5. The quantity of 215 

each nutrient was determined by multiplying the total observed FLW magnitude, either 216 

in grams (g), milligrams (mg) or micrograms (µg) with the amount of that nutrient found 217 

in 100g of both UHT milk and yogurt as indicated in the food composition table. Total 218 

loss from all products was then summed up and divided with Recommended Daily 219 

Allowance (RDA) of adult males and females. The RDA, which represents the daily 220 
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level of intake that is adequate to meet the nutrient requirements of nearly all healthy 221 

people was preferred to other reference values, in line with previous studies (Cooper 222 

et al., 2018; Spiker et al., 2017). RDA values were based on the Dietary Reference 223 

Intakes guidelines developed by the Food and Nutrition Board and Institute of 224 

Medicine (Otten et al., 2006). The outcome of this calculation was the number of 225 

people, whose recommended intakes, could be met if FLW observed along the dairy 226 

chain did not occur. 227 

 228 

In line with the FLW standard, Box 1 further illustrates how the conducted food and 229 

nutritional loss inventory meets the eight reporting and accounting requirements of the 230 

FLW standard.  231 

Box 1: FLW STANDARD REQUIREMENTS – Summary of how the reported food loss 
inventory meets the eight reporting and accounting requirements of the FLW Standard 
1. Base FLW accounting and reporting on the principles of relevance, completeness, 

consistency, transparency, and accuracy 
• Relevance: Three stages of the dairy value chain were evaluated to conduct a systematic 

assessment of hotspots where losses in dairy products occur, as a foundation of 
implementing measures for their reduction 

• Completeness: All possible losses along the three stages were considered. Those that 
were not accurately measured were estimated based on information that was available. 

• Consistency: The same tool (i.e. semi-structured questionnaire) was used to collect data 
from all stages. Interviews and observations were also used at all stages. 

• Transparency: The entire inventory is reported and represented in a transperant way 
aligned to interviews and observations made along the three stages of the value chain. 
However, the name of the vertically intergrated dairy facility is withheld to adhere to the 
confidentiality that was required prior to the fieldwork. All observed processes and 
associated food loss hotspots of the chain are reported in good detail to allow third party 
assessment of the inventory. Instances when accurate estimates of observed losses were 
not possible to obtain are reported accordingly.  

• Accuracy: There is a reasonable degree of accuracy of the magnitude food losses 
assessed objectively especially at the processing stage. At the farm and distribution, the 
magintude of losses are based on reported and or subjectively observed losses. Therefore, 
accurency varries at different stages of the dairy chain.   

2. Account for and report the physical amount of FLW expressed as weight 
Losses of milk are mainly observed and reported as liters. After processing, yogurt losses are 
reported in grams. The translation of lost quantities of dairy products into nutrient losses is 
reported as grams, miligrams and or micrograms.  

3. Define and report on the scope of the FLW inventory 
• Timeframe: Data is reported for periods in August 2017. Each stage of the chain required 

one day of data collection  
• Material type: Food including dairy products (i.e. raw milk, UHT milk and yogurt). The 

inventory does not include inedible parts since dairy products do not have such parts. 
• Destination: While all destinations were considered, food loss in this inventory only went 

to a few. Packaged yogurt is assumed to have gone to landfill. Most of the raw and UHT 
milk and spilled ingredients for yogurt (i.e. skim milk powder and flavoring) went to the 
drain (i.e. sewer/wastewater treatment destination). 

• Boundary:  
o Food category: Dairy products - GSFA 01.0 [Fluid milk and milk products – 01.1] 
o Lifecycle stage: Three stages of the food supply chain 

1. ISIC 0141—raising of cattle 
2. ISIC 1050—manufacture of dairy products 
3. ISIC 4923—freight transport by road 
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o Geography: Uganda, UN country code 800 
o Organization: One vertically integrated dairy facility, including a focal farm, a 

processing plant and distribution channel. 
• Related issues: The weight of product packaging is excluded from the weight of FLW. No 

separate calculation was needed. Residual milk and yogurt is flushed through pipes during 
cleaning and processing. The weight of added water is not included in the weight of FLW. 

4. Describe the quantification method(s) used. If existing studies or data are used, identfy 
the source and scope 

A survey with interviews and visits was used to gather data on food losses from personnel 
working at the three stages of the supply chain. In addition, mass balance method was applied 
by comparing quantities of inputs and outputs in the processing of yougut and UHT milk. 

5. If sampling and scaling of data are undertaken, describe the approach and calculation 
used, as well as the period of time over which sample data are collected (including 
starting and ending dates) 
Sampling of the data was not undertaken. One vertically integrated dairy chain was targeted. So 
all parts of the entity were included in this inventory. Data is taken at one point in time or in one 
production cycle. Therefore, no consideration was taken for possible differences in losses 
overtime.  

6. Provide a qualitative description and/or quantitative assessment of the uncertainty around 
FLW inventory results 
It is possible that the quantification method used might either underestimate or overestimate the 
quantities of food losses at different processses of milk production. Reports from personnel may 
be biased since they depended on their ability to recall and or also estimate the loss at a certain 
point in the production process. This could introduce a systematic error in the data. To reduce 
this uncertainty, reports were triangulated with observations made by the researcher in the field. 
Further, food losses were initially measured in liters and then transfromed into kilograms for 
subsequent analysis of data. This could introduce a certain degree of conversion errors. Data 
was also collected at one time and so there is no assessment of the temporal variation of 
observed magnitude of losses in dairy products.  

7. If assurance of the FLW inventory is undertaken (which may include peer review, 
verification, validation, quality assurance, quality control, and audit), create an assurance 
statement 
Assurance of the inventory was undertaken by the surpervisor of the researcher that collected 
the data. This was done at two levels. First, the suitability of tools to be used for data collection 
was assessed. The second level was after field work whereby data was checked before 
analysis and there after reported results were validated and considered to be acceptable. This 
was a first-party assurance.  

8. If tracking the amount of FLW and/or setting an FLW reduction target, select a base year, 
identify the scope of the target, and recalculate the base year FLW inventory when 
necessary 
Not conducted because it was out of the scope of the study.  

