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Words are, in my not-so-humble opinion,

our most inexhaustible source of magic.

Capable of both inflicting injury, and remedying it.

— Harry Potter and the Deathly Hallows

To Mum and Dad, my greatest source of inspiration.





Abstract

Given how technology surrounds our whole life, learning to code is becoming

more and more crucial for the general public: think for example of the amount

of software involved in managing a flight, or when you just turn on the engine

of your car. People want to play an increasingly active role in their life and

there is already evidence in an overall heightened interest in coding from

the many successful public initiatives aiming at introducing coding skills to

a wide audience. Nonetheless, coding skills are not just about programming

but require an ability of problem-solving, abstraction, pattern recognition to

name but a few; in a word, the so-called Computational Thinking (CT) skills,

namely a set of thinking skills, habits, and approaches that are integral to

solving complex problems using a computer and widely applicable in today’s

information society.

Due to this sudden global interest in promoting CT skills to many broad and

diverse audiences, several tools and methods have been designed with the aim

of supporting the introduction of programming concepts in more effective and

less daunting ways than the past. A popular theory of learning that can come

to the aid on this matter is Piaget’s constructivism, which argues that people

produce knowledge and form new meanings based upon their experiences in

the real world and social interactions. Thus, exploiting human’s natural ability

for objects manipulation in the physical world and its afforded interactions

could be an effective way of supporting users in learning abstract concepts such

as the ones underpinning CT.

Tangible User Interfaces are an interaction paradigm that was devised to foster

collaborative learning and exploit humans’ natural dexterity for physical objects

manipulation to provide an easy to use interface that can be used even by

inexperienced people. They exploit the physical world to offer a concrete

representation of the abstract concepts learners usually struggle with and thus
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employing them to teach those concepts underpinning CT might represent an

effective and engaging way of supporting the learning of such skills.

This thesis investigates this claim through the development of a software

platform combining its digital and physical features to promote CT skills in

different domains. The platform design is informed by a review of related work,

a workshop with domain experts, and was validated through a series of studies

in different application scenarios which reported promising results in terms of

CT support.
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1Introduction

„You can’t think seriously about thinking

without thinking about thinking about

something.

— Seymour Papert

Mindstorms, 1980

This chapter introduces the research carried out in this thesis by outlining

the context in relation to Computational Thinking (CT), the addressed Research

Questions, and the adopted methodology.

1.1 Research Context
Today’s society is deeply permeated by technology and it is unmistakably clear

how much it affects people’s lives. From the vastly complicated range of software

involved in managing a flight, to the process of booking that same flight online.

Computer Science (CS) drives jobs growth and innovation throughout

economy and society, and computing jobs make up half of all projected new

occupations in Science, Technology, Engineering and Mathematics (STEM) fields

between 2016 and 2026 according to a recent study by the Bureau of Labor

Statistics [@16a]. Right now there are more than 500,000 open computing jobs in

the United States alone, and CS is the second highest paid college degree [@18h].

In spite of that, only 8% of STEM graduates study CS [@16b], and only 40% of

schools in the U.S. teach it to K-12 students (i.e. from kindergarten to 12th

grade) [@16c].

Another research study [MK07] showed that women who study CS in high

school are 6 times more likely to major in CS than those who do not, while Black

and Hispanic students are 7 or 8 times more likely to do so. This highlights

how the diversity problem in tech starts in schools and the primal role of

education in supporting the learning across different disciplines and fostering

the participation of more and more people to the technological revolution.

To this end, being able to properly support learners in understanding and

trusting algorithmic solutions found in computational systems — and thus

participating in the design and development of such solutions — can bring
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several benefits in everyday life, making them able to succeed in today’s complex

and technological society [Bun07].

Such support can be achieved by creating the socio-technical conditions for

empowering users, as problem owners, to participate in the evolution of such

systems [FG06]. In particular, End-User Development (EUD) methods [LPW06]

seek to enable end-users (i.e. any computer user) to enjoy some of the

computational power that only professional programmers can exploit, and

thus can contribute to fostering the technical conditions for such participation.

These methods are useful not only in traditional information systems [DHP07]

or spreadsheet-based applications [Bur09], but also for tailoring personal

devices [DP12; Fra+16] or smart environments [Cab+16; CC16].

1.1.1 Computational Thinking
People will always strive to play a more active role in their life, thus

programming is becoming an essential skill to master for the general public,

resulting in an overall heightened interest in coding. Take for instance the

Hour of Code [@18e], a successful global initiative organised by Code.org (a

non-profit organisation founded in 2013 and supported, among others, by

Mark Zuckerberg and Bill Gates) involving millions of students of different ages

starting with 4-year old, aiming at introducing coding skills to a broader and

mixed audience.

Programming is no longer just a job skill, but turned into a literacy, enabling

people to acquire a new way of thinking and looking at the world, fostering

the so-called Computational Thinking (CT) skills, i.e. all those thinking abilities

reflecting fundamental principles and concepts of CS like problem-solving,

abstraction, and pattern recognition to name but a few. These skills empower

people to break complex problems down into small chunks and express them to

a computer [Vee13]. CT shares many of its concepts, practices, and perspectives

with other subject areas taught in schools, such as science, mathematics, arts,

and engineering, making a strong case for its promotion in disciplines outside

of CS and right from kindergarten [Nam+15] as a new form of literacy [Vee13].

Stephen Wolfram — the founder of Wolfram Research and creator of

Mathematica and the Wolfram Alpha answer engine — wrote a blog

post [@Wol16] that went viral arguing how CT is going to be a defining skill for

our future and how important is to teach it to kids today. He notices that the

future of any profession will be full of CT: medicine, law, education, farming,

. . . , whether it’s sensor-based medicine, computational contracts, education

analytics or computational agriculture, the future of any field “X” is going to
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rely on being able to integrate and exploit CT properly. There either is now a

“computational X” or there soon will be.

Indeed, CT is also influencing research in nearly all disciplines and enabling

researchers to ask new kinds of questions and to accept new kinds of

answers [Bun07]; it can, ultimately, change the way we think about the reality

we live in, and its integration in the educational system is of pivotal importance

for the future of the generations to come.

1.2 Research Questions
Due to the just discussed global interest in promoting CT skills to many broad

and diverse audiences, several tools and methods have been designed with the

aim of supporting the introduction of programming concepts in more effective

and less daunting ways than in the past.

Currently, K-12 teachers around the world running introductory CT sessions

are supported by a wide variety of multi-purpose technological tools mostly

designed to target their usual scenarios and needs. The majority of them are

digital tools using a Visual Programming Language (VPL) (e.g., Scratch [Res+09])

that allows users to program simple tasks by manipulating graphical elements

on the screen. Many studies have been carried out investigating these tools

in terms of their effects on programming ability or attitude, though not

much discussion has arisen about their effects on developing CT in real-world

educational scenarios, for instance when learners are working collaboratively in

groups.

A popular theory of learning that can come to the aid on finding better

ways to support CT skills development is Piaget’s constructivism [PI69], which

argues that people produce knowledge and form new meanings based upon

their experiences and social interactions: exploiting it to teach those concepts

underpinning CT might represent an effective and engaging way of supporting

the learning of such skills.

Tangible User Interfaces (TUIs) [IU97] are an interaction paradigm that was

devised to foster collaborative learning and exploit humans’ natural dexterity

for physical objects manipulation to provide an easy to use interface that can

be used even by inexperienced people. TUIs exploit the physical world to offer a

concrete representation of the abstract concepts learners usually struggle with,

and thus could be used to foster CT skills [McN04; Hor+09].

Supporting users in cultivating their CT skills and — more generally — going

through their routine learning experiences is particularly relevant in Informal

Learning (IL) scenarios, namely environments where learning is predominantly

unstructured, experiential, and noninstitutional, i.e. outside of the classroom

1.2 Research Questions 3



(e.g., in museums or workplaces). Modern education strives to make learning

intrinsically driven, that is by making learners responsible for their own

academic explorations, thus fostering appropriation of their own learning; this

way their experience becomes more self-directed and personalised, increasing

both their motivation and its efficacy. Developing both technological tools

and methods to promote CT skills in IL domains puts learners in charge and

integrates learning in their daily routines to exploit their motivations and

provide a more effective experience. Physical objects manipulation might help

to lower the barriers of CT and support users in dealing with such abstract

concepts during IL activities.

Moreover, enhancing support for cultivating users’ CT skills — and more

generally their usual learning experiences — can be optimal when tools and

activities are able to keep them in the so-called “Flow state”: according to

Csikszentmihalyi’s theory [NC14], it refers to a state of intense concentration,

sustained interest, and enjoyment of the activity’s challenge, i.e. when skill and

challenge levels of a task are at their highest, allowing users to learn at intense

focus. It is hard to obtain such balance, since too much challenge causes anxiety,

whereas too little challenge leads to boredom; one of the most common and

explored ways of keeping learners in such state is through gameplay, that is by

providing them with an engaging challenge and real-time feedback in response

to their choices.

Coupling such activities that keep learners in the Flow state with physical

interaction might enhance even further learning of CT skills by leveraging on

a sustained engagement level, afforded social interactions, and a concrete

representation of the abstract concepts underpinning it.

To recap, from this context discerns the main Research Question addressed by

this thesis: “Can the collaborative and cognitive naturalness of physical objects

manipulation at the basis of Tangible User Interfaces aid the understanding of

core algorithmic principles and thus improve end-users’ Computational Think-

ing skills?”.

Key Research Questions were formulated in order to support and investigate

the main Research Question in detail:

• Do existing VPL-based tools support the collaborative learning of CT skills?

• Can physical objects manipulation help foster Computational Thinking

skills in Informal Learning domains?

• Can physical objects manipulation provide a playful and engaging way of

learning CT skills through gameplay?
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1.3 Research Aims and Objectives
The research described in this thesis aims at investigating the effects of TUIs on

the development of CT skills. In order to investigate this issue and address the

aforementioned Research Questions, the following objectives were formulated:

• Identifying features of existing VPL-based tools that are suitable to cultivate

CT skills in real-world educational scenarios.

• Designing and developing new tools and methods to support CT skills in

different IL domains exploiting physical manipulation.

• Evaluate such tools to investigate which of their features support CT skills.

• Designing a suitable gameplay that can be integrated into different

educational domains to support learners in developing CT skills.

1.4 Research Methodology
The research carried out in this thesis followed a three-stage process —

exploration, development, and validation. Each phase corresponded to a major

study carried out and reported in a related chapter.

The exploration phase’s main goal was to investigate the current tools used

in introductory programming sessions and explore their ability to support CT

skills in real-world educational settings. The study quantitatively analysed

real artefacts produced by participants to find effects of such tools on the

development of CT skills in students working collaboratively and individually

with the aim of identifying possible limitations of existing tools.

The development phase focused on a specific educational setting, namely

IL scenarios, where people learn in a more self-directed way as they go about

their daily activities, driven by their preferences and intentions. Two qualitative

studies were carried out to design and validate a TUI-based system with the aim

of supporting the learning of CT skills in multiple IL domains.

Finally, the validation phase validated the developed tool in an educational

environment with young girls, with the aim of devising a suitable and engaging

gameplay to foster CT skills in a wide range of scenarios. The qualitative study

analysed multiple group sessions to identify features that exploit collaboration

and increase engagement to benefit CT.
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1.5 Thesis Structure
This thesis consists of six chapters, outlined in the following; in addition to

the main literature survey in Chapter 2, a specific review related to each Key

Research Question is reported in the chapter addressing it.

Chapter 1 introduces CT, motivates the research, and outlines its objectives,

methodology, and overall structure.

Chapter 2 surveys the relevant literature related to Computational Thinking

and Tangible User Interfaces.

Chapter 3 presents an overview of current tools used to foster CT in educational

contexts and evaluates their efficacy with respect to collaborative learning.

Chapter 4 carries on with the main thesis investigation over the effects of Tan-

gible User Interfaces on the development of CT skills and focuses on Informal

Learning environments, where learning is mostly self-directed and takes place as

people go about their daily activities, driven by their preferences and intentions.

Chapter 5 deals with combining gameplay with TUIs to support the

development of CT skills in yet another IL domain.

Chapter 6 concludes this thesis by summarising the key research questions

investigated, its contributions and implications, and presents future research

directions.
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2Background

„If I have seen further, it is by standing on the

shoulders of giants.

— Isaac Newton

in a letter to Robert Hooke, 1675

This chapter presents a survey of the relevant literature pertaining to the work

carried out in this thesis. The research surrounding Computational Thinking

(CT) is introduced, covering how the concept evolved and differentiated itself

from Computational Literacy (CL), the proposed definitions and ways it has been

measured and supported so far. Furthermore, an introduction to Tangible User

Interfaces (TUIs) is provided, suggesting how they can be used to aid learning

and developing skills associated to CT.

2.1 Computational Thinking
As discussed in the introduction, since the coming of the Information Age,

technology has progressively taken on a more prominent role in our day-to-

day life; from the simple task of turning on the engine of your car to the vastly

more complicated process behind the management of a flight, it is unmistakably

clear how much our entire society depends on software: technology surrounds

every aspect of our lives, and relying on it so much can be daunting at times.

Most people weren’t born in a high-tech world such as the one we live in today,

but rather saw it developing overtime during the course of their lives. They

got generally familiar with digital systems through their adult life, rather than

growing up in the digital age as the so-called Digital Natives.

Being computationally literate and knowing the way into technology — and

thus into our society — are becoming much-needed skills to possess for an

ever wider and heterogeneous audience. This explosion of interest is witnessed

by the many public initiatives that have been quite successful in the past few

years in promoting such skills, and even more are coming along following the

same path: Code.org’s Hour of Code [@18e] is the main example of a successful

global initiative involving millions of students of different ages starting with 4-

years old and aiming at introducing coding to a wide audience with different

backgrounds. Many known figures have stressed the importance of possessing

these skills: former President Obama pledged to provide $4 billion in funding for
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Computer Science (CS) education in U.S. schools as part of the CS for All initiative

announced in 2016.

Many other initiatives and movements [Lee+14; Yad+14; Voo+15] are

advocating the need of promoting coding and computational methods right

from kindergarten and in disciplines outside CS itself as a new form of literacy.

2.1.1 Computational Literacy
One of the pioneers of CT is Seymour Papert, co-director of MIT Artificial

Intelligence Laboratory from 1967 to 1981. He first mentioned CT in his seminal

1980 book Mindstorms [Pap80], where he discussed two aspects of computation,

namely how it creates new knowledge, and how computers could be used to

enhance thinking and change knowledge access patterns.

He connected CT and digital pedagogy to a modern approach to education

known as constructivism, a learning theory initiated by Jean Piaget [PI69].

Piaget was a developmental psychologist who often collaborated with Papert

back in the 80s; in brief, he stated that learners construct new knowledge in

their minds from the interactions of their experiences with previous knowledge.

Papert developed his theory of constructionist learning on top of Piaget’s

constructivism by adding the notion that learning is enhanced when learners

are engaged in “constructing a meaningful product”.

In the introduction to Mindstorms, Papert refers to the widespread of

personal computers, and how people imagined them permeating home life and

businesses. But he was thinking beyond those roles, to “how computers may

affect the way people think and learn”:

A few talked about the computer as a teaching machine. This

book too poses the question of what will be done with personal

computers, but in a very different way. I shall be talking about how

computers may affect the way people think and learn. I begin to

characterize my perspective by noting a distinction between two

ways computers might enhance thinking and change patterns of

access to knowledge.

In the 1960s Papert, together with Bobrow, Feurzeig, and Solomon, presented

LOGO [CGS99], one of the first high-level computer programming languages

designed to embody constructionist principles. He continued to design and

implement LOGO, creating what he deemed a social-constructionist sandbox.

He believed that children are “active builders of their own intellectual structures”,

namely they could learn, apply, and come to know concepts and things through

the process of writing programs: the “child as epistemologist”, as he stated.
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Accordingly, he claimed that such material and symbolic activities fostered both

CL and conceptual skills, as the two are inseparable.

DiSessa [DiS01] followed up on Papert’s ideas on CL, and better characterized

CL in comparison with the traditional meaning of literacy, namely being able to

read and write:

Computers can be the technical foundation of a new and

dramatically enhanced literacy, which will act in many ways like

current literacy and which will have penetration and depth of

influence comparable to what we have already experienced in

coming to achieve a mass, text-based literacy.

He argues that literacy is built on three foundational pillars: first, the material

pillar, involves the external, materially based signs, symbols, depictions, or

representations that are technologically based and designed (e.g., alphabet,

grammar, and syntax for written language, numbers and symbols for arithmetic).

The second pillar is mental or cognitive and works in conjunction with the

material basis of literacy to represent what we think and do with our minds in

presence of materially based representations. The third pillar is social, giving

literacy a value within the community.

He focused on the material affordances of programming, claiming that it can

turn into a literacy if it becomes infrastructural to everyday life; furthermore,

he adds that its ease of use can be the key factor in whether it will indeed

become infrastructural, using the example of Leibniz’s more intuitive notation

for calculus in comparison with Newton’s.

CT has a lot in common with DiSessa’s definition of CL, even though in a recent

paper [DiS18] he highlighted some key differences, indeed suggesting that the

two movements should come together and join their current insights and future

directions.

2.1.2 Defining Computational Thinking
After being mentioned a couple of times in Papert’s work, CT has been

brought into the limelight more recently by Jeannette Wing in her 2006 seminal

work [Win06]. She reintroduced it as a mental skill set needed to solve complex

problems like a Computer Scientist, but also widely applicable in today’s

information society.

At first, she did not mean to give a clear definition of CT through a

brief, summarizing sentence; on the contrary, she described its characteristics

and how they can be exploited in everyday life. She argued that it is

mostly about problem-solving, and enumerated a list of features typical of
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CT, the most important being abstraction, or the ability to think at different

levels of abstraction: she stated that CS is not programming, and thus that

conceptualizing is key. She also referred to abstraction as a fundamental skill

that has to be learnt by anyone to function in modern society, as opposed to a

rote skill that is mechanical and repeated over and over. Indeed, in her vision

Wing wished that CT was part of the core teaching from the very young age, in

the same way as reading, writing, and arithmetic are.

Four years later, Wing herself published another article [Win10] in which she

— together with Jan Cuny of the National Science Foundation and Larry Snyder

of the University of Washington — provided a more precise and short definition:

CT is the thought processes involved in formulating problems and

their solutions so that the solutions are represented in a form that

can be effectively carried out by an information-processing agent.

CT is then both a thought process and a skill set. More precisely, it is regarded

as the thought process involved in formulating problems and their solutions so

that the “solutions are represented in a form that can be effectively carried out by

an information-processing agent” [Win10]. Thus, Wing argues that CT is mostly

about problem-solving, as well as the capability of using abstraction, problem

decomposition, and algorithmic thinking [Win10; Voo+15; Mor12].

