
BRUNEL UNIVERSITY

Department Of Computer Science

DOCTORAL THESIS

An Automated Method Mapping 
Parametric Features Between 

Computer Aided Design Software

Author: Supervisors:

Toby David
BORLAND

Dr. Andrea CAPILUPPI and

Dr. Stephen SWIFT

Year of Submission: 2019





Declaration of Authorship

I, Toby David BORLAND, declare that this thesis titled, “An Automated Method Mapping 
Parametric Features Between Computer Aided Design Software” and the work presented in it
are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this 
University.

• Where any part of this thesis has previously been submitted for a degree or any other 
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the 
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear 
exactly what was done by others and what I have contributed myself.

Signed:                                                                                

Date:                                                                                     





Author Publications

 

Some of the research leading to this thesis has appeared previously in the

following publication,

Borland, T., 2012. Automated mapping between Computer Aided Design program 

formats. From the Selected Works of Charles M. Schweik, p.25. University of 

Massachusetts - Amherst 





Acknowledgements

I would like to express my sincere gratitude to my advisor Dr. Andrea Capiluppi for his 

unremitting pragmatism and bonhomie. Additional thanks must also go to Dr. Stephen 

Swift for his contributions.

I should also acknowledge the succession of patient employers, friends and partners who I 

have taxed during the course of this research.





Abstract

Enterprise efficiency is limited by data exchange. A product designer might specify the 

geometry of a product with a Computer Aided Design program, an engineer might re-use that  

geometry data to calculate physical properties of the product using a Finite Element Analysis 

program. These different domains place different requirements on the product representation. 

Representations of product data required for different tasks is dependent on the vendor 

software associated with those tasks, sharing data between different vendor programs is 

limited by incompatibility of the vendor formats used. In the case of Computer Aided Design 

where the virtual form of an object is modelled, no standard data format captures complete 

model data. Common data standards transfer model surface geometry without capturing the 

topological elements from which these geometries are constructed. There are prescriptive data 

representations to allow these features to be specified in a neutral format, but little incentive 

for vendors to adopt these schemes. Recent efforts instead focus on identifying similar feature 

elements between different vendor CAD programs, however this approach relies on onerous 

manual identification requiring frequent revision. 

This research develops methods to automate the task of mapping relationships between  

different data format representations. Two independent matching techniques identify similar 

CAD feature functions between heterogeneous programs. Text similarity and object geometry 

matching techniques are combined to match the data formats associated with CAD programs.  

An efficient search for matching function parameters is performed using a genetic algorithm 

that incorporates semantic data matching and geometry data matching. A greedy semantic 

matching algorithm is developed that compares with the Doc2vec short text matching 

technique over the API dataset tested. A SVD geometric surface registration technique is 

developed that requires fewer calculations than an equivalent Iterative Closest Point method.





Synopsis

Transferring the full details of design data between engineering programs is limited to the 

availability and accuracy of translations between model information. To date, only surface 

geometry is readily translated using neutral file formats, however modern CAD software 

uses vendor-specific parametric design features to capture model geometry and design. 

Translating models that retain these parametric design features is limited by the 

complexity and expense of mapping the functionality between the sets of native vendor 

features.

This difficulty of testing features for equivalence and mapping may be mitigated with the 

assistance of machine searching, testing and verification techniques. 

This research develops a geometry matching technique coupled with a semantic 

matching technique to assist the process of unsupervised matching. Semantic text 

matching allows the search for potential function matches to be reduced to a fraction of 

the entire set of feature functions described in a CAD Application Programming Interface.

Automated function testing requires that the output of functions can be tested for 

equivalence. This, in turn, demands that the geometry associated with a function 

operation can be compared with that of a function candidate match from a separate CAD 

program. A surface intersection technique is developed and tested to fulfil this 

requirement. A genetic algorithm incorporates these techniques to demonstrate the 

proposed automated function matching method.





Glossary of terms

For the sake of brevity, this list does not include any acronym which only appears once in the text 

next to its definition.

AAG  Attributed Adjacent Graph

AIA  Aerospace Industries Association of America

AM Application Module

ANSI American National Standard Institution

AP Application Protocol

API Application Programming Interface

AR Application Resources

ASPI Assured Product and Support Information

BIM Business Information Modelling

BoM Bill of Material

BRL Ballistics Research Laboratory

CAD Computer Aided Design

CAE Computer Aided Engineering

CAM Computer Automated Manufacturing

CAPP Computer Aided Process Planning

CAx Computer Aided x (a non-specific member of CAE)

CFD Computational Fluid Dynamics

CIM Computer Information Modelling

CML Chemical Markup Language

CNC Computer Numerical Control

COM Component Object Model

COP Constrained Optimisation Problem

CPD Common Process Domain

CSG Constructive Solid Geometry

CSP Constraint Satisfaction Problem

DEAP Distributed Evolutionary Algorithms in Python

DIFF Domain Independent Form Feature

DNA DeoxyRibonucleic Acid



DoD Department of Defence (US)

DXF Drawing Exchange Format

EOL End Of Life

ERP Enterprise Resource Planning

EXPRESS (not an acronym)

FAG Form Feature Adjacency Graph

FEA  Finite Element Analysis

FMS Flexible Manufacturing System

FPMP Function Parameter Matching Problem

GA Genetic Algorithm

HDF5 Hierarchical Data Format 5

HKS Heat Kernel Signature

HTML HyperText Markup Language

IAR Integrated Application Resource

ICAM Integrated Computer-Aided Manufacturing

ICP Iterative Closest Point

ICT Information Communication Technology

IDEF ICAM™ Definition Languages

IFC Industry Foundation Classes

IGES Initial Graphics Exchange Specification

ISO International Organization for Standardization

LSA Latent Semantic Analysis

LSI Latent Semantic Indexing

NC Numerical Control

NIST National Institute of Standards and Technology

NLP Natural Language Processing

NLTK Natural Language ToolKit

NURB Non Uniform Rational B-spline

OASIS Organization for the Advancement of Structured Information Standards

OECD Organisation for Economic Cooperation and Development

OEM Original Equipment Manufacturer

OMG  Object Management Group

OWL DL Web Ontology Language Description Logic

OWL LT Web Ontology Language Lite



PCA Principle Component Analysis

PDKM Product Data & Knowledge Management

PDM Product Data Management

PLM Product Lifetime Modelling

PMI Product and Manufacturing Information

PML Product Modelling Language

RDF Resource Description Framework

RMS Reconfigurable Manufacturing Systems

RMSE Root Mean Square Error

SAT Boolean Satisfiability Problem

SIFT Scale Invariant Feature Transform

SME Small to Medium Enterprise

STEP  Standard for the Exchange of Product model data

SVD Singular Variable Decomposition

SWRL Semantic Web Rule Language

TF-IDF Term Frequency, Inverse Document Frequency

UML Universal Modeling Language

UPR Universal Product Representation

VB Visual Basic

VBA Visual Basic Automation

XML eXtensible Markup Language



Notes on fonts

Throughout the text, reference to computer code is printed in Liberation Mono font. This 

may be a reference to the code that accompanies this thesis, or short extracts of code from 

other referenced sources.

The other font that appears is Liberation Serif which is used in the text of tracts of 

psuedocode.

Where a term is introduced, it is italicised.



Table of Contents

 1  Research Overview and Structure....................................................................................................................

1.1  Research Philosophy..................................................................................................................................ii

1.2  Research Objectives..................................................................................................................................iii

1.3  Research Methodology.............................................................................................................................vi

2   Introduction.........................................................................................................................................................1

2.1  The economic case for enterprise interoperability.............................................................................3

2.2  Small to Medium Enterprises...................................................................................................................4

2.3  Integrated software and Product Lifecycle Modelling.......................................................................5

2.4  Concurrent Engineering............................................................................................................................6

2.5  Archival requirements...............................................................................................................................7

2.6  Building Information Modelling..............................................................................................................8

2.7  Decentralised Enterprise and other manufacturing paradigms......................................................8

2.8  An illustrative overview of Computer Aided Engineering domains...........................................10

2.9  Parametric CAD feature modelling......................................................................................................13

2.10  CAE data transfer methods and their limitations...........................................................................14

2.11  Mapping ontologies................................................................................................................................15

2.12  A contribution to automation of feature mapping between CAD programs..........................17

3   Previous CAD data interoperability research...........................................................................................19

3.1  Product Lifecycle Modeling & Computer Aided Engineering.......................................................19

3.2  CAD standardisation initiatives............................................................................................................20

3.3  Parametric feature modelling.................................................................................................................21

3.4  Procedural feature models......................................................................................................................23

3.5  ISO 10303 standardisation......................................................................................................................23

3.6  Standardisation of parametric features...............................................................................................24

3.6.1 Numerical accuracy...........................................................................................................................24

3.6.2 Standardised feature taxonomy.....................................................................................................24

3.6.3 Inconsistent definition of sequential and implicit feature constraints................................25

3.6.4 Inconsistent interpretation of sequential and implicit feature constraints........................25

3.6.5 Inconsistent constraint combinations within generic features..............................................26

3.6.6 Unspecified semantic definition.....................................................................................................26

3.6.7 Unspecified labelling of feature entries.......................................................................................26



3.7  The persistent naming problem.............................................................................................................27

3.8  The Macro-Parametric Approach..........................................................................................................28

3.9  Universal Product Representation........................................................................................................31

3.10  Three-Branch Hybrid Feature Model.................................................................................................32

3.11  Bidirectional Hausdorff metric............................................................................................................33

3.12  Representative proxy model and query protocol...........................................................................33

3.13  The state of the art..................................................................................................................................36

4   Prior research on short text similarity measures.....................................................................................39

4.1  Semantic mapping within CAE systems.............................................................................................39

4.2  Descriptive text labels used within Application Programming Interfaces.................................40

4.3  Vector Space Models and statistical concept matching...................................................................41

4.4  The WordNet corpus and word pair similarity.................................................................................43

4.5  WordNet similarity measures................................................................................................................45

4.5.1 Leacock and Chodorow similarity measure...............................................................................46

4.5.2 Wu and Palmer similarity measure...............................................................................................46

4.5.3 Resnik similarity measure...............................................................................................................47

4.5.4 Lin similarity measure......................................................................................................................47

4.5.5 Jiang and Conrath distance measure............................................................................................48

4.5.6 Word Embedding and the word2vec similarity measure........................................................49

4.6  Distributed Memory Model of Paragraph Vectors...........................................................................50

4.7  Short text matching techniques to date..............................................................................................50

5   Comparison of semantic measures for API text matching....................................................................53

5.1  Matching texts associated with Application Program Interfaces.................................................53

5.2  Combined scoring for short text semantic comparison..................................................................55

5.3   Greedy Matching over multiple word match combinations.........................................................57

5.4  Trained corpus experimentation...........................................................................................................61

5.5  Mean Average Precision, Mean Reciprocal Rank and Mean Rank metrics................................62

5.6  Mean Rank..................................................................................................................................................65

5.7  Parsing of API text data...........................................................................................................................66

5.8  Observations on semantic method comparison testing results....................................................72

6   Boundary Surface Geometry Comparison.................................................................................................81

6.1  Overview of a geometric matching method.......................................................................................81

6.2  CAD model geometry comparison.......................................................................................................83

6.3  A boundary surface intersection query...............................................................................................86



6.4  Rigid body registration............................................................................................................................88

6.5  Point cloud registration techniques.....................................................................................................90

6.6  Registration features search using surface intersection queries...................................................92

6.7  Directed CAD feature point search......................................................................................................94

6.8  Global Registration via Singular Variable Decomposition.............................................................95

6.9  Object Point Cloud Registration and Object Recognition..............................................................97

6.10  Geometric registration feature types.................................................................................................98

6.11  A progressive search refinement strategy........................................................................................99

6.11.1 Matching distinguishing feature sets:........................................................................................99

6.11.2 Displacements of each feature point from the shape centroid:...........................................99

6.11.3 Transformation between sets of feature points:....................................................................100

6.11.4 Checking via random transformed surface points:..............................................................100

6.12  Model difference measure via mapped points...............................................................................101

6.13  Software resolution and machine precision...................................................................................103

6.14  Registration feature search reliability.............................................................................................107

6.15  Registration feature search repeatability........................................................................................108

6.16  SVD exhaustive feature search requirement.................................................................................109

6.17  Helical point sequencing....................................................................................................................110

6.18  Order ambiguity arising from rotational symmetry....................................................................113

6.19  Correction for SVD reflections about a plane...............................................................................114

6.20  Registration feature search strategy................................................................................................115

6.21  Preliminary centroid identification..................................................................................................115

6.22  Equidistant spherical projection.......................................................................................................117

6.23  Model search regions...........................................................................................................................117

6.24  Hill-climbing search for registration features...............................................................................119

6.25  A minimal set of registration features types.................................................................................123

6.26  A minimum set of feature registration classes for all geometric shapes................................126

6.27  Centroid sensitivity..............................................................................................................................127

6.28  An incomplete match of registration features..............................................................................128

6.29  Geometric transformation and matching algorithm overview.................................................129

7   Geometry matching method tests and results........................................................................................133

7.1  Drexel CAD shape benchmark library..............................................................................................133

7.2  Test configuration for single and multiple model matches..........................................................134

7.3  Observations on algorithm performance..........................................................................................136



7.4  Instances of registration feature mismatch......................................................................................141

7.5  Complex model matching.....................................................................................................................143

7.6  Points and vector detection..................................................................................................................144

7.7  Future directions.....................................................................................................................................145

8   Automated feature function mapping.......................................................................................................147

8.1  Overview of Computer Aided Design modelling methods..........................................................147

8.2  Explicit and implicit CAD model constraints..................................................................................149

8.3  Sequential model generation................................................................................................................150

8.4  Indirect feature operations...................................................................................................................154

8.5  Explicit geometric feature constraints...............................................................................................155

8.6  Parametric variables...............................................................................................................................156

8.6.1 Function parameter label matching............................................................................................163

8.6.2 Object model inference..................................................................................................................163

8.6.3 Object model type inference.........................................................................................................164

8.7  Function parameter type heuristics...................................................................................................164

8.8  Parameter mapping problem formulation........................................................................................169

8.9  Problem complexity classification......................................................................................................172

8.10  Stochastic Local Search methods......................................................................................................175

8.11  Genetic Algorithm overview.............................................................................................................179

8.12  Representing a function comparison as a Genetic Algorithm..................................................181

8.12.1 Restricted range parameter coding...........................................................................................182

8.12.2  Default function configuration.................................................................................................183

8.12.3  Zero-valued parameter assumption........................................................................................184

8.14  Individual parameter mapping..........................................................................................................186

9   An automated search for function equivalence......................................................................................191

9.1  A Genetic Algorithm configuration demonstrating CAD function matching........................191

9.2  Elevated mutation constant..................................................................................................................194

9.2.1 Comparative testing of multi-objective and single objective fitness functions..............195

9.3  Semantic match assisted Genetic Algorithm trials........................................................................198

9.4  Tests extending beyond psuedo-binary coding...............................................................................201

9.5   Results summary....................................................................................................................................204

9.6  Published parameters of the functions used in tests.....................................................................205

10   Conclusions and future directions...........................................................................................................209

10.1  Fulfilment of research objectives......................................................................................................210



10.2  Contributions to knowledge..............................................................................................................214

10.3  Program requirements for a production environment................................................................215

10.4  Potential stakeholders and relevant groups...................................................................................217

10.5  Observations and Future Directions................................................................................................218

11   Bibliography..................................................................................................................................................221

A  Ontologies for CAE interoperability.........................................................................................................255

A.1  Introduction..........................................................................................................................255

A.2 Layered ontologies................................................................................................................256

A.3 The Core Product Model.......................................................................................................256

A.4 Product Specification Language, Product Semantic Representation Language...................257

A.5 Ontologies based on the semantic web, OWL, RDF............................................................257

A.6 Top-down ontologies and interlingua...................................................................................260

A.7 Ontology mapping: OWL DL...............................................................................................264

A.8 OWL SWRL.........................................................................................................................265

A.9 Limitations of ontologies and semantic inference................................................................266

B  3D Shape matching methods overview.....................................................................................................269

B.1 3D Shape matching introduction...........................................................................................269

B.2 View-Based shape matching methods...................................................................................270

B.3 Histogram-Based shape matching methods..........................................................................272

B.4 Spatial map-based methods...................................................................................................272

B.5  Local feature based methods................................................................................................273

B.6 Point signatures.....................................................................................................................274

B.7 Variant models.......................................................................................................................274

B.8 Shape distribution signatures................................................................................................275

B.9 Curvature based descriptors..................................................................................................276

B.10 Spin images.........................................................................................................................277

B.11 Integral volume...................................................................................................................277

B.12 Heat diffusion features........................................................................................................280

B.13 Graph methods....................................................................................................................283

B.14 Greedy matching method....................................................................................................285

B.15 Hybrid mesh methods.........................................................................................................285

B.16 CAD graph methods............................................................................................................285

B.17 Multi-attributed adjacency graph........................................................................................286

B.18 Volumetric CAD methods...................................................................................................288



B.19 Hint based matching............................................................................................................289

B.20 Interacting Multiple Methods..............................................................................................290

B.21 Hybrid methods...................................................................................................................290

C  Single model geometric matching test......................................................................................................292



Index of Figures

 Figure 1: Thesis structure................................................................................................................................xxvi

Figure 2: CAD model of plate with countersunk hole..................................................................................10

Figure 3: FEA model of plate under applied force.........................................................................................11

Figure 4: CAM software generates a toolpath for a milling operation.....................................................12

 Figure 5: Macro-parametric feature mapping to generate equivalent CAD models...........................29

 Figure 6: a taxonomy of semantic matching methods.................................................................................43

 Figure 7: the highest word-pair match values are selected to form a word score, note stopwords 

such as "from" are excluded.................................................................................................................................59

 Figure 8: comparison of number of single text matches vs multiple text matches at a normalised 

similarity threshold of 0.75..................................................................................................................................62

 Figure 9: Mean Average Precision values for matched API function texts between Solidworks 

2010 and Inventor 2012.........................................................................................................................................71

 Figure 10: Mean Average Precision values for matched API function texts between Solidworks 

2010 and RhinoScript 5.........................................................................................................................................72

 Figure 11: Mean Average Precision values for matched API function texts between Solidworks 

2010 and RhinoScript5..........................................................................................................................................73

 Figure 12: Mean Rank values for matched API function texts between Solidworks 2010 and 

RhinoScript 5...........................................................................................................................................................74

 Figure 13: Mean Rank values for matched API function texts between Solidworks 2010 and 

Inventor 2012...........................................................................................................................................................77

 Figure 14: Reciprocal Rank values for matched API function texts between Solidworks 2010 and 

RhinoScript 5...........................................................................................................................................................78

 Figure 15: Mean Rank values for matched API function texts between Solidworks 2010 and 

Inventor 2012...........................................................................................................................................................79

 Figure 16: Mean Average Precision over both sets of CAD API samples [0, 0.5].................................80

 Figure 17: Reciprocal Ranking over both sets of CAD API samples [0, 0.5]..........................................81

 Figure 18: Mean Rank over both sets of CAD API samples [0, 1.0].........................................................81

 Figure 19: proportion of CAD API functions directly applicable to model geometry in RhinoScript 

5..................................................................................................................................................................................85



 Figure 20: affine dependent intersection of a Hoffmann grid with cone object and rotated 

equivalent cone object..........................................................................................................................................87

 Figure 21: comparison of categories of registration feature displacements from a model centroid 

form an orientation-neutral histogram for rapid comparison.................................................................107

 Figure 22: Singular Vector Decomposition of registration feature points yields a rotation matrix 

and translation between source and target models.....................................................................................108

 Figure 23: random points are transformed from source to target model, summed deviations from 

estimated surface intersections give a model similarity value.................................................................108

 Figure 24: surface representation containing two regions with an equal probability of discovery.

..................................................................................................................................................................................109

 Figure 25: surface representation containing two regions with unequal probability of discovery.

..................................................................................................................................................................................109

 Figure 26: a sequence of points is generated from an initial feature point A on a model geometry 

to form the series ABCDEFGHIJ......................................................................................................................113

 Figure 27: initial search point surrounded by rosette of generated neighbouring points................123

 Figure 28: a series of iterated points selected for a maximum displacement from the model 

centroid as they converge on a local maximum corner region................................................................124

 Figure 29: detail of point search to detect ridge edges and determine cylinder centre-point.........127

Figure 30: overview of transformation and matching algorithm............................................................134

 Figure 31: Precision-recall for Cube shape class similarity determined via transformed point 

sampling method..................................................................................................................................................143

 Figure 32: Precision-recall for Cylinder shape class similarity determined via transformed point 

sampling method..................................................................................................................................................144

 Figure 33: Precision-recall for Torus shape class similarity determined via transformed point 

sampling method..................................................................................................................................................145

 Figure 34: Precision-recall for Sphere shape class similarity determined via transformed point 

sampling method..................................................................................................................................................146

 Figure 35: True positive and false positive probability distributions over all shape classes 

determined using transformed point sampling method............................................................................147

 Figure 36: Transformed and matched complex asymmetrical bracket model, green points 

represent points used for SVD registration, yellow points are mapped between models to verify 

model similarity....................................................................................................................................................148

 Figure 37: CAD model of hydrodynamic turbine blade showing combination of extruded surfaces, 

blended surface patches and surfaces patches draped across hydrofoil sections................................153



 Figure 38: 2D CAD geometry generated using explicit constraints and parameters (FreeCAD 0.18)

..................................................................................................................................................................................162

 Figure 39: distribution of CAD API functions ranked according to number of parameters...........167

 Figure 40: Overview of genetic algorithm process to generate CAD function parameter mapping

..................................................................................................................................................................................194



 Figure 41: Single objective function GA performance without semantic match assistance...........200

 Figure 42: Multi-objective function GA performance using binary coding, no semantic match 

assistance................................................................................................................................................................202

 Figure 43: Single-objective function GA performance using binary coding, with semantic match 

assistance................................................................................................................................................................204

 Figure 44: Multi-objective function GA performance using binary coding, with semantic match 

assistance................................................................................................................................................................205

 Figure 45: Single objective function GA performance using trinary coding, no semantic match 

assistance................................................................................................................................................................207

 Figure 46: Multi-objective function GA performance using trinary coding, no semantic match 

assistance................................................................................................................................................................208

Index of Tables

Table 1: a selection of Common CAD program commands yielding surface coordinates via curve 

intersections........................................................................................................................................36

Table 2: classification of feature registration point types.................................................................128

Table 3: examples of feature registration signatures........................................................................129

Table 4: example of Cartesian point information taken from a Drexel CAD benchmark library STEP 

file.....................................................................................................................................................150

Table 5: conceptual hierarchy of implicit and explicit feature constraints.......................................156

Table 6: parameter description of SolidWorks CreateConicalSurface2 function............................170

Table 7: parameter description of AutoDesk Inventor PutConeData function................................172

Table 8: genetic algorithm string values mapped to concatenated function parameters..................190

Table 9: averaged value of CAD match operations of GA variants as a fraction of required CAD 

match operations for combinational search......................................................................................202

Table 10: shape matching method categories...................................................................................275





 1  Research Overview and Structure

 1 Research Overview and Structure

Stating the research question at the outset presents an opportunity to unravel the form 

that this research has taken in answering it. This is as follows,

Given that it is possible to fully or partially recreate parametric CAD models between 

heterogeneous CAD programs using a mapped sequence of API feature functions, is it 

then possible to automate the process of mapping a functional equivalence between 

heterogeneous CAD feature libraries?

This question must be qualified, the assumptions made explicit and the supporting 

research identified. This cannot be immediately satisfied in detail within an introduction to 

this research, but is addressed in the opening chapters of this thesis (Chapters 2, Chapter 

3).

However, this research question may be inverted to define a research aim; to 

automate a task of identifying CAD program API functions that exhibit the same 

behaviour. This can be characterised as a search problem, where two functions that exhibit 

a specified degree of similar behaviour satisfy a goal criterion. There are three distinctive 

research areas that are reflected in the research objectives below. These three separate 

lines of inquiry may be justified by their individual contribution to the research aim.

Searching for equivalent functions between CAD API requires a comparison of the 

thousands of individual functions contained in a commercial API (Chapter 5.7, Parsing of 

API text data), the multiplicity of potential combinations of function parameters create a 

large combinational search space. A hybrid search strategy is proposed that separates the 

research into three separate and distinct strands. This hybrid search compares multiple 

aspects of function description and behaviour to reduce this matching search space. These 

function characteristics are common to all CAD API functions, namely semantic 

description and geometric behaviour. They may be introduced here as follows.

 1 Research Overview and Structure



 1  Research Overview and Structure i

Semantic Text Matching

Feature functions are described by a function name, parameter names and 

descriptive text within API documentation or code libraries (Chapter 4.2, 

Descriptive text labels used within Application Programming Interfaces). These text 

descriptions may be compared using existing methods of semantic comparison. 

There is no published research describing the efficiency of semantic methods used 

to match CAD API function texts. 

The first research strand tests the matching success of a range of methods on 

text data taken from commercial API documentation. These methods are introduced 

in Chapter 4 and the results are presented and examined in Chapter 5, (See Figure 

1).

Surface Geometry Comparison

The second research strand allows surface geometric models to be compared, 

returning a numerical measure of similarity. These methods are presented in 

Chapter Error: Reference source not found and their subsequent evaluation in 

Chapter 7. This similarity measure can automate the comparison of API function 

operation as follows. A CAD feature function creates or modifies a geometric 

entity; if the two geometric entities that result from function operations within 

separate CAD programs produce a measurably similar shape, then it may be 

inferred that these two functions are functionally equivalent.

There is no universal algorithm to reliably compare geometry between 

heterogeneous CAD programs, this claim is elaborated in Chapter 6.5, Point cloud 

registration techniques. The second strand of research develops and tests a method 

that returns a geometric comparison between surface geometry models 

independently of affine transformation. This resultant metric facilitates a machine 

search for comparable functions and forms the basis of the robust GA parameter 

search method undertaken in the third strand of the research.

 1 Research Overview and Structure



ii  1 Research Overview and Structure

Equivalent Parameter Matching

The third part to this thesis finds a mapping between function parameters using a 

Genetic Algorithm, this is a representative strategy applicable to this general class 

of problem. The method may be extended from finding a mapping between 

parameters of a pair of functions, to testing for mapping across a set of functions. 

This strand of research strand implements and tests a robust search function to find 

function parameters with equivalent behaviour. Rather than comparing a number 

of different methods over a common data set as is the case for semantic text 

matching, a relatively simple local search method is used to demonstrate how 

parameter combinational search space may be reduced to computationally efficient 

dimensions. The description of function parameters, and heuristics to reduce their 

search space are described in Chapter 8. This chapter introduces various non-

deterministic search methods, the following Chapter 9 uses a Genetic Algorithm to 

demonstrate the parameter search space reduction heuristics.

1.1 Research Philosophy

The methods in this research have been selected according to a reductive strategy that 

adopts the most elementary apparent solution and subsequently determines the 

deficiencies of this method. The rationale behind this is twofold. Firstly, by demonstrating 

that a relatively simple solution has quantifiable performance gains, such as a basic 

genetic algorithm used in a combinational search problem, it justifies the value of an 

exploratory research without the overhead of excessive complexity or test variables.

Secondly, it signposts obvious optimisation. For example the concept of a geometry model 

centroid works well as a basis for a unique model signature independent of rotation, but 

has limitations as the basis of a feature region search method that are readily resolved 

with a more complex schema. 

From this general introduction to the research, it is possible to specify a more 

precise definition of the research question and corresponding research aims and 

objectives.

1.1 Research Philosophy



 1  Research Overview and Structure iii

1.2 Research Objectives

This research examines practical methods to evaluate and test the similarity of features 

that generate CAD models within different programs. Two manual approaches that allow 

identification of CAD feature similarity are codified as machine tasks. These methods can 

be described as the recognition of equivalent CAD model geometry alongside the 

identification of semantic equivalence in the textual description of CAD features. With 

this in mind the objectives can be specified with greater clarity:

Objective I: devise and test an algorithm capable of identifying two equivalent 

geometrical surfaces independent of scaling, rotation and translation while 

independent of vendor specific CAD programs.

Preliminary investigation indicates that there is no method to compare the exact 

geometric representation of CAD model geometry between heterogeneous CAD program 

representation. The established method is to translate the surface boundary representation 

to a neutral common format. This approach is limited by the translation from the native 

representation to the neutral format and by the constraints of geometric representation 

within the format. Therefore a means to directly interrogate the geometric similarity of 

models with heterogeneous CAD model spaces is required.

 An algorithm must be able to recognise a similar feature that is at a different 

orientation or location within a CAD model space. Any shape comparison must be 

invariant to affine transforms as there is no guarantee of consistent orientation or position 

within the model space of different CAD programs. If the geometric model representation 

generated by one CAD feature function can be compared against the model generated by a 

feature function in a different CAD program, it is possible to validate whether the two 

feature functions are geometrically equivalent. For an algorithm to make this comparison, 

it must operate within each CAD program to return geometric properties that can be 

numerically tested. As unknown function parameters may create objects of different 

orientation, scale or absolute position, this requires comparative testing methods to be 

1.2 Research Objectives



iv  1 Research Overview and Structure

invariant under spatial transforms that preserve relative geometry. An extension of this 

objective is the ability to quantify a measure of similarity between geometric shapes. The 

chapters dealing with this objective are shown in Figure 1, within the box titled “Surface 

Geometry Comparison”, it is also shown how this method is instrumental to the local 

search techniques to map parameters, shown in the box titled “Genetic Algorithm 

parameter search”.

Objective II: devise and test a method capable of identifying the range of geometrical 

operations normally found within representative commercial CAD programs.

Any method that can determine a geometric match between surface models within their 

native CAD environments must function with the full range of permissible shapes 

encountered within these environments. While the requirements to empirically prove a 

method for all possible shapes is impractical, it can be shown that complex shapes can be 

decomposed into a bounded set of simple geometries which can be uniquely identified. A 

complete geometric matching method should satisfy this requirement. A minimal set of 

identifiers is described in Chapter 6.25.

Objective III: determine the applicability of semantic matching methods suited to 

identification of CAD software API function matches. 

Semantic matching methods are adapted to relatively long documents with comparatively 

sparse information. Generic schema matching methods use label syntax and structure 

matching heuristics. This approach is unsuited to the short texts used to describe function 

operations and parameters within program interface support. There is relatively little 

research on the effectiveness of semantic matching techniques for mapping API functions, 

semantic matching algorithms are not optimised for the short, terse phrases within 

function and parameter names or the descriptive text accompanying functions. A number 

of promising semantic similarity methods can be tested on a selected set of known API 

function documentation text matches and compared with conventional document retrieval 

1.2 Research Objectives



 1  Research Overview and Structure v

metrics for a set of known API function matches. Examples of suitable methods include 

the WordNet corpus and the Word2vec method. Chapter 4 introduces the methods tested, 

these tests are described in the following Chapter 5. Figure 1 shows the research related to 

this objective within a box titled “Semantic matching”.

Objective IV: demonstrate how a measure of surface boundary geometry similarity 

may be used to map features between heterogeneous CAD programs, where features 

are defined by interface library routines.

Parametric CAD features are defined by function operations within the CAD program 

architecture, parametric features may be conceptual model artefacts such as a “flange” or 

geometry operations such as a “loft”. These features are specified by both explicit and implicit 

function parameters which manifesting as a determinate CAD model surface geometry.

While it is straightforward to determine that two functions that produce a similar model 

geometry are nominally equivalent, it is not a simple task to reverse this process and validate the 

similarity of two feature functions by a comparison of model geometry. Without a mapping 

between function parameters, equivalence validation becomes a combinational problem. To 

address the research question, it should be possible to show how the algorithm described in the 

first research objective allows an automated mapping of functional equivalence between CAD 

function libraries. Chapter 8 describes the heuristics and search methods used, this is followed by 

a demonstration of the techniques in Chapter 9. Figure 1 shows the relevant thesis section in as 

box marked “Genetic Algorithm parameter search”.

Note that these objectives are referenced again in the final Chapter 10.1, where the 

methods used to fulfil these objectives are listed, alongside their location within the thesis 

text.

1.2 Research Objectives



vi  1 Research Overview and Structure

1.3 Research Methodology

It is instructive to locate the methodology in this research within the framework of an 

established paradigm. A research methodology is an abstracted strategy of selecting and 

employing research methods to useful effect, generally following an uncontested and 

familiar format.

The natural and life sciences employ a long standing tradition of positivism, 

advancing a hypothesis determined from inductive reasoning and observation, which is 

subsequently proved or disproved using empirical observation or experiment. Theories are 

described in sufficient precision to allow them to be disproved. Social sciences generally 

uses a more qualitative observation to support theory. Computer Science and engineering 

differs from these established paradigms by virtue of a conceptual or physical artefact 

created to address an identified problem and the subsequent evaluation of this artefact in 

achieving its intended aims. Peffers describes this design research artefact as follows 

(Peffers et al, 2007),

“Conceptually, a design research artifact can be any designed object in which a 

research contribution is embedded in the design.”