 232 

  233 
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3.0 Results 234 

3.1 Characteristics of the dairy supply chain examined in the case study 235 

Table 1 provides an overview of the key characteristics of our case, based on 236 

observations made along the dairy value chain and interviews conducted with key 237 

personnel operating within the chain. Observations made at three levels of the value 238 

chain (farm, processor and distribution) indicate specific steps in production, each 239 

made up of at least two operations. During data collection, the focal farm had 51 240 

lactating cows that were milked twice a day. This was also the average number in the 241 

previous 6 months. The farm is run by a farm manager and an accountant who are 242 

employed on a long-term basis, in addition to over 15 employees on short-term 243 

contracts (i.e. mainly milk men and other casual laborers). The production of the farm 244 

averages 200 liters of milk a day, while the farm also acts as a collection center for 245 

farmers in the neighborhood. Therefore, farm records indicated that approximately 246 

1400 liters of milk were normally collected every 3 days for delivery to the processing 247 

plant during dry seasons. However, during wet seasons of the year, the quantity of 248 

milk collected was reported to be higher. The processor stated to mainly operate 249 

based on orders from customers (i.e. wholesalers and retailers), which means that the 250 

farm generally applies a pull system to produce milk products.  251 

During fieldwork observations, the processor was supplied with 20000 liters of raw 252 

milk, based on a past order from farms in the region. Although the processing plant 253 

was directly linked to the focal farm and its partner farmers, also other farmers were 254 

suppliers, enabling the processor to successfully reach its storage capacity of 50000 255 

liters of milk. As a consequence, it was possible to receive at least 20000 liters of milk 256 

whenever there was a need. The processor currently focuses on yogurt and UHT milk 257 

production, with wholesale and retail outlets in Kampala and neighboring towns as 258 

main distribution channels. Line production is used and there are two separate lines 259 

for yogurt and UHT processing. The plant has a maximum capacity to process 3000 260 

liters of pasteurized milk into yogurt while 6000 liters of pasteurized milk can be 261 

processed into UHT milk at a time. A batch system is utilized and all pasteurized milk 262 

contained in storage tanks is normally processed. As a consequence, the next milk 263 

delivery is not mixed up with old stocks of milk that would still remain in the tanks. 264 

There is a milk laboratory, stationed between the two production lines, where all quality 265 

tests are carried out to ensure recommended standards are met. Moreover, the plant 266 

is equipped with two separate types of packaging machinery for yogurt and UHT. The 267 
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packing material is supplied from Nairobi, Kenya on a monthly basis. The plant has 268 

two storage facilities located adjacent to the packaging areas of both lines, which are 269 

both connected to a loading area. There were about 30 employees working at the 270 

processing plant including the Chief Executive Officer, process manager, marketing 271 

manager, technicians, laboratory analysts, food technologist, and other staff 272 

responsible for packing and storage of finished products. Before final distribution to 273 

wholesalers and retailers, or for sale to end consumers, yogurt and UHT milk are 274 

periodically transported to an additional and separate storage facility located 275 

elsewhere in Kampala to replenish old stock.   276 
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Table 1: Characteristics of the dairy supply chain  277 

Supply Chain 
stage Steps 

Operation Capacity/Units 
Handled/Processed Operators 

Farmer  
  

Milking 

-Preparation  

51 cows 5 
-Hand milking 
-Measurement 
-Pouring milk into cans 

Collection & Storage 
-Transfer cans to cooling center 

2000 liters** 2 
-Delivery of milk from other farms 

Milk transfer to processor  
- Milk quality testing 

1400 liters/3 days 4 -Transfer milk from cooling tanks to truck 
-Delivery to the processing plant 

Processor 
 

Milk reception 

-Milk quality testing 

50000 liters** 2 

-CIP of inlet, pasteurizer & tanks 
-Milk inlet 
-Pasteurization 
-Cooling  
-CIP of inlet & pasteurizer 

Yogurt    

Mixing  
-CIP of mixture 

3000 liters* 3 -Milk transfer to mixture 
-Add milk power & sugar 

Pasteurization + 
homogenization 

-CIP of tube pasteurizer & homogenizer 3000 liters* 3 -Pasteurization & homogenization 

Fermentation 

-CIP of fermentation tank 

3000 liters* 3 
-Milk inlet 
-Add culture, flavor & color 
-Start fermentation 
-Test pH 

Cooling 

-CIP of cooling tank 
3000 liters* 3 -Milk inlet 

-Start cooling 

Packaging  

-Prepare packaging machine 

72 cups/min 15 

-Prepare packaging material (cups + seals) 
-Calibrate machine with real product 
-Channel yogurt to machine 
-Pack and seal 
-Print manufacture & expiry dates 
-Arrange sealed cups in boxes 

Storage -Place boxes on pellets 25 boxes/pellet 
>200 sq. m 3 -Transfer pellets to store 

UHT milk    

Homogenization + Sterilization  

-CIP of sterilizer 

6000 liters* 2 

-Pasteurization  
-Transfer to de-aerator 
-Homogenization 
-Milk inlet into sterilizer 
-Sterilization 
-CIP of sterilizer 

Aseptic tank holding 
-CIP of aseptic tank 

6000 liters* 2 -Milk inlet from sterilizer 
-CIP of aseptic tank 

Packaging  

-Prepare tetra packaging machine + CIP 

6000 liters/h 15 

-Prepare packaging material (tetra 
pack+caps) 
-Calibrate machine 
-Channel milk from aseptic tank to tetra 
packing 
-Print manufacture & expiry dates 
-Apply top caps 
-Arrange sealed tetra packs in boxes 
-CIP of tetra packing machine 

 Storage -Place boxes on pellets 15 boxes/pellet 
>200 sq. m 3 -Transfer pellets to store 

Distributor 
 

Loading & transportation 
-Transfer stock from storage to truck 

Depends on order 
 

4 
-Truck journey to Kampala 2 

Unloading & storage -Transfer stock from truck to store 4 
-Distribution to customers 4 

CIP stands for Cleaning In Place 278 
* stands for liters per batch 279 
** stands for maximum holding capacity of cooling tanks  280 
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3.2 Current state map for production of yogurt and UHT milk 281 

Figure 2 outlines the production processes for yogurt and UHT milk in the selected 282 

dairy chain Below, the findings are described for each stage of the supply chain 283 

(farmer, processor, distributor). 284 

3.2.1 Farmer level 285 

Focal farm and partner farms: The process of production starts with milking the cows. 286 

At the level of the focal farm, this takes place in a milking parlor that accommodates 287 

around 10 cows at a time, while the rest are held in a nearby paddock awaiting their 288 

turn. Each cow is restrained before manual milking with buckets by one of four men, 289 

each milking one cow at a time. Once the cow’s udders are emptied, the milk is 290 

measured and then poured into a 50-liter milk can. Repeating this process for each of 291 

the 51 cows took approximately 3 hours in total.  292 

Collection center: Following cow milking, the milk cans are transferred to the collection 293 

center for cold storage. Other farmers also deliver their milk to this center. At the 294 

storage center, there are 2 employees that receive milk from farmers and store it in a 295 