It covers far more than programming itself, including a range of mental

tools reflecting fundamental principles and concepts of CS, such as abstracting

and decomposing a problem, identifying recurring patterns, and being able to

generalize solutions. However, as also suggested by Wing’s seminal work, CT

does not coincide with programming; rather, it “includes a way of thinking

about everyday activities and problems” [SSA17]. Such problems are often ill-

structured (or wicked), in that they may have neither definitive formulation nor

boundaries [Fis17], thus the ability to analyze and solve them is very useful in

everyday life. In accordance with this view, Lu and Fletcher [LF09] proposed

to teach CT by using languages based on notions that are familiar to people,

rather than using programming languages; this way, concepts like abstraction

and algorithmic thinking could be more easily brought about.

As highlighted in the recent review by Shute et al. [SSA17], there is little

agreement on the exact definition of CT and over the years several different

definitions have been proposed.

Most of the literature works attempt to define CT skills as a set of facets

comprising abstraction, algorithmic thinking, problem decomposition, and

debugging. Shute et al. [SSA17] add iteration and generalization as two more

skills that are important in CT.
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Abstraction is the ability to think at different levels and the capability

of modelling the core aspects of problems/systems by discarding irrelevant

details [Win06]. Abstraction helps modelling problems and systems by

capturing only the essential properties common to a set of objects; it allows

hiding non-relevant differences, out of the scope chosen to evaluate the problem

context. Building systems in terms of layers of abstraction allows developers to

focus on one layer at a time and only on its formal relations between its adjacent

layers; when moving to a higher-level, there is no need to worry about the details

of the underlying specifications, thus providing us with an easy and effective way

of focusing on one issue at a time without forgetting the overall process.

Problem decomposition is concerned with breaking a problem down into

manageable units [Win06]. It is used when breaking problems, algorithms,

artefacts, processes, and systems down to their functionalities, thinking about

them in terms of their parts. Their components can then be understood, solved,

developed, and evaluated separately, making complex problems easier to solve

and large systems easier to design.

Algorithmic thinking refers to the ability to create procedures as ordered steps

to implement solutions [AD16a].

Debugging is particularly emphasized in [Ber+14] as the ability to identify and

fixing errors when algorithms do not provide the expected solution.

According to [SSA17], iteration is important for repeating design processes to

refine solutions and generalization is fundamental to transfer CT skills to a wide

variety of contexts.

In 2013 Selby and Woollard published an important work [SW13] which

surveyed publications related to CT and the definitions extended from Wing’s

original one. They discussed the need for a precise definition, presenting

support from the literature and the academic community. They found that the

most common terms used to define CT are “a thought process”, “abstraction”, and

“decomposition”. Some other terms relate to different sets of thinking skills like

logical, mathematical, and engineering thinking, problem-solving terms, and

other CS terms. They propose a definition which states that CT is an activity,

often product oriented, associated with, but not limited to, problem-solving. It

is a cognitive or thought process that reflects:

• the ability to think in abstractions,

• the ability to think in terms of decomposition,

• the ability to think algorithmically,

• the ability to think in terms of evaluations, and
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• the ability to think in generalisations.

Starting from Wing’s definition, Repenning and his colleagues from the

University of Colorado modelled CT as an iterative process structured in three

stages [RBE16] (see Figure 2.1):

1. problem formulation (abstraction), namely a verbal or diagrammatic con-

ceptualization of the problem, in which abstraction plays a fundamental

role to conceptualize a problem. Usually, a form of visual thinking can be

helpful (e.g., diagrams);

2. solution expression (automation), where the solution is described in a

non-ambiguous way so that it can be executed by a computer. The most

important tool in this stage is programming;

3. execution and evaluation (analysis), where one may obtain visualizations

of the outcome from the other two stages and evaluate them.

On the basis of the evaluation, problem formulation could be refined, and

the cycle starts again. The idea they proposed is that the three stages of the

CT process should be supported and integrated by means of CT tools, such as

any kind of programming — including End-User Programming (EUP) — but also

informal drawings, mind maps, and task-specific languages.

Fig. 2.1: The iterative CT process divided into three stages, shown through the example
of a mudslide simulation [RBE16].

The whole process is iterative since the third stage often exposes the

flaws of the previous two steps and it requires to start again from the
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beginning. Describing the process in this way allows to point out the different

responsibilities at each stage: execution and evaluation are entirely performed

by a computer, while the phase of solution expression lies in the hands of the

user. Repenning notes that contrarily to what one might think, the workload

of the problem formulation stage can be shared between human and computer,

the latter providing useful tools to support the conceptualization process.

Another popular framework attempting to define CT was proposed by

Brennan and Resnick in 2012 [BR12]: their approach is based on a three-

dimensional framework composed of computational Concepts, Practices, and

Perspectives. Concepts refer to typical programming features and structures,

such as sequences, loops, parallelism, events, conditionals, operators, and

data. CT Practices are related to how people learn and put these concepts into

practice. They identified four practices: (1) being incremental and iterative,

(2) testing and debugging, (3) reusing and remixing, (4) and abstracting and

modularizing. Finally, computational Perspectives try to describe how the

human mind changes the way it views the world when experiencing CT. For in-

stance, computing devices can be considered as something to be consumed, but

for computer scientists they are also powerful tools for designing and expressing

themselves. Social practices are affected as well because the opportunity of

communicating and collaborating with people from all over the world brings

huge benefits. It becomes possible to cooperate at a distance, but also to access

and contribute to an unbelievable amount of shared knowledge. The last of

these perspectives is the so-called questioning, described as not taking anything

for granted and using design as a mean to overcome obstacles. It might be the

case of an open software with a limited or missing feature; a possible reaction

might be to fix it or add it to the program.

This definition evolved after years of work with Scratch [Res+09], a block-

based Visual Programming Language (VPL) designed to introduce programming

to people — children in particular — as well as allow them to develop always

more complex projects. Therefore Brennan and Resnick’s definition is directly

linked to the tools designed to foster CT and provides a way to analyse them at

different but complementary levels.

Another viewpoint of CT which contains a bit of both the definitions above, is

the one by Kazimoglu et al. [Kaz+12a]. They identified five core skills as a result

of an analysis of existing studies, before developing a computer game, Program

Your Robot, which has the aim of teaching CT through programming, though

at a higher level than Scratch. The core skills are problem-solving, building

algorithms, debugging, simulation, and socializing. It is interesting that this set

strives to summarize and blend Wing’s and Brennan and Resnick’s approaches,
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thus it pulls the original CT definition more towards programming concepts, and

the latter to a higher level.

Finally, a systematic literature review published in 2016 by Kalelioglu et

al. [KGK16] analysed the many existing definitions of CT and argued that, even

though many common characteristics can be found across different papers

trying to define CT, the research is still at an early stage of maturity, and not many

present solid theoretical or conceptual backgrounds. They propose a five stages

framework based on the surveyed papers that combines both the scope of CT

and problem-solving, but even this definition is not yet finalised and still in the

development phase.

However, in the past few years, some critiques around the concept of CT have

also been published: in their work [TD16], Tedre and Denning critically analyse

the research surrounding CT and put it in perspective with the previous research

from the 80s of computing in education. They hold a critical view of the CT buzz,

arguing that much research has already been carried out in the past two decades

under different definitions, and CT risks of failing in the same ways the previous

research wave has. The risks for the CT research community are to fall into the

trap of reinventing the wheel and water down 80s initiatives, considering CT as

the best way of thinking in all environments, which is an oversimplification.

Lorena A. Barba [@Bar16] wrote a blog post in 2016 that generated a lot

of discussion within the CT research community, entitled “Computational

Thinking: I do not think it means what you think it means”. She rejected the idea

that CT means thinking like a Computer Scientist and is not about programming,

arguing that current definitions are moving away from the initial ideas of Papert,

by putting emphasis on problem-solving rather than projects, understanding

rather than doing, content priming over media, and operations over their objects

representations. She also argued that abstraction is not unique to CS and many

other ideas of CS are not involved by current definitions. She suggested that by

applying more closely original Papert’s ideas like relevant projects, socializing,

and investing on the social and cultural contexts might increase the fun of CS

courses and making them less scary.

As remarked by the many studies reported, more research is definitely needed

on developing a working definition of CT and the skills it encompasses; for the

scope of this thesis though, Brennan and Resnick’s proposed framework [BR12]

represents the most complete and directly observable definition to be exploited

when designing a new CT tool, as reported in the next section.

14 Chapter 2 Background



2.1.3 Measuring Computational Thinking
As a consequence of being a recent topic, the assessment of CT skills is still in a

very early and experimental stage. There are some intrinsic problems that must

be still overcome. First of all, the lack of a unique definition of CT skills implies

that the choice of the method for the evaluation strictly depends on which skills

are considered as pivotal, thus the assessment framework directly depends on

the definition employed. Moreover, it is difficult to identify an evidence-centred

way of assessing abilities like problem-solving or abstraction.

A very interesting mapping study has been carried out in 2016 by de Araujo

et al. [AAG16] in which they gathered data from 27 studies performed in

educational environments published between 2009 and 2016. They questioned

the approaches used in promoting CT, which skills were assessed, and what

instruments or artefacts were used.

The most widespread approach among these studies is represented by

workshops, modules, and regular classes (13 out of 27), followed by exams

without any classes (6), and frameworks specifically designed for assessing CT

skills (5). Only three studies involved games or online interactive platforms. For

what concerns the CT skills evaluated, problem-solving, algorithm construction,

and abstraction are the only ones that can be considered recurrent, being

involved in respectively 26, 20, and 9 studies; other abilities are not mentioned

by more than 4 studies, witnessing the high uncertainty in establishing a

common definition for CT.

The most popular tool employed to assess CT skills is multiple-choice

questionnaire, found in 11 studies. Other very spread instruments are code

evaluation (10 studies), and responses (9), while surveys, interviews, games,

videos, lesson plans, and design scenarios are very rarely used (9 times in total).

The most common way of assessing CT skill progression is through the analysis

of the produced artefacts; this usually leads to a checklist-based evaluation,

consisting of an automated analysis looking for the presence of constructs (e.g.,

if or while conditions), making it suitable for assessing the so-called CT Concepts,

as defined by Brennan and Resnick [BR12]. Clearly, it gets quite difficult

to measure how developed Practices and Perspectives are; this is why when

evaluating the impact of a new tool over users’ CT skills, they also introduced

artefact-based interviews and design scenarios in their assessment approach, as

summarised in table 2.1. The interviews try to explore how the users developed

the discussed artefact, questioning also about their background, how and if they

participate in the online community and what is their general opinion about a

tool. However, as recognized by the authors, no single approach is sufficient to

capture all nuances of CT, an a combination of approaches could be appropriate.
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Tab. 2.1: Strengths and limitations of different assessment approaches as summarised
by Brennan and Resnick with respect to their CT framework [BR12].

Concepts Practices Perspectives

Project
Analysis

Commands cor-
respond to concep-
tual encounters.

—
Possibly adding ex-
tra meta-data for
offline analysis.

Artefact-
Based

Interviews

Nuances of concep-
tual understanding,
but with limited set
of projects.

Based on own au-
thentic design ex-
periences, but lim-
ited by memory.

Maybe, but hard to
ask directly.

Design
Scenarios

Nuances and range
of conceptual
understanding, but
externally selected
projects.

Real-time and in
novel situation, but
externally selected
projects.

Maybe, but hard to
ask directly.

If the considered CT skills belong to a higher level than programming,

it becomes almost impossible to rely on quantitative data; for this reason,

assessors usually recur to interviews and surveys. For instance, in order to

evaluate the Program Your Robot game [Kaz+12b], the authors asked students

to give feedback about the gameplay and their experience, highlighting when a

CT skill had been stimulated in a participant.

Atmatzidou and Demetriadis [AD16a], authors of the educational robotics

course mentioned in the previous section, asked participants to answer two

intermediate questionnaires, in which they tried to investigate how CT skills were

evolving in the activity of programming robots. Students were also prompted

to give more personal views about the understanding of CT concepts in a

questionnaire after the completion of the training. Besides, a think-aloud

protocol was applied when students were asked to solve a programming task,

followed by an interview in which opinions on the whole course were collected.

A similar approach was followed by the authors of CTArcade [Lee+14] when

trying to compare how the paper and the software version of tic-tac-toe

affected algorithmic thinking, pattern decomposition, pattern recognition, and

abstraction. Interviews and think-aloud protocol were used, as well as a deep

analysis of the users gameplay guided by a codebook for retrieving instances of

the considered CT skills.

More generally, as de Araujo et al. [AAG16] pointed out, different

interpretations of CT skills and concepts deeply impact their assessment,

leading to different approaches, metrics, and dimensions used in experiments.

16 Chapter 2 Background



Therefore, in order to properly address the Research Question posed by this

thesis, a combination of different approaches will be used — as suggested by

Brennan and Resnick [BR12] — in order to try to capture most of the CT different

dimensions summarised in table 2.1.

2.1.4 Fostering Computational Thinking
Even though CT was widely discussed for the first time only a few years ago,

there have been attempts to foster it starting from the 1960s. Programming has

proven to be an excellent way of developing CT skills [Orr09], thus teaching how

to program can also be considered as an attempt to embolden the development

of CT skills. This is the reason why the very first effort to teach CT can be

attributed to Seymour Papert and Wally Feurzeig, who designed and developed

the LOGO programming language in 1967 [CGS99]. It was an adaptation of the

functional programming language Lisp and the target users were specifically

children, with the aim of teaching them the basic concepts of programming.

Afterwards, in the 1980s programming games appeared. The basic idea is

to make programming more desirable and enticing adding the possibility of

letting your program “compete” against others. RobotWar [@18k], published

in 1981, uses a language similar to BASIC, which was praised for being easy

to learn. Players develop a program that simulates the behaviour of a robot,

which then competes against multiple opponents in an arena. A few years

later, Crobots [@18c] was released; it was based on a reduced version of C, and

programs were written by the users in order to seek out and destroy other robots.

Game design represents a more recent approach to teaching programming

and CT skills. In 1996 AgentSheets [Rep00], designed by Repenning, was released,

even though the first prototype dates back to 1989. AgentSheets is still used in

multiple contexts, from middle to high schools to academic environments, for

various purposes such as introducing to programming, supporting storytelling,

and prototyping simple games, just to name a few. The tool takes its name from

the fact that the user develops the program on a grid resembling a spreadsheet,

whose cells contain agents (see Figure 2.2). These entities, visualized as pictures,

can perform multiple actions like reading Web pages and playing sounds and

animations. Drag-and-drop interaction is employed to support users without

any programming background.

The drag-and-drop paradigm is provided also by Alice [Her10], developed

at the Carnegie Mellon University starting from 1997. Alice is actually an

object-based programming language that allows creating animations, with an

integrated development environment that allows users to forget the language

syntax. Therefore, Alice is a valid tool for supporting storytelling while being
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Fig. 2.2: Example of the definition of an agent in AgentSheets.

exposed to basic programming concepts without the burden of remembering

syntactic constructs.

Perhaps the most influential and versatile tool for learning how to program

is Scratch [Res+09], developed at the MIT and publicly released for the first

time in 2005. It is a VPL whose interaction is made simple thanks to draggable

instructions represented by blocks, fitting one another like puzzle pieces (as

shown in Figure 2.3). The process of assembling instructions is guided by the

different shapes and colours of the blocks, suggesting which constraints must be

satisfied. One of its biggest strengths is the large and heterogeneous community

of users that, combined with the possibility of reusing and remixing other users’

code, allows to cooperate, share knowledge, and realize complex projects easily.

The popularity of Scratch increased in the UK when Code Club [@18b] was

founded in 2012, an initiative that aims to develop coding skills in children

teaching the Scratch language itself, but also HTML, CSS, and Python.

Program Your Robot [Kaz+12b] is a recent game prototype developed by

the research group led by Kazimoglu and colleagues, cited in the previous

section. Based on the five core skills they identified as fundamental for CT,

they developed a puzzle solving game in which the player has to assist a robot

reaching a certain point on a grid. The robot will follow very simple instructions

given in the form of an algorithm, while the score depends on conditions, for

example, if two functions have been declared and then called by the algorithm.

It differs from the software applications mentioned before, since they can be

deemed programming languages at all effects, while Program Your Robot is

conceived as a serious game. But most of all, tools like Scratch were designed in
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order to teach the basics of programming and to show how fun it can be. Instead,

Kazimoglu and his colleagues were moved by the goal of producing a game that

could explicitly foster CT skills.

Fig. 2.3: An example of a program written with Scratch.

CTAarcade [Lee+14] is another serious game, designed with the target of

boosting CT in players by letting them formalize their tacit knowledge and make

a step towards abstraction. In CTAarcade users have to implement a set of rules

that are observed by a character while playing Tic-Tac-Toe. Making these rules

explicit is considered a very important process because they can often be applied

in a natural, perhaps unconscious way and normally there is neither occasion

nor reason to transform this knowledge into abstract instructions.

Another very interesting approach at fostering CT has been explored by

Atmatzidou and Demetriadis in 2016 [AD16b], through seminars and sessions on

educational robotics. Students aged 15 and 18 participated in a study in which

they were exposed to notions that gradually became more and more complex,

from basic programming concepts to managing sensors and variables, trying

to put into practice what has been taught during the seminars. It emerged

that programming robots actually helped to develop CT skills (abstraction,

generalization, algorithm construction, modularization, and decomposition

capabilities were assessed), regardless of age.

In the next section, a survey of TUIs literature is presented, together with an

overview of their benefits on learning as support for the original claim of using

them to foster CT skills.
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2.2 Tangible User Interfaces
Declining hardware costs have recently enabled many new technologies to

be available to a wider audience, together with new and engaging interaction

modalities, particularly using gestures or object movements; this revolutionary

paradigm goes under the name of the Natural User Interface (NUI), and it allows

people to act and communicate with digital systems in ways to which they are

naturally predisposed.

The term natural has been used in a rather loose fashion, meaning intuitive,

easy to use or easy to learn; many studies argue that natural interaction can be

designed either by mimicking aspects of the real world [Jac+08] or by drawing on

our existing capabilities in the communicative or gesticulative areas [WW11b].

One of the most successful and developed approaches falling into the first

category has been introduced by Ishii and Ullmer [IU97] and is known as TUIs

(see Figure 2.4 for an example). The aim of TUIs is to give bits a directly accessible

and manipulable interface by employing the real world, both as a medium and

as a display for manipulation; indeed by connecting data with physical artefacts

and surfaces bits can be made tangible.

Using physical tokens as interfaces to computer systems was pioneered by

Fitzmaurice and Buxton [FB97] with Graspable User Interfaces: they build on

the intuitive knowledge people have of everyday objects and take advantage of

their rich physical affordances. They provide a tight match between real and

digital objects through their similarity in terms of physical shape or types of

manipulations that can be applied to them.

