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Abstract

Sepsis is often characterized by an acute brain inflammation and dysfunction, which is associated 

with increased morbidity and mortality worldwide. Preventing cerebral leukocyte recruitment may 

provide the key to halt progression of systemic inflammation to the brain. Here we investigated the 

influence of the anti-inflammatory and anti-oxidant compound, sulforaphane (SFN) on 

lipopolysachharide (LPS)-induced cellular interactions in the brain.

The inflammatory response elicited by LPS was blunted by SFN administration (5 and 50 mg/Kg 

i.p.) 24 h prior to LPS treatment in WT animals, as visualized and quantified using intravital 

microscopy. This protective effect of SFN was lost in Nrf2-KO mice at the lower dose tested, 

however 50 mg/Kg SFN revealed a partial effect, suggesting SFN works in part independently of 

Nrf2 activity. In vitro, SFN reduced neutrophil recruitment to human brain endothelial cells via a 

down regulation of E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Our data confirm 

a fundamental dose-dependent role of SFN in limiting cerebral inflammation. Furthermore, our 

data demonstrate that not only is Nrf2 in part essential in mediating these neuroprotective effects, 
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but they occur via down-regulation of E-selectin and VCAM-1. In conclusion, SFN may provide a 

useful therapeutic drug to reduce cerebral inflammation in sepsis.
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Introduction

Uncontrolled inflammation is now considered a major component of various widespread 

diseases including Alzheimer’s disease [1], stroke [2], cancer [3] and sepsis [4]. Whilst it is 

generally accepted that inflammation is not the primary cause of these diseases, it plays a 

key role in disease progression, tissue dysfunction and ultimately organ failure. Sepsis is an 

inflammatory condition involving a complex interaction of multiple pathways. It is the most 

common causes of death in hospitalized patients, which in part, is due to the susceptibility of 

the expanding aged population to infection, increased frequency of invasive procedures, and 

widespread bacterial antibiotic resistance [5, 6] and forecasts are predicting a rise to over 

one million cases annually by 2020 [1].

Endothelial dysregulation, coagulopathy with microvascular thrombosis, excessive vascular 

leak and increased leukocyte activation lie at the heart of tissue injury and organ failure 

during sepsis. When activated, leukocytes undergo a sequential pattern of interaction with 

vascular endothelial cells, characterized by rolling, adhesion and emigration into inflamed/

infected tissue [7]. This inflammatory response which is observed in sepsis [8] is caused 

within hours by peripheral inflammogens inducing an up-regulation of cell adhesion 

molecules on the surface of the endothelium (P-selectin, E-selectin, vascular cell adhesion 

molecule 1 [VCAM-1], and intercellular adhesion molecule 1 [ICAM-1]) and leading to 

increased adhesion, rolling, and transmigration of circulating leukocytes.

Over half of the cases of sepsis are due to gram-negative bacteria [9], in which endotoxin 

(lipopolysachharide [LPS]) is a key cell wall component. By interacting with host cell 
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receptors, such as monocyte/macrophage CD14 and toll-like receptor 4 (TLR4), LPS 

induces proinflammatory mediators e.g. eicosanoids and cytokines, such as tumor necrosis 

factor-α (TNF-α), interleukin 1 beta (IL-1β), IL-6 [10]. Cytokines are produced by several 

cell types, including neutrophils, monocytes, macrophages, lymphocytes, and endothelial 

cells [7]. They are released in response to inflammatory stimuli and are responsible for 

causing many of the physiological, metabolic and immunological responses associated with 

inflammation [8]. Despite these effects, therapies directed towards combating the pro-

inflammatory cytokines have been unsuccessful in the clinic. Additionally, patients that 

survive sepsis are sometimes left with long-term cognitive difficulties and neurological 

defects due to sepsis-associated encephalopathy, which occurs despite the protection 

provided by the blood-brain barrier [8]. Therefore, there is an urgent need for new and 

effective therapies to combat sepsis.

Sulforaphane (SFN) is a sulfur-based isothiocyanate found naturally in cruciferous 

vegetables such as broccoli, brussel sprouts, cabbage and cauliflower [11]. SFN has been 

shown to induce anti-oxidative mechanisms, and protect against cell inflammatory stress via 

activation of the NF-erythroid 2-related factor 2 (Nrf2) transcription factor [12]. Under basal 

conditions, Nrf2 is anchored to the cytoplasm by Kelch-like ECH-associated protein 1 

(Keap1). Through interactions with the cysteine residues of Keap1, SFN may induce the 

release of Nrf2 allowing for its nuclear localization where it binds to the antioxidant 

response element (ARE) in the promoter region of a variety of different genes involved in 

antioxidant protection, including heme oxygenases and superoxide dismutase [12, 13]. 

Although it has been shown that SFN may have anti-inflammatory effects, these anti-

inflammatory mechanisms are less well-understood, especially within the context of the 

cerebral microvasculature. SFN treatment reduces monocyte adhesion to primary endothelial 

cells via inhibition of nuclear factor kappa B (NF-κB) activation [15] and treatment of 

cultured Raw 264.7 macrophages with SFN suppresses LPS-induced nitric oxide generation, 

prostaglandin E2 (PGE2) production, TNF-α secretion, inducible nitric oxide synthase 

(iNOS) and Cox-2 expression [16]. SFN pre-conditioning has also been shown to protect 

against blood brain barrier (BBB) disruption and neurological deficits in a rodent model of 

stroke [17]. As such, SFN treatments or dietary supplements may prove effective in 

protecting against pathological leukocyte recruitment to the brain.

In this study, we utilized in vivo and in vitro models of leukocyte recruitment to investigate 

the potential of SFN to reduce cerebral leukocyte recruitment and inflammatory activation. 

Our results support the premise that SFN plays an important role in protecting the cerebral 

vasculature from inflammatory insults. We also show for the first time that following 

systemic inflammatory insults, SFN exerts its protective actions on human cerebral 

endothelial cells (HBMEC-3) by inhibiting VCAM-1 and E-selectin expression. 