2000-liter tank; this process takes on average 2 hours. The process of transferring 296 

milk is manual, by which delivery to the cold storage center is done either with the 297 

assistance of a wheel barrow or with a bicycle or motor cycle. At the center, milk is 298 

decanted into smaller, 10 liter buckets, by which the 50-liter can be easily lifted and 299 

emptied into the storage tank. The cooling center uses a generator as a source of 300 

power for cooling, which is switched on once a day and runs for only 30 minutes. 301 

Milk transfer to processor: Every third day, a truck, with a capacity of 10000 liters, 302 

collects milk from the cold storage center for delivery to the processing plant. 303 

Collectors first need to test milk quality before it can be loaded into the truck. This 304 

process of transferring milk into the truck is manually done by 4 persons and normally 305 

takes 2 hours to complete. A pipe is connected from the cooling tank to the truck. Milk 306 

levels are first measured using a 50-liter can, which is then used to pour the milk  into 307 

the truck. This process continues until the truck is full or milk in the cooling tank is 308 

finished, the former situation occurring more often. 309 

 310 
3.2.2. Processor level 311 

Orders for milk delivery are placed on a weekly basis with these orders initiating milk 312 

processing activities at the plant.  313 
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Milk reception: This is the first activity that takes place at the dairy plant. On the day 314 

of delivery, a sample of milk was first tested to determine its quality and assess 315 

whether it can be processed into yogurt or UHT milk. Next, Cleaning In Place (CIP) of 316 

the inlet system was conducted, followed by the actual input of milk into the plant. As 317 

milk is pumped into the system, pasteurization immediately starts before milk is 318 

channeled to the cooling storage tanks. At the start of the milk inlet, there is a milk-319 

milk push through the system while at the end, water is used to push pasteurized milk 320 

into storage tanks. When all the milk is received and stored, CIP of inlet system and 321 

pasteurization tubes follows. The whole process of milk reception was done by 2 322 

personnel and took approximately 2 hours to receive 20000 liters of milk that were 323 

delivered by 2 trucks.  324 

Yogurt  325 

Mixing: The actual processing of pasteurized milk into yogurt starts when a mixture is 326 

made with sugar and milk powder. On the day this process was observed, 2 batches 327 

of yogurt were produced (i.e. plain and mango flavored yogurt). Plain yogurt was 328 

produced first, with 2800 liters of pasteurized milk being channeled into the mixer from 329 

one of the storage tanks. Then 160kg of skimmed milk powder and 128kg of sugar 330 

were poured into the mixer. This was performed by 3 workers and the mixer ran for 331 

exactly 30 minutes, before the product was channeled to the pasteurizer and 332 

homogenizer. The same process was followed for the next batch of mango flavored 333 

yogurt, which only started when the first batch already reached the next step of 334 

processing.  335 

Pasteurization + homogenization: The product from the mixer is pasteurized again 336 

before it moves to the next step. The pasteurizer also acts as a temporary storage 337 

element, which is facilitated by its structure (i.e. a series of holding tubes). 338 

Pasteurization takes place first and homogenization immediately commences but 339 

some milk remains in the tubes. Milk sent to the homogenizer pushes out water, which 340 

would have remained during CIP conducted earlier, into the drainage system. Since 341 

this process is continuous, drainage of water is closely observed, with the outlet valve 342 

being manually closed after the output is presumed to be milk and not water. In this 343 

case, milk is used to push out water. The opposite occurs at the end when water is 344 

used to push out the remaining milk to the drainage system. Both processes are 345 

managed by 3 persons and take on average 1 hour. A similar operation was performed 346 

for the second batch of mango flavored yogurt. 347 
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Fermentation: Once pasteurization and homogenization are complete, milk is sent to 348 

the fermentation tank. As there are two tanks, each with a capacity of 3000 liters, the 349 

processor could handle two batches almost concurrently. At this step, it was however 350 

difficult to determine how much of the product was sent to the tank, though this could 351 

be determined at the stage of packaging. It is also at this step that only the culture 352 

(thermophilic bacteria) was added in case of plain yogurt. For mango yogurt, also 353 

flavor and color were added. Moreover, the fermentation process is facilitated through 354 

a heat treatment. Fermentation, handled by two employees, took about 7 hours to 355 

complete. It was monitored to maintain the pH at 4.2-4.5, a lower pH being detrimental 356 

to the expected quality of the product. However, according to the employees, the 357 

duration may be much longer when the desired acidity is not yet reached.   358 

Cooling: At the end of the fermentation process, yogurt is sent to one of two cooling 359 

tanks. After the valve is opened, yogurt instantaneously moves to a cooling tank. The 360 

main purpose is to inactivate thermophilic bacteria so that fermentation stops. As 361 

mentioned before, the start of this process was delayed by 30 minutes for both 362 

batches, until the preceding process had completed. The cooling activities took about 363 

1 hour and is managed by 2 employees. The yellowish-orange change in color of 364 

yogurt in the pipes that they observed, was due to the fact that mango flavored batch 365 

was later channeled to the other cooling tank. 366 

Packaging: Before this activity commences, the packaging machine has to be 367 

prepared with all necessary packing material (i.e. cups and seals) and a date printer. 368 

Additionally, at least 15 people have to be positioned along the packing conveyer belt 369 

to arrange all finished products in specific boxes, ready for storage. In practice, cooled 370 

plain yogurt was channeled directly to the packaging machine and was packed in 450g 371 

cups, which was later followed by mango flavored yogurt. In the end, there were 5659 372 

cups with plain yogurt and 6055 cups with mango flavored yogurt that were 373 

appropriately packaged. The duration of this process took 4 hours. 374 

Storage: This is done concurrently with packaging. Boxes, each with 12 cups, are 375 

arranged on a pallet followed by plastic wrapping. Each pallet could accommodate 24 376 

boxes which were subsequently transferred to the storage area using a hand pallet 377 

jack. Products were arranged according to the date of production in order to avoid 378 

mixing up old and new stock of dairy products.  379 

UHT milk 380 
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Sterilization + homogenization: Before this process, 9900 liters of milk in storage tanks 381 

were first re-pasteurized using the pasteurizer of the yogurt line. The double 382 

pasteurized milk was then directly sent to the UHT production line, pushing out water 383 

into drainage in the process. The temperature of milk was then raised and maintained 384 

between 70-75°C. Next, milk was channeled to the de-aerator, while remaining the 385 

same temperature. Before sterilization at 132-140°C, milk was first homogenized in 386 

order to break down fats. Milk was held at sterilization temperature for 3-5 seconds. 387 