This methodological approach, termed Design Research, has established a consistent 

approach to the principles, pursuit and presentation of research within the overlapping 

domains of Information Systems, Computer Science and Engineering (Hevner & 

Chatterjee, 2010). The Design Research process, or alternatively Design Science Research 

process is generally described as a sequential series of steps as follows,

• identify problem

• define solution objectives

• design and development

1.3 Research Methodology



 1  Research Overview and Structure vii

• demonstration

• evaluation

• communication

These steps may be iterated, or circumscripted to further knowledge generation (Eekels & 

Roozenburg, 1991; Nunamaker et al, 1990; Hevner et al, 2004; Vaishnavi et al, 2015). Note 

that this evaluation tends to ascertain how well an artefact works, rather than how or why 

it does so (March & Smith, 1995). 

There is no published optimal mathematical procedure to effect the set of geometry 

operations within all CAD programs. In this research, the identification of an automated 

process to map equivalent operations between CAD programs serves as an artefact that 

embodies sufficient exploratory detail to justify selection of a Design System research 

methodology. 

This research and thesis is structured according to the twofold activities of Design 

Science identified by March and Smith, namely build and subsequently evaluate. As there 

are three complementary concepts constructed as design artefacts, namely that of 

semantic comparison, geometric comparison and GA parameter searches, they appear in 

separate, sequential chapters. The evaluation of the three resultant instantiations, or 

artefacts, are described sequentially in three following chapters. See the “roadmap” 

describing the thesis structure in Figure 1.

The identification of a problem may be that of an issue that is well documented within 

the field, or the recognition of an issue that is not yet understood to pose a challenge to 

development within this field (Gregor & Hevner, 2013). The significance of a research 

question must be justified, as must the chosen approach to determine a useful resolution. 

A research question is a foundation to a conceptual framework that supports the defined 

research objectives. This conceptualisation lends structure to the architecture of a 

1.3 Research Methodology



viii  1 Research Overview and Structure

proposed artefact or method that addresses the research question, ideally providing a 

rationalisation for subsequent implementation and testing. 

In Chapter 2.1 to 2.7, an economic case is made to support increased interoperability 

between heterogeneous engineering design software. The specific issue of data loss in 

transfers made between parametric Computer Aided Design programs is described in 

Chapter 2.10 - 2.11 and Chapter 3.6 - 3.7.

An overview of recent research approaches is presented in the remainder of Chapter 3, 

where the trend for a prescriptive approach to imposing interoperability is supplanted by 

methods to discover equivalence between software functions. The research described in 

this thesis continues this trend towards mapping CAD feature functions, describing and 

evaluating methods to automate this process.

The solution objectives identified are based on the most simple proposition to automate 

the task of manually identifying and mapping CAD API feature functions, namely that the 

methods used by a translator are automated. This may be broadly defined as three 

translator approaches, namely,

• The manual identification of similarities of text descriptions of CAD API functions, 

whether in API documentation, functions names or in stub libraries. Computational 

semantic and syntactic comparison methods are adapted to the short, information-

dense descriptive strings associated with concatenated function names and the 

terse descriptions found in documentation.

• Two or more feature functions may be considered equivalent in operation if they 

may be configured to create geometric shapes or transforms that can be measured 

to have a specified degree of similarity. Without prior knowledge of function 

parameter mapping, a geometric comparison may create geometry that has been 

translated, rotated or scaled relative to one another. While a human operator might 

immediately recognise similarity between CAD function outputs, it is not a trivial 

problem for machine comparison. A proposed solution objective is the machine 

1.3 Research Methodology



 1  Research Overview and Structure ix

recognition of similarity between geometric surfaces independently of affine 

transformation.

• Searching for parameters that create a comparable geometry between functions 

undergoing comparison is an additional action that a translator performs to support 

the geometric comparison validation described in the second method. This task of 

mapping parameters may be considered as a search problem that can use the two 

techniques outlined above. A directed search method is proposed that takes 

advantages of the measure of increasing similarity afforded by the geometric 

similarity method.

One advantage of automating methods used by a human operator is that there is no 

recognised threat to future validity of these methods. Vendors will continue to publish 

descriptions of API functions and these functions will continue to perform a measurable 

outcome within a Cartesian virtual model space.

The design and development of an artefact alone is not a contribution to research, 

however the embodiment of novel methods or technology within an artefact may serve as 

a basis for a contribution towards basic research. Nunamaker et al describe several criteria 

that validate the development of artefacts in support of IS research as follows,

• The purpose of this artefact addresses an important issue within Computer Science

• This contribution is not trivial and represents an improvement over existing 

systems.

• This artefact may be tested against the defined objectives.

• The methods employed in constructing the artefact may be used within a broader, 

more generalised application

 (Nunamaker et al, 1990). Hevner and Chatterjee identify an important epistemological 

concept within Design Science, that of iterative circumscription (Hevner & Chatterjee, 

1.3 Research Methodology



x  1 Research Overview and Structure

2010). This concept formalises the intuitive computer science process of increasing 

knowledge through the refinement of a software implementation.

The three research objectives above are described in Chapter 4 - 5 for that of semantic 

similarity measurement, Chapter 6  for that of geometric similarity measurement and 

Chapter 8 - 9 for that of the evolutionary directed search technique. Each of these chapters 

describe the concepts used to create an artefact that embodies these objectives, in each 

case this manifests as a software implementation. During the course of development, 

further considerations arise as a consequence of the design approach and are described. 

For example, the helical point sequencing method described in response to adoption of fast 

SVD model registration (Chapter 6.17). This cyclical process of development, testing and 

refinement is what Vaishnavi et al describe as iterative circumscription (Vaishnavi et al, 

2019).

Evaluation of the three concept instantiations may also be described within the Design 

Research paradigm. As the evaluation strategies differ over the three instantiations, they 

are described separately in detail below. In their description of Critical Realism applied to 

Mixed Methods Information Systems research, Zachariadis et al describe a retroductive 

analysis equivalent to a post hoc hypothesis of phenomena observed during experimental 

analysis. This approach is used in this research where experimental results merit further 

analysis (Zachariadis et al, 2013). 

In the case of short text semantic comparison, existing techniques are supported by 

relatively few theoretical concepts. The distributional hypothesis (see Chapter 4.3), the 

term frequency, path length and information content account for most of the concepts 

supporting semantic similarity comparison measures. It is difficult to predict the efficiency 

of these techniques when used on short, information-dense technical phrases. 

Consequently, most relevant techniques are compared over several representative datasets, 

namely hand-compiled matches from commercial CAD API documentation, in what 

1.3 Research Methodology



 1  Research Overview and Structure xi

Venables et al term a naturalistic evaluation strategy. A quantitative statistical evaluation 

allows direct comparison between methods and their combinations, such as the semantic 

similarity methods used for single words used in combination with a greedy optimisation 

for short phrase comparisons (see Chapter 5.3). The number of discrete variables such as 

word2vec parameters are limited by research scope, but a representative range of 

comparison methods over a narrow technical corpora highlights methods that show future 

potential.

Separated mixed methods are used for evaluation of the geometric similarity 

comparison method as follows. Firstly, quantitative analyses use an existing library 

compiled with the express purpose of benchmarking CAD shape matching methods. This 

approach allows a direct comparison against other methods (Bespalov et al, 2005). The 

validity of these tests are limited by the complexity of the primitive models used. A 

qualitative assessment is made of complex models from this same library. The mix of both 

methods is justified where there are constraints on the scope of variables that may be 

addressed by a quantitative survey in the time available, and where both contribute to a 

broader perspective on the relative merits and shortcomings of a design concept 

(Venables, 2016; Fielding, 2012).

The Genetic Algorithm search method described in Chapter 9.1 is evaluated using 

quantitative methods in Chapter 9.2.1. Two case studies are tested using several 

independent variables and the results directly compared against a default combinational 

limit.

1.3 Research Methodology



xii  1 Research Overview and Structure

1.3 Research Methodology

Figure 1: Thesis structure



 1  Research Overview and Structure xiii

Content Overview

The introduction to this thesis (Chapter 2) deals with the general problem of 

interoperability between computer data formats within engineering disciplines and 

commercial enterprise. The methods and difficulties encountered with interoperability 

strategies are outlined alongside the context of organisational constraints. Interoperability 

is synonymous with progress in a range of industries, from multi-tier supplier networks in 

high value manufacturing to Building Information Modelling, the role of enhanced 

interoperability between engineering domains is examined. Computer Aided Engineering 

domains that share the physical, test and manufacturing data associated with product data 

are introduced, namely Computer Aided Design, Computer Aided Analysis and Computer 

Numerical Control machining. The concept of parametric CAD modelling is introduced to 

place the difficulties of CAD data interpretation between vendor products into context. 

Commercial methods to attain interoperability within Computer Aided Engineering are 

summarised, as are their respective shortcomings. This includes research efforts that adapt 

formal reasoning to identify semantic mapping between parametric CAD definitions, 

emphasising a need for machine searching and verification of prospective semantic 

matches.

Chapter 3 describes previous efforts to solve issues of interoperability between CAD 

programs. The difficulties encountered by the ongoing ISO10303 standardisation initiative 

of parametric CAD formats are described. These problems, such as the so-called 

“persistent naming problem” highlight the intractability of semantic and procedural 

inconsistency between various closed-source commercial CAD programs. Alternative 

strategies and their relative success are described, such as the Macro-Parametric approach, 

which compiled a core set of universal CAD feature operations, the Universal Product 

Representation which uses a database of likely equivalent function candidates to test for 

compatibility between models, and the Three-Branch model which proposes a combination 

1.3 Research Methodology



xiv  1 Research Overview and Structure

of semantic and geometric information to facilitate automated CAD mapping. Research 

efforts have moved from a prescriptive standardisation effort to automated methods of 

verifying geometric and conceptual equivalence between CAD model features. This 

chapter touches on the Hausdorff measure to determine geometric shape equivalency and 

the Hoffmann query protocol for direct numerical comparison of CAD model geometry. 

Most of the formalisation efforts to create a universal semantic taxonomy for 

parametric CAD resulted in research ontologies. These constitute a diverse field in their 

own right, but also suffer from a limited adoption by vendors. The use of formal methods 

to determine interoperability is tangential to the central thesis and is listed in Appendix A.

Chapter 4 introduces the field of semantic matching within text documents. A brief 

description serves to introduce popular measures used to determine relationships between 

single words and texts. The methods used can be based on word relationships derived 

from manual or machine compiled corpora. The methods suited to matching short, dense 

texts are described, existing document retrieval methods are unsuited to the terse labels 

and descriptions associated with function API. The efficiency of these techniques is 

subsequently tested in Chapter 5.

Chapter 5 describes the requirements of text similarity evaluation for short texts 

associated with application programming interfaces. Documentation describing CAD API 

is parsed to yield sets of words. The similarity between all combinations of these words is 

calculated using several measures used with compiled corpora and similarity measures 

calculated using statistical models. These word similarity matrices are used in conjunction 

with the greedy method and compared with other document retrieval methods to test two 

sets of known matches between CAD API function descriptions. The relative performance 

of these techniques is evaluated with several document retrieval ranking measures.

Chapter 6 describes a CAD model geometry matching method suited to automated CAD 

feature function matching. A universal boundary surface query derived from intersection 

of a vector with a model surface is determined to be a widely implemented feature of 

1.3 Research Methodology



 1  Research Overview and Structure xv

commercial CAD programs. Comparison of geometric surfaces requires that surface 

sampling is invariant to model orientation or position, requiring that sets of point 

intersections between models may be accurately registered. A closed-form SVD solution is 

described that requires key feature points for model registration. These feature points also 

perform a role as a pose-invariant model signature for matching. A novel search method is 

described to identify several variants of surface features for model registration.

Chapter 7 tests the affine-invariant geometry matching method on a benchmark CAD 

shape comparison library. The precision and recall of this method is measured over simple 

geometry models that are randomly scaled, orientated and positioned. An example of a 

matched complex geometry model is given, using a partial complement of feature 

registration points.

Chapter 8 examines the constraints of parametric models in detail and proposes a genetic 

algorithm search method for efficient discovery of CAD function equivalence. This method 

uses a simplified variant of the geometry matching method as an objective function. A 

number of simplifications to feature function parameters are developed to reduce the 

combinational search space. A stochastic search using an evolutionary algorithm is 

developed for the purpose of mapping individual parameter relationships.

Chapter 9 demonstrates the function matching genetic algorithm proposed in Chapter 8 

across a binary and trinary parameter representation. A single objective GA reduces 

geometric difference between the models created by independent CAD functions. A multi-

objective test combines minimisation of geometric distance with a bias toward default 

zero-valued function parameters. A semantic similarity comparison is applied to the 

respective parameter labels and the determined values subsequently used to bias GA 

mutation. 

Chapter 10 summarises the findings of the research directions and speculates on future 

directions that hybrid machine API mapping might take,

1.3 Research Methodology



xvi  1 Research Overview and Structure

Appendix 12 provides a historical summary of the use of ontologies to provide semantic 

interoperability between heterogeneous CAD and CAE functions. The various approaches 

to ontology specification are described alongside the difficulties of populating top-down 

prescriptive models against discovering bottom-up descriptive models. 

Appendix B compiles popular methods of shape matching from the disparate fields of 

image matching, point cloud registration, 3D shape retrieval and CAD model comparison. 

An overview of view-based, histogram-based, transform-based and graph-based methods 

is given to justify the requirement of developing an accurate and rapid multi-stage 

comparison method for determining CAD model equivalence.

Appendix C is a table showing the test outcomes for single model matching results 

from the test described in Chapter 7.

1.3 Research Methodology



 1  Research Overview and Structure xvii

All product and company names are trademarks™ or registered® trademarks of their respective 

holders. Use of them does not imply any affiliation with or endorsement by them. 

CATIA, SOLIDWORKS  are trademarks or registered trademarks of Dassault Systèmes or its 

subsidiaries in the United States and/or other countries. 

Rhinoceros is a registered trademark of Robert McNeel & Associates. 

Autodesk, AutoCAD, Inventor, Fusion360 are registered trademarks or trademarks of Autodesk, 

Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. 

NX software is a registered trademarks of Siemens Product Lifecycle Management Software Inc. 

or its subsidiaries in the United States and in other countries. 

ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, 

product, service and feature names, logos and slogans are registered trademarks or trademarks of 

ANSYS, Inc. or its subsidiaries in the United States or other countries. 

Parametric Technology Corporation (PTC), PTC, the PTC logotype, Simple Powerful Connected, 

The Product Development Company, Pro/ENGINEER, Wildfire 2.0 and all PTC product names and 

logos are trademarks or registered trademarks of PTC in the United States and in other countries. 

All other trademarks cited herein are the property of their respective owners.

All company, product and service names used in this website are for identification purposes only. 

Use of these names, trademarks and brands does not imply endorsement.

1.3 Research Methodology



2   Introduction 1

2  Introduction

The coordination of enterprise operations dictates the structure and efficiency of a 

traditional manufacturing firm. The quality of information transfer between operations is 

tantamount to coordination effort, this quality of information transfer is in turn dependant 

on the ability to seamlessly interpret information. The automation of data processing is 

transforming the design activities and specialised analysis integral to modern production 

methods where transfer of specialist information between domain experts has largely 

become the transfer of computer software data between diverse computer programs

 Domain-specific software applications process the information generated within 

these knowledge domains and data exchange between these specialist programs 

constitutes a significant proportion of necessary communication between enterprise 

agents. Products or constructions of any complexity require coordination of multiple 

subcontractors and subcomponents, product data is shared between designers, engineers, 

sub-contractors, suppliers, marketeers, production process planners, logistics planners and 

others. While software vendors develop products aimed at these specialist domains, 

enterprises expend commensurate resources integrating these diverse programs within a 

cohesive system. Business analysis software and engineering software are considered to be 

instrumental in the efficiency of the services, manufacturing and construction economy. 

The range and complexity of communication between networked enterprises or enterprise 

agents determines the efficiency of participation within a market, in the form of lower 

transaction costs and wider market. The rapid evolution of cheap computational 

processing capacity has spurred development of intensive computational applications such 

as three dimensional modelling software and finite element analysis software used to 

predict physical behaviour of modelled objects. 

The increasing complexity and diversity of these programs outstrips efforts to 

standardise the format of data exchanged leading to imperfect transfer of data between 

heterogeneous software (Panetto & Molina, 2008). Development of new functionality 

within an engineering software must necessarily create technical incompatibility with 

2   Introduction



2 2   Introduction

comparable legacy software. Software vendors release new versions of their products and 

withdraw support for older versions, requiring ongoing development to provide 

interoperability with competitor software. This trend is particularly burdensome for Small 

to Medium Enterprises that may have to interact with several different competing formats 

within a commercial network of several buyers (Le Duigou et al, 2011). In many cases the 

software and underlying operating system has a shorter lifespan than the product it is 

used to specify, in these cases data archival becomes challenging. (Ball et al, 2008; 

Heutlebeck et al, 2009; Peeling & Satchel, 2001). 

Within engineering industries, the cost of data loss between different agents is 

variously estimated. The National Institute of Technology and Standards commissioned a 

study indicating that a billion dollars was lost annually within the US automotive chain 

(Tassey et al, 1999). A similar NIST study of interoperability-related issues within the US 

capital facilities industry revealed an annual loss of $15.8 billion, notably in the transferral 

of data between CAD and other engineering software (Gallaher et al, 2004). These surveys 

and others indicate that this expense is caused by translation and remodelling costs of 

geometry data files exchanged between manufacturers and suppliers. Estimation of 

imperfect interoperability is a cost that is commonly overlooked (Horst et al,  2010).

Standardisation has historically been seen as the primary means to provide a 

neutral basis for transaction between industries (Tassey, 2000). The standardisation of 

Computer Assisted Engineering software exchange formats have proceeded alongside that 

of CAE software development, but the process of standardisation consensus lags behind 

industry practice. The International Standards Organisation promotes a number of 

standards and a neutral exchange format, STEP, to address the compatibility issue between 

CAD programs (Pratt, 2001). Incomplete implementation of the STEP format by 

commercial vendors and dated geometrical definitions have led to slow industry adoption 

(Gielingh, 2008). This leads to improvised and sub-optimal procedures, for example the 

Aerospace Industries Association of America publishes recommendations on assessing 

errors in STEP data translations (AIA EDIG Guidebook, 2013), while the trend amongst 

2   Introduction



2   Introduction 3

automotive manufacturers is to dictate the software format that suppliers must use (Gerst 

& Bunduchi, 2005). 

2.1 The economic case for enterprise interoperability 

This research was originally motivated by the observation that there appears to be little 

equivalent to the Open Source computer science community phenomenon within the 

domain of mechanical engineering and manufacturing. Unlike the open source software 

environment of operating systems, compilers and allied tools, the programs used within 

the engineering community are relatively expensive commercial closed-source products 

that use proprietary data formats. Exploring issues of interoperability between 

engineering application software uncovered wider related problems across industry 

software. Interoperability itself has several definitions, within the context of data 

transferral between computer systems it is sufficient to define interoperability as,

 the accurate and automatic interpretation of the meaning of information  

exchanged by two or more computer systems, 

(Paviot et al, 2009). This definition satisfies both technical and semantic interoperability 

concepts specified by Kosanke (Kosanke, 2004). Organizational interoperability is a 

correlated measure of business transactional cost that is related to technical and semantic 

interoperability (Paviot et al, 2011). Hoffmann introduces a useful definition of 

interoperability within the context of creating intermediate geometric model 

representations within defined precisions (Hoffmann et al, 2013). This interpretation is 

revisited in Chapter 3.12,  Representative proxy model and query protocol.

Information Communication Technology is considered to lower the cost of market 

transactions (Malone et al, 1987). Transaction Cost Theory uses the market transaction 

costs model to predict that the size, structure and success of an enterprise is determined 

by the organisation configuration dictated by transactional costs. If the management 

overhead in communicating with outsourced transactions is more than that for equivalent 

in-house operations then the enterprise should expand to incorporate these operations. 

2.1  The economic case for enterprise interoperability 



4 2   Introduction

Conversely, if Information & Communication Technology lowers the management 

communication costs of outsourcing, it is more efficient to adapt the enterprise size to 

those operations that still require detailed management and interpersonal interaction. 

 Enterprise Architecture and Enterprise Modelling theories formulate the optimal 

configuration of future enterprises. Virtual Manufacturing Enterprise organised around 

lowered communication costs predicts the replacement of interpersonal interaction within 

the traditional manufacturing plant with a distributed multi-agency model of specialist 

processes. These new paradigms can be seen in the proliferation of start-up enterprises 

based around the rapid crowd-funded design and manufacture of innovative consumer-led 

products. In many cases the engineering, prototyping and production of these products is 

entirely outsourced.  

These initiatives are supported by a decoupling of the enterprise domains from the 

traditional integration within a firm. Within manufacturing, the change from Dedicated 

Manufacturing Lines associated with mass production to Flexible Manufacturing Systems 

and Reconfigurable Manufacturing Systems allows manufacturers to cheaply adapt 

production lines to different products. Cheap re-tooling allows manufacturers to solicit 

low-run production from external companies. Efficient data transfer underpins the 

development of a more distributed and agile production economy.

2.2 Small to Medium Enterprises

Small to Medium Enterprise market engagement can depend on the ability to provide a 

niche service or product. The efficiency of this process is dependent on the quality of 

coordination data available (Rullani et al, 2000). Capturing a specialist technological 

market requires tightly-coupled integration with supporting suppliers and buyers. In the 

case of tiered suppliers to Original Equipment Manufacturers, SME viability stems from 

coordinated Supply Chain Integration, where transactional costs are offset by niche 

specialisation. For SME to participate in the design process of product development, this 

can require native access to the engineering applications used by the coordinating 

2.2  Small to Medium Enterprises



2   Introduction 5

enterprise. In the case of automotive subcomponent suppliers, the Original Equipment 

Manufacturer will mandate the use of specified PDM or CAE software to participate in the 

supply chain (Global Supplier Info Pack For FEDE-C3PNG Integration, 2017).  Where a 

SME solicits business from several OEMs, there is a requirement to license several CAE or 

PLM systems to retain compatibility. As the licensing costs of industrial CAD programs 

represents significant capital expenditure for a SME, this presents a market barrier (Lomas 

& Matthews, 2007). A recommended method for aeronautical engineering translates CAE 

data to a neutral CAE standard format (ISO 10303 STEP) and then advises the capture of 

mismatches between the proprietary CAE data and the neutral CAE formatted data. 

(Aerospace Industry Guidelines For Implementing Interoperability Standards For 

Engineering Data, 2013). Surveys also indicate that a significant percentage of data models 

received by SME engineering firms require rework or remodelling, translation between 

different CAD formats is an expensive process that introduces errors and loses data 

(Peruzzini et al, 2011). Note that the dataset of smaller SMEs in OECD statistics is under-

represented, there is an administrative burden in obtaining data from companies with 

employees of five or fewer members, furthermore, there is generally a poor response from 

such enterprises that is attributed to the relative administrative overhead involved 

(Atkinson, 2004).

2.3 Integrated software and Product Lifecycle Modelling

Within larger companies, Product Lifecycle Modelling (PLM), is a platform to share data 

between engineering design and analysis applications; this addresses transfer of 

geometrical design data to models suited to numerical analysis and facilitates design cycle 

versioning (Assouroko et al, 2010; Le Duigou et al, 2011). PLM packages have developed 

from CAD and Product Data Management products representing production management 

tasks or Enterprise Resource Planning technologies that may span entire operational 

planning requirements for a business (see also Section 8, Decentralised Enterprise and 

other manufacturing paradigms). Until recently, these large and specialist platforms have 

been beyond the reach of SMEs owing to their high cost of purchase and integration 

2.3  Integrated software and Product Lifecycle Modelling



6 2   Introduction

(Subrahmanian et al, 2005). Lately, off-the-shelf packages been adopted by SMEs. Studies 

of PLM adoption by French SMEs suggest that they are used as a cost effective means of 

CAE interoperability (Bidan et al, 2005). 

Poor CAE application interoperability is being substituted by PLM platforms, 

however PLM systems that are not extended proprietary CAD products limit interaction 

with product data files to visualisation (Van Wijk et al, 2010). PLM vendors have evolved 

from Product Development platform vendors (e.g. UGS PLM Solutions, Tecnomatix, IBM-

Dassault, Windchill), Enterprise Resource Planning platforms (Baan, SAP, Oracle) and 

more generic business ICT integration platforms (Microsoft, MatrixOne, Agile) (Terzi et al, 

2006; Le Duigou et al, 2011). Integrated product design systems that provide the individual 

design, visualisation, numerical analysis and versioning applications on a single platform 

(normally by virtue of sharing a geometric kernel) are generally priced beyond the scope 

of SME. 

2.4 Concurrent Engineering

While customary engineering practice has been to tackle product design and analysis in a 

sequential cycle, Concurrent Engineering defines a practice of running separate product 

design and analysis processes simultaneously to reduce product development time.

This approach obliges process planning and test analysis evaluations to be shared 

during early stages of the design phase. Productivity gains arising from concurrent 

engineering teams are offset against the greater transfer of engineering data between 

product domains (Yassine et al, 2003).

Successful concurrent and collaborative engineering practice places high 

interoperability demands on CAE application integration, one approach is to buy multiple 

seat licenses for a turnkey CAE integrated platform. The design of the Boeing 787 aircraft 

used Dassault Systems PLM platform comprising CATIA V5 CAD, DELMIA DMS 

visualisation and ENOVIA PDM. The thousands of engineers working on this global 

project used identical software and versions at $20k per seat licence. In 2006, the Airbus 

380 design famously used two different versions of a CAD package (CATIA V4, CATIA V5) 

2.4  Concurrent Engineering



2   Introduction 7

between partners, resulting in late stage interoperability problems and $6B losses (Ayubi, 

2011). The integrated platform approach is expensive. It represents significant investment 

and subsequent risk of future vendor "lock-in" and it also reduces the availability of 

alternative CAE applications that may be more suitable (Tassey, 2010). Automotive 

enterprises tend to use a range of different CAE products for the required 

electromechanical integration, design and testing. Different software is specialised for 

designing drivetrain, electromechanical and styling aspects. The design process involves 

active participation with first and secondary tier supplier chains. As mentioned previously 

in the context of SME expense, it is common practice to mandate supply chains to use the 

same PDM or CAD systems (Global Supplier Info Pack For FEDE-C3PNG Integration, 

2017). This requisite interoperability between supply chains, process designers and 

product designers places constraints on the viability of concurrent engineering.

2.5 Archival requirements

Engineering Informatics Archival is defined as the field of engineering information 

archival with particular reference to computer information. Archival of CAE application 

data presents the same issues as CAE application information interoperability. Once 

vendor support for legacy proprietary formats is lost, then all information that is 

inoperable with other applications is either lost or must be reverse engineered. Certain 

products such as aircraft, military hardware, medical hardware or public structures, have 

service lives that greatly exceed the lifespan of CAE application releases, or the underlying 

hardware and operating system. There may be legal, contractual or economic 

requirements to preserve CAE product data (Heutelbeck et al, 2009). While the 

recommended procedure is to utilise standard vendor-neutral formats such as ISO 10303 

STEP AP203, there are no suitable vendor-neutral programs to generate this data, and 

proprietary applications provide uneven implementation of recommended standards 

(Gielingh, 2008). Parametric features that capture design intent are not standardised across 

modern CAD programs, there is an uncertainty around the intellectual ownership of the 

definitions used to create design models (Patel & Ball, 2008). Where engineering 

2.5  Archival requirements



8 2   Introduction

information or design is defined in proprietary CAE applications and formats, the entire 

CAE system and underlying operating system and hardware may have to preserved. As 

many industrial CAE systems run on mainframes, this is an expensive proposition (Lubell 

et al, 2008; Peeling & Satchel, 2001).

2.6 Building Information Modelling

Building Information Modelling represents a coordination of the various agents required 

to complete a building, combining architecture with mechanical, structural and service 

engineering (Howard & Bjork, 2008). The Industry Foundation Classes, specified by the 

BuildingSMART Alliance is a widely used standard that captures semantic metadata on 

building modelling. The IFC specification works well for it's intended purpose, sharing 

visual data between stakeholders and contractors on a building project. However, the CAD 

programs that generate IFC metadata do not have consistent implementation of the 

protocol (Steel et al, 2012), and are reported lack validation processes for checking data 

exchange (Akinci et al, 2010). While some researchers envisage BIM as a future protocol 

for legal and contractual coordination on building projects, it appears that uneven CAD 

vendor support will limit this potential (Sebastian, 2010). A US survey from 2002 estimated 

an annual loss of $15.8B through interoperability inefficiency between stakeholders and 

contractors within the capital facilities industry. Studies indicate that incomplete 

interoperability is the major cost to the building industry (Gallaher et al, 2004).

2.7 Decentralised Enterprise and other manufacturing paradigms

To pursue profitability under increasingly global competitive pressure, manufacturing 

processes have been advanced to afford greater reconfiguration and a faster response to 

changing product specification (Sanchez & Nagi, 2001). The Agile Manufacturing 

paradigm is shifting towards mass customisation supported by Flexible Machining 

Centres. Reconfigurable Manufacturing Systems are emerging as a more efficient option to 

2.7  Decentralised Enterprise and other manufacturing paradigms



2   Introduction 9

FMS (Jørgensen et al, 2011). Where product line modularity and customer customisation is 

supported, there is an associated decoupling of manufacturing process from product. The 

emerging RMS manufacturing plant is not only more adept at fulfilling differing business 

orders, it is better placed to solicit orders of different businesses. Improved business and 

product data interoperability is seen as central to Agile manufacturing practice (Yusuf et 

al, 1999). These core tenets evolved into Enterprise Resource Planning, integrated business 

data processing and Product Lifecycle Management, the organisation of data generated 

from all aspects of product engagement. The models of responsive and reconfigurable 

manufacture-on-demand, coupled with projected technologies of design virtualisation and 

Collaborative Engineering give rise to speculative enterprise organisation.

Virtual Enterprise, or Virtual Manufacturing Enterprise are understood to be 

temporary consortia of existing enterprises that capitalise on market opportunity 

(Camarinha-Matos et al, 2003).  These organisation arrangements are characterised by 

purely network, usually internet, coordination. Cloud Manufacture is a wholly 

decentralised virtual enterprise. If the ability to share design, test and production data 

between agents is taken to a logical extreme, it amounts to a completely virtual production 

process (Tao et al, 2011; Souza et al, 2006; Stark et al, 2010; Romero et al, 2010; Wang, 2012; 

Romero et al, 2012). Other prospective manufacturing arrangements include 

Manufacturing-As-A-Service (MaaS), Distributed Manufacturing Systems, Peer Manufacture 

and CoDesign, (Butala et al, 2013; Haythornthwaite, 2009).While there are a range of 

implementation details and motivating agents, all of these prospective organisations are 

variations on a theme of decentralised product design and manufacture. Enterprise 

decentralisation extends existing efficiency developments accumulated from specialist 

services, close-coupled supply chains and lowered transaction costs. Each of these visions 

without exception are reliant on networked data interoperability. Each envision seamless 

exchange between heterogeneous software applications.

Enterprise Resource Planning and Supply Chain Management adoption have eroded 

market transaction costs of searching, discovering and comparing services (Turna, 1998, 

Steinfield, 2011; Malone & Benjamin, 1987).  This progress suggests that decentralised 

2.7  Decentralised Enterprise and other manufacturing paradigms



10 2   Introduction

production enterprise might occupy niches that are uneconomic for other forms of 

enterprise organisation. Where this line of reasoning comes adrift is the difference 

between the information exchanged over Service Oriented Architectures based on simple, 

self-describing web interfaces and CAE domain data that is shared as part of an iterative 

design cycle. There are consortia-based standards and international standards that can 

theoretically capture this data, but these standards are not well supported by commercial 

software. The reasons for this imperfect standards implementation within commercial 

products are described in detail in Chapter 3.6, Standardisation of parametric features.

2.8 An illustrative overview of Computer Aided Engineering domains

Systems engineering, product design and manufacturing process domains within 

production enterprise are lumped under the term Product Lifecycle Modelling (PLM) 

(Sudarsen, 2005). This term is distinct from Product Life Cycle Modelling (PLCM) that 

covers the business perspective of production while Engineering Informatics (EI), is the 

computerisation and coordination of PLM activities. 

It is helpful to illustrate the representation of an engineered object within several 

distinct CAE domains. The example is of a countersunk blind hole set in a circular plate. 

