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1.Abstract 
In this paper we describe a unified algorithmic framework for the interior point method 

(IPM)  of  solving Linear  Programs  (LPs)  which allows us to adapt it over a range of high 

performance computer architectures. We set out the reasons as to why IPM makes better 

use of high performance computer architecture than the sparse simplex method. In the 

inner iteration of the IPM a search direction is computed using Newton or higher order 

methods. Computationally this involves solving a sparse symmetric positive definite (SSPD) 

system of equations. The choice of direct and indirect methods for the solution of this 

system and the design of data structures to take advantage of coarse grain parallel and 

massively parallel computer architectures are considered in detail. Finally, we present 

experimental results of solving NETLIB test problems on examples of these architectures 

and put forward arguments as to why integration of the system within sparse simplex is 

beneficial. 

2. Sparse Simplex and Interior Point Method: Hardware Platforms 

Progress in the solution of large LPs has been achieved in three ways, namely hardware, 

software and algorithmic developments. Most of the developments during the 70's and 

early 80's in the Sparse Simplex method were based on serial computer  architecture. The 

main thrust of these developments were towards exploiting sparsity and finding methods 

which either reduced simplex iterations or reduced the computational work in each 

iteration [BIXBY91, M1TAMZ91]. In general these algorithmic and software 

developments of the sparse simplex method cannot be readily extended to parallel 

computers. In contrast the interior point methods which have proven to be robust and 

competitive appear to be better positioned to make use of newly emerging high
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performance computer architecture. The relative advantages of using IPM over sparse 

simplex in exploiting these architectures are summarised below. A few researchers 

[FORTOM90.PARPRS90] have identified difficulties involved in adapting sparse simplex 

algorithms for parallel computers. Although a number of implementations have been 

reported [STUNRO88,CHNLNS90], the only credible and robust implementation is that due 

to Forrest and Tomlin [FORTOM90]. Our profiling information Fig 1.1 and 1.2 for some 
well known test problems from the Netlib collection show that the main 

computational work is spread over a number of algorithmic sub-components such as 

PRICE, BTRAN, FTRAN etc 

The relative computational efforts in these procedures from model to model.  vary 
Through some ingenuity and data reorganisation the PRICE procedure has been 

redesigned for parallelism [FORTOM90] and shows good speed up. The speed up in the 

other algorithmic procedures are not of the same order. If we take into account 

AMDAHL'S law [AMDHL67] then we can appreciate how the significant computational  

effort of the serial part of the logic imposes a fairly modest limit on the scope of speed up. 

Essentially we cannot easily adapt the simplex method for parallel computation because of  

the indirect address list structure used to represent sparse matrices and vectors. Whereas 

in serial machines this representation reduces total number of operations, in parallel 

machines it markedly slows down processing. Even hardware scatter and gather 

instructions do not fully cope with the problem of representing sparse data on parallel 

machines. Parallel machine architectures in general are well suited for dense matrix and 

vector processing. All variants of IPM share the same computational characteristics: the 

number of iterations is usually very low, typically less than 100, and the algorithmic steps 

require a repeated construction and factorization of a Sparse Symmetric Positive Definite 

(SSPD) system of equations with a fixed non-zero structure. Our profiling information 

Fig 1.3 clearly illustrates that most of the computational work takes place in the 

construction of an SSPD matrix and the solution of the resulting system by a direct method 

such as Choleski factorization or an indirect method such as conjugate gradient. This 

concentration of computational effort makes IPM well suited for exploiting parallel 

algorithmic paradigms. 
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The specialists in sparse matrix computation have sharpened the computational methods 

for solving SSPD systems on parallel computers [DFERED86, GEOLIU81, ASGRLW87]  

and this has also added to the advantage of adapting IPM on parallel machines. For 

instance, the use of elimination trees, identification of supernodes and loop unrolling for 

vector (parallel) machines are well established and well understood [LIU89,LUMASH91].  

