

 TR/15/91 October 1991

Adapting the Interior Point Method for the

Solution of Linear Programs on
 High Performance Computers

J. Andersen, R. Levkovitz and G. Mitra

z1577434

CONTENTS

1. stract Ab

2. e Simplex and Interior Point Method: Hardware Platforms

 Spars

3. of Interior Point Method

 Choice

4. on a Distributed Memory Computer

 parallel SSPD Solver Kernel

5. on the DAP Computer

 The SSPD Solver Kernel

6. ussion and conclusions

 Disc

7. knowledgements

 Ac

8. References

1

Adapting the Interior Point Method for the Solution of Linear Programs

on High Performance Computers
J. Andersen, R. Levkovitz and G. Mitra

 Brunel - The University of West London, U.K.

1.Abstract
In this paper we describe a unified algorithmic framework for the interior point method

(IPM) of solving Linear Programs (LPs) which allows us to adapt it over a range of high

performance computer architectures. We set out the reasons as to why IPM makes better

use of high performance computer architecture than the sparse simplex method. In the

inner iteration of the IPM a search direction is computed using Newton or higher order

methods. Computationally this involves solving a sparse symmetric positive definite (SSPD)

system of equations. The choice of direct and indirect methods for the solution of this

system and the design of data structures to take advantage of coarse grain parallel and

massively parallel computer architectures are considered in detail. Finally, we present

experimental results of solving NETLIB test problems on examples of these architectures

and put forward arguments as to why integration of the system within sparse simplex is

beneficial.

2. Sparse Simplex and Interior Point Method: Hardware Platforms

Progress in the solution of large LPs has been achieved in three ways, namely hardware,

software and algorithmic developments. Most of the developments during the 70's and

early 80's in the Sparse Simplex method were based on serial computer architecture. The

main thrust of these developments were towards exploiting sparsity and finding methods

which either reduced simplex iterations or reduced the computational work in each

iteration [BIXBY91, M1TAMZ91]. In general these algorithmic and software

developments of the sparse simplex method cannot be readily extended to parallel

computers. In contrast the interior point methods which have proven to be robust and

competitive appear to be better positioned to make use of newly emerging high

2

performance computer architecture. The relative advantages of using IPM over sparse

simplex in exploiting these architectures are summarised below. A few researchers

[FORTOM90.PARPRS90] have identified difficulties involved in adapting sparse simplex

algorithms for parallel computers. Although a number of implementations have been

reported [STUNRO88,CHNLNS90], the only credible and robust implementation is that due

to Forrest and Tomlin [FORTOM90]. Our profiling information Fig 1.1 and 1.2 for some
well known test problems from the Netlib collection show that the main

computational work is spread over a number of algorithmic sub-components such as

PRICE, BTRAN, FTRAN etc

The relative computational efforts in these procedures from model to model. vary
Through some ingenuity and data reorganisation the PRICE procedure has been

redesigned for parallelism [FORTOM90] and shows good speed up. The speed up in the

other algorithmic procedures are not of the same order. If we take into account

AMDAHL'S law [AMDHL67] then we can appreciate how the significant computational

effort of the serial part of the logic imposes a fairly modest limit on the scope of speed up.

Essentially we cannot easily adapt the simplex method for parallel computation because of

the indirect address list structure used to represent sparse matrices and vectors. Whereas

in serial machines this representation reduces total number of operations, in parallel

machines it markedly slows down processing. Even hardware scatter and gather

instructions do not fully cope with the problem of representing sparse data on parallel

machines. Parallel machine architectures in general are well suited for dense matrix and

vector processing. All variants of IPM share the same computational characteristics: the

number of iterations is usually very low, typically less than 100, and the algorithmic steps

require a repeated construction and factorization of a Sparse Symmetric Positive Definite

(SSPD) system of equations with a fixed non-zero structure. Our profiling information

Fig 1.3 clearly illustrates that most of the computational work takes place in the

construction of an SSPD matrix and the solution of the resulting system by a direct method

such as Choleski factorization or an indirect method such as conjugate gradient. This

concentration of computational effort makes IPM well suited for exploiting parallel

algorithmic paradigms.