2.8  An illustrative overview of Computer Aided Engineering domains

Figure 2: CAD model of plate with countersunk hole



2   Introduction 11

A parametric Computer Aided Design program models the geometry and design 

constraints of the plate example as a cylindrical solid extrusion on a datum plane with a 

hole feature object of a countersunk variant subtype. Earlier three dimensional CAD 

programs may have explicitly modelled an oblong body intersecting a cylindrical void and 

a conical void. Typically CAD models serve as a master document that are referenced by 

other engineering, design and production teams. Recently these files tend to include non-

geometric model data such as materials specification and design notes, referenced as a 

Model Based Data paradigm. Figure 2 shows an instance of this model created within the 

FreeCAD parametric CAD program (Riegel et al, 2019).

Figure 3 show calculated stress and distortion of the earlier CAD plate model in Figure 2, 

reacting to an applied virtual force. A Finite Element Analysis uses the model surfaces to 

contain a generated lattice of space partitions, these finite model subdivisions then allow 

individual calculation of partial differential equations representing physical phenomena. 

This FEA model can then be used to test stress concentrations around this hole in the 

presence of applied force, or heat transfer through the plate if the model is subjected to a 

temperature differential.  These virtual techniques can greatly reduce or eliminate the 

2.8  An illustrative overview of Computer Aided Engineering domains

Figure 3: FEA model of plate under applied force.



12 2   Introduction

requirement of physical prototype testing. This analysis is part of the design phase of 

product engineering. Model analysis files are typically large and the process is numerically 

intensive, so it is customary to keep this data separate from geometry data. Examples of 

3D CAD parametric software include Dassault CATIA, while ANSYS is a well-known 

Finite Element Analysis software, the analyses Figures 1, 2 & 3 are generated within 

FreeCAD, an open-source parametric CAD/FEA/CAM project (www.3ds.com, 2019; 

www.Ansys.com, 2019; Freecadweb.org., 2019).

Computer Numerical Control machines typically remove workpiece material as part 

of a manufacturing production process. The geometry defined in the CAD model is re-

interpreted by a Computer Aided Manufacturing program according to the materials 

selection, the complexity of the geometry and the type of CNC machines available. These 

configuration selections might be further optimised by Computer Aided Process Planning in 

a large manufacturing plant. 

Figure 4 shows the calculated machining paths required to create a physical 

instance of the CAD plate model in Figure 2 using a Computer Numerical Control mill. A 

CAM program takes the surface geometry and calculates the machining operations to 

create the CAD model on the requisite machine. A CNC mill might require instructions to 

2.8  An illustrative overview of Computer Aided Engineering domains

Figure 4: CAM software generates a toolpath for a milling 
operation.



2   Introduction 13

move an end mill to the hole location and remove the cylindrical portion of the hole in a 

spiral motion, followed by selection of a ball end mill to remove the countersunk bevel. A 

CNC lathe might cut the geometry from cylindrical bar-stock, using a drill followed by an 

internal turning operation to remove the countersunk material. The finished piece might 

then be sliced from the bar with a parting tool. A 3D printer might build successive layers 

of laser-sintered metal or fused polymer filament to create the plate object. It becomes 

evident that the same piece can be manufactured in different ways on different CNC 

machines, requiring different toolpath planning operations. These operations typically 

take place as part of a production planning process, or may be carried out by independent 

subcontracting parts suppliers as CAM programs are frequently allied to CNC hardware. 

A Coordinate Measuring Machine measures the geometry dimensions of a 

manufactured part for acceptable surface tolerance variation. This process may be 

integrated into a production line, or may be a stand-alone process for small batches of 

machined products. The extraction of Geometric Dimensioning & Tolerance model data 

from the CAD model is still a time-consuming manual requirement in most cases.

2.9 Parametric CAD feature modelling

A parametric feature-based CAD program will create a geometrical representation of a 

model that is generated from a topological model. This model topology is structured from 

a configuration of parametric features, modelling shapes based on a predetermined 

morphology which form the building blocks of model construction. These features are 

sequentially added and refined by an operator at a Graphic User Interface or by a series of 

Application Programming Interface commands. CAD parametric features embody 

engineering, functional or topological concepts with a local semantic definition (Hounsell 

& Case, 1998). Their advantage over a purely geometric or topological model definition lies 

in the parametric variables that give control over the quintessential feature characteristics. 

CAD systems have evolved to use higher order representations of model aspects to 

reduce time spent in reworking models, geometrical changes can be generated by the 

2.9  Parametric CAD feature modelling



14 2   Introduction

application in response to changes in feature or topology definition. CAD systems possess 

functions to manipulate model feature parameters and organisation and there is generally 

a subset of command functions that are tightly coupled to the set of local CAD features. 

Earlier methods to translate CAD models between heterogeneous applications 

relied on geometrical translation; holes and surface anomalies are inadvertently 

introduced into translated models by different CAD programs. This can be partly 

attributed to the difference in algorithms used to generate CAD geometry. The sequence of 

operations used to recreate a translated CAD model may also cause splits and slivers in 

the geometry surfaces. Different CAD software uses different numerical precision and 

different schema for geometry tolerance that frequently cause defects in model 

reconstruction (Gerbino & Brondi, 2004). If CAD features are mapped between different 

CAD applications, this allows native models with associated topology, geometry and 

design parameters to be generated within the target CAD application (Seo et al, 2005; 

Altidor et al, 2009).The problem is then to find features with equivalent semantics between 

heterogeneous CAD applications.

2.10 CAE data transfer methods and their limitations

The STEP neutral format provides a theoretical means of transferring surface geometry 

between CAE applications, in this case the STEP Application Protocol 203, but other data 

created by different CAE analysis is poorly supported or missing (De Sapio, 2010; Gielingh 

2008; Goossenaerts, 2009). Certain high-level CAD vendors provide multi-analysis 

software that advertise seamless product data transfer between a suite of CAE analysis 

software. Some vendors create interoperability by sharing data from the proprietary 

geometry engine or kernel of their respective systems (Slansky, 2005).

These vendor products are aimed at large Original Equipment Manufacturers and 

typically represent significant capital investment.  Third party translators exist that will 

translate models between different CAD packages, these programs (or services) are neither 

inexpensive nor infallible and generally require intervention to clean up errors (Gerbino & 

2.10  CAE data transfer methods and their limitations



2   Introduction 15

Brondi, 2004). Some vendors now lease access to these suites of cloud services, but this 

still leaves issues of archival and data exchange between products of different vendors 

(Autodesk.co.uk, 2018). Commercial Product Data Management solutions have a relatively 

low uptake amongst SMEs, and are reported to be simply used to facilitate CAE software 

interoperability (Bidan et al, 2012). Interoperability of CAE systems is considered to be of 

particular economic benefit to SMEs, yet remains relatively inaccessible  (OECD 

Workshop 2000; Le Duigou, 2012). 

Much of the reasoning and data that is embodied within engineering design is not 

recorded within product geometry. Newer model formats attempt to capture this so-called 

“design intent”, other format additions capture qualities such as materials specifications, 

or product disposal recommendations. Efforts to adapt reasoning logic languages to 

capture product data semantic information have led to the development of an abundance 

of research models for information classification (see Part 12,  Ontologies for CAE 

interoperability  for details). Ontologies are structured specifications of domain 

information, and interpretation that define domain information relationships (Gruber, 

1995). Because ontologies formalise the interpretation of domain data, these methods have 

been seen as a solution to communicating data without misinterpretation. Ontologies are 

subject to the same limitations of interoperability as data formats, they are by definition 

domain specific, implemented by domain-specific experts and are usually not derived from 

an overarching meta-ontology (Ciocoiu et al, 2001). However, the techniques used for 

merging or mapping ontologies have been used to find mappings that translate 

information between CAE programs. In the case of Computer Aided Design information, 

it becomes possible to automatically verify semantic matches using geometrical data 

queries.

2.11 Mapping ontologies

Feature semantics and defining parameters are local to individual CAD applications, 

mapping features and the functions used to access them is a laborious task requiring 

2.11  Mapping ontologies



16 2   Introduction

skilled intervention. Research efforts have been directed at directed mapping using 

techniques from ontology alignment and bridging. Individual CAD applications can be 

viewed as local ontologies composed of the semantic organisation of features concepts and 

the command function parameters that control these features (Kim & Han, 2007). 

Interoperability between CAD programs may be achieved via a semantic mapping of the 

CAD API feature functions and their associated parameters (Wang & Wang, 2014). 

It would be a simple task if local CAD feature ontologies were derived from a 

universally accepted top-down product data ontology, many of which have been proposed 

(Ciocoiu et al, 2001). This is not the case, for the same reasons that prescribed product data 

meta-standards are not uniformly implemented among CAE vendors. The pragmatic 

approach has been to employ so-called bottom-up ontology mapping techniques to 

discover relationships between different CAD feature ontologies. These techniques 

determine probable relationships using discovered syntactic matches between parameters 

or feature labels and may also compare the organisational relationships between features 

and feature subtypes. General ontology mapping techniques are insufficient to allow 

unsupervised generation of bridging ontologies, but in the case of CAD API mapping 

where exposed API functions may number in the thousands, even partial matching 

success may significantly reduce human intervention. These ontology methods are 

covered in greater detail in Appendix 12.

Mapping efforts such as the TransCAD macro-parametric method construct a static 

library of mapped functions common to all CAD programs under consideration (The 

Macro-Parametric Approach). This approach does not reliably recreate model geometries 

constructed from long sequences of parametric feature operations which embody so-called 

implicit constraints, model specifications that are derived from complex sequences of 

operations. These context-dependent function behaviours may be captured using a 

dynamic mapping, where several functions are tested for their ability to replace a model 

construction sequence step in a different CAD system. Dynamic mapping requires 

repeated function mapping tests, creating a demand for an automated process. This 

2.11  Mapping ontologies



2   Introduction 17

approach is explained in greater detail in Error: Reference source not found, Error: 

Reference source not found.

2.12 A contribution to automation of feature mapping between CAD 

programs

The following Chapter 3 describes the most recent methods devised to approach the 

problem of CAD interoperability in detail, where the concept of mapping CAD API 

functions is used to recreate nominally equivalent models in heterogeneous CAD 

programs. This method is limited by the significant labour required to create a mapping 

between heterogeneous CAD API, summarised in Chapter 3.13. If a means to automate 

CAD API function mapping is found, this promises CAD data transfer that preserves a 

higher information content at a lower cost of manual intervention.

The research underpinning this thesis differs from previous semantic CAD API 

mapping research in the combined use of novel geometrical and semantic methods to 

increase the probability of unsupervised feature matching success.  The task of translating 

models then becomes one of determining equivalent API function calls. This method can 

be outlined as follows.

If a method can query model geometry represented in different CAD programs, 

these models can be tested for geometric similarity. These techniques of model geometry 

matching are described in Chapter 6, (Boundary Surface Geometry Comparison). 

A dynamic function mapping process will take each sequential parametric function 

operation from a CAD source model and determine a closest analogue function operation 

within a target CAD program. The API libraries of modern commercial CAD programs 

may contain several thousand distinct function operations, consequently this approach 

would be computationally intensive without a means to identify a shortlist of probable 

matches. This effort may be greatly diminished by ranking the search order of candidate 

functions according to their semantic similarity. Document retrieval methods are not 

2.12  A contribution to automation of feature mapping between CAD programs



18 2   Introduction

suited to the short phrases encountered in function and parameter names, or their brief 

functional descriptions, instead a range of existing techniques and novel semantic 

matching techniques are compared in tests on several CAD API texts. A description of 

these methods can be found in Chapter 4, the outcomes of tests in Chapter 5. The 

limitations of documentation retrieval methods used for short phrases is covered in 

further detail in Chapter 4.2 - 4.3.

The process of function matching requires that individual function parameters are 

matched to their counterpart, should an equivalent exist. The geometric validation 

technique allows different parameter configurations to be tested to determine if they have 

a similar effect on the geometric output of a function operation. CAD functions typically 

specify a large number of parameters, reflecting the scope of parameter operation. An 

automated test that uses a combinational strategy to match parameter function will 

require an exponentially increasing number of tests with increasing number of function 

parameters. A more efficient search strategy is presented in Chapter 8 that uses a genetic 

algorithm optimisation technique to determine a function parameter configurations that 

create identical model geometry. From this point matching parameters may be readily 

discovered, this method is demonstrated in Chapter 8.7 (Function parameter type 

heuristics).  This approach is shown to reduce the number of function parameter 

variations trialled by an order of magnitude.

2.12  A contribution to automation of feature mapping between CAD programs



3   Previous CAD data interoperability research 19

3  Previous CAD data interoperability research

In this chapter, the concept of model-based computer aided engineering data organisation is 

introduced, in order to place the requirements of data interoperability within the context of  

manufacturing organisation. Efforts to standardise the representation of this data are reviewed 

alongside the technical pitfalls that beset a prescriptive standard applied to CAD parametric shape 

representation. The Macro-Parametric Approach and other methods identify equivalent feature 

functions between vendor software, allowing transfer of design constraints between programs. The 

identification and mapping of similar features between CAD software is an intensive task and 

methods such as the Three-Branch Hybrid Feature Model propose geometrical and semantic matches 

to automate identification of feature mapping. Computational geometry routines are described that 

allow comparison of model geometry between heterogeneous software.

3.1 Product Lifecycle Modeling & Computer Aided Engineering

The role of Product Lifecycle Modelling is to integrate all aspects of a product, from 

design, manufacture, budgeting, to end-of-life disposal into a single framework that 

promotes efficiency.

This is a perspective distinct from Enterprise Resource Management, which gives a 

centralised view of enterprise activity. PLM is instead focused around the product, 

referencing aspects of the physical product geometry with associated information, such as 

materials, machining operations, geometric dimensioning and tolerances, suppliers and so 

on. Operational efficiency is judged to be closely tied to the integration of product 

information held within separate domains. Decisions that modify product or process 

parameters profit from an instantaneous assessment of costs involved. A complex product 

such as an aircraft, a large building or a car requires coordination between several 

enterprises that supply or integrate sub-components. In a modern manufacturing 

paradigm, the coordination between enterprise subcontractors and departments is a 

limiting factor of operational efficiency (Subrahim et al, 2005). Product Lifecycle Modelling 

formalises this information management with the stated goal of production efficiency. 

3.1  Product Lifecycle Modeling & Computer Aided Engineering



20 3   Previous CAD data interoperability research

These efficiency savings are to be realised via:

• Avoidance of information duplication.

• Avoidance of information loss.

• Information structuring.

• Formalism of information interpretation.

Each domain discipline views product model data from a different perspective and 

consequently information that appears relevant from one domain, becomes superfluous in 

another. As an example, a stress analysis carried out using Finite Element Analysis takes a 

CAD boundary model, strips out detailed features and generates a second model within 

the CAD boundary volume composed of cellular elements. Computer Aided Machining 

might take the same CAD model and focus exclusively on the features that dictate the 

machining methods.

As different commercial vendors devise software around the perceived 

requirements of client groups, there are no overarching conventions for information 

naming, semantics or formats. Researchers have adopted several of the information 

modelling standards to define frameworks to capture this information, such as Express, 

RDF, UML and OWL. 

3.2 CAD standardisation initiatives

Various industry consortia, Standards Setting Organisations and commercial vendors have 

devised XML extensions to represent particular domain vocabularies such as ebXML, 

BizTalk, cXML, CML, Bioinformatics Sequence Markup Language (BSML), MathML, 

MatML, etc. The first widespread coordination to standardise product model data was led 

by the International Organization for Standardization (ISO), who developed the STandard 

3.2  CAD standardisation initiatives



3   Previous CAD data interoperability research 21

for Exchange of Product model data, or STEP, as the ISO10303-1 standard. STEP has 

evolved within a number of different Application Protocols that reflect the requirements of 

specific industry sectors, the most common being AP203 (Configuration controlled 3D 

design of mechanical parts and assemblies), AP239 (Product lifecycle support) and AP214 

(Core data for automotive mechanical design processes). 

STEP defines an EXPRESS language (ISO10303-11) for the purpose of geometry 

specification. It does not readily allow the description of non-geometrical associated 

product data, nor is it suited to integration with other aspects of the design process 

(Fenves et al 2008; Negri et al 2015). By the time the STEP format coalesced into a 

published standard, commercial CAD software had developed newer and more popular 

parametric methods of design modelling that were not specified within the STEP format. 

Several research initiatives sought to formalise the parametric modelling paradigm, but to 

provide some context it is necessary to describe the difference between parametric 

modelling and the model creation and drafting processes that it superseded.

3.3 Parametric feature modelling

Computer Aided Design programs evolved from technical drawing software to the main 

design interface used in computer aided engineering. While the original two-dimensional 

CAD drafting programs allow convenient editing of geometrical drawing detail, 

subsequent three-dimensional CAD programs capture the concepts and constraints that 

specify the geometry of an artefact. The advantage afforded by so-called parametric CAD 

design is that changes to model parameters can be automatically updated to model 

geometry of the model, dispensing with tedious editing labour. As parametric CAD 

software is aimed at engineers or architects, these parametric constraints are defined 

within a set of modelling objects or features that correspond with familiar engineering 

design concepts such as flanges, webs, bosses or pockets. A model is constructed through 

sequential application of features, recorded as a feature history.

3.3  Parametric feature modelling



22 3   Previous CAD data interoperability research

These features accumulate design decisions, which in turn refine the specification of 

a parametric model. Unlike a STEP boundary model, the geometry is rarely explicit, it is 

generated by an interpretation of features and their interrelationship in the same fashion 

that a scripted computer language might generate an output. This is different to the static 

description of a STEP boundary model. While a boundary model may be specified from 

the edges, corners, points and radii that constitute a surface, a parametric model defines a 

surface as a conceptual feature using a minimal set of constraints and parameters. A 

sequenced assembly of these geometric features constitute the entire model. The 

immediate advantage is that a change to a feature parameter does not require a manual 

modification of the rest of the model to accommodate this change, but can be regenerated 

using a geometry constraint solver. This advancement allowed designers to capture the 

important defining concepts of a design, what is referred to as “design intent” (Choi et al, 

2002). In most cases there is no proven optimal method with which to define features. As a 

result, different vendors have used different sets of features with differing parameters and 

constraints, some explicitly defined, some implicit. The problem of defining a standard 

format becomes a problem of capturing these variations. For a detailed description of the 

so-called implicit and explicit constraints that constitute parametric modelling, please see 

Chapter 8.2, Explicit and implicit CAD model constraints . 

Parametric feature based CAD programs have enjoyed commercial success, but 

transferring a parametric model representation between different programs is fraught 

with difficulty. While the specification of a geometric surface model may conform to 

several common standards, there is no equivalent for parametric features. Researchers 

have published several models embodying parametric feature representation, but none 

form the basis of commercial software. Some of the early initiatives to create a model 

encompassing a standard for parametric modelling are described in the next section. 

3.3  Parametric feature modelling



3   Previous CAD data interoperability research 23

3.4 Procedural feature models

The ENGEN data model, EDM, extends the ISO10303-21 standard for exchange of product 

model data incorporating parametric feature representation (Shih & Anderson, 1997; 

Anderson & Ansaldi, 1998). Form Feature Information Model is another prototype feature 

representation developed by the Product Data Exchange Specification committee, that 

captures both explicit and implicit feature parameters (Shah & Mathew, 1991). Editable 

Representation or E-REP established procedural models built entirely of feature 

operations,  (Hoffmann & Juan 1992).

Middleditch and Reade describe a geometric kernel specified by a hierarchical 

feature architecture with relationships defined by geometrical constraints (Middleditch & 

Reade, 1997). Wang and Nnaji describe an extensible modelling language, UL-PML that 

captures feature representation with both implicit and explicit constraint relationships. 

UL-PML is tailored to capture design concepts (Wang & Nnaji, 2004).

3.5 ISO 10303 standardisation

The ISO 10303 standardisation effort, spearheaded by the National Institute of Standards 

and Technology (NIST) responded to the commercial adoption of parametric modelling by 

defining further standards to encapsulate these properties (Kim et al 2007; Kim et al 2008). 

ISO 10303-111 describes a standard defining design features, ISO 10303-108 defines the 

parametrisation and constraints that support parametric features and ISO 10303-55 

defines a construction history that supports recalculation of model geometry following 

alterations to feature parameters. These STEP standards are the best-known 

standardisation initiatives to address product design formats and the development of data 

exchange and management within product lifecycle engineering (Pratt, 2005). While STEP 

product geometry standards (ISO10303-103) only supports model geometry and topology, 

they are extended in Application Protocol 224 to incorporate a parametric representation 

with the capacity to define CAD features (Pratt & Kim, 2006).

3.5  ISO 10303 standardisation



24 3   Previous CAD data interoperability research

3.6 Standardisation of parametric features

Even if widely adopted, it appears unlikely that these standards might allow direct 

translation between commercial CAD programs for the following reasons.

3.6.1 Numerical accuracy

The AP224 parametric standardisation project revealed problems once it was 

trialled with commercial CAD programs. Inconsistencies in geometrical tolerances 

between different CAD programs accumulated numerical precision errors. Differing 

internal representations of geometric tolerances coupled with different methods of 

constraint evaluation created problems of numerical accuracy between model 

translations (Kim et al,  2008). This is less of an issue with more recent commercial 

CAD programs.

Different CAD programs were found to use different schemas of absolute Cartesian 

coordinates and local geometry coordinates to represent aspects of geometry such 

as sketch planes. Different CAD programs use different numerical tolerance 

schema, causing a variety of errors in model translation (Qi & Shapiro, 2006).

3.6.2 Standardised feature taxonomy

STEP boundary representations rely on a common definition of geometric 

descriptors to represent surfaces, but there is no uniform or optimal definition of a 

feature (Bittner et al, 2005). Consequently complex commercial CAD features are 

rarely equivalent in either feature definition, or in their explicit or implicit 

parameters. There is no consistent semantic meaning to the features and associated 

parameters used between different CAD programs. There is no canonical standard 

of features allowing vendors to implement a palette of feature functionality that 

differentiates their product. The labels used to describe feature parameters and 

constraints do not have a consistent definition and frequently have subtle 

3.6  Standardisation of parametric features



3   Previous CAD data interoperability research 25

inconsistencies when used between differing CAD programs or even in different 

contexts (Maier & Stumptner, 2007). Researchers have responded to this ambiguity 

by adapting formal ontologies to capture explicit semantic meaning, Appendix B 

describes these efforts in detail.

3.6.3 Inconsistent definition of sequential and implicit feature constraints

A construction such as a surface boundary model may be entirely represented by 

explicitly defined values. In the case of a procedural model, constructed as a 

sequence of feature operations, the model parameters may be exclusively defined 

by the interaction of features with pre-existing features  (Chapter 8.3, Sequential 

model defines explicit and implicit parameters used in parametric feature 

modelling, such as function dependence, prior selection and program architecture 

constraints). These interactions may lack any explicit or formal representation and 

may vary considerably between vendor programs. The most common 

implementation is a mix of both. 

3.6.4 Inconsistent interpretation of sequential and implicit feature 

constraints

Existing commercial parametric feature architectures exhibit different behaviour 

interpreting multiple conflicting constraints. Where there is a combination of 

constraints that determine the geometry of a feature, the equations that use these 

constraints may not have unique solutions. The program heuristics used to select 

between multiple solutions represent an additional feature characterisation (Pratt & 

Anderson, 2001). Hoffmann and Juan observed that a procedural model might 

introduce constraints in a sequential manner during a modelling process, allowing 

single solutions to be found to parametric representations if there was a sequential 

modelling process with visual feedback. However a non-sequential model that 

embodies the same constraints may have several geometric solutions presenting the 

same issue of correct program selection (Hoffmann & Juan, 1992).

3.6  Standardisation of parametric features



26 3   Previous CAD data interoperability research

3.6.5 Inconsistent constraint combinations within generic features

Few features share the exact same parameters, semantics or functionality between 

differing CAD programs. Kim et al describe the granularity of feature semantics 

where the geometric modifications enacted by a single function in one program 

may require several sequential functions in another. A feature concept may be 

similar within two CAD systems, but one feature might encapsulate the 

functionality of two separate feature functions in these different CAD systems. 

There may not even be direct equivalence between certain CAD functions. Barber 

et al describe issues encountered with a limited subset of the most universally 

encountered features (Barber et al, 2010). As a consequence, CAD software vendor 

might diligently represent each of the functions that generate features within the 

ISO 10303 standard, yet this representation may still be incompatible with the 

nearest function that another vendor has defined within the standard. 

3.6.6 Unspecified semantic definition

The STEP EXPRESS language used to define the ISO 10303 models is unsuited to 

capture of semantic detail required for feature function mapping, consequently it is 

unlikely that a logic reasoner might determine mappings between similar feature 

functions within the new parametric STEP standards. McKenzie-Veal et al 

experimented with the creation of ontologies for the purposes of CAD feature 

translation by extracting neutral STEP data from CAD programs for the purpose of 

geometric comparison (McKenzie-Veal et al, 2010). It was found that the STEP files 

created by nominally identical geometries within different commercial CAD 

programs were not equivalent, being either incorrectly parsed or having spurious 

data.

3.6.7 Unspecified labelling of feature entries

Bidarra and Bronsvoort describe the problems of maintaining and duplicating 

procedural feature model in greater detail, identifying problems relating to the 

chronological order in which features are created, where variations in sequence 

3.6  Standardisation of parametric features



3   Previous CAD data interoperability research 27

may create differing end models (Bidarra & Bronsvoort, 2000). The so-called 

persistent naming problem is also described: features may be defined relative to pre-

existing features that have subsequently been deleted or modified. This unintuitive 

issue that arises from sequential geometric operations merits an explanatory 

paragraph, see The persistent naming problem.

The most up-to-date ISO standard for the exchange of parametric models, AP203 (second 

edition) requires a translator to convert from the CAD model to this neutral format. While 

most common commercial programs will export to this neutral format, the quality of 

models translated from one CAD system to another via STEP AP203 is unsuited to 

complex models at the time of writing (Ćuković et al, 2017).

The introduction of parametric capability to the ISO STEP standard has not yet led 

to a commercial adoption of the application protocol as a native feature standard. Nor has 

the availability of published feature ontologies encouraged widespread adoption of a 

prescriptive research model. Competitive market forces dictate that a commercial program 

can read the data formats of other vendor programs but avoids allowing its own format to 

be read by others (Katz & Shapiro, 1985).

3.7 The persistent naming problem

The persistent naming problem is a topological challenge faced by parametric CAD 

programs. Recall that the parametric procedural model is composed of an accumulation of 

feature operations. If the surfaces, or edges that are selected to form the basis of a feature 

creation operation are subsequently modified or deleted, the naming scheme to reference 

them becomes an issue. The persistent naming problem is exacerbated by the potential of 

multiple different procedural histories that construct identical models. In many cases there 

are more than one method to construct a desired model alongside more than one 

sequential order of operations to create a model. The Macro Parametric Approach 

described in the following section encountered errors with undefined combinations of 

functions that would result in an incorrect feature selection (a dependency issue). This 

3.7  The persistent naming problem



28 3   Previous CAD data interoperability research

highlights the intensive labour requirements in mapping combinations of functions to 

identical geometric models.

3.8 The Macro-Parametric Approach

The Macro-Parametric approach exploits existing CAD Application Programming Interfaces 

to avoided translating model features to a neutral feature format. This approach 

determined a common set of function commands, or “neutral modelling commands” to 

translate identical parametric CAD models  between popular commercial CAD programs. 

Choi et al reasoned that the sequence of feature creation instructions used to create a 

parametric CAD model could be mapped to equivalent command sequences to create 

geometrically identical models within different CAD programs, while retaining the extra 

parametric information, see Figure 5 (Choi et al, 2002; Mun et al, 2003). 

While all commercial parametric CAD programs are primarily designed to allow a 

user to model using a visual user interface, there is invariably a degree of access to the 

program internal data structures via a programming interface, an API. These interfaces are 

generally used to allow third-party applications interact with CAD programs, or to 

automate repetitive design tasks. The developers of the TransCAD macro-parametric 

approach use the internal scripting files generated by a CAD program (Choi et al, 2002).

The procedural sequence used to construct a model within a CAD program is 

recorded in a script using CAD API commands. An identical model can be recreated 

within the program via sequential execution of the script commands. The macro-

parametric approach is to translate between the script representation of a model in one 

CAD program to a similar script in a different CAD program that will recreate an identical 

model. Consequently this approach requires that the macro commands of each CAD 

program are mapped for equivalence.

3.8  The Macro-Parametric Approach



3   Previous CAD data interoperability research 29

 The researchers identified a set of 167 feature commands common to six popular 

commercial CAD programs. It was found that implicit dependencies, such as a selection of 

features, surfaces or edges prior to a command operation required an extra routine to 

determine the associated explicit command. The researchers identified a number of these 

“indirect translation” requirements related to positioning with the CAD coordinate system 

and commands with no direct equivalent within the receiving system. Li et al discovered 

inconsistencies arising from topological errors, apparently from incompatible naming 

schemes (Li et al, 2010). 

The TransCAD project revealed several subtle difficulties with the macro-

parametric approach. The first version of the universal neutral command set used a 

topological scheme to reference the model surfaces. This approach was susceptible to the 

persistent naming problem (referenced in The persistent naming problem). CAD programs 

such as CATIA and Pro/ENGINEER use a topological naming scheme and label surfaces 

according to their relation to other surfaces. Other CAD programs, such as Solidworks and 

UG use a geometry-based naming scheme for model surfaces and features. Surfaces 

referenced by name may suffer ambiguity when split or merged in subsequent modelling 

3.8  The Macro-Parametric Approach

Figure 5: Macro-parametric feature mapping to generate equivalent CAD models.



30 3   Previous CAD data interoperability research

operations, this is remedied with a geometry reference such as a Cartesian point known to 

be coincident with the surface (Song & Han, 2010). Farjana et al extend this scheme, 

introducing a name taxonomy that preserves name history with modelling history 

(Farjana et al, 2016). 

The coordinates used to define features vary between different CAD programs, 

certain programs use screen coordinates, others use combinations of 2D sketch 

coordinates, feature entity names and 3D coordinates. The TransCAD project incorporates 

a CAD geometry kernel into the translation operation in order to allow conversion 

between topological and geometric coordinate references. A conversion from a CAD 

model script that records entity names to a CAD model script requiring geometric 

coordinates requires the translator to generate an internal CAD model representation that 

can compute the missing data (Choi et al, 2002). The Macro Parametric Approach 

incorporates a Geometric Modelling Kernel (pre-existing software routines to process 

geometry information) to determine the geometry of some of the feature parameters and 

constraints that are not explicitly defined within feature commands.

Macro-parametric research describes syntactic differences between the names of 

variables used in API command parameters. A function parameter terminology may have 

identical semantic meaning, but have dissimilar labels specified by disparate vendor API 

terminology. The TransCAD project relies on human intervention to determine identical 

API function semantics, as do many commercial CAD translators. The neutral 

intermediate format used in the TransCAD reflects the labour of creating a semantic 

mapping between each additional CAD program and the existing set of CAD programs. 

With a neutral intermediate format, a single translator is required, with peer-to-peer 

translation, a separate translation is required between a new CAD program and every 

other CAD program.

3.8  The Macro-Parametric Approach



3   Previous CAD data interoperability research 31

3.9 Universal Product Representation

Rappoport et al envisaged a Universal Product Representation method that addresses the 

practical difficulties of finding geometrical equivalence between geometry operations of 

different CAD programs. Universal Product Representation or UPR, is another Feature 

Based Data Exchange method that translates from one CAD program to another via a 

common representation (described as a star architecture), but unlike the TransCAD neutral 

feature set which represents the intersection of CAD feature functionality, UPR common 

representation is described as a union of CAD feature sets (Rappoport, 2003). This 

architecture is justified by the reduced labour involved in determining one-to-one function 

matches. The UPR method is also distinguished by trial-and-error methods that automate 

some function parameter matching tasks.

If a function that performs a geometric operation does not have an exact 

equivalence within the API of a second CAD program, the UPR architecture attempts 

different variations of the function parameters to reach a geometric equivalence between 

the operations within both programs. UPR is reliant on geometric checking for 

equivalence. Spitz and Rappoport detail three mechanisms whereby the geometric 

equivalence may be checked within the source and target CAD programs (Rappoport et al, 

2005). Each of these methods rely on the pre-existence of specific operations within the 

CAD programs to allow this verification. Parametric feature operations are replicated with 

equivalent non-parametric geometric operations in a sequential procedure. If a parametric 

operation is completely subtracted from the equivalent geometric operation with a 

boolean operation, the parametric feature is judged to be functionally equivalent. This 

process allows for a model reconstruction via command script in a target CAD program. 

The UPR methodology forms the basis of a commercial CAD translation service (Iti-

global.com, 2018). 