Fig. 2.4: Reactable, an electronic musical instrument with a tabletop Tangible User
Interface (TUI) [Jor+07].
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Many studies in this research area investigate the supposed benefits offered

by this interaction paradigm, ranging from intuitiveness [IU97], experiential

learning through direct manipulation [MOB09; PRI08], motor memory [Wei+09],

accuracy [Mül+14], and collaboration [Sub+07]. Furthermore, the effects of

employing a TUI to interact with a digital system are certainly dependent on

the tasks and domain, as many comparative studies suggest [Wei+09; Mül+14;

Han+09]; for this reason, Kirk et al. [Kir+09] made the case for hybrid surfaces,

employing physical elements together with digital ones.

Researchers are also debating how employing TUIs reflects on learn-

ing [Hor+09; Mar07; AW13], with specific reference to highly abstract concepts:

this stems from Piagetian theories [PI69] supporting the development of

thinking — particularly in young children — through manipulation of concrete

physical objects. Other studies [WWL14; HCB12] are even linking this effect to

the development of CT skills [Win06], namely a new kind of analytical thinking

integral to solving complex problems using core computer scientists’ tools, such

as abstraction and decomposition.

2.3 Contributions
The Literature Review described in section 2.2 has been previously published

in [MT15; TMD15; TMD17].

2.4 Conclusion
In this chapter, a literature review on Computational Thinking research has

been presented, starting from how the concept evolved from Computational

Literacy, its many proposed definitions and ways it has been evaluated so far.

Furthermore, an introduction to TUIs has been presented, suggesting the many

ways they can aid learning and developing skills associated with Computational

Thinking.

The next chapter starts the investigation on the effects of tangible interaction

on the development of CT skills and focuses on existing tools used in education

and their effects on promoting them.
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3Fostering Computational
Thinking Skills with Visual
Programming Languages

„Education means making creators... You

have to make inventors, innovators, not

conformists.

— Jean Piaget

Conversations with Jean Piaget, 1980

The previous chapter presented an overview of the existing research related

to Computational Thinking (CT) and Tangible User Interfaces (TUIs). This

chapter carries on with the primary thesis investigation on the effects of tangible

interaction on the development of CT skills and focuses on existing tools used in

education and their effects on promoting such skills.

3.1 Introduction
As discussed in the introduction, today’s society is increasingly surrounded

by technology, and it is unmistakably clear how much people rely on software

in every part of their lives. That being the case, people will always strive to

play a more active role in their life, thus programming is becoming an essential

skill to master for the general public, resulting in an overall heightened interest

in coding. Take for instance the Hour of Code [@18e], a successful global

initiative organised by Code.org (a non-profit organisation founded in 2013 and

supported, among others, by Mark Zuckerberg and Bill Gates) involving millions

of students of different ages starting with 4-year old, aiming at introducing

coding skills to a broader and mixed audience.

Programming is no longer just a job skill but has turned into a literacy,

enabling people to acquire a new way of thinking and looking at the world,

fostering the so-called CT skills, i.e. abilities like problem-solving, abstraction,

and pattern recognition to name but a few. They empower people to

break complex problems down into small chunks and express them to a

computer [Vee13]. CT shares many of its concepts, practices, and perspectives

with other subject areas taught in schools, such as science, mathematics, arts,

and engineering, making a strong case for its promotion in disciplines outside
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of Computer Science (CS) and right from kindergarten [Nam+15] as a new form

of literacy [Vee13].

Due to this sudden global interest in promoting CT skills to many broad and

diverse audiences, several tools and methods have been designed with the aim

of supporting the introduction of programming concepts in more effective and

less daunting ways than the past. A popular theory of learning that can come to

the aid on this matter is Piaget’s constructivism [PI69], which argues that people

produce knowledge and form new meanings based upon their experiences and

social interactions. Exploiting them to teach those concepts underpinning CT

might represent an effective and engaging way of supporting the learning of such

skills.

TUIs [IU97] are an interaction paradigm that was devised to foster

collaborative learning and exploit humans’ natural dexterity for physical objects

manipulation to provide an easy to use interface that can be used even by

inexperienced people. They exploit the physical world to offer a concrete

representation of the abstract concepts learners usually struggle with and thus

could be a valid way of fostering CT skills [McN04; Hor+09].

To recap, from this context discerns the main Research Question addressed by

this thesis: “Do the collaborative and cognitive naturalness of physical objects

manipulation at the basis of TUIs aid the understanding of core algorithmic

principles and thus improve CT skills?”.

In the past few years the echo of the discussion around the importance of

teaching programming and CT in school [11] resounded in the introduction of

coding as part of their national curriculum by many European nations (such

as England, Finland, and Estonia) and many other countries (e.g., Russia,

South Africa, New Zealand, and Australia [BE14]) either already have or plan to

introduce CS as part of their K-12 curriculum [GP13].

Currently, many educational events and lectures are introducing CT to

newcomers and learners all around the world. Teachers are supported by a

wide variety of multi-purpose technological tools mostly designed to target

their scenarios and needs. The majority of them are digital tools using a Vi-

sual Programming Language (VPL) (e.g., Scratch) that allows users to program

simple tasks by manipulating graphical elements on the screen. Many studies

have been carried out investigating these tools in terms of their effects on

programming ability or attitude, though not much discussion has arisen about

their effects on collaborative learning of CT in real-world educational scenarios.

Tools and methods applied within these educational domains tend to nurture

collaboration amongst learners rather than individual activities to facilitate
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peer discussion and feedback, exploiting learning through direct experiences as

suggested by constructivist theories.

The Research Question derived from this context and addressed in this

chapter is then: “Can existing VPL-based tools support the collaborative learning

of CT skills?”.

This chapter presents an evaluation of an existing VPL-based technological

tool — i.e. OzoBlockly [@18j] — and currently used in introductory programming

sessions to teach CT skills concerning its support to collaborative learning

of CT. The study took place in a real-world environment, analysing an

actual introductory programming sessions as they were carried out in a real

educational institution by practitioners, without any intervention of researchers.

It established a snapshot of today’s main tools supporting CT and how new ones

might improve upon their shortcomings and exploit their strengths.

3.2 Related Works
VPLs are a particular breed of programming languages that allow users to

program by manipulating graphical elements on the screen rather than textual

as in traditional programming environments [Jos+14]. Recently they have been

adopted in many educational scenarios, thanks to their ease of use and efficacy

in lowering the entry barriers of professional programming systems.

VPLs fall into two broad categories, namely Block-based, which falls di-

rectly from the imperative paradigm on traditional programming languages,

or Flow-based, which discerns from traditional functional programming

languages [MD17]. Even though there have not been many empirical studies

evaluating the benefits of one against the other, in recent years many new

Block-based VPL have been developed and successfully employed in introducing

programming to children and fostering their CT skills in different scenarios and

events.

The main principle guiding the VPLs-based tools’ development was the

“low floor, high ceiling” approach — i.e. the tool enables any beginner to

cross the threshold to create working programs easily (low floor), but they

are also powerful enough to satisfy the needs of more advanced users (high

ceiling). Other effective tool features for promoting CT skills are represented

by (1) providing stepping stones with managed skills and challenges, to

get them from the “floor” to the “ceiling” (scaffold); (2) enable transfer

between different application contexts; (3) support equity; (4) be systemic and

sustainable [RWI10].

VPLs-based tools like Scratch [Res+09], Alice [Her10], Kodu [FFM12],

Blockly [TG15], and App Inventor [Gra+12], closely follow these 5 principles
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to varying degrees: they are relatively easy to use and allow novices to focus

on design and creating while avoiding the issues of the traditional murky and

complicated programming syntax.

They engage in CT using a three-stage “Use-Modify-Create” pattern [Lee+11],

scaffolding increasingly deep interaction to foster the development of CT skills;

users start using existing artefacts and gain confidence through a series of

iterative modifications and refinements, as well as fostering appropriation of

what started as someone else’s and became one’s own.

These tools, however, need to support — and, in turn, be supported — by

curricular activities such as educational robotics and game design, typically

serving as a trigger for the iterative exploration of CT while motivating and

engaging school children.

These activities should support what have been proposed to be the four

pedagogical phases of learning to think computationally [Nam+15]:

1. unplugged (off-screen) activities, to inspire students and enhance subject

knowledge, making abstract concepts both tangible and visible, and

improving upon their problem-solving skills;

2. making activities that include playing or making things, encouraging

students to cohesively combine multiple ideas [Wil14];

3. tinkering [Ber+14], support learning of CT concepts and exploring in a

creative way, providing a rich context for developing and representing

understanding through the experience and building process [Pap80];

4. remixing (or “hacking”) involves critically looking at an existing code,

as well as practising modifying it to suit new purposes; analyzing code,

making connections and creating new applications from existing code

requires sophisticated reasoning and problem-solving skills.

Lastly, it is worth pointing out that the effectiveness of existing VPL-based

tools seems pretty unsettled with respect to the many facets of CT: for instance,

a 2008 study [Mal+08] involving 80 urban youth aged 8–18 reported learning

of several CT elements through the use of Scratch in an after-school setting;

nonetheless, the tool does not provide a mean of encapsulating functionalities

into procedures and functions, somehow failing to tap into the abstraction

skills. There is undoubtedly a need for new tools that foster CT skills specifically

targeted to K-12 education, following the principles just described and guided by

the most recent research on how children approach problem-solving [Che+07;

PRM01].
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3.3 Evaluation
This section presents the goals and hypotheses and describes the exper-

iments carried out to evaluate existing technological tools supporting CT,

and is organised following the guidelines of the American Psychological

Association [Woh+00].

3.3.1 Goals
The goal of the study is to compare collaboratively working learners with

individual working ones for the purpose of evaluating CT skills development in

the context of using a VPL-based technological tool, namely OzoBlockly, in a real-

world introductory robot programming session. The purpose is to test whether

VPL-based tools are suitable to cultivate CT skills in real-world collaborative

learning scenarios.

3.3.2 Research Question
Nowadays programming is not just a job skill, but it is rather an ability

that enables people to acquire a new way of thinking and to look at the

world, fostering mental skills such as problem-solving, abstraction, and pattern

recognition to name but a few, the so-called CT skills. They empower people

to break complex problems down into small chunks and express them to a

computer [Vee13].

Currently, technological tools used to introduce CT to newcomers in

educational scenarios are mostly graphical tools using a VPL. Over the past

few years, many advantages of such interaction paradigm have been studied

and discussed in relation to programming ability and effects on the entry

barriers, but its effects on collaborative learning of CT skills have been somewhat

disregarded.

The Research Question derived from this context and addressed by this study

is then: “Can existing VPL-based tools support the collaborative learning of CT

skills?”.

3.3.3 Experiment Design
A standard between-subjects design with one factor and two treatments were

used [Woh+00]. The treatments correspond to (i) programming sessions with

learners working individually (control group), and (ii) programming sessions

with learners working collaboratively in groups (experiment group).

3.3 Evaluation 27



3.3.4 Participants
The participants of the experiments were 88 Key Stage 3 (aged between 11 and

14) students coming from 5 classes of different schools in the London Borough

of Hillingdon area, all with comparable socio-economic level. The control group

was composed by 25 individually working students from 2 of the 5 different

schools (15 from one, 10 from another), while the experimental group consisted

of 26 groups of students coming from the remaining 3 (15, 30, 18 from each),

clustered in 15 groups of 2 students and 11 of 3 because of space and resources

constraints.

Some students had some minimal programming experience — mostly with

Scratch — but the vast majority had never programmed before. No prerequisite

knowledge was required to participate, and none of the participants had prior

knowledge of the setup of the experiment.

3.3.5 Settings and Experiment Tasks
The context of the experiment was robot programming, an activity often

chosen as an engaging introduction to CT in educational events and sessions,

as discussed in chapter 2. The VPL-based tool selected for the evaluation was

OzoBlockly [@18j], an online programming environment based on Google’s

Blockly [@18a], allowing users to develop small programs by manipulating

graphical elements on the screen. It can be used to control the movements and

behaviour of Ozobots, small wheeled robots capable of moving autonomously

and emitting lights. The programming environment doesn’t require knowledge

of any specific programming language and provides several types of instructions

such as navigation, light effects, timing, and loops, all grouped by function, as

depicted in figure 3.1. Once a user is happy with the outcome, the program can

be sent to the robot through an optical sensor and executed by pressing a button

on the side of the robot.

The study took place in a laboratory inside the Department of Computer

Science within the Brunel University London facilities.

Each group was provided with an Android tablet locked on the OzoBlockly

Web page, a fully-charged Ozobot, and a set of small pins.

The experiment took place during an actual CT introductory session, and the

tasks consisted of a series of challenges of increasing difficulty to be completed

by programming the Ozobot. The first required participants to make the robot

do a simple turn and hit a pin at the end of the track. The second and third ones

extended the first by requiring always an extra turn to hit the pin, making the

track longer and more challenging. Finally, three pins were lined up in front of
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Fig. 3.1: The OzoBlockly programming environment.

the robot at a similar distance to one another, requiring participants to dodge

each one of them in sequence to complete the race.

Tasks were designed to require multiple trials from learners to be as accurate

as possible, fostering the reuse of previous solutions without being too

challenging for inexperienced users.

Students were presented with each challenge and asked to try and solve it

by themselves, with facilitators assisting students when needed. There was no

automatic verification of the results, as the purpose of the educational session

was not to evaluate their programming skills, but rather to introduce them to CT

skills and engage them in controlling a robot. All the interactions and programs

developed and sent to the robot were timed and recorded transparently, without

interfering with the users’ workflow.

3.3.6 Procedure
The experiment was carried out in one-hour long sessions, each involving a

cohort coming from a single school, for a total of 5 different sessions.

Each session was chaired by one instructor, and no altering interventions

were put in place by researchers, maintaining the actual schedule and tasks

that were designed for the sessions. It started with a brief tutorial explaining

the mechanics of the Ozobots, the OzoBlockly environment, and the process of

sending programs to the robot.

Then participants were asked to try and develop a simple program making the

robot move in a straight line, showing them how to do it first as an example.
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After that, each challenge was introduced collaboratively and presented on a

big screen by the facilitator. Participants were given 10 minutes to complete each

task before introducing the next one, allowing them to try different strategies and

discuss amongst teammates.

3.3.7 Experiment Variables and Formalized
Hypotheses

The main independent variable of the experiment is group type and indicates

whether a group was composed by more than one participant working together

(denoted by “C”) or by a single member working alone (denoted by “I”).

As discussed in the previous chapter, measuring and defining exactly what CT

encompasses is still under lots of discussions within the scientific community,

but many proposed definitions mention programs sequentialization and loops

as two fundamental and easily measurable concepts underpinning it. In

order to keep at the minimum the intervention on a real-world scenario for

the experiment, the study focused on actual tasks prompted in an existing

educational session, and the measures were designed to be the least intrusive

as possible in order to obtain more truthful data. Also, time-based measures

were disregarded, since the point of such introductory sessions is not the

evaluation of participants’ programming capability, but rather to support them

in practising their CT skills.

Thus, the main dependent variables selected for the experiment are the

average length of sequential instruction issued together to the robot throughout

an entire group session (shortened SEQ) — which could be related to the

understanding of sequences, a core concept of CT — and the average number

of loops used in each program sent to the robot (shortened CYC) — which could

relate to the understanding of loops, another core CT concept.

The research question was formalised into the following hypotheses:

Hypothesis H0 (Null hypothesis): There are no differences in CT skills

development between learners working collaboratively and learners working

individually when supported by a VPL-based tool.

Hypothesis H1 (Alternate hypothesis): There is a difference in CT skills

development between learners working collaboratively and learners working

individually when supported by a VPL-based tool, thus employing such tools in

collaborative learning scenarios affects the development of CT skills.

Table 3.1 presents the experiment hypotheses formally in terms of the

dependent variables. In the table, “I” refers to learners working individually
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(control group) and “G” refers to learners working collaboratively (experiment

group).

Tab. 3.1: Formalized Hypotheses: SEQ is the average length of sequential instruction
issued together to the robot throughout a group session, while CYC is the average
number of loops used in each program sent to the robot within the same session; “I”
refers to learners working individually (control group) and “G” refers to learners working
collaboratively (experiment group).

Null Hypothesis (H0) Alternate Hypothesis (H1)

SEQI = SEQG SEQI ̸= SEQG

C Y C I =C Y CG C Y C I ̸=C Y CG

3.3.8 Summary
To recap, table 3.2 presents a summary of the specific CT dimensions as

defined in [BR12] examined in the evaluation, along with the related assessment

approach, as reported in the previous chapter.

Tab. 3.2: Summary of the specific CT dimensions [BR12] considered by the evaluation
with the related assessment approach.

CT Dimension Description Assessment

Concept:
sequences

Expressing a particular activity or task
as a series of individual steps or instruc-
tions that can be executed by the com-
puter.

Project Analysis
(SEQ)

Concept: loops
Recognizing repetitions in a sequence
of instructions and expressing it in a
more succinct and abstract way.

Project Analysis
(CYC)

3.4 Results
Fifty-one data points were obtained from the experiment, 25 for the control

group (I), and 26 for the experimental group (G). The total number of valid

programs issued to the robots was 4,653: 2,423 from the control group, and 2,230

from the experimental group.

Figure 3.2 shows the boxplot for the number of programs issued to the robot by

each experimental group. The average was 96.92 (standard deviation 33.48) for

learners working individually, and 85.77 (standard deviation 38.05) for learners

working collaboratively, thus both groups issued a quite similar number of
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Fig. 3.2: Boxplot for the number of valid programs issued by each group.

programs. This was mostly expected, since tasks, setup, and available time

was the same for all the participating groups. The slightly smaller average

reported by the experimental group might be due to having a single control

point (the tablet) and compromising between the perhaps different views of

team members.

Moving on to measures related to the experimental hypotheses, the boxplot

in figure 3.3 shows the average number of sequential instructions issued to

the robot across the different experimental groups (SEQ). The average was 4.79

(standard deviation 1.35) for learners working individually, and 4.21 (standard

deviation 1.95) for learners working collaboratively, thus it would seem that

working individually prompts the use of slightly more sequential blocks when

performing the same tasks.

Finally, the boxplot in figure 3.4 shows the average number of loops issued

to the robot across the two experimental groups (CYC). The average was 0.39

(standard deviation 0.48) for learners working individually, and 0.46 (standard

deviation 0.5) for learners working collaboratively, thus as with SEQ, the
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Fig. 3.3: Boxplot for the average length of valid programs issued by each group.

difference between the two experimental groups is narrow. In this case, though,

it seems that working collaboratively fosters the use of loops more than working

individually, favouring CT skills.

