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Abstract Active Shape Model (ASM) has been successfully applied in the seg-
mentation of Diffusion Tensor Magnetic Resonance Image (DT-MRI, referred to
as DTI) of brain. However, due to multiple anatomical structure types, irregular
shapes, small gray-scale and large amount of these images, perfect segmentation
performance could not be achieved. Especially, it is sensitive to initial values with
high computational complexity. In this paper, we introduce the gray information
of multiple atlases and the prior information of target shapes into the ASM and
propose the Multi-Atlas Active Shape Model (referred to as MA-ASM) approach
for DTI segmentation. It was evaluated in a manually labeled database with 7
Region of Interest (ROI)s for each of 20 subjects. In comparison with the state
of art method of STAPLE (Simultaneous Truth Performance Level Estimation),
the proposed algorithm was closer to the manual segmentation shape by subjec-
tive visual effects, and had higher overlap rates and lower error detection rates on
quantitative analysis than STAPLE.

Keywords Diffusion tensor magnetic resonance imaging · image segmentation ·
Active Shape Model · STAPLE

1 Introduction

The medical image segmentation is an important field for diagnosing and analyzing
neurological and mental diseases, which are usually related to the abnormal fiber
bundles of brain White Matter (WM). Diffusion Tensor Magnetic Resonance Imag-
ing (DT-MRI, referred to as DTI) is a new Magnetic Resonance Imaging (MRI)
technology, which can obtain the information of tissue fiber structures by measur-
ing the different diffusion of water molecules caused by different tissue structures
in body [1]. Segmentation of WM fiber bundle in DTI image plays a vital role for
the diagnosis.
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All DTI segmentation algorithms mainly belong to three categories: manual
segmentation, segmentation with prior knowledge of image, and segmentation
without prior knowledge of image, such as the similarity and topological consis-
tency of the same tissues among different individuals. Nowadays, manual segmen-
tation method is the gold standard for medical image segmentation. But it takes
more time, and extremely depends on the experts’ experience and subjectivity,
and the process has no repeat ability [2].

Segmentation without image prior knowledge refers to directly segment the
DTI by utilizing underlying data information, i.e. the grey level. Because each
voxel of DTI data is a tensor represented as a 3 × 3 matrix (i.e. the DTI data
is 4D data), there are two ways to segment the DTI data. The first one is di-
rectly segmenting the DTI data by tensor value, and the second one is converting
tensor to scalar, and then to segment scalar data to achieve the segmentation.
For the first way, some works are proved to be efficient, such as tensor splines
[3], classification trees [4] and watershed-based methods [5]. These methods use
the direction and similarity information of tensors that makes the complexity of
algorithms increased. Due to a lot of data in the clinical practice, this way is very
complicated and time-consuming. For the second way, the tensor is transformed
to scalar value, such as FA (fractional anisotropy) value, ADC (apparent diffusion
coefficient) value. There are a lot of algorithms for segmenting scalar value, for
example threshold segmentation[6], region growing method [7], level set method
[8], Markov random field based segmentation and graph cut based segmentation
algorithms [9], [10], [11], [12]. Threshold segmentation is simple and fast. But it
does not take the spatial information into account, and is also sensitive to noise
and in homogeneity. Region growing method has good robustness and fast speed,
but it needs human-computer interaction to select seed pixels and also sensitive
to noise. Level set method is easy to program, and its calculation is stable, but it
is sensitive to the parameter selection, and easily stuck in local minima. Markov
random filed and graph cut also directly segment the DTI data with good results.
Due to DTI’s multiple anatomical structure types, irregular shapes, small gray-
scale and large amount of data, the above segmentation methods cannot achieve
perfect segmentation results by only utilizing underlying data information (i.e. the
grey information). In addition, these methods have higher algorithm complexity,
and are difficult to adapt to the specificity of different data.