3

Fig 1.2 Fig 1.1

Fig 1.3

4

The specialists in sparse matrix computation have sharpened the computational methods

for solving SSPD systems on parallel computers [DFERED86, GEOLIU81, ASGRLW87]

and this has also added to the advantage of adapting IPM on parallel machines. For

instance, the use of elimination trees, identification of supernodes and loop unrolling for

vector (parallel) machines are well established and well understood [LIU89,LUMASH91].

It is therefore no coincidence that high performance IPM optimization systems incorporate

software design which exploit their respective hardware platforms. For instance KORBX

system is designed especially for the Alliant 8 processor parallel computer, IBM's OSL is

designed for the RS6000 and 3090 computers only; even OBI, otherwise a portable system,

is specially tuned for the Cray YMP [BXGLMS91]. Our research interests on the other

hand lie in adapting IPM for a range of parallel computing architectures and finding

efficient ways of integrating these algorithms with our simplex solver. For our hardware

platforms, we have chosen the transputer based Distributed Memory Computer (DMC) and

an array processor (AMT-DAP). In this report, we focus on the adaptation of the SSPD

solver to these hardware platforms. The rest of the paper is set out as follows: in section

3 we describe the IPM algorithm, in sections 4 and 5 we discuss the DMC and the DAP

implementations with the corresponding experimental results. Finally, in section 6, we

analyze the computational results and consider the cross-over to simplex strategy.

3.Choice of Interior Point Method.

Among the various IPMs that were suggested and implemented recently, the group of

primal-dual type algorithms have emerged as most promising. The framework for the

primal-dual path following IPM was introduced by Megiddo in 1986 [MONADL89]. This

algorithm solves the following primal and dual problems simultaneously.

Primal: min cTx Dual: Max bTy

 s.t. Ax = b, x≥ 0 s.t. ATy + z =c, z ≥ 0 (3.1)

 nmnm RxzcRybRA ∈∈∈ ,,,,,*

The primal-dual algorithm converges to the optimal solution in at most O (n1/2L) iterations

[MONADL89] where n denotes the dimension of the problems and L the input size. It

5

computes both primal and dual intermediate solutions at any stage; this ensures that the

retrieval of an optimum extreme point from the optimal primal and dual solutions can be

done in strongly polynomial time [MGIDD091]. Three variants of the primal-dual

algorithm were implemented namely, the primal-dual affine [MONADL89], primal dual

barrier [LUMASH90] and recently the primal dual power series algorithm (predictor

corrector)[LUMASH90,BXGLMS91]. All three variants solve the LP problems by

minimizing the complementarity gap (optimization step), but while the affine algorithm

computes an optimizing step only, the barrier method calculates a combined optimizing and

centralizing step which also keeps the solution away from the boundaries. The power series

algorithm computes an optimizing step as in the affine algorithm (predictor step) and then

the centralizing steps (correcting steps). In algorithm 3.1 we present a pseudo code of the

primal dual barrier algorithm.

Algorithm 3.1: Primal-Dual Barrier

PD1. Construct the phase 1 extended problems. Find initial solution for x, y, z.

PD2. Let X be a diagonal matrix of x, Z be a diagonal matrix of z, set. D = XZ-1.

PD3. Let ρ(µ) be a compound (centralising and advancing) function, µ the centralising

parameter.

PD4. Find the new search direction for y: .y

 compute : M = ADAT

 compute : = M.y -1AD ρ(µ)

 use to compute the search direction for x,z : x& ,.y z& .

PD5. Make a step in the computed direction x,y,z .)(α,,.)(α.,)(α zzzyyxxxx +++←

PD6. If end conditions are met, stop. Else go to step PD2.