While the TransCAD macro-parametric approach relies on manually identifying 

mappings between heterogeneous CAD API functions and parameters, the UPR ranks 

function matches according to probability. Rappoport observes that CAD API functions 

may not behave in a similar fashion in all modelling situations; the interaction between a 

3.9  Universal Product Representation



32 3   Previous CAD data interoperability research

feature operation and all pre-existing CAD models may be difficult to predict. Unpredicted 

feature behaviour can be rectified using substitute modelling options that preserve the 

model geometry but not the parametric definition. Rappoport describes methods to select 

correct edges and surfaces for feature operations in CAD models that may subdivide 

surfaces differently (Rappoport et al, 2005; Rappoport et al, 2006). Points are projected to 

the surfaces undergoing transformation in the CAD models to determine if there is an 

adequate geometrical correspondence between the selection in the target CAD model and 

the source CAD model. UPR architecture maintains a data structure recording a measure 

of geometric validity for trials with different functions. UPR forms the basis of the 

TranscenData Proficiency translation software and while the method is a commercially 

viable approach to CAD model translation, much of the implementation is withheld 

intellectual property.

3.10 Three-Branch Hybrid Feature Model

Tessier and Wang define an ontological data structure that captures explicit and implicit 

parameters derived from procedural models (described as reference attributes) and 

geometric verification data (Tessier & Wang, 2013). As with UPR, the research describes a 

machine learning method to identify similar features between CAD systems. Unlike UPR, 

which uses statistical machine learning based on a geometric validation of prior matches, 

the CAD feature ontology described employs semantic reasoning to find feature matches. 

This inference method relies on a discovery of set of rules that uniquely identify 

semantically equivalent features, but must be established by human observation. The 

inclusion of geometric data is limited to available B-rep surfaces, vertices and features 

available via a CAD API (Tessier, 2011). This approach is unique in using semantic and 

geometric feature characteristics in an effort to automate feature mapping between CAD 

systems.

3.10  Three-Branch Hybrid Feature Model



3   Previous CAD data interoperability research 33

3.11 Bidirectional Hausdorff metric

Zhang et al use bidirectional Hausdorff distance as a measure of geometric similarity 

(Zhang et al, 2016). In this instance this is the measure between discrete points on the 

surface of the source CAD geometry compared against a set of discrete points on the 

surface of the target CAD geometry. If each source point is compared against the set of all 

target points, and the minimum displacement is taken from this set, a Hausdorff measure 

is the maximum value of the set of minimum displacements. 

This metric captures the relative orientation of source and target geometries as 

captured by discrete points. The Hausdorff distance has the unintuitive property of being 

asymmetric; the Hausdorff distance may change if the source and target points are 

exchanged. The bidirectional Hausdorff distance is the maximum value of both 

unidirectional Hausdorff distances. Zhang uses this metric as a basis of an iterative 

estimation of control points to match splines between two CAD programs.

Given point sets  and  in E^2, then the one-sided 

Haussdorff distance between  and  may be defined as 

The bidirectional Hausdorff distance between  and  may be then be defined as,

3.12 Representative proxy model and query protocol

Hoffmann defines a proxy model based on the concept of the master model traditionally 

used as a reference for geometric dimensioning and tolerances (Hoffmann et al, 2014). This 

3.12  Representative proxy model and query protocol



34 3   Previous CAD data interoperability research

proxy model is defined by the semantic and geometric information of a reference model 

up to a specified geometric tolerance. A limited set of queries that possess a common 

definition between source and target CAD may generate this representative proxy model 

which is tailored to the requisite geometric tolerance of the target CAD. This approach 

avoids the limitations of translation methods, namely that,

1. The proxy model is limited to the queried information, there is no requirement for 

all aspects of the model to be represented in both systems. This avoids the difficulty 

of systems that have dissimilar model representation as only the queries must be 

interoperable.

2. The disparities of precision between CAD programs or other systems is explicitly 

defined.

Hoffmann formalises acquisition of model geometry around a minimal set of interoperable 

queries. These interoperable queries are defined in order of dependence as follows:

1. A query requesting model precision.

2. A nearest point query returning the model point or points closest to a specified 

point.

3. A point membership query, returning positive if all points within a region defined 

by the model precision lie within the reference model.

4. A point on or in the proxy model returns the differential information of the proxy 

model, such as the tangent curvature or torsion (defined as the k-dimensional 

submanifold of the proxy model).

5. A surface (or r-simplex) query that returns the collection of intersected surfaces (or 

r-simplices within defined model precision).

6. A point on or in the proxy model returns the CAD model label and characteristics 

at that point.

7. A point on or in the proxy model returns the CAD labels of all adjoining surfaces or 

parts.

3.12  Representative proxy model and query protocol



3   Previous CAD data interoperability research 35

Hoffmann proposes that that the most computationally economic approach to model 

geometry interoperability is to probe CAD model geometry using intersection queries. An 

algorithm is outlined, sampling a proxy model with a grid of points to determine a form of 

voxellised model representation. Interoperable point membership queries determine 

whether points lie within or on the surface of the proxy model. This approach may be 

partially implemented across all the CAD programs that were tested during the course of 

this research. Every program will return the point value at the intersection of vectors or 

rays with model boundary surfaces (see Table 1). This common feature enables a statistical 

comparison of model geometry between heterogeneous CAD programs. This geometry 

testing method is described in detail in Chapter 6, Boundary Surface Geometry 

Comparison.

CAD program name and 

version

API 

languages

Command

Dassault Solidworks 

2012

VB & 

Automation
ModelDoc2.GetRayIntersectionPoints()

McNeel Rhino 5.0
Automation 

Python
Rhino.ProjectPointToSurface()

Autodesk Inventor 5.3 

2014

Automation 

Python

SurfaceBody.FindUsingRay()

partDoc.ComponentDefinition.WorkPoints.

AddByCurveAndEntity()

Siemens NXOpen Python 

10 
Python

NXOpen.UF.Curve.Intersect(curve, 

entity, refPoint)

Autodesk Fusion360 

2018
Python

line.worldGeometry.intersectWithSurface

()

Pro/ENGINEER Wildfire 

2002
VBA ProSolidRayIntersectionCompute() 

CATIA V5R18 API
VBscripting

/VBA

CATIA.ActiveDocument.Part.HybridShapeFa

ctory.AddNewIntersection()

FreeCAD 0.17 Python 

Automation

App.activeDocument().Common.Shapes

Table 1: a selection of Common CAD program commands yielding surface coordinates via curve 
intersections.

3.12  Representative proxy model and query protocol



36 3   Previous CAD data interoperability research

3.13 The state of the art

To recap, translating parametric CAD models while retaining design intent is complicated 

by semantic and structural heterogeneity between CAD programs. The API functions and 

parameters may use a different syntax, but a more intractable class of semantic 

heterogeneity is an indirect or singular mapping of feature operations or their defining 

functions between programs. In recent research efforts, these issues are addressed with 

substitutions of sequences of function operations that have an identical geometrical 

outcome. 

The issue of structural heterogeneity is where an apparently successful semantic 

mapping results in disparate geometry. A common example is a blend, or a radiused fillet 

between model surfaces; different CAD programs will make different assumptions of blend 

behaviour where several surfaces meet. Each CAD program has several unique subtypes of 

fillet behaviour with further options that guide the creation of fillet geometry. Product 

differentiation will mean that the descriptions and varieties of fillet behaviour are only 

consistent across the most simple of geometries. The geometry created by a CAD fillet 

feature is not guaranteed consistent between all CAD programs for all configurations of 

model surfaces. As the algorithms that generate these feature geometries are proprietary, 

the only consistent means to check consistent geometry between different programs is a 

comparison of model geometry. 

Geometric validation protocols are introduced to verify these substitutions and 

each mapped feature operation outcome.  The Three-Branch Hybrid Feature model, the 

Universal Product Representation and the Domain Independent Form Features proposed 

by Gupta et al are representative examples of methods that test for geometric conformity 

between mappings using a variety of measures (Gupta & Gurumoorthy, 2008). 

Prescriptive universal formats that provide a neutral standard intermediate 

representation between native CAD formats are limited to the adoption of these formats 

by commercial vendors. Translating an internal semantic model representation to a 

perpetually outdated standard creates unique difficulties and frequently results in 

3.13  The state of the art



3   Previous CAD data interoperability research 37

incomplete representation (Barber et al, 2010). While commercial vendors compete on the 

basis of novel capability, intermediate formats have limited viability. 

The Macro-parametric approach is another example of a neutral intermediary 

format, which suffers similar issues of semantic mismatch, coordinate scheme mismatch 

and procedural selection problems arising from persistent naming type errors (Li et al, 

2011). While the so-called “star architecture” employed by a universal intermediary 

representation is an economic means of mapping translations between multiple systems, it 

represents an intersection of the set of common system functionality and thereby reduces 

the scope of accurately mapped features that a peer-to-peer mapping allows. The UPR 

system is described as an attempt to create an intermediate representation that is a union 

of system features (Rappoport, 2003). The labour required to match, validate or devise 

correction routines for feature function instances limits the application of existing 

translation approaches. 

Further translation complexity arises from the constraints, selections and datums 

used to generate feature operations. These elements may be explicitly defined, or may be 

implicitly defined via the sequence of feature operations (Pratt, 2004). Other researchers 

variously reference these classes of implicit and explicit elements as procedural and 

declarative specification, first and second-order information, reference and parameter 

attributes. 

While the Macro-parametric approach uses an internal geometric model to generate 

implicit references, other methods capture the requisite data during a sequential 

reconstruction of the source CAD model. Recent research has proposed machine 

reasoning to identify semantic equivalence of CAD features described within ontologies. 

To date, the protocols used to compare the geometry have been limited to the topological 

representations based on model faces and vertices commonly adopted for translation 

between CAD and CAM software. 

A common feature of the research literature to date is an absence of tests carried 

out on existing commercial CAD programs that measure the efficiency of published CAD 

interoperability methods. The semantic and geometry comparative tests in this research 

3.13  The state of the art



38 3   Previous CAD data interoperability research

address this omission, the demonstration of a Genetic Algorithm used for parameter 

matching uses the interface to two CAD programs to derive test results.

One significant area of prior research that has been deliberately omitted from this 

chapter is the development of formal ontologies that capture the semantics used in 

heterogeneous CAD programs. These formal descriptions of semantic relationships 

promise to automate the search and checking of CAD feature equivalency, however the 

task of defining commercial CAD feature semantics within these research ontologies has 

not been widely addressed by commercial vendors. Details of these forays are provided in 

Appendix A.

This chapter has introduced the techniques used for interoperability between data 

representations within different CAD software. The novel parametric modelling method 

removes the tedious requirement of updating model surfaces with design changes as 

models are generated from design constraints and relationships that are incorporated into 

the modelling process. Interoperability then becomes an issue of transfer of these 

constraints and design decisions between different vendor CAD programs. Standardisation 

between these design modelling architectures is difficult as each vendor chooses to 

encapsulate their feature operations in subtly different fashions. Prescriptive 

standardisation in the form of ISO specification and “top-down” ontologies have proved 

ineffectual to date. Contemporary research is now focused on creating mappings between 

feature operations by a process of discovery. The remaining open question is how the 

laborious process of determining function equivalence might be automated. The research 

presented in this thesis introduces a hybrid method to resolve this question.

3.13  The state of the art



4   Prior research on short text similarity measures 39

4  Prior research on short text similarity measures

The following chapter examines the application of semantic matching to short texts, such as 

those used in the function names and descriptions found in the text accompanying application  

programming interface libraries. This technique is used to assign the probability of 

heterogeneous API libraries routines having an equivalent functional operation. The two broad 

approaches to identifying words of similar meaning are summarised, that of human-compiled  

and machine-compiled corpora based on statistical assumptions. 

4.1 Semantic mapping within CAE systems

This research determines the feasibility of combining semantic and geometric comparison 

techniques to map similarities between the features in a Computer Aided Design program, 

and by extension, the functions in Application Programming Interface of a CAD program. 

Semantic matching, in this case is finding similarity in the meaning of the words used in 

function names and descriptions.

Research into mapping database entries has generated the field of ontology alignment, or 

ontology matching. Successful strategies rely on a combination of word meaning 

comparison, structural organisation matching and data type 

matching (Bernstein et al, 2011). These generic techniques 

have been appropriated for matching the product description 

databases used in Product Lifecycle Management. There is an 

information advantage to storing product data in a format that 

can be accessed by different production departments (e.g. 

design, engineering, accounting, subcontractors, suppliers) 

and a format that is accessible to different software. Product 

information databases do not have an over-arching standard 

or a dominant vendor format, so research efforts are directed 

towards integrating information stored on different files and databases.

4.1  Semantic mapping within CAE systems

It is helpful to distinguish between 

'syntactic matching' and 'semantic 

matching' at this point. Syntactic 

matching is a means to correlate 

descriptive labels used in database 

schemas, semantic matching is the 

effort to identify identical meaning 

between items. Semantic mapping is 

commonly achieved by searching for a 

correlation between descriptive texts 

(Giunchiglia & Shvaiko, 2007).



40 4   Prior research on short text similarity measures

Some researchers have used generic schema matching methods to identify mapping 

between articles in PLM databases (Dalianis & Hovy, 1998; Yeo, 2009), text descriptions of 

the geometric model features, feature function names and feature dependence are 

compared. The semantic text matching methods are derived from from simple syntactic 

matching. In other words, determining whether two words are identical or are recognised 

as synonyms. Broadly speaking, there are two approaches to finding semantically similar 

words or text. The first is a manually compiled corpus such as the Princeton WordNet® 

corpus (Miller, 1998). This particular corpus lists the synonyms, or so-called synsets of a 

word categorised by the usage of the word (a word may be used as a noun, verb, adverb, 

adjective, and so on, but not distinguished by any change of spelling). 

The second is to generate semantic classifiers from statistical analysis of words in 

training texts. This is the basis of significant research effort in the field of document 

retrieval. The advantages of generating a corpus from a set of documents rather than using 

a pre-compiled and checked manual corpus is that a more precise corpus for a particular 

application may be created using a document set with a narrow range of topics. A 

machine-compiled corpus may also be readily updated or regenerated over a different set 

of documents (Senellart & Blondel, 2008).

This manual and machine compiled distinction between semantic matching methods each 

form the basis of of a multitude of semantic matching methods. These methods are 

described in the following sections, Figure 6 shows a diagram of the methods and their 

relationship to manual or machine-compiled corpora.

4.2 Descriptive text labels used within Application Programming 

Interfaces

In the case of matching program API functions, the text consists of short phrases. There is 

the function name, normally indicative of the action of the API function and composed of 

several words joined together, there are the function parameter names that follow the 

same conventions and there is generally a short explanatory text that provides a 

description of the function within an accompanying help file. These short texts contain 

4.2  Descriptive text labels used within Application Programming Interfaces



4   Prior research on short text similarity measures 41

more words than a label in a database schema, but less words than the average document 

size encountered in document retrieval methods. Function names are information dense, 

one cannot presume to disregard the relevance of any contained word, therefore these 

short phrases appear unsuited to methods such as Latent Semantic Analysis, that discard 

information in documents. Semantic matching methods are not optimised for matching 

short texts; the following description of the common methods reveals why.

4.3 Vector Space Models and statistical concept matching

Most Natural Language Processing strategies to discover relationships between words are 

based on the simple premise that words of similar meaning occur in close proximity to 

each other within a text. This heuristic, the distributional hypothesis, underpins algorithms 

used in document retrieval (Firth, 1957; Harris, 1954). Miller refines this idea with the 

observation that word similarity is proportional to context similarity within a document 

(Miller, 1991). Pederson further discriminates between a micro-context and a macro-context 

4.3  Vector Space Models and statistical concept matching

Figure 6: a taxonomy of semantic matching methods



42 4   Prior research on short text similarity measures

based on whether similar words are likely to be found on the same sentence or in the same 

document (Pederson, 2008). Simple implementations of these heuristics record the 

individual frequency of words within documents. A Bag of Words model is the unique set 

of words used in a document, merely recording the number of times each word occurs. 

Such a general measure is useful for tasks like email spam filtering where it is relatively 

efficient to compare these representations of documents against known spam documents 

(the degree of overlap between documents is the Jaccard coefficient). This numeric 

representation can also be represented as a Term Vector Model or Vector Space Model'. 

Typically a term is considered to be the most atomic unit, a word or a phrase. If each term 

is considered a dimension, then a document is a vector of terms within this 

multidimensional space. This representation allows the use of efficient vector comparison 

techniques over such large and sparse models, individual vectors that are parallel are 

considered to be most similar, where the cosine similarity measure is commonly used 

(Chen & Lynch, 1992).

The most common Vector Space Model uses another heuristic to further refine 

frequency based vector models; inverse document frequency weighting (Salton et al, 1975). 

The raw term frequency values are usually weighted and normalised to account for words 

that are most commonly encountered across all the documents and words that are 

encountered multiple times within a single document. Common words, such as “if”, “and”, 

“that” are less useful in identifying documents than uncommon words, their frequency is 

weighted according to an inverse power law and normalised within the local document in 

the Term Frequency – Inverse Document Frequency model (Crouch, 1990).

These weighted vector space models are large and sparse, Foltz et al have used 

Singular Value Decomposition to reduce the number of dimensions in a Vector Space 

model to create what is known as a Latent Semantic Analysis or Latent Semantic Index 

model (Foltz et al, 1998; Deerwester et al, 1990). SVD decomposition has the effect of 

creating abstract vectors that result in a more compact model with better defined concepts 

and quicker query times, but these vectors do not necessarily correspond to human-

understandable semantic relationships.

4.3  Vector Space Models and statistical concept matching



4   Prior research on short text similarity measures 43

All these common vector space methods rely on heuristics that do not work 

particularly well with short phrases or the text in API documentation. Vector Space 

models do not identify polysemy, the property of a word to have more than one meaning 

depending on context and part of speech (e.g.  “crane”  may be a bird, a tower for lifting 

objects, or the act of stretching one's neck). API names tend to follow a native convention; 

words are re-used in the same context and synonyms avoided to minimise confusion. 

These local schemes do not transfer across different API from different vendors, function 

names may be deliberately changed to avoid intellectual property infringement with a 

similar function of a competitor. Dimensional reduction, as in the case of LSA is seen as 

one method to reduce incidence of polysemy. Another approach has been to couple a 

corpora that documents known polysemous words with a vector space model. Passos and 

Wainer show that integrating compiled corpora such as WordNet to determine polysemy 

is ineffectual (Passos & Wainer, 2009). 

TF-IDF or LSA methods identify concepts via co-occurrence of similar words. This 

approach is effective in long texts where there is the luxury of describing concepts with an 

abundance of words and their synonyms. Where a concept is represented in a single terse 

word, dimensional reduction can discard important data. Short sentences contain a higher 

information density, so standard techniques that discard words of lesser relevance are 

unsuitable (i.e. vector dimension reduction to a limited number of identified concepts). 

Methods that discard words or that disregard synonyms are unsuited to the short, 

information dense phrases as used in function naming convention. Approaches that would 

be considered computationally expensive on large documents are feasible for phrases of 

several words, such as the naming conventions used in descriptive API function names. 

4.4 The WordNet corpus and word pair similarity

The word relationships in the WordNet corpus are designed to identify the relationships 

between words, but not that of sentences.  Li et al use the WordNet corpus as a basis for 

matching short texts, the similarity metric used is the path length between words to a 

common ancestor word (Li et al, 2006). In the WordNet corpus, the information content of 

4.4  The WordNet corpus and word pair similarity



44 4   Prior research on short text similarity measures

a word is determined from its relative precision. Words are organised into hierarchical 

member sets where a word is assigned as a specific instance of a more general word. 

WordNet path length calculates the number of hierarchies traversed from one word to 

another as a measure of similarity, (e.g. “finger” is a hyponym of “hand”, as is “thumb”, 

therefore the path length between “finger” and “thumb” is two). Li also calculates the 

absolute depth of the hierarchies of the words, similar to the Power Law weighting of TF-

IDF, more precise words have a higher weighting. This method is the only one to assign a 

score to the similarity of the order of the words in the texts under comparison 

('inflectional morphology'). The method does not account for a bipartite, one-to-one 

matching of semantically similar words. If an exact word match is not found between the 

two sentences under analysis, the semantically closest word is selected. The algorithm is a 

simple proof of concept and there is no provision to find the best overall combined 

semantic match. The selection of the highest ranked word is not related to word order and 

it is also unclear how the algorithm avoids multiple selection of the same word. This 

algorithm was one of a number that were tested for suitability of matching API texts. 

Lakshmi and Mohanty describe a semantic matching method aimed at discovering 

compatible World Wide Web service functions. The most promising combination of words 

is formulated as a maximum weighted bipartite matching problem, the potential matches 

are found using a density based clustering algorithm, DBSCAN (Lakshmi & Mohanty, 

2015). Dong et al use a similar density based algorithm.(Dong et al, 2004). Yeo references 

two other algorithms that determine the best combination of semantic matching scores in 

a short phrase (Yeo, 2009), the Gale-Shiply matching algorithm and the Munkres-Kahn, or 

Hungarian optimisation algorithm. Aguilera et al describe a similar semantic comparison 

between Web services, again using a unique method to combine a keyword based search 

with user and provider data using a matchmaker algorithm (Aguilera et al, 2007). Paik et al 

describe a Support Vector Machine classifier that aggregates a number of different 

semantic measures for matching WWW service functions (Paik et al, 2010). These and 

other research efforts are directed at functions distinguished by a small number of 

keywords such as those used in the benchmark test suite OWL-TC, which contains 

between three and seven words on average (Klusch & Kapahnke, 2019). There are no 

4.4  The WordNet corpus and word pair similarity



4   Prior research on short text similarity measures 45

comparative studies of contemporary semantic matching methods used over relatively 

long phrases within large collections. While some research is directed at efficient 

matching algorithms within large collections, it is not adapted to the exponential increase 

in computation required by comparatively long phrases.

For example, during the course of the research, it was found that the Li algorithm, 

while best suited to comparing short sentences, was impractically slow for comparing the 

volumes of text found in commercial program APIs. A more efficient algorithm was 

developed based on Greedy matching selection of promising semantic matches that is 

detailed in Chapter 5.2, Combined scoring for short text semantic comparison.

4.5 WordNet similarity measures

An introduction to the structure and similarity measures of the WordNet corpus ontology 

is required. The words in the WordNet corpus are organised in what is termed a 

subsumption hierarchy, hypernyms are a specific subset of their hyponym parent. The root 

concepts or unique beginners are the most general concepts from which each word is 

derived. Each word has several other relationships defined with other words besides 

synonymy; several meronymy relationships ('part of', 'component of', 'substance of' ) and 

antonymy relationships ('complement of'). 

Most of the metrics that determine the relationship between words are based on the 

relative path length traversed via a common conceptual ancestor and the absolute depth of 

this path within the WordNet corpus. To establish a path length between two words, a 

root concept, or subsumer, that is common to the concepts in both words is identified from 

the structured lexical hierarchy. The path length is then the count of edges between word 

nodes that lead between the words under consideration via the subsumer. Where there are 

more than two concepts, or synsets, embodied in the two words then there are multiple 

subsumers, giving rise to least common subsumer measures based on the shortest paths 

between words. As a word may have several meanings, depending on context or whether 

it is used as a noun, or another part of speech, it is more accurate to express semantic 

similarity as a comparison of concepts that have a unique meaning. Five of the highest 

4.5  WordNet similarity measures



46 4   Prior research on short text similarity measures

performing measures are selected for evaluation (Budanitsky & Hirst, 2001). These are 

detailed in the following sections.

4.5.1 Leacock and Chodorow similarity measure

Leacock and Chodorow normalise the compared word concept path length ( ) 

with the overall depth,  of the WordNet taxonomy (Leacock & Chodorow, 

1998). This value is then weighted use the same logarithmic scaling. Intuitively, a 

linear descent into the hierarchy of increasing precision is matched by a 

logarithmic increase in the instances of precise word concepts.

4.5.2 Wu and Palmer similarity measure

Wu and Palmer's scaled measure combines the depth of the most specific common 

concept with the path length measure. It is the combined individual path distances 

of the shared word concepts normalised by the absolute depth of the specific 

common concept within the concept hierarchy. This distance measure is 

reformulated to give a similarity measure (Wu & Palmer, 1994).

4.5  WordNet similarity measures



4   Prior research on short text similarity measures 47

4.5.3 Resnik similarity measure

The WordNet subsumer hierarchy does not capture the precision of a hypernym in 

its classification schema. Resnik introduced a separate value, the Information 

Content , , derived from the frequency of a term encountered in a corpus. A 

Power Law relationship of precision with respect to frequency is used, similar to 

the Term Frequency, Inverse Document Frequency weighting in Vector Spaces. The 

Resnik measure weights the value of the lowest common subsumer or the most 

precise concept common to the compared word concepts with a negative 

logarithmic value (Resnik, 1995). If the Information Content measure of a word, , is 

defined as the frequency of this word within the corpus, ,

Then the Resnik similarity measure can be defined as,

Where  is the set of concepts that subsume  and .

4.5.4 Lin similarity measure

Lin refines the Resnik approach, using the Information Content value of each word 

undergoing comparison to normalise the Resnik value (Lin, 1998). The definition of 

word Information Content is refined, based on three assumptions:

1. Similarity of two concepts is proportional to commonality of the two 

concepts. An increase of related concepts common to both words is akin to 

an increased similarity between both words.

4.5  WordNet similarity measures



48 4   Prior research on short text similarity measures

2. The inverse is also assumed, namely that the similarity of both concepts or 

word senses are inversely proportional to the number of differences they 

share.

3. The maximum similarity is the identity case and is defined as 1.

Lin extends Resnik's measure with the inclusion of the total amount of information 

that each concept or word represents alongside the number of common concepts 

shared. This gives a measure,

 

Where   is the measure of total information content of a concept. 

Using Shannon's information entropy definition that defines the information 

content of a message as the negative log of its probability allows the information 

content measure to be reformulated as , giving an alternative 

expression for the Lin similarity measure,

Where   , the lowest shared ordinate, represents the union of the concepts 

shared by   and  .

4.5.5 Jiang and Conrath distance measure

Jiang and Conrath also use the Information Content of each word from a corpus 

value, along with the lowest common subsumer derived from a hierarchic ontology 

(the Resnik value). The value is the sum of the respective information contents less 

the value of the most informative common subsumer. This metric is constructed on 

4.5  WordNet similarity measures



4   Prior research on short text similarity measures 49

the premise that the semantic difference between a child concept and a parent 

concept is proportional to the difference in their information content (Jiang & 

Conrath, 1997).

4.5.6 Word Embedding and the word2vec similarity measure

The other word comparison measures derive from recent machine-compiled corpora based 

on the word2vec algorithm, one of a family of 'Word Embedding' techniques (or 'Deep 

Learning') that train a shallow neural network to represent word frequency found in a 

collection of training documents. This method is similar to the Latent Semantic Analysis 

method in that it creates a reduced dimensional representation of the word occurrence 

Vector Space. 

Mikolov et al describe an asynchronous stochastic gradient back-propagation 

algorithm used to create the weighting of the two layer neural network (Mikolov et al, 

2013). In essence, the neural net is trained to recreate the sampled word from a window of 

surrounding words. Two window sampling methods are described, the 'Continuous Bag Of 

Words Model', as with the Bag Of Words model, the word frequency in the moving word 

sampling window is used. With the alternative 'Skip-Gram' word window. the relative 

positions of the surrounding words contribute to the weighting (weighting is proportional 

to the distance from the word being modelled). A softmax log-linear classification model is 

used to weight the hidden Neural Network layer (Rong, 2014). The Word2vec algorithm 

creates a word vector matrix similar to the term vector space, and a word context vector 

matrix. Pennington et al identify this objective matrix as a co-occurrence matrix which is 

more explicitly defined in a comparative study of the Stanford GloVe algorithm 

(Pennington et al, 2014). On closer inspection, training a network to replicate the response 

of an input requires that each weight that is not part of the input is recalculated according 

4.5  WordNet similarity measures



50 4   Prior research on short text similarity measures

to the log-likelihood normalisation of the softmax function. For the network to generate a 

convincing match, not only must it register a similarity to the surrounding concepts or 

words recorded in the vicinity of the word in question, it must be able to reject all words 

that are not considered a match. For a corpus of any appreciable size, this is a prohibitively 

expensive calculation. Mikolov uses a novel technique to reduce this calculation; the 

response of the network to a word is reduced to a relatively small sample of words chosen 

to represent the target word, alongside a sample of words that are determined to have no 

correlation with the target word, so-called noise words, used in negative sampling.

4.6 Distributed Memory Model of Paragraph Vectors

Le and Mikolov describe an extension to the learning vector representation of words used 

by the word2vec algorithm that allows comparison between paragraphs and texts (Le & 

Mikolov, 2014). This is termed the Distributed Memory Model of Paragraph Vectors (PV-

DM), or more commonly, Doc2vec. The implementation is simple; a paragraph vector is 

introduced alongside the word vectors and trained alongside the word vector framework. 

The paragraph vector is identified by a tag referencing the individual document or 

paragraph token in the same manner as the word vector is labelled by the word string. 

While the word vectors are related to the contextual concepts encountered in the entire 

set of training documents, the paragraph vectors are only related to the concepts within 

the tagged paragraph. This can be seen as adding an extra dimension to the concept vector 

space, allowing retrieval of paragraphs related by similar concepts. Both the Word2vec 

and the document matching relative Doc2vec have efficient implementations in the 

Gensim library (Rehurek, 2010). In the case of the Word2vec algorithm, it allows a 

semantic similarity matrix to be constructed to test with the Greedy word combination. 

4.7 Short text matching techniques to date

The STASIS short text semantic similarity measure described by Li et al uses a 

combination of structured lexical word relationships, word positional relationships and a 

word frequency metric to generate similarity scores between sentences (Li et al, 2006). 

4.7  Short text matching techniques to date



4   Prior research on short text similarity measures 51

Relationships between words in sentences are scored according to whether they share a 

common synset, or if these word synsets share a common word, or failing that, the 

minimum path length between words. The relative depth of the subsumer words within 

the hierarchical semantic net also contributes to the individual matching scores as it is 

reasoned that words higher in a hierarchy are more general and have a lesser relationship. 

The word corpus frequency relates to how often words are encountered within a corpus. 

Infrequent words are assumed to have a more specialist meaning and are awarded a 

higher score when matched. Another measure is introduced to compare the similarity of 

the order of matched words within sentences under comparison. These different semantic 

and syntactic metrics are subsequently combined. 

Islam and Inkpen extend this multi-factor semantic and syntactic comparison, 

introducing a measure of partial word string similarity (Islam & Inkpen, 2008). They also 

use a different method of semantic matching, based on the Pointwise Mutual Information 

measure, a different approach to the distributional hypothesis where the probability of 

two words appearing in a text together is normalised against the probability of each 

individual words appearing (Church & Hanks, 1990). Guo and Diab extend the limitations 

of the LSA model using a negative sampling technique (Guo & Diab, 2012). Other short 

text methods use combinations of techniques, combinations of path length heuristics 

derived from lexical databases, word frequency measures taken from corpus statistics and 

partial syntactic matching (Šarić et al, 2012; Corley & Mihalcea, 2005; Mihalcea et al, 2006). 

These methods tend to use the relatively small dataset described by Li for comparative 

testing, these tests give a similarity score for pairs of sentences (Li et al, 2006). None of 

these methods appear optimised for ranking the semantic similarity of a large set of 

phrases against a target phrase.

This chapter gives an overview of word and concept matching measures that are 

tested in comparative experimentation in 5, these common similarity metrics are 

implemented within WordNet and the NLP Python package. This is not an exhaustive 

compilation of semantic comparison methods available for individual words and short 

texts, further examples can be found in surveys such as Gomaa et al, Zhang et al (Gomaa 

4.7  Short text matching techniques to date



52 4   Prior research on short text similarity measures

& Fahmy, 2013; Zhang et al, 2013). The methods sampled are selected on the basis of a 

broad representation of the available corpus and vector-based techniques applicable to 

short phrase matching, allowing a comparative evaluation. Out of all these techniques, 

only the relatively novel Doc2vec method is tailored to matching short phrases. In Chapter 

5 this method is tested alongside a greedy algorithm that returns the highest combined 

value of word pair combinations between two phrases. The word pair semantic similarity 

measures are those described in this chapter. TF-IDF and LSI/LSA methods are also tested 

for comparative assessment.

4.7  Short text matching techniques to date



5   Comparison of semantic measures for API text matching 53

5  Comparison of semantic measures for API text 

matching

Methods to determine semantic similarity between short texts require a different approach to 

those methods customarily used for document retrieval. No existing methods are adapted to 

find semantic similarity between software descriptions found in documentation or parameter 

names. Two promising techniques are tested, the doc2vec statistical matching method and a 

greedy combination algorithm. This greedy algorithm combines individual word pair values 

between phrases to derive a maximum score, several common word-pair semantic match 

methods are compared. The semantic values returned by these methods are tested against 

known matches between three commercial CAD API datasets. It is found that both methods 

perform markedly better than conventional document retrieval methods which are tested for 

comparative purposes.