It is therefore no coincidence that high performance IPM optimization systems incorporate 

software design which exploit their respective hardware platforms. For instance KORBX 

system is designed especially for the Alliant 8 processor parallel computer, IBM's OSL is 

designed for the RS6000 and 3090 computers only; even OBI, otherwise a portable system, 

is specially tuned for the Cray YMP [BXGLMS91]. Our research interests on the other 

hand lie in adapting IPM for a range of parallel computing architectures and finding 

efficient ways of integrating these algorithms with our simplex solver. For our hardware 

platforms, we have chosen the transputer based Distributed Memory Computer (DMC) and 

an array processor (AMT-DAP). In this report, we focus on the adaptation of the SSPD 

solver to these hardware platforms. The rest of the paper is set out as follows: in section 

3 we describe the IPM algorithm, in sections 4 and 5 we discuss the DMC and the DAP 

implementations with the corresponding experimental results. Finally, in section 6, we 

analyze the computational results and consider the cross-over to simplex strategy. 

 
3.Choice of Interior Point Method. 

Among the various IPMs that were suggested and implemented recently, the group of 

primal-dual type algorithms have emerged as most promising. The framework for the 

primal-dual path following IPM was introduced by Megiddo in 1986 [MONADL89]. This 

algorithm solves the following primal and dual problems simultaneously. 

 
 
Primal: min cTx Dual: Max bTy 

 
 s.t. Ax = b, x≥ 0  s.t. ATy + z =c, z ≥ 0    (3.1)          
  
                nmnm RxzcRybRA ∈∈∈ ,,,,,*  

The primal-dual algorithm converges to the optimal solution in at most O (n1/2L) iterations  

[MONADL89] where n denotes the dimension of the problems and L the input size. It 
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computes both primal and dual intermediate solutions at any stage; this ensures that the 

retrieval of an optimum extreme point from the optimal primal and dual solutions can be 

done in strongly polynomial time [MGIDD091]. Three variants of the primal-dual  

algorithm were implemented namely, the primal-dual affine [MONADL89], primal dual 

barrier [LUMASH90] and recently the primal dual power series algorithm (predictor 

corrector)[LUMASH90,BXGLMS91]. All three variants solve the LP problems by 

minimizing the complementarity gap (optimization step), but while the affine algorithm 

computes an optimizing step only, the barrier method calculates a combined optimizing and 

centralizing step which also keeps the solution away from the boundaries. The power series 

algorithm computes an optimizing step as in the affine algorithm (predictor step) and then   

the centralizing steps (correcting steps). In algorithm 3.1 we present a pseudo code of the 

primal dual barrier algorithm. 

Algorithm 3.1: Primal-Dual Barrier 

 

PD1.  Construct the phase 1 extended problems. Find initial solution for x, y, z. 

PD2.  Let X be a diagonal matrix of x, Z be a diagonal matrix of z, set. D = XZ-1. 

PD3.  Let ρ(µ) be a compound (centralising and advancing) function, µ the centralising         

parameter. 

PD4.  Find the new search direction for y:  .y  

      compute : M = ADAT 

      compute : = M.y  -1AD ρ(µ) 

      use to compute the search direction for x,z : x& ,.y  z& . 

PD5. Make a step in the computed direction x,y,z .)(α,,.)(α.,)(α zzzyyxxxx +++←   

PD6.  If end conditions are met, stop. Else go to step PD2. 

 

 

Although the predictor corrector algorithm performs better than the other two variants, all 

primal dual algorithms are computationally dominated by the calculation of the affine 

trajectory in which a system involving a new SSPD matrix M is created and solved (step 

PD4).In the subsequent sections we discuss the implementation of this step first on the 
DMC and then on the DAP. 

 

4.Parallel SSPD Solver Kernel on a Distributed Memory Computer 

Our parallel SSPD solver kernel is implemented on a transputer based DMC. The DMC 
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computer is formed by a grid of independent powerful processors, each one having a local 

memory and communication channels. As there is no shared memory, all communication 

between processors is broadcast through these channels. We use the transputer based DMC 

because transputer hardware is relatively compact, cheap, well supported and can be 

configured to different topologies easily. For the algorithm stated below, we chose the 

binary tree grid topology as the most suitable one. To solve the SSPD system of equations 

in step PD4 we employ the Choleski distributed parallel algorithm (CDP), an extension of 

the well known sparse Choleski factorization algorithm [GEOLIU81] and presented in 

algorithm 4.1. The CDP algorithm analyses the sparsity structure of the symmetric matrix 

and uses the row dependencies to create parallel elimination sequences. In designing this 

algorithm we have taken advantage of the special IPM property that the non zero structure    

of the symmetric matrix remains invariant throughout the iterative steps. Thus, structuring 

and allocating sets of rows taken from the matrix and distributing to different processors 

are done once whereas only the remaining steps are repeated in every IPM iteration (steps 

CDP7-CDP11). As the structuring phase occurs only once, the overhead of computational 

effort - mostly invested in analyzing M to identify a sequence of semi independent sets of 

rows - proves to be worthwhile. 