Although the predictor corrector algorithm performs better than the other two variants, all

primal dual algorithms are computationally dominated by the calculation of the affine

trajectory in which a system involving a new SSPD matrix M is created and solved (step

PD4).In the subsequent sections we discuss the implementation of this step first on the
DMC and then on the DAP.

4.Parallel SSPD Solver Kernel on a Distributed Memory Computer

Our parallel SSPD solver kernel is implemented on a transputer based DMC. The DMC

6

computer is formed by a grid of independent powerful processors, each one having a local

memory and communication channels. As there is no shared memory, all communication

between processors is broadcast through these channels. We use the transputer based DMC

because transputer hardware is relatively compact, cheap, well supported and can be

configured to different topologies easily. For the algorithm stated below, we chose the

binary tree grid topology as the most suitable one. To solve the SSPD system of equations

in step PD4 we employ the Choleski distributed parallel algorithm (CDP), an extension of

the well known sparse Choleski factorization algorithm [GEOLIU81] and presented in

algorithm 4.1. The CDP algorithm analyses the sparsity structure of the symmetric matrix

and uses the row dependencies to create parallel elimination sequences. In designing this

algorithm we have taken advantage of the special IPM property that the non zero structure

of the symmetric matrix remains invariant throughout the iterative steps. Thus, structuring

and allocating sets of rows taken from the matrix and distributing to different processors

are done once whereas only the remaining steps are repeated in every IPM iteration (steps

CDP7-CDP11). As the structuring phase occurs only once, the overhead of computational

effort - mostly invested in analyzing M to identify a sequence of semi independent sets of

rows - proves to be worthwhile.

Algorithm 4.1: Choleski Distributed Parallel Factorization

CDP1. Find a permutation matrix P to minimize the fill in.. M' = PMPT ,t' = Pt

CDP2. Find sets of indistinguishable rows.

CDP3. Build elimination tree for the rows and rebalance it.

CDP4. Partition the rows of the matrix into k subsets, , and allocate them ,R,...,R,R k21

to the k processors respectively. k21 P,...,P,P

CDP5. Broadcast the A matrix and processor allocation table over the transputer network.

CDP6 Factorize partitions of the symmetric matrix M' on the transputers such that

.)(),(, ''

1

'

1

'

1

' xmR
ii

k

i
i

k

i
i

k

i
i

i
t

RRURMRURURM ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

===
UUU

CDP7 Broadcast the diagonal matrix D and the vector r over the
transputer network.

CDP8 Compute the numeric factorization of the matrix using local and
communicated data.

)(U'
iR

CDP9. Set)(')(.)(''
iii

T RdRyRU =

CDP10. Solve for (using backward substitution).)()(')(:)('''
iiii RtRdRURd =

CDP11. Solve for (using forward substitution).)(')()(':)(' iii
T

i RdRyRURy =&&&

7

The analysis of the symmetric matrix is based on five main concepts broadly concerned with

f row

sparsity preservation and data mapping. Sparsity preservation is achieved by a symmetric

permutation (PTMP) which reorders the rows and columns of the matrix M (step CDP1).

This reordering is carried out by using the minimum degree heuristic [GEOLIU81]. The

ordering of the matrix determines the sequence which in turn fixes the elimination

hierarchy. Next, we make use of the properties of indistinguishable rows [GEOLIU81].

These rows become indistinguishable by having the same non zero structure during some

stages of the elimination process. These rows are identified, collected together as super

nodes and later assigned to the same processor (step CDP2). After determining the super

nodes we identify the parallel hierarchy structure of the elimination process by constructing

the elimination tree (step CDP3) [LIU89]. The elimination tree T(U) of the Choleskifactor

U of the SSPD matrix M is defined in the following way:

Elimination Tree T(U)

 { }jkukiiffjir jkj >≠=> 0,min,A row ri is the parent o (4.2)

 i exists (hence rj cannot have a
 rows of the matrix.

ll communication during the CDP factorization is done str tly through the branches of

fine the Home Processor HP(rs)

ed to Pi (see CDP4) (4.3)

Pj , where j =

A row rj is a root if no such ent) par

The elimination tree can be interpreted as a communication tree for the

ic

A

the elimination tree. We use the elimination tree to map row subsets of the matrix to the

binary tree transputer grid. This mapping is achieved by a simple visiting heuristic which

travels through the elimination tree in a top to bottom fashion and identifies the branches

where the elimination workload can be divided into roughly equal parts (step CDP4).

