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A B S T R A C T  

 
 

Corresponding sequence algorithms are defined and 

shown to exist for a wide range of corresponding 

continued fractions.   Particular examples of these 

algorithms are given, including an algorithm for 

forming Pade approximants, and an error analysis 

is given in one case. 



 
1. 

1. C o n t i n u e d  F r a c t i o n s

1 . 1    C o r r e s p o n d i n g  F r a c t i o n s  

We denote a continued fraction by 
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w h e r e  u n   a n d  v n   a r e  n u mb e r s ,  r e a l  o r  c o mpl e x .  I n  t h i s  w o r k  

w e  s h a l l  c o n s i d e r  u n    a n d  v n    t o  b e  p o l y n o mi a l s  i n  t h e  

c o mpl e x  v a r i a b l e   z .    T h e  n t h  c o n v e r g e n t  o f   ( 1 . 1 )  i s  
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w h e r e   U n  a n d  V n  b o t h  s a t i s f y  t h e  r e c u r r e n c e  f o r mu l a  

W n = u n  W n - 2  +  v n  W n - 1                                                              ( 1 . 3 )  

w i t h  i n i t i a l  v a l u e s  U 0 =  0 , U 1  = u 1  a n d  V 0  =  1 ,   V 1  =  v 1 .  

C l e a r l y ,  U n ( z )  a n d  V n  ( z ) a r e  a l s o  p o l y n o mi a l s  s o  t h a t ( 1 . 2 )  

i s  a  r a t i o n a l  a p p r o x i ma t i o n   t o   ( 1 . 1 ) .  

We  c o n s i d e r  t h e  f u n c t i o n  f 0 ( z ) f o r ma l l y  d e f i n e d  b y  

t h e  p o w e r   s e r i e s   e x p a n s i o n  

f 0  ( z )  =  a 0   +  a 1  z  +  a 2  z 2 + . . . .  ,                       ( 1 . 4 )  

c o n v e r g e n t  f o r  | z |  <  R .  

T h e  c o n t i n u e d  f r a c t i o n  ( 1 . 1 )  i s  s a i d  t o  c o r r e s p o n d  

t o  t h e   p o w e r   s e r i e s  ( 1 . 4 )   i f  

,)σ(n)0(s
(z)nV
(z)nU(z)0f =−             ( 1 . 5 )  
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fo r   | z |  <  R ,  whe r e  σ ( n )  >  n  f o r   n =  1 , 2 , 3 , .  .  .  . . . . . .  

T h i s  i s  a  s l i g h t  g e n e r a l i s a t i o n  o f  t h e  u s u a l  d e f i n i t i o n  

f o r  c o r r e s p o n d i n g  f r a c t i o n s .  U n d e r  t h i s  d e f i n i t i o n ,  g i v e n  

σ ( n )  f o r  a l l    n ,    t h e r e  ma y  b e  ma n y  d i f f e r e n t  c o n t i n u e d  

f r a c t i o n s  w h i c h  c o r r e s p o n d  t o  t h e  s a me  p o w e r  s e r i e s  b u t  i n  

t h e  r e ma i n d e r  o f  t h i s  w o r k  w e  s h a l l  u s e  t h e  n o t a t i o n  f o  ( z )  

t o  r e f e r   t o   t h e   p o w e r   s e r i e s   ( 1 . 4 )   o r  t o   a n y  o f   i t s  

c o r r e s p o n d i n g  f r a c t i o n s .  

