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Abstract
Early diagnosis of retinal OCT images has been shown to curtail blindness and visual impairments. However, the
advancement of ophthalmic imaging technologies produces an ever-growing scale of retina images, both in volume
and variety, which overwhelms the ophthalmologist ability to segment these images. While many automated methods
exist, speckle noise and intensity inhomogeneity negatively impacts the performance of these methods. We present a
comprehensive and fully automatic method for annotation of retinal layers in OCT images comprising of fuzzy histogram
hyperbolisation (FHH) and graph cut methods to segment 7 retinal layers across 8 boundaries. The FHH handles speckle
noise and inhomogeneity in the preprocessing step. Then the normalised vertical image gradient, and it’s inverse to
represent image intensity in calculating two adjacency matrices and then the FHH reassigns the edge-weights to make
edges along retinal boundaries have a low cost, and graph cut method identifies the shortest-paths (layer boundaries). The
method is evaluated on 150 B-Scan images, 50 each from the temporal, foveal and nasal regions were used in our study.
Promising experimental results have been achieved with high tolerance and adaptability to contour variance and pathological
inconsistency of the retinal layers in all (temporal, foveal and nasal) regions. The method also achieves high accuracy,
sensitivity, and Dice score of 0.98360, 0.9692 and 0.9712, respectively in segmenting the retinal nerve fibre layer. The
annotation can facilitate eye examination by providing accurate results. The integration of the vertical gradients into the
graph cut framework, which captures the unique characteristics of retinal structures, is particularly useful in finding the actual
minimum paths across multiple retinal layer boundaries. Prior knowledge plays an integral role in image segmentation.
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Introduction

Ophthalmic imaging technologies has witnessed an ever-
growing scale of retina images, both in volume and variety.
Nowadays the 2D fundus images are widely available
in the high-street opticians, while the recent 3D Optical
Coherence Tomography (OCT) [17] images have gradually
become a common imaging modality in clinical practice.
However, this vast amount of imaging data are largely stored
in their raw format. Even after diagnosis and treatment,
the relevant medical information provided by the clinical
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experts, if any, is normally recorded separately from the
images. Apparently the lack of high-level information on
the retinal image, e.g. labels, tags, markers and measures,
has hindered the development of new methods of diagnosis
and treatment. To a greater level, this has also presented a
significant challenge to healthcare analytics.

Motivated by the aforementioned challenge, in this work
we aim to develop a comprehensive and fully automatic
method for annotation of retinal layers in OCT images.
This will provide the most basic but yet important structural
information to the original raw data, and serve as a starting
step for any further and large-scale healthcare analytics.

In particular, we take into account the effect of promoting
continuity and discontinuity to improve segmentation
accuracy. In addition, we impose hard constraints based
on the structure of retina to segment seven retinal layers
including the Nerve Fibre Layer (NFL), the Ganglion Cell to
Layer-Inner Plexiform Layer (GCL+IPL), the Inner Nuclear
Layer (INL), the Outer Plexiform Layer (OPL), the Outer
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Nuclear Layer to Inner Segment (ONL+IS), the Outer
Segment (OS) and the Retinal Pigment Epithelium (RPE)
by detecting eight layer boundaries. The locations of these
layers and boundaries are illustrated in Fig. 1.

This paper is organized as follows. In Section “Back-
ground”, we review previous work on noise handling and
retinal layer segmentation of OCT images. Section “Retinal
layer segmentation method” describes the proposed seg-
mentation method. Section “Experimental results” presents
experimental results on 150 OCT images and discussion.
Finally conclusions are drawn in Section “Conclusions”.

Background

Optical coherence tomography

OCT imaging [17] has become one of the best tools for
diagnosis of retinal diseases [21]. Time-Domain OCT (TD-
OCT) is one of the first modalities used in retinal diagnosis,
however due to it’s shortcomings the Spectral-Domain OCT
(SD-OCT) [11, 49] was introduced to handle these limita-
tions. Since its introduction various protocols and modal-
ities based on TD-OCT, SD-OCT, FD-OCT and different
machines such as Stratus, Spectralis, Cirrus, Optovue etc
and their various versions provides variety of information
regarding retinal layer anatomy. The segmentation of vari-
ous retinal layers from OCT is vital for tracking progress of
medication and diagnosing various ocular diseases, in par-
ticular for Diabetic Retinopathy, Glaucoma and Age Related

Macula Degeneration (AMD). This is especially intrigu-
ing as they are not noticed early enough by the patient,
and usually cause irreversible impairment. Manual OCT
segmentation is tedious, time-consuming, and suffers from
inter- and intra-rater variability. Automated segmentation,
on the other hand, holds the potential to reduce the time
and effort required to delineate the retinal layers and also to
provide repeatable, quantitative results. Additionally, con-
sidering the large number and variety of images which
exist, it is not sustainable commercially to develop a new
algorithm for each application [48].