Algorithm 4.1: Choleski Distributed Parallel Factorization 
 
 

CDP1.  Find a permutation matrix P to minimize the fill in..  M' = PMPT  ,t' = Pt 

CDP2.  Find sets of indistinguishable rows. 

CDP3.  Build elimination tree for the rows and rebalance it. 

CDP4. Partition the rows of the matrix into k subsets, , and allocate them ,R,...,R,R k21

to the k processors    respectively. k21 P,...,P,P
 

CDP5. Broadcast the A matrix and processor allocation table over the transputer network. 

CDP6 Factorize partitions of the symmetric matrix M' on the transputers such that 
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The analysis of the symmetric matrix is based on five main concepts broadly concerned with 

f row

sparsity preservation and data mapping. Sparsity preservation is achieved by a symmetric 

permutation (PTMP) which reorders the rows and columns of the matrix M (step CDP1). 

This reordering is carried out by using the minimum degree heuristic [GEOLIU81].   The 

ordering of the matrix determines the sequence which in turn fixes the elimination 

hierarchy. Next, we make use of the properties of indistinguishable rows [GEOLIU81]. 

These rows become indistinguishable by having the same non zero structure during some 

stages of the elimination process. These rows are identified, collected together as super 

nodes and later assigned to the same processor (step CDP2). After determining the super 

nodes we identify the parallel hierarchy structure of the elimination process by constructing 

the elimination tree (step CDP3) [LIU89]. The elimination tree T(U) of the Choleskifactor 

U of the SSPD matrix M is defined in the following way:  

Elimination Tree T(U) 
 

 { }jkukiiffjir jkj >≠=> 0,min,A row ri is the parent o                           (4.2) 

 i exists (hence rj cannot have a 
 rows of the matrix. 

ll communication during the CDP factorization is done str tly through the branches of         

 

fine the Home Processor HP(rs) 

ed to Pi (see CDP4)    (4.3) 

Pj ,  where j =

 
A row rj is a root if no such ent) par

The elimination tree can be interpreted as a communication tree for the

ic

 

A  

the elimination tree. We use the elimination tree to map row subsets of the matrix to the 

binary tree transputer grid. This mapping is achieved by a simple visiting heuristic which 

travels through the elimination tree in a top to bottom fashion and identifies the branches 

where the elimination workload can be divided into roughly equal parts (step CDP4). 

Finally, the algorithm determines the life span of each row (with respect to the 

partitioning). The life span of a row is defined below: 

Let rs denote the sth row of the ordered matrix M. we de

and the End Processor EP(rs) respectively as : 

 
Home Processor : HP(rs) = iisi RRrP ,, ∈  is allocat
 
End Processor  :  EP(rs)   =   min { }klqsuRrl sql ,.,0,| ...,2, =<≠∈ξ @
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A row rs and all related information (backward and forward substitution) is communicated 

between HP(rs) and EP(rs) only. We define th life span of the row r, as the tree path 

essor Pi retains only the necessary inform n for the row 

 NETLIB [GAY85] test problems 

        TREE OPTIMAL SOLUTION SPEED-UP 

e 
between HP(rs) and EP(rs). All communication involving the row rs is limited to this path,  

hence the length of this path is a useful tool to control and analyze the communication 

during the elimination process. 

After partitioning the matrix, we broadcast the original problem data over the transputer 

grid (step CDP5). Each proc atio

subset Ri, the symbolic factorization is then carried out on each transputer individually 

(step CDP6). In the iterative stage (steps CDP7-CDP11), the new diagonal matrix and the 

right hand side vector are broadcast globally at every iteration; the local solutions are 

gathered and transmitted to the root processor which in turn checks the termination criteria 

and computes the values for the next step if necessary. 

The IPM using the CDP kernel was implemented on a 16 transputer DMC by using the 

Top-Express Fortran compiler. In table 4.1 we set out six

and their derived characteristics. Relevant statistics covering tree information, solution time 

on single processor and 15 processors configurations are also summarized. The tree average 

path length is defined as the sum of lengths of all paths from the leaves to the root divided 

by the number of leaves. The ratio (average path/number of rows) gives a good indication 

of inherent parallelism, as the worst case tree structure is a simple list (see problem 

GROW22). For a more detailed description of the algorithm, the reader is referred to our 

extended report on the subject. 