We   n o w  e s t a b l i s h  a   f o r m o f   c o n t i n u e d  f r a c t i o n  w h i c h  

s a t i s f i e s    t h e   d e f i n i t i o n   ( 1 . 5 ) .     M o s t   o f  t h e  w i d e l y  s t u d i e d  

c o r r e s p o n d i n g   f r a c t i o n s   a r e   p a r t i c u l a r  f o r ms  o f   t h e   f r a c t i o n  
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              ( 1 . 6 )  

w h e r e  { v ( n ) }  i s  a  s e q u e n c e  o f  p o s i t i v e  i n t e g e r s  a n d  

P n  ( z ) ,  q n  ( z )  a r e  p o l y n o mi a l s  s u c h  t h a t  p n  (0 )   ≠0 ,  q n  ( o )  ≠0  

a n d  P n  ( z ) ,  q n  ( z )  a r e  b o t h  o f  d e g r e e  v ( n ) - 1   a t   mos t .  Wi t h o u t  

l o s s  o f  g e n e r a l i t y ,  w e  n o r ma l i s e  ( 1 . 6 )  b y  s e t t i n g  q n  ( 0 )  =  1  

f o r   a l l   n .  We  a l s o  i mp o s e  t h e  f o l l o w i n g  r e s t r i c t i o n s :  

( i )  T h e  s u m o f  t h e  n u mb e r s  o f  n o n - z e r o  c o e f f i c i e n t s  

i n  P n  ( z )  a n d  q n  ( z )  s h a l l  h e  v ( n ) .  

( i i )  I f  t h e  p o l y n o mi a l   r n  ( z )  =  p n ( z )  +  q n ( z )  h a s  d e g r e e  

μ ( n )  ≤  v ( n ) - 1   t h e n  a l l  t h e  μ ( n )  +  1  c o e f f i c i e n t s  

o f  r n   ( z )  s h a l l  b e  n o n - z e r o .  

I f  P n ( z ) / Q n  ( z )  i s  t h e  n t h  c o n v e r g e n t  o f  ( 1 . 6 )  t h e n  w e  mus t  
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prove that 

)σ(n)0(z
(z)nQ
(z)np

(z)0f =−            (1.7)

where 
 

∑
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(i).σ(n) v                             (1.8) 

Now,   (1.7)  may be written 

(z)n(n)sz(z)np(z)0(z)fnQ σ=−             (1.9) 

w h e r e  S n   ( z )  i s  s o me  p o w e r  s e r i e s  o f  t h e   f o r m ( 1 .  4 ) .    T h e  

i d e n t i t y  ( 1 . 9 )   ma y  b e  p r o v e d  b y  i n d u c t i o n .   We  f i r s t  a s s u me  

t h a t  ( 1 . 9 )  h o l d s  f o r  b o t h  n  -  1    a n d  n ,   a n d  u s i n g  ( 1 . 3 )   w e  h a v e  

).nP0fn(Q1nq)1nP0f1n(Q1nP(n)vz1nP0f1nQ −++−−−+=+−+  

By our hypothesis we have 

.nsσ(n)z1nq1ns1)σ(nz1nP(n)vz1np0f1nQ ++−
−

+=+−+  

 

Using (1.8)   this gives 

 ).ns1n(sσ(n)z1nr1nPf1nQ 0 +−+=+−+                                                                   (1.10) 

Since,   by   restriction   (ii) ,     none  of  the  coefficients  of 

rn  +  1  (z)  are  missing  it   can be  shown  that  we  may  choose  the 

v(n+l)  non-zero  coefficients  of  pn + 1(z)  and  qn + 1(z)  such 

that  the  first   v(n+l)  terms  of.  r  n  +  1  (sn  +  1   + Sn )  vanish. 

We  can then  write  (1.10) in  the  form 

1ns1)σ(nz1npf1nQ 0 +
+=+−+
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so  that   (1.9)  holds  for  n+1   provided  that  i t   holds   for 

n-1   and  n.     If   we  choose  σ(0)  =0  then  the  result   holds 

trivially  for  n = 0 so  that  to  complete  the  proof we  need 

only  verify  (1.9)  for  n=1.     In  this  case  we  have 

Q1 f0 -  P1  ≡  q1 f0  -  P1.  

Once again restrictions (i)   and (ii)  are clearly sufficient 

to ensure that we can choose the v(l) coefficients of 

p1 (z) and q1  (Z) so  that the first   v(l)  terms vanish.  Thus we 

have proved that the successive convergents of the continued 

fraction (1.6)  correspond to σ(l) ,   σ(2),  σ(3) .  .  .  .     terms 

of the power series  (1. 4).  