Noise and noise handling in retinal OCT

In OCT images, two main kinds of noise exists i.e the
speckle noise during acquisition and the shadows of blood
vessels. Speckle noise in OCT images causes difficulty
in the precise identification of the boundaries of layers
or other structural features in the image either through
direct observation or use of segmentation algorithms [1,
28]. The noise that corrupts OCT images is non-Gaussian,
multiplicative and neighborhood correlated. Thus, it is
not easily suppressed by standard software denoising
methods [27]. Since OCT images are highly corrupted
by speckle noise, some pre-processing steps are usually
performed to reduce the effect of noise. In most cases,
even though the segmentation algorithms are designed to
handle uncertainties and noise, the pre-processing is used
as a first step to handling the noise, irrespective of whether
the analysis to be performed is in 2D [4, 21, 42] or 3D [43,

Fig. 1 Illustration of the 8 boundaries and 7 retinal layers segmented in the study. The numbers in brackets are the sequential order of the
segmentation
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45, 46], in order to remove the speckle noises and enhance
the contrast between layers. Usually the de-noising is
achieved by using the 3D anisotropic diffusion method, 3D
median filter, 3D Gaussian filter or 3D wavelet transform
[47]. Previous attempts including spatial and frequency
compounding techniques have been used to address the
problem of speckle noise in OCT [18, 30] . However, the
tolerance or adaptability of these techniques are limited,
which then complicates the analysis stage. They are also
quite sensitive to the choice and fine tuning of various
parameters [36, 37].

On the other hand, a number of digital filters have
been used for speckle suppression on OCT images, such
as median filtering, wavelet-based filtering that employs
nonlinear thresholds, anisotropic diffusion filtering [12] ,
and nonlinear anisotropic filtering [15]. While most of these
methods are effective in reducing speckle noise, some of
them tend to blur the structural boundaries in the OCT
image. As a matter of fact, most of these algorithms
use a defined filter window to estimate the local noise
variance of a speckle image and perform the individual
unique filtering process. The result is generally a reduced
speckle level in areas that are homogeneous. But the
image is either blurred or over smoothed due to losses in
detail in non-homogeneous areas like edges or lines. Also,
the conventional algorithms in OCT segmentation do not
consider the intensity inhomogeneity in the image which
can lead to inaccurate segments and inability to detect all
layers. Clearly, the primary goal of noise reduction is to
remove the noise without losing much detail contained in an
image [36]. We propose a method, that preserves the edge
information, and improve the visibility by hyperbolizing
the image. This improves homogeneity of pixel values in
every layer, which consequently improves performance of
the segmentation method, and makes our method applicable,
for diagnosis and tracking medication progress of ocular
diseases.

Segmentation of retinal layers

The segmentation of retinal layers has been an area of
active research and has drawn a large number of researches
since the introduction of OCT. Various methods have
been proposed, some with focus on the number of layers
to be segmented, others on the computational efficiency.
Segmentation of retinal images is challenging and requires
automated analysis methods. In this regard a multi-step
approach was developed by [2]. However the results
obtained were highly dependent on the quality of images
and the alterations induced by retinal pathologies. A 1-
D edge detection algorithm using the Markov Boundary
Model [23], which was later extended by [3] to obtain the
optic nerve head and RNFL. Seven layers were obtained

by [4] using a peak search interactive boundary detection
algorithm based on local coherence information of the
retinal structure. Statistical methods such as Expectation
maximisatin and probabilistic modelling were reported in
[19, 20]. The Level Set method was used by [29, 42, 44, 46]
which were computationally expensive compared to other
optimization methods. Graph based methods in [14, 16,
21, 31–35] have reported successful segmentation results,
with varying success rates. Recently, a method using the
Fuzzy Histogram Hyperbolization (FHH) is proposed to
improve the image quality, and then to be embedded into the
continuous max-flow to simultaneously segment four retinal
layers [9].