The whole batch of 9900 liters of milk took around 90 minutes to process. 388 

Aseptic tank holding: Prior to sterilization, the aseptic tank was prepared to receive 389 

milk in a condition that significantly reduces the risk of microbial growth. Therefore, 390 

steam was used at a temperature of 1470C and cooled down using sterile air. Sterilized 391 

milk was then sent to the aseptic tank for temporary storage before it moves to 392 

packaging. This process lasted for 1 hour. 393 

Packaging: Preparation of the tetra brik aseptic packing machine was done at the 394 

same time sterilization was initiated. This involved CIP and placing the packing 395 

materials into the machine. As already noted, milk in the aseptic tank was not 396 

immediately packed because the packing machine was still being prepared, despite 397 

the fact that the latter was initiated earlier. Once ready, milk was then sent from the 398 

aseptic tank for packing. The first tetra packs were used to calibrate the machine so 399 

as to reduce errors on packages. Good packs were labelled with dates as they moved 400 

on the conveyer belt, and top covers were applied using a precise cap applicator. UHT 401 

milk was then packed in boxes, each containing 10 one-liter tetra packs. There were 402 

15 personnel who were engaged in the whole process of packaging, which lasted for 403 

about 1 hour.  404 

Storage: UHT milk in one-liter packs were arranged in a box with a capacity of 12 405 

packs. Sealed boxes were then placed on pallets, wrapped with a plastic and 406 

transferred to storage with a hand pallet jack. The employees carefully checked 407 

whether the newly produced UHT milk was not mixed with old stock. Therefore, pallets 408 

were arranged according to the date of production. 409 

3.2.3 Distribution 410 

Finished products (yogurt and UHT milk) are periodically transported to the storage 411 

facility in Kampala. Products on pallets are loaded into a truck using a hand pallet jack. 412 

The truck travels a distance of 300km to deliver products to the storage facility in 413 
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Kampala. Once there, products are offloaded and stored according to the dates of 414 

arrival. Thereafter, the same process of loading, transportation and offloading is 415 

followed when products are distributed to customers.416 
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 421 
? Means that losses were observed but it was impossible to obtain estimates 422 
 423 
Figure 2: Current state map of the Dairy supply chain of yogurt and UHT milk424 
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3.3 Identification of food and nutritional losses and their destinations along the dairy value 425 

chain, with a link to lean manufacturing 426 

Findings in table 2 illustrate losses and wastes identified and are also described below for 427 

each subsequent stage of the supply chain. 428 

3.3.1 Farmer level 429 

Focal farm and partner farms: During milking, it was observed that a portion of the milk was 430 

normally spilled on the floor. This occurs during hand milking and when milk is poured from 431 

a bucket into cans. The main causes of spillages relate to the inattentiveness of milk men 432 

when performing a task as well as the restlessness of the cows. For the latter, there was 433 

also an increased risk that the cow would kick the bucket, causing a bigger loss of milk. 434 

Spilled milk becomes a product defect which cannot be recovered and hence can be 435 

categorized as discarded milk. There is also a practice of keeping milk in open cans located 436 

in the milking parlor for prolonged periods of time. As flies were observed hovering over 437 

the cans and coming into contact with the milk, milk was exposed to microbial 438 

contamination which increased the likelihood of deterioration. The loss attributed to this 439 

can occur in subsequent stages of processing when milk goes bad due to poor handling 440 

practices at a preceding task, hence being rejected and or discarded. As far as lean 441 

manufacturing is concerned, this practice constitutes a defect which additionally results in 442 

an accumulation of inventory, hampering the start of the next activity in the production 443 

system. 444 

Collection center: The system of transportation exposes milk to spillages if cans are not 445 

properly covered and its occurrence is exacerbated by bumpy roads on route to the center. 446 

As milk was poured into the cooling tank, it was also easily spilled on the floor and on top 447 

of the tank. Spilled milk is considered a defect as it cannot be used for consumption. During 448 

storage, it is also presumed that the tank is capable of maintaining cold temperatures, built 449 

up during the first 30 minutes of cooling. This is problematic since there was no control 450 

observed on the tank to monitor changes in temperature. Hence, there is also a high risk 451 

of milk deterioration due to microbial growth. This is especially the case when there was 452 

some form of microbial contamination beyond what is naturally expected at an earlier 453 

stage. Moreover, milk that is stored in the cooling tank for days without being distributed 454 

results in an accumulation of inventory.  455 
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Milk transfer to processor: If milk in the cooling tank is of low quality, it may be rejected by 456 

distribution trucks. Sometimes the collection center receives a lower price for low quality 457 

milk. Alternatively, such milk ends up with processors who produce dairy products where 458 

less emphasis is put on milk quality. An example that was reported was production of ghee 459 

and milk powder from such milk, where it could be used as a raw material. Another possible 460 

destination reported was that rejected milk is sometimes given to farm employees or thrown 461 

away. While milk is loaded into the truck using 50-liter cans, a lot of spillages normally 462 

occur. This led to a considerable loss of product e.g. on the day 1400 liters of milk were 463 

collected, it was observed that 28 cans were loaded into the truck. Each can spilled around 464 

100ml of milk. In total, approximately 3 liters of milk was lost at that stage. Further, the 465 

truck was unable to load all of the milk contained in the cooling tank because it had already 466 

made rounds from other centers arriving at the focal collection center last. This was 467 

reported to be the usual routine followed by the truck. Therefore, almost 500 liters of milk 468 

remained in the tank, and this balance can be considered an overproduction waste as well 469 

as inventory. This also results in a situation where the remaining milk is easily mixed with 470 

fresh milk that is received from farmers on subsequent days. This increases the risk of 471 

cross-contamination and, hence, possible rejection of milk during the next truck pick-up.  472 

3.3.2 Processor level 473 

Milk reception: During milk inlet, spillages were observed around the truck. However, the 474 

connection to the plant inlet valve was tight enough and no spillages were observed. It was 475 

reported that milk of poor quality was always rejected and was not used at the plant. Such 476 

milk was distributed to other processors for production of ghee and milk powder. A 477 

proportion of unpasteurized milk remained in the system after pasteurization and storage. 478 

This milk was pushed out of the reception unit into the drainage system using a force 479 

provided by water that is automatically pumped into the system once pasteurized milk is 480 

stored. But there was also milk that remained in the trucks as it could not be pumped into 481 

the processing plant. This type of milk is disposed-off while trucks are cleaned for the next 482 

delivery. 483 

Yogurt 484 

Mixing: Because the whole mixture is sent to the next step, losses at mixing were minimal. 485 