1.2      The Corresponding Sequence 

We consider a function fo  (z) formally defined by 

the power series  (1.4).     We state without proof that if  a 

corresponding fraction (1.1) exists then it  may be represented 

by the  set of recurrence relations 
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(z)1n(z)fnv(z)2n(z)fnu(z)nf

(z)2(z)f3v(z)1(z)f3u(z)3f
(z)1(z)f2v(z)0(z)f2u(z)2f

(z)0(z)f1v(z)1u(z)1f

              (1.11) 

where  the  sequence   [f n  (z)]  is   a  sequence   of   functions  which, 

l ike   f  0  (z),    may  be   represented   either   as  series  or  as 

corresponding   fractions.    We   shall   refer   to   [f  n  (z)]  as  the 
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corresponding sequence associated    with  the continued 

fraction (1.1) and we will use the series representations 

of the corresponding sequence to form algorithms to compute 

the coefficients of the continued fraction (1.6). 

The basic similarity transformation of continued 

fractions is defined by 
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nunk1nk
...
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(z)0f +−++++=                                  (1.12) 

where k1,  k2,  k3,   . . . .     are arbitrary non-zero numbers. 

Although the value of the continued fraction does not change 

under this transformation the corresponding sequence is 

altered.    The transformation is equivalent to  multiplying the 

nth  equation of  the  set  (1.11) by K n  ,   where  and ∏
=

=
n

1r
,rknk

forming  the  new corresponding sequence  {Fn} ,   where 
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                                                            (1.13) 

Under  this  transformation  the nth  equation  of  (1 .  11)  becomes 

Fn (z) = k n  {k n  -  1   u n  (z) F n  -  2  (z)  -  v n  (z) Fn  -  1   (z)}              (1.14) 

We  shall   use  this  transformation to  modify  some  of  the 

algorithms we  shall  develop  in Section 2. 



2.      The  Corresponding  Sequence  Algorithms 

2.1        The  General  Algorithm. 

We  first  apply result   (1.14)  to the  continued 

fraction  (1.6)  to obtain 

6. 

 
F n ( z ) = k n { k n - 1 z v ( n - 1 ) p n ( z ) F n - 2 ( z ) - q n ( z) F n - 1 ( z ) } (2.1) 

   for  n =   1,2,3,   . . . .   where   ko =   v(0)  = F- 1 ( z ) =  1.  If   we 

write 

....)rz  (n)
rb.....2z(n)

2bz(n)
1b(n)

0(b(n)z(z)nF +++++= σ                                                     (2.2) 

then  we  can  equate  coefficients  of  powers  of  z  in  (2.1)  and, 

in  general ,  obtain 

.}1)(n
r)b1(Enq2)-(n

r)b1(Enp1n{k(n)vEnk(n)
rb −−−−

−=                                                (2.3) 

The  shift  operator  E is  defined by 

              
(n)

mrb(n)
rbmE +=                                                                                             (2.4) 

and  we  choose   0)1(
rband,1)1(

rb,0rfor0(n)
rb =−=−<=  for

r ≠0.  The  expression  (2.3)  then holds  for n =  1,2,3,. . . .   and 

r = -v(n),-v(n)+1 , . . . .-2,  -1,0,1,2,3,. . . .   and we  note  that,  in 

particular  ra(0)
rb =  for     r   =  0,1,2,3.. . . . .  The  equation  (2.3) 

summarises  an algorithm for obtaining the  coefficients  of 

the  continued fraction  (1.6) from the sequence  {ar},    We  call  

this algorithm  the corresponding  sequence  algorithm,  or CS 
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algorithm, for the  continued fraction (1.6).  