Moreover, the use of gradient information derived from
the retinal structures has in recent years been of interest
to OCT segmentation researchers. It was utilised by [5]
with the Graph-Cut method, where the retinal structure is
employed to limit search space and reduced computational
time with dynamic programming. This method was recently
extended to 3D volumetric analysis by [38] in OCTRIMA
3D with edge map and convolution kernel in addition to
hard constraints in calculating weights. They also exploited
spatial dependency between adjacent frames to reduce
processing time. Edge detection and polynomial fitting
was yet another approach proposed to derive boundaries
of the retinal layers from gradient information by [25],
and machine learning by [24] with the use of random
forest classifier. The utilization of gradient information on
OCT images is largely based on the changes that occur at
layer boundaries in the vertical direction, thereby attracting
segmentation algorithms to exploit this advantage. The
paths obtained by the default shortest path algorithms, have
no optimal way of handling inconsistencies (such as the
irregularity in OCT images), as thus it sometimes obtains
the wrong paths, which we refer to as “wrong short-cuts”.
To handle this issue, we reassign the weights to promote
homogeneity between adjacent edges, such that transition
at layer boundaries become clearer, and this contributes
largely to the success of our graph-cut approach. Our
method takes into account the retinal structure and gradient
information, but more importantly, the re-assignment of
weights in the adjacency matrix, because segmentation
using graph cut methods, depends on assignment of
appropriate weight.

Retinal layer segmentationmethod

In this section we provide the details of our approach.
We first enhance the images using the Fuzzy Histogram
Hyperbolization (FHH) to enhance the image and suppress
the noise, then segment 8 retinal layer boundaries from OCT
B-Scan images. Parts of this work were presented in [7, 9]
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Enhancement

Every image I, is represented by the following [13]:

I =
M⋃

m

N⋃

n

μmn

gmn

(1)

Where gmn represents the intensity of the mnth pixel and
μmn its membership value, given m = 1,2,3. . .M and n
= 1,2,3. . .N. In line with this, using the linear index of
fuzziness, we calculated image fuzziness with [39] :

γ (I) = 2

MN

N∑

i=1

M∑

j=1

min[μI (gij ), μ̄I (gij )] (2)

where μI (gij ) is the membership function of greylevel gij

and μ̄I (gij ) = 1 - μI (gij ). This maps image greylevel
intensities into a fuzzy plane using membership functions.
The membership functions are modified for contrast
enhancement, and the fuzzy plane is mapped back to image
grey level intensities. The aim is to generate an image of
higher contrast than the original image by giving larger
values to the greylevels that are closer to the mean greylevel
of the image than to those that are farther from the mean.

Using the concept of histogram and fuzzy histogram
hyperbolization described in [40] and [41], we calculate
membership value for each greylevel as:

μ(gmn) = gmn − gmin

gmax − gmin
(3)

where the maximum and minimum intensity values are
represented by gmax and gmin respectively. Then β as a
fuzzifier and the desired grey level value L, are used to
calculate the new grey values of image using the following
transformation [41] :

g′
mn =

(
L − 1

e−1 − 1

)
∗

[
e−U(gmn)β − 1

]
(4)

Fuzzy histogram hyperbolization is simple and straight for-
ward, yet effective to a range of image and signal processing
applications [26]. The value of β determines a number of
operations that could be performed with membership mod-
ification [40]. As the value of β approaches 0, the results
are similar to that of histogram equalization, whereas if β

approaches values 5 and above, it tends to provide result
similar to segmentation. We therefore take two issues into
consideration: 1) Most image de-noising processes are sen-
sitive to the choice of various parameters [36]. 2) The
fuzzifier β modifies the membership values additionally,
and so, the gray level dynamics of the resulting image can
be changed [40]. Consequently, the value of β from Eq. 4
is constrained to arbitrate within a specified window by the

following conditions:

β = β + C

β = Tmin if β + C < Tmin

β = Tmax if β + C > Tmax (5)

where Tmin and Tmax are the minimum and maximum
acceptable values of β. To achieve the above, we introduce
constant C, called the stabilizer. The stabilizer keeps the
value of β within the set threshold. This allows the
method to set a suitable value for the image based on the
membership information without the need for user input.
Of course the threshold values can always be adjusted
easily, for the method to adapt to a wider range of
images and applications, however, we limit our study to
the enhancement of retinal OCT images to suppress and
handle speckle noise and blood vessel interference. After
the transformation, the image is enhanced and this has
positive effect in calculating the flow. Examples of image
transformations with various values of β are shown in Fig. 2.
For this image, β is set to 2.2 in our experiment and will
vary depending on the image.