Finally, the algorithm determines the life span of each row (with respect to the

partitioning). The life span of a row is defined below:

Let rs denote the sth row of the ordered matrix M. we de

and the End Processor EP(rs) respectively as :

Home Processor : HP(rs) = iisi RRrP ,, ∈ is allocat

End Processor : EP(rs) = min { }klqsuRrl sql ,.,0,| ...,2, =<≠∈ξ @

8

A row rs and all related information (backward and forward substitution) is communicated

between HP(rs) and EP(rs) only. We define th life span of the row r, as the tree path

essor Pi retains only the necessary inform n for the row

 NETLIB [GAY85] test problems

 TREE OPTIMAL SOLUTION SPEED-UP

e
between HP(rs) and EP(rs). All communication involving the row rs is limited to this path,

hence the length of this path is a useful tool to control and analyze the communication

during the elimination process.

After partitioning the matrix, we broadcast the original problem data over the transputer

grid (step CDP5). Each proc atio

subset Ri, the symbolic factorization is then carried out on each transputer individually

(step CDP6). In the iterative stage (steps CDP7-CDP11), the new diagonal matrix and the

right hand side vector are broadcast globally at every iteration; the local solutions are

gathered and transmitted to the root processor which in turn checks the termination criteria

and computes the values for the next step if necessary.

The IPM using the CDP kernel was implemented on a 16 transputer DMC by using the

Top-Express Fortran compiler. In table 4.1 we set out six

and their derived characteristics. Relevant statistics covering tree information, solution time

on single processor and 15 processors configurations are also summarized. The tree average

path length is defined as the sum of lengths of all paths from the leaves to the root divided

by the number of leaves. The ratio (average path/number of rows) gives a good indication

of inherent parallelism, as the worst case tree structure is a simple list (see problem

GROW22). For a more detailed description of the algorithm, the reader is referred to our

extended report on the subject.

Table 4.1

 SYMMETRIC U FACT AVERAGE TIME (sec) OR INDISTIN.
PROBLEM ROWS COLS NZ ELEMENTS ELEMENTS SETS ROWS LEAVES PATH ITER. 1PC 15PC 1PC/15PC

GANGES 912 16621 31664 43 739 351 158 1310 1681 6 35 910 210 4.33
25FV47 71 400 5 174 1 3.38 822 15 10 22697 35053 3 607 188 43 892 559
SCTAP3 1481 2480 8874 16240 18811 32 294 620 107 25 300 75 4.00
SHIP12L 1152 5427 16170 23338 12219 27 137 828 35 27 324 54 6.00
CRE_A 3517 4067 19054 44835 36185 60 348 1356 88 35 805 175 4.60
GROW22 440 946 8252 5040 9030 0 0 1 440 27 97 122 0.80

9

 The SSPD Solver Kernel on the DAP Computer

e array processor used for this study is the assively parallel AMTDAP610.This model

has 4096 simple 1 bit processors organised in a 64 by 64 grid. Each processor has local

ocessor. The computational grid

x is

 by re-scaling the matrix:

5.

Th m

memory, and can be enhanced by an 8 bit floating point pr

defines a fixed communication pattern of rows and columns along which the inter-processor

communication is most effective and faster than floating point computations. The

processors can either execute a single common instruction in parallel or remain idle. As

the speed is achieved through a large number of processors, an effective parallel algorithm

must distribute the data over the processor grid uniformly. This computational regime is

also known as "fine grain" parallel processing and its application to unstructured sparsity

problems presents a special challenge. The explicit data dependencies of the direct method

requires representation by list structures and the corresponding algorithm channels most

of the numerical computation in a narrow stream. We have decided to use an alternative

data representation to avoid this problem. This consideration has promoted us to apply

an iterative scheme for solving the SSPD system of linear equations, namely, the

preconditioned Conjugate Gradient (CG) method in which the preconditioner is based on

the iterative splitting scheme as detailed in [ANMTPK91,GOLOAN83,LAILID88].