The segmentation with a prior knowledge of image mainly includes classifica-
tion based, deformable model based and multi-atlas based ones [13]. Classification
based segmentation algorithms, especially convolutional neural networks (CNN),
are the popular methods for segmentation in recent years due to their outstanding
accuracy in computer vision tasks and trivial adaptation of models across dif-
ferent domains [13]. Example classification techniques have employed k-NN [14],
Naive Bayes[15], Random Forest [16], SVM classifiers[17] and more recently CNN
[18]. Recently, Li et al. [19] developed a novel convolutional neural network based
method to directly segment white matter tract trained on a low-resolution dataset
of 9149 DTI images. This method is optimized on input, loss function and network
architecture selections. However, the method can only be used for white matter
tract segmentation as it needs lots of labelled data for the training. Overall, there
are some shortcomings in classification techniques. For example, neural network
needs a lot of parameters, learning time is very long and it may even fails to
achieve the purpose of learning. Deformable model based segmentation method
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provides the specific representation for the boundary and the shape of the object.
It can approximate the irregular curve which can be treated as a minimum energy
problem, so deformable model based segmentation makes the image segmentation
come down to energy function minimization problem that can be transformed into
solving the partial differential equation by variation method. Kass et al. [20] first
proposed Snake model based segmentation algorithm. It firstly selects an initial
contour that is used to iterate, then gets an optimal segmentation boundary. This
method needs high requirements for selecting an initial contour, i.e. an ideal prior
contour. In addition, some other deformable models are proposed for segmenta-
tion, such as Fuzzy Object Model (FOM) [21], Active Contour Model (ACM) [22],
[23], [24]. However, these models are sensitive to initial values, too dependent on
the choice of weight parameters, and have high computational complexity. There-
fore, how to express the models more efficiently is still a problem to be further
studied and solved [25]. Multi-Atlas based approaches are methods that segment
the image based on the labels of aligned atlases. Multi-Atlas techniques combine
the label votes from different atlases [26], [27]. Different voting schemes have been
proposed that weight the contribution of each atlas according to the similarity of
the atlas image to the unseen image [28], The most popular Multi-Atlas method
is called Simultaneous Truth Performance Level Estimation (STAPLE) [28] that
can automatically assign weights to the deformed ROIs according to the quality
of data in the training set, and then fuses the deformed Region of Interest (ROI)s
with EM method. Lu et al. [29] used STAPLE method for brain white matter
segmentation. The multi-atlas segmentation method uses the prior information to
segment the image and it is robust. In other words, it has good adaptability to
the segmentation image, thus reducing the dependence on the specific image. The
shortcomings of this method s that it cannot adapt the models to complex shapes.

Active Shape Model (ASM) is a method of feature points extraction based
on statistical learning model. It is a variable model, which overcomes the short-
comings of previous rigid body models and adapts well to complex shape target
positioning and has good adaptability. Furthermore, it is a parameterized model.
By changing the parameters, a tolerable shape can be generated and the shape
specificity is maintained. Therefore, in this paper, a Multi-Atlas Active Shape
Model (MA-ASM) based segmentation method is proposed for DTI that combine
the advantages of multi-atlas and ASM together. We first carry out multi-atlas
registration. Each atlas is firstly warped to the image to be segmented, thus the
deformation fields are obtained. Then, ROIs of corresponding atlas are transferred
using deformation fields to get deformed ROIs. Then the method takes the de-
formed ROIs of multiple subjects labeled by experts in the multiple atlases as
the training set, and marks the feature points which can express the targets area
boundaries in these areas. And the statistical shape model is established. When
searching target area in the image to be segmented, the adjustments of feature
points are calculated, and the shape and pose parameters are updated. This pro-
cess is repeated until the shape contour is no longer changed. Finally, the optimal
segmentation result is obtained, which can obtain the boundary of segmentation re-
sult flexibly and effectively by introducing the prior multi-atlas shape information
into active shape model. The main contributions of the paper are the followings:

– We proposed a new MA-ASM based segmentation method that adopts the
prior shape information of target area, and introduces prior multi-atlas shape
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Fig. 1 Specific flowchart of proposed MA-ASM algorithm. There are mainly five steps to
get the final segmentation results. From the training data, new multiple ROI information
combination method was proposed to establish the active shape model and grey-level model.

information to the ASM, which can combine the advantages of multi-atlas and
deformed model together.

– We use the manually segmented ROIs as prior information, carries out sta-
tistical analysis and establishes statistical shape model, which simplifies the
calculation of the algorithm.

– The new method can make full use of the gray-level information of the image to
establish a local model, and combine the shape model to make the segmentation
result more accurate.