Although not generally true, the equations summarised 

by (2.3)  often form a triangular system so  that  the problem 

of solution is  simple.    The class of continued fractions for 

which this  is  true includes most of the widely studied 

corresponding fractions.  Many of these fractions are such that 

p n  (z)  is a  constant,  λn    say,  for  all   n.     In this case we  also 

define  the modified CS algorithm in which we choose 

1
1nλnk −
+=                                                                           (2.5) 

for  n=  1,2,3,  . . . .   and  we  adjust our  series such  that 

a0   = .λ1   =  1.    The modified CS algorithm may then be  summarized  

by 

{ }1)(n
r)b1(Enq2)(n

rb
(n)vEnk(n)

rb −−−−=                                                  (2.6) 

 

We   also  note   that  we  need  not  store  the values { }(n)
0b  as they 

are   all   unity. 

The   essential  difference  between  the   alternative 

algorithms  is  that  the  sequence  {kn}  is  arbitrarily chosen 

in  the  ordinary  algorithm   (2.3) but is computed in the 

modified algorithm  (2.6).     However,  the  modified algorithm 

is  usually  simpler for  computational  purposes.  In  the   remaining 

sections  we  discuss  particular  examples  of  CS  algorithms. 
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2.2 S-Fractions  and  Padé  Approximants 

The  continued fraction 

.....1
znc

....1

z2c

1

z1c

1
0c

(z)0f
+++++

=                                          (2.7) 

is  called an S-fraction  if the sequence {cn} is chosen such 

that the fraction corresponds, term for  term, with the power 

series  (1.4).     Such  a fraction  exists  provided  that  the 

Hankel determinants 

 

12n....a2na1na

2n...a3a2a 
1n....a2a1a 

12nHand, 
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are  non-zero for  n= 0,1,2,3,   . . . . .    We  shall   assume  this 

condition  is  satisfied  and  to  simplify  the  computation we  adjust 

our  series  so  that  a0  =c0  =1. 

Choosing  k n   = 1    for  all   n and  applying result   (2.3)  to  the 
continued  fraction  (2.7)  we  obtain the  CS  algorithm 

1)(n
1rb2)(n

1rb1nc(n)
rb −

+−−
+−=                                                                    (2.9) 

for  all   r ,  n  or,   written  in full ,  
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....2,3,4n.,0,1,2,3,..r1)(n
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1rb1nc(n)
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.....,1,2,3,n,1)(n
0b

(n)
0b

nc

....,0,1,2,3,r,1ra(1)
rb

10c
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Also,   from  (2.6)  we   obtain   the  modified  CS  algorithm 
by  choosing k  so that 1−= ncn

{ }1)(n
1rb2)(n

1rbnk(n)
rb −

+−−
+=                                                                     (2.10) 

 

for   all   r ,  n.       We   note  that  the  values 
 
{ }(n)

rb
  

are  not 

the  same  in each  algorithm.    In  computational  form the 

modified  algorithm is  
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,1a1c1,0c 

 

As  an example we  perform each  algorithm  on  the  power 

series 
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algorithmCSordinary
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algorithmCSModified
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Each algorithm indicates the S-fraction expansion 
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The  modified  algorithm  (2. 10)  commends  itself  for 

hand  calculation as  i t   is  simple  to  use  and    easy  to 

remember.    Also,    the    coefficients  { }(n)
rb   in  the  ordinary 

algorithm  (2.9)  become  small  very  quickly  and  are  more 

inconvenient  to  use  than  those  of  (2.10). 

We  now  consider  the  effect  of rounding errors  in  the 

series  coefficients  [an |   on  the  continued  fraction coefficients 

{cn  }.      As  the  effect  of  any  particular  choice  of - the 

constants   {kn}  is  ultimately  cancelled  out,   the  build-up  of 

rounding  errors    in  the  continued  fraction  coefficients  is 

independent  of  these    constants.      Consequently  the  modified 

algorithm  is  equivalent  to  the  ordinary  algorithm  in  this 

respect,   so  we  perform  a  numerical  error  analysis  on  the 

modified  algorithm  only. 

We   consider  rounding  errors (n)
rbin  (n)

r∈ and nη  inn    in  

cn    and, by substitution in (2.10), we get 

{ } { }
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so that,  for small errors,  
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r
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In computational form this   is 
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We now perform two error analyses for the example e- z  

already given .      First, we  suppose an error e  in each an . 