It was only the ingredients added (i.e. skimmed powder milk and sugar) that were spilled 486 

on working surfaces and floor. Spilled ingredients could not be reused and were discarded 487 

into drainage.  488 
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Pasteurization + homogenization: During pasteurization and homogenization, milk is lost 489 

twice into drainage. The first time is when incoming milk is used to push out water from the 490 

system. The outlet valve is only closed once the personnel presume only milk is still in the 491 

system. This is done manually and, as it is very hard to tell, a subjective decision is always 492 

made. Therefore, a certain quantity of milk is allowed to drain out together with water. The 493 

second time is when a new batch has to be processed and the system has to be cleared 494 

of any milk. All the remaining milk is pushed out by water into drainage. It was estimated 495 

that between 20-50 liters of milk are lost at this step. Losses at this level continue to occur 496 

in the next batch, as the same principle applies. Milk is also pasteurized the second time 497 

since it was delivered to the plant. This increases the likelihood that thermal labile 498 

micronutrients are affected in terms of quality. 499 

Fermentation: During the fermentation phase, the main threat as far as losses are 500 

concerned is increased acidity of yogurt (i.e. pH below 4.2). Once this occurs, yogurt 501 

develops a sour taste which is irreversible, and the product has to be discarded, which 502 

means the whole batch is lost. Another potential loss was with the ingredients added which 503 

were seen spilled on top of the tanks. When fermentation was complete, there was an 504 

observed 30-minute lag before yogurt was channeled to the next process. In this case, the 505 

product became inventory. Moreover, this also offers thermophilic bacteria the opportunity 506 

to continue the breakdown of yogurt, which could further lower the pH. 507 

Cooling: By the time the first batch was sent through pipes to one of the cooling tanks, 508 

another batch was almost completing its fermentation. At this point, no CIP was performed, 509 

the cooling tank was sealed, and it was noted that plain yogurt which remained in the pipes 510 

was pushed out into drainage by incoming mango flavored yogurt. The operator reported 511 

that each minute, approximately 12 liters of yogurt are drained out of the system. 512 

Altogether, it took around 5 minutes for almost 60 liters of plain yogurt to drain out of the 513 

system. As mentioned before, a yellowish-orange color change in the pipes was used as 514 

a signal by operators to initiate closure of the drainage valve. Thereby, it may also be 515 

suggested that inventory accumulates at this stage, especially when the next process was 516 

not prepared in time.   517 

Packaging: During packaging, there were 68 plain, 17 mango and 132 mixed flavored 518 

yogurt cups that had defects. These defects included incorrect weight, damaged cups, seal 519 

leakages, errors in printed dates and unclear dates. Many of the defects occurred at the 520 
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very start of packing, i.e. when the machine was being calibrated. Such products were 521 

separated and not packed for distribution to customers. Additionally, before mango 522 

flavored yogurt was packed, the product that first came out of the system was not purely 523 

mango (i.e. mixed flavor). It was clearly observed that the first product had a very light 524 

yellowish color which indicated a mix up with plain yogurt. The operator in charge also 525 

highlighted that it is even worse if another flavor such as pineapple is produced. Therefore, 526 

cups derived from this mix were also separated from those with a consistent yellowish-527 

orange color typical of mango flavored yogurt. It was also observed that the surfaces of 528 

working tables were slippery and without end-stops, in that 3 sealed cups were knocked 529 

over by workers who were arranging them in boxes. Most products damaged during 530 

packing were thrown away while a few were given to employees. When the number of cups 531 

packed are converted into liters, 2472.4 and 2645.4 liters of plain and mango flavored 532 

yogurt, respectively, were eventually packed and suitable for distribution to customers. 533 

When compared with 2800 liters of pasteurized milk that were used as raw material for 534 

each batch, overall, there was a 327.8 (11.7%) and 154.6 (5.5%) liter loss of marketable 535 

milk product from mixing to packaging stage for plain and mango flavored yogurt, 536 

respectively.   537 

Storage: There were no indications of packed yogurt loss during storage. However, old 538 

stock was observed in storage in order to provide a buffer whenever an urgent, unplanned 539 

order was made. This constitutes both accumulating inventory and over production and 540 

issues may arise if the old stock is not distributed in good time before specified expiry 541 

dates. 542 

UHT milk  543 

Sterilization + homogenization: At this step, the process of pushing out water from the 544 

system using incoming milk was the key source of loss. The operator had to wait and 545 

ensure that all water had been drained. This required that some amount of milk be 546 

concurrently disposed of in the process. It was observed that almost 400 liters of milk were 547 

lost to drainage at this point. In addition, exposing milk to a second pasteurization process 548 

increases the likelihood that heat labile micronutrients are compromised, hence affecting 549 

the nutritional value of the final product.  550 
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Aseptic tank holding: Observations did not reveal any physical product loss at this step. 551 

However, since the next process did not start promptly, there was an accumulation of 552 

inventory. 553 

Packaging: Losses of milk were immediately observed during calibration of the tetra brik 554 

machine. The first packs that came out had a lot of errors and it took many attempts to 555 

come up with an acceptably packaged product. Observed errors included; weak package 556 

seals, design errors, pin holes, wrong application of the cap and wrong/unclear dates. It 557 

was both reported and observed that such milk would not be reused and all of it was 558 

discarded. Halfway through packing, the same errors occurred leading to more milk being 559 

discarded. There were 8532 tetra packs that were appropriately packed. This was 560 

equivalent to 8532 liters of milk since each pack contained 1 liter. When compared to 9900 561 

liters channeled from the storage tanks, a loss of 1368 liters of milk or 13.8% was identified.  562 

Storage: No loss was observed during storage. However, the delay to distribute finished 563 

products was associated with an accumulation of inventory. It was also highlighted that old 564 

stock present was used as buffer in case an urgent order is made when no production is 565 

planned. This gave an indication that although the processing plant mainly operates on 566 

orders, it also produces more than what was ordered. While this may appear rational, the 567 

plant also runs a risk of loss if such a buffer is not distributed on time before its expiry date.  568 

3.3.3 Distribution 569 

No losses were observed at the time of data collection. However, workers reported having 570 

experienced losses during loading, off-loading and transportation. This provides an 571 

indication of additional hotspots where losses, in terms of physical damage to packages, 572 

could occur if not enough care is taken. There is also accumulation of inventory at the 573 

second storage facility since distribution to customers is normally not done immediately.   574 

 575 
 576 
 577 
  578 
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Table 2: Food losses, lean waste linkage and their destinations along the dairy value 579 
chain   580 

Supply 
Chain stage Steps 

Food losses  Lean waste 
linkage 

Destination  

Farmer  
  

Milking 
Spillage of milk  Defect DiscardK 

Milk kept in open cans for long periods Inventory DiscardK 
Defect 

Collection & Storage 
Spillage of milk Defect DiscardK 

Milk in cooling tank before distribution  Inventory 

Milk transfer to processor 
(3 liters lost)* 

Spillage of milk Defect Discard,  
Given to employees, 
Ghee & milk powder 
productionK 