Furthermore, this protective effect of SFN was lost in Nrf2-KO mice at the lower dose 

tested, however 50 mg/Kg SFN revealed a partial effect, suggesting SFN works in part 

independently of Nrf2 activity. In conclusion, SFN may provide a useful therapeutic drug to 

reduce cerebral inflammation in sepsis.
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Materials and methods

Reagents

All reagents were obtained from Sigma-Aldrich, St Louis, MO, USA, unless stated 

otherwise.

Animal experiments

Drugs and reagents—L-sulforaphane (SFN, 5 mg/kg and 50 mg/kg) was dissolved in 

corn oil for intraperitoneal (i.p.) injection 24 h prior to LPS/vehicle injection as previously 

described [18]. LPS (Escherichia coli serotype 0111:B4. 0.5 mg/Kg,) was dissolved in saline 

for i.p. injection 4 h prior to imaging of the cerebral microcirculation. Rhodamine 6G was 

dissolved in de-ionized water for i.v. injection.

Animals—Male wild-type (WT) C57BL/6J mice and Nfe2l2tm1Ywk knockout (Nrf2-KO) 

mice, 25–35g, 12–18 weeks old, were obtained from The Jackson Laboratory (Bar Harbor, 

ME, USA) and maintained on a 12 hour (h) light-dark cycle during which room temperature 

was maintained at 21– 23°C, and had access to standard chow pellets and water ad libitum. 

Experimental procedures were reviewed and approved by Louisiana State University Health 

Sciences Center-Shreveport (LSUHSC-S) Institutional Animal Care and Use Committee, 

and were performed according to the criteria outlined in the National Institutes of Health 

guidelines. Animals were randomly assigned to treatment groups (n = 6 animals per group, 

group size determined with reference to our previous studies in this model [7].

Intravital fluorescence microscopy (IVM)

Animals were anesthetized with an i.p. injection of ketamine (150 mg/kg) and xylazine (7.5 

mg/kg) and the jugular vein was cannulated for intravenous (i.v.) administration of 

rhodamine 6G. Core body temperature was maintained at 37 ± 0.5°C. A craniotomy was 

performed and the dura matter was not removed as fluorescently labeled blood cells were 

easily observed and intracranial pressure was well maintained in the absence of this 

procedure [20]. Artificial cerebrospinal fluid (NaCl 131.9 mM, CaCl2 1.26 mM, 

CaCl2·2H2O 1.26 mM, KCl 2.95mM, MgCl2·6H2O 0.64 mM, MgCl2 0.5 mM, (NH2)2CO 

6.69 mM, C6H12O6 3.69 mM) was placed on the cranial opening. The preparation was 

allowed to equilibrate for 30 minute (min) before visualization of cerebral microcirculation 

using a 40 X water-immersion objective attached to a Xanophot IVM microscope 

(HLX64610; Nikon, Melville, NY, USA). Rhodamine 6G (100 µl, 0.02% v/w in saline, i.p) 

was used to fluorescently label leukocytes. Sections of un-branched pial post capillary 

venules 100 µm in length and 30–70 µm in diameter (omitting analysis of dura vessels which 

are typically 20 µm. [20]) were randomly selected and recordings made for offline analysis 

using a three charge coupled device color video camera (Hitachi, Woodbury, NY, USA). 

Rolling velocity (determined from the time required for a leukocyte to roll a given distance 

along the length of a venule, and is reported as µm/sec), and adhesion (cells that remained 

adherent for 30 seconds (sec) or longer, and expressed as the number of cells per millimeter 

of the venular surface, assuming the vessel to be cylindrical as previously described [19]) 

were assessed offline.
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Myeloperoxidase (MPO) activity

Brain homogenates and MPO standards were placed onto a 96-well plate, and 200 µl of o-

dianisidine solution and 10 µl of 0.1 % H2O2 were added. Absorbance was read after 5 min 

at 405 nm and expressed as units per mg (U/mg) of wet tissue.

Cytometric bead array (CBA)

Serum samples were collected from experimental animals and quantitative analysis of 

multiple cytokines, including: IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1), 

interferon gamma (IFN-γ), TNF-α, and IL-12(p70) was performed using a CBA Mouse 

Inflammation Kit (BD Biosciences, San Jose, CA, USA) as per the manufacturer’s 

instructions. A dual laser FACSCalibur (BD Biosciences), with CellQuest pro (BD 

Biosciences) software was used for acquisition and results were analyzed and quantified 

with reference to the standard curve using FCAP Array software (version 3, Soft Flow Inc, 

St. Louis Park, MN, USA).

Human neutrophil isolation

Blood collection and neutrophil isolation was performed with ethical approval from the 

LSUHSC-S Institutional Review Board (STUDY00000261). Blood samples (50ml) were 

taken from healthy individuals aged 18 – 45 years, with no history of recent acute or chronic 

illness and non-steroidal anti-inflammatory drug (NSAID) free 2 weeks prior to blood 

collection at LSUHSC-S. Blood was collected from the anterior cubital fossa with a 21G 

needle, using 1:10 Acid Citrate Dextrose Solution anticoagulant. All samples were collected 

and processed within 4 h. Neutrophils were isolated using dextran sedimentation and 

histopaque 1077 Ficoll gradient-centrifugation as previously described [21].

Flow chamber assay

Human brain endothelial cell line (HBMEC-3) were seeded in IBIDI µ-Slide VI04 flow 

chambers and cultured for two days until confluent. The cells were treated with SFN (1, 10 

and 100 µM) or 0.3% Dimethyl sulfoxide vehicle control 24 h prior to the addition of LPS 

(500 ng/ml) or saline vehicle control. HBMEC-3 monolayers were stimulated with LPS for 

4 h before commencing flow. Neutrophils were fluorescently labeled with 5 µM 

CellTracker™ Red CMTPX dye (Life Technologies, Grand Island, NY, USA) for 25 min at 

room temperature. Neutrophils were then centrifuged at 400 x g for 10 min and resuspended 

to 1×106 cells/ml in Dulbecco’s phosphate-buffered saline (DPBS) with 0.1% BSA before 

perfusing over HBMEC-3 monolayers at 0.5 dyne/cm2 for 10 min. Leukocyte endothelial 

interactions were viewed under an Olympus IX71 inverted microscope (x20 objective. 