5.1 Matching texts associated with Application Program Interfaces

The overall set of words used by both API under comparison tend to be limited and 

precise. Literary conventions such as the use of synonyms to avoid repetition are 

discarded in favour of maintaining a unique meaning for a word within the API domain. 

In the three CAD API used for documentation (Solidworks 2012 API, RhinoScript 5 2013 

API, AutoDesk Inventor API 2012) there was no evidence of synonyms used for technical 

terms. What is apparent is a tendency towards using a different vocabulary than that of a 

competitor, leading to synonyms encountered between API rather than within API. Lu 

describes a semantic similarity measure suited to text labels within CAD ontologies CAD 

to augment reasoning (Lu et al 2016). Min describes experiments to compare the 

effectiveness of shape file names and descriptions using existing text semantic matching 

techniques with geometric shape matching (Min et al, 2004). However no research to date 

has published comparative analyses of the efficiency of different semantic matching 

methods within the narrow domain of API text matching, despite an indication that 

5.1  Matching texts associated with Application Program Interfaces



54 5   Comparison of semantic measures for API text matching

semantic matching is more effective with algorithms tailored to the particular domain. The 

words used for a CAD feature function label, or within the text description of a function 

and its associated parameters and behaviour are relatively short and not well adapted to 

common methods used for document similarity comparison or retrieval, such as Latent 

Semantic Analysis, or Term Frequency-Inverse Document Frequency models. 

Aside from the Mikolov Doc2vec model, the methods for matching short texts, such 

as the Li algorithm and its derivatives, are based on measures of semantic similarity 

between individual words and syntactic comparison. These short sentence matching 

methods, as described in the Chapter 4 use a range of different syntactic and semantic 

metrics to compare short phrases, but an implementation of the Li algorithm was found to 

be prohibitively expensive in computational time when used to search for the best match 

among the thousands of function candidates within a commercial CAD API1. This can be 

attributed to repeated calls to the lexical database, in this case a NLTK, or Natural 

Language Tool Kit Python interface to the Wordnet semantic net (Bird et al, 2009; Miller, 

1995).  It can be seen that text used in CAD API function description, or function names, 

has several qualities that distinguish it from short texts found in other media, such as 

social media texts or news headlines. There is a strong consistency in the use of language, 

a relatively small specialist vocabulary and a pronounced lack of synonyms. This style of 

technical language is also particularly terse, semantic comparison methods that rely on 

contextual concepts, such as LSA, may have difficulty where there are a high number of 

overlapping concepts within the short sentences. This prediction is supported by 

experimental observation in Section 5.8, Observations on semantic method comparison 

testing results. 

The other drawback with most existing short text comparison metrics is the use of 

manually compiled corpora. As there are no geometry or CAD feature specific manually 

compiled corpora as of writing, general purpose corpora must instead be used. These non-

specific general purpose corpora are considered to fare worse than specialised corpora 

when used for semantic matching (Dusserre & Padró, 2017; Crossley et al, 2017; Senellart 

1 A version of an implementation published online by Pal was ported to Python 3 and adapted to the test set (Pal, 
2014).

5.1  Matching texts associated with Application Program Interfaces



5   Comparison of semantic measures for API text matching 55

& Blondel, 2008). This interpretation may be due to the proportion of irrelevant documents 

in larger corpora that reduce the effectiveness of LSA trained models. It would seem that 

word2vec methods do not suffer equivalent degradation with larger corpora, possibly 

because of negative sampling (Altszyler et al, 2017). As these questions are not readily 

answered from existing literature, and there is no information on the narrow context of 

API text matching, a range of both manually compiled and machine compiled corpora are 

used for training models.

5.2 Combined scoring for short text semantic comparison

The Li algorithm is not practical for searching relatively large repositories for semantically 

similar sentences. A more computationally efficient method is developed using the 

properties inherent to the technical language of API texts, these properties are described 

below.

The combined vocabulary of both sets of API text has a comparatively small set of 

words when compared against the total number of word instances within their respective 

texts. There is a deliberate re-use of technical terms used to define the structure and 

function of the CAD API architecture. As an example, the Solidworks API word set 

combined with the Rhinoscript API word set make up only 1502 unique words once 

common adjectives, prepositions and articles are stripped out. The technical term for 

words that are too generic to be of much use in semantic comparison is stopwords and a 

list2 is adapted from those found in the NLTK corpus which are in turn taken from the 

Penn Treebank (Taylor, 2003).

Consider the operation of a short text semantic algorithm used to find sentences 

similar to a chosen sentence (for clarity, the target sentences or texts are defined as those 

discovered to be most semantically matched to the chosen source sentence). Document 

retrieval methods such as LSA or other vector-space semantic similarity models are 

adapted to efficiently determine a number of matched target documents from a large 

2 Found in parseXMLgensim.py

5.2  Combined scoring for short text semantic comparison



56 5   Comparison of semantic measures for API text matching

repository. This is not the case for short text algorithms that compare the semantic values 

of individual words. This class of algorithm is evaluated using a list of sentence pairs, as 

each word is tested for semantic similarity against all words in the candidate target set, 

this amounts to a large search space where the candidate target texts may number in the 

thousands. The same word pairs are likely to be evaluated multiple times when assessing a 

single source text against multiple candidate target texts.

The solution adopted is to create large matrices where each word pair within the 

shared vocabulary is pre-calculated for semantic similarity according to a specific method, 

e.g. word2vec, Resnik, etc. This leads to large sparse arrays that can be held in local 

program space memory, or which can be held in contiguous disc storage. In trials, the 

sparse matrix generated by the combined vocabulary of SolidWorks and RhinoScript was 

small enough to reside in the 2 Gigabyte program space allotted to a 32-bit process 

running on a Windows 7 operating system (Lionel, 2019). Equivalent matrices generated 

from the combined vocabulary of SolidWorks API and AutoDesk Inventor API (4037 

elements) generated matrices that were too large to reside in local memory, so a PyTables 

implementation of a sparse HDF5 array representation was used to allow the larger 

matrices to be stored to disc, while permitting reasonably fast read/write access, Singer 

provides an overview of the method (Singer, 2019; Alted & Fernández-Alonso, 2003; Folk 

et al, 2011). SolidWorks and Inventor CAD API may be considered to be representative of 

fully-featured medium sized CAD applications commonly used within small to medium 

sized enterprise.

If the semantic similarity between word pairs is pre-calculated then it is relatively 

efficient to extract the set of semantic matches for a word pair that have a numeric value 

over a minimum threshold. This threshold operation gives a direct trade-off between an 

exhaustive search and a set restricted to the highest scoring matches. The disadvantage of 

this greedy method is that discarding low probability single matches carries the inherent 

risk that sentences with multiple low individual semantic word scores have a combined 

semantic word score that is higher than the threshold for consideration. 

5.2  Combined scoring for short text semantic comparison



5   Comparison of semantic measures for API text matching 57

This process is repeated for each word in the source text, creating multiple sets of 

target words with semantic similarity values greater than the set threshold. These target 

words can identify the target texts in which they appear. While high scoring words may 

appear multiple times in the same sentence, the majority of candidate texts encountered 

will have a single instance of a high scoring target word. In paired texts with multiple 

words scoring over the threshold value, there is a challenge of determining the consistent 

semantic score where there may be several different possible combinations of value. 

5.3 

Greedy Matching over multiple 

word match combinations

If any pretence of actual semantic 

comparison is discarded in favour of a 

method returning a unique and 

deterministic solution biased towards the 

highest possible score, this evaluation 

may be represented as a combinational 

optimisation problem. The combination 

of potential semantic matches that 

produce the highest value may be 

represented as the classical assignment  

problem. In Figure 7 the comparison of 

two short texts based on function labels 

is represented as a bipartite graph. Note 

that the preposition “From” is excluded as it is a member of the stopword set of low-

information words. The task is to maximise the summed value of semantic relation scores, 

as represented by the graph edges and their values, in such a way that there is a one-to-

one correspondence between graph nodes (so-called feasible labelling). An exhaustive 

5.3   Greedy Matching over multiple word match combinations

Figure 7: the highest word-pair match values are 
selected to form a word score, note stopwords such as 
"from" are excluded.



58 5   Comparison of semantic measures for API text matching

search for the optimum solution would complete in , ruling out this method for 

sentences of any appreciable length.

Fortunately, a solution exists that is shown to solve the assignment problem in 

strongly polynomial time of  . This is the Hungarian method, alternatively known as 

the Munkres-Kahn algorithm. An intuitive description of the algorithm is as follows (Kuhn, 

1955; Pilgrim, 2019). Consider these graph edge values to be the values in a cost matrix 

where the rows represent the word nodes in one text and the columns the word nodes of 

the other text undergoing comparison. 

The algorithm proceeds by subtracting the values of individual rows by the 

minimum row value to create one row element having zero value. This may reveal a 

minimum value solution, where each zero in the cost matrix occupies both a unique row 

and column. If there is no immediate solution, the same process is applied to each column 

and again the algorithm terminates if no zero is found for each unique row and column. 

Where there is still no solution, the cost matrix is adjusted again to create zeros cost 

values at new locations. This manipulation is applied to the region or regions of the cost 

matrix uncrossed by rows or columns containing zero values. The lowest value from this 

region is subtracted from all elements within the region, this lowest value is then added to 

the elements that appear on the rows and columns that contain zero values. There are a 

number of methods employed to determine the region for adjustment alongside the matrix 

elements that must be compensated for this adjustment which all generate the same 

outcome. This operation is repeated until distinct zeros are found for all rows and 

columns. The indices of these zero values may be used to extract the minimum values 

from the unaltered cost matrix. While this method finds a minimum value for the 

assignment problem, it has to be adapted to find the maximum value which can be simply 

achieved prior to the Hungarian calculation by subtracting the cost matrix from the 

largest element value.

Once the optimum combination of matches between singular or multiple words is 

determined, remaining unused words in each phrase are penalised as follows,

5.3   Greedy Matching over multiple word match combinations



5   Comparison of semantic measures for API text matching 59

The probability of several semantically related words appearing within two texts 

under comparison is not related to the probability between individual words appearing, 

despite all machine compiled corpora relying on the distributional hypothesis. This is not 

the case where several semantically words share the same concept, but a greedy 

combinational algorithm will winnow out these relationships. This relationship is 

acknowledged in the WordNet satellite parts of speech, where two words that commonly 

appear together, such as “New York” are given a unique category. This categorisation 

allows the contribution of individual semantic matches to be independently registered. 

Research to date does not reveal similar evaluation, e.g. SyMSS (Oliva et al, 2011; Wang et 

al 2015; Li et al, 2011). This evaluation is considered tangential to the topic of comparing 

API texts, a simple arbitrary weighting is introduced to texts that have multiple semantic 

matches to introduce a bias to the overall Semantic Match Score value. 

The advantage of this method is that it reserves computationally expensive 

combinational matching tasks to pairs of sentences that have known combinations. This 

tends to be a relatively small subset of the overall number of sentences. This is the 

limitation of the greedy algorithm, which is liable to miss relatively complex optima 

within a solution space. For comparison purposes, the Greedy algorithm using Leacock-

Chodorow Similarity matching performed an order of magnitude faster over the same API 

dataset (Leacock-Chodorow similarity is the closest path length and depth matching 

metric to the Li algorithm) than the only other algorithm tested for short phrase matching, 

that of Li (Li et al, 2006). Figure 8 shows the proportion of phrases taken from a 

comparison of SolidWorks and Inventor CAD API that are matched by a single word with 

a score of 0.75 semantic similarity, against the number of phrases that have multiple words 

with this same match value. This semantic similarity figure is normalised to a range 

between 1.0 and 0.0 and is derived from a test of function parameter names, associated 

function text using a Wu-Palmer semantic similarity measure. This text parsing is 

described in Section 5.7.

5.3   Greedy Matching over multiple word match combinations



60 5   Comparison of semantic measures for API text matching

It is relatively simple to integrate the Natural Language Toolkit 

(http://www.nltk.org) which contains a version of the WordNet corpus accessible in the 

Python computer language (http://www.python.org) and a number of similarity measures 

based on ontology of the WordNet corpus (Bird et al 2009; Miller, 1995). 

5.3   Greedy Matching over multiple word match combinations

Figure 8: comparison of number of single text matches vs multiple text 
matches at a normalised similarity threshold of 0.75

http://www.python.org/
http://www.nltk.org/


5   Comparison of semantic measures for API text matching 61

5.4 Trained corpus experimentation

Machine compiled corpora appear to be most successful when the document collection 

that informs the corpus is relatively specialised, as outlined in Chapter 4.1, Semantic 

mapping within CAE systems. There is also a requirement to have a large collection of 

training documents to reduce the negative influence of outliers. The semantic matching 

experiments have been carried out with Word2vec corpora compiled from document 

collections that range in size and specificity. 

• A word matching corpus has been generated from the document collection within 

the English Wikipedia. This collection of 5 million documents represents a large 

and unspecialised corpus. 

• A second corpus is generated from the entirety of documentation within both CAD 

API, totalling 6343 short documents.

• A third corpus is generated exclusively from the words used in function names. 

Function and parameter labels customarily employ a “camelcase” convention where 

separate descriptive words have whitespace removed to form compound labels such 

as “CreateBodyFromSurfaces”.

A set of 38 pairs of matching functions were selected from the API of two commercial 

CAD programs, Dassault Solidworks(R) 2010 and McNeel RhinoScript 5. Another 67 pairs 

were identified between the same Solidworks 2010 API and Autodesk Inventor 2012 API. 

Each of these paired CAD functions may create identical geometries with appropriate 

parameters. Some functions had more than one equivalent function in the counterpart 

API, a source function would have two target functions that replicated the same 

functionality, or in some cases two source functions would have a single target. The source 

and target assignments of these pairs may then be reversed and the process repeated. In 

some cases there are more than one matching target text, where two functions may 

perform the same operation as the source function. For example, a function that creates a 

5.4  Trained corpus experimentation



62 5   Comparison of semantic measures for API text matching

frustum in one API may be matched by a function that creates a cylinder given two radii 

and another that defines a conic section. 

To try to evaluate the effectiveness of any method, rather than simply calculating 

the value of the semantic similarity, text matches that score over the threshold are ranked 

in order of semantic match values assigned. A perfect match would rank the known target 

function first in the set of returned target texts ranked by semantic match value.

Semantic matching effectiveness can be tested with a similar precision and recall 

metric as that used for document retrieval. The task of text semantic matching in this 

context is to arrange a ranked shortlist of likely matches of API functions.  

5.5 Mean Average Precision, Mean Reciprocal Rank and Mean Rank 

metrics

The recall metric is the proportion of items correctly identified out of the total number of 

correct matches. Identifying equivalent, or semi-equivalent functions between the texts 

from two sets of API documentation places a tighter constraint on a recall metric. There 

are on average far fewer relevant matches than would be common in a document retrieval 

context, and the total number of functions to be matched would be smaller than most 

realistic document collections. In the case of manually identified matching functions, the 

recall is considered to be unity; all the matching functions are identified. With this 

constraint the precision then corresponds to the least probable ordered ranking of the set 

containing all the correct matches. In the case of a single equivalent function match 

between two API, the ranking of the correct match in the returned semantic match 

probabilities corresponds to the inverse of the precision measure, the rank measure, 

sometimes known as the “threshold” measure. This threshold measure is the proportion of 

CAD API functions out of the entire set that must be searched before a geometry match is 

successful.

Three measures are used, Mean Average Precision, Mean Reciprocal Rank and Mean 

Rank. These measures are adapted to ranked search results, the first two metrics 

commonly used for model comparative purposes. These measures are more readily 

5.5  Mean Average Precision, Mean Reciprocal Rank and Mean Rank metrics



5   Comparison of semantic measures for API text matching 63

presented in the context of more commonly used measures. Precision is defined as the 

proportion of documents retrieved by a query that are relevant to the given query.

Recall or Sensitivity is the complementary measure that normalises the fraction of 

relevant retrieved documents against the total number of relevant documents. This allows 

an assessment of the efficiency of the retrieval algorithm, or a normalised measure of true 

positives to false positives. In this case, all potential texts are tested and the probability 

ranking of the correct match is used, therefore recall is not relevant as all documents are 

retrieved.

In the case of retrieved documents that are ranked according to their relevance, it is 

helpful to see the variation of relevance across retrieved results. A precision-recall curve 

plots the precision against the recall , for each document in the ranked sequence, 

giving a visual estimate of the distribution of document query relevance across the ranked 

set of retrieved documents. This curve can be integrated into a single value, Average 

Precision, a coarser metric that gives a single figure useful for comparative assessments 

between multiple retrieval methods. 

In practice, this figure is a summation of individual ranked precision values over the entire 

ranking interval.

5.5  Mean Average Precision, Mean Reciprocal Rank and Mean Rank metrics



64 5   Comparison of semantic measures for API text matching

Where   is the index of the set of returned ranked documents,  such that  is the 

precision of the document indexed by  and  is the difference in recall over the 

interval  to . If the search algorithm finds a match on the highest ranked result, 

namely  , the local precision would be one. In the case where the highest rank was 

not a match this precision would equal zero. As the ranked probability decreases and  

goes to  , these cumulative values of precision form the Average Precision.

Where  is a binary measure of the relevance of the document at rank , such as the 

document is judged either relevant, or irrelevant.

This measure gives a more general comparative metric if it can represent the 

results of several different queries. The Mean Average Precision takes the summation of 

multiple Average Precision results and normalises them to the number of queries, .

Reciprocal Rank is the reciprocal of the th rank of the first correctly identified 

match in the set of returned matches , again if the highest probability ranking is correct, 

the value is , if the second value is judged correct but not the first, this would give a value 

of  . The Mean Reciprocal Rank is the sum of these Reciprocal Rank values for a set of 

queries,  normalised by the total number of correct results.

5.5  Mean Average Precision, Mean Reciprocal Rank and Mean Rank metrics



5   Comparison of semantic measures for API text matching 65

This reciprocal ranking metric gives a reasonable numerical estimate of the benefit 

of using a semantic search to assist function matching. Semantic matching assistance 

increases the probability of finding a function match within a smaller search space, if the 

function text is compared using the matching algorithms described then a reciprocal rank 

measure indicates the number of functions that would have to be tested before a match is 

found.

5.6 Mean Rank

Consider that, unlike document retrieval testing, there are only one or two predetermined 

function text matches in a query over the entire API text dataset. Large document test sets 

are not matched against queries, instead a number of pooled search results are examined 

by several human assessors. This practise means that documents that may have escaped 

scrutiny are assumed as unmatched, potentially leading to a false assignment as a 

document with no relevance, a false negative. As the CAD API function text sets used for 

matching number in the thousands rather than the hundreds of thousands, the appearance 

of false negatives in retrieved matches is less likely. This in turn simplifies comparison 

between algorithms. Buckley and Voorhees describe a binary preference metric or bpref 

that gives figures suited to comparison of semantic match algorithms that return a ranked 

set of matches (Buckley & Voorhees, 2004), the metric described below is of similar format 

but is not subject to the false negatives above, for clarity it is named Mean Rank in this 

context.

Finding a single document in a set means that the retrieval algorithm will either 

correctly rank the predetermined match as the highest rank, or assign the correct match at 

a reduced ranking dependent on the accuracy of the algorithm. If the algorithm ranks the 

entire dataset and the correct match scores the lowest ranking, the outcome is perfectly 

5.6  Mean Rank



66 5   Comparison of semantic measures for API text matching

inaccurate. If the numeric rank is divided by the length of the text dataset, this gives a 

metric metric that varies between zero for a perfectly accurate score, to one for a perfectly 

inaccurate score. If this figure is subtracted from one, it gives a measure of relative 

algorithm accuracy. This measure may be conducted over several queries and the summed 

outcome divided by the queries. Both Mean Reciprocal Rank and Mean Average Precision 

behave in a similar fashion when used with searches with a single judged match, this may 

be seen in the proportional similarity of graphic comparisons. Mean Rank is Mean 

Average Precision normalised to the size of the data set. 

where  is the set of queries,  is the known match in  where  is the set of texts 

undergoing comparison to  .

5.7 Parsing of API text data

The help files associated with CAD function API are invariably represented using 

Hypertext Markup Language files. These files may be converted into a free standing 

Compiled Help File which can be disassembled into its constituent HTML using Microsoft 

tools, or if the help files are not accessible as a single file, but are available from a website, 

they may be “scraped” using a webcrawler. These HTML descriptive files are parsed to 

extract text content as a series of strings using the BeautifulSoup library (Richardson, 

2019) (parseXMLgensim.py, API_SWKS_CHM_07.py, etc). These text strings are parsed to 

remove stopwords as described in Section 5.2.

The words contained in these text strings is grouped into a single set, comprising 

the union of all words encountered in the API help data, these sets are of the words 

contained in the camelcase function names, along with the text in the function 

descriptions. Each combination of word pairs in this set is assigned an individual 

5.7  Parsing of API text data



5   Comparison of semantic measures for API text matching 67

similarity value according to the Leacock-Chodrow, Jiang-Conrath, Lin, Resnik and Wu-

Palmer measures that use the NTLK corpus. In the absence of other word context data, the 

Li method that selects the highest value synset for a word pair is used 

(createWordNetSimMatrix).

A slightly different approach is taken to construct a similarity matrix using the 

word2vec method. The short sentences created by the function filenames or descriptions 

are used to train an implementation of the Milolov's Word2vec model using the Gensim 

library (Rehurek, 2010) (createWord2VecSimMatrix). This model may then be queried for 

similarity rankings of individual word pairs as before to construct a similarity matrix 

(createGensimWord2VecModel). The Word2vec model is not restricted to CAD API texts 

for training purposes, the content of the Wikipedia web-based encyclopedia project is also 

used to create a Word2vec model to compare results against a more general corpus. The Li 

algorithm was abandoned for comparative testing of the API text dataset because of 

impractically long operation times. 

These word pair similarity rankings are used with the greedy combinational 

method to determine a similarity measure for pairs of short texts. Each of these word pair 

similarity methods may then be trialled. Implementations of Doc2vec and LSI semantic 

similarity is also used for comparison. Both the LSI model and the term frequency – 

inverse document frequency model (TF-IDF) are trained from function names that have 

been converted from camelcase concatenations to short phrases, and API help text 

presented in the form of lists of stemmed strings. These semantic measures are included 

for comparison with the greedy methods intended for short strings, the Rehurek Gensim 

library allows rapid Bag of Words weighting of the API text corpus. In brief, a similar 

word pair co-occurence matrix is formed, then each word is weighted by a factor related 

to its frequency within the corpus, in this case the log of the inverse document frequency 

value. The Gensim library is highly optimised and calculations are performed an order of 

magnitude faster than the Python based greedy equivalent. This same model is then 

converted via SVD to a reduced abstract vector space, termed as Latent Semantic Indexing 

5.7  Parsing of API text data



68 5   Comparison of semantic measures for API text matching

(or otherwise known as Latent Semantic Analysis), this model is more rapid but has a 

matching performance similar to the TF-IDF model.

The Doc2vec model is similar to the Word2vec model (see also Word Embedding 

and the word2vec similarity measure), but the model vectors are based on the Paragraph 

Vector model of Le & Mikolov, where each short text is a vector (Le & Mikolov, 2014). 

Because short texts appear most suited to the terse API help documentation, three 

different model variants are used, the first with a word sampling window as used in the 

Paragraph Vector model, the third with a larger word sampling window size. The second 

model does not retain the order of the words in the texts during sampling, but uses a 

distributed “Bag-of-Words” sample where word order is not preserved. Note that because 

there are at most three target matches for every source API text document, the customary 

Precision/Recall graphs are unsuited to comparison. In this study there are two sets of API 

text matches between different commercial CAD programs, for each source document the 

entire set or potential target documents is ranked according to the calculated match 

probability. The position of the known match on this ranked list gives a basis for 

comparing models, as described above in Mean Rank. These individual match figures for 

each model could be averaged for a single numerical comparison of each method, instead a 

violin plot is used which gives more visual information about the quantitative grouping of 

individual average precision values of each semantic similarity model and consequently a 

better indication of outliers. The column width of the violin plot is a continuous 

approximation of the probability density function generated from the individual values. 

This probability density function is smoothed using kernel density estimation. A violin 

plot displays the breadth of each plot column with a width proportional to the distribution 

of values. The point values are also superimposed on the plots as bars.

5.7  Parsing of API text data



5   Comparison of semantic measures for API text matching 69

5.7  Parsing of API text data

Figure 9: Mean Average Precision values for matched API function texts between Solidworks 2010 
and Inventor 2012



70 5   Comparison of semantic measures for API text matching

5.7  Parsing of API text data

Figure 10: Mean Average Precision values for matched API function texts between Solidworks 
2010 and RhinoScript 5



5   Comparison of semantic measures for API text matching 71

 

Figure 11: Mean Average Precision values for matched API function texts between Solidworks 2010  
and RhinoScript5



72 5   Comparison of semantic measures for API text matching

5.8 Observations on semantic method comparison testing results

The Mean Average Precision graphs for both sets of API texts show that the traditional 

text matching methods fare badly (Error: Reference source not found, Figure 11). This is 

related to the density of concepts within the short terse API descriptions. The Doc2vec 

methods show a surprising variation relative to the word sampling methods with the most 

5.8  Observations on semantic method comparison testing results

Figure 12: Mean Rank values for matched API function texts between Solidworks 2010 and 
RhinoScript 5



5   Comparison of semantic measures for API text matching 73

basic Bag-of-Words method performing best. This indicates that elevating the importance 

of word order within a sampled phrase lowers accuracy. Virtually all short phrase 

matching techniques use word ordering (see Chapter 4.7). This anomaly may stem from 

the ordering of text within API HTML documentation. The HTML parser extracts readable 

text, adding paragraph titles, descriptive headings and sentences in the linear order in 

which they appear on the page, this does not guarantee grammatical sense in the short 

phrases generated.

As the greedy algorithm for the other models is identical, the only difference is in 

the methods used to select individual word pairs. While each of the WordNet based 

measures have similar performance, the two word2vec models show a different 

distribution and higher performance. The model combining a Word2vec similarity model 

derived from the Wikipedia corpus shows the best overall performance, but not by a 

notable margin despite having a far larger corpus size. 

The violin graph showing the Mean Rank may be readily interpreted as the 

proportion of a ranked list of API texts that would have to be tested before arriving at the 

correct match. A low score indicates that the entire ranked API would have to be searched 

to find the correct match. In practice, a zero score for values determined by the greedy 

method indicate that no score was found. It can be seen that scores around the 0.5 mark 

are of similar quality as a random guess while a score of 1 means that the highest ranked 

semantic match coincidences with the correct target text. The rationale for this non-

standard metric is that it gives a visual indication of how a semantic text match might 

partition a search space to a tractable fraction of an API.

Most search models perform better than average over the set of queries, this may in 

part be due to selected source-target pairs being indisputable matches rather than partial 

matches. The TF-IDF and LSI models perform worse than a random guess while the 

Resnik, word-sorted Doc2vec and API corpus word2vec models have a broad probability 

distribution. It may be seen that models that use a training corpus based on the respective 

API  do not suffer from the instances of unrecognised words (Word2vec_fctDesc and all 

Doc2vec models; not visible with LSI and TF-IDF), unlike those based on a general 

5.8  Observations on semantic method comparison testing results



74 5   Comparison of semantic measures for API text matching

purpose corpus such as the Semcor corpus of the WordNet path measures (Word2vec_lch, 

Word2vec_jcn, Word2vec_lin, Word2vec_res, Word2vec_wup), or the Wikipedia corpus 

(Word2vec_wkpda). 

A second set of plots are made of the averaged queries to allow comparison 

between trials on different API. It can be immediately seen that the RhinoScript and 

SolidWorks API have a higher overall match success rate than do the Inventor and 

Solidworks. This may be due to the RhinoScript and SolidWorks sharing a more similar 

vocabulary to describe the same features. The Wikipedia corpus, Jiang-Conrath word2vec 

based greedy methods and Bag-of-Words Doc2vec method are seen to perform higher 

than average over the test sets, while the LSI and TF-IDF methods perform poorly. The 

Mean Rank graph indicates the proportion of each API that remains below the rank of the 

known source target match. These values indicate that each method bar the LSI and TF-

IDF perform better than a random selection.

It may be concluded that the semantic matching techniques trialled here are not 

suited to determining feature function matches based on their API text descriptions alone. 

It is also apparent, particularly from the Mean Rank graphs, that several of the better 

techniques can reduce the search space to a small fraction of the entire API set for the 

source-target matches tested. A relatively rapid and general purpose method, such as the 

Doc2vec, or a greedy method combined with a word-pair semantic similarity method is 

shown to reduce the number of tests required to find a matching function. This technique 

may be used to increase the efficiency of specific function matching methods that are 

more computationally intensive, such as that described in Chapter 9.

5.8  Observations on semantic method comparison testing results



5   Comparison of semantic measures for API text matching 75

5.8  Observations on semantic method comparison testing results

Figure 13: Mean Rank values for matched API function texts between Solidworks 2010 and 
Inventor 2012



76 5   Comparison of semantic measures for API text matching

5.8  Observations on semantic method comparison testing results

Figure 14: Reciprocal Rank values for matched API function texts between Solidworks 2010 and 
RhinoScript 5



5   Comparison of semantic measures for API text matching 77

5.8  Observations on semantic method comparison testing results

Figure 15: Mean Rank values for matched API function texts between Solidworks 2010 and 
Inventor 2012



78 5   Comparison of semantic measures for API text matching

5.8  Observations on semantic method comparison testing results

Figure 16: Mean Average Precision over both sets of CAD API samples [0, 
0.5]



5   Comparison of semantic measures for API text matching 79

5.8  Observations on semantic method comparison testing results

Figure 17: Reciprocal Ranking over both sets of CAD API samples [0, 
0.5]



80 5   Comparison of semantic measures for API text matching

5.8  Observations on semantic method comparison testing results



6   Boundary Surface Geometry Comparison 81

6  Boundary Surface Geometry Comparison

The following chapter describes a method to evaluate similarity between the boundary surface 

geometry of models within different CAD programs. This method is distinguished from similar 

surface registration algorithms by an accuracy that makes it suited to evaluating CAD feature 

function equivalence. The method determines a set of points on the boundary surface of a model that 

perform two functions. First, as a rotation-invariant model signature for model matching. Second, as 

registration points for deriving a rotation matrix and translation between geometrically similar 

models at different orientations. These feature points are identified via an iterative search to find a 

local maximum or minimum surface region relative to the model centroid. Additional operations 

determine the centre-point of ridges or grooves around a model axis. Points are sorted in a helical 

ordering that allows paired point matching between models.

6.1 Overview of a geometric matching method

Syntactic and semantic matching techniques applied to short API texts have a limited 

precision. They do not return an accurate ranked equivalence of the phrases undergoing 

comparison. The experiments in Chapters 5.4, Trained corpus experimentation support 

this assertion. While text matching techniques are useful in reducing a search for 

equivalent CAD feature functions to a smaller pool of higher probability matches, they are 

impractical as a stand-alone automated method for determining API function equivalence. 

A more accurate API function matching technique can use information from a 

“black-box” comparison of function inputs and outputs, namely the API function is 

characterised as a transfer function without regard for its internal workings. In the case of 

CAD API functions, a combination of input parameters result in an output that modifies 

or creates a geometrical object within the model space of the CAD program.

If two CAD API functions have identical input and geometrical output, it can be 

inferred that the behaviour of the functions is equivalent. If two functions have dissimilar 

input yet identical geometrical output, it is apparent that the functions are related. Unlike 

generic text matching of function description, a geometric comparison can determine 

6.1  Overview of a geometric matching method



82 6   Boundary Surface Geometry Comparison

function relationship with a high precision, as measurement of space is better defined than 

measurement of concept in semantic or syntactic comparisons.

Many of the functions within a CAD API do not have a geometrical output, but 

comprise the routine housekeeping functions such as saving files or altering the user 

interface. As a translation between CAD geometric models generally only concerns events 

within the CAD model space, these ancillary functions can be disregarded. They may be 

readily filtered out of the set of candidate matching functions by identification of their 

input and output types. The proportion of CAD API functions relevant to geometric 

operations is shown in Figure 19, where the relevant fraction is highlighted. This chart 

shows a chart of all API calls within the McNeel Rhinoscript API for the Rhino CAD 

program, version 5 (developer.rhino3d.com., 2017). The functions have been manually sorted 

into six categories, four of which describe API functions that either directly or indirectly 

affect model geometry, a category of functions where the function relationship to model 

geometry is not readily specified and the largest category of methods that are not 

associated with geometric operations.