Poor quality milk rejected 

Uncollected milk in tank Over production  
Inventory 

Processor 
 

Milk reception 

Spillages of milk 

Defect 
Discard,  
Ghee & milk powder 
productionK&UK 

Unpasteurized milk sent to the drain 
Milk in trucks not pumped 
Poor quality milk rejected 

 
Yogurt 

   

    
Mixing (2X 2800 liters) Spillage of milk powder and sugar Defect DiscardK 

Pasteurization + homogenization 
(20-50 liters lost)* 

Milk mixed with water Defect DiscardK 

Heat labile micronutrient degradation  Over processing PackagedK 

Fermentation 
(Plain & Mango) 

Yogurt with very low pH (sour taste) 
rejected 

Defect 
DiscardK Over processing  

Yogurt unnecessarily kept longer in tank  Inventory 

Cooling -Plain & Mango  
(60 liters lost)* 

Yogurt drained out during batch change-
over Defect DiscardK 

Yogurt kept unnecessarily longer in tank Inventory PackagedK 

Packaging  
Plain-5659 cups = 2472.4 liters 

(327.8 liters lost)* 
Mango-6055 cups = 2645.4 liters 

(154.6 liters lost)* 

Yogurt with incorrect weight rejected 

Defect 
Discard,  
Given to employees 
K&UK 

Yogurt in damaged cups rejected 
Yogurt with seal leakage rejected 
Yogurt with error/unclear dates rejected 
Yogurt with mixed flavor rejected 

Storage Old stock used as buffer Inventory Distributed, 
DiscardK&UK Over production 

 
UHT 

   

    
Sterilization (9900 liters) 
(with pasteurization + 
homogenization) 
(400 liters lost) 

Milk drained out during removal of water Defect DiscardK 

Heat labile micronutrient degradation Over processing PackagedK 

Aseptic tank holding Sterilized milk awaiting packaging Inventory PackagedK 

Packaging  
8532 tetra packs = 8532 liters 
(1368 liters lost)* 
 

Tetra pack with weak seal rejected 

Defect  

 
Tetra pack with design error rejected  
Tetra pack with pin hole rejected DiscardK 

Tetra pack with no applied cap rejected  
Tetra pack with wrong/unclear dates 
rejected 

 

 Storage Old stock used as buffer Inventory Distributed, 
DiscardK&UK Over production 

Distributor 
 Loading, transportation, unloading & 

storage 

Damage on packaging  Defect DiscardUK 

Delivered products not distributed 
immediately Inventory 

DistributedUK 

* Estimated loss along steps of the supply chain 581 
K Known destination  582 
UK Unknown destination 583 

  584 
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3.4 Nutritional losses embedded in FLW along the dairy value chain 585 

An evaluation of nutrients lost together with FLW is shown in table 3. Finding indicate 17 586 

nutrients, together with energy, were lost with discarded milk products. UHT milk had the 587 

highest quantities of lost nutrients compared to plain and mango yogurt. The magnitude of 588 

loss depended on the quantity of product lost as well as the nutrient content per 100g of 589 

milk product. So, high values for micronutrients do not necessarily mean that their loss is 590 

higher than macronutrients. The difference is due to the units used while computing nutrient 591 

values from food composition tables (i.e. g, mg and µg). Furthermore, it can be observed 592 

that losses in macronutrients (i.e. protein, carbohydrate and fat) were relatively similar. 593 

Conversely, there were wide variations among micronutrients, with calcium, phosphorus, 594 

potassium, vitamin A, folate and vitamin B12 having high losses. Based on gender 595 

disaggregated RDAs, results show high number of people, whose recommended intakes 596 

could have been met by lost nutrients. There are similarities between the two gender 597 

groups whenever RDAs were equivalent. The lowest number of people whose energy 598 

intakes could be met if dairy products were not discarded is 574 for energy. The numbers 599 

for macronutrients are higher, with lost protein equated to 1116 male and 1358 female 600 

adults. The potential for micronutrients is even greater, showing possible coverage in tens 601 

of thousands, millions and billions of people.  602 

 603 

 604 

 605 
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Table 3: Physical and Nutritional losses embedded in discarded UHT milk and yogurt 606 

 Nutrient UHT milk Plain yogurt Mango 
Yogurt 

Total RDA Missed potential 
(Total/RDA) 

      Male Female #Male #Female 

Quantity 
of product  

At the start (liters) 9 900 2 800 2800      
At the end (liters) 8 532  2 472.4 2 645.4      
FLW (liters) 1 368 327.6 154.6      
FLW (%) 13.8 11.7 5.5      

 FLW (kg) 1 409 337.4 159.2 1 905.6     

Nutrients 
in FLW  

Energy (Kcal) 845 400 205 814 9 7112 1 148 326 2 000  2 000 574 574 
Protein (g) 45 088 11 809 5 572 62 469 56 46 1 116 1 358 
Carbohydrate (g) 63 405 15 857.8 7 482.4 86 745.2 130 130 667 667 
Fat (g) 46 497 11 134.2 5 253.6 62 884.8 / / / / 
Calcium (mg) 1 620 350 000 408 254 000 192 632 000 2 221 236 000 1 000 1 000 2 221 236 2 221 236 
Magnesium (mg)  154 990 000 40 488 000 19 104 000 214 582 000 400 310 536 455 692 200 
Phosphorus (mg) 1 296 280 000 320 530 000 151 240 000 1 768 050 000 700 700 2 525 786 2 525 786 
Potassium (mg) 1 972 600 000 522 970 000 246 760 000 2 742 330 000 4 700 4 700 583 474 583 474 
Sodium (mg) 774 950 000  0 0 774 950 000 1.5 1.5 516 633 333 516 633 333 
Iron (mg) 1 409 000 0 0 1 409 000 8 18 176 125 78 278 
Zinc (mg) 5 636 000 0 0 5 636 000 11 8 512 364 704 500 
Vitamin A (µg) 3.9452E +11 91 098 000 000 42 984 000 000 5.28602E +11  900 700 587 335 556 755 145 714 
Vitamin E (µg) 1 409 000 000 337 400 000 159 200 000 1 905 600 000 15 15 127 040 000 127 040 000 
Riboflavin (mg) 2 818 000  337 400 159 200 3 314 600 1.3 1.1 2 549 692 3 013 273 
Niacin (mg) 1 409 000 337 400 159 200 1 905 600 16 14 119 100 136 114 
Folate (µg) 70 450 000 000 23618 000 000 11 144 000 000 1.05212E+11 400 400 263 030 000 263 030 000 
Vitamin B12 (µg) 5 636 000 000 1349 600 000 636 800 000 7 622 400 000 2.4 2.4 3 176 000 000 3 176 000 000 
Vitamin B5 (mg) 5 636 000 1349 600 636 800 7 622 400 5 5 1 524 480 1 524 480 