 

5η4η3η2η1η
2222

0

233
2
57

7
6
3(0)

1

10
147

6
17

6
5(0)

2

60
259

24
25(0)

3

120
119(0)

4

(0)
5

40971115
−∈−∈∈∈

∈∈∈−−
∈

∈

∈∈−−
∈

∈

∈−∈−
∈

∈

∈−∈∈

∈∈

∈

12. 



13. 

Now,  we  suppose  an  error  (-1) n  є in  each  an   
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Given  a  maximum rounding  error  |  є   | ,   these  examples  may 

be  used  to  estimate  the  number  of  terms    for    which the 

continued fraction expansion may be  computed with  a desired 

degree  of accuracy.     Clearly, if  implemented on a computer 

the  algorithm will  accurately  evaluate  more  continued 

fraction coefficients  if   higher  precision working  is  used. 

We  now define  the  [M /  N]  Padé  approximant  to  the 

series  (1.4)  to be  AM  (z) /  BN  (z)  where  AM  (z),   BN  (z)  are 

polynomials  of  degree  M,N respectively  such  that 

BN  (z) fo(z)    -     A M  (z)    =   0(zM  +  N  +  1) .  (2.12) 
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The sequence of Padé  approximants 

  [L-1/0]      [L/O] 

[ L / 1 ]    [  L + 1 /  1 ]  

[ L+ 1/ 2]      [ L+  2/ 2]  . . . . . . . . . 
                                      . . . . . . . . . . . . 

         is  given by  the  successive  convergents  of  the  corresponding 

fraction 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++
+−

−++++= ....
1

z(L)
2c

1

(L)
1c

1
1LzLa1Lz1La.....2z2az1a0a(z)0f    

                                                                                                                                         (2.13) 

and the sequence 

[ O/ L-1] 

[0/L] [1/ L] 

[ 1 /  L + 1 ]      [2/ L + 1] 

[ 2/L + 2] . . . . . . . . 

                                               .. . . . . . . . . .  

is   given  by   the   successive  convergents   of   the   corresponding 

fraction 

).( 142
1

z(L)
2g

1

z(L)
1g

1
1LzLd1Lz1L....dz1d0d

1(z)0f

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++
+−

−++

=                                                   
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By  suitable  choice  of  L,  we  can  express  any Padé    approximant 

as  a  convergent  of  one  of  the  fractions  (2.13)  and    (2.14). 

In  (2.13)  the  first   (L  +  1)  coefficients  are  identical  to 

those   of   the   series   (1.4)  and  the  coefficients   ,.....,, )()()( LLL ccc 321

may be  obtained  by  applying  the  modified  CS  algorithm  to  the 

sequence        aL  +  1   /  a L ,  a L  +  2  /  a L ,  a L  +  3  /  a L ,  .  .  .  .    In  (2.14)  the 
2 

series  d0    +  d 1  z  +  d 2  z     +  . . .       is  the  power  series  of  the 

reciprocal  of  f  o  (z)  and  its    coefficients  may be  computed from 

the recurrence  relation 

∑
= −−=
n

1r rarnd0dnd                                                                             (2.15) 

for  n =   1,2,3,   .  .  .  .    and  where  d    =  ao
-  1    .      The  coefficients 

g  ,  g  ,  g  ,  …     are then  obtained by  applying  the )(
1

L )(
2
L )(

3
L

modified  CS  algorithm  to  the  sequence  d L  +  1   /  d L  ,   d L  +  2  /  d L  ,  

d L  +  3  /  d L ,    . . .  .   