An important consideration for the parallel implementation of any iterative solver is the

design of a data structure which supports general unstructured sparse matrix-vector

multiplication. We have developed a special data structure in which the sparse matri

condensed by the overlaying of blocks stored into stacks of memory planes. Furthermore,

a heuristic which exploits redundancies in the choice of memory planes is employed. This

heuristic positions elements from different blocks of the matrix in separate memory planes

wherever possible thus enhancing the parallelism in the matrix-vector multiplication kernel

[ANMTPK91].

As previously stated, we wish to solve the SSPD system of equations: My = t by a suitable

preconditioned CG method [ALMITZ90,GOLOAN83,LAILID88] The system is recast in

a normalised form

2
1

2
1,)()(−−

= MdiagMMdiagM (5.1)

Given that M has a special algebraic form ded (M= ADAT) we can uce that

jiformij ≠< .1'

 (5.2)

10

lthough the traditional preconditioned CG method is employed [GOLOAN83], a

rticular issue for the massively parallel e preconditioning step of this

scheme. Given the original matrix, the object of the preconditioning is to find a good

(5.3)

nal part of M' and

A

pa computer is th

approximation matrix which can be easily inverted. Here, the word "easily" also implies an

efficient parallel inversion. The incomplete Choleski factor, a commonly used

preconditioner on serial and vector computers, is less efficient on massively parallel

computers due to the high dependency of the backward substitution stage. The Jacobi-line

diagonal approximation matrix for the splitting scheme is used by Lai and Liddell

[LAILID88] for the solution of finite element problems on the DAP. We have adapted

a natural extension of this idea by using a pre-conditioner based on a tridiagonal

approximation matrix, as it is more stable than the diagonal one and a powerful parallel

algorithm (the cyclic reduction algorithm) for solving such a system is available

[GOLOAN83]. Unstructured sparse systems however, can present the added problem of

having too many zero elements in the subdiagonals, so that the tridiagonal matrix can

degenerate into the diagonal approximation matrix. For our implementation we have

developed an efficient reordering heuristic which moves numerically large elements of the

normalised SSPD matrix into the subdiagonals. This algorithm requires only O(nz)

operations where nz is the number of non-zeros in M, since it uses an approximate sorting

of matrix elements into size groups.

The preconditioning iteration step is described below

We define the following splitting of M' (after M' was reordered using subdiagonal

reor ering heuristic).d

ITPPM δ+=−= Q ,,

where T is the tridiago []1,0δ ∈ .

If then we know from (5.2) that P must be a diagonally dominant matrix and hence positive

definite. For the matrix P

kk 1

 1=δ

may be positive definite. 1δ <

The splitting scheme leads to the following sequence:

KkQqPq ,...,0, =r+=+ (5.4)

 = number of preconditioning steps,

q is the desired solution to the "easy" pre

where r is a residue in one of the CG iterations,

K

conditioning problem:

Bq = r for a preconditioning matrix B.

 11

ions becomes:

==
1

0

111)(
k

k

k rBrPQPq (5.5)

guarantee convergence, we obtained

ficient accuracy in practice.

An experimental test syste

PM. The sp truc e for the massively parallel

iterations on the DAP

ve the conjugate

m

Afte

ve

The result of these preconditioning iterat

∑
−

=

−−−

lthough the above splitting scheme does not A

suf

m was set up by replacing the direct solver for th Newton e

ration step on a VAX host computer with the iterative CG scheme interfacing to the

DAP for each outer iteration of I ecial data s tur

ite

matrix-vector multiplication as well as the subdiagonal ordering heuristics was computed

on the host system before transferring the data into the DAP memory.