RDA- Recommended Dietary Allowance 607 
Missed potential- The number of people whose RDA can be meet if a specific nutrient was not lost 608 
 609 



 
 

27 
 

4.0 Discussion 610 

This case study applied VSM, following guidelines of the FLW accounting and reporting 611 

standard to map hotspots for food related losses along three stages of a dairy value chain 612 

in Uganda. Thereby, it follows specific lean manufacturing practices adapted to the dairy 613 

sector (Malmbrandt & Åhlström, 2013). As a foundation for value chain analysis, the current 614 

state map of the dairy value chain indicates that production of milk products constitutes a 615 

series of dependent steps and operations which are potential hotspots for losses. Although 616 

the majority of FLW were noted to occur at the processing stage, unsatisfactory handling 617 

practices at the farmer level increased the likelihood of milk rejection and subsequent 618 

disposal upstream. The issue of FLW instigated at earlier stages of the chain has also been 619 

reported in a study on food loss reduction strategies in Switzerland (Beretta et al., 2013). 620 

Unfortunately, awareness among actors of what happens down or upstream is limited and 621 

is hardly observed due to barriers that hinder integration along the supply chain (Taylor & 622 

Fearne, 2009). Thereby, reinforcing the need for targeted awareness creation to promote 623 

the implementation of collective strategies at all chain levels with input from various actors 624 

(Göbel et al., 2015; Halloran et al., 2014).   625 

With respect to loss types, results indicated that milk products were often times discarded, 626 

while some supply chain operations were linked to nutrient losses. Product defects were 627 

by far the main reason for discarding milk products, a finding that supports previous 628 

literature (Halloran et al., 2014; Muriana, 2017). Selectively discarding products that fail to 629 

match quality standards expected by consumers is common practice among producers as 630 

a way of increasing or sustaining market share of their products (Willersinn et al., 2015). 631 

There were also instances of accumulated inventory along the chain, and subsequent poor 632 

handling could in a way render milk unacceptable for further processing, hence being 633 

discarded. The same was true for over production of milk products that were not transferred 634 

upstream at the same rate as they were produced. Although production of food is 635 

increasingly affected by uncertain demand forecasts, producers continue to use push 636 

strategies which result into either accumulation of inventory or stock (Buzby & Hyman, 637 

2012; Silvennoinen et al., 2015). Thereby, perishability of dairy products such as UHT milk 638 

and yogurt underlines the need to adopt lean production based pull strategies such as Just-639 

In-Time production (Lyonnet & Toscano, 2014; Mackelprang & Nair, 2010). This has the 640 

potential to reduce losses due to unnecessary inventory and overproduction. Over 641 

processing was also identified as a factor affecting the integrity of milk products as far as 642 
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nutrient quality of final products is concerned. Although the practice of double 643 

pasteurization at high temperatures has merits linked to the microbial safety assurance of 644 

food products, it potentially results in nutritional losses (Qi et al., 2015; Shewfelt, 2017). 645 

This is also true for other non-heat operations in other food groups such as washing and 646 

physical treatments, with vitamins being most susceptible (Atungulu & Pan, 2014; Francis 647 

et al., 2012). Thereby, our study demonstrates that the processing stage is also an 648 

important hotspot for nutrient losses.  649 

Limited standardization of operations especially at the farmer level could have been the 650 

underlying casual factor for the losses that were observed at this stage (Papargyropoulou 651 

et al., 2014; Parfitt et al., 2010). At the processing plant, there were some established 652 

process controls, but these were insufficient to prevent almost 14% or 5-12% of losses 653 

observed along the UHT and yogurt production lines, respectively. The nutritional value 654 

loss attributed to this was also significant, with both marco- and micro- nutrients 655 

disappearing from the food system, in line with previous studies (Cooper et al., 2018; 656 

Spiker et al., 2017). As a consequence, the amount of essential nutrients needed for people 657 

to meet their Recommended Daily Allowances is lowered, which potentially increases 658 

undernutrition. Nonetheless, it remains important to establish and continuously improve 659 

controls, traversing the entire value chain, as a way of promoting collaborative efforts 660 

against these losses (Mena et al., 2014). This practice could facilitate continuous 661 

improvement, a principle in lean manufacturing that promotes efficiency and lowers 662 

production costs (Rivera & Chen, 2007). Lean metrics such as lead time play a key role to 663 

justify processes that need improvement. Our results indicate that the production process 664 

of a given batch of milk product takes approximately 14 days from the farmer level to the 665 

point of distribution. Given the perishability of most milk products (Kaipia et al., 2013), 666 

improvement in production efficiency is needed so that consumption is not limited by the 667 

shortened shelf-life of edible products (De Treville et al., 2004). Future research should 668 

therefore consider investigating and confirming the causal association between process 669 

standardization and control with the occurrence of FLW at different stages of the food 670 

chain. In addition, food producers should strive to improve production efficiency to lower 671 

the time it takes to have a finished product ready for consumer use. This results from the 672 

optimal use of resources coupled with minimal wasteful processes and is also linked to 673 

better in-line flow and product value for the customer (Engelund et al., 2009; Simons & 674 

Zokaei, 2005). 675 
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Although discarding of unmarketable milk products to the drain and land fill were popular 676 

destinations, there are times when such products were given to employees. This supports 677 

previous findings on the adoption of lean manufacturing to reduce FLW among dairy chain 678 

actors (Wesana et al., 2018). While this is a good practice, it can only be implemented to 679 

a limited extent because not all rejected products can be absorbed by available employees. 680 

In developing country contexts like Uganda, with a considerable part of the population 681 

facing hunger especially due to compromised economic access to milk or other nutrient-682 

rich food products, there is need to develop effective mechanisms by which unmarketable 683 

but edible products can be effectively redistributed, beyond employees, to the needy. This 684 

can be in the form of organized charity distributions, like those that have been implemented 685 

in other countries (Richter & Bokelmann, 2016; Schneider, 2013). Governments can take 686 

initial steps to foster an enabling environment for actors in the food industry and charity 687 

organizations to interact and promote effective collaboration as far as FLW is concerned 688 

(Garrone et al., 2016). This also could provide a suitable platform to create critical 689 

awareness and promote collective problem diagnosis to design alternative uses and 690 

destinations of products that would have been discarded from the supply chain.  691 

Even though identification of FLW hotspots along the three supply chain levels was 692 

possible while following the principles of VSM and the FLW standard, quantifying the 693 

magnitude was not straightforward, as also reported in previous studies (Affognon et al., 694 