Both SEQ and CYC were not normally distributed according to the standard

Shapiro-Wilk test (pSEQ = 0.001 and pC Y C < 0.001). To verify the experimental

hypothesis, the one-tailed Mann-Whitney U-test was selected, which is a robust,

nonparametric test.

The experimental hypothesis (H1) predicts a difference in CT skills

development between learners working collaboratively and learners working

individually. The tests were not statistically significant though (pSEQ = 0.0658

and pC Y C = 0.4776), hence the null hypothesis cannot be rejected.

3.5 Discussion and Post-Hoc Analysis
Even if the results of the experiment did not confirm the experimental

hypothesis, there are interesting pointers coming from the collected data that
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Fig. 3.4: Boxplot for the average number of loops issued by each group.

can be helpful to explore more in-depth the main research question of this thesis

and offer valid suggestions for the follow-up studies.

Results of the two evaluated measures — SEQ and CYC — point towards

opposite effects: even though the difference is narrow, it seems that individual

working groups tend to produce longer sequential programs while collaborating

groups use more loops. This yet not significant effect would have been

expected: by leveraging on collaboration, VPLs-based tools should foster higher-

level CT skills such as loops and abstraction, since social interactions are an

important factor of constructivist learning theories, as discussed in Chapter 2.

Unfortunately, the study failed to measure this sought effect (if present), and the

reasons might be various and worth analysing in more detail.

First, VPLs are designed to run on traditional digital systems, which are

based on a Graphical User Interface (GUI) interaction paradigm: they are

based on artificial control devices such as mouse and keyboard, and they don’t

support and take advantage of collaborative situations when multiple users are

collaborating with the support of the device. A recent evolution in interaction
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design is indeed founded on such premise: the more modern Natural User In-

terfaces (NUIs) are based on more innate human interaction paradigms such as

touch, vision and speech, and are known as natural because they rely on a user

being able to carry out relatively natural motions to control the application or

manipulate the on-screen content, fostering and cultivating user collaboration.

Designing new and engaging tools founded on the basis of NUIs could represent

a shift towards new CT support tools, which might take more advantage of

collaborative and experiential learning to better cultivate such skills.

Moreover, VPL-based environments such as Scratch and Blockly have

developed highly active online communities over the past few years, providing

users with existing solutions to problems, forums to get help and discuss

amongst peers, and many other resources. They were designed to take

advantage of online collaboration rather than offline, representing a CT support

tool more for individual working learners, rather than collaborating ones.

The tasks provided to participants were perhaps too simple to observe a

significant effect between the two experimental groups. The selected tasks

were indeed real-world introductory tasks, designed to get students interested

in robot programming without challenging right away inexperienced ones.

Perhaps the sought effect would have been more significant with different and

specifically-designed activities, but it would not have been as much grounded in

existing real-world practices.

Finally, the study did not take into account more common measures such

as time to task, tasks completion rates, and many other subjective measures

related to attitude, engagement, and reflection. Even though these are more

common measures used in the literature, the study design strived to detect CT

developments rather than programming ability. Perhaps further research on

non-invasive measures of CT skills could help highlighting this effect without

designing ad-hoc evaluation tasks that might not highlight real-world effects

taking place.

3.6 Threats to Validity
There are several validity threats to the design of this study.

Internal Validity The limited task complexity and available time prevented a

full evaluation of different CT factors that could have influenced by the different

treatments. However, the study has been conducted in a real-world scenario,

with the original tasks designed by the instructors to introduce CT to students

and in their usual time schedule; even though it presents a limitation regarding
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research power, it offered a valid assessment of current practices and real-world

effects of the evaluated tools.

Construct Validity The CT assessment was reduced to just two factors,

understanding of sequences and loops; these are just two concepts related

to more higher level skills defined in CT, even though they are not explicitly

mentioned by all the proposed definition outline in research. Nevertheless,

these concepts were taken into account to avoid instrumenting the experiment

and keep it as close as possible to real-world practices; indeed, sequences

and loops comprehension can correlate with abstraction and decomposition

abilities, which are two of the most mentioned CT skills found in the literature.

External Validity The results of the study can be generalized only in the context

of the selected scenario, although it was carried out in a real educational setting,

during an actual introductory programming session without instrumenting

them. In order to generalize the findings to other scenarios though, replication

studies employing different VPL-based tools are needed.

3.7 Contributions
The Literature Review described in section 3.2 has been previously published

in [TM16b; TM16a].

3.8 Conclusion
This chapter presented an investigation on existing VPL-based tools used in

education and their effects on promoting CT skills in a collaborative learning

scenario.

A common VPL-based system — namely OzoBlockly — was tested in a series

of real-world introductory programming sessions, where Key Stage 3 learners

collaborate to program a small robot and solve some simple tasks. The

evaluation compared the effects of using such a system while collaborating

with other peers and working individually, in terms of the development

of CT skills. The study results failed to demonstrate a clear benefit of

learning in collaborating groups over individual working ones in terms of

CT skills development. This requires further investigation, however it could

point out how existing CT tools favour offline collaboration, but are not

specifically designed to support online collaborative learning. Designing tools

to support online collaboration to foster CT skills is indeed important and worth

investigating whether different an interaction paradigm — such as TUIs — could

be used to make this happen.
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In the next chapter, the main research question of this thesis about the effects

of tangible interaction on the development of CT skills will be investigated in

a specific application domain, namely Informal Learning (IL) environments,

where learning is self-directed and takes place as people go about their daily

activities.
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4Fostering Computational
Thinking Skills in Informal
Learning Domains

„Children learn best when they are actively

engaged in constructing something that has a

personal meaning to them — be it a poem, a

robot, a sandcastle, or a computer program.

— Seymour Papert

The previous chapter focused on the existing tools used in education and their

effects on promoting Computational Thinking (CT) skills. This chapter carries on

with the main thesis investigation over the effects of tangible interaction on the

development of CT skills and focuses on a specific application domain, namely

Informal Learning (IL) environments, where learning is mostly self-directed and

takes place as people go about their daily activities, driven by their preferences

and intentions.

4.1 Introduction
As mentioned in chapter 1, supporting users in cultivating their CT skills

and — more generally — going through their routine learning experiences is

particularly relevant in IL scenarios, namely environments where learning is

predominantly unstructured, experiential, and noninstitutional, i.e. outside of

the classroom (e.g., in museums or workplaces). Modern education strives

to make learning intrinsically driven, that is by making learners responsible

for their own academic explorations, thus fostering appropriation of their

own learning; this way their experience becomes more self-directed and

personalised, increasing both their motivation and its efficacy. Developing

both technological tools and methods to promote CT skills in IL domains puts

learners in charge and integrates learning in their daily routines to exploit

their motivations and provide a more effective experience. Physical objects

manipulation might help to lower the barriers of CT and support users in dealing

with such abstract concepts during IL activities.
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The Research Question derived from this context and addressed by this

chapter is then: “Can physical objects manipulation help foster CT skills in IL

domains?”.

To properly study and address this question, this chapter introduces TAPAS

(TAngible Programmable Augmented Surface), a system combining its digital

and physical features to promote CT skills, built on the findings of the previous

chapter, the literature, and a user study, that can be repurposed to different IL

scenarios.

The contributions reported in this chapter are threefold.

• First, an early design of TAPAS is described, stemming from the results of

a workshop carried out with expert designers to collect insightful ideas

and design challenges related to the development of a Tangible User In-

terface (TUI)-based system that can be repurposed to different IL domains.

• Second, the results of a study conducted with the preliminary prototype

of TAPAS [MT15; TMD15] are reported, whose findings were used to inform

its design to target IL domains.

• Third, some of the main challenges faced by supporting CT skills with

objects manipulation in IL domains are reported, based on insights from

the studies that have been carried out.

4.2 Related Works
Much of the existing body of research within the End-User Development

(EUD) area about TUIs has focused on education. Many theories, including

the constructivist ones, report the benefits of making interfaces tangible and

moving them into the physical world; several studies report on their benefits

for children in the classroom since they are built on experience from the real

world. Providing real evidence supporting their value for educational use is quite

a challenging task, although some recent studies are trying to characterise them

more in detail, as this thesis seeks to do with their effects on CT skills.

The existing literature on employing TUIs within an educational domain

to foster programming-related skills can be clustered in two main categories

according to the paradigm employed: Programming by Demonstration (PbD)

or Programming by Instruction (PbI). PbD, also known as Programming by

Example, enables users to teach new behaviours to the system by demonstrating

actions on concrete examples [Lie00]. PbI, known as Tangible (sometimes

Physical) Programming within the TUI domain, takes a traditional approach to

programming, that is requiring users to learn and employ a syntactic construct
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(e.g., text instructions, visual or natural language) to impart instructions to the

system. This makes the PbI paradigm less coupled with the operational domain

it is applied to, whilst PbD is directly linked to it by having users manipulate only

their artefacts.

Topobo [PRI08] — proposed by Parkes et al. — falls under the first category

and comprises a set of components that one can assemble and animate

with different manipulations; the system then repeatedly plays those motions

back. PbD proved to be an effective and intuitive way of teaching different

movements to a system directly on actuated physical objects, therefore it has

been specifically named Robot Programming by Demonstration [Bil+08]. The

system devised by Lee et al. [Lee+13] uses a different approach: this PbD

system allows users to record macros composed by physical and digital actions

performed on several objects, such as opening a drawer, turning on the TV, and

so on; the system records the actions’ sequence and plays them back in the same

order once the first action is performed.

These systems offer an unparalleled experience in terms of ease of use, but

— due to the paradigm they employ — present a quite substantial limitation:

users can interact only with the outputs, therefore the instructed behaviours are

necessarily composed solely of operations that are directly available, resulting

in the inability to represent more complex behaviours; this is the reason why the

main problem of PbD systems is the generalizability — i.e. finding the general

semantics — of instructed behaviours [Lie00].

Moving to PbI-based systems, Mugellini et al. [Mug+09] proposed the

concept of tangible shortcuts: they improved information access and retrieval

using physical objects, enabling users to develop new shortcuts through a

Visual Language based on a puzzle metaphor. Wang et al. introduced E-

Block [Wan+12], a tangible programming tool for young children, enabling them

to instruct a robot’s movements by assembling different blocks, each assigned

to a specific function. Robo-Blocks is a similar system presented by Sipitakiat

and Nusen [SN12], which added the ability for users to debug their applications

using a display placed on top of each block.

The effects of employing a TUI to interact with a digital system are

certainly dependent on the tasks and domain, as many comparative studies

suggest [Wei+09; Mül+14; Han+09]; for this reason, Kirk et al. [Kir+09] made the

case for hybrid surfaces, employing physical elements together with digital ones.
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4.3 Tangible Programming in Informal
Learning Domains

As discussed in the introduction, IL is a very effective form of learning that

fosters appropriation by allowing users to self-pace their experience outside of

the traditional classroom. Technological tools and methods can assist learners

through their self-directed journey, particularly when the goal is to promote

CT skills. Also, by allowing such tools to exploit humans’ natural dexterity for

objects manipulation as implied by constructivist theories, they might further

support learning of the abstract concepts underpinning CT within such domains.

The design of technological tools enhancing CT skills within IL domains

is influenced by some key factors concerning these scenarios. As reported

in [MV99], IL is (F1) integrated with learners’ daily routines, (F2) triggered by

an internal or external jolt, (F3) not highly conscious, (F4) influenced by chance,

(F5) an inductive process of reflection and action, and (F6) linked to the learning

of others. Leveraging on these factors when designing a new tool allows for an

optimal support of learning activities in such environments and limits its casual

nature.

In this chapter, a new tool supporting IL of CT skills is proposed, which

• is a software platform — namely a system designed to run different

applications — thus it can be repurposed to different scenarios,

integrating into learners’ heterogeneous daily routines (F1);

• supports inductive processes (F5) by providing users with an EUD

environment where they can iteratively assemble different workflows —

namely sequential processes combining different small applications in

a step-by-step data-flow fashion, where the output of an application

becomes the input of the following one.

• supports collaboration (F6) by implementing a TUI on a tabletop

display — namely an interactive display system, naturally fostering users

collaboration by providing multiple physical interaction points placed on

a horizontal surface for them to play with.

In the next section, the process of designing such a platform is outlined,

starting with a focus group with designers to devise a first preliminary design.

4.3.1 Preliminary Study
Several design choices have to be made to design a platform with tangible

controls that need to be easily integrated into many different IL scenarios. For
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this reason, an early focus group with experts was run to collect ideas and

suggestions to drive the design choices.

Five experts with backgrounds in different design areas were gathered

in a university meeting room for a one-hour session: three experienced

interaction designers with some basic programming knowledge — one with a

specific background on information visualization and one with quite substantial

industry experience — and two product designers without any programming

experience at all.

Fig. 4.1: An example of a workflow created using IF This Then That (IFTTT): when the
condition in the user’s location changes to rain (trigger) it will automatically post a tweet
(action).

During the first phase — lasting 30 minutes — participants were instructed in

the context of this research and the problem it is addressing by the facilitator.

They were shown some videos outlining the process of developing workflows

on IFTTT (IF This Then That) [@18f], a widely popular EUD Web mashup

system [Mal+11]; it allows users to create simple event-based if-then-style

workflows with different Web services and acts as a hub connecting their events’

triggers with actions: one can describe simple rules by selecting the event
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that will trigger the workflow (e.g., when the current temperature rises above a

certain value or when the user edits a specific file on Dropbox) and an action

that should be performed by any other — even the same — supported Web

service (e.g., tweet about it or send the file via email), as shown in figure 4.1.

This platform is very flexible and can be easily integrated into most people

day-to-day activities on the Web to support them. Thus, it was chosen to

showcase different types of simple workflows, their inner logic and how the

trigger selection provides the subsequent action with anchors dependent on the

output’s type: for instance, when the event concerns a location the action can

access its GPS coordinates, when it involves a text file the action will be able to

use its content, and so on.

Then participants were shown a video of an existing TUI system — the Tangible

3D Tabletop [DH14] — which summarized the benefits of this interaction

paradigm. In particular, two different ways of employing tangible objects

in educational systems were shown [ZAR05], in order to prompt them to

produce different ideas: Froebel-inspired Manipulatives (FiMs) are building

blocks used to design and represent real-world things, objects, and physical

structures, for example, 3D building blocks to represent buildings on a map

(figure 4.2a). Montessori-inspired Manipulatives (MiMs) are building blocks

focused on modelling more conceptual and abstract structures, for instance,

tangibles used to control RGB colour blending (figure 4.2b).

(a) 3D building façades on tangibles
placed on a map.

(b) Three tangibles used as RGB colour
blenders. The base colour is projected
onto each tangible, and users can change
the hue of the triangle drawn within the
tangibles by turning them.

Fig. 4.2: Two examples of different metaphors involved in the Tangible 3D Tabletop
system [DH14].

After the introduction, participants started a 30-minute discussion about

ideas and challenges for the design, focusing on an IL scenario involving

users with no previous programming experience. The gathered feedback is

summarised in the following.
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Study Findings

The features suggested by participants were clustered by subject — concerning

either the system’s tangible objects or its digital syntax. Here are the main

findings from the focus group:

Tangible features Participants remarked the fact that the system should

react only upon user actions and provide useful feedback through a specific

communication channel, in agreement with one of the main principles of

Natural User Interfaces (NUIs) [WW11a]. Many suggestions focused on the

preferred channel to be used to provide feedback. These included providing

tangible objects with a touch-sensitive mechanism in order to activate the

feedback only when users physically touch objects on the table, in order to

highlight whether selected objects are compatible with each other (fulfilling

the workflow constraints). Moreover, the feedback communication channel of

choice can be a physical one as well: a magnetic attraction between objects

could indicate whether two workflow’s components are compatible with each

other, while repulsion might represent the opposite. Another participant sug-

gested employing haptic feedback built into the tangibles to communicate

compatibility between different ones.

Digital features Another set of suggestions were directed towards the digital

representation of the platform’s syntax. First, the blocks’ digital representation

should help users understand components’ constraints by using, respectively,

different and similar colours or shapes for incompatible and compatible

components. Also, since a workflow’s composition is usually performed one

component at a time, i.e. by selecting a function that will follow the latest

assembled one, the system shall aid users on the next available components

to be chosen by changing the colour or the shape of the currently assembled

workflow. Lastly, available components should be displayed all at once, giving

users an overall view of the system’s capabilities. However, this can also increase

mistakes. Since the target group is inexperienced users, the system should

assist them in finding the right way of assembling different components, when

they cannot figure it out themselves; a useful suggestion on this regard is

to provide some sort of “translation tool”, which — once a user selects two

blocks incompatible with each other — shows them at least one possible way

of choosing other components in between to connect the two blocks, assisting

users during the composition phase.

The suggestions stemming from the workshop drove a preliminary design of

the system, whose details are presented in the next section.
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4.3.2 Preliminary Design
The system design aims to provide users with a platform that can be employed

in a variety of IL domains — e.g., in museums or workplaces — to cultivate CT

skills through objects manipulation.

The platform is deployed on tabletop displays, which naturally foster

collaboration as required in IL domains, and consists in a Block-based

Programming environment [Moh+11] to support inductive processes — widely

used in systems like Scratch [Res+09] and Blockly [@18a] — that has proven to

have a low learning threshold for non-programmers, as thoroughly discussed in

the previous chapter.

It allows users to create, share, modify and reuse simple workflows, namely

sequential processes combining different services in a data-flow fashion, where

the output of a service becomes the input of the following one, integrating into

users’ daily routine while supporting IL through inductive processes.

Users impart instructions through a visual syntactic construct in a PbI

fashion rather than by demonstrating their intentions to the system: indeed,

making a workflow’s inner architecture transparent to users can help them to

better understand its sequential logic and behaviour, providing further design

opportunities to improve their CT skills and easily integrate the system into

rather different scenarios.

The system’s blocks correspond to workflow components (i.e. functions)

that can be assembled together as in many other Block-based Programming

environments; each block receives specific formats of data as input and

produces different ones as output based on its inner workings and its location

within a workflow’s logic. Type constraints on different blocks inputs and

outputs are afforded using different shapes, as in a puzzle.

A tangible object is associated with the main block — a circle halo with a

single hollow to accommodate the next piece to be added to the workflow —

which will move alongside the object on the main display’s surface; moving

the main piece towards another will add the latter’s related function to the

workflow — only if the two shapes are matching, that is to say, the latest output

is compatible with the required input (figure 4.4a). This mechanism aids end-

users in understanding the data-flow approach as well as type constraints.

Inputs requested by services might be quite heterogeneous and complex

depending on the scenario, requiring at this point a precise and familiar input

mechanism that can adapt to different needs. Hence, smartphones have been se-

lected as the tangibles controlling the main blocks in the system: they represent

objects whose movements allow users to interact with the system, i.e. they

form the physical and digital representation of information in the system, and
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are already equipped with all the sensors and feedback mechanisms needed

to implement the designers’ suggestions obtained from the focus group and

push the interaction even further. They can be used to adapt the system to the

different users’ preferences since they hold much of their personal information.