Unlike other preprocessing methods, which reduce image
quality or leads to loss of data, this method preserves edge
information and adapts to OCT inconsistencies as the value
is computed based on each image. This allows the method
to adapt to different OCT images.

Weight calculation

In this stage we obtain the vertical gradient of the image,
normalize the gradient image to values in the range of 0
to 1, and then we obtain the inverse of the normalized
image gradient as shown in Fig. 3. These two normalized
gradient images are then used to obtain two separate
undirected adjacency matrices, where Fig. 3a and b contains
information for transitions from bright-dark and dark-bright
respectively. The adjacency matrices are formulated with
the following equation [5]:

wab = 2 − ga − gb + wmin (6)

where wab, ga , gb and wmin are the weights assigned to the
edge connecting any two adjacent nodes a and b, the vertical
gradient of the image at node a, the vertical gradient of the
image at node b, and the minimum weight added for system
stabilization. To improve the continuity and homogeneity
in the adjacency matrices they are hyperbolized, firstly by
calculating the membership function with the fuzzy sets
equation (3) [41] and then transformed with Eq. 8.

w′
ab = wab − wmn

wmx − wmn

(7)

wherewmn andwmx represents the maximum and minimum
values of the adjacency matrix respectively, the adjacency
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Fig. 2 Image Enhancement. The unprocessed image is shown in A, and the transformed images with various values of β= 0.3 in B, β =5 in C,
and β = 2.2 in D (the computed value for this image)

matrices are then transformed with the following equation:

w′′
ab = (w′

ab)
βw (8)

where w′
ab is the membership value from Eq. 7, and

βw, the fuzzifier is a constant. Considering the number
of edges in an adjacency matrix, we use a constant βw

instead of calculating the fuzziness. The main reason is
to reduce computational time and memory usage. The
resulting adjacency matrices are such that the weights are
reassigned, and the edges with high weights get higher
values while those with low values get lower edge weights.
Our motive here is that, if continuity or discontinuity is
re-emphasized the algorithm will perform better, where in
this case we improve both. The edges connecting pixels
of the same region get higher values close to each other,
while those connecting pixels of the background and layer
boundaries gets lower along the way. This is more realistic
and applicable in this context (as the shortest path is greedy
search approach), because at the boundary of each layer
there is a transition from bright to dark or dark to bright, and

therefore improving it aids the algorithm in finding correct
optimal solutions that are very close to the actual features of
interest.

The weight calculation is followed by several sequential
steps of segmentation that are discussed in the next few
subsections. We adopt layer initialization from [5], where
two columns are added to either side of the image with
minimum weights (wmin), to enable the cut move freely in
those columns. This is based on the understanding that each
layer extends from the first to last column of the image,
i.e. dividing the image horizontally at each layer boundary,
and that the Graph-Cut method prefers paths with minimum
weights. We use Djikstra’s algorithm [6] in finding the
minimum weighted path in the adjacency matrix (other
optimization methods utilizing sparse adjacency matrices
might be used in finding the minimum path). Graph-Cut
methods are optimal at finding one boundary at a time, and
therefore to segment multiple regions in most cases, requires
an iterative search in limited space. Limiting the region of
search is a complex task, it requires prior knowledge and
is dependent on the structure of the features or regions of

Fig. 3 Image gradients used in generating a dark-bright adjacency matrix and b bright-dark adjacency matrix
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interest. Some additional information on automatic layer
initialization and region limitation are discussed in [5, 7,
21].

ILM, IS-OS, RPE and NFL-GCL segmentation

It is commonly accepted that the NFL, IS-OS and RPE
exhibits high reflectivity in an OCT image [5, 25, 38].
This is also evident from our previous work [9], where
we segmented the four most reflective layers. Taking into
account this reflectivity and the dark-bright transition we
segment the ILM and IS-OS boundaries using Dijkstra’s
algorithm [6]. The ILM (vitreous-NFL) boundary is
segmented by searching for the highest change from dark-
bright, this is because there is a sharp change in the
transition, additionally it is amidst extraneous features,
above it is the background region in addition to no
interruption of the blood vessels, as can be seen in the
gradient image. All of the above reasons make it easier to
segment the ILM than other layers. We then limit the region
below ILM and search for the next highest change from
dark-bright in order to segment the IS-OS boundary. In most
cases the ILM is segmented, but to account for uncertainties,
i.e to differentiate or confirm which layer was segmented,
we use the mean value of the vertical axis of the paths to
determine the layer segmented, as the ILM is above the
IS-OS (similar to [5].