2 PROPOSED MA-ASM ALGORITHM

2.1 The flow of MA-ASM algorithm

The specific flowchart of MA-ASM is shown in Fig. 1. Firstly, we use multi-atlas
registration to get the training data. And then the training data is spatially nor-
malized, and statistically analyzed with PCA method to establish an ASM and
local gray model. Secondly, the initial shape of input image to be segmented is
put into ASM and carried out initial spatial orientation. Thus, the new shape con-
tour and spatial location are constantly obtained by iteratively searching in point
distribution model. Then, the position, orientation and scale of the shape contour
are adjusted by using pose and shape parameters, and the new shape contour
is obtained at the same time. Finally, it estimates whether the shape change of
adjacent iterative processes is convergent. If it does not converge, the iteratively
searching procedure will continue with loop iteration until no significant shape
change occurs. If the change converges, the shape contour obtained after the last
iteration is the target shape and also the segmentation result.
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Fig. 2 Selecting boundary points as the calibration points of the training shape contour

2.2 Establishment of MA-ASM

The establishment of MA-ASM includes three steps: feature point calibration,
training data alignment and the establishment of statistical model.

2.2.1 Feature point calibration

The MA-ASM firstly needs to perform the statistical analysis for the shape con-
tour of the training data. During the statistical analysis, the same number of
feature points can be calibrated on the training images manually or automatically.
The shape contour can be reflected by these feature points. For the same fea-
ture points in different images of training data, the gray-scale distribution around
them should be similar. Through the global statistics and analysis, the statistical
model of the grey-level structure can be obtained, called grey-level model [30].
When the boundary points are used to describe the objects’ contours with similar
shape, the quality of demarcated boundary points should be invariant under some
transformation. In general process of calibrating feature points, the points that
can effectively represent the target contour are usually selected as feature points,
such as the T-connection points between boundaries and corner points that has
high curvature in the shape contour. Moreover, the method of uniform equidistant
sampling can be used to supplement intermediate boundary points between the
feature points that describe the object’s contour. All of these marked points con-
stitute the calibration points of the training shape contour (see Fig. 2). And the
feature points must be calibrated for each training data.

When the training image is a two-dimensional image, the spatial position of the
calibrated feature points could be represented by two-dimensional coordination.
In this way, the set of boundary points can be represented by a vector X with the
length of 2M , M is the number of feature points:

X = [x1, y1, x2, y2, . . . , xM , yM ]T (1)

L training images with the same target are selected. The training sample set Q is
obtained, where Q = X1, X2, · · · , XL. Because of the differences in the shape con-
tours and the space positions between different training sets, the training sample
set Q needs to be spatially normalized to carry on further statistical analysis.
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Fig. 3 The algorithm of spatial normalization with three main steps.

Since the shape information that the demarcated boundary points of training
data contain should be invariant from one shape contour to another, we choose
3D shape context method [31] here. It is further combined with Iterative Closest
Point (ICP) method [32] to establish the point corresponding relationship between
the shape contours.

2.2.2 Training data alignment

The labeling of ROIs on WM fiber bundles are finished with the guidance of the
hospital experts, but it is not rigorous to establish the statistical model directly
for these ROIs because of the differences in positions of ROIs between images
with different sizes. It cannot accurately reflect the distinction among these ROIs’
contours either. Therefore, it is necessary to carry out the spatial standardization
for ROIs firstly to overcome the adverse effects of ROI spatial inconsistency. Then,
a geometric statistical model can be established, which can reflect the rule of
changes in shape. Based on the fact that the shape contour of the target is not
changed, the spatial normalization is used to make the shape contours of the
images in the training sample set Q be as identical as possible.

Here, spatial normalization of the shape is performed by Procrustes Analysis
[33]. By minimizing the weighted sum between the points of different shapes and
the corresponding points on the average shape, the ASM can achieve the shape
optimization.