Moreover, they can be used to display a wide range of widgets that can be

presented to end-users depending on the specific service being accessed (e.g.,

a virtual keyboard for text input).

Fig. 4.3: An example of a workflow being assembled using the proposed system: a
keyboard widget is displayed on the smartphone once a new piece requiring an input is
assembled.

Widgets vary depending on the type of input requested: selecting a single

option among several will prompt the user with a list box, a single action to

be performed will display a button, and a generally unstructured raw text to

be inserted will present a keyboard (figure 4.3 and 4.4b). Once a user enters

the requested input on a widget, the latter disappears from the smartphone and

the projected halo surrounding it opens up a new hollow to allow for the next

block to be inserted (figure 4.4c); then using the input, only the hollow that

is compatible with it is displayed, preventing invalid compositions. When a

workflow is completed, it can be run by pressing a button on the smartphone

(figure 4.4d).

The next section reports a study carried out to evaluate the platform and

address the Research Question formulated in the introduction of this chapter
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(a) The first piece is selected and added to
the current workflow by moving the smart-
phone towards it.

(b) The corresponding widget is dis-
played on the smartphone waiting for user
input.

(c) Once the input is inserted, a piece
whose input matches the current work-
flow’s output can be added.

(d) Finally, the workflow is completed
and the user can run it from her smart-
phone.

Fig. 4.4: A step-by-step walkthrough of building a workflow.

related to the effects of physical manipulation on the development of CT skills in

IL domains.

4.4 Evaluation
This section presents the goals, hypotheses, and description of the experiment

carried out to test the designed system, following the guidelines of the American

Psychological Association [Woh+00].

4.4.1 Goals
The goal of the experiment is to evaluate the system design and tangible-based

interaction paradigm in a real-world IL scenario, namely a work project meeting.

The purpose is to evaluate whether this system might be employed in a given IL

scenario and investigate the effects of TUI on the development of CT skills.
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4.4.2 Research Question
CT is a set of skills that can help people play a more active role in their day

to day life, due to the massive impact of software in today’s Information Society.

Nonetheless, people struggle in dealing with the abstract concepts underlying

it, thus it is important to support them in fostering such skills with new and

engaging ways without getting in between their actual routine. Constructivist

theories suggest that objects manipulation — underpinning TUIs — might be an

effective way of aiding end-users in making such highly abstract concepts more

tangible and understandable.

Supporting users in developing CT skills is even more important in IL

scenarios, where learning is predominantly unstructured, experiential, and

noninstitutional, making the experience self-directed and personalised with

higher motivations and efficacy.

Promoting CT skills in IL domains through physical objects manipulation

might help to lower the barriers of CT by integrating learning in their daily

routines and supporting users in dealing with such abstract concepts through

their day-to-day experiences.

The proposed system has been developed with the aim of investigating the

influence of TUIs on CT skills in multiple IL scenarios. It employs a tangible-

based interaction with a tabletop surface — naturally fostering collaboration —

and supports inductive processes by means of assembling workflows to solve

simple tasks. Thus, it has been designed to easily integrate into users’ day-to-

day routine to support CT skills.

The main research question addressed by the evaluation is then “Can physical

objects manipulation help foster CT skills in IL domains?”.

4.4.3 Experiment Design
Due to the openness of the range of scenarios analysed — i.e. IL scenarios —

an exploratory research design was used, comprising two phases:

1. a combination of oral feedback and observations of end-users engaging

with the prototype in a semi in-the-wild scenario, i.e. taking place in a real-

world setting and addressing real-world problems, as a way of testing it in

a generic IL environment, and

2. semi-structured interviews of domain experts, in order to gather more

generic and less domain-specific feedback.
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4.4.4 Participants
First Phase

The study involved end-users selected among Brunel University second-year

students in the Department of Computer Science, College of Engineering and

Design. As part of their degree they are clustered into groups of 4-6 and tasked

with an Android application development project to be undertaken during the

course of the year; they are required to meet and work collaboratively every week,

normally in the library or in one of the college’s meetings rooms, and can use a

range of available tools to work together and share information with each other

(online dedicated forums or drives, laboratory spaces with coding facilities, etc.).

The development is supervised by a teaching staff member, whom they usually

meet all together as a group once a week. The objective of these meetings is

not to develop the Android application — which is an individual task — but to

coordinate and organize a project plan, eventually designing a Gantt diagram to

split the workload into individual tasks. This is a time when students self-direct

their activities, exchange suggestions, and support each other, being a proper

example of a real-world IL scenario.

In particular, three groups of students in their second year participated to the

study, made up respectively of four (1 female, 3 males), five (1 female, 4 males),

and six (all males) students, reflecting the real project activity requirements and

average group size; participants had no prior knowledge of the system, but

attended their introductory programming course during their first year, thus

they already had some programming and problem-solving experience.

Second Phase

Three interaction design experts were involved to get feedback on the featured

modality; they were composed of two HCI experts — with a mixture of academic

and industry backgrounds — and a product designer, all with more than 20

years of experience in their fields. By involving more experienced participants,

the proposed interaction modality has been further evaluated through a less

domain-specific point of view, considering a wide range of IL domains for its

application.

4.4.5 Settings and Procedure
First Phase

The study took place within the University facilities, in a room inside the

Department of Computer Science designated to students and staff meetings,
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where many public interactive displays are already being deployed and used

with a researcher present. It was conducted in three different sessions, one

for each group of students, lasting half an hour each, and was a preliminary

evaluation of the system’s feature set and interaction modality.

Due to the inexperience of participants for this phase, eliciting the discussion

around the system interaction modality might not have been easily gathered

employing only a paper and pencil approach. Thus, students were prompted

with it as a “provotype” — i.e. a provocative prototype, namely a prototype

that deliberately challenges stakeholders’ conceptions by reifying and exposing

tensions of existing practice in a context of interest [BD12]; this includes a small

set of features highly tailored to the evaluation scenario (i.e. university students

collaborating with each other).

The features made available to participants, each rendered with a different

block, were: (1) selecting and downloading a file from the user’s Dropbox

account; (2) displaying a downloaded PDF file or an image on the main tabletop

screen; (3) searching for a book in the university library and retrieving its

location inside the building depicted in an image; and (4) sending a text

document to a specified email address.

For instance, one could pick 1 and 2 (in this order) and the composed

application would download a PDF from the user’s Dropbox folder and display

its content on the big screen (as depicted in figure 4.4); composing 3 and 2

together would result in looking for an available book in the university library

and displaying its location on the big screen.

Fig. 4.5: One of the participating groups to the study.

Each session lasted 30 minutes and started by briefly introducing the current

version of the system to participants, explaining to them how the system works.

They were then left to play with it for 15 minutes (figure 4.5), and finally, a

semi-structured interview was carried out, mainly focused on the proposed

interaction modality.
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Second Phase

Semi-structured interviews were carried out in a controlled environment

(figure 4.6), namely during a workshop on the island of Tiree, during the bi-

annual Tiree Tech Wave, a gathering of experts in various fields, ranging from

interaction designers and artists to computer scientists.

Fig. 4.6: The designer study setting.

Individual sessions lasted 45 minutes, starting by introducing the prototype,

explaining the rationale behind its design and the targeted scenarios; it was then

followed by a brief demonstration of how it works, going through some examples

of its usage in real-world IL scenarios. Finally, a semi-structured interview

was carried out focusing on the strengths and weaknesses of the prototype in

relation to the interaction modality and its applicability in IL domains to foster

CT skills, more precisely covering the easiness of the puzzle metaphor, the use

of smartphones as tangible objects, future application scenarios, and missing

features.

4.4.6 Summary
To recap, table 4.1 presents a summary of the specific CT dimensions as

defined in [BR12] examined in the evaluation, along with the related assessment

approach, as reported in chapter 2.

Moreover, the second phase of this evaluation preliminarily investigated over

the interaction modality of TAPAS.

4.5 Results
Data collected in both phases were analysed by performing a content analysis

on the gathered feedback and observations.
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Tab. 4.1: Summary of the specific CT dimensions [BR12] considered by the evaluation
with the related assessment approach.

CT Dimension Description Assessment

Concept:
sequences

Expressing a particular activity or task
as a series of individual steps or instruc-
tions that can be executed by the com-
puter.

Project Analysis
(First Phase
Provotype)

Practice:
abstracting and

modularizing

Building something large by putting
together collections of smaller parts.

Artefact-Based
Interviews

(First Phase
Interviews)

4.5.1 First Phase
Overall results point out how the proposed user experience was considered

quite satisfactory by participants; as expected, students’ feedback mostly

focused on missing features and the interaction with the system.

Each group managed to successfully assemble (at least once) two workflows

while they were playing with it: the first one started with downloading a PDF file

from a Dropbox account and displaying a preview on the main tabletop surface,

while the second one started with looking for a specific book in the university

library and depicting its location on the main screen.

From the gathered feedback it seems that a TUI is an easy and effective

way of interacting with the system throughout the composition of a workflow.

Even though all participants are Computer Science (CS) undergraduates, their

second-year group project is their first chance of tackling a wider problem-

solving scenario, unlike their first year’s individual development of smaller

applications. This more complex project requires them to learn abstraction

and decomposition skills, whilst collaborating with peers. Using the puzzle

metaphor and workflows together with tangible interaction helped them build

the required CT skills: for instance, collaboratively planning and designing the

application’s tasks and assigning them to each participant could be a suitable

scenario to practice abstraction and composition skills. Moreover, as with API

development, the recipe metaphor provides different levels of transparency and

abstractions useful to generalize the problem, whilst assembling blocks might

help with decomposing a bigger problem into smaller ones [Win11].

Nonetheless, the feedback showed that just a tangible interaction doesn’t seem

“natural” when it comes to manipulating outputs: every participant trying out

the prototype attempted to move images displayed on the screen with their
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fingers, suggesting that manipulating items through objects might feel “natural”

only when operating in composition/developing mode and there is a perfect

mapping between the physical and the digital object, but not when there is

actual content the user needs to directly manipulate available on the screen.

This might be a result of employing a PbI paradigm to be able to repurpose

the system to different domains, which uses a syntactic construct to specify

a workflow’s instructions as opposed to exploiting only contextual actions on

resulting artefacts — i.e. PbD.

From the interaction point of view an interesting remark was made by one

of the participants: continuously tracking the smartphone’s position on the

surface using a fiducial marker requires users not to cover its display with their

hands when moving it; however, the hand position on the smartphone might

depend on the posture: if a user is standing, he/she might feel more “natural” to

hold it from above — thus covering the fiducial marker with the palm — while

a seated user might feel more comfortable grabbing it from the side, without

covering its display, allowing for its movements to be tracked. Because the

majority of existing smartphones are shaped in the same way, it might be worth

studying this ergonomic effect in more detail, in order to establish whether users

could be provided with a physical enclosure affording the “right” way of holding

the smartphone or whether it is a negligible effect when the system runs on

horizontal displays placed at a certain distance from the floor.

The same users appear to cope easily with the proposed interaction modality

during the workflow editing phase, but a different interaction style has to be

devised when it comes to manipulating results.

4.5.2 Second Phase
Designers liked the overall idea and the personalization approach for different

scenarios, namely using a smartphone as a tangible instead of just a passive

object to identify users and link their personal information with the movements

they perform on the very same device. In particular, they liked the way blocks

use shapes to establish type constraints as it looks like a straightforward way of

understanding the composition of workflows to address users’ needs.

They recognized the potential of such a system in public spaces, due to its

ease of deployment and the cheapness and high availability of the technologies

involved: thanks to the simple architecture, it allows deployment in any digitally

augmented surface just by installing an RGB camera and running the application

on a production server; it can be left in public spaces for a long period of time

without the need to perform mundane maintenance operations aimed at adding

new features, since users can repurpose it themselves.
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Some of their suggestions focused on the way data are presented to users and

the use of the dynamic widget to get some input from them: due to the kind of

data handled right now — namely lists of files within directories or book titles

in a database — it makes sense to prompt users with a choice from a list or

offer a keyboard to input raw text. Nevertheless, this will not be the case when

dealing with more structured data types, such as points of interest on a map:

therefore, they suggested that due to the complexity of workflows that might

be put together by end-users, widgets might be designed to be more flexible

and personalizable depending on the two-fold level of interaction between the

user perspective and data perspective related to the specific data handled by

the widget. They emphasized that the two perspectives are interlinked and

reinforced mutually. Elements of human-centred information visualization

have to be considered in the redesign of the widgets for the next interaction

prototype; for instance, by following visual metaphors that incorporate semantic

relationships of visual objects both in the physical (tangible) and virtual (digital)

world [MS13; Big+14].

Furthermore, interviewees pointed out how the continuous back and forth

between interacting with the smartphone to input data and with the large

display to assemble workflows might be confusing for users: interacting with

two different devices, each one with a different interaction style — i.e. tangible

on the tabletop, multi-touch on the smartphone — and different underlying

metaphors, requires a relatively high cognitive effort in constantly switching

paradigm and some users might also miss what is happening on one device

while they are too focused on interacting with the other. That is why interviewees

suggested keeping the tabletop as the main interaction focus by providing

a mixed interaction modality: moving the smartphone will still be used to

assemble the puzzle pieces but once one of them requires a certain input, the

widget will appear close to it on the tabletop surface and users will interact with

it using their fingers.

The final observation concerns the blocks shapes: although it appears to

be quite an easy to grasp concept, its efficacy might be improved by offering

some additional visual cues; interviewees suggested that in addition to shapes

to indicate functions compatible with the currently generated output, it might

highlight the available ones and darken the incompatible ones, even when the

former is not available due to network outages or other problems, or even

associate colours to shapes.

To recap, there are positive elements in the system design for EUD of workflows

to be employed in many existing IL scenarios to foster CT skills, such as the Block-

based Programming paradigm, the use of the smartphone as being tangible
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and personal, and the ease of prototype deployment in-the-wild due to its low-

cost and flexible architecture. Nonetheless, there are some challenges to be

addressed in the future in terms of interaction design requirements, such as

the flexibility of widgets and improving the visual cues to highlight available

functionalities, which might hamper the usability and get in the way of the

learning experience.

4.6 TAngible Programmable Augmented
Surface

The results of the evaluation phase highlighted the validity of employing the

developed platform in IL scenarios and prompted for its extension to make

it easily repurposable to different domains and include some of the gathered

feedback.

In the following, the TAPAS architecture is presented, developed to investigate

the influence of TUIs on CT skills in different IL scenarios.

4.6.1 Architecture
TAPAS comprises a horizontal tabletop display and an RGB camera capturing

the movements of the users’ smartphones on the main display’s surface

using fiducial markers [Bon+13] (i.e. images used as a point of reference

when placed in the camera’s field of view), as summarized in figure 4.7; it

supports — and later extends — the Tangible User Interface Object (TUIO)

protocol [Kal+05], already adopted by many research communities within the

TUI area as a general and versatile communication interface between tangible

tabletop controller interfaces and underlying application layers, which has been

designed specifically for interactive multi-touch tabletop surfaces.

When a user logs into the provided Web application running on a smartphone

using her credentials, this will display a fiducial uniquely assigned to that

account. The system can then track the position of the fiducial across the

tabletop surface, knowing to whom it belongs.

Tracking objects using fiducials allows supporting physical object other than

smartphones, each providing its own set of sensors and feedback mechanisms

if any. The TUIO protocol, however, is quite generic and limited to tracking

positions of generic objects in a 2D space, without providing a way for objects to

expose their supported I/O interfaces. For this reason, an extension of the TUIO

protocol has been proposed [MTO17] and is reported in the following section.

56 Chapter 4 Fostering Computational Thinking Skills in Informal Learning Domains



100%

Widget

Tabletop 

surface

Reads fiducial’s position 

RGB Camera

User Info

TAPAS

Renders tabletop’s graphic 

environment

Assign an unique 

fiducial to each 

smartphone

Network 

transmission

Reads the 

widget’s input

Sends each 

function’s

required widget

Reads 

User info

Fig. 4.7: The architecture of TAPAS: using a fiducial marker — assigned by the
application itself — and an RGB camera, TAPAS can track a smartphone’s movements
on a tabletop surface; through the smartphone, TAPAS is able to link each and every
smartphone’s movements to its users and display a corresponding dynamic widget.

Tangible User Interface Repurposable Object (TUIReO)

As stated before, TAPAS supports the TUIO protocol and extends it to provide

developers with a framework — called TUIReO — that allows them to easily

experiment with tracking generic programmable objects on a big display.

Applications developed with this framework should foster new interactive

experiences, featuring EUD with ubiquitous tangibles with advanced feedback

and input mechanisms.

The TUIO protocol, as Kaltenbrunner et al. [Kal+05] stated, “is an attempt

to provide a general and versatile communication interface between tangible

tabletop controller interfaces and underlying application layers. It was designed

to meet the needs of tabletop interactive multi-touch surfaces, where the user is

able to manipulate a set of objects and draw gestures onto the table surface with

the fingertips.”
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The TUIReO framework (figure 4.8) was designed to provide further interaction

capabilities for multi-device environments on top of the TUIO protocol. This

allowed experimenting further with TAPAS and block-oriented programmable

objects, as reported in the next chapter.

Fig. 4.8: TUIReO Framework Architecture

TUIReO is built on top of TUIO to provide an abstraction layer over the

capabilities of the tagged smart objects that are already handled by TUIO. It

aims to encapsulate the capabilities of a smart object — namely the properties

that the physical object offers to the environment and that can be controlled

and detected remotely — with its virtual TUIO representation. This enables

developers to fully exploit the object features, such as the inputs and outputs

channels that it might provide, either physical or digital (in the form of a display

or a physical button).

Programmable objects support the following capabilities:

Interaction capabilities i.e. buttons, multi-touch events, mid-air gestures.

Display capabilities i.e. LEDs, screens.

Retrieval capabilities i.e. storage, user’s details (e.g., Facebook account).

Affordance capabilities i.e. shape, haptic.

The TUIReO environment comprises of (1) a sensor used by the TUIO

component to track tagged objects and multi-touch gestures happening over
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the tabletop surface, whose positions are transmitted to (2) a display running

the TUIReO server application. The server application implements a TUIO client

and stores each objects movements and smart capabilities together, controlling

the display output of the tabletop and the inputs and outputs of every object

through the TUIReO protocol.

TUIReO can be considered a framework for tracking programmable objects on

a tabletop and managing their physical and digital properties. Its design stems

from lessons learned from the development of the initial prototype reported in

section 4.3.2; it has been employed in TAPAS to implement a tangible Block-based

programming environment, while a future evaluation needs to be carried out

from a development point of view.