As mentioned earlier, RPE is one of the most reflective
layers. The RPE-Choroid boundary exhibits the highest
bright-dark layer transition as can be seen in Fig. 3a.
Additionally based on experimental results, it is better to
search for the transition from bright to dark for the RPE,
due to the interference of blood vessels and the disruption
of hyper-reflective pixels in the choroid region. Therefore
searching for the bright-dark transition is ideal for the RPE
most especially to adapt to noisy images. To segment the
NFL-GCL boundary,we limit the search space between ILM
to IS-OS, and utilize the bright-dark adjacency matrix to
find the minimum weighted path. The resulting path is the
NFL-GCL boundary, as it is one of the most hyper-reflective
layers. Additionally if we limit our search space to regions
below the ILM and above the RPE, the resulting bright-dark
and dark-bright minimum paths are the NFL-GCL and IS-
OS respectively (i.e the NFL-GCL and IS-OS boundaries
exhibits the second highest bright-dark and dark-bright
transition respectively in an OCT image).

OS and IPL to ONL segmentation

To segment the OS-RPE and three other boundaries (IPL-
INL, INL-OPL, and OPL-ONL) from IPL to ONL, we use
the prior segmented layers as benchmarks for search space
limitation. We obtain the OS-RPE region by searching for

the dark-bright shortest path between IS-OS and the RPE-
Choroid. For the remaining boundaries, first we segment
the INL-OPL, because it exhibits a different transition
among the three. This is done by searching for the shortest
path between NFL-GCL and IS-OS on the dark-bright
adjacency matrix. Consequently the IPL-INL and OPL-
ONL boundaries are obtained by limiting the region of path
search between INL-OPL and NFL-GCL, and INL-OPL and
IS-OS regions respectively, on the bright-dark adjacency
matrix.

Experimental results

We evaluated the performance of the proposed method on
a set of 150 B-scan OCT images centred on the macular
region. This data set was collected in Tongren Hospital
with a standard imaging protocol for retinal diseases such
as glaucoma. The resolution of the B-scan images are 512
pixels in depth and 992 pixels across section with 16 bits
per pixel. We manually labelled all the retinal layers in
the dataset under the supervision of clinical experts. This
serves as the ground truth in our experiments. Prior to
segmenting the images, 15% percent of the image height
was cropped from the top to remove regions with low signal
and no features of interest. We segment seven retinal layers
automatically using MATLAB 2016a software. The average
computation time was 4.25 seconds per image on a PC
with Intel i5-4590 CPU, clock of 3.3GHz, and 8GB RAM
memory.

The method obtains the boundaries in the order from
ILM(Vitreous-NFL), IS-OS, RPE-Choroid, NFL-GCL, OS-
RPE, INL-OPL, IPL-INL to OPL-ONL respectively. The
locations of these boundaries and the sequential order of
the segmentation is shown in Fig. 1. Sample results of
the 8 retinal layer boundaries and the underlying 7 layers
are shown in Fig. 4. To evaluate the proposed method we
calculate the Root Mean Squared Error (RMSE), and Mean
Absolute Deviation (MAD) by Eq. 9. Table 1 shows the
mean and standard deviation of both MAD and RMSE, for
the seven layers targeted in this study.

MAD(GT, SEG) = 0.5 ∗
(
1

n

n∑

i=1

d(pti , SEG)+ 1

m

m∑

i=1

d(psi , GT )

)

RMSE =
√√√√ 1

n

n∑

i=1

(SEGi −GTi)2

Dice = 2 | GTi ∩ SEGi |
| GTi | + | SEGi | (9)

where SEGi is the pixel labelled as retinal Layer by the
proposed segmentation method and GTi is the true retinal
layers pixel in the manually annotated image (ground truth)
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Fig. 4 Segmentation results of 8
boundaries and 7 layers.
Boundaries from top to bottom,
the segmented boundaries are
ILM, NFL-GCL, IPL-INL,INL-
OPL, OPL-ONL, IS-OS,
OS-RPE and RPE-Choroid

image. pti and psi represent the coordinates of the images,
while d(pti, SEG) is the distance of pti to the closest pixel
on SEG with the same segmentation label, and d(psi, GT )

is the distance of psi to the closest pixel on GT with the
same segmentation label. n and m are the number of points
on SEG and GT respectively. For all layers our method
has performed well. Especially considering the low value of
NFL for both MAD and RMSE. The high value in ONL+IS
is due to the presence of high noise and lower reflectivity
of the boundaries within the region, however, this is still
considerably low.