Our process of spatial normalization for the training set with the size of L is
divided into 3 steps as shown in Fig. 3.
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2.2.3 Establishment of the statistical model

After standardizing the shape space of training data set, the distribution vectors of
feature points can be obtained. Then, these data are performed dimension reduc-
tion analysis by using PCA [34]. The co-variance matrix of shape vectors, which is
M ×L dimension, is decomposed by PCA, and the relevant principal components
and corresponding values of the data are obtained. This not only preserves the
useful feature information in the lower order components, but also reduces the
data dimension, and can effectively reduce the amount of calculation. PCA com-
putes the main components of these data, allowing one to approximate any of the
original points using a model with fewer than M parameters, and the statistical
model about the training data set is established. The model can be expressed as:

X ≈ X̄ + PK (2)

where X is the statistical model, X̄ is the average shape, P is the new standard
orthogonal basis obtained by PCA, K is the shape parameter derived from the
formula:

K = PT
(
X− X̄

)
(3)

The parameter K = (k1, k2, · · · , kn)T can be regarded as the control coefficient
of P ′s eigenvalues, that is, different K can draw different shape, and

−3
√
λi < ki < 3

√
λi, i = 1, 2, · · · , n (4)

where λi is the ith eigenvalue of P , n is the size of P . In this way, the deformable
shape can be obtained in a certain range by adjusting the parameter K, which can
be used to locate the target space and extract the feature points within a certain
range.

2.3 Point distribution searching of MA-ASM

The known training sample set must contain the various forms of deformable
contour in a shape contour. By means of feature point calibration of each image
in training sample set, point corresponding relationship is established. Then, the
shape contour is spatial normalized, and the ultimate point distribution model is
obtained eventually. The next step is how to search and locate a shape contour in
the point distribution model.

Here, we adopted a method from the reference [35]. At first, the initial shape
contour and the spatial position of it are provided, the initial shape contour is
obtained by image registration and ROI deformation with deformation filed. Sec-
ondly, the new optimum position of each feature point is obtained according to
the grey-level model, and the spatial displacement. Thirdly, the pose parameters
are updated according to spatial displacement, which can make the feature points
as close as possible to the new position. Fourthly, when the pose parameters are
updated, the change of shape parameter K also can be calculated, and the new
shape contour is obtained as the initial shape contour of next iteration. Finally,
the above four steps are to complete one iteration. When the deformation value
of the two iteration shape is large, it is considered that it is not convergent and
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repeat the above steps to optimize the pose parameters and shape parameter K.
Otherwise, it is considered to be convergent and the iteration is terminated. By
means of iterative search, the ultimate segmentation results are obtained.

2.4 Point distribution searching of MA-ASM

The number of feature points is an import factor that influences the efficiency
of image search. In ASM model, more feature points are marked, the boundary
expression of the target area is more accurate. However, small number of feature
points can reduce the computation complexity and improve the running efficiency.
In order to solve the contradiction, we choose ASM under multi-resolution search
framework that was proposed in [36], [37]. In this method, the position of the target
contour in the image with low resolution is roughly determined firstly. Then, the
precise positioning in images with higher resolutions is got by performing Gaussian
pyramid. This multi-resolution search strategy not only improves the speed of the
algorithm, but also avoids the problem that the shape contour converges to local
optimal solution in the process of searching [38].

In the multi-resolution ASM, firstly Gauss filter is used for the shape contour
images, then the filtered images are interval sampled. It will produce a series of
images of Pyramid, and the resolution of these images gradually reduced. The
image resolution at the second level is half of that at the previous level. In the
search stage of ASM, the step length at level i + 1 in such pyramid is twice of
that at level i. Therefore, large movements can be allowed to search at the coarse
resolutions, and the location of the updated feature points can be found more
quickly. Thus, the efficiency of the algorithm can be greatly improved by the
multi-resolution search strategy.

3 EXPERIMENTS AND EVALUATIONS

3.1 Material

The DTI data in our experiments were from the Hammersmith Hospital of London,
UK. DTI related parameters are as following: repetition time = 11894.438476 ms,
echo time = 51.0 ms, reconstruction diameter = 224.0 mm, flip angle = 90.0o

The spatial resolution of the image is 1.7409× 1.7355× 1.9806 mm3, resulting in
volume data for head of 128× 128× 64 voxels. Diffusion weighted images (DWIs)
are acquired along 15 unique gradient directions with b = 1000s/mm2. The age
range of the data is 30 to 63 years old. Additional imaging parameters can be
found at the website http://www.brain-development.org.