Table 4.1 
 

        SYMMETRIC U FACT   AVERAGE   TIME (sec)   OR INDISTIN. 
PROBLEM ROWS COLS NZ ELEMENTS ELEMENTS SETS ROWS LEAVES PATH ITER. 1PC 15PC 1PC/15PC 

GANGES  912 16621 31664 43 739  351 158 1310 1681   6 35  910 210 4.33 
25FV47 71 400 5   174 1 3.38  822 15 10 22697 35053 3 607 188 43 892 559 
SCTAP3 1481 2480   8874 16240 18811 32 294  620 107 25 300   75 4.00 
SHIP12L 1152 5427 16170 23338 12219 27 137  828  35 27 324   54 6.00 
CRE_A 3517 4067 19054 44835 36185 60 348 1356  88 35 805 175 4.60 
GROW22 440  946   8252  5040   9030  0     0       1 440 27   97 122 0.80 
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 The SSPD Solver Kernel on the DAP Computer 

e array processor used for this study is the assively parallel AMTDAP610.This model 

has 4096 simple 1 bit processors organised in a 64 by 64 grid. Each processor has local 

ocessor. The computational grid 

 

x is 

 by re-scaling the matrix: 

5.

Th  m

memory, and can be enhanced by an 8 bit floating point pr

defines a fixed communication pattern of rows and columns along which the inter-processor 

communication is most effective and faster than floating point computations. The 

processors can either execute a single common instruction in parallel or remain idle. As 

the speed is achieved through a large number of processors, an effective parallel algorithm 

must distribute the data over the processor grid uniformly. This computational regime is 

also known as "fine grain" parallel processing and its application to unstructured sparsity 

problems presents a special challenge. The explicit data dependencies of the direct method 

requires representation by list structures and the corresponding algorithm channels most 

of the numerical computation in a narrow stream. We have decided to use an alternative 

data representation to avoid this problem. This consideration has promoted us to apply 

an iterative scheme for solving the SSPD system of linear equations, namely, the 

preconditioned Conjugate Gradient (CG) method in which the preconditioner is based on 

the iterative splitting scheme as detailed in [ANMTPK91,GOLOAN83,LAILID88]. 

An important consideration for the parallel implementation of any iterative solver is the 

design of a data structure which supports general unstructured sparse matrix-vector 

multiplication. We have developed a special data structure in which the sparse matri

condensed by the overlaying of blocks stored into stacks of memory planes. Furthermore, 

a heuristic which exploits redundancies in the choice of memory planes is employed. This 

heuristic positions elements from different blocks of the matrix in separate memory planes 

wherever possible thus enhancing the parallelism in the matrix-vector multiplication kernel 

[ANMTPK91]. 

As previously stated, we wish to solve the SSPD system of equations: My = t by a suitable 

preconditioned CG method [ALMITZ90,GOLOAN83,LAILID88] The system is recast in 

a normalised form

2
1

2
1, )()( −−

= MdiagMMdiagM                    (5.1) 

Given that M has a special algebraic form ded   (M= ADAT) we can uce that 

jiformij ≠< .1'   

 
 

     (5.2) 
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lthough the traditional preconditioned CG method is employed [GOLOAN83], a 

rticular issue for the massively parallel e preconditioning step of this 

scheme. Given the original matrix, the object of the preconditioning is to find a good 

(5.3) 

nal part of M' and  

A

pa computer is th

approximation matrix which can be easily inverted. Here, the word "easily" also implies an 

efficient parallel inversion. The incomplete Choleski factor, a commonly used 

preconditioner on serial and vector computers, is less efficient on massively parallel 

computers due to the high dependency of the backward substitution stage. The Jacobi-line 

diagonal approximation matrix for the splitting scheme is used by Lai and Liddell 

[LAILID88] for the solution of finite element problems on the DAP. We have adapted 

a natural extension of this idea by using a pre-conditioner based on a tridiagonal 

approximation matrix, as it is more stable than the diagonal one and a powerful parallel 

algorithm (the cyclic reduction algorithm) for solving such a system is available 

[GOLOAN83]. Unstructured sparse systems however, can present the added problem of 

having too many zero elements in the subdiagonals, so that the tridiagonal matrix can 

degenerate into the diagonal approximation matrix. For our implementation we have 

developed an efficient reordering heuristic which moves numerically large elements of the 

normalised SSPD matrix into the subdiagonals. This algorithm requires only O(nz) 

operations where nz is the number of non-zeros in M, since it uses an approximate sorting 

of matrix elements into size groups. 