4.6.2 Implementation
TAPAS has been implemented in the form of two applications running side by

side, in a client-server fashion. The first, named Simple Pluggable Range Imag-

ing Tracking Server (SPRITS), implements the TUIReO server application, tracking

objects and gestures over a horizontal display. It is developed in C++ and

sports an abstraction layer over different depth-cameras (supporting OpenNI-

based [@18i] sensors at first) and communication protocols (TUIO being the

default one). It can be calibrated to fit any surface size (at a maximum of 2 meters

distance) that the camera is pointed at.

SPRITS tracks fiducials and touches issues to the display and streams them on

the network through the TUIReO protocol. This feed is picked up by the main

TAPAS application: it is developed in JavaScript and runs on the Web. It can run

on any PC with a JavaScript-enabled browser, and can be customised using a mix

of CSS (to personalise the look and feel of the displayed objects) and JavaScript

(to customize the behaviour of each block).

4.7 Discussion and Post-Hoc Analysis
The results of the study prompt to address the Research Question set out to be

investigated in the introduction.

While this indeed was just a preliminary study on a specific application

domain, its findings can certainly be used to highlight some of the advantages

and issues with TAPAS. There are initial hints of it being able to support peer-

to-peer collaboration (i.e. where all participants have the same role within

the group), however it also features chaired modalities by leveraging on the

use of smartphones (as suggested in [Cli13]). Moreover, TAPAS supports users

in individual activities as well, enabling them to use their preferred tools

while carefully considering the resulting privacy issues; indeed, the choice of
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employing smartphones as tangible probes in TAPAS was influenced by privacy

concerns, allowing it to draw upon user data while keeping the user in control of

what she wants to share and with whom. For this reason, further developments

are currently in the works on TAPAS’ Web app in order to develop a more

sophisticated interface that enables users to effectively tweak their privacy

settings and control which data TAPAS can have access to.

The proposed interaction modality has been positively received by both end-

users and domain experts, paving the way for its application in a wide range

of domains where users need to perform simple tasks, either individually or

collaboratively, while fostering their CT skills. While this last point will be

discussed more in details in the next chapter, TAPAS was successfully to a given IL

scenario by developing a set of specific functions, which can be easily assembled

by users into different workflows and interact with it.

Two relevant challenges of fostering CT skills with Tangible Programming in IL

scenarios can be identified from the findings, one stemming from the results of

TAPAS’ evaluation with end-users and another from the interviews with domain

experts.

Firstly, the user experience seems to differ when the tangible interaction is

used for composing services with blocks (positive experience) from when users

interact and collaborate on the results of the workflow execution through their

smartphones (less positive experience). This could be due to the different set of

constructs involved within each stage:

1. Building a workflow requires the user to deal with abstract concepts —

like functions and constraints — that are not naturally coupled with any

existing physical counterpart; providing users with an intuitive visual

metaphor and enabling them to interact with the system in a natural way

(through a tangible) might be an effective strategy to help them build

the right mental model, together with exposing the right transparency

level of the workflows’ inner logic in order to improve abstraction and

decomposition skills, indeed helping to develop their CT abilities.

2. In an NUI based environment, direct manipulation of contents is more

intuitive than using intermediate control mechanisms; hence, when it

comes to manipulating results produced by their workflows, users require

the interface to be completely transparent, without any syntactical — least

of all tangible — artefact to operate on an environment’s constructs.

This contrast is also evident from the literature (see section 4.2) highlighting

the many differences between the PbD and PbI paradigms: due to its very nature,

in a PbD system the composition and execution environments are perfectly
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overlapped, i.e. the same artefacts the users operate on to program the system is

used also to interact with its results; in Robot Programming by Demonstration,

for instance, users teach movements to a robot by simply simulating them

directly onto its body. This is radically different from a PbI approach, where the

two environments — composition and execution — are generally detached from

one another, each one using different metaphors and concepts, e.g., the visual

editor of the now-defunct Yahoo! Pipes [Pru07] is used to compose a pipe (data-

flow) that generates a specific execution environment made of Graphical User

Interface (GUI) elements as designed by the user. While this distinction might

be overlooked from an interaction perspective when a system only relies on a

GUI, it becomes more relevant when it is about TUIs. Even though PbI seemed the

right paradigm to choose in the analysed scenario due to its generalizability and

the benefits brought to CT skills, choosing the right paradigm according to the

naturalness of interaction is arguably scenario-dependent, as is often the case

with Domain Specific Visual Languages.

Secondly, from the study with designers, an interesting challenge has emerged

which is related to the use of Visual Languages with TUIs. In particular, the

majority of examples found in the literature (section 4.2) — including TAPAS —

use Visual Languages when employing a PbI paradigm.

Visual Languages have been widely used within the field of EUD in order to

ease the development process for end-users; the interaction paradigm used

for Visual Languages is GUI-based, whilst due to the selected scenario a more

natural way of allowing EUD would be to support tangible interaction. Studying

whether there is an appropriate EUD paradigm for TUI environments requires

understanding whether any of the available paradigms, e.g., PbI and PbD, are

suitable for Tangible Programming or if, on the contrary, new paradigms

need to be introduced. There is some evidence, as in Robot Programming

by Demonstration for instance, that PbD is suitable for that specific scenario

using Tangible Programming but, as often happens in the EUD community, the

solution might be domain dependent.

Finally, as for the preliminary studies just described, TAPAS can support future

evaluations over the effects of a tangible PbI paradigm in relation with CT in

different IL domains, as further reported in the next chapter.

4.8 Threats to Validity
Here are the validity threats to the design of this study.

Internal Validity The limited number of components developed and deployed

to the tested system could have influenced its usage, thus the findings cannot

4.8 Threats to Validity 61



be properly generalized for many other contexts. Yet, since TAPAS was employed

as a provotype — that is to challenge users by exposing tensions and thus to

support design explorations [BD12] — observations related to the interactions

users and designers carried out can give a good insight into its real usage. The

experimenter effect is concerned with any biasing effects in a study that is due

to the actions of the researcher. The researcher attempted to carry out the

study as objectively and as accurately as possible without interfering, acting

as an observer limited to recording feedback. The subject effect could have

determined changes in the participants’ behaviour due to being in the study and

under observation; in this case, the study was carried out within a traditional

university environment with the actual group members participating to the

activity.

External Validity The results of the study can be generalized only in the

context of the scenario where TAPAS was deployed, although it represents quite

a common setting. In order to generalize the findings to other scenarios,

replication studies are needed.

4.9 Contributions
Parts of the work and results described in this chapter have been previously

published in the following:

• The Literature Review described in section 4.2 and the First Phase of the

Evaluation in section 4.4 have been published in [MT15].

• The Evaluation described in section 4.4 has been published in [TMD15].

• The Preliminary Study described in section 4.3.1 and the Evaluation in

section 4.4 have been published in [TMD17].

• The TUIReO Framework described in section 4.6.1 has been published

in [MTO17].

• The TAPAS Architecture described in section 4.6 has been published

in [DMT18].

• The Preliminary Design of TAPAS described in section 4.3.2 and the Second

Phase of the Evaluation in section 4.4 have been published in [Dix+16].

4.10 Conclusion
This chapter introduced TAPAS, an application running on a tabletop system,

which allows users to develop simple workflows using their smartphones by
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combining a tangible and visual interaction. Its architecture and design

rationale stem from a two-phases evaluation carried out with the aim of studying

the effects of physical manipulation in IL domains on the development of CT

skills.

From the first phase of the study (involving second-year undergraduates

working in groups) it seems that TAPAS provides a positive user experience and

could be used in IL scenarios where learning is self-directed and driven by

people’s preferences and intentions during their daily activities; a potential side

effect caused by employing it to support learning might be a development of

CT skills, thanks to its design rationale, which will be discussed and further

evaluated in the next chapter.

However, from the findings, it also appears that coupling tangible interaction

with a PbI paradigm causes an incompatibility of interaction styles between

the composition and the execution environments, where the use of a different

tangible-based syntactic construct in the former causes the need for a different

interaction style to be used in the latter.

The second phase of the study was focused on its interaction modality

and involved a group of interaction design experts; the results show that the

system design presents positive elements to support collaboration in IL domains,

recognizing the potential of the exploited puzzle metaphor in allowing end-

users to develop simple workflows. They also suggested extending the platform

in order to cope with more complex data to be manipulated by users. However,

it was also pointed out that employing a Visual Language in a TUI system

doesn’t always provide users with a natural interaction experience, thus further

investigations are needed to determine the role of the scenario in the choice of

the right paradigm (i.e. PbI vs PbD).

In the next chapter, the main Research Question of this thesis will be laid down

in combination with gameplay activities and TAPAS will be employed to test the

related hypothesis.
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5Fostering Computational
Thinking Skills through
Gameplay

„You’ll never see a video game being advertised

as being easy. Children who do not like

school will tell you its not because its too

hard. It’s because it’s boring.

— Seymour Papert

The Children’s Machine, 1993

The previous chapter focused on using a Tangible User Interface (TUI) to

foster Computational Thinking (CT) skills in a specific application domain,

namely Informal Learning (IL) environments, where learning is mostly self-

directed and takes place as people go about their daily activities, driven by their

preferences and intentions. This chapter deals with exploiting a TUI to support

the development of CT skills in IL domains in combination with gameplay

activities.

5.1 Introduction
As briefly mentioned in the first chapter, enhancing support for cultivating

users’ CT skills — and more generally their usual learning experiences — can

be optimal when tools and activities are able to keep them in the so-called

“Flow state”: according to Csikszentmihalyi’s theory [NC14], it refers to a state of

intense concentration, sustained interest, and enjoyment of the challenge of an

activity, when skill level and challenge level of a task are at their highest, allowing

users to learn at intense focus. It is hard to obtain such balance, since too much

challenge causes anxiety, whereas too little challenge leads to boredom; one of

the most common and explored ways of keeping learners in such state is through

gameplay, that is by providing them with an engaging challenge and real-time

feedback in response to their choices.

Coupling such activities able to keep learners in the Flow state with physical

interaction might enhance even further learning of CT skills by leveraging on

a sustained engagement level, afforded social interactions, and a concrete

representation of the abstract concepts underpinning it.
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The Research Question derived from this context and addressed by this

chapter is then: “Can physical objects manipulation provide a playful and

engaging way of learning CT skills through gameplay?”.

The hypothesis is that through the design of an appropriate gameplay

involving TUIs and an engaging medium like Virtual Reality (VR), a high efficacy

in supporting CT skills can be achieved. Furthermore, using a digital shared

surface with tangibles might foster collaborative learning [Sub+07] and physical

interaction to further improve CT skills.

The hypothesis was tested by involving 18 UK secondary school Key Stage 4

(15 years old) female students in collaborative gaming sessions with a prototype

of a game called TAPASPlay. The young girls had no previous programming

experience and only a small group had some previous experience programming

with Scratch.

The chapter concludes with a set of observations and recommendations for

designing payful and engaging systems to teach CT skills to a wide audience.

5.2 Related Works
Digital games proved attractive and engaging for all groups of people and

therefore, Game-Based Learning (GBL) has been proposed as one pedagogical

framework for developing CT skills [Wei+16]. In order to help to acquire CT skills

two main approaches have been introduced in GBL: learning through designing

games and learning through gameplay.

5.2.1 Learning through Design
Learning through designing games has been studied for many years. In 1996

AgentSheets, designed by Alexander Repenning, was released, even though the

first prototype dates back to 1989 [Rep00]. AgentSheets is still used in multiple

contexts, from middle to high schools to academic environments, for various

purposes such as introducing to programming, supporting storytelling and

prototyping simple games. The tool takes its name from the fact that the user

develops the program on a grid resembling a spreadsheet, whose cells contain

agents. These entities, visualized as pictures, can perform multiple actions like

reading Web pages or playing sounds and animations. A graphical interface

allows creating “if-then” rules that represent agents’ behaviour. Drag-and-drop

interaction is supported, which revealed to be an interaction style suitable to

people without any programming background. It has been demonstrated that

AgentSheets favours CT skills like problem-solving, abstraction, and pattern

recognition [Koh+10]. Monteiro et al. [Mon+17] have recently studied how
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AgentSheets may improve algorithm design skills, thanks to the logic underlying

the creation of rules, as well as teach the automation concept.

Alice is another Visual Programming Environment (VPE), developed at the

Carnegie Mellon University starting from 1997 [Her10]. It focuses on creating 3D

programming projects and is actually an object-based programming language

that allows creating animations and interactive games by defining object

behaviour through a drag-and-drop interaction of specific blocks. Alice is a

valid tool for supporting storytelling while being exposed to basic programming

concepts, both of imperative and object-oriented programming paradigms,

without the burden of remembering syntactic constructs. Alice has been

successfully employed to assess CT skills in primary and middle school [WWL14;

Wer+12].

Similarly, Kodu is an integrated VPE which allows creating games structured

as 3D worlds comprising different types of objects able to react to some

events [FFM12]. Kodu is aimed at fostering familiarity with basic programming

notions, in an intuitive and playful way. It thus supports notions of

the imperative programming paradigms, such as sequentiality, conditional

instructions, variables and assignments; it also encompasses some concepts

of object-oriented programming, such as that of classes and objects, and

information hiding. Different studies have been performed to demonstrate the

capability of Kodu to improve CT skills such as problem-solving, abstraction,

problem decomposition and pattern recognition [FC11; Tou+13].

Perhaps the most influential and versatile tool for learning how to program

by designing games is Scratch [Res+09], developed at the MIT and publicly

released for the first time in 2005. It is a Visual Programming Language (VPL)

whose interaction is made simple thanks to draggable instructions represented

by blocks, fitting one another like puzzle pieces. The process of assembling

instructions is guided by the different shapes and colours of blocks, suggesting

which constraints must be satisfied. One of its biggest strengths is the large

and heterogeneous community of users that, combined with the possibility of

reusing and remixing other users’ code, permits to cooperate, share knowledge

and realize complex projects more easily. Scratch is widely considered a

successful tool to teach programming to K-12 students and foster CT skills [BR12;

Cet16; GPC15].

Robot programming has regarded itself as game-design learning; for instance,

in [AD16a] Lego Mindstorms [@18g] is used to improve CT skills of high school

students. In this approach, the learner first identifies the goal for the robot and

then defines an algorithm, that is, a set of steps to carry out, to accomplish the
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goal; then the robot can follow the instructions and act accordingly; the learner

may debug the program by observing and tuning robot’s behaviour.

Tangible Programming is yet another way to create interactive games by

mixing physical objects with a more traditional instruction-based approach.

For example, in Tern [HJ07] the goal of introducing children to computer

programming is pursued by using small wooden cubes with instructions on their

faces. The sequence of instructions results in a series of movements performed

by a small robot. In T-Maze [WZW11] the programming phase is conducted in

a very similar fashion, with a camera dedicated to reading the programming

sequence in real-time. Children from 5 to 9 can create their own maze maps

and complete escaping tasks, thus solving simple programming tasks.

5.2.2 Learning through Gameplay
Learning through gameplay is another approach to GBL for improving CT

skills. It might represent a valid alternative to learning through design, since, as

highlighted in [Lee+14], building a game from scratch could be too challenging

for novice programmers and thus frustrating for the majority of players.

Among them, [Kaz+12a] proposes Program Your Robot, a game prototype

developed to support children in practising the five skills that the authors

identified as fundamental for CT: problem-solving, algorithm design, debugging,

simulation and socializing. It is a puzzle-solving game in which the player

has to assist a simulated robot to reach a certain point on a grid. Players

thus design a solution algorithm that the robot will follow, by using symbolic

representations of “action commands” (to move the robot in an environment)

and “programming commands” (basic constructs such as sequence, selection,

iteration, and function). These commands are dragged from their toolbars to

specific areas of the environment. Players need to move the robot, activate lights

and collect items by proceeding towards different levels of the game. Rewards

are obtained in the form of new collectible items, slots or enemies to avoid as

the player advances through the game. Program Your Robot is conceived as a

serious game and thus differs from the software applications for game design

mentioned before, which can be deemed programming languages to all effects.

Indeed, tools like AgentSheets or Scratch were designed in order to teach the

basics of programming and to show how fun it can be. Instead, Kazimoglu

et al. [Kaz+12a] were moved by the goal of creating a game that could foster

CT skills. However, also in Program Your Robot the player is exposed to basic

programming constructs and thus the gameplay keeps on being strictly related

to a programming activity.
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CTArcade [Lee+14] is another serious game where players have to design a set

of rules that are executed by a character while playing Tic-Tac-Toe. Making these

rules explicit is considered an important process, because people often apply

them in a natural, perhaps unconscious way and normally there is neither the

chance nor the reason to transform this knowledge into abstract instructions.

Lee et al. [Lee+14] report a study, implementing a “think aloud” protocol, where

18 children have been observed playing on CTArcade and on paper; the study

shows that children articulate more CT skills (problem decomposition, pattern

recognition, pattern generalization and algorithmic thinking) using CTArcade

compared to playing on paper. However, the analysis was carried out on Tic-

Tac-Toe only, a widely popular and common game; therefore, CT was difficult to

externalize and observe.

Liu et al. [LCH11] investigate the use of TrainB&P to assist students in

developing computational problem-solving abilities. With this simulation game,

the students can construct a railway system and design the transportation

behaviours of trains on a railway by using several building blocks such as

straight, curved, and branch tracks. In particular, the system allows students to

program the transportation behaviours and simulate them in a 3D environment.

The results of the study, carried out with the participation of 117 students,

demonstrate how the gameplay enhances students’ motivation and brings them

in a flow state during the learning experience.

All the above systems use traditional interaction styles based on keyboard

and mouse; on the contrary, even though TAPASPlay shares with them the

objective of fostering CT skills through gameplay, it leverages on an interaction

style based on tangible objects and VR. Tangible interaction and VR have been

chosen to try and increase the playfulness of the system and create an engaging

and collaborative learning environment. Furthermore, as investigated in the

previous chapter, physical object manipulation might help users deal with

abstract concepts, as well as cultivate skills such as abstraction and problem

decomposition [WWL14]. In line with [Kaf16], TAPASPlay also aims to foster

collaborative learning, that is, it regards CT as a creative and social practice (the

“Connecting” Perspective defined in Brennan and Resnick’s Framework [BR12]).

Lastly, TAPASPlay fits within the realm of Constructionist Video Games [Wei+16],

namely computational environments in which players create personally mean-

ingful artefacts to overcome artificial conflicts or obstacles resulting in quantifi-

able outcomes. In the following, the design and implementation of TAPASPlay is

described in detail.
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5.3 TAPASPlay
TAPASPlay is a turn-taking game intended for end-users with little or no

experience in programming, designed to foster their CT abilities by leveraging

on physical interaction and keeping them engaged in a Flow state.