Olympus, Saucon, PA, USA), with TRITC filter and 100W high pressure mercury bulb light 

source. At least 5 random fields per treatment were recorded for offline analysis, using a 

Sony 3CCD DSP color video camera (Sony, New York, NY, USA), for 10 sec each. Rolling 

velocity (velocities of 20 consecutive leukocytes in the field of focus were determined by 

measuring the time required to travel a distance of 100 µm. Reported as µm/sec) and 

adhesion (those cells that had remained stationary for 10 sec or longer) were quantified 

during offline analysis as previously described [19].
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Immunofluorescent staining

HBMEC-3 seeded in IBIDI µ-Slide VI0.4 flow chambers monolayers were treated with SFN 

(1, 10 and 100 µM) or vehicle 24 h prior to the addition of LPS (500 ng/ml for 4 h). Cells 

were washed with PBS and fixed with 4% Paraformaldehyde (PFA) for 10 min before 

blocking with PBS + 1% BSA, 10% goat serum and 100 mM glycine. Cells were then 

incubated with primary antibodies for P-selectin (ab54427, 1:100 Abcam, Cambridge, MA, 

USA,), E-selectin (BBA16, 1:200, R&D systems, Minneapolis, MN, USA), or vascular cell 

adhesion molecule-1 (VCAM-1, SC1504R, Santa Cruz Biotechnology, Dallas, TX, USA 

1:200) in PBS + 1% BSA overnight at 4°C. A Cy5.5 conjugated goat anti-mouse IgG 

(ab6947 Abcam) or goat anti-rabbit, alexafluor 488 (ab150077, Abcam) both at 1:200 was 

used as a secondary antibody and cells were mounted in vectasheild + DAPI nuclear stain. 

Staining was visualized using a using a Nikon Eclipse inverted microscope with Nikon 

Elements acquisition software (Nikon, Melville, NY, USA), and was quantified using 

ImageJ software (NIH) and expressed as mean pixel intensity of adhesion molecule 

expression, normalized to DAPI expression.

NF-κB activation was investigated in HBMEC-3 cells fixed and permeabilized in ice cold 

acetone before blocking and staining for phosphorylated NF-κB p65 (rabbit anti-NF-kB p65 

phospho-S536, ab86299, Abcam, 1:100 in PBS + 1% BSA) for 2 h. Cells were washed with 

PBS and incubated with goat anti-rabbit alexafluor 488 conjugated secondary (ab150077, 

1:200, Abcam). Slides were washed with PBS and mounted with vectasheild + DAPI nuclear 

stain. Co-localization of DAPI and alexafluor 488 staining was visualized using a using a 

Nikon Eclipse inverted microscope with Nikon Elements acquisition software. Nuclear mean 

pixel intensity normalized to area was used to quantify nuclear levels of NF-κB using 

ImageJ software (NIH).

Nrf2 transcription factor activation

To investigate Nrf2 activation and nuclear localization in HBMEC-3 cells treated with SFN 

(1, 10 and 100 µM) 24 h prior to stimulation with LPS (10 µg/ml, 4 h), nuclear fractions 

were isolated using Active Motif Nuclear extract kit (Active Motif, Carlsbad, CA, USA). 

Nrf2 activity was then assessed in 5 µg nuclear protein using TransAM® Nrf2 transcription 

factor activation assay (Active Motif) as per the manufacturer’s instructions.

Superoxide assay

To study the effect of SFN treatment on endothelial and neutrophil oxidative state following 

LPS stimulation (500 ng/ml 4h), CM-H2DCFDA oxidative stress indicator (Life 

Technologies) was used and fluorescence emission at 525 nm measured over 30 min. 

Briefly, HBMEC-3 cells grown to confluence in 96-well plates were pre-treated with SFN or 

vehicle for 24 h before being incubated with 5 µM of the cell permeable CM-H2DCFDA dye 

for 30 min. 5×105 neutrophils in 100 µl PBS + 1% BSA were added to 96-well plates, 

blocked with PBS + 1% BSA overnight. Baseline readings were taken using a Biotech 

Synergy H1 hybrid plate reader (BioTeK, Winooski, VT, USA) at 37°C excitation 490 nm 

emission 520 nm. Neutrophils were then stimulated with LPS (500 ng/ml) and emission was 

measured over 30 min. Results expressed as mean maximum relative light units.
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Statistical analysis

Results from intravital microscopy experiments were confirmed to follow a normal 

distribution using Kolmogorov-Smirnov test of normality with Dallal-Wilkinson-Lillie for 

corrected p value. Data that passed the normality assumption was analyzed using Student’s 

t-test or ANOVA with Bonferroni post hoc test. Data that failed the normality assumption 

were analyzed using the non-parametric Mann-Whitney U test. Analysis was conducted 

using GraphPad Prism5 software. Data are reported as means +/− standard errors of the 

mean. Differences were considered statistically significant at a value of p < 0.05.

Results

SFN protects against LPS-induced cellular responses in the cerebral microcirculation

Previously we have shown that i.p. administration of LPS triggers a time-dependent effect on 

cellular responses in the brain [8]. Based on these findings, LPS was systemically 

administered for 4 h with and without SFN, in order to assess the therapeutic potential of the 

isothiocyanate. Using intravital fluorescence microscopy, we were able to visualize and 

quantify changes in leukocyte behavior within pial vessels, showing a significant (p < 0.001) 

decrease in leukocyte rolling velocity and an increase in leukocyte adhesion following LPS 

administration (Figure 1). Pre-treatment with SFN in the absence of an inflammatory 

stimulus was found to have no effect on any of the leukocyte recruitment parameters 

measured (Figure 1E+F). However, SFN (5 and 50 mg/Kg) significantly increased the LPS-

induced leukocyte rolling velocity and reduced leukocyte adhesion (p < 0.001. Figure 1E

+F).