2015; Chaboud & Daviron, 2017; Elimelech et al., 2018). There were observable efficiency 695 

differences in operations and equipment used at different stages of the supply chain, a 696 

limitation also identified by Corrado et al. (2017). Findings from the case study point to the 697 

absence of automation at the farmer and distribution/storage levels relative to the 698 

processor level. The organization of operations during processing of yogurt and UHT milk, 699 

to a given extent, facilitated FLW quantification. By comparing the amount of raw material 700 

used at the start of processing with the final product at the end, the magnitude of loss 701 

during processing was determined. However, there are some process components (i.e. 702 

drainage outlets) that ideally would require future investment in innovative technologies 703 

with quantification capabilities. This would be complementary to advocated improvement 704 

of production efficiency as a way of mitigating FLW (Parfitt et al., 2010; Shafiee-Jood & 705 

Cai, 2016). In addition, the enclosed system of production used by the processor limits the 706 

possibility of taking product samples for nutrient analysis to assess changes along different 707 

production steps. This made direct nutrient analysis impractical and was further hindered 708 
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by limited time and data collection resources. To tackle this limitation, the assessment of 709 

the nutritional value lost as a result of milk loss was performed using food composition 710 

tables. Nonetheless, nutrient values from food composition should be viewed as an 711 

approximation of the actual nutrient content of assessed food products. In addition, the 712 

nutrient evaluation in this study is based on the Tanzania food composition table to 713 

represent the food context of Uganda. Although foods in both countries can be equated 714 

based on proximity, there might be noticeable differences. The table used is also limited 715 

with regards to milk products produced by different processing technologies (i.e. UHT vs 716 

pasteurized milk). Hence, food composition tables need to be revised to cater for various 717 

forms of food products including the methods used during processing and preparation. 718 

Although this case study was limited to the current state map, there are important Kaizen 719 

aspects that could be taken into consideration while improving the production configuration 720 

and flow of products through the stages of the dairy value chain (i.e. future state map). This 721 

will most likely reduce the lead time for producing and supplying yogurt and UHT milk that 722 

is illustrated in the current state map. At the farm level, milking time and observed losses 723 

due to milk spillage could be reduced by using milking machines which are more efficient 724 

(Castro et al., 2012; Rodenburg, 2017). If this is implemented with a direct link to cooling 725 

tanks at the collection center, losses due to poor handling practices and microbial 726 

contamination could also be minimized (Boor et al., 2017). During collection of milk, it is 727 

recommended that milk is pumped into trucks instead of using handheld buckets to 728 

minimize additional spillage losses that were observed. This subsequently could reduce 729 

the time it takes for milk to be loaded into collection trucks. The capacity or number of 730 

collection trucks should also be increased to ensure that all stored milk is loaded and no 731 

balance is left due to inadequate truck capacity (Paredes-Belmar et al., 2017). This could 732 

help reduce milk inventory from accumulating at farm level. At the processing plant, 733 

although production based on orders was reported, observations indicated situations of 734 

over production of yogurt and UHT milk to act as buffer stock. Given that these products 735 

are perishable and could easily spoil, it is recommended that the processor considers 736 

adopting the pull strategy of production fully as way of minimizing both inventory and over 737 

production wastes (Lyonnet & Toscano, 2014; Mackelprang & Nair, 2010). Raw milk 738 

received at the plant should be pasteurized once and this means that further processing 739 

into yogurt and UHT milk should be done immediately to limit the need of the second 740 

pasteurization process as currently done. This would reduce thermal sensitive nutrient loss 741 
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as well as accumulation of milk in tanks as inventory (Bogahawaththa et al., 2018; Qi et 742 

al., 2015; Shewfelt, 2017). The processor should also consider installing detection and 743 

quantification systems at drainage points along production lines so that the product that is 744 

discarded can be accurately assessed (Bibi et al., 2017). Automatic detection capabilities 745 

would additionally prevent avoidable milk losses especially at times when a subjective 746 

decision is made to determine whether the product being drained out is a mixture of milk 747 

and water or only milk. During yogurt processing, efforts should be made to ensure that 748 

recommended fermentation time is not exceeded to prevent loss of an entire batch due to 749 

high acidity (De Brabandere & De Baerdemaeker, 1999; Soukoulis et al., 2007). To further 750 

reduce lead time, cooling should be initiated immediately after the specified 7 hours of 751 

fermentation and thereafter packaging should commence without delays as observed in 752 

the current state of production. UHT milk production line has similar idle time before 753 

packaging and this non-value adding wait should be reconsidered by the processor. After 754 

packaging, the current state map indicates a delay of 5 days before shipping takes place. 755 

Although products are kept in ideal storage facilities, it might add value to reduce this 756 

wasted time and avoid accumulation of stock in storage before delivery to the customer. 757 

Thereby, the time it takes to deliver of products should be shortened during the distribution 758 

stage (Chen et al., 2013; Manzini & Accorsi, 2013). One option could be to invest in 759 

additional trucks or to have customers collect products from the storage facility. As a whole, 760 

these improvement measures are likely to reduce identified milk losses as well as the lead 761 

time observed from the current state of yogurt and UHT milk production. Hence could 762 

increase customer satisfaction and in the nutrition sensitive value chain perspective, 763 

increase availability and access to nutrient-rich milk products to positively influence food 764 

and nutrition security.  765 

 766 

5.0 Conclusion 767 

This case study has implications for the agri-food industry with regard to the systematic 768 

identification of hotspots of food and nutritional losses along the value chain. Applying VSM 769 

could help value chain actors to holistically establish the magnitude of FLW, by comparing 770 

the amount of material used at the start of a production process to the final quantity of 771 

product emerging at the end, while also estimating embedded nutritional losses. Wherever 772 

possible, this should be done for every operation along the value chain. Efforts to minimize 773 

food and nutritional losses should emphasize adoption of this practice more at the 774 
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processor level of the chain, as this has shown to be a key stage where most losses occur, 775 

while also promoting actor integration and collaboration along the supply chain. Given the 776 

complexity of food production systems, establishing suitable controls to monitor FLW may 777 

be hindered by associated costs if new equipment needs to be installed, especially in 778 

resource constrained country settings. However, recent evidence shows that actors in the 779 

dairy value chain are more likely to adopt lean manufacturing strategies to reduce food 780 

losses if they are aware of associated benefits and are able to collaborate with other actors 781 

for a common purpose. Therefore, food producers should continuously be engaged and 782 

informed about the potential of lowering production costs following adoption of lean waste 783 

reduction strategies along supply chains. As a consequence, availability of nutrient-rich 784 

foods like dairy products is enhanced in a sustainable way without necessarily investing 785 

more in increased food production that has proven to be a costly venture. Future studies 786 

should extend this work and apply VSM to other agri-food value chains and further justify 787 

the potential of lean manufacturing strategies, integrated with established accounting and 788 

reporting guidelines or approaches for food and nutritional loss assessments and 789 

subsequent minimization.  790 
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