Furthermore, We evaluated the retinal nerve fibre layer
thickness (RNFLT) (the area between ILM and NFL-
GCL) with additional criteria, due to its high importance
in the diagnosis of ocular diseases, including glaucoma.
This is evaluated with four criteria, namely, accuracy,
sensitivity(true positive rate(TPR)), error rate(FPR) and the
Dice index(coefficient). These measurements are computed

with the following equations while the Dice is computed
from Eq. 10:

Accuracy = T P + T N

(T P + FP + FN + T N)

Sensitivity(T PR) = T P

(T P + FN)

ErrorRate(FPR) = FP

(FP + T N)
(10)

where T P , T N , FP and FN refers to true positive, true
negative, false positive and false negative respectively. T P

represents the number of pixels which are part of the region
that are labeled correctly by both the method and the ground
truth. T N represents the number of pixels which are part
of the background region and labeled correctly by both the
method and the ground truth. FP represents the number
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Table 1 Performance evaluation with mean and standard deviation
(STD) of RMSE andMAD for 7 retinal layers on 150 SD-OCT B-Scan
images (Units in pixels)

Retinal layer Mean MAD (STD) Mean RMSE (STD)

NFL 0.2688 (0.0185) 0.0165 (0.0121)

GCL+IPL 0.5762 (0.0590) 0.0415 (0.0378)

INL 0.6307 (0.0785) 0.0373 (0.0612)

OPL 0.4839 (0.0410) 0.0446 (0.0335)

ONL+IS 0.6596 (0.0823) 0.0592 (0.0329)

OS 0.4401 (0.0362) 0.0328 (0.0156)

RPE 0.4369 (0.3291) 0.0311 (0.0142)

of pixels labeled as a part of the region by the method but
labeled as a part of the background by the ground truth.
Finally, FN represents the number of pixels labeled as a
part of the background by the system but labeled as a part of
the region in ground truth. The results of applying the above
criteria on the RNFLT are shown in Table 2.

The use of prior knowledge enables the use of a
compromise to replace user input in fully autamated
segmentation methods. For example, graph-based methods
[5, 7], which rely on the fact retinal layers spread across
the image horizontally, which enabled the addition of two
columns to either side of the image, such that the cut
can traverse within these columns easily. Further, level-
set methods [8] and [10] relying on the OCT topology
and intensity variation individual layers to constrain the
evolution of the level-set functional.

Furthermore, the output of the proposed method (Fig. 4)
provides individual layer information that is vital for
the diagnosis of eye diseases. Storing these annotated
images with the corresponding notes will facilitate the
understanding of physician’s rationale for a particular
diagnosis. Also, with the variation of individual layer
properties, having the images will aid in establishing
standards among communities. For example, the average
thickness of a layer based on recent evaluations within
the community. With such information, standards can be
established for eye diagnosis within a particular region
(prevalence studies have tried to classify the risk of

Table 2 Retinal nerve fibre layer thickness (RNFLT) mean accuracy,
sensitivity, error rate and dice with their standard deviation (STD) on
150 OCT images

Measure Mean ST D

Accuracy 0.9836 0.0370

Sensitivity 0.9692 0.0468

Error Rate 0.0629 0.0743

Dice score 0.9712 0.0541

prevalent eye diseases based on region, age, race and gender
[22]). This information, can also aid in the development of
robust statistical based model for the segmentation of OCT
images.

Conclusions

Unlike other clinical data that are normally recorded with
their inherent and abstract structure, medical images such
as the OCT images are usually acquired in the large, raw
format. This lack of structured and high-level information
in retinal images has limited their potential in clinical
practice and healthcare analytics. To address this problem,
we have developed a comprehensive and fully automatic
method for annotation of retinal layers in OCT images
by integrating an advanced method of weight calculation
into the graph-cut framework. The introduction of stabilizer
enables the method to adapt to intensity inhomogeneity
of OCT images in the preprocessing step, while the
reassignment of weight aids the method in avoiding wrong
paths, which consequently improves the accuracy of the
method in identifying actual layer boundaries.

We sequentially segmented 7 layers across 8 boundaries
by utilizing prior knowledge of the unique layer character-
istics. It is evident that the use of prior knowledge has the
potential to improve segmentation algorithms. Having auto-
matic methods that could extract this knowledge will play a
vital role on how OCT image analysis evolves. Our method
addresses the need for algorithmic frameworks that could
be adapted to large applications of OCT images. Integrat-
ing images with EHR continuously will be an ideal way to
progress towards personalizing health care.
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