SFN modulates inflammatory markers

Table 1 demonstrates the effect of SFN treatment on circulating levels of cytokines. LPS 

induced an elevation in pro-inflammatory cytokines: IFN-γ IL-6, MCP-1 and TNF-α, with 

no effect on the anti-inflammatory cytokine IL-10. SFN (5 mg/Kg) decreased levels of IFN-

γ MCP-1 and TNF-α, and increased IL-10 levels. These effects were also mirrored in 

animals treated with the higher dose of SFN (50 mg/Kg), coupled also with a decrease in 

IL-6 levels. There was no difference in IL-12 levels in any of the groups. We also found a 

significant increase in the same four cytokines in whole brain homogenates (Table 2) 

following LPS, along with a marked increase in MPO (Table 2). SFN treatment was found to 

reduce the LPS induced increase in brain inflammatory cytokines whilst also elevating IL-10 

expression and reducing MPO levels. (LPS: 4.16 ± 0.28 U/mg; SFN (5 mg/Kg)+LPS: 2.68 

± 0.35; SFN (50 mg/Kg)+LPS: 1.73 ± 0.11 U/mg).

Dose dependent effect of SFN in Nrf2-KO animals

To investigate whether the observed reduction in LPS-induced leukocyte adhesion was due 

to activation of Nrf2 anti-inflammatory and anti-oxidative pathways, SFN was given to 

Nrf2-KO mice. Nrf2 gene deletion afforded no difference in the inflammatory response 

associated with LPS, when compared to the WT counterparts (Figure 1+2). Low dose of 

SFN (5 mg/Kg) treatment did not influence leukocyte rolling velocity or adhesion in these 

Nrf2-KO animals (Figure 2A+B). However, the higher SFN dose (50 mg/Kg) increased 
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leukocyte velocity and decreased cellular adhesion (40%) in the brain. LPS produced an 

increase in the number of rolling cells (cell flux) in WT and Nrf2-KO vs. saline, with SFN 

having no effect (data not shown).

SFN moderates human neutrophil-endothelial cell interactions

In order to establish whether SFN treatment was effective in reducing recruitment of human 

neutrophils, in vitro experiments were conducted flowing isolated human neutrophils over 

LPS activated HBMEC-3 cells, under conditions relevant to venous physiological shear 

rates. HBMEC-3 cells stimulated with LPS (500 ng/ml) for 4 h (a point that allows sufficient 

time for de novo synthesis of adhesion molecules [22].) provoked a marked decrease in 

neutrophil rolling velocity and an increase in the number of adherent cells (Figure 3A–E). 

Treatments with both 10 and 100 µM SFN had no effect on the number of leukocytes rolling 

in LPS treated mice, but affected leukocyte adhesion (Figure 3D+E).

Numerous studies have shown that the activation of NF-κB is essential for the 

transcriptional regulation of chemotactic cytokines and vascular adhesion molecules that are 

critically involved in leukocyte adhesion to endothelium [15]. Thus, we determined the LPS-

induced activation of NF-κB signaling by confocal microscopic examination of NF-κB p65 

nuclear translocation. Exposure of HBMEC-3 cells to LPS for 4 h increased NF-κB nuclear 

localization indicating the induction of NF-κB-regulated gene expression (Figure 3F+G). 

Whilst no significant reduction in NF-κB activation was seen with 1 µM or 100 µM SFN 

treatment, 10 µM resulted in a significant (p < 0.05) decrease in nuclear fluorescence 

intensity compared to control (Figure 3H). These results suggest that SFN may inhibit 

inflammation by suppressing NF-κB signaling in a dose dependent fashion.

SFN treatment reduces LPS-induced expression of endothelial adhesion molecules

Cell adhesion molecules play an important role during inflammation, and their expression in 

endothelial cells is a pre-requisite for adhesion of neutrophils. Therefore, the effects of SFN 

on LPS-induced expression of E-selectin, P-Selectin, ICAM-1 and VCAM-1 were assessed 

by immunofluorescent staining (Figure 4). Unstimulated cells expressed low levels of the 

adhesion molecules, however, LPS treatment significantly induced the expression of 

HBMEC-3 E-selectin and VCAM-1. There was little effect on ICAM-1 expression, and 

whilst LPS induced a trend towards increased P-selectin expression, it was not statistically 

significant (data not shown). SFN treatment of 10µM was found to significantly reduce the 

LPS-induced expression of E-selectin and VCAM-1 (Figure 4A+C), with no statistically 

significant effects being observed on ICAM-1 and P-selectin expression (data not shown).

SFN reduces endothelial cell oxidative state

Oxidative stress is a key pathological factor local and systemic inflammatory pathologies. 

Considering that SFN has previously been shown to induce anti-oxidative enzyme 

expression via Nrf2 activation both in vivo and in vitro [23], we investigated the influence of 

SFN treatment on Nrf2 activation in the context of LPS challenge. In nuclear fractions from 

cortical homogenates of LPS challenged WT mice, no changes in Nrf2 activation was 

detected across all treatments (data not shown). However, in HBMEC-3, whilst LPS 

treatment alone had no influence on Nrf2 activation, all concentrations of SFN tested were 
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found to induce significant activation and nuclear translocation of Nrf2, as indicated by 

enhanced transcription factor activity in nuclear extracts (Figure 5A).

To correlate the neuroprotective effect of SFN with its ability to induce Nrf2, we measured 

ROS production from HBMEC-3 using the fluorescent oxidative stress indicator CM-

H2DCFDA. LPS treatment (500 ng/ml, 4h) was found to induce significant superoxide 

production from both neutrophils and HBMEC-3. A similar response was seen in both cell 

types, with 24 h pretreatment with SFN (10 and 100 µM) significantly inhibiting LPS-

induced ROS production (Figure 5B+C).

Discussion

Sepsis is an inflammatory condition involving a complex interaction of multiple pathways. It 

is the most common cause of death in hospitalized patients, and forecasts are predicting a 

rise to over one million cases annually by 2020 [6]. Systemic inflammatory responses in 

sepsis can trigger a diffuse or multifocal cerebral dysfunction even in the absence of any 

direct brain injury or infection, this is particularly evident in e.g. sepsis-associated 

encephalopathy (SAE). Thus, the array of sepsis-related complications may lead to multiple 

organ failure and ultimately death [6]. Efficient anti-inflammatory strategies are therefore 

required in order to provide therapeutic benefit to patients.