6.1  Overview of a geometric matching method



6   Boundary Surface Geometry Comparison 83

6.2 CAD model geometry comparison

If the output of CAD API functions are to be measured for equivalence, this necessitates a 

geometric comparison of CAD geometry models within their respective CAD programs. 

6.2  CAD model geometry comparison

Figure 19: proportion of CAD API functions directly applicable to model geometry in 
RhinoScript 5.



84 6   Boundary Surface Geometry Comparison

The instinctual solution of importing one CAD model into the model space of the 

second CAD program for direct surface comparison would be subject to two limiting 

constraints. 

• Firstly, this approach relies on this import facility existing within the second CAD 

program.

• Secondly, should this import facility exist, it would be subject to precision 

limitations inherent to potentially inequivalent definitions and numerical 

tolerances. See Chapter  3.6.1, Numerical accuracy for detail on incompatible 

representation issues between different commercial CAD software.

 

An alternative solution might propose that the respective geometric outcomes of 

the two function outputs undergoing comparison are exported to a standardised neutral 

intermediary format such as ISO10303-21, then allowing a direct comparison of model 

boundary surfaces. This proposition is again subject to the constraints of precision and 

interpretation imposed by the CAD export implementation. There is a second issue where 

it is not evident how the format of a neutral geometry representation might undergo a 

numerical geometric comparison. The summary of Chapter 3.2, CAD standardisation 

initiatives provides more detail on the role of neutral formats. 

A universal query routine must work with any CAD software undergoing 

comparative testing and must also be relatively immune to geometry inconsistencies 

between the internal geometric model representation of different CAD software. The 

Hoffmann proposition of Chapter 3.12, Representative proxy model and query protocol 

describes an explicit routine to determine relative precision of CAD programs respective 

to a hypothetical reference model (Hoffmann et al, 2014). The following method describes 

a query-based numerical comparison of CAD models.

6.2  CAD model geometry comparison



6   Boundary Surface Geometry Comparison 85

6.2  CAD model geometry comparison

Figure 20: affine dependent intersection of a Hoffmann grid with cone object and rotated 
equivalent cone object.



86 6   Boundary Surface Geometry Comparison

6.3 A boundary surface intersection query

In all the commercial CAD systems tested during this research, it is possible to obtain the 

Cartesian point at which a projected line, vector, or ray intersects a boundary surface of a CAD 

model, see 3.12, Table 1: a selection of Common CAD program commands yielding surface 

coordinates via curve intersections. for details. Some of these CAD programs, such as FreeCAD, 

require several commands to return the Cartesian coordinates of an intersection point.

If many intersections are made with a native CAD geometry model, a point cloud is 

generated that describes the model surface. Two geometric models within their respective 

CAD environments can be compared using the similarity of the point clouds that they 

create. If the intersections of each model are identical and both models have the same 

orientation in Cartesian space, then each intersection point will have an equivalent in the 

other model that can be compared. A simple measure of geometric distance between these 

points will give an indication of the similarity of both models. The greater the distance 

separating equivalent point pairs, the more dissimilar the CAD models are in terms of an 

absolute geometric measure.  The resultant two sets of point clouds will be within a 

defined tolerance if the intersecting mesh is identical and if the scale, position and 

orientation of the geometrical objects are identical. The method can identify a match 

between geometric models that are identical in both CAD model spaces, but fails on 

models differing in scale, orientation or position relative to an origin point. In other 

words, a simple comparison of intersection points will fail on identical models that differ 

by an affine transformation. Figure 20 shows a simple example of two identical cones, one 

of which is rotated relative to the other. It can be seen that a uniform grid will return 

different Cartesian points where it intersects the cone surfaces.

Hoffmann describes a generic method of querying a model surface with an 

intersected point. This is to create a regular orthogonal mesh of rays within a CAD model 

space and intersect them with a boundary surface model, the same operation is repeated 

in a second CAD model space with a nominally identical geometrical model (Hoffmann et 

al, 2014). The Hoffman intersection query is formally supported by a number of other 

queries on model precision. It is found that CAD programs do not typically enjoy a 

6.3  A boundary surface intersection query



6   Boundary Surface Geometry Comparison 87

uniform precision but return differing values dependent on the scale and geometry of 

models. These variations are waived for the purposes of testing two models for similarity.

Setting aside the discrepancies of Cartesian point coordinates arising from 

numerical rounding errors and noise, this method returns a positive identification when 

used to compare two CAD feature functions for geometric similarity. For the sake of 

clarity, it will be assumed that a high level of geometric similarity corresponds to a 

minimal bidirectional Hausdorff distance between the returned point sets, this is referred 

to as equivalent geometry for brevity in the following section (see Chapter 3.11, 

Bidirectional Hausdorff metric for a description of this metric). Supposing two feature 

functions are selected from two heterogeneous CAD API, and that these feature functions 

are known to create features with functionally equivalent geometry. If these feature 

functions are then compared using a Hoffmann mesh intersection method, they will only 

return a result of geometric similarity if they share identical parameters and constraints 

that are assigned identical values. If this method is used to test for geometric equivalence 

between unknown feature functions, it is unlikely that the selected functions will generate 

equivalent geometries. It is possible to repeat the same test using different combinations of 

parameters until an equivalent geometry is detected, but this test would require an 

impractical number of match tests for feature functions requiring multiple parameters. To 

demonstrate how this method might provide a basis for a more practical approach, 

consider the following example.

Given two feature functions , and  selected from two heterogeneous CAD 

programs,  and  . These two functions each have a set of parameters  

and   respectively. In the case of an exact function equivalence, the 

parameters of the functions , and  have exact same properties and order in both 

functions. In this instance, if these functions are tested with identical parameter values so 

that  , then the point comparison results from a Hoffman 

test will indicate an equivalent geometry.

Consider a subsequent instance where both selected functions again possess an 

equal number of parameters of the same type and property but the order of the 

parameters differs between functions. Unless all parameters are given the same value, the 

6.3  A boundary surface intersection query



88 6   Boundary Surface Geometry Comparison

simple Hoffmann test is unlikely to return an equivalent geometry. This disparity can be 

assigned to two factors:

• Firstly, there is no guarantee that the size, position and location of geometric 

objects created by a CAD API function are equivalent, a Hoffmann test does 

not recognise affine transforms of scale, translation or rotation.

• Secondly, the geometric shape of the models produced by functions , and 

 are unlikely to be similar without exactly equivalent parameter values, 

which are in turn dependent on an equivalent effect of the parameters. A 

circle function that is defined as tangential to three lines differs from a circle 

function that is defined as a centre point and radius value, or even a circle 

function defined as a centre point and a diameter value.

However, if the topologies of both geometric models are compared, the difference in 

function input parameters becomes a tractable problem. Once a point cloud matching 

technique can recognise topographical similarity between geometric models that have 

undergone an affine transformation, this allows geometric models to be tested for 

equivalence within their respective CAD programs. Feature functions that deform or 

modify existing models can similarly be compared using point cloud matching of model 

topologies. It must be noted that not all function parameter values may result in models 

that have recognisably similar topologies, these issues are explored further in Chapter 8.6, 

Parametric variables, where heuristics for function parameters are outlined.

6.4 Rigid body registration

A similar active research field already exists, that of scanned point cloud registration. In 

order to digitise the geometry of physical artefacts, the surfaces of objects are scanned to 

create a virtual representation. This process creates large sets of overlapping point clouds 

that require orientation and alignment. Successive scans of objects taken from different 

6.4  Rigid body registration



6   Boundary Surface Geometry Comparison 89

perspectives are knitted together to form a smooth unbroken virtual model. A laser or 

infra-red scanner generates multiple sets of 3D Cartesian point tuples as point clouds with 

a coherent relative orientation, but no absolute orientation values. To take these 

successive scans taken at different angles and merge overlapping scan portions correctly 

with respect to one another requires point cloud rotation, translation and possibly scaling. 

Registration techniques divide into two categories, rigid body registration and non-

rigid body registration. As comparisons are made to distinguish equivalent topologies in 

this application, only rigid body registration is relevant. Matching non-rigid shape 

geometries, such as articulated multi-part CAD models is beyond the scope of this 

research. For the purposes of determining similarity between CAD model geometries, it is 

sufficient to limit registration to that of rigid shapes so that 6 degrees of freedom describe 

the transformation. Distortions of CAD model geometries (e.g. stretching, bending, 

lofting) are inevitably the outcome of a geometric feature operation and may be identified 

as CAD features in their own right. 

Laser scanners use rotating mirrors to scan across surfaces, this has the effect of 

creating relatively unpredictable sample point positions. Points from randomly peppered 

surfaces do not allow one-to-one point correspondences between adjacent scans. 

Attempting to minimise the difference between the point sets is not a simple linear 

problem with an exact solution3. To qualify this assertion, the number of parameters that 

could define a cost function of a 6 Degree-Of-Freedom system is much smaller than the 

number of sample points involved and thus the number of equations defining a 

reorientation. 

6.5 Point cloud registration techniques

Affine transformations pose an equal problem for CAD model identification methods as 

they do for point cloud or polygon mesh similarity matching. The Cartesian coordinates 

3. An exact solution is alternatively referred to as a closed-form expression.

6.5  Point cloud registration techniques



90 6   Boundary Surface Geometry Comparison

that characterise geometric model data must be normalised, scaled and orientated before 

they can be directly compared. 

The methods detailed in the following section describe the most salient techniques 

used for matching point cloud objects. The subject of geometry matching, geometry 

registration and matching shape models is particularly diverse. A representative 

description and evaluation of these techniques is tangential to this thesis and so has been 

moved to     3D Shape matching methods overview. None of the methods described in 

Appendix B promise a sufficiently accurate similarity evaluation required to verify CAD 

surface boundary similarity. 

As stated above, much of the research in registration of Cartesian point clouds 

arises from the challenges of processing data points measured by 3D scanners. Laser 

scanners use rotating mirrors to scan across surfaces, meaning that the positioning of 

sample points is relatively unpredictable. Sample points from randomly peppered surfaces 

do not allow one-to-one point correspondences. Attempting to minimise the difference 

between the point sets is not a simple linear problem with an exact solution. 

If the Euclidean distance between pairs of points is minimised, the best solution has 

the least overall global error. This Least Squares approach forms the basis of the most 

widely used methods such as Iterative Closest Point, an iterative descent method. In the 

most basic ICP point-to-point manifestation, one point cloud is manoeuvred relative to 

another by minimising the displacement between pairs of points between the source point 

cloud and the target point cloud (Besl & McKay, 1992). This approach assumes that the 

points closest to one another are corresponding points. For an iterative Least Squares 

approach to work the two point clouds must be comparatively well aligned to start with 

and the two distribution of points over the surface must have a relatively similar 

distribution. More robust variations of the ICP algorithm match points to local surfaces 

generated on the target point cloud, or discriminate against improbable point pair matches 

(Masuda & Yokoya, 1995; Trucco et al, 1999). 

The other common registration method is Principle Component Analysis. PCA 

methods use point cloud mean values to solve translation, as this mean value should 

6.5  Point cloud registration techniques



6   Boundary Surface Geometry Comparison 91

correspond to a centroid. Rotation is determined from the eigenvectors of the covariance 

matrix, which in geometric terms is akin to alignment with the longest axis of the scanned 

surface  (Jolliffe, 1986). The accuracy of point cloud registration techniques are limited by 

the accuracy of point-to-point correspondences. 

The PCA algorithm is a relatively intuitive concept of finding a dominant shape 

axis,  this method may fail is in cases of symmetric shapes where the covariance matrix 

eigenvalues are equal. This can lead to an undetected reversal of the principal axis. 

Symmetric objects such as cylinders or spheres create similar issues, giving no clear 

dominant axis. Funkhouser et al observe that small differences in model extremities have a 

disproportionate effect on principle axes (Funkhouser et al, 2003).

The accuracy of point cloud registration techniques are limited by the accuracy of 

point-to-point correspondences. Most point cloud data is generated by surface scans, the 

position of sampled points is random and the density of sampled points depends on the 

orientation of the surface relative to the direction of the scanner beam. Therefore many 

techniques generate an approximation of a surface which is used for alignment. Xiong 

represents a point cloud as a probabilistic distribution function derived from a Gaussian 

Kernel Density Estimate (Xiong et al, 2013). Rotational Invariant Feature Transforms 

extends the 2D Scale Invariant Feature Transform to 3D, creating local histograms of 

gradients, similar to the histograms described in Rusu (Skelly & Sclaroff, 2007; Rusu et al, 

2008). Histograms of shape geometry, statistical shape representations or shape 

representations independent of absolute position such as Spherical Fourier Transforms 

lose geometric data which limits their effective precision. See Appendix B, Section B for a 

more comprehensive overview of registration and matching methods. 

Each of these techniques to match object geometry is limited by the accuracy of 

point clouds derived from scans of physical objects or tessellated surfaces. None are suited 

to the purpose of validating CAD model geometry equivalence as they lack the requisite 

precision for discrimination of complex surfaces. Properties unique to CAD geometry 

yield a novel method suited to accurate validation, these are described in the following 

section.

6.5  Point cloud registration techniques



92 6   Boundary Surface Geometry Comparison

Joshi and Chang defined an Attributed Adjacency Graph or AAG, an abstract 

structure of bounded CAD surfaces that could yield specific discriminatory features, this 

concept was extended to the Multi-attributed Adjacency Graph (MAAG) which includes the 

relative angle of adjacent surfaces to permit discrimination of a wider variety of model 

surfaces (Joshi & Chang, 1988). These methods are subject to the same limitations as 

common neutral formats, namely that they are reliant on the host CAD program 

implementation to export a uniformly interpreted representation. This technique is also 

referenced in Appendix B.16  - B.17.

6.6 Registration features search using surface intersection queries

Geometry registration techniques balance the requirements of efficiency against reliable 

identification of invariant geometry features (as opposed to CAD parametric features). The 

most simple and intuitive invariant features are regions of highest curvature, or greatest 

differentiation from surrounding regions (Bae et al, 2006; Sharp et al, 2002). Calculating 

areas of highest curvature is limited by the accuracy and distribution of sampling data. For 

a scattered point cloud, the density of points near distinctive areas is inadequate to allow 

them to be reliable. A second issue is that these small regions of interest are susceptible to 

sensor noise when derived from physical scans. There is a trade-off between robustness to 

noise and discrimination of small features in sampled data, but noise is far less of a 

consideration in points derived from CAD models. 

Several important differences exist between points extracted from CAD surface 

geometry models and the points returned form physical scanners.

1. Unlike laser range scanners, CAD software returns points with a relatively 

consistent geometric error associated with the numerical noise and internal 

data representation. Range scanners return a proportion of incorrect points, 

requiring robust algorithms to discard outliers. The caveat is that CAD 

software is liable to produce errors of large magnitude on occasion. Tiny 

6.6  Registration features search using surface intersection queries



6   Boundary Surface Geometry Comparison 93

surface holes, slivers and algorithmic artefacts will generate errors, although 

none were encountered during the course of this research. 

2. Intersected surfaces are ‘transparent’ within a CAD model environment. A 

projected ray will return all points at which it intersects a surface. Scanned 

physical objects obtain surface points within a line of sight from the scanner, 

leading to ‘data holes’ where surface data from the rear of an object is 

missing.

3. CAD API intersection operations are relatively expensive and slow 

compared to the data arriving from range scanners. Each CAD API operation 

requires a negotiation via the API interface, usually the veteran Microsoft 

Component Object Model interface as the majority of CAD programs are 

supported on the Microsoft Windows series of Operating Systems 

(Docs.microsoft.com, 2018).

4. Points intersection operations within CAD environments can be directed in 

space. Point cloud generation via physical scanning is undirected, the 

distribution of points samples are dictated by the mechanism of the scanner. 

Within a CAD environment, the orientation of a ray or vector that can yield 

an intersection point is well defined.

6.7 Directed CAD feature point search

It is possible to project a multitude of evenly spaced rays from a model centroid to define a 

point cloud on the surface of a CAD geometry object. Hoffmann describes an evenly 

spaced grid or mesh to achieve the same purpose (Hoffmann et al, 2014). Leifman 

describes a similar method that records deviation from a sphere enclosing the object 

(Leifman et al, 2003). The representational accuracy of any intersected surface is 

6.7  Directed CAD feature point search



94 6   Boundary Surface Geometry Comparison

proportional to the spacing of the rays, in a similar fashion as a graphics bitmap is limited 

to the resolution of the image. This represents a computationally expensive approach as 

the query efficiency is limited by the process of accessing the CAD program via an API 

interface. 

A second approach might make use of existing CAD API functions to return lines 

or areas of high curvature, but this would rely on a less generally applicable approach. 

Bearing in mind that a querying a CAD boundary surface with intersections is a directed 

search rather than a pre-ordained point cloud, feature determination can proceed in a 

different manner using a minimal number of points, this is described below. 

If points can be guaranteed to be evenly distributed on a boundary surface, then 

their mean Cartesian value forms a good approximation to the centroid of this geometric 

model. Translation transformation of two point cloud can be determined as the 

displacement of their relative centroids. Centroid displacement is unreliable where only 

partially overlapping point clouds are available or where deformed non-rigid models are 

compared, neither of which limit this particular application. Given a point  that 

represents a Cartesian tuple, the centroid of a dataset  containing  point values, the 

centroid can be determined as follows,

6.8 Global Registration via Singular Variable Decomposition

The global registration problem (alternatively known as the Procrustes matching problem) 

can be shown to have a closed form solution for a translation and rotation. Given one set 

6.8  Global Registration via Singular Variable Decomposition



6   Boundary Surface Geometry Comparison 95

of points  and a second set  that corresponds to a rotated and translated equivalent of 

point set , registration can be expressed as a combination of rotation  and translation ,

 

Singular Variable Decomposition or SVD will decompose (or factorise) a matrix  into three 

matrices, it is useful to describe the matrices in terms of geometric operations. Using the 

mathematical notation given in Umeyama,  is an initial rotational matrix operation,  is 

a scaling matrix operation and  is a final matrix rotation operation (Umeyama, 1991). 

where

Two triplets of points, , and , can yield a rotation matrix via the SVD properties once 

they are corrected for translation. Again, translation is the euclidean distance between 

point cloud centroids, . If the covariance matrix , is accumulated 

from these translation-normalised point clouds, it can be decomposed to give a rotation 

matrix 

This process determines the optimal orthogonal rotation matrix , however this matrix 

may represent reflections of the point set as well as rotations. If the determinant of is 

negative, this indicates that the rotation matrix contains a reflection. It can be shown that 

the next optimal rotation matrix value is attained as follows (Sorkine-Hornung & 

6.8  Global Registration via Singular Variable Decomposition



96 6   Boundary Surface Geometry Comparison

Rabinovich, 2017). Note that the subsequent research suggests that this step is redundant if 

there is a consistent ordering of matched point pairs that respects chirality (see Section 

6.17, Helical point sequencing).

giving,

This may be generalised for rotation matrices with and without reflection as,

 

The translation operation, , may be subsequently derived from the rotation matrix and centroid 

values such that,

It may be observed that the Least-Squares approach is a generalisation of the SVD solution for 

cases where point clouds  and  contain more than three points (Besl & McKay, 1992). In this 

6.8  Global Registration via Singular Variable Decomposition



6   Boundary Surface Geometry Comparison 97

case there are taken to be  corresponding points between both sets. The affine transform is 

defined as the least-squares minima of the overall error between corresponding points,

This manifestation still requires that each point  in the set  has an analogue  in set 

. This constraint rules out SVD matrix calculation registration for point clouds which 

lack pointwise correspondence between scans.

6.9 Object Point Cloud Registration and Object Recognition

The ICP, PCA and SVD algorithms described above are generally used in applications 

where point data sets under comparison are assumed to derive from the same model. 

Object recognition differs, in that the task is to identify a target object from dissimilar 

objects, particularly in cases when the object may be partly hidden or rotated in 

orientation. Discrimination between objects requires that multiple geometry models must 

be matched for equivalence, consequently an efficient algorithm should uniquely and 

minimally define a geometry model to allow rapid searching for equivalents within large 

sets of models. 

The approach taken in this proposed identification method is to reduce the CAD models 

undergoing comparison to a minimal set of features that will reliably discriminate 

between models. The difficulty with this approach is determining the optimal 

minimisation of model details that returns both an acceptable comparison accuracy and 

comparison time. An associated problem is the reliable identification of relevant model 

features, for example if two cubes are being compared it is important that all corners of 

these cubes have been identified. The following section describes the aspects of geometric 

model features suited to comparison. 

6.9  Object Point Cloud Registration and Object Recognition



98 6   Boundary Surface Geometry Comparison

6.10 Geometric registration feature types

Equivalence comparison of CAD geometric models representations may be simply stated 

as determining similar models that may have undergone affine transformations and 

discriminating against dissimilar models. If these geometric models are represented by a 

set of identifying features, these features must invariant under transform while allowing a 

comparison of model topology. Identifying features might be defined as any point, curve 

or region that possesses unique characteristics. The term “feature” is used within CAD 

literature to represent parametric features that provide the defining building blocks of a 

CAD model (see Chapter 3.3, Parametric feature modelling), while the term “feature” 

within the domain of 3-D surface registration is simply a topological characteristic that 

permits accurate transformations. 

Registration features are required to be both minimal and unique. Audette lists 

several feature categories, points, curves and regions and determines curvature to be the 

defining property (Audette et al, 2000). Several schema of registration features suited to 

matching CAD models are possible. As models are statistically more likely to have fewer 

regions of high curvature, these are obvious candidates. Curvature based methods are 

briefly described in Appendix B 12, Curvature based descriptors. Regions of highest 

curvature such as corners and edges may be taken from the convex hull that encloses the 

body, or from an API query that returns edges and corners. It is also a simple matter to 

extract this data from neutral file formats such as ISO10303-23, or STEP. However it is 

necessary that this method is independent of any particular format in order to map feature 

functions between CAD API. 

Distinguishing matching features must be determined by the minimal interface 

required by the point sampling methods described in CAD model geometry comparison, 

namely that these features can be determined via the Cartesian points returned by 

intersections with projected rays. As this method is intended to be a proof of concept 

rather than a provably efficient schema, the features that can be determined with a simple 

search method are chosen. In this instance, these are the furthest points situated from 

centroid of the shape. These points may be determined using an iterative search over the 

6.10  Geometric registration feature types



6   Boundary Surface Geometry Comparison 99

surface of the model to find the highest local maxima, this search method is explained in 

detail in Section 6.20, Registration feature search strategy. In Section 6.25, A minimal set 

of registration features types, further distinguishing features are described that allow a 

broader spectrum of shapes to be distinguished. 

6.11 A progressive search refinement strategy

The use of unique discriminating feature points allows geometric models to be represented 

in progressively detailed description as follows. 

6.11.1 Matching distinguishing feature sets:

In the simple case of using model corners to represent point features, an oblong 

shape of eight corners may be distinguished from a tetrahedral shape of four 

corners. However this rapid comparison will not distinguish a rectangular cuboid 

from a cube as both possess the same number of corners.

6.11.2 Displacements of each feature point from the shape 

centroid:

The distance from shape centroid to shape corners constitute another set of 

descriptors that are invariant to rotation and translation. These displacement 

descriptors are not invariant to scale transformations and must be normalised 

before comparison. For example each distance may be divided by the longest 

distance. These descriptors will distinguish a cube from a parallelepiped, but not 

from a rectangular cuboid. See Figure 21 which represents a match between two 

sets of centroid-feature displacements ordered by type. These displacements 

represent the geometry shown in Figure 22, Figure 23, Figure 26.

6.11  A progressive search refinement strategy



100 6   Boundary Surface Geometry Comparison

6.11.3 Transformation between sets of feature points:

The rotation, translation and scaling between sets of points can be carried out 

relatively quickly using a closed-form solution such as the SVD based rigid motion 

transform given in Section 6.8, Global Registration via Singular Variable 

Decomposition. Once the point sets are transformed to share the same centroid, 

scale and orientation, the sum of displacements between feature points indicates 

whether the points or corners share the same relative coordinates. Figure 22 shows 

two shapes with matching feature point sets. This test will distinguish between a 

rectangular cuboid and a cube, but it will provide no information about the surfaces 

that are not at the feature points. For instance a cube with radiused edges and 

corners will return a match for a cube with orthogonal edges and corners.

6.11.4 Checking via random transformed surface points:

Once the transformation rotation matrix and translation has been generated for 

feature registration points, it may be used to transform any intersection ray or point 

between source and target shapes.

In this case a point created by a ray emanating from the centroid of a source 

shape that generates an intersection with the shape surface may be transformed to 

its relative position on the surface of the target shape. If this transformed point is 

not tangential to the surface then it can be inferred that the shape surfaces are not 

equivalent. The orientation of the ray used to create the source point may be 

transformed to the target shape and an equivalent point generated on the surface of 

this target, rather than querying the tangency of a transformed point on the target 

surface, it is possible to use the displacement between the transformed point and 

the point created by the transformed ray to determine whether the shape surfaces 

coincide at the point.  Figure 23 shows three random points transformed between 

two identical shapes. This measure is not suited to the unusual circumstance where 

the shape surface is coincidental with a ray emanating from the shape centroid.

6.11  A progressive search refinement strategy



6   Boundary Surface Geometry Comparison 101

6.12 Model difference measure via mapped points

Given a centroid point  on a source model and a point  on the surface of this model, a 

vector  can be defined from the source model centroid to  . This vector might then be 

scaled, rotated and translated to an estimated position on the target model, 

via a rotation matrix  and a translation  (the scalar operation of scaling is omitted for 

clarity). If this vector  is based at the corresponding target centroid , there is an 

equivalent surface intersection point  that lies on  that must be coincident if the two 

models have identical geometrical features. A point   may be created at the intersection 

of the target surface with  projected from , giving a vector . The scalar Euclidean 

displacement between  and  is the error measurement between the source and target 

models at the point q.

A selection of points  give a higher probability of model surface equivalence 

according to the binomial probability distribution described in the next section. This 

random selection  of points  from the source model give a set of error displacements, 

which may be summed to provide a measure of similarity. Root-Mean-Square-Error is 

common method to normalise these error displacements to give a single error metric. This 

metric penalises outliers to a greater extent than measures such as Mean-Absolute-Error, 

making it more suited to registering anomalous  values. This metric is used in preference 

to the bidirectional Hausdorff measure which is that of the most extreme outlier. In 

practice there is little difference when assigning an arbitrary threshold to indicate a match.

6.12  Model difference measure via mapped points



102 6   Boundary Surface Geometry Comparison

Selection of several random surface points cannot, by definition, guarantee that 

both shapes are equivalent for all surface points. It is however possible to assign a 

probability of both shapes being similar, proportional to the number of samples tested. 

This can be described in simple terms as the proportion of surface that differs between 

both shapes. If 50% of the surface area of the target shape differs from the source shape, 

there is a 50% chance of discovering this difference in a single sample. This may be 

generalised as an expression of the probability mass function where  is the number of 

samples,  is the proportion of differing surface area,

For example, if   of the target surface differs from the source surface and 6 samples are 

taken then the probability that no difference is encountered is,

Throughout this research, probability values are based on a random selection of point 

values from the surface, this approach lends itself to optimisation, as detailed at the end of 

this chapter. 

These four tests for shape equivalence are complementary, a shape difference not 

detected by the first test may be detected by the second, if not by the second, then by the 

third, if not by the third, then by the final test. Performing these tests sequentially over 

shapes allows efficient sorting such that computationally expensive tests are reserved for 

shape discrimination tasks that cannot be resolved using more rapid techniques.

6.12  Model difference measure via mapped points



6   Boundary Surface Geometry Comparison 103

6.13 Software resolution and machine precision

One aspect of point matching that is briefly mentioned in Chapter 3.6.1, Numerical 

accuracy is the discrepancy in tolerance inherent within different CAD programs. 

Absolute geometric values must be approximated on finite precision computers and each 

CAD program has variations in the accuracy of spatial representation. This accuracy or 

resolution is generally expressed as an absolute value  that represents the boundary 

within which a CAD program Cartesian representation and a similar queried value may be 

considered coincident. 

Hoffmann references a bounds query, that returns the resolution   integral to a CAD 

program alongside the separation distance, , between an ideal geometric model  and 

the CAD representation . In the experiments described in Chapter 6, Test configuration 

for single and multiple model matches, the tolerances of the CAD programs used are 

several orders of magnitude smaller than the scales of the models used for test evaluation, 

a simple minimal threshold distance validates point coincidence. This validation is 

summed over all mapped point displacements, similar to the minimisation of least-squares 

error.

The mean deviation of a set of registration features, or random points that have been 

mapped are tested against an absolute threshold value to determine whether the two point 

sets can be considered as coincident. This threshold value may vary between different 

CAD programs, or even over varying surface topology. A measurement of these variations 

is considered outside the scope of this research. 

6.13  Software resolution and machine precision



104 6   Boundary Surface Geometry Comparison

Source and target shape models are assigned a measure of error distance, ranging 

from zero, where a source and target model are deemed to be geometrically identical 

independent of any affine transformation, to infinity, where there is insufficient similar 

elements identified to allow further determination of geometric shape equivalence. In 

practice this value is composed of the RMSE value test points transformed from the source 

model to the target model surface and infinity for values that do not have sufficient 

matching feature registration points to create a transform. 

Once the registration features of the geometry model are located, the relative 

displacements from the model centroid to these features form a unique shape signature 

that is invariant under rotation and translation, and is proportional under a scaling 

transform. These maxima-centroid displacements can be represented as bin values within 

a histogram. The immediate advantage of using an affine-invariant histogram (or vector, 

depending on domain terminology) to represent a shape configuration lies is the ability to 

rapidly compare a source histogram against multiple target histograms (see Figure 21). 

This can be achieved with a cosine measure or a specific histogram distance measure such 

as the intersection distance used in the implementation (distanceRank)(Swain & Ballard, 

1991). Zehtaban et al describe a similar alphanumeric shape signature for CAD models 

with orientation-invariant numerical values comparable via a distance measure (Zehtaban 

et al, 2016). 

6.13  Software resolution and machine precision



6   Boundary Surface Geometry Comparison 105

After the search for registration features on an identical source and target model 

has terminated, the number of these features should be identical and the euclidean 

displacement from each feature to the model centroid should be equivalent. If these 

displacements are summed between identical geometry models the histogram bins will 

contain even numbers. Should a high proportion of histogram bins contain even numbers, 

it then becomes worthwhile testing the missing point values of the bins of uneven 

number. Note that the comparison between CAD models can be directed, unlike a physical 

scan cloud. If a point exists in a source CAD model but has not been found in the target 

model, the target model can be searched at the corresponding point. If no corresponding 

point is detected within a predicted location, the comparison test can be terminated, 

yielding a known mismatch.

6.13  Software resolution and machine precision

Figure 21: comparison of categories of registration feature displacements from a 
model centroid form an orientation-neutral histogram for rapid comparison.



106 6   Boundary Surface Geometry Comparison

6.13  Software resolution and machine precision

Figure 22: Singular Vector Decomposition of registration feature points yields a rotation matrix 
and translation between source and target models.

Figure 23: random points are transformed from source to target model, summed deviations from 
estimated surface intersections give a model similarity value.



6   Boundary Surface Geometry Comparison 107

6.14 Registration feature search reliability

The number of extrema features is an unknown initial quantity. Determining registration 

features using a directed search rather than an exhaustive search carries the risk of 

missing features that have a low probability of being detected using a hill-climb algorithm. 

To describe the issue in detail requires a description of local search reliability.

A simple registration feature search scheme subdivides the geometry model into 

search regions. If multiple extrema searches within the same region terminate at the same 

point or points, then it is more likely that all extrema points within the search location 

have been identified. To use a simple probability example, if a coin is tossed 10 times, there 

is only a   probability that heads appears 10 times in a row. In a similar fashion, if there 

are two features of identical geometry within a search region on which searches reliably 

converge such as in the image above (see Figure 24), then there is the same 1 in  chance 

of missing a feature in  searches. The problem with this method is that only platonic 

solids have search regions of equal size where a hill-climb search terminates with an equal 

probability. Figure 24 shows a surface with equal probability and the adjacent image, 

Figure 25, a surface with unequal probability of hill-climb searches terminating in both 

surface features.

6.14  Registration feature search reliability

Figure 24: surface representation containing 
two regions with an equal probability of 
discovery.

Figure 25: surface representation containing two 
regions with unequal probability of discovery.



108 6   Boundary Surface Geometry Comparison

6.15 Registration feature search repeatability

Search reliability is one factor, search repeatability is the second. If the same algorithm is 

used within both CAD programs to determine registration features, are the results 

repeatable on similar geometries? This factor illustrates a weakness in steepest-gradient 

searches, if the gradient undergoes a sharp discontinuity, a random search might not 

encounter it and terminate. To illustrate this concept with an example, supposing a search 

for maximum extrema features is performed on a plane with a few sparsely distributed 

thin needles protruding from the surface. A search starting from a level surface does not 

move towards a protuberance and may eventually terminate without ever encountering a 

sharp protrusion. This shape cannot be reliably distinguished from a level plane using this 

technique. 