The DTI data are obtained by fusing DWIs from 15 diffusion gradient direc-
tions, this fusion process can be completed by FMRIB Software Library (FSL). The
detailed steps can be referred to the website http://www.nitrc.org/projects/fsl.

3.2 ROIs labeling

According to the need of segmentation, the ROIs to be segmented were labeled on
the subject data. Because the boundary of DTI data is not clear, and FA image can
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(a) Genu (b) Splenium (c) Left ATR

(d) Right ATR (e) Left CST

(f) Right CST (g) Callosum

Fig. 4 ROIs labeled on FA images, including Genu, Splenium, left and right ATR, left and
right CST and Callosum.

well reflect the distribution of brain white matter, the DTI data was converted into
FA images firstly, and then ROIs were labeled on FA images as shown in Fig. 4.
These ROIs were labeled with the guidance of the hospital experts, so the results
of manual segmentation are of high accuracy and can be used as the gold standard
for our experiments. In our experiments, the ROIs are the knee of the Corpus
Callosum (Genu of the corpus callosum, namely Genu), the splenium of the Corpus
Callosum (namely Splenium), the left and right Thalamic radiations (Anterior
Thalamic Radiations, namely ATR), the left and right cortical/ corticospinal tracts
of the medulla oblongata (Corticospinal/Corticobulbar tracts, namely CST) and
the corpus callosum (namely Callosum).



10 Yi WANG1 et al.

Fig. 5 The segmentation results of Genu, Splenium, left and right ATR, left and right CST
and Callosum in the same space for one subject with MA-ASM.

3.3 Experimental Results

In total, 20 images were used to completing the experiments. With the Leave-One-
Out method, each time the 19 template images were used to build the model to
validate the remaining target image and the experiments were repeated 20 times.
The segmentation results of Genu, Splenium, left and right ATR, left and right
CST and Callosum in the same space for one subject by using MA-ASM are shown
in Fig. 5.

For the STAPLE [39] atlas fusion segmentation, SyN registration algorithm
was applied to realize ROI atlas registration with FA images. Then, STAPLE
algorithm is applied to achieve atlas fusion, and the fusion result is taken as the
final segmentation result.

The evaluation of segmentation results are done in two ways. In the first way,
a subjective visual evaluation is given, which has the intuition and easily finds
serious segmentation error, but at the same time, it has subjective problem. In the
second way, evaluations of segmentation results based on objective measurements
are given.

3.3.1 Visual subjective evaluation

The results are directly computed by using atlas fusion based STAPLE segmen-
tation algorithm, and the proposed ASM segmentation algorithm respectively.
Results of manual segmentation are also shown for the comparison, as shown in
Fig. 6. In 7 rows, results of Genu, Splenium, left ATR, right ATR, left CST, right
CST and Callosum were shown respectively by STAPLE, MA-ASM and manual
segmentation in different columns. From these figures, it can be found that both
segmentation results do not have serious segmentation error. The results of ASM
segmentation algorithm are smoother and closer to manual segmentation results
than the results of atlas fusion based STAPLE segmentation algorithm.
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Fig. 6 Results of genu, splenium, left ATR, right ATR, left CST, right CST and callosum in 7
rows by STAPLE (Left), MA-ASM (Middle) and manual (Right) segmentation in 3 columns.
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Table 1 The overlap rates of two segmentation algorithms.

ROI STAPLE MA-ASM

Genu 0.7246 0.8136
Splenium 0.7275 0.7972
Left ATR 0.6932 0.7790
Right ATR 0.6310 0.7282
Left CST 0.6881 0.7943
Right CST 0.6835 0.7524
Callosum 0.6932 0.7690

Table 2 The false detection rates of two segmentation algorithms.

ROI STAPLE MA-ASM

Genu 0.0959 0.0729
Splenium 0.1147 0.0881
Left ATR 0.1104 0.1183
Right ATR 0.1441 0.1164
Left CST 0.1084 0.0826
Right CST 0.1229 0.1061
Callosum 0.1186 0.0984

3.3.2 Evaluation based on objective measurement

Evaluation metrics include reliability, regional statistics, accuracy and so on. Ac-
curacy refers to the degree of similarity between segmentation results and the gold
standard, which is a supervised evaluation metric. Compared with other evalua-
tion measures, accuracy is the most intuitive method to reflect the quality of the
segmentation results. Therefore, the overlap rate (OR) and false detection rate
(ER) are used in this paper to evaluate the accuracy of segmentation results.