In particular,  we find that the   [2/ 3] Pade  approximant 

is  given by 

1

z(2)
3g

1

(2)z2g

1

(2)z1g

1

2z2d

z1d0d
1

+++++
 

As  an example we shall consider  the   [2/3] Padé approximant 

to e -  z    .     We already know the reciprocal series 

.....5z
120

14z
24
13z

6
12z

2
1z1ze ++++++=  



so  that we  have 

60
1

2d
5d

,12
1

2d
4d

,3
1

2d
3d

===  

and we  apply  the  modified  CS  algorithm  to  these  values 

(2)
3g(2)

2g(2)
1g

20
3

12
1

3
11

5
2

4
1

3
1

2/d3d
20
1

12
1

2/d4d
60
1

2/d5d

−−

 

Thus,   the   [2/3]  Padé  approximant  to  e -  z     is   

 ).60(z
z

20
31

z
12
1

1

z
3
1

1

2z
2
1

z1
1ze +

−+−++
=−  

This  is  one  of  the  simplest  methods  for  obtaining  a 

Padé  approximant  and  is  easily  accomplished by  a  minimum 

of  hand  calculation. 

It   is  interesting  to  compare  this  algorithm  with 

that  of  Longman  (l97l).      Longman's  algorithm  computes  the 

coefficients  of  Padé  approximants  in  the  more  usual  rational 

form.     The  advantage  of  the    continued  fraction form  is  that,  

by  computing  just  one  more  coefficient,   we  can  progress  from 

15. 
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one approximant to another.   Whilst  Longman's algorithm is 

more useful for computing the whole Padé  table, we can use 

the  CS algorithm to calculate high order approximants 

without computing the whole of the preceding table.  As fewer 

computational steps are necessary we may suppose that there 

is less build-up of rounding error with the CS  algorithm. 

2.3      J-Fractions. 

The continued fraction 

  .......
znd1

2ZnC
......

z2d1

2z2c

z1d1

2z1c

z0d1
0c

(z)0f
++++++++

=            (2.16)          

is   called   a   J-fraction and   corresponds   to   the  power   series  (1. 4),  

successive  convergents  corresponding  to  2,4,6 .. . . . . . . . . . . . . . . . terms  of 

the  series.      If   c0    =1   the  modified   CS  algorithm  for  this 

fraction  is 

 

{ }1)(n
1rb1nd1)(n

2rb2)(n
2rbnk(n)

rb −
+−−−

+−−
+=                                              (2.17) 

for   all   r ,  n.   In  computational  form  this  algorithm  is 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−
+−−

+−−
+

=

=−
−−−−−=

=−−=

=−−=

=+++−=

+−=

−==

,}1)(n
1r

1)(n
2rb2)(n

2r
{b

nc
1(n)

rb

,2,3,4,....n,1)(n
1b1nd1)(n

2b2(n
2bnc

,1,2,3,....n,(n)
1b1)(n

1bnd

.,1,2,3,....n,(n)
1b1)(n

1bnd

.....,1,2,3,r,}1ra1a2ra{
1c
1(1)

rb

,2
1a2a1c

,1a0d1,0c

b

 

                                                                                             r= 1,2,3 . . . . . .n  =2,3,4, . . . 
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If  we  replace  z by  1/z  in  (2.16)  and  use  the basic 

similarity  transformation we  obtain  the  alternative  form 

of  the  J-fraction 

......
znd

nc
.....

z2d
2c

z1d
1c

z0d
0c

(z)0f
+++++++++

=                                 (2.18) 

This  fraction  corresponds  to the  asymptotic  series 

    ......3z
2a

2z
1a

z
0a

(z)0f +++=                                            (2.19) 

for  |z |   large.      Clearly,  if  we    choose  a o    =  c o    =1  then 

the  algorithm  (2.17)  may  also  be  applied  to  the  fraction  (2.18). 

2.4.    M-Fractions. 

The continued fraction 

....
znd1

znc
....

z2d1

z2c

z1d1

z1c

z0d1
0c

(z)0f
+++++++++

=                (2.20) 

is  called an  M-fraction  [see   McCabe  (1971)]  if   i ts 

coefficients   are   chosen  such   that i t   corresponds   simultan- 

eously   to  the  power series  (1.4)  and  to  the  asymptotic   series 

  ....3z

2α

2z

1α

z
0α(z)0f +++

=                                                                                       (2.21) 

for  |   z |   large,  successive  convergents  of  (2.20)  corresponding 

to  1,2,3,  . . . .   terms  of each series.     The  ordinary CS  algorithm 
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for  converting  the   series  (1.4)  to the M-fraction ( 2.20) 

is 

)1(n
r)

b1nd1)(n
1rb2)(n

1rb1nc(n)
rb −

−−−
+−−

+−=                                                  (2.22) 

for  all   r ,n.     Using  the  basic  similarity  transformation 

we  see  that  the  fraction  (2.20) may be written 

.....