The unknown probabilities of registration feature discovery signify a weakness 

inherent in a simple feature counting method for matching shape models. If the number of 

registration features are unknown in advance, and a termination condition for a feature 

search is based on the number of times that independent searches discovers the same 

feature, then repeated searches on the same shape will not reliably yield a deterministic 

number of features. 

This problem is not applicable to the other three search sequential techniques, 

therefore a robust matching heuristic must afford some latitude to the number of feature 

points discovered. Rather than all registration feature points being exhaustively 

discovered, it is a sufficient condition that features with a high probability of discovery are 

found. The attendant issue of incomplete sets of matching point pairs may be resolved by 

removing a counterpart feature from a target shape that is missing in the source shape. 

The tests that match centroid displacements provides the basis for a first assessment to 

sift likely matches. 

Tests on the benchmark CAD shape libraries reveal the general utility of CAD 

matching algorithms, but have limited application for feature testing algorithms. The 

6.15  Registration feature search repeatability



6   Boundary Surface Geometry Comparison 109

variety of simple shapes allow random search techniques to excel, yet the majority of CAD 

models are of complex, asymmetric geometry. The issues of model complexity are 

elaborated further in Chapter 7.5, Complex model matching.

6.16 SVD exhaustive feature search requirement

The advantage of SVD methods to find affine transforms is that it is an order of magnitude 

faster than other geometry registration methods such as ICP which iterate transformation 

calculation to minimise error between source and target models. The disadvantage of SVD 

is that the exact transformation calculation is dependent on paired registration feature 

points mapped between the source model and the target model. If the shapes undergoing 

match testing have registration point sets that do not have pairwise correspondences, a 

SVD algorithm is unlikely to find an existing mapping, consequently this method is 

inadequate for determining shape matching using unordered sets of source and target 

geometry coordinates. However, if identical registration features can be found on both 

models and these features can be paired between models, the closed form SVD calculation 

may be used. 

As the hill-climb search for registration features is likely to finds regions with a 

similar probability of detection with a similar frequency, it is possible to create sets of 

registration features common to both source and target models. Features that do not lie 

within the intersection of both sets may be found by matching the scalar value of 

centroid-feature displacement values common to features on both models 

(listIntersection). Both sets of feature displacement values need first to be normalised 

to a common scale, dividing each value within by the largest value of the respective set 

will accomplish this. If this operation leaves sufficient feature pairs to perform SVD 

calculation, the next step is to find a sequential arrangement of these feature pairs that is 

verified to exist on both source and target model, as described in the next section.

6.16  SVD exhaustive feature search requirement



110 6   Boundary Surface Geometry Comparison

6.17 Helical point sequencing

The method used is to order all points on each model according to a helical arrangement, 

this is accomplished as follows.

1. The first step is to determine a registration feature that has a unique point-to-

centroid displacement value to serve as a starting point. In the case where there is 

no registration feature with a unique centroid displacement value, the task is then 

to determine the smallest set of registration feature displacements. 

2. Once a start point is chosen from this set, the registration features are translated so 

that this start point forms a new coordinate origin. 

3. The registration features are rotated so that the model centroid lies co-linear with 

the Z-axis emanating from the start point. This may be carried out via a rotation 

through the axis generated by the cross product of a vertical unit vector and a 

normalised vector constructed from the starting point and the centroid. The 

rotation angle may be determined from the arc-cosine of these same vectors, there 

are several exceptions for small values and start points located on the Z-axis. This 

translation and rotation allows the registration feature points to be converted to 

cylindrical coordinates using a signed arctangent function and Z-axis displacement. 

4. Once registration features are represented by an angular value and a displacement 

value from the start point, they may be sorted by cylindrical coordinates to 

determine a sequence of features that lie in a helical path. If two points share the 

same Z-axis coordinate value, the point with the lower angular value takes 

precedence, otherwise the point with the lower Z-coordinate takes precedence in 

the sequence. This algorithm will generate identical sequences of registration points 

from asymmetric matching target and source models that share the same start 

point. It is necessary that both sequences share the same chirality, or “handedness” 

of generative helix. This procedure generates a known order of feature registration 

points, as shown in the accompanying diagram, Figure 26. This illustration indicates 

6.17  Helical point sequencing



6   Boundary Surface Geometry Comparison 111

the sequence of extrema feature points discovered from a shape orientated such 

that the point A is co-linear with the Z-axis. 

In the case of models with no unique registration feature displacements, there is no option 

but to generate multiple sequences from the smallest set of points that share an identical 

displacement value from a model centroid. This gives several candidate helical sequences 

of feature points for both source and target models. These sequences may then be tested 

for an identical set of centroid displacement values to determine a sequence pairing. The 

implementation calculates a single registration point sequence (leftHandSpiralOrder5) 

for a source model with the associated sequence of point displacements, target model 

sequences are then generated until one matches the displacement sequence associated 

with the source model sequence. This process may be formalised as follows.

6.17  Helical point sequencing

Figure 26: a sequence of points is generated from an initial feature 
point A on a model geometry to form the series ABCDEFGHIJ



112 6   Boundary Surface Geometry Comparison

Given:   and , two sets of registration 

features on model surfaces  and  respectively

Generate:  and , two sets of scalar 

displacements between each value in  and  and their respective 
centroid point values , .

For each set  in { , },  in { , } and  in { , },

Find the set  of registration features  corresponding to the minimum values in  

such that  and that  

For each initial point  in ,

Translate  point values by  such that  is centred at the 
coordinate system origin.

Rotate all points in  such that the rotated centroid, ,is co-linear with the 
positive Z axis.

For each  in , convert the point Cartesian coordinates to Cylindrical 
coordinates.

Sort , for ,  in  and corresponding ,  in  such 

that,

If (  and ) or ( )

Add each ordered set  to   such that  

Add each ordered set  to  such that 

For each ordered set  in  and  in ,

If  for  in  and  in ,

Add respective feature sets  to paired match set 

_________________________________________________________________________

6.17  Helical point sequencing

Algorithm 1: Ordered registration point sequence



6   Boundary Surface Geometry Comparison 113

6.18 Order ambiguity arising from rotational symmetry

This schema will generate unique sequences for an asymmetric model, but not in cases of 

radially symmetric models. In the simple case of a regular octahedron that has 4-fold 

rotational symmetry, four individual paths are possible, each of which share an identical 

centroid displacement sequence. This ambiguity is caused by arbitrary absolute angular 

values created in the conversion to cylindrical coordinates. A target model in an unknown 

orientation cannot provide a datum point for rotationally symmetric feature registration 

values. Therefore, while the sequence of symmetric feature points arranged around an axis 

of rotation co-incidental with a model centroid will generate a sequence ordered by 

relative angular position, the first feature registration point in this sequence may be any 

one of the rotationally symmetric points. This ambiguity does not pose a problem for 

registration feature point matching, but where there are further model matching details 

that are not captured by registration features, this property may indicate a false negative. 

This registration feature matching schema is sensitive to the position of the model 

centroid. Model centroids are generated from the mean values of registration feature 

points, covered in more detail in Section 6.27. If, however, centroids are assigned to 

rotation or reflection axes, the schema above will fail on models with rotationally 

symmetric registration features combined with asymmetric registration features. A 

centroid centred on a rotational axis will introduce the path ambiguity described, but 

asymmetric registration features will then add a rotational orientation matching 

constraint. A centroid created from mean values of points incorporates the asymmetrical 

perturbation of points that are not rotationally symmetric, allowing the registration 

feature matching algorithm to discriminate between helical path sequences. The 10-point 

shapes used to illustrate helical point sequence ordering exhibit this property (Figure 22, 

Figure 23, Figure 26). This shape can be described as a cube with additional points in the 

centre of two adjacent faces. If the centroid is arbitrarily placed at the position of the cube 

centroid and the order of points is selected from one of these two additional extrema as in 

Figure 26, the initial order of points might progress via any of the paths, e.g. AB, AC, AD, 

AE. This may result in a sequence ACDEBFHIJG where the underlined point labels have a 

6.18  Order ambiguity arising from rotational symmetry



114 6   Boundary Surface Geometry Comparison

different vertex-centroid displacement than the other point labels. Once this is compared 

with ABCDEFGHIJ, it can be seen that the displacement values for both sequences are 

equivalent but they do not record the same sequence of points.

In cases where there are several sets of paired feature set matches,  

that share the same sequence of displacement values, this indicates a pair of models that 

are both symmetrical around a plane. 

In the case of models where there is a high confidence that all feature points have 

been determined, only one of these mapped pairs are required. However in cases where 

this certainty does not exist, such as the complex bracket described later in Chapter 7.5, 

Complex model matching, the registration feature points on the convex hull of the model 

do not account for undetected feature points within the model. In this case the only the 

discovered feature points are symmetrical about a plane. This uncertainty requires that all 

paired sets of feature points are tested and then subsequently verified using random points 

transformed from the source model to the target model (this algorithm is implemented in 

leftHandSpiralOrder2 where the minutiae of vector calculation and rotation is contained 

in the subroutine LHHelixOrder).

6.19 Correction for SVD reflections about a plane

A final observation on this SVD matching schema is the detection and rectification of 

reflection within rotation matrices derived from the SVD algorithm, detailed in Section 

6.8, Global Registration via Singular Variable Decomposition. To recap, if the determinant 

of is negative, this registers the presence of an unwanted reflection in the rotation 

matrix. The Umeyama method that reverses the sign of the outermost diagonal in the 

identity matrix is found to cause an unwanted reflection in the rotation matrix. However, 

if the indicated presence of an unwanted reflection were ignored, the generated rotation 

matrix was correct for all test examples trialled. This unusual observation was not pursued 

further.

6.19  Correction for SVD reflections about a plane



6   Boundary Surface Geometry Comparison 115

6.20 Registration feature search strategy

The search used to find feature points is based on a steepest ascent hill-climbing 

algorithm. For every point found to have the maximum displacement from the model 

centroid, a ring of neighbouring points is generated, and from this ring, the neighbouring 

point with a greater centroid displacement is chosen as the next point. As this iterative 

search for local maxima happens in a local search sector, the displacement between search 

steps starts at a value that distributes neighbouring points over the most of the search 

sector and reduces the step size with each iteration to converge at a resolution suited to 

CAD geometry comparison. 

To describe this process in more detail, it can be dismantled into a series of operations as 

follows.

1. A model centroid is estimated, starting from the CAD model space origin.

2. A number of evenly distributed rays are projected from the model centroid 

to the boundary surface of the model. The intersection of these rays with the 

model boundary form the seed points of independent registration feature 

searches.

3. Each point seed generates a ring of neighbours, from which the next most 

suitable search point is selected.

4. The search starting from each seed point terminates after a set number of 

cycles, or once a feature is identified.

6.21 Preliminary centroid identification

A model queried for shape similarity is of unknown geometry, at an unknown position 

and orientation within a CAD model space. To identify the model centroid, the model 

must first be detected. As the methods available for model discovery are limited to point 

intersections with projected rays, an array of rays are projected in all directions from the 

origin to intersect the model surface. The Deserno regular method used is described in 

Section 6.22, Equidistant spherical projection. This method is sensitive to the density of 

6.21  Preliminary centroid identification



116 6   Boundary Surface Geometry Comparison

projected vectors and the scale of the geometry model.  Any surface intersections indicate 

the presence of a model, the centroid of this model may then be estimated.

If the Cartesian values of existing point intersections are averaged to form a mean point, 

this position forms a closer estimate to the model shape centroid, a similar spherical 

projection of rays is likely to intersect more of the model surface, generating a 

correspondingly more accurate estimate for a centroid. This process is iteratively repeated 

until the distance between centroid estimate adjustments falls below a set threshold value 

(centroidTranslation). Where the target model is a number of separate model 

geometries, the centroid will represent the mean points of intersection for all surfaces. 

Given: a geometric surface model 

Given: assigned constant values , , 

Given: an initial number  of points,  on a unit Deserno sphere, 

Assign the initial centroid  position to the Cartesian origin, 

Generate projection vectors,  from  and  for  in , such that  

While   and  do,

Generate  points on the unit Deserno sphere, 

Generate projection vectors,  for  in , such that  

Test for intersection points,  between vector  and model surface 

If   then,

While   do,

 # get mean value of intersections

# \delta is displacement between centroid & mean value

# centroid position is updated to mean value

_________________________________________________________________________

6.21  Preliminary centroid identification

Algorithm 2: Centroid detection for unknown geometric surfaces



6   Boundary Surface Geometry Comparison 117

6.22 Equidistant spherical projection

Initial model detection and search initialisation seeding routines require evenly distributed 

vectors emanating from a point in 3D space. This distribution problem is equivalent to 

creating equidistant points on a unit sphere. 

This problem is approached in two ways. There is the Tammes problem, which is to 

determine an arrangement of a fixed number of points on a sphere which maximizes the 

minimum distance between any two points. 

The second method is the surface Coloumb problem, finding a stable distribution of a 

fixed number of mutually repellent point charges in the surface of a sphere, which equates 

to the same problem (Erber & Hockney, 1991). Two existing methods are tested, the spiral-

point algorithm developed by Rahkmanov and modified by Thomsen, and the method 

described by Deserno that places points on evenly spaced rows on a sphere (Rakhmanov, 

1994; Thomsen, 2012; Deserno, 2004). Both these methods arrange points with even linear 

spacing, either as a helix or as rows. Tests indicate that the Deserno regular distribution 

gives a more regular point distribution near the poles of these distributions.

6.23 Model search regions

The search for registration features commences from individual search seed points. Ideally 

the surface of the geometric model would be divided into search regions of equal area, 

allowing each individual search an equivalent probability of finding a local registration 

feature. However the surface geometry of a random model is not known in advance, so a 

search heuristic must divide up regions according to regions defined by the angle between 

rays projected from the centroid (randomDistIntersects). The Deserno regular 

distribution of projected rays defines these arcs according to the number of points 

specified on a unit sphere (Section 6.22). An array of projections emanating from a single 

point will cause the local search regions to be smaller on surfaces close to the centroid 

than on surfaces relatively distant from the centroid. This results in a lower probability of 

discriminating between nearby features that are relatively distant from the centroid. 

6.23  Model search regions



118 6   Boundary Surface Geometry Comparison

Elongated shapes give rise to registration features that have varying probabilities of 

detection, similar to the variations in probability of detection in Section 6.14. 

This may be considered the same problem as detecting when all relevant search 

points have been found; when all points have the same statistical significance of being 

found, such as points on Platonic solids with corners that are equidistant from a centroid, 

then a search may be terminated once all registration features have been located more 

than a set number of times. Once a model contains features that have a different 

probability of being found then there is a choice between attempting repeated searches to 

exhaustively find all points or searches that detect all points likely to be found within a set 

number of searches. Without prior knowledge of the shape geometry, or the associated 

probability of finding all shape registration features, an exhaustive search is not 

guaranteed to complete.

If a surface is subjected to multiple searches and the same features are discovered 

each time, then it is likely that an adequate number of searches have been conducted. If, 

on the other hand, the same number of searches discover different points each time, it is 

less likely that all registration features have been discovered. This may be described again 

as a binomial probability distribution, as a simple example two searches in a region with a 

single feature will always return the same feature, however two searches in a region with 

ten features each having an equal probability of discovery will only have a 0.1 chance of 

encountering the same feature twice in a row. In the implementation used for testing, a 

ratio of the number of features discovered multiple times against the total number of 

features found is used to evaluate a termination condition (pointsToBins2, 

pointsToCurves2).

This approach is sensitive to the values of termination condition used, models may have 

features that are only revealed at a higher number of searches. When models are evaluated 

for registration features using differing parameters such as higher density of seed points 

or a higher confidence threshold, they may present an unmatched number of features that 

preventing simple matching. This issue is ameliorated by the use of preliminary searches 

that use both registration feature type and centroid displacement to detect a potential 

6.23  Model search regions



6   Boundary Surface Geometry Comparison 119

shape match. This method of selecting the set intersection of matching registration 

features between both models is covered in more detail in Section 6.28 

(listIntersection, listTypeOrderMatch). 

6.24 Hill-climbing search for registration features

The method used to search for the most simple type of registration feature, a local 

maximum point may be described here. In practice, the search algorithm is similar to a 

hill-climbing algorithm with adaptive step size. Each individual search for a maximum 

registration feature starts from a seed point and progresses in the direction of steepest 

relative gradient. Unlike steepest gradient descent, the function describing the CAD model 

surface is unknown, therefore the surface derivative is also unknown. This means that the 

relative gradient must be sampled from neighbouring points. In the implementation used, 

these neighbouring points are a ring of eight points sampled around the initial point. 

The initial ray intersecting the seed point may be rotated in eight cardinal directions to 

create these new surface intersection points similar to a compass rosette (neighbourGrid, 

rotationMatrix). This pattern is shown in Figure 27. The initial angle is half that of the 

angle between vectors emanating from the Deserno projection, allowing each seed point 

to encompass the entire area of a local search region within two iterations 

(getModelFeatures2, searchFeatures, getMaxMin). 

6.24  Hill-climbing search for registration features



120 6   Boundary Surface Geometry Comparison

This angle at which surrounding points are projected is halved at each iteration to reduce 

the diameter of the search pattern when the central point has a higher value than the 

surrounding rosette of points. Where one of the neighbouring points has the highest 

value, it is assigned as the next central point, but the angle is not subdivided for the next 

rosette of points. This strategy is combined with a rotation of the points rosette around an 

axis co-linear with the projected ray through the centre point on each rosette generation 

(rotateCluster). The rosette is rotated by , which has the effect that the rosette points 

always occupy a novel rotational angle on each iteration. This additional operation allows 

the search to progress along sharp edges and at corners where the limited resolution of 

eight surrounding points might otherwise miss the highest local gradient. These iterations 

continue until either a feature is located, or the angle between points is lower than a set 

minimum. An absolute limit of iterations is set to prevent excessively long search 

sequences where the search undergoes repetitive inconclusive cycles. Figure 28 shows 

these maximum displacement points in a number of iterations as the search converges on 

a model extrema.

6.24  Hill-climbing search for registration features

Figure 27: initial search point surrounded by rosette of generated  
neighbouring points.



6   Boundary Surface Geometry Comparison 121

Given: a geometric surface model 

Given:  a point  at the intersection of the model,  and a vector,  projected from the 

model centroid,  

Given: assigned constants , , , , 

Given: a plane, , passing through the point ,  and any orthographic axis, 

Generate N vectors  at an angle  from  passing through angles of  arrayed radially around 

an axis formed by  with one member,  co-linear with plane 

Get points  formed at intersections between  such that 

While  and  do,

Get displacements  of  from centroid,  such that 

6.24  Hill-climbing search for registration features

Figure 28: a series of iterated points selected for a maximum displacement from 
the model centroid as they converge on a local maximum corner region.

Algorithm 3:  Maxima Feature detection for unknown geometric models



122 6   Boundary Surface Geometry Comparison

Get displacement  of  from centroid,  such that 

Get  such that  for each element  of  

If    then, # centre point has greatest displacement

# reduce angle between central point and offset points

Else

Case:  ,  

 , # central search point updated to highest point

Case of  ,  

  such that  

# reduce angle between central point and offset points

Case of  ,  

# reduce angle between central point and offset points

# increment search counter

# increment start angle  for radial vector array 

Generate N vectors  at an angle  from  passing through angles of  arrayed 

radially around an axis formed by  

_________________________________________________________________________

Finally there is a branching termination condition that directs the search for 

different types of registration features if there are inadequate registration features to 

perform a SVD based mapping, these differing classes of registration features are 

introduces in Section 6.26. These different classes of registration feature points, such as 

surface minima and arc centre points require a more complex decision criteria than simple 

comparison of the displacements between points and the model centroid.

6.24  Hill-climbing search for registration features



6   Boundary Surface Geometry Comparison 123

6.25 A minimal set of registration features types

Testing surface models for equivalent geometry requires several registration feature points 

for an SVD transform, as described in Section 6.8. If a CAD models contain sufficient 

facets and corners to reveal three registration points for SVD matching, this is generally 

sufficient for determining the rotation matrix and translation component of an affine 

transform between these two models. If these registration features appear relatively close 

together, or all three points are nearly co-linear, the derived rotation matrix may be 

comparatively inaccurate. If only two registration points are obtained from a search, this 

is only adequate for rotationally symmetric models where these two points lie on the axis 

of rotation. A single point only allows matching spheres by their centroid. Simple 

rotationally symmetric shapes such as toruses and cylinders do not have local maxima 

that yield registration feature points using the algorithm described in Section 6.20, 

Registration feature search strategy. 

In the case of a cylinder, a search may readily find one of the two edges, but may 

not converge at a maximum point as the cylinder edge forms a ridge of constant 

displacement from the centroid. One solution in the case of a cylinder is to search for a 

local minima rather than a local maxima, allowing searches to converge in the centre of 

the discs at each end of the cylinder. This approach is easy to implement, but is not robust 

in practice. The ends of tall, narrow cylinders have a low probability of a search being 

seeded nearby, and a high probability of any local minimum search converging at a band 

around the centroid. The search for a local minimum will simply converge anywhere on 

the inner surface of a toroid. Local minima registration features allow detection of certain 

unusual classes of shapes, such as spheres with dimples, but they do not create points with 

the same robust precision on a flat surface as a local maximum feature search will return 

at a corner. 

If the search termination condition is expanded to include ridges of constant 

displacement from the centroid, this allows detection of rotationally symmetric ridges that 

have an axis of rotation that passes through the centroid. This condition may be detected 

if two of the search rosette points have a similar centroid displacement as the search 

6.25  A minimal set of registration features types



124 6   Boundary Surface Geometry Comparison

pattern central point. The ability to detect a circular edge does not contribute a singular 

point suited to the closed form SVD method used for matching registration features, 

instead searches may terminate at any point on a ridge radius. 

If a ridge is identified at three points it becomes possible to calculate the ridge 

centre point (pointsToCircleRadiusCentre), see Figure 29. The additional complexity of 

this method lies in determining three points that accurately intersect the ridge and are 

broadly spaced in order to return a centre point with reasonable accuracy (rotSymTest5). 

One subroutine uses an iterative search method similar to the rosette search to find points 

on ridge maxima that flank a discovered ridge point (getRadialEdges), a second 

subroutine refines the accuracy of the point centred on the discovered ridge 

(refineRadialEdgesMidpoint).

6.25  A minimal set of registration features types

Figure 29: detail of point search to detect ridge edges and determine cylinder centre-point.



6   Boundary Surface Geometry Comparison 125

This method may also be used to search for curved grooves using a minimum point 

displacement criterion, allowing the centre of cylinders or the inner surface of toruses to 

be represented by a single central point.

The final class of registration feature that may be detected using a nearest 

neighbour search with a rosette of points is that of a spherical surface. If the surrounding 

points all share the same centroid displacement values as the centre point, across a range 

of scales then the surface is spherical with the sphere centre sited at the centroid. In 

summary, five types of registration feature are specified as shown in Table 2. 

Singular points Local maximum points with respect to model geometry centroid

Local minimum points with respect to model geometry centroid

Circle centre points Ridge centre-points that lie on an axis passing through the 

model geometry centroid

Groove centre-points that lie on an axis passing through the 

model geometry centroid

Sphere centre points Spherical surfaces with centres co-incidental with model 

centroid

Table 2: classification of feature registration point types.

6.26 A minimum set of feature registration classes for all geometric shapes

Five types of registration feature are specified; the associated question is whether these 

five registration feature varieties allow representation of all possible CAD models. CAD 

geometries are very frequently assemblages of simple geometrical features, or of 

projections of two dimensional designs into a three-dimensional space. There are also 

CAD surfaces that are created from patches defined by control points, such as turbine 

blades or the sculpted surfaces of modern consumer products, as described in Chapter 8.1, 

An incomplete match of registration features. Each of these geometries may be subdivided 

6.26  A minimum set of feature registration classes for all geometric shapes



126 6   Boundary Surface Geometry Comparison

into more simple regions. A feature search method that finds local maxima of regions is 

required to do two things. 

• Firstly to find sufficient points to allow a rotation matrix to be generated between 

similar models undergoing matching. 

• Secondly to create a sufficiently distinctive signature to allow comparison with 

signatures from other models. 

Note that different models may produce identical registration feature points, but the final 

step of matching random points mapped from the surface of a target model to that of a 

source model is liable to detect these instances (Section 6.11.4). For example, an algorithm 

that only uses local maximum points is unable to distinguish between a frustum, sphere or 

a torus, see Table 3.

Local 
Maximum

Local 
Minimum

Ridge 
Centre

Groove 
Centre

Sphere

Bowling ball 3 1

Cone 1 1

Cylinder 2 1

Torus 1 1

Elongated torus 2 2

Tetrahedron 4

Tube 2 2

Helical tube 2 2

Elliptic Cylinder 4

Table 3: examples of feature registration signatures.

Certain registration feature types are computationally expensive, such as detecting 

the centre-points of ridges or grooves around a central axis. If a model has a sufficient 

number of local maxima points to perform transforms, the search is completed. For 

example, where there are inadequate distinct points for a transform as in the case of 

6.26  A minimum set of feature registration classes for all geometric shapes



6   Boundary Surface Geometry Comparison 127

circular edges perpendicular to axes passing through the centroid in a lenticular shape, it 

is necessary to combine the search for local maximum points with a search for local 

minimum points to find sufficient unique registration features. 

6.27 Centroid sensitivity

All registration feature points are defined from the geometric centroid of the model, 

therefore the accuracy of registration features are dependent on the accuracy of the model 

centroid. 

The position of the centroid is refined from the increasing number of surface points 

identified during the course of registration feature searches. While the centroid is initially 

located, the mean value of the Cartesian coordinates of all points defines the centroid 

position (see Section 6.21, Preliminary centroid identification). The method to determine 

model location radiates a spherical array of vectors from the origin to intersect the model 

surface. This method performs well for initial centroid estimation. Subsequent searches for 

registration features generate numerous surface intersections, however the distribution of 

these points on the geometry surface is not even. Points are concentrated in the vicinity of 

registration features and at a higher density on surfaces closer to the estimated centroid. 

Consider that a centroid measure is an approximation of the barycentre of a model with a 

uniform mass associated with each surface region. An uneven surface distribution of 

points creates inaccuracy in this centroid approximation. Gope and Kehtarnavaz prove 

that a centroid derived from a convex point set is affine-invariant, this finding can be 

extended to encompass any consistent set of point based registration features (Gope & 

Kehtarnavaz, 2007). 

In the implementation used, the remedy is to change to a centroid defined by mean 

values of model surface extrema once the model has undergone searches for registration 

features. The extreme surface features correspond to corners on the convex hull of the 

geometry model, or the local maximum points located. While this method is sensitive to 

maximum point features that are not identified, tests indicate that a median calculation 

provide a reliable centroid location.

6.27  Centroid sensitivity



128 6   Boundary Surface Geometry Comparison

6.28 An incomplete match of registration features

A centroid determined from the mean value of registration feature points is sensitive to 

cases where there is an incomplete sets of registration features, where a complex 

geometrical model may contain feature regions with a low probability of detection. These 

missing points result in an altered mean centroid position. While two sets of displacement 

histograms formed from representations missing exact same registration feature points 

will be correctly recognised, in cases where these sets miss different points the method 

may return a false negative geometrical similarity score. The median value of the 

discovered feature registration points returns more robust centroid measure as corners at 

the model extrema have a relatively high probability of discovery 

(medianCentroidCorrection). A robust centroid value allows partial histograms to be 

matched, where centroid displacement values that do not have counterparts may be 

pruned from the source and target sets (listIntersection).

6.29 Geometric transformation and matching algorithm overview

Figure 30 illustrates the sequence of processes used to accomplish geometric matching.

The first operation detects the location of a model via the method described in Section 

6.27, Centroid sensitivity. If the model is not detected during the initial projection of rays 

from the model space origin, the number of projected rays is increased. This process 

repeats until a limiting resolution is reached or surface model is located. This located 

model yields a centroid as an average value of intersections. 

The second operation uses the nearest neighbour hill search technique based on the 

method described in Section 6.24, Hill-climbing search for registration features to 

determine a set of feature points. This search may yield one of several feature point types 

based on the model geometry which provides both a distinct model signature and a set of 

registration points suited for determining any rotational difference between the source 

and target model. This set of feature types is fully described in Section 6.25, A minimal set 

of registration features types and Section 6.26, A minimum set of feature registration 

classes for all geometric shapes. The search for model feature points cannot be exhaustive 

6.29  Geometric transformation and matching algorithm overview



6   Boundary Surface Geometry Comparison 129

if the total number of potential feature point regions is unknown, therefore this search is 

repeated until the same feature point regions have been detected a statistically significant 

number of times. This requirement is also covered in Chapter 7.5, Complex model 

matching. 

The third stage in Figure 30 uses the feature point type, centroid-displacements and 

number to create an affine-invariant model signature that might be rapidly compared 

against the signatures of all other models that have been processed in a similar fashion. 

Once a likely match is found, the rotation, scaling and translation variances between the 

source model and target model undergoing comparison is calculated. This rotation is 

determined using the SVD method described in Section 6.8, Global Registration via 

Singular Variable Decomposition. The individual steps to the comparison algorithm are 

described in more detail in the first two steps of  Section 6.11, A progressive search 

refinement strategy.

The final verification stage shown in Figure 30 involves the latter two of the 

sequential method described in Section 6.11.3, and Section 6.11.4. The statistical likelihood 

of geometric model similarity is generated from the transform of model feature points and 

random model surface points using the calculated rotation, scaling and translation. The 

deviation from the predicted location of feature points, and the distance from the model 

surface provide a single numeric attribute of similarity.

This chapter has covered the implementation of a geometric model comparison method. A 

boundary surface intersection method returns a numerical estimate of geometry similarity 

that is not subject to model position and orientation. A characteristic set of distinctive 

surface features relative to a model centroid provides a simplified model representation. 

These point features allow several progressive stages of geometry matching 

discrimination, namely a match of point feature types, a match of feature displacements, a 

transformed mapping of features from one model to another and finally the 

transformation of random points from one model surface to another. If point features may 

be paired with their counterpart between models, shape registration may be carried out 

using a computationally efficient closed form SVD calculation. A minimal set of potential 

6.29  Geometric transformation and matching algorithm overview



130 6   Boundary Surface Geometry Comparison

pairing configurations is determined from a match of point-centroid displacements 

between models, ordered in a helical fashion along a select model axis. The robustness of 

this method is based on reliable detection of the majority of model characteristic point 

features. This is in turn governed by the topological complexity of a boundary surface 

model. The accuracy and efficiency of this proposed method is tested on a benchmark 

CAD shape dataset in Chapter 7.

6.29  Geometric transformation and matching algorithm overview



6   Boundary Surface Geometry Comparison 131

6.29  Geometric transformation and matching algorithm overview

Figure 30: overview of transformation and matching algorithm.



132 6   Boundary Surface Geometry Comparison

6.29  Geometric transformation and matching algorithm overview



7   Geometry matching method tests and results 133

7  Geometry matching method tests and results

The geometry matching method described in Chapter 6 is tested on a benchmark CAD shape 

dataset. Two tests are carried out. The first test determines the degree of similarity between a 

random shape selected from a benchmark library and a rotated, translated and scaled version 

of the same shape, a second comparison is made against a non-matched shape. The second 

test returns the values of a randomly chosen shape tested against all model representations 

generated in the first test. It is found that the method is sensitive to scale and identification of 

features with a proportionally large radius of curvature. Limitations of simple feature type 

comparison are presented, as is the method of matching relatively complex geometry.

7.1 Drexel CAD shape benchmark library

Testing the search and match algorithm described in Chapter 6 may be carried out in 

several ways, the anticipated implementation would run two CAD model programs 

independently from a third independently running comparison program. This 

configuration allows projection of vectors and retrieval of point intersection with 

geometry surfaces using minimal CAD program interfacing. These interfaces permit 

source geometry model testing in a source CAD instance with a target geometry model in 

a target CAD instance to determine model similarity in an automated process. It is 

reasonably straightforward to create interfaces in the Python, or C++ languages to 

communicate via the Component Object Model interface to most CAD programs running 

on Microsoft Windows, however this is not required for testing the effectiveness of the 

matching algorithm. Source and target models may be created within the same model 

space of a single CAD program and tested for similarity.

 To obtain sets of models on which to test algorithm efficiency, it is possible to 

randomly generate models or to randomly select existing models from a library. 