The definitions of OR and ER are given in the following equations respectively:

OR =
vol (s1 ∩ s2)

vol (s1 ∪ s2)
(5)

ER =
vol (s2 − (s1 ∩ s2))

vol(s1 ∪ s2)
(6)

Here s1 and s2 are voxels of manually segmentation results and segmentation
results of the proposed method respectively. The segmentation is better if OR is
closer to 1. Meanwhile, the segmentation result is better if ER is closer to 0. The
segmentation results of both methods for the same subject are shown in Table 1
and Table 2.

From the tables, it can be found that the OR values of the proposed MA-ASM
based segmentation algorithm are higher, and the ER values are lower than STA-
PLE based segmentation algorithm. The MA-ASM based segmentation algorithm
gets better segmentation results.

In addition, the experiments were repeated 20 times, and obtained the seg-
mentation results of the same part for different subjects. Take the Callosum for
example, the OR distribution of repetitive segmentation results is shown in Fig. 7.
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Fig. 7 The overlap rate distributions of repetitive segmentation results for 20 different subjects
on Callosum.

Table 3 The mean and standard deviation values of OR over 20 repetitive experiments.

ROI STAPLE MA-ASM

Genu 0.7597 ± 0.0399 0.8281± 0.0536
Splenium 0.6797 ± 0.0551 0.7247± 0.0321
Left ATR 0.6459 ± 0.0471 0.7305± 0.0469
Right ATR 0.6587 ± 0.0545 0.7413± 0.0539
Left CST 0.6616 ± 0.0409 0.7954± 0.0432
Right CST 0.6675 ± 0.0608 0.7573± 0.0583
Callosum 0.7308 ± 0.0196 0.8092± 0.0176

The results clearly show that the segmentation results of MA-ASM based algo-
rithm are better than STAPLE based algorithm.

The mean and the standard deviations of OR in 7 ROIs over 20 repetitive
experiments are shown in Table 3. From Table 3, it can be seen that the OR
values of the proposed MA-ASM based segmentation algorithm are higher and
the running stability of the proposed algorithm is better than STAPLE based
algorithm.

4 CONCLUSION AND DISCUSSION

In this paper, a new MA-ASM based DTI segmentation algorithm is proposed,
which includes establishing point distribution model, PCA analysis, establishing
gray-scale texture and the use of point distribution model containing gray-scale
texture in the image search. The multi-resolution search strategy for promoting
the efficiency of the search is also introduced. Further, the MA-ASM is applied in
the segmentation of DTI data for the experiments.
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Because the atlas based segmentation and deformable model based segmenta-
tion can fully utilize the prior knowledge of image, both of them have good ro-
bustness. And the related studies show that both methods have good segmentation
results. So the results of MA-ASM based DTI segmentation algorithm proposed
in this paper is only compared to the results of multi-atlas based segmentation
using STAPLE. Experiment results on DTI images suggest that the proposed al-
gorithm outperforms STAPLE based algorithm and it has higher precision and
better robustness compared to STAPLE based algorithm.

A few things needs to be further addressed for MA-ASM based DTI segmenta-
tion algorithm: (1) when the MA-ASM algorithm is in the process of feature point
calibration, manual calibration method is tedious and time-consuming, while auto-
matic calibration algorithm has poor extensibility, which just calibrates on similar
shape. So feature point calibration algorithm can be improved; (2) when using
MA-ASM model in the image search, the segmentation results can be directly
influenced by initial shape contour of input image and initial space position. So
more intelligent and precise initial position localization algorithm is needed; (3)
MA-ASM based DTI segmentation algorithm converts the tensor data into scalar
data to segment, which does not fully use the tensor information of each voxel of
tensor data. So it can be improved further to the one that do not increase the
calculation and fully utilize the tensor information at the same time; (4) in the
medical fields, with the development of medical imaging technology and 3D visu-
alization technology, and for meeting the rising demand of clinical diagnosis, the
3D segmentation of medical image is an important research field.
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