SFN, which is found at high levels in broccoli, is currently one of the most promising natural 

compounds for clinical implementation [24]. The anti-carcinogenic effects of high doses of 

SFN are well characterized. Recently it has been reported that SFN can penetrate BBB and 

exert neuroprotective effects in in vitro and in vivo models of neurological disorders [17, 

24], however the protective role of SFN on leukocyte trafficking within the context of the 

brain remains elusive. Here, using an animal model of endotoxaemia, we reveal a crucial 

inhibitory role of SFN in modulating leukocyte trafficking in the cerebral microcirculation. 

Our data show that Nrf2 gene deletion afforded no difference in the inflammatory response 

associated with LPS, when compared to the WT counterparts, and that SFN works through 

additional mechanisms other than Nrf2, since SFN’s influence over leukocyte recruitment 

was only in part abolished at the higher dose tested in Nrf2-KO animals. Furthermore, 

experiments using HBEMC-3 cells and human neutrophils, demonstrated protective actions 

of SFN following LPS challenge via down regulation of E-selectin, and VCAM-1, and a 

decrease in pro-inflammatory cytokines and ROS production.

Leukocyte recruitment to an inflamed site is an important facet of the inflammatory 

response. Leukocytes undergo a complex process whereby they tether, roll, adhere, spread 

and finally transmigrate through the endothelium [24]. This process is predominantly 

mediated by several intracellular signaling events that ultimately up-regulate the expression 

of pro-inflammatory cyokines, such as MCP-1, and adhesion molecules, including 

VCAM-1, ICAM-1, and P- and E-selectin [25]. These chemokines and adhesion molecules 

play key roles in the firm adhesion of leukocytes to activated endothelial cells [15]. 

However, excessive or inappropriate leukocyte accumulation in tissues contributes to a 

number of pathologic conditions such as stroke, myocardial infarction and sepsis. SFN has 

previously been shown to protect against liver injury following intestinal ischemia 
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reperfusion (I/R) injury via Nrf2 signaling, markedly reducing liver tissue MPO activity, 

which is indicative of reduced neutrophil recruitment [26]. In the brain, Schachtele et al., 
[27] have demonstrated SFN to reduce macrophage and neutrophil brain infiltration and 

microglial activation in active viral brain infection. However, the present study is the first to 

directly quantify the influence of SFN treatment on cerebral leukocyte recruitment following 

systemic inflammatory challenge. SFN pre-treatment had a potent protective influence on 

the cerebral microvascular events induced by LPS, being effective in increasing leukocyte 

rolling (no affect on cell flux) and abrogating leukocyte adhesion and reducing MPO levels. 

The dose of LPS used here in our study was relatively low. This dose was chosen 

deliberately to activate the vasculature without causing either mortality or a drastic decrease 

in microvascular perfusion, as is seen at higher doses and which would complicate the 

inflammatory response [8].

Sepsis is associated with an excessive production of cytokines (including TNF-α, IL-6, and 

IL-1β), as well as activation of complement and coagulation cascades following activation of 

immune cells by endotoxin and other pathogen components [8]. TNF-α increases BBB 

permeability and the proinflammatory actions of IL-1β and IL-6 in the brain are well 

documented [28]. Here, LPS induced an increase in circulating pro-inflammatory cytokines 

(TNF-α, IL-6, IFNγ and MCP-1), which were inhibited when SFN was administered (along 

with upregulation of IL-10).

Recent studies have demonstrated that the Nrf2/ARE pathway is involved in immune and 

inflammatory processes, and SFN exerts protective effects via Nrf2 activation, which, under 

basal conditions, is anchored to the cytoplasm by Keap1. Through interactions with the 

cysteine residues of Keap1, SFN may induce the release of Nrf2 allowing for its nuclear 

localization where it binds to the antioxidant response element in a variety of different genes 

[11–13]. As such, in order to establish whether the observed influence over cerebral 

leukocyte recruitment was dependent on Nrf2 activation, we conducted experiments using 

Nrf2-KO mice. In absence of Nrf2, the lower dose of SFN treatment was found to be 

ineffective in reducing LPS-induced cerebral leukocyte recruitment (i.e. no cerebral 

leukocyte adhesion in WT mice). These findings concur with other studies that attribute the 

antioxidant and anti-inflammatory effects of SFN via the Nrf2/ARE pathway [29, 30]. The 

dependence of SFN’s anti-inflammatory effects on Nrf2 observed here are also supported in 

investigations by Zakkar et al., [18] who demonstrate SFN to suppress p38 activation and 

VCAM-1 expression at athero-susceptible sites in the aorta of WT mice, yet not in Nrf2-KO 

mice. However, we also found that at the higher dose of SFN, the SFN-mediated inhibition 

of cerebral inflammation was in part independent of the Nrf2/ARE pathway. These findings 

are supported by other groups describing Nrf2 independent effects of SFN in e.g. in cycle 

arrest and apoptosis, and inhibition of angiogenesis, histone deacetylases and cytochrome 

P450 [31]. Recently Greaney et al., 2015 focused studies on inflammasomes, as these have 

an important role in cytosolic innate immune sensing and pathogen response. They found 

that SFN-mediated inhibition of inflammasomes is also independent of Nrf2 [31]. Other 

evidence points to SFN reacting directly with other cellular targets such as toll like receptor 

4 (via the suppression of both ligand-induced and ligand-independent oligomerization of 

TLR4) [32] and tubulin [33]. Jackson and Singletary also showed high SFN doses (≥ 100 

µmol/l) have mammary cancer suppressive actions involving mitotic cell cycle arrest and 
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linked to the disruption of normal tubulin polymerization and possible effects on 

microtubule dynamics at lower SFN doses [34]. Furthermore, it has also been shown that 

SFN ameliorates skin blistering via Nrf2-dependent and -independent pathways [35]. These 

findings demonstrate the complex nature of SFN and its ability to mediate its anti-

inflammatory and anti-oxidant via various mechanisms.