The preconditioning iteration step is described below 

We define the following splitting of M' (after M' was reordered using subdiagonal 

reor ering heuristic).d  

ITPPM δ+=−=        Q ,,

where T is the tridiago [ ]1,0δ ∈ . 

If then we know from (5.2) that P must be a diagonally dominant matrix and hence   positive 

definite. For  the matrix P 

kk 1

 1=δ

may be positive definite. 1δ <

 
The splitting scheme leads to the following sequence: 
 

KkQqPq ,...,0, =r+=+       (5.4) 

 = number of preconditioning steps, 

q is the desired solution to the "easy" pre

 

where r is a residue in one of the CG iterations, 

K

conditioning problem: 

Bq = r   for a preconditioning matrix B. 
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ions becomes: 
 

==
1

0

111 )(
k

k

k rBrPQPq         (5.5) 

guarantee convergence, we obtained 

ficient accuracy in practice. 

An experimental test syste

PM. The sp truc e for the massively parallel 

iterations on the DAP

ve the conjugate 

m

Afte

ve

 

The result of these preconditioning iterat

∑
−

=

−−−

 
lthough the above splitting scheme does not A

suf

m was set up by replacing the direct solver for th Newton e 

ration step on a VAX host computer with the iterative CG scheme interfacing to the 

DAP for each outer iteration of I ecial data s tur

ite

matrix-vector multiplication as well as the subdiagonal ordering heuristics was computed 

on the host system before transferring the data into the DAP memory.  

The CG  were stopped when either the relative error of the solution 

vector was below the set tolerance (10-6), or when a maximum allowance of CG iterations 

had been used up. The CG was restarted at 100 iterations to preser

property for the direction vectors. A test run was performed using the NETLIB set of 

proble s. In the graphs below we summarize the results for two problems 

(STAIR,25FV47). Fig. 5.1 and 5.2 show the reduction of the duality gap as a function of 

the outer IPM iteration. The parameter K is the number of preconditioning steps. The 

program terminates if either the duality gap is reduced below the set tolerance or increased 

in a subsequent iteration, indicating a poor solution for the Newton direction. The effect 

of varying the δ parameter is shown for the problem 25FV47 (Fig 5.2). Setting δ=0 is 

clearly insufficient for achieving a good preconditioning. Using δ=1 is safer, but 

reducing δ to 0.5 leads to faster convergence initially although the IPM iterations terminate 

prematurely due to increasing duality gap at the last step. A particular IPM problem is 

revealed by studying the relative CG solution error at each IPM iteration step (Fig 5.3) and 

the number of CG iterations used (Fig 5.4). r 9 IPM iterations the CG scheme reaches 

the maximum allowance of 400 iterations. Due to this early termination of the CG scheme, 

the relati  error grows dramatically yet the IPM algorithm manages to carry on reducing 

the duality gap. The best LP solution (K=5) shows a gap of 0.01 corresponding to 4 digits 

precision in the objective function. The source of this difficulty lies in the changing part 

of the SSPD matrix, M= ADAT, where D = XZ-1. As some variables quickly approach 

their optimal values while µ is decreased, the approximate complementarity XZe= µe -0 

0 is gradually enforced, hence the corresponding elements of D can take very large or very 
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small values. This increases the condition number for the SSPD matrix M thus creating  

numerical problems for the CG method. 

 
6. Discussion and conclusions 

Our tests show that parallel implementation on the DMC is stable, but an effective speed 

up can be achieved only on SSPD matrices that have wide and balanced elimination trees. 

Different reorderings of the SSPD matrix and ncing techniques used for the elimination 

ance substantially. The DAP implementation is especially 

 bala

tree can improve the perform

relevant for SSPD matrices whose Choleski factor is very dense. The CG numerical 

problems experienced in the final iterations of IPM can be largely avoided; our experiments 

in cross-over to simplex indicate that the best results were achieved by terminating IPM 

prior to reaching the optimal solution [MTLKTZ91]. Also, flagging and removing variables 

converging to zero can improve the conditioning of the D matrix and in turn increase the 

stability of the CG solver. 
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