5.3.1 Design
TAPASPlay has been developed on top of the TAPAS (TAngible Programmable

Augmented Surface) system discussed in the previous chapter; it is a block-

based programming environment that allows end-users to build simple

workflows by assembling different services with the aim of fostering CT skills

in IL scenarios. The interaction with TAPAS is carried out using smartphones as

tangible objects and digital blocks projected over a tabletop surface.

As in TAPAS, interacting with TAPASPlay requires a tabletop surface, an RGB

camera and a smartphone. Smartphone movements on the display or surface

are tracked by the RGB camera, which locates the position of a fiducial marker

shown on the phone screen and uses it as reference point. TAPASPlay has been

implemented as a Web application that is projected on the tabletop surface and

is able to interact with players’ smartphones. A smartphone application provides

players with additional feedback and tools for completing the game. Finally, VR

technology is used to visualize the outcome of the game.

As mentioned earlier, TAPASPlay can be regarded as a constructionist video

game aimed at providing users with an educational and entertaining experience.

It aims at teaching CT skills through gameplay while fostering socialization and

thus collaborative learning.

To accomplish these goals, the game has been designed on the basis of the

following requirements:

1. The interaction with the game should be based on a puzzle metaphor

that proved to be an intuitive approach to find a solution to a given

problem (algorithmic thinking) [TMD17]. This means that TAPASPlay

has to communicate the existence of constraints and to support the

gameplay through puzzle pieces and their shapes, aiding users whilst

giving constraints in their selection process.

2. Puzzle pieces should be physically manipulated, in order to favor the

appropriation of abstract concepts through tangible interaction [WWL14].

3. The game must be played in player versus player modality, since

competition is one of the most important elements of serious games to

increase motivation and learning [COO15]. Moreover, each character
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might be programmed by a group of players, thus favoring socialization

and collaboration within the group.

4. The game must feature a storytelling suitable to a VR representation,

which can be visualized by wearing affordable goggles (e.g., Google

Cardboard [@18d]).

These requirements led to conceive gameplay around alchemy, that is the

(fictitious) process of transmuting metals: players compete to be the best

alchemist by forging three swords and three shields, made of three different

metals. In order to build each sword, players have a limited amount of energy

points they can spend on transmutations, which in turn make a sword earn force

points. Transmutations (also called transformations in the following) can be

combined together in different ways, allowing users to experiment and practice

problem abstraction and decomposition by following the puzzle constraints.

The objective is to maximise force points while carefully managing energy points

on each sword. Trying to earn force points while finding a tradeoff with energy

points is an NP-hard problem that can be solved with different strategies (e.g.,

greedy algorithm, backtracking), requiring algorithmic thinking in finding even

a sub-optimal solution.

In particular, the game is structured in three phases:

1. defining the offensive strategies, by means of forging swords;

2. defining the defensive strategies, by means of forging shields;

3. visualizing the representation of a battle in a VR headset.

5.3.2 Forging Swords
The first phase is aimed at fostering different CT skills, such as problem

decomposition, algorithmic thinking, abstraction, and iteration. During

the first phase, each player creates three offensive strategies by composing

three different swords. In order to accomplish that, players have to attach

transformations, represented as pieces of a puzzle, to a halo surrounding

the user’s smartphone on the main display. Each strategy is a sequence of

transformations taken from a randomly generated set shown at the beginning

of the game on the main display (figure 5.1).

Each half of the tabletop screen is available for a player to forge the swords.

The halo, with its three hilts, follows the movement of the dragged smartphone

and, when a collision with a puzzle piece is detected, such a piece is attached

to the vertically oriented hilt given that the move is allowed by the game rules.
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Fig. 5.1: Initial state of the game: the set of transformations is displayed, as well as the
main halo with three hilts and the final piece.

The three swords are defined one at a time, so that each can have a different set

of puzzle pieces available for the players, avoiding repetitions and increasing in

difficulty. For instance, in figure 5.2, players are creating their first swords.

Fig. 5.2: Forging swords through tangible and puzzle-like interaction.

A hilt attached to the main halo surrounding the players smartphone

represents the starting point of the sword (figure 5.3a), while the final piece has

a shape that resembles the tip (figure 5.3b).
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(a) An example of initial state of the
sword.

(b) An example of final piece.

Fig. 5.3: Examples of initial and final pieces of a sword.

Every puzzle piece has an input and an output shape. There are three shapes

in total, round, square and triangular, which in turn correspond to three types

of metal, namely bronze, iron, and steel. So, if a puzzle piece has a round

input shape and a triangular output shape as in figure 5.4a, it is equivalent to

a transformation that turns bronze into steel. Each sword is made of a different

type of metal, determined by the shape of the final puzzle piece. For example, in

figure 5.4b the shape of the final piece is triangular and thus a steel sword has

been forged.

The aim of this first phase is to maximize the force points of each sword,

which can be earned by attaching transformations to the sequence. However,

every transformation consumes a number of energy points. More precisely, a

transformation is a tuple of four values: (1) an input shape, (2) an output shape,

(3) a number of energy points, displayed on the transformation (left half in

figure 5.4a), and (4) the force points gained, displayed on the transformation

as well (right half in figure 5.4a).

In order to apply a transformation, two conditions need to be fulfilled: (1) the

input shape of the transformation is the same as the output shape of the last

transformation attached to the sword (or, if the transformation applied is the

first one, the input shape has to be the same as the output shape of the initial

state of the sword); and (2) the alchemist must have a number of energy points

greater or equal than the one shown on the transformation.

Once a transformation is applied (supported by a “magnetic effect” on the

puzzle piece provided by the system), the energy points of the alchemist are

decreased by the energy points of the transformation, while the force points

of the strategy can be increased, decreased or multiplied, depending on the

operation suggested by the transformation.

The initial state of each sword consists of an output shape attached to a hilt

on the halo, a number of force points, and a number of energy points. The final
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state (figure 5.4b) is reached when the player is satisfied with its sequence of

transformations and decides to — and can — attach the final piece to the sword.

(a) An example transformation. (b) A sword example.

Fig. 5.4: Forging a sword by composing transformations.

Players can see a feedback of their operation on their smartphone since

force and energy points presented on their screen are updated according to

the values displayed on the transformation. See for example figure 5.5a, where

the correspondence between swords and values displayed on the smartphone is

given by the cue balls matching the gems of the hilts showed on the halo.

Maximizing force points requires to decompose the problem of forging a

sword in smaller transformation problems (problem decomposition) and then

solve sub-problems by selecting transformations through a greedy technique

(i.e. selecting among the available pieces the one that gives more force points)

or backtracking (i.e. going back to a previous decision point when reaching an

invalid solution), thus fostering algorithmic thinking. During this activity, a

player could mentally combine two transformations and regard them as a new

piece with its own input and output shape, which can be used to forge the

sword; therefore, abstraction comes into play during solution creation. Finally,

the definition of each offensive strategy prompts the player to iterate the steps

of evaluation and selection of transformations until she is satisfied with the

solution and moves over to the next one. The overall activity is then repeated

three times, one for each sword, always with a game scenario (i.e. the available

puzzle pieces) of increased difficulty.

5.3.3 Forging Shields
The second phase is functional to the playability of the game and not

strictly related to fostering CT skills, even though it requires some analytical

abilities. In this phase, the players must define their defensive strategies, which

consist of allocating a number of defence points into three shields, each one

corresponding to a different metal. The choice should be based on a couple of
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(a) The energy and force points of the
swords.

(b) The defence points in the shields.

Fig. 5.5: The smartphone application

considerations: how the player guesses the opponent distributed force points on

the different swords and which transformations have been chosen to build her

own swords. For instance, if a player was not able to optimize the strategy for

the steel sword, then she might consider allocating most defence points into the

steel shield, in order to counterpoise her weak offensive strategy. To allocate

defence points into the shields, each player interacts with a simple interface

displayed on the smartphone (figure 5.5b).

5.3.4 Enjoying the battle in VR
The third phase of the game was designed to foster debugging capabilities,

one of the main CT skills highlighted in the literature. In the current version of

TAPASPlay, however, this feature is limited to the visualization of the battle in VR.

More precisely, when both the previous phases of the game are completed,

a simple Android application showing a VR video is made available from the

server. Both players must wear VR goggles to enjoy the content of the video. The

server provides each player with a different video on the basis of the scores it

has received from the Web application. For instance, if player 1, who used the

halo with blue hilts, reached the highest score, the video shows a knight wearing

a blue armour defeating the opponent dressed in red; otherwise, a video with

reversed roles is played. The VR video shows two knights armed with sword

and shield. In the beginning, a button with the “Start” label is visualized and a

pointer placed at the centre of the user’s sight suggests that gazing at it will allow

playing the animation (figure 5.6a). After having pressed the button, the two
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knights approach the centre of the scene and, when they are close enough, they

start duelling. They exchange a few hits for a little while, then the knight on the

left takes a few steps back, runs toward the opponent and launches the decisive

blow. The wounded knight falls on the ground and, while the winner cheers, a

text appears on the background, confirming which player won (figure 5.6b).

Supporting this VR visualization to inspect players’ solutions provides an

engaging way to visualise the outcome of the strategies and supports the

learning of debugging capabilities within the gameplay by providing a way of

tracking them.

(a) Beginning of a duel. (b) End of a duel: player 1 has won.

Fig. 5.6: Visualizing the battle in VR.

5.4 Evaluation
This section presents the goals, hypotheses, and description of the experiment

carried out to test TAPASPlay and address the Research Question stated in

the introduction of this chapter, following the guidelines of the American

Psychological Association [Woh+00].

5.4.1 Goals
The goal of the experiment is to evaluate whether TAPASPlay can be employed

to develop CT skills while providing a fun and enjoyable gameplay. The purpose

is to evaluate whether physical manipulation might foster CT skills through

gameplay in IL domains.

5.4.2 Research Questions
User participation in system development can be effectively achieved

by creating the conditions for their empowerment by supporting them

in appropriating those CT skills [Win06] necessary for understanding and

contributing to the system evolution.
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Gameplay offers an opportunity to teach high-level CT concepts indirectly in

an engaging way to an ever wider audience, keeping them in a continuous Flow

state.

In order to effectively teach CT skills, gameplay should foster playful

engagement and collaborative learning. TUIs exploit humans’ innate dexterity

for objects’ manipulation to aid understanding of abstract concepts — such as

the ones involved by coding and CT [TMD17]. Coupling them with gameplay

also improves the playfulness [Pri+03], relieving users from the mental burden

carried by more artificial interaction paradigms.

One of the other benefits of TUIs is their natural predisposition towards

collaboration, which is beneficial not only for learning in general but especially

for fostering CT skills [WWL14]. Moreover, it is also a distinctive trait of some of

the most engaging games.

The Research Question derived from this context and addressed by this

chapter is then: “Can physical objects manipulation provide a playful and

engaging way of learning CT skills through gameplay?”.

5.4.3 Experiment Design
An exploratory research design was used, comprising oral feedback,

observations, and a post-test survey.

5.4.4 Participants
The participants of the experiment were 18 UK secondary school female

students of Key Stage 4 (15 years old) coming from different schools in the

London area. None of them had a solid programming background, but a small

subset (3 of them) had a little experience in block-based programming with

Scratch. No prerequisite knowledge was required to perform the tasks, and none

of the participants had prior knowledge of neither TAPAS nor TAPASPlay. A brief

introduction to the system and the game was provided to the experiment group.

5.4.5 Settings and Experiment Tasks
The study was conducted within the Brunel University London facilities, in a

laboratory inside the Department of Computer Science, as depicted in figure 5.7.

Participants were presented with a prototype of TAPASPlay and tasked them

with playing a single-turn game, i.e. forging one sword each; the VR visualisation

and the defense strategy definition were purposively removed in order to focus

the evaluation just on the proposed interaction and the effects of a TUI-based

gameplay on CT skills in IL domains.

The developed game scenario (i.e. the available puzzle pieces at the beginning

of a game, as depicted in table 5.1) was meant to provide players with many
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Fig. 5.7: The study setting inside a university laboratory.

strategies and different difficulty levels. This way participants could implement

different strategies based on their skill level and progression throughout the

game.

Indeed, the puzzle shapes provide constraints and introduce conflict within

the game: a player needs to maximise the force points of her sword while using

the available puzzle pieces in an appropriate order. Moreover, each puzzle piece

has a cost, and the sum of the puzzle pieces’ cost that makes up a sword mustn’t

go over 100. The initial and final shapes were both triangular.

Tab. 5.1: The TAPASPlay scenario tested with participants.

Input Shape Output Shape Energy Cost Force Points

1:
∪ d

10 +8

2:
∪ ∧

10 −9

3:
∨ ∩

5 ×(−1)

4:
∨ ∧

20 ×3

5:
∨ d

15 +13

6:
⊔ d

5 +8

7:
⊔ ∩

15 −12

8:
⊔ ∧

10 +10

9:
⊔ d

10 +8
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5.4.6 Procedure
Participants were randomly clustered in 8 groups, 6 groups of 2 people each

and 2 groups of 3, and the study was conducted in four different sessions, one

for each individual game match played: one between the two teams of 3 people,

and the rest between the other teams, paired in a randomised fashion.

All interactions with the tabletop surface and oral feedback provided during

the game were recorded. At the end, a random participant from each group was

asked to fill in a short questionnaire about her experience. Responses were given

in terms of (Q1) enjoyment, (Q2) collaboration, and (Q3) interactivity, using a

Likert scale from 1 (strongly disagree) to 5 (strongly agree) — like well-known

similar questionnaires (e.g., SUS [Bro96]) — with a neutral midpoint (neither

agree nor disagree) in order to avoid directing the choices towards just negative

or positive sentiments. The questionnaire presented the following statements:

Q1 I enjoyed playing TAPASPlay.

Q2 I think TAPASPlay can be a fun game to play with friends.

Q3 I enjoyed playing TAPASPlay on a tabletop by moving a smartphone.

A 6 minutes average duration of each match was devised from an early internal

playtesting phase of the game scenario. Each experimental session was then

planned to last 15 minutes in total: 3 minutes for a brief explanation of how the

game works and its rules, 2 minutes of practice, 8 minutes for the actual match,

and 2 minutes to give feedback and fill in the questionnaire.

5.4.7 Summary
To recap, table 5.2 presents a summary of the specific CT dimensions as

defined in [BR12] examined in the evaluation, along with the related assessment

approach, as reported in chapter 2.

Moreover, this evaluation preliminarily investigated over the enjoyability

(questionnaire’s Q1), collaboration support (questionnaire’s Q2), and interactiv-

ity (questionnaire’s Q3) of the learning experience provided by TAPASPlay.

5.5 Results
The collected data were analysed by (1) performing a content analysis on

the feedback, (2) summarising the recorded game strategies employed by

participants, and (3) analysing the questionnaire results. The findings are

reported below.
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Tab. 5.2: Summary of the specific CT dimensions [BR12] considered by the evaluation
with the related assessment approach.

CT Dimension Description Assessment

Concept:
sequences

Expressing a particular activity or task
as a series of individual steps or instruc-
tions that can be executed by the com-
puter.

Project Analysis

Practice: being
incremental
and iterative

Changing the plan in response to
approaching a solution in small steps.

Artefact-Based
Interviews

Practice:
abstracting and

modularizing

Building something large by putting
together collections of smaller parts.

Design
Scenarios

5.5.1 Feedback
The overall response was positive, but participants needed some practice at

first to get going assembling swords. Indeed, all the groups managed to play and

successfully assembly a sword in the given time.

All groups were involved in playing the game, and all groups members were

trying to work out the right sequence of pieces to assemble the strongest sword

possible. All participants looked engaged in the discussion with their peers,

offering support and ideas to solve the problem: none of the participants was left

isolated from their groups, regardless of size. TAPASPlay fosters collaboration

and stimulates discussion by having users around a table interacting with

objects laying on it.

A pointer received during the experiment was related to the proposed

interaction modality. The TUI seemed easily grasped and manoeuvred by

participants, but the individual control point (i.e. the smartphone) and lack of

support for mixed interaction (e.g., multi-touch) were pointed out by someone

as the main hiccup to a better gameplay experience. Yet this promoted an

off-the-screen collaboration where group members interact with each other to

reach a decision, while in the end, one member took control of the smartphone

on the tabletop surface. It fostered group discussion and kept all team members

involved in the decision process, balancing the need of each member to

experiment with her own ideas and contribute to the overall discussion.

Another point that was made from some participants during the study was

related to the fall-back mechanism of TAPASPlay. A simple undo action,

triggered with a button on the smartphone interface, detaches the latest
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piece that was attached to the current halo and puts it back to its original

position on the board, redistributing the energy points consumed. Three

groups used the undo action, while the others preferred discussing the

strategies amongst themselves and act once they figured out the whole process,

without experimenting it first. Designing an improved fall-back mechanism

that properly represents the system status and capabilities across different

heterogeneous devices with a TUI is still an open question for Cross-Device

interaction research [Hou+17].

5.5.2 Strategies
A total of 10 complete strategies were produced by all the groups, as

summarised in table 5.3: on the left the strategies are reported as ordered

sequences of the puzzle pieces in table 5.1 with their corresponding numbers,

as they were assembled during the game; the number of groups that issued a

strategy is reported on the right when greater than 1. Six groups completed

a single strategy each and decided to end the game there, while the other

two groups — not playing in the same session — kept experimenting further

after completing one sword, and issued two complete strategies each: the first

successfully completed strategies (b) and (d), while the second (e) and (f).

Tab. 5.3: The strategies completed by participating groups. On the left, numbers
correspond to the puzzle pieces labelled in table 5.1, while on the right the number of
times (when greater than 1) the corresponding strategy was issued during the study is
reported.

(a) 5 → 8

(b) 5 → 6 → 8 (×2)

(c) 5 → 9 → 8 (×3)

(d) 5 → 6 → 9 → 8 (×2)

(e) 5 → 9 → 6 → 8

(f) 5 → 9 → 6 → 8 → 4

The average number of pieces used to complete a sword was 3.4, with a

standard deviation of 0.8. The majority of the strategies issued were naïve, in that

they were built through a greedy algorithm using just a small number of pieces

and without multiple trials (strategies (a), (b), and (c) in table 5.3), while the

other strategies were a bit more complex and sometimes required more effort —

i.e. backtracking, deferring completing a strategy directly and using more pieces

to gain more points — to be discovered.
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5.5.3 Survey
Lastly, the questionnaire was filled by a randomly chosen participant from

each group, whose results are reported in table 5.4.

Tab. 5.4: The survey results.

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

Q1 0 0 3 3 2

Q2 0 1 2 4 1

Q3 1 0 0 4 3

All three statements proposed (section 5.4.6) were rated positively by the

majority of respondents. The game interactivity (Q3) was the most positively

perceived with an average score of 4, 5 out of 8 participants judged the

enjoyment (Q1) more than neutral, with an average score of 3.875. The

collaboration aspect of TAPASPlay (Q2) seemed to have been appreciated by

most of the participants, with three exceptions, with an average score of 3.625.