It is known that local and temporal variations in adhesion molecule expression, such as E- 

and P-selectin, occur in response to LPS [36, 37]. Furthermore, constitutive and LPS-

induced expression of ICAM-1 and VCAM-1 are relatively low in the brain, and the kinetics 

and relative up-regulation of these adhesion molecules varies between tissues [7]. Therefore, 

having demonstrated the protective effects of SFN treatment in suppressing cerebral 

leukocyte recruitment in vivo, we next used the flow chamber assay to assess whether SFN 

treatment may also prove beneficial in reducing leukocyte-endothelial interactions in human 

cells, and if so whether the anti-inflammatory effect may be mediated by the inhibition of 

adhesion molecules. Thus, investigations were made using isolated human neutrophils and 

HBMEC-3s in an LPS-activated leukocyte recruitment assay under physiological flow. 

Previously, SFN has been shown to reduce low density lipoprotein-induced endothelial 

dysfunction, via inducing Nrf2, while suppressing NFκB activation and ICAM-1, VCAM-1, 

and E-selectin expression [38]. Furthermore SFN reduced TNF-α-induced VCAM-1 and 

MCP-1 expression in endothelial cells [39] and TNF-α induced adhesion of monocytes [15]. 

These studies used human umbilical cord vein endothelial cells, however in the present study 

we investigated anti-inflammatory and anti-oxidative influence of SFN in an endothelial cell 

line relevant to the unique cells of the cerebral microcirculation (i.e. HBMEC-3). In 

HBMEC-3, SFN reduced LPS-induced NF-κB activation, as demonstrated by nuclear 

localization of the phosphorylated p65. Further to the suppression observed in the present 

study, SFN also interacts with thiol groups to impair redox-sensitive DNA binding and 

transactivation of NF-κB, via binding to essential Cys residues, or NF-κB related redox 

regulators [16]. Correlating with decreased NF-κB activation, our studies showed reduced 

cell surface expression of E-selectin and VCAM-1, along with suppressed LPS-induced 

neutrophil adhesion under flow conditions. As was found in vivo, SFN treatment had no 

inhibitory effect on leukocyte rolling, furthermore P-selectin and ICAM-1 expression was 

found to be unaffected by SFN treatment, suggesting SFN intervention in cerebral leukocyte 

recruitment is via a suppression of VCAM-1 and E-selectin only.

Activated neutrophils may release large amounts of ROS in a respiratory burst, inducing a 

high level of oxidative stress, a key pathological factor in local and systemic inflammatory 

pathologies. This oxidative stress has been implicated in stress, and furthermore, the 

cerebrovasculature has been demonstrated to be a critical target of oxidative stress in 

pathological disorders of the brain, but may also be important source of ROS itself [40]. 

Vascular-derived oxidative stress is a major factor involved in initiating and promoting 

pathophysiology in a number of disorders of the brain, a process that is evident under 

inflammatory conditions [40]. Such events can be particularly detrimental in the brain, 

which lacks robust antioxidant defenses [41]. The neuronal membrane is largely made up of 

polyunsaturated fatty acids, which are highly susceptible lipid peroxidation [40], 

additionally ROS accumulation causes altered assembly of the tight junctions, breakdown of 

the extracellular matrix and loss of BBB integrity [40]. Nrf2 plays a key role in defense 
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against oxidative stress, and as such we investigated the influence of SFN treatment over 

Nrf2 activation and HBMEC-3 oxidative state, as quantified by CM-H2DCFDA 

fluorescence. Whilst in brain homogenates from experimental animals, no differences in 

Nrf2 transcription factor activation was detected, potentialy due to the numerous cell types 

present in the crude homogenate, SFN was found to activate Nrf2 at all concentrations tested 

in HBMEC-3, and reduce ROS production at both 10 and 100 µM following LPS challenge 

(500 ng/ml). SFN (10 and 100 µM) also reduced ROS production from neutrophils post-LPS 

challenge. Thus, SFN may be beneficial in promoting anti-oxidative mechanisms in the 

cerebral microcirculation to combat inflammatory increase in damaging ROS.

Blood born cells, the endothelium, resident perivascular cells and parenchymal cells can all 

influence the inflammatory microenvironment and regulate leukocyte recruitment. In the 

present study we demonstrate that SFN can have a direct effect on the endothelium by 

reducing leukocyte recruitment, an effect which was confirmed by our results showing the 

anti-inflammatory and anti-oxidative effects of SFN in vitro on HBMEC-3s. Nguyen et al., 
have demonstrated SFN to have beneficial anti-inflammatory effects on leukocytes, reducing 

NF-κB phosphorylation 50% [42] whilst SFN has also previously been demonstrated to be 

able to cross the BBB and to accumulate in cerebral tissues [43]. Indeed, SFN treatment has 

been demonstrated to beneficially effect brain resident cells both in vivo and in vitro [27] 

and provides a promising therapeutic candidate for the treatment of neuro-inflammatory 

diseases, in that it may have protective effects not only via anti-inflammatory and anti-

oxidative actions on vascular elements and leukocytes (as demonstrated in the present study) 

but may also influence brain resident cells.

In summary, the present study shows for the first time a fundamental role of SFN in limiting 

leukocyte endothelial cell interactions in the cerebral microvasculature following a systemic 

inflammatory challenge. The protective effects of SFN on cerebral vascular inflammation 

may be, at least in part, independent of Nrf2/ARE pathway and associated with the NF-κB 

pathway, which in turn leads to a via down-regulation of E-selectin and VCAM-1 (Figure 6). 

These findings provide evidence suggesting that SFN may be a novel agent to protect the 

cerebral vasculature against LPS-induced inflammation and dysfunction seen in sepsis.
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Figure 1. SFN pre-treatment reduces LPS-induced inflammatory cell recruitment into the brain
A) the chemical structure of SFN. B-D) representative video stills of cerebral microvessels 

following B) saline treatment, C) LPS treatment (0.5 mg/kg, i.p, 4 h) and D) LPS treatment 

with 24 h SFN pretreatment (50 mg/Kg). E-G) Leukocyte recruitment in the cerebral 

microcirculation of C57BL/6J mice following LPS injection (0.5 mg/kg, i.p) and 24 h saline 

vehicle or SFN pretreatment (5 or 50 mg/Kg) was quantified in terms of: E) rolling velocity 

(µm/sec), and F) adhesion (cells stationary for 30 sec or longer per mm2). Scale bar = 20 µm. 