2
1

nd
z
1

nc
.....

z
1

nd
z
1

2C

z
1

1d
z
1

1c

z
1

0d
z
1

0c
(z)0f

+++++++++
=                           (2.23) 

By  writing  the  fraction  in  this  form  we  see  that  there is 

also a CS algorithm for  converting the series (2. 21) to 

the fraction (2. 23).     This algorithm is 

1)(n
rβ

1)(n
rβd2)(n

rβc(n)
rβ 1n1 11n

−−−
+−−−

+−=                                           (2.24) 

for  all  r ,n where    the  values {  are  analogous  to  the }(n)
rβ

values { }(n)
rb  in  (2. 22).    The  relations  (2. 22)  and  (2. 24) 

taken together form the CS  algorithm for   the M-fraction  (2. 20). 
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Written  in computational  form this  algorithm 

is 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

==−−−
+−−−

+−=

==−
−−−

+−−
+−=

=
−

=

=−=

=++−=

=++−=

=

2,3,4,...,..n0,1,2,3,..r,1)(n
rβ

1)(n
1rβ1nd2)(n

1rβ1nc(n)
rβ

2,3,4,...,..n0,1,2,3,..r,1)(n
rb1nd1)(n

1rb2)(n
1rb1nc(n)

rb

,1,2,3,....n,(n)
0β

1)(n
0β

ncnd

n,1,2,3,....n,1)(n
0b

(n)
0b

nc

..,0,1,2,3,..r},rα1rα0{d(1)
rβ

..,0,1,2,3,..r},ra0d1r{a(1)
rb

,
0α
0a

0d,0a0c

 

we can form a modified  CS  algorithm  but as we cannot choose 

ao  =  α  o  = 1  without  rescaling z  the  resulting  algorithm is  no 

simpler  than  that  above. 

We now give a simple numerical example to illustrate a 

suitable layout for hand computation. We consider Dawson's 

integral 

dtz
0

2te
2

e(z)0f ∫−=   
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which has  the  two  series  expansions 

...
945

4z
105

3z
15

2z
3
z1(z)0f −+−+−=  

 

for   | z|   small  and 

....5z

105
4z

15
3z

3
2z

1
z
1(z)0f +++++=  

 

for  | z | large. 

4c3c2c1c0c
63
8

35
6

15
4

3
21

33075
128

525
16

45
8

3
210a

4725
64

105
8

15
4

3
1

1a
945
16

35
2

15
1

2a

arrayb
945
8

105
1

3a
945
1

4a

−−−−

−−

−−

−

−−

  

 

4d3d2d1d0d
9
1

7
1

5
1

3
11

35
128

5
16

3
8210α

5
648411α

481832α
arrayβ120153α

1054α

−−−−

−−

−−−

−
−−

 

 

  



The resulting M-fraction is thus 

......)(
−+−+−+−+−+

=
z

z

z

z

z

z

z

z
z

zf

9
11

63
8

7
11

35
6

5
11

15
4

3
11

3
2

1
1

0  

 or,   using  the  basic   similarity  transformation, 

.....
z9

8z
z7

6z
z5

4z
z3

2z
z1(z)0f

−+−+−+−+−+=  

3.  Conclusion 

We have shown how CS algorithms may be applied in 

the case of  S-fractions,  Padé  approxiaants,  J- fractions   and 

M- fractions and indicated the broad class or  continued 

fractions    for which such an algorithm exists.     Many of 

these algorithms are simple and require a minimal number of 

computational  steps.    They appear to provide one of the most 

straightforward and   accurate means for  obtaining continued 

fraction approximations to functions defined by power series.  

21. 
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