The CG were stopped when either the relative error of the solution

vector was below the set tolerance (10-6), or when a maximum allowance of CG iterations

had been used up. The CG was restarted at 100 iterations to preser

property for the direction vectors. A test run was performed using the NETLIB set of

proble s. In the graphs below we summarize the results for two problems

(STAIR,25FV47). Fig. 5.1 and 5.2 show the reduction of the duality gap as a function of

the outer IPM iteration. The parameter K is the number of preconditioning steps. The

program terminates if either the duality gap is reduced below the set tolerance or increased

in a subsequent iteration, indicating a poor solution for the Newton direction. The effect

of varying the δ parameter is shown for the problem 25FV47 (Fig 5.2). Setting δ=0 is

clearly insufficient for achieving a good preconditioning. Using δ=1 is safer, but

reducing δ to 0.5 leads to faster convergence initially although the IPM iterations terminate

prematurely due to increasing duality gap at the last step. A particular IPM problem is

revealed by studying the relative CG solution error at each IPM iteration step (Fig 5.3) and

the number of CG iterations used (Fig 5.4). r 9 IPM iterations the CG scheme reaches

the maximum allowance of 400 iterations. Due to this early termination of the CG scheme,

the relati error grows dramatically yet the IPM algorithm manages to carry on reducing

the duality gap. The best LP solution (K=5) shows a gap of 0.01 corresponding to 4 digits

precision in the objective function. The source of this difficulty lies in the changing part

of the SSPD matrix, M= ADAT, where D = XZ-1. As some variables quickly approach

their optimal values while µ is decreased, the approximate complementarity XZe= µe -0

0 is gradually enforced, hence the corresponding elements of D can take very large or very

12

small values. This increases the condition number for the SSPD matrix M thus creating

numerical problems for the CG method.

6. Discussion and conclusions

Our tests show that parallel implementation on the DMC is stable, but an effective speed

up can be achieved only on SSPD matrices that have wide and balanced elimination trees.

Different reorderings of the SSPD matrix and ncing techniques used for the elimination

ance substantially. The DAP implementation is especially

 bala

tree can improve the perform

relevant for SSPD matrices whose Choleski factor is very dense. The CG numerical

problems experienced in the final iterations of IPM can be largely avoided; our experiments

in cross-over to simplex indicate that the best results were achieved by terminating IPM

prior to reaching the optimal solution [MTLKTZ91]. Also, flagging and removing variables

converging to zero can improve the conditioning of the D matrix and in turn increase the

stability of the CG solver.

13

7. Acknowledgements

The research reported in this paper has been partly supported by Digital Equipment

Corporations, European External Research Program. We also thank PARSYTEC

(Germany) GmbH for their interest in our research and for their software support.

Professor Denis Parkinson of AMT Ltd has worked closely with us and we have benefited

greatly from his advice regarding the DAP implementation. The support of the UK

Science and Engineering Research Council (SERC) is also gratefully acknowledged, who

together with AMT Ltd have supported Mr. J. Andersen's CASE studentship.

8. References
[ALMITZ90] J. Andersen, R. Levkovitz, G.. Mitra, M. Tamiz, Adapting IPM For The
Solution Of LPs On Serial, Coarse Grain Parallel And Massively Parallel Computer, Brunel
University, 1990.
[AMDHL67] G..M. Amdahl, Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities, AFIPS Conference Proceedings, Vol. 20, 483-485, 1967.
[ANMTPK91] J. Andersen, G.. Mitra, D. Parkinson, The Scheduling Of Sparse Matrix-
Vector Multiplication On a Massively Parallel DAP Computer, Brunei University, 1991,
presented to ICIAM Congress Washington, 91 and submitted to Parallel Computing.
[ASGRLW87] C.C. Ashcroft, R.G. Grimes, J.G. Lewis, etal, Progress in Sparse Matrix
Methods for Large Linear Systems on Vector Supercomputers, International Journal of
Supercomputer Appl, 10-30, 1987
[BIXBY91] R.E. Bixby, The Simplex Method - It Keeps Getting Better, Presented to the
14th International MPS Symposium, 1991, Holland