Data are mean ± SEM of 6 mice per group. *p < 0.05 **p < 0.01 & ***p < 0.001 vs. 

saline. ###p < 0.0001 vs. LPS.
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Figure 2. Dose dependent effect of SFN in Nrf2-KO animals
Leukocyte recruitment in the cerebral microcirculation of Nrf2-KO mice following LPS 

injection (0.5 mg/kg, i.p) and 24 h saline vehicle or SFN pretreatment (5 or 50 mg/Kg) was 

quantified in terms of: A) rolling velocity (µm/sec) and B) adhesion (cells stationary for 30 

sec or longer per mm2). Data are mean ± SEM of 5–6 mice per group. *p < 0.05 & ***p < 

0.0001 vs. saline. #p < 0.05 vs. LPS.
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Figure 3. Effects of SFN on Human Neutrophil-Endothelium Interaction
HBMEC-3 cells were treated with saline or 500 ng/ml LPS for 4 h. A-E) human neutrophils 

were perfused over the stimulated endothelial cells under physiological flow to assess the 

influence of 24 h saline or SFN (1, 10 or 100 µM) pre-treatment on human neutrophil 

recruitment. A-C) Representative x20 video stills of fluorescently labeled neutrophils 

adhering to HBMEC-3 monolayers, scale bar = 100 µm. Neutrophil-endothelial cell 

interactions were quantified in terms of D) rolling velocity (µm/sec) and E) adhesion (cells 

stationary for 10 sec or longer per mm2). F+G) LPS-treated HBMEC-3 cells were fixed and 
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permeabilized before staining for p65 NF-κB. F) levels of nuclear localization of fluorescent 

NF-κB signal were quantified and normalized to nuclear area n = 5 independent 

experiments. G) representative x60 micrographs demonstrating p65 NF-κB (alexafluor 488) 

staining. Pixel intensity is illustrated by pseudo color of greyscale NF-kB staining using 

image J. scale bar = 10 µm. Data are mean ± SEM. *p < 0.05, **p < 0.001, & ***p < 0.0001 

vs. saline. #p < 0.05 & ##p < 0.001 vs. LPS.
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Figure 4. SFN reduces endothelial cell expression of adhesion molecules
Surface expression of A + B) E-selectin and C + D) VCAM-1 were investigated using 

immune-fluorescent staining of non-permeabilized HBMEC-3 cells following SFN pre-

treatment (1, 10 or 100 µM), and 4 h of saline or LPS (500 ng/ml) challenge. Staining was 

quantified as mean fluorescent intensity and normalized to account for cell number using the 

mean fluorescent intensity of DAPI staining. Scale bars = 10 µm. Data are mean ± SEM. n = 

3 independent experiments for each treatment group. *p < 0.05, **p < 0.001 & ***p < 0.0001 

vs. saline. #p < 0.05 vs. LPS.
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Figure 5. SFN induces Nrf2 activation and protects endothelial cell and neutrophils from 
oxidative stress
A) Nrf2 transcription factor activity in HBMEC-3 cells following LPS (500 ng/ml, 4 h) 

challenge and 24 h SFN pre-treatment as detected by Active moteif TransAM assay. ROS 

production as determined by CM-H2DCFDA fluorecence was asesed in SFN or saline or 

LPS treated B) HBMEC-3 cells or C) neutrophils. Data are mean ± SEM. n = 5. *p < 

0.05, **p < 0.001 & ***p < 0.0001 vs. saline. #p < 0.05 and ##p < 0.001 vs. LPS.
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Figure 6. Proposed mechanism of cerebrovascular neuroprotection elicited by SFN
SFN mediates its anti-inflammatory and anti-oxidant effects through Keap1/Nrf2 

transcriptional activation of the anti-oxidant system, and via the NFκB pathway. In 

particular, following systemic LPS administration, SFN treatment is able to 1) suppress 

VCAM-1 and E-selectin adhesion molecules, which in turn leads to a decrease in neutrophil 

endothelial cell interactions; 2) decrease pro-inflammatory cytokines and 3) decrease ROS 

production.

Holloway et al. Page 22

Vascul Pharmacol. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Holloway et al. Page 23

Ta
b

le
 1

L
P

S 
an

d 
SF

N
 t

re
at

m
en

ts
 m

od
ul

at
e 

se
ru

m
 c

yt
ok

in
e 

le
ve

ls

E
ff

ec
t 

of
 S

F
N

 t
re

at
m

en
t 

on
 s

er
um

 c
yt

ok
in

e 
le

ve
ls

. S
er

um
 le

ve
ls

 o
f 

A
) 

IF
N

-γ
, I

L
-6

, I
L

-1
0,

 I
L

-1
2,

 M
C

P-
1 

an
d 

T
N

F-
α

 f
ol

lo
w

in
g 

L
PS

 (
0.

5 
m

g/
K

g)
 a

nd
 

24
h 

pr
e-

tr
ea

tm
en

t w
ith

 S
FN

 (
5 

an
d 

50
 m

g/
K

g)
, d

et
er

m
in

ed
 b

y 
cy

to
m

et
ri

c 
be

ad
 a

rr
ay

.

IF
N

-γ
(p

g/
m

l)
IL

-6
(n

g/
m

l)
IL

-1
0

(p
g/

m
l)

IL
-1

2
(p

g/
m

l)
M

C
P

-1
(p

g/
m

l)
T

N
F

-α
(p

g/
m

l)

Sa
lin

e
4.

70
 ±

0.
51

2.
10

 ±
0.

31
5.

21
 ±

0.
65

3.
86

 ±
0.

65
9.

36
 ±

0.
82

10
.3

 ±
0.

89

L
P

S
(0

.5
m

g/
K

g)

40
.1

3 
±

2.
12

**
*

16
.3

2 
±

1.
49

**
*

9.
92

 ±
0.