5.6 Discussion and Post-Hoc Analysis
From the results of the study, the Research Question set out to be investigated

in the introduction can be addressed.

First, the experience provided by TAPASPlay was received positively from

participants: the feedback recorded during the game reports a positive reception

from users, which is also confirmed by the survey results (Q1). Devising an

engaging gameplay is fundamental in order to foster CT skills, having to remove

all the extra mental burden that comes from unnecessary game mechanics. TUIs

provide a natural way of interacting with the game, without any artificial means

of control, making the game easy to play and fun. TAPASPlay was also positively

received in terms of interactivity, as evidenced by the survey results (Q3).

What is even more remarkable is that such results were achieved within a

group of young girls, even though the game wasn’t designed with this specific

user group in mind: gender imbalance and under-representation have always

been major issues affecting the Silicon Valley and the whole tech community

in general, making it necessary to come up with new strategies to correct this

phenomenon [Tza+17; Bec+06; Huf02; CJ98]. Engaging young girls in Science,

Technology, Engineering and Mathematics (STEM) activities means empowering

them with the right tools to actively participate and take control of the issues

coming up in the future, allowing them to take on a more central role in the

science and technology sector.
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The survey results report how TAPASPlay provides an engaging gameplay (Q1)

using a TUI that makes it a highly interactive experience (survey’s Q3).

Collaboration is yet another aspect worth discussing in more detail:

TAPASPlay was designed from the ground up on top of TAPAS to support

collaboration in order to foster CT skills. Indeed, Kazimoglu et al. [Kaz+12a]

report that socialization is another CT skill fostered by learning through

gameplay. The feedback obtained from participants and the results of the

survey (Q2) confirm that TAPASPlay was well received as a collaborative

game, stimulating discussions amongst teammates and fostering a stimulating

learning environment. The gaming experience led users to socialize by

continuously sharing thoughts about their approaches during the game, thus

stimulating cooperative strategy development useful in co-design processes.

The lack of group members isolation is yet another benefit of the proposed

gameplay observed during the study: softening the “lone wolf” effect —

described as the preference to work alone and dislike of group processes —

can positively affect team performance and improve learning [BDG05]. Indeed,

one can seldom observe an even participation in learning groups, especially

big ones [MT15], thus smoothing group participation level is a favourable

consequence of balancing interaction style, groups activity and size. However,

this effect will have to be validated further in future studies with larger groups

size.

Moreover, strategies issued by participating groups can be analysed to discuss

how TAPASPlay fosters CT skills: interestingly, the strategies adopted by the

groups were quite different from each other, making use of a different amount

of puzzle pieces and of different algorithmic strategies (improving from a greedy

strategy to backtracking). This, depending on the developed scenario, can

provide the right conditions for supporting CT skills at different levels, allowing

players to assembly different strategies and reach for the hardest ones to build

as their skills progress (i.e. low floor, high ceiling [RBE16]).

Another result worth pointing out is what happened to the two groups that

issued more than one strategy (section 5.5.2). The first one assembled strategy

(e) in table 5.3, then (f); this progression is evidence of a divide-et-impera

approach, i.e. the result of decomposing a strategy into subproblems and

recursively solve them: once the problem has been solved with the first strategy,

the group recognised that the solution could be extended by adding an extra

piece, gaining more points.

Next, the second one assembled strategy (b) in table 5.3, then (d); perhaps

even more deeply than before, this progression is evidence of abstracting the

building of a sword and recognising that another piece can be added without
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changing the input and output of the whole strategy, thus completing it and

gaining more points.

The rationale behind the design of TAPASPlay also provides other pointers

towards fostering CT skills, stemming from its design. TAPASPlay detaches

composition from execution [TMD17] by offering two different interaction styles

and tools: puzzle-based interaction on a tabletop display and a smartphone

are used for composing the strategy (problem-solving); whilst VR to support

and make more exciting checking solution execution. This mechanism fosters

the design-debug-run stages, three key aspects of CT [Kaz+12a], or in other

terms, the process of problem formulation-solution expression-execution and

evaluation [RBE16].

Moreover, while automation is supported by VR, analysis, abstraction and

problem decomposition are types of reasoning that players are supposed

to apply when trying to maximize the force points, under the constraints

represented by shapes and limited energy points. As a matter of fact, the choice

of displaying all transformations together at the beginning of a game makes it

deliberately complex for the player to formulate a straightforward solution. On

the other hand, if the player is “lazy” and does not want to apply a methodic

decomposition process, but merely tries to satisfy the constraints (i.e. greedy

strategy), a solution would be reached, but chances are that it won’t be a good

one in terms of force points. Therefore, the player will try to “fix it” by analyzing

it and identifying the weakest subsequence of transformations. Hence, the

solution would be reformulated by replacing the poor part with a different

sequence of pieces (i.e. backtracking). This process might be repeated several

times, inducing the player to iteratively apply the model of CT process proposed

in [RBE16].

All these skills are indeed crucial for the end-users to play an active

role in the algorithmic solution proposed and discussed with technologists,

therefore enhancing the formers’ active participation to system development

and evolution, aiding them in understanding and selecting the right solution

while helping them modelling the problem.

5.7 Threats to Validity
There are several validity threats to the design of this study.

Internal Validity The limited number of participants allowed to properly

reason about different effects found during the study, but a more extended

experiment testing all the game phases with more users needs to be designed

in order to properly validate the effects over isolation of team members, which
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cannot be definitive yet. The experimenter effect is concerned with any biasing

effects in a study that is due to the actions of the researcher. The researcher

attempted to carry out the study as objectively and as accurately as possible,

acting as an observer limited to recording feedback, but the survery responses

might be affected. The subject effect could have determined changes in the

participants’ behaviour due to being in the study and under observation; in this

case, the study was carried out within a traditional learning environment during

a series of workshops with similar game activities.

External Validity The sample was a group of only female students coming

from different schools of the London area, which was a proper starting point

to validate engagement in an under-represented group within the tech industry,

but in extending this work TAPASPlay should be tested with a more diverse and

international user group to investigate different effects. The lack of a mixed

modality which fosters on-screen collaboration and support for an advanced

fall-back mechanism limited in-game experimentation and prevented certain

uses which might have affected the observed results.

Construct Validity Due to experiment time limitations, the post-test ques-

tionnaire was filled by a random member of each group and was limited to

three questions designed to measure different aspects of the experience. This,

together with the limited number of respondents, might have affected the

results, even though the survey results weren’t used alone, but rather cross-

referenced them with the in-game oral feedback from participants.

5.8 Contributions
Parts of the work and results described in this chapter have been previously

published in the following:

• The Design of TAPASPlay described in section 5.3 has been published

in [Mal+17b; Mal+17a; Fog+17].

• The Evaluation of TAPASPlay reported in section 5.4 and its Design in

section 5.3 have been published in [TFM19].

5.9 Conclusion
The growing interest in CT is witnessed by very recent literature [Yad+17],

which describes how CT is becoming more and more important in student and

teacher education. In this chapter, CT skills are shown to be fundamental to

allow end-users to collaborate to system design and evolution at use time. For

this reason, contrarily to other block-based approaches, in TAPASPlay blocks
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do not represent programming statements (like for example, the “if-then” block

in Scratch) but remain at a higher level of abstraction, to promote problem

decomposition abilities rather than programming ones.

Like TAPAS, TAPASPlay considers TUIs and physical object manipulation

fundamental tools to make user activities more engaging. Indeed, it has been

demonstrated that tangible programming has the potential to help children

cultivate skills such as abstraction and problem decomposition [WWL14].

In this chapter the design rationale behind TAPASPlay was presented, a turn-

taking serious game using gameplay to foster CT skills by making learners

experience engaging and social. In particular, it contributes to the research

trend that explores learning through gameplay [Kaz+12a] — instead of learning

through designing systems — in fostering CT skills. The prototype was employed

in a study with a group of secondary school girls that investigated the effects

of physical objects manipulation on learning CT skills through gameplay. The

results showed some evidence that TAPASPlay offers an engaging and playful

environment to develop CT skills.

TAPASPlay is, however, a first attempt at fostering CT skills of end-users

through gameplay. Further experiments testing all three game phases with

different user groups and game scenarios will be carried out to demonstrate

the validity and robustness of the idea. Furthermore, several extensions of

TAPASPlay have been already planned, in order to tailor the system to end-

users’ characteristics and introduce different levels of complexity in the game.

At the moment, only a VR simulation of the battle is available as an outcome

of the game; however, the system could be extended adding a more interactive

functionality that better resembles the debugging activity, in which players can

compare step-by-step how they built their swords and eventually see what was

the optimal solution.

The next chapter concludes the thesis by summarising the results in light of

the original Research Question to be addressed, recaps the contributions and

implications, and discusses possible future research directions.
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6Conclusion

„Science is a way of thinking much more than

it is a body of knowledge.

— Carl Sagan

Science Friday interview, 1996

This chapter concludes the thesis by discussing the results of all the studies

carried out in relation to each investigated Research Question and in light of the

main one set out to be addressed in the introduction. The research contributions

and implications are laid out, highlighting also its current limitations. Finally,

possible future research directions are summarised.

6.1 Summary
Thanks to the amount of software driving our whole lives, coding and Compu-

tational Literacy (CL) have become essential skills for an ever wider audience.

Nonetheless, the highly abstract concepts involved by them still constitute

a huge barrier to a widespread appropriation of technology for the general

public. Yet, these skills are not just related to programming itself, but they

contribute to developing the so-called Computational Thinking, namely all

those thinking abilities reflecting core concepts and practices of Computer Sci-

ence (CS). This set of skills can enable people to actively participate and address

today’s challenges with the help of modern technological tools, solving complex

problems and express their solutions using a computer.

This thesis set out to investigate the effects of physical manipulation

on the development of Computational Thinking (CT) skills: according to

the constructivist theories of Jean Piaget [PI69], exploiting human’s innate

dexterity for objects manipulation in the physical world and its afforded social

interactions could be an effective way of aiding users in practising abstract

concepts as CT. Physical manipulation sits at the core of Tangible User Inter-

faces (TUIs), a digital interaction paradigm designed with the aim of providing

users with an easy to use interface that can benefit inexperienced people.

Such a paradigm, often used to support the interaction of young children

with technology in the classroom, could be employed to promote CT skills by

providing users with a physical representation of the concepts involved [McN04;

Hor+09], acting as a scaffold between the real world and digital [WWL14].
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Chapter 3 presented an overview of existing tools based on Visual Pro-

gramming Languages (VPLs) currently used in programming sessions around

the world to introduce CT to the most diverse audiences. An investigation

was carried out to verify to what extent — if at all — such tools support

the collaborative learning of CT skills, specifically of two computational

Concepts [BR12], sequences and loops. The reported quantitative study

compared collaboratively working learners with individual working ones for

the purpose of evaluating CT skills development in the context of using a VPL-

based technological tool in a real-world introductory programming session.

Unfortunately, the results of the study didn’t show any significance, but

the lessons learned in designing and carrying out the study were used in

the following experiments to design better tools that support CT skills in

collaborative environments.

Chapter 4 addressed the main thesis investigation over the effects of physical

manipulation on the development of CT skills in a specific set of educational

domains, namely Informal Learning (IL) ones, where learning is mostly self-

directed and takes place as people go about their daily activities, driven by

their preferences and intentions. A preliminary design of TAPAS (TAngible Pro-

grammable Augmented Surface) was presented, a software platform combining

its digital and physical features to promote CT skills in different IL domains.

TAPAS’ design stems from a workshop with expert designers used to collect

insightful ideas and design challenges related to its development. TAPAS was then

used to investigate the effects of physical manipulation on the development

of such skills through a two-phase qualitative study carried out both with

undergraduates working in groups and expert designers. The results showed

that TAPAS provides a positive user experience and could be used effectively in

IL scenarios; a potential side effect caused by employing it to support learning

might be a development of those CT skills associated with the computational

Concept of sequences, and the practice of abstracting and modularizing [BR12]

thanks to its design rationale, but more studies are needed in order to investigate

this effect further.

Finally, Chapter 5 took an extra step towards addressing the main thesis

Research Question and presented an investigation on the effects of physical

manipulation on the development of CT skills through gameplay activities,

a common scenario often used in introductory programming courses. An

extension of TAPAS, called TAPASPlay, was presented to address it, which

consists of a turn-taking serious game using gameplay to foster CT skills by

making learners experience engaging and social. The developed prototype

was employed in a study with a group of secondary school girls, whose results
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showed some evidence that TAPASPlay might offer an engaging and playful

environment to develop CT skills, specifically in relation to the computational

Concept of sequences, and the Practices of being incremental and iterative, and

abstracting and modularizing [BR12].

6.2 Research Contributions
The main research contributions of this work concern the use of TAPAS

as a repurposable tool to study the effects of physical manipulation on the

development of CT. It was designed following the results of a workshop with

experts that shaped it to be repurposed to different IL scenarios. TAPAS was

then evaluated in a sample scenario and showed promising results in terms of

provided user experience; it was then repurposed (as TAPASPlay) to a different

IL scenario through gameplay, showing promising results in relation to CT skills

development and user engagement.

The feasibility of repurposing TAPAS to different IL domains have been

shown, allowing it to be used in many other scenarios to support learning

sequences and abstracting and modularizing. TAPASPlay demonstrated that

supporting CT with gameplay and physical manipulation can prompt for a

sustained user engagement while offering new ways of assisting skill progression

amongst learners, with respect to computational practices like abstracting and

modularizing and being incremental and iterative.

Moreover, the results of the study reported in Chapter 3 highlighted the need

for developing new CT tools supporting learning sequences and loops that better

leverage on collaboration amongst peers to enhance learning.

Finally, some of the main challenges faced by supporting CT skills with

physical objects manipulation in IL domains were highlighted, based on insights

from a two-phase study carried out with end-users and interaction designers.

To recap, the main Research Question addressed by this thesis was: “Can

the collaborative and cognitive naturalness of physical objects manipulation at

the basis of Tangible User Interfaces aid the understanding of core algorithmic

principles and thus improve end-users’ Computational Thinking skills?”.

The following Key Research Questions were formulated and addressed

throughout the thesis in order to support and investigate the main Research

Question in detail:

• “Do existing VPL-based tools support the collaborative learning of CT skills?”

From the results of the study carried out in Chapter 3, a definite answer

cannot be yet provided, but further studies are needed to show that

existing tools are leveraging on collaborative learning.
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• “Can physical objects manipulation help foster Computational Thinking

skills in Informal Learning domains?” The results of the two-phases study

carried out in Chapter 4 are promising, suggesting that TUIs can provide

support for developing CT skills in such domains.

• “Can physical objects manipulation provide a playful and engaging way of

learning CT skills through gameplay?” The results of the study reported

in Chapter 5 suggest that combining a TUI with gameplay can develop CT

skills and support the collaborative learning.

Ultimately, further studies are needed to fully address the main Research

Question, but from the preliminary studies carried out and reported in

this thesis, one can argue that physical manipulation provides support for

developing CT skills and might represent the natural evolution of existing tools

currently used in educational environments. Future studies should cover more

dimensions of CT as defined by Brennan and Resnick [BR12], with particular

reference to CT Perspectives, which are usually hard to capture. Different

Design Scenarios should be developed, with a more extensive set of instructions

that can be issues by users in order to provide more breadth to the available

measures.

6.3 Research Limitations
The research reported in this thesis has some limitations that highlight the

need for further future research.

Scenarios The two main studies directly investigating the main thesis

Research Question in Chapters 4 and 5 were carried out in Brunel Facilities

with students from either the University itself or the surrounding High Schools.

Replication studies are needed in order to generalise their findings to students

from other areas and — since supporting CT in IL domains relates to a very

heterogeneous audience — to other age groups. Familiarity with technology

should be another confounding variable worth considering in these cases.

Perspectives The TAPAS platform was tested only from a user perspective,

analysing its effects on supporting CT skills. On the other hand, its architecture,

as discussed in Section 4.6.1, is meant to allow its repurposing to different

scenarios; indeed, TAPAS was repurposed to a different IL domain in combination

with gameplay activities and rebranded as TAPASPlay in Chapter 5. This process

was carried out by its original author, thus the ease of such activity needs to be

properly evaluated by analysing it from a developer perspective. For this reason,

TAPAS’ source code is going to be published with an open source license, allowing

other developers to repurpose it do different domains.
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Sample Sizes Most of the studies carried out and reported in this thesis

involved small groups of participants, typically less than 20. Such small groups

of students were appropriate for those preliminary qualitative studies, but bigger

and longitudinal ones are needed to reveal the real effects of using the proposed

systems and investigate initial claims.

Significance The study in Chapter 3 was carried out to evaluate CT skills

development in the context of using a VPL-based tool for collaboratively working

learners; even though the sample size was quite substantial (88 students),

the results failed to show statistical significance, which prompts for further

investigations over this matter.

Assessment As pointed out a number of times throughout the thesis, the

research community still lacks an accepted definition of CT and, thus, a

unified way of measuring it. In carrying out the studies reported, different

(mostly qualitative) measures have been employed to attempt to capture effects

correlated with the development of such skills, but if new methods and tools

need to be designed to better support learners, researchers must keep on

investigating this matter and devise an appropriate framework that can be used,

highlighting the pros and cons of existing ones.

6.4 Fostering Computational Thinking
Skills

In this thesis, a range of tools and methods supporting CT skills have been

proposed. Many useful pointers have been raised throughout this work, which

are collected and summarised in the following.

Collaboration — as suggested by Piaget’s constructivist theory of learn-

ing [PI69] — provides a promising way of fostering CT skills in different scenarios,

but seems slightly overlooked by current research in this field.

TUIs present an engaging way of fostering CT skills by supporting users in

practising abstract concepts by leveraging on physical objects manipulation and

encourage collaboration amongst users, which in turns support their learning

activities.

Gameplay could be used to engage young girls in Science, Technology, En-

gineering and Mathematics (STEM) activities, empowering them with the right

tools to actively participate and take control of the issues coming up in the future,

whilst allowing them to take on a more central role in the science and technology

sector.
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6.5 Future Work
Support more tangibles By taking full advantage of the Tangible User In-

terface Repurposable Objects (TUIReOs) protocol discussed in Section 4.6.1,

TAPAS deployments can support a wide range of tangible objects, which might

expose their specific function and provide digital features based on their shape,

exploiting their physical affordance.

Reduce setup requirements The setup required to run TAPAS is quite complex

and requires specific hardware that needs to be mounted in dedicated spaces.

Further work should optimize its digital footprint and requirements, in order to

ease the needed setup and enable its ubiquitous deployments.
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