[BXGLMS91] R.E. Bixby, J.W. Gregory, Lustig I. J., Marsten, R.E., Shanno D.F.,Very Large
Scale Linear Programming: A Case Study In Combining Interior Point And Simplex
Methods, Department of Mathematical Science, Rice University, Texas, 1991
[CHNLNS90] G.H. Chen, H.F. Lin, J.P. Sheu, Data Mapping of Linear Programming on
Fixed Size Hypercubes, Parallel Computing, Vol. 13, 235-243, 1990.
[DFERED86] I.S. Duff, A.M. Erisman, J.K. Reid, Direct Method For Sparse Matrices,
Oxford University Press, 1986.
[FORTOM90] J.J.H. Forrest, J.A. Tomlin, Vector Processing in Simplex and Interior
Methods for Linear Programming, Annals of OR, Vol. 22, 071-100, 1990.
[GAY85] D.M. Gay, Electronic Mail Distribution of Linear Programming Test Problems,
COAL Newsletter MP Society, Vol 13, 10-12, 1985.
[GEOLIU81] J.A. George, J.W. Liu, Computer Solution Of Large Sparse Positive Definite
Systems, Prentice Hall,1981
[GOLOAN83] G.H. Golub, C.F. Van-Loan, Matrix Computation, North Oxford Academic,
1983.
[KARMAR84] N. Karmarkar, A New Polynomial Time Algorithm For Linear
Programming, Combinatorica, vol 4,pp 373-379, 1984
[LAILID88] C.H. Lai C.H, H.M. Liddell, Preconditioned Conjugate Gradient Methods
On The DAP, Proceedings of The Mathematics Of Finite Elements & Applications, Vol
4. pp 147-156,1988
[LIU89] W.H. Liu, Reordering Sparse Matrices For Parallel Elimination, Parallel

14

Computing, Vo me 11lu , pp73-91, 1989.
[LUMASH90] Lustig, J.I. Marsten, E. R. Shanno, D.F, On Implementing Mehrotra's
Predictor-Corrector Interior Point Method For Linear Programming, Technical Report
SOR 90-03, Department of Civil Engineering and Operational Research, Princeton
University,1990
[LUMASH91] I.J. Lustig, R.E. Marsten, D.F. Shanno, The Interaction of Algorithms and
Architectures f r Interior Point Methods, Research Reports, RUTCOR, 1991 o
[MGIDD091] N. Megiddo, On Finding Primal-Dual and Dual-Optimal Bases. ORSA
Journal on Computing No2, Winter 1991.
[MTTAMZ91] G. Mitra, M. Tamiz, Alternative Methods for Representing the Inverse of
Linear Programming Basis Matrices, in, Developments in Mathematical Programming,
1975-1989, ASOR special issue, Edited by S. Kumar, Gordon-Breach, 1991.
[MONADL89] D.C. Monteiro, I. Adler, Interior Path Following Primal-Dual Algorithm,
Mathematical Programm g 4, 1989 in 4
[MTLKTZ91] G. Mitra, R. Levkovitz, M. Tamiz, Integration of IPM Within Simplex,
Experiments In Feasible Basis Recovery, Brunel University, Presented to 14th MPS
Symposium ,1991, Holland.
[PARPRS90] P.M. Pardalos, A.T. Phillips, J.B. Rosen, Topics in Parallel Computing in
Mathematical Programming, Report CS-90-22, Department of Computer Science,
Pennsylvania tate University Also n SIA frontiers Applied Math atics, 1990. S . i M in em
[STUNRD88] C.B. Stunkel, D.A. Reed, Hypercube Implementation of the Simplex
Algorithm, Proceedings on Hypercube Concurrent Computers and Applications, IAACM
Publication, 1473-1482, 1988.