99
10

.1
2 

±

1.
01

*
27

.1
3 

±

2.
34

**
*

66
9.

70
 ±

90
.0

5*
**

SF
N

+L
P

S
(5

 m
g/

K
g

+
0.

5 
m

g/
K

g)

22
.7

5 
±

1.
52

##
#

9.
38

 ±
0.

73
19

.2
8 

±

0.
88

##
#$

$
8.

67
 ±

0.
80

21
.6

8 
±

19
8#

$
48

7.
60

 ±

63
.4

8#

SF
N

+L
P

S
(5

0
m

g/
K

g 
+

0.
5

m
g/

K
g)

19
.4

8 
±

1.
04

##
#

8.
29

 ±

0.
87

##
#

28
.9

0 
±

1.
15

##
#

8.
68

 ±
0.

76
18

.2
1 

±

1.
37

#
46

5.
6 

±

71
.7

2#

D
at

a 
ar

e 
m

ea
n 

±
 S

E
M

 o
f 

4 
m

ic
e 

pe
r 

gr
ou

p 
pe

rf
or

m
ed

 in
 d

up
lic

at
e.

* p 
<

 0
.0

5

**
* p 

<
 0

.0
00

1 
vs

. s
al

in
e.

# p 
<

 0
.0

5,

##
p 

<
 0

.0
01

##
# p 

<
 0

.0
00

1 
vs

. L
PS

.

$ p 
<

 0
.0

5

$$
p 

<
 0

.0
01

 v
s.

 S
FN

 5
0 

m
g/

K
g.

Vascul Pharmacol. Author manuscript; available in PMC 2017 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Holloway et al. Page 24

Ta
b

le
 2

L
P

S 
an

d 
SF

N
 t

re
at

m
en

ts
 m

od
ul

at
e 

br
ai

n 
ho

m
og

en
at

e 
cy

to
ki

ne
 a

nd
 M

P
O

 le
ve

ls

E
ff

ec
t 

of
 S

F
N

 t
re

at
m

en
t 

on
 b

ra
in

 h
om

og
en

at
e 

M
P

O
 a

nd
 c

yt
ok

in
e 

le
ve

ls
. B

ra
in

 h
om

og
en

at
e 

le
ve

ls
 o

f 
IF

N
-γ

, I
L

-6
, I

L
-1

0,
 I

L
-1

2,
 M

C
P-

1,
 T

N
F-

α
 a

nd
 

M
PO

 f
ol

lo
w

in
g 

L
PS

 (
0.

5 
m

g/
K

g)
 a

nd
 2

4h
 p

re
-t

re
at

m
en

t w
ith

 S
FN

 (
5 

an
d 

50
 m

g/
K

g)
, d

et
er

m
in

ed
 b

y 
cy

to
m

et
ri

c 
be

ad
 a

rr
ay

.

IF
N

-γ
(p

g/
m

l)
IL

-6
(n

g/
m

l)
IL

-1
0

(p
g/

m
l)

IL
-1

2
(p

g/
m

l)
M

C
P

-1
(p

g/
m

l)
T

N
F

-α
(p

g/
m

l)
M

P
O

(U
/m

g)

Sa
lin

e
4.

63
 ±

0.
77

3.
04

 ±
0.

59
5.

55
 ±

0.
96

5.
19

 ±
1.

08
9.

60
 ±

1.
55

0.
06

 ±
0.

60
1.

78
 ±

0.
30

L
P

S
(0

.5
m

g/
K

g)

45
.3

5 
±

3.
50

**
*

22
.0

9 
±

2.
22

**
9.

66
 ±

1.
00

9.
74

 ±
0.

73
37

.9
8 

±

4.
24

**
86

6.
5 

±

30
.7

4*
*

6.
12

 ±

0.
19

**

SF
N

+L
P

S
(5

 m
g/

K
g

+
0.

5 
m

g/
K

g

29
.1

3 
±

1.
27

##
$ )

10
.6

9 
±

1.
22

##
21

.7
5 

±

1.
92

##
10

.2
1 

±
0.

93
23

.0
5 

±

25
4#

$
55

3.
10

 ±

61
.9

2#
3.

12
 ±

0.
23

#

SF
N

+L
P

S
(5

0
m

g/
K

g 
+

0.
5

m
g/

K
g)

23
.6

1 
±

2.
64

##
9.

72
 ±

0.
92

##
29

.3
9 

±

1.
79

##
23

.7
2 

±
12

.3
2

17
.6

8 
±

1.
19

##
43

4.
20

 ±

40
.2

0#
#

2.
13

 ±

0.
21

#

D
at

a 
ar

e 
m

ea
n 

±
 S

E
M

 o
f 

4 
m

ic
e 

pe
r 

gr
ou

p 
pe

rf
or

m
ed

 in
 d

up
lic

at
e.

* p 
<

 0
.0

5,

**
p 

<
 0

.0
01

 v
s.

 s
al

in
e

**
* p 

<
 0

.0
00

1.

# p 
<

 0
.0

5

##
p 

<
 0

.0
01

 v
s.

 L
PS

.

$ p 
<

 0
.0

5

$$
p 

<
 0

.0
01

 v
s.

 S
FN

 5
0 

m
g/

K
g.

Vascul Pharmacol. Author manuscript; available in PMC 2017 October 01.


	Abstract
	Graphical abstract
	Introduction
	Materials and methods
	Reagents
	Animal experiments
	Drugs and reagents
	Animals

	Intravital fluorescence microscopy (IVM)
	Myeloperoxidase (MPO) activity
	Cytometric bead array (CBA)
	Human neutrophil isolation
	Flow chamber assay
	Immunofluorescent staining
	Nrf2 transcription factor activation
	Superoxide assay
	Statistical analysis

	Results
	SFN protects against LPS-induced cellular responses in the cerebral microcirculation
	SFN modulates inflammatory markers
	Dose dependent effect of SFN in Nrf2-KO animals
	SFN moderates human neutrophil-endothelial cell interactions
	SFN treatment reduces LPS-induced expression of endothelial adhesion molecules
	SFN reduces endothelial cell oxidative state

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2