Commercial libraries and repositories contain three-dimensional models, many of them 

complex models from parts catalogues. Others such as the Princeton Shape Benchmark are 

not stored as CAD files (Shilane et al, 2004). The US National Institute of Standards and 

7.1  Drexel CAD shape benchmark library



134 7   Geometry matching method tests and results

Technology created a benchmark repository of three dimensional CAD models in a variety 

of neutral formats ranging from simple to relatively complex representations, which was 

subsequently hosted at Drexel University (Regli & Gaines, 1997; CAD Models Dataset, 

2004). This repository is subdivided into several categories. The Primitive Models 

Classification set contains 300 variations of cubes, cylinders, spheres and toruses. The 

testing was arranged so that,

• A random source model is selected from this set and placed within the CAD model 

space at a fixed orientation and position. 

• The same model is placed within the CAD model space again, but this time at a 

randomly generated orientation and at a random position and scaled to a random 

factor.

• A third model that is guaranteed different from the source model is added to the 

CAD model space, again placed at a random position, orientation and scale.

This arrangement allowed testing for the percentage similarity against a known match and 

also against that of a known mismatch. This format gives a figure for model similarity, 

along with a figure for model rejection. Tests were conducted on a Dell Latitude E6540 

laptop running 64bit Windows 7. The CAD program used to host the model comparisons 

was McNeel Rhino 5, accessed via the COM Automation Rhinoscript API. The Python 

comtypes library allows external Python language scripts to access this API. The programs 

used for this purpose are written in the Python scripting language and are not optimised 

for speed, but demonstrate proof of concept.

7.2 Test configuration for single and multiple model matches

It was found that the method used to determine shape matches had a comparably high 

success rate when compared against other shape matching methods using the same library 

of shape primitives (Bespalov et al, 2005). Precision-recall plots give an indication of the 

7.2  Test configuration for single and multiple model matches



7   Geometry matching method tests and results 135

number of correct shape matches which rank at the highest probability, there are defined 

in more detail in Chapter 5.5, 62. Again, as with the semantic matching tests in Chapter 

5.5 the entire set of shapes is tested and ranked by probability. The recall metric 

determines the percentage of correct matches in the retrieved set, but in this case it is 

more accurate to describe the returned set as the selection of models which surpass a 

threshold of similarity. The returned distance measure is based on the RMSE value derived 

from the accumulated error values of points transformed between the source and target 

models. In the event that there are inadequate feature registration points to derive a closed 

form solution to the relative orientation of the source and target models, the distance 

value is set at infinity,

where  is the number of identified registration features on both source and target 

models, and  is the minimum number of features required for SVD determination of 

affine transformation. For the purposes of a probability metric this value is transformed 

via,

 

where  is the probability of a match in the range [0, 1]. Results are tabled in 

Appendix C. Comparison of the matching metric against existing shape classifier methods 

is limited in utility, the method is intended to verify model similarity rather than identify 

similarity, however the method performed comparably well against other object matching 

methods tested using the same CAD model library (Bespalov et al, 2005). This apparent 

success is explained by the use of model signature matching that proved to be sufficient 

for the set of models used. 

Each model pair is tested using progressively refined discrimination as follows,

• sets of registration feature types, 

7.2  Test configuration for single and multiple model matches



136 7   Geometry matching method tests and results

• sets of relative registration feature centroid displacements, 

• sets of registration feature coordinates 

• sampled surface points transformed between models

Consequently most early tests will reject considerably different shapes and the test 

sequence may be halted. Model signatures that have a widely differing number of points 

and displacements are winnowed out using a correlation distance metric. The models that 

use rotation and sampled point tests only constitute a small percentage of overall tests. A 

full description of this method may be found in Chapter 6.11, A progressive search 

refinement strategy.

In 57 tests between pairs of randomly sampled shapes at random orientation, scale 

and position, the method correctly identified each class of shape, plus each shape variant.

7.3 Observations on algorithm performance

Comparing shape signatures is comparatively rapid with individual tests generally taking 

under a tenth of a second to complete, but generating model representations is several 

orders of magnitude slower. Simple shapes such as cubes would take 20 seconds, while 

shapes with radiused curves take up to ten times longer. The search for model feature 

points involves a large exchange of coordinate data with the CAD program API 

undergoing testing using the Microsoft Component Object Model. In cases where there are 

large numbers of potential registration features at interior and exterior model locations 

that have a low probability of discovery, the search process takes several minutes to 

terminate. While the primitive shapes allow rapid discovery of registration feature points, 

complex forms commonly encountered in CAD design are not so tractable.

It was found that the algorithm is relatively sensitive to scale. The matching routine 

is relatively independent of scale, but the methods used to identify registration features 

are susceptible to numerical noise. The routines to determine feature points and ridges 

require comparison of point-centroid displacements, these comparative measurements are 

7.3  Observations on algorithm performance



7   Geometry matching method tests and results 137

sensitive to the absolute size of the models tested. One example is finding the outermost 

ridge of a large torus by comparing displacements of the surface points from the model 

centroid, where the variation in surface curvature produces relatively small differences in 

displacement compared to the absolute displacement value. Accordingly scaling of the 

target model was limited in range to between 0.5 and 2.5 times the scale of the source 

model. This sensitivity to numerical noise becomes a greater problem when relying on the 

precision of different CAD programs. While normalising CAD model scale via program 

API is a relatively trivial task, this is not envisaged in the minimal interface afforded by 

the Hoffmann query method (see Chapter 3.12). 

The tests described created a database of 303 variations of the primitive shape 

library in random orientations, positions and scales. Each of these models were 

subsequently tested against all other models within this database to evaluate match 

accuracy. Two instances were found of models that did not have the same class of shape as 

closest match, this was subsequently found to be caused by malformed feature registration 

points registering an equivalent infinite distance in similarity between these models and 

all others. The Precision-Recall plots in Figure 31 - Figure 34 show that shape category 

matching, based on the configuration of registration features used for the set of primitive 

models adequately describes all shape classes. The plots are more interesting where the 

method discriminates between models distorted along various axes, showing a decrease in 

accuracy. The worst shape discrimination performance occurs between models that have 

radiused edges. A radiused edge has finer differences between point-centroid displacement 

values, leading to a loss of corner or edge accuracy. Where the radius has the same 

diameter as the point-centroid displacement, the surface is indistinguishable from that of a 

sphere. These three aspects of model similarity are plotted on precision-recall plots for 

several class of primitive shape tested, (Figure 31, Figure 32, Figure 33, Figure 34). As the 

tetrahedron and dodecahedron shapes only exist in a single variants that was added to the 

Drexel benchmark CAD repository data, comparative tests only provided shape 

discrimination, which is displayed and commented in Figure 35. Note that the sphere and 

torus shapes do not have blended or radiused versions, all model shape distortions are 

uniformly applied along the chosen axes.

7.3  Observations on algorithm performance



138 7   Geometry matching method tests and results

7.3  Observations on algorithm performance

Figure 
31: Precision-recall for Cube shape class similarity determined via transformed point sampling  
method.



7   Geometry matching method tests and results 139

7.3  Observations on algorithm performance

Figure 32: Precision-recall for Cylinder shape class similarity determined via transformed 
point sampling method.



140 7   Geometry matching method tests and results

7.3  Observations on algorithm performance

Figure 33: Precision-recall for Torus shape class similarity determined via transformed point 
sampling method.



7   Geometry matching method tests and results 141

7.4 Instances of registration feature mismatch

A further graph, Figure 35, extracts information on perfectly matched and slightly 

mismatched shapes that are assigned a probability score, these correspond to true positive 

and a false positive values. The split violin plot reveals inaccuracy within the sphere and 

torus categories. This appears to be related to elongated versions of spheres and torus that 

are both distinguished by two point maxima at the apex of each elongated axis, and two 

point minima which are at the innermost points of torus rings, but on the outside of the 

shortest axis of the elongated sphere. As a result, both models pass the minimum test 

requirements and are evaluated for surface point deviations between models. 

A similar mismatch exists between tetrahedrons and elliptic cylinders, both are 

7.4  Instances of registration feature mismatch

Figure 34: Precision-recall for Sphere shape class similarity determined via transformed point 
sampling method.



142 7   Geometry matching method tests and results

distinguished by four feature maxima. These shapes are distinguished by the accumulation 

of error in the predicted position of points mapped between the two surfaces as described 

in Chapter 6.11.4, Checking via random transformed surface points.

7.4  Instances of registration feature mismatch

Figure 35: True positive and false positive probability distributions over all shape classes 
determined using transformed point sampling method.



7   Geometry matching method tests and results 143

7.5 Complex model matching

Registration feature identification is effective for simple shape geometry where it is 

probable that all surface regions that can serve as registration features may be found in an 

exhaustive fashion. Where there are a large number of potential registration feature sites 

7.5  Complex model matching

Figure 36: Transformed and matched complex asymmetrical bracket model, green points represent 
points used for SVD registration, yellow points are mapped between models to verify model 
similarity.



144 7   Geometry matching method tests and results

on a complex model, with widely differing probabilities of discovery, exhaustive searching 

becomes impractical. In this event, matching models relies on finding roughly the same 

number of features between identical models. The drawback with an incomplete set of 

registration feature points is the subsequent inaccuracy of a model centroid estimated to 

be at the position given by the mean values of all discovered registration features. If this 

value is substituted for the position given by the median of discovered model registration 

features, it allows models that do not share exact complements of features to be matched. 

A subsequent problem encountered with geometries with incomplete sets of registration 

features is a potential ambiguity of feature point ordering. As detailed in Chapter 6.17, 

Helical point sequencing, the set of features must be matched pairwise for successful SVD 

transformation. If the ordering of features is reliant on matching sets of centroid 

displacements, this may fail where readily accessible features may allow several model 

orientations, such as the corners of a block, but where undetected features are 

asymmetrical. In this instance the solution is to subsequently test all possible model 

orientations using mapped points taken at random from the source model and 

transformed to the target. Figure 36 shows a complex machined block which has been 

transformed in this fashion. The green points represent detected registration features on 

the model surface, the yellow points are random sampled test points transformed between 

the two models.

7.6 Points and vector detection

The method described to intersect 3D CAD model surfaces is not effective on geometry 

elements with two dimensional representation such as vectors, rays, lines, or like points, 

having zero dimension. However the same principle of intersection may be used to return 

a Cartesian point. In the case of a line described in three-dimensional space, a projected 

plane or surface may be substituted for a projected ray. The line may then be identified via 

an intersection with the projected plane. Further planes or surfaces may be then generated 

to identify registration features on a 2D object, such as line ends or centres of curvature. 

In the case of points, a 3D volume will register intersections.

7.6  Points and vector detection



7   Geometry matching method tests and results 145

7.7 Future directions

The method of projecting points from the estimated model centroid is effective for 

relatively compact and simple models. There are however surface geometries that are 

relatively intractable. Any geometry with surfaces that are either at a constant radius from 

the centroid, such as regions of a sphere, or are parallel to any vector emanating from a 

model centroid produce ambiguous feature descriptors. Projecting rays to intersect a 

model surface from a fixed centroid has diminishing search effectiveness on surface 

regions relatively distant from the model centroid. A more efficient method might use 

several judicious locations from which to direct searches rather than a single centroid 

point.

The search for registration feature points takes a scrupulous approach that rules out 

errors associated with model export to a neutral format. Yet the search for features is 

computationally expensive. Registration data may be extracted from neutral export files 

which can be subsequently verified within the CAD model space. Registration feature 

points may be extracted from these common file formats, see example taken from the 

Drexel benchmark CAD dataset in Table 4. Several of these formats such as the ISO10323-

21 STEP format, or the Autodesk DXF format explicitly describe many of the Cartesian 

coordinates that constitute the feature registration representations used, such as vertices 

or the centre points of arcs (Autodesk, 1997, 10303-21:2016, 2016).

/* ISO 10303-21 file written by STEP Caselib, ProSTEP GmbH, Germany */

DATA;

#1=CARTESIAN_POINT('POINT1',(5.0E-01,5.0E-01,-5.0E-01));

#2=VERTEX_POINT('VERTEX1',#1);

Table 4: example of Cartesian point information taken from a Drexel CAD benchmark library STEP 
file.

7.7  Future directions



146 7   Geometry matching method tests and results

Parsing these file formats to extract model geometry information is more efficient and 

potentially more accurate than registration feature search methods that use surface 

intersections. A model geometry comparison system may export geometry data from an 

internal CAD program representation to a neutral file format, which can be subsequently 

compared using the method described in Chapter 6.11, A progressive search refinement 

strategy. The drawback of this strategy is the possibility of incorrect translation of native 

model geometry to neutral file format. Where the model details are relatively simple non-

parametric surface data, it is likely that STEP translators work as specified. In the case of 

more complex data there are documented instances of CAD programs that do not export 

STEP model data in compliance with the ISO standard (McKenzie-Veal et al, 2010; Ćuković 

et al, 2017). 

The feature registration regions classifications used in this implementation are 

limited to spherical surfaces alongside point surfaces, ridge surfaces and their inverse, 

dimples and groove surfaces. These features are sufficient to identify the models tested, 

but there is scope to include saddle surfaces and co-linear surfaces.

A co-linear surface is an edge or surface that is parallel to the projected vector used 

to retrieve surface intersection, this surface will return ambiguous results unless a 

separate test identifies it.

7.7  Future directions



8   Automated feature function mapping 147

8  Automated feature function mapping

This chapter distinguishes the existing methods of model generation in CAD programs. 

Explicit and implicit constraints are defined with respect to sequential modelling operations 

on parametric model descriptions. The influence of prior modelling decisions on succeeding  

geometry may be captured by a “dynamic” mapping of intermediate modelling stages. This 

approach does not rely on a stored function mapping, but tests several potential matches for 

geometric equivalence, demanding an automated or assisted method of function matching. 

Geometry matching techniques can identify functions that create similar surfaces, mapping 

function parameters may be defined as a stochastic search problem. A technique is described 

to conduct efficient parameter mapping using a genetic algorithm with a restricted parameter  

set.

8.1 Overview of Computer Aided Design modelling methods

The development of commercial three dimensional modelling software has been 

influenced by earlier two dimensional drafting programs. It is difficult to manipulate three 

dimensional designs using a 2D Graphics User Interface and CAD software uses a range of 

techniques to allow accurate model generation that is relatively intuitive. Some early 

modelers used an assemblage of geometric “primitives”, such as cones, oblongs and toroids 

to generate complex shapes. These Constructive Solid Geometry use boolean operations of 

union, intersection and difference on primitives to sculpt surfaces (Deiz & Appllin, 1993). 

Systems that exclusively use this technique such as BRL-CAD are cumbersome to use for 

defining complex geometry and impossible to use for free-form geometric surfaces that 

are curved in several directions.

While modern CAD programs will incorporate boolean operations and a range of 

primitive geometric objects, a more common generative technique is to define two 

dimensional profiles on a 2D plane and then extend this profile into three dimensions. A 

simple circle may be extruded, or projected along an axis perpendicular to the profile 

plane to form a cylinder. This circle profile may follow a curved path to form a ring or a 

8.1  Overview of Computer Aided Design modelling methods



148 8   Automated feature function mapping

helix. A two dimensional plane may be described on the surface of an object to allow a 

hole or a pocket to be projected into the shape.

Many CAD model geometries are composed of planar surfaces or surfaces with 

curvature limited to one plane, there is a class of operations based on the interaction of 

adjacent surfaces. The edges of adjacent surfaces may be rounded or blended to form a 

fillet or a chamfer, or if these surface edges do not meet they may have an additional 

surface to patch the gap. Complex free-form surfaces are defined using a two dimensional 

surface equivalent of a spline. These surface patches are mathematically defined as Non-

Uniform Rational B-splines (Piegler & Tiller, 1987), discrete Coons patches (Farin & 

Hansford, 1999), or equivalent. Surfaces may then be modified by moving “control points”, 

similar to the control points that guide the path of a spline. They can also be draped over a 

series of 2D cross-sectional profiles analogous to an aircraft wing surface formed from the 

internal structure of aerofoil sections (Figure 37).

8.1  Overview of Computer Aided Design modelling methods

Figure 37: CAD model of hydrodynamic turbine blade showing combination of extruded surfaces,  
blended surface patches and surfaces patches draped across hydrofoil sections.



8   Automated feature function mapping 149

8.2 Explicit and implicit CAD model constraints 

These four approaches, that of boolean operations on geometric primitives, of 

modifications made to profiles defined on drawing planes in 3D space, and of operations 

on model surfaces and free-form surface creation form the majority of all 3D model 

creation techniques used in CAD programs. Each of these four methods of model 

geometry manipulation are dependent on interaction with prior model geometry. The CSG 

process may create a stand-alone geometric primitive, but a useful CSG model requires an 

assembly of these geometric primitives. Again the extrusion of a 2D profile along a path 

creates a limited range of geometries, these extrusion features generally occur from a 

drawing plane defined on the surface of an existent model geometry. Even complex free-

form geometries that are generated from numerical calculation such as turbine blade 

profiles are invariably wedded to a composite geometry created by conventional means, 

such as the geometry of the turbine blade root. This relationship of constraints and 

parameters that influence the outcome of a feature geometry operation has been described 

as implicit constraints, in contrast with the explicit constraints that are detailed in the 

feature function parameters.

Implicit constraints are specified in the sequence of prior feature operations that 

compose a CAD model geometry, therefore access to these constraints may be required in 

subsequent modification operations. Parametric kernels, the geometry engines of CAD 

programs, allow designers to revisit the parameters of previous feature operations in the 

model generation sequence and regenerate the model geometry without having to 

manually rebuild subsequent feature operations. For the purpose of creating distinctions 

between implicit and explicit constraints, geometry constraints may be defined as a subset 

of feature parameters. These deterministic constraints on feature behaviour attach 

importance to the order of feature operation sequence, as well as the relationship between 

each model feature. Software vendors have introduced graphical tree representations to 

represent the sequence of feature operations and to represent circumstances where 

multiple features may branch out from a single feature node, such as several holes defined 

8.2  Explicit and implicit CAD model constraints 



150 8   Automated feature function mapping

on a single plate.

8.3 Sequential model generation

A complex model is an outcome of a deterministic sequence of user selections. A 

parametric CAD program will allow a modification to a modelling decision within the 

history tree to propagate changes made to the final model, in similar fashion to a time-

traveller altering the present by making small changes to the past. These selections have 

been defined as implicit geometric constraints, they arise from a choice taken from a set of 

possible modelling options. This chain of modelling decisions is distinct from explicit 

specification of function parameters and geometric constraints used to specify a 

parametric CAD feature. To give an example of an explicit function parameter, a torus 

feature might require a cross-sectional radius, a central point and a perimeter radius to be 

defined. These explicit parameters are set by the user, while implicit parameters arises 

from the model context. As an example, a fillet is a rounded surface applied along a model 

edge. This fillet feature is dependent on the prior geometry of the edge, which may in turn 

be defined by the surfaces adjacent to the edge.

In a parametric CAD program, any modification to the adjacent surfaces will 

update the geometry of the dependent feature. The feature may contain inherent 

geometric constraints, in the example of the fillet feature there is an implicit geometric 

constraint that defines one axis of the fillet feature collinear to the referenced model edge. 

Another inherent geometric constraint of the fillet feature defines the fillet edges to be co-

tangent with the surface edges. Inherent geometric constraints are axiomatic to the 

definition of the parametric feature, yet these implicit and explicit feature constraints are 

distinct from explicit constraints that may be defined between CAD features. Parametric 

CAD programs make provision for explicit geometric relationships such as co-linearity 

and concentricity to be specified between independent features. An assembly or 

mechanism composed of several independent models commonly requires that the 

individual parts are related to one another by geometric constraints. Implicit constraints 

8.3  Sequential model generation



8   Automated feature function mapping 151

create a potentially complex interaction of features. While the method is a powerful and 

intuitive modelling paradigm, the behaviour of features in response to pre-existing feature 

configurations becomes more difficult to fully define. A conceptual hierarchy of the 

relationship between explicit and implicit constraints with regard to models of increasing 

complexity is shown in Table 5.

Explicit constraints Implicit constraints

Features  Feature parameters (both 
optional and non-optional)
Defined geometric constraints

Referenced precursor features

Parts (composed of features 
inheriting from a single feature)

Defined geometric constraints
Set properties (colour, density, 
etc)

Interaction of composite 
features

Assemblies (composed of parts 
inheriting from multiple 
features)

Defined geometric constraints Not defined

Table 5: conceptual hierarchy of implicit and explicit feature constraints.

The elementary method of feature mapping described in Chapter 6 tests the effect 

of a feature operation on a purposefully basic model geometry. This process is duplicated 

within the two CAD programs undergoing geometric comparison of feature 

manifestations. If the geometric outcome of a feature operation is modified by a sequence 

of functions characterised by a complex model, this extends the number of parameters 

that must be tested to determine the full mapping of feature equivalence. It is impractical 

to test the response of feature operations on the unbounded set of complex geometric 

models. This limitation is addressed by a revision of the translation process. 

Static and dynamic geometry matching

Conventional translation methods seek to establish a mapping between set elements, 

ideally returning a simple one-to-one match between elements of the respective sets. In 

the case of feature matching of CAD programs, a match is identified from the class-level 

8.3  Sequential model generation



152 8   Automated feature function mapping

feature libraries of the CAD programs undergoing comparison. The Macro Parametric 

Approach described in Chapter 3.8 is an example of this method. Once all features of a 

library have been matched with their equivalent counterpart, this static set of mappings 

allow a model generated from a sequence of CAD features to be recreated in another CAD 

program using directly mapped substitutes for these features.

The drawback with this approach is that it presupposes an exact one-to-one 

equivalence between features of heterogeneous CAD programs. Commercial CAD 

programs are found to only have a very small proportion of functions that are direct 

equivalents to functions in other CAD programs. While the conceptual framework of 

geometry features may appear virtually identical, the scope of each feature operation is 

bounded by different parameters. This leads to features having a different granularity, 

where the geometric outcome of a single feature operation might only be replicated by 

several sequential feature operations in a different CAD program. Or features might have 

a one-to-many correspondence, where a single feature operation in one program may be 

geometrically replicated by several distinct feature operations in another. These 

complications are referenced in greater detail in Chapter 3.6.5, Inconsistent constraint 

combinations within generic features. 

There are two approaches described that address the limitations of a relatively small 

set of static matches used for translation. Tessier and Wang propose a method of dynamic 

matching (Tessier & Wang, 2013). Rather than using a static match for every feature 

within a model to construct an identical model in a second CAD program, each model 

feature operation is tested against the entire library for geometric conformity. The method 

employs semantic matching and rule-based identification, using the inherent identifying 

constraints of a feature. This approach would allow the identification of functions most 

suited to create an identical geometrical outcome, rather than relying on the translation 

supplied from a static mapping. Feature mappings that satisfy constraint requirements and 

geometric validation would be added to an ontology for future reference. 

A similar approach is taken by Rappoport as the basis of the Proficiency CAD 

translation software (Rappoport, 2003). The geometric difference created by each feature 

8.3  Sequential model generation



8   Automated feature function mapping 153

operation in a model is tested against a set of features in the target CAD program likely to 

recreate the geometry, this process is known as “rewrites” in the Universal Product 

Representation method described. In instances where no satisfactory match is found, the 

geometric difference is recreated using surface patches. Testing for optimum substitutions 

from a range of known likely candidate features can be described as a one-to-many 

mapping between the features of two CAD programs, however, this description may also 

apply to a mapping that requires several distinct operations in a source CAD to replicate 

the action of a single operation in a target CAD. 

The second value of the dynamic matching approach is the capacity to incorporate 

implicit constraints from prior feature operations. As a completed feature model is 

generated from a series of feature operations, this sequence may be reversed to reveal the 

intermediate stages of model geometry. This deconstruction process can then return the 

difference in model surface geometry before and after any single feature operation. As 

Rappoport explains, unknown mappings may be substituted by a surface patch, that 

replicates the geometric difference. Likewise, it is possible to substitute the entire feature-

based geometry with multiple surface patches to recreate the model geometry prior to a 

feature operation. This substitution of intermediate model construction geometry can 

address the difficulty of determining the response of a proxy function to the implicit 

constraints inherent to a specific model geometry. Rappoport et al, identify the 

shortcomings of surface substitutions; the behaviour of functions is dependent on the 

selection of model geometry faces and edges, which in turn, is innate to the vendor CAD 

program rather than an agreed convention (Rappoport et al, 2006). If an intermediate 

boundary model representation does not have the constituent edges and faces that would 

be normally generated in the target CAD program, the implicit constraints that direct 

feature behaviour are not represented. It would be expected that the substituted boundary 

model of a cube would have consistent edges and faces, but in cases like a cylinder, the 

curved surface may comprise one or two faces depending on the CAD program. The 

procedure underlying the Proficiency software identifies and maps these inconsistencies, 

substituting functions and splitting faces to provide workarounds. In summation, the 

technique of dynamic mapping partially solves the problems of implicit constraints and 

8.3  Sequential model generation



154 8   Automated feature function mapping

one-to-many mappings at the expense of further complexity. It appears evident that a 

method that can discriminate between CAD geometric models might determine whether a 

mapping matches, or fails to match a recreated model in a target CAD system, but does 

not necessarily identify the correct feature function required to create a successful 

mapping.

8.4 Indirect feature operations

The general form of feature operation adds or modifies an element within a parametric 

CAD model. Feature function parameters indicate the type of input required to implement 

the feature operation. If the effect of the feature operation cannot be detected in the 

subsequent modified geometry, then the method of comparing geometric feature output 

between CAD programs to verify function mapping cannot determine a match. This 

limitation of geometric comparison may be extended to features that have an indirect 

effect on geometry behaviour. Two important cases may be described. The first is in 

cases of granularity mismatch between feature operations. The outcome of a particular 

feature operation in a source CAD system may require more than one feature operations 

in a target CAD systems. This is another manifestation of a one-to-many mapping, as 

distinct from several functions in a source CAD that have the same effect as a single 

function in a target CAD. Here again, the distinction may not be tractable. 

As an example, a single filleting operation may provide several optional variants 

within one function, in another CAD the same filleting operations is unlikely to have the 

same set of variants and would require extra modification to achieve an equivalent 

geometric outcome. Yet if both feature functions shared a subset of matching variants, this 

provides a partial match. A second category of potentially intractable feature operations 

require multiple steps to effect a geometric model modification but do not create 

incremental or intermediate geometry differences during these steps. One example is that 

of a complex selection operation that requires an iterative process to select a particular 

8.4  Indirect feature operations



8   Automated feature function mapping 155

face or edge from a linked set of geometry elements. Another feature operation that may 

have an elusive effect on subsequent geometry is that of explicit geometric constraints.

8.5 Explicit geometric feature constraints

The relationship between geometric entities within a 2D or 3D representation is explicitly 

defined by constraints, these constraints are either parameter values relative to the model 

space or relationships defined between independent features. It is common for the two 

dimensional elements in parametric sketches, such as lines, curves and ellipses to be 

defined relative to other sketch elements, three-dimensional models composed of multiple 

individual elements may use explicit geometric constraints to describe the relative 

positions of these assembly elements. Explicit geometric constraints present a potential 

difficulty with an approach that compares model surface geometry between feature 

operations. While an explicit geometric constraint is not manifested as a boundary surface 

geometry, the existence of an explicit constraint may be determined in the behaviour 

exerted on geometric elements. It may not be immediately intuitive how an explicit 

constraint is geometrically determined. If a constraint relationship is created between two 

2D or 3D elements, these elements may move to conform with the applied constraints. For 

example if a parallel constraint is applied to two straight lines, one will move to become 

aligned in a parallel relationship to the other, unless both lines are already parallel. This 

illustrates the difficulty of geometric testing for operations that are not guaranteed to 

respond with a measurable geometric outcome. There are heuristic test geometry 

configurations that may be used to identify particular explicit constraints while avoiding 

false positives from other constraints with a similar effect. To extend the parallel line 

example, two lines used to detect a parallel relationship constraint may fail to discriminate 

the outcome from a co-linear relationship constraint.

The considerations of matching geometries determined by implicit feature 

constraints and explicit geometric constraints between features have been addressed, the 

third type of feature constraint is that of explicit feature parameters. These constraints are 

8.5  Explicit geometric feature constraints



156 8   Automated feature function mapping

equivalent to the function parameters that represent feature operation in the CAD 

application programming interface. The next section deals with methods to reduce the 

search space associated with multi-variable features for the purposes of geometric 

matching.

8.6 Parametric variables

Modern feature-based parametric CAD programs employ a mix of implicit and explicit 

constraints in feature definition. Explicit constraints are equivalent to the parametric 

variables used to define a function, directly accessible via a graphic user interface or the 

feature function API. Mapping CAD feature functions requires that the parameters 

specific to each function are also mapped. This task is complicated by the differing scope 

between nominally similar functions, there may be a parameter configuration that cause 

two functions to create an identical geometry, but this may be a small intersection of the 

combined sets of shape geometries that these functions can create.

8.6  Parametric variables



8   Automated feature function mapping 157

In Figure 38, a two-dimensional sketch shows a geometry partly defined by constraining 

relationships between sketch elements and partly by fixed sketch element parameters. The 

tri-lobed outline is composed of six arc-segments. The inner arcs are constrained to the 

same length, as are the outer three arcs. Each arc is constrained such that the end is 

tangential to the end of the adjacent arc. The centres of these arcs are placed at the ends of 

construction line segments constrained to equal length. The radius of a single outer arc, 

inner arc, the length of a single construction line and the angle between construction lines 

is sufficient to define the dimensions of the entire 2D geometry. 

As another example, a frustum or a truncated cone may be created by a cone 

feature, or a cylinder feature, or a cone that is subsequently cut to form this geometrically 

8.6  Parametric variables

Figure 38: 2D CAD geometry generated using explicit constraints and parameters (FreeCAD 0.18)



158 8   Automated feature function mapping

identical feature. To make matters worse, there is generally several operations within any 

single CAD system that will create the same geometry. Certain CAD programs have their 

own recommended methodology to generate shapes, but there is no settled orthodoxy 

between different vendor programs (Camba et al, 2016). To date, any manual mapping 

between similar CAD feature functions has required expert and laborious intervention, the 

issue of unmatched feature subtypes, unmatched constraints such as datum-points and 

end-conditions are not trivial problems (Barber et al, 2010). These efforts have tried to 

create exhaustive static translations between independent functions within CAD feature 

libraries. As referenced earlier (Section 8.3, Sequential model generation), the implicit 

constraints inherent to sequential parametric model creation make it impossible to 

anticipate all potential feature configurations within a static mapping library. 

The dynamic mapping processes envisaged by Tessier, and in the UPR described by 

Rappoport avoid this limitation. A dynamic mapping process will search for a geometric 

mapping from one feature model state to a subsequent model state. This dynamic mapping 

process may search the entire CAD library for a suitable function or trial a shortlist of 

probable feature functions. This technique has a higher probability of determining suitable 

feature matches where implicit constraints would have an unquantifiable effect on an 

equivalent feature selection determined by a static match. A practical implementation of 

this dynamic feature matching would retain a selection of suitable feature candidates, with 

the attendant requirement that there must be a database of static function matches from 

which to draw this selection (the UPR rewrite method hints at this strategy). Creating a 

database or an ontology and populating it with known function matches is a relatively 

straightforward task, finding matches between CAD features is not. Within each CAD 

program, there may be several hundred functions that create or manipulate the geometry 

of a CAD model. Each of these functions may in turn have many parameters that alter the 

behaviour of the function. The number of permutations of function operations possible 

make a brute-force combinational search impractical. The task of feature matching 

becomes a challenge of partitioning the combinational search space into manageable 

proportions.

8.6  Parametric variables



8   Automated feature function mapping 159

Geometry matching may be independent of relative model rotation, translation or 

scaling, but a method that may accurately compare surfaces cannot discriminate models 

that differ by varying proportions. A topological comparison may reduce the set of 

potentially equivalent features, but it cannot determine features that are functionally 

equivalent in geometric behaviour.

If the geometric manifestation of a feature operation is dependent on the associated 

feature parameters, it is necessary to find the combination of parameters for a feature 

operation in a source CAD model environment that replicates an identical geometry of an 

equivalent feature in a target CAD environment. If both features have multiple parametric 

constraints, then a successful geometric match will require a search for two sets of feature 

parameters that both produce an identical model geometry. As the number of parameters 

associated with each feature increases, the possible permutations of the operation 

increases. An exhaustive and undirected combinational search has no prior information on 

parameter order. 

As a trivial example, consider two hypothetical features undergoing matching, the 

first containing three boolean variables from a source CAD program , the second from a 

target CAD program , again containing three boolean parameters,

If these parameters govern equivalent configurations of each feature geometry then for 

any combination of parameter values of  , they are guaranteed to be matched within  

trials, the number of permutations with repetition allowed. This is a combinational search 

problem with a worst case of exponential complexity, which is not amenable to a practical 

function mapping application.

Two feature functions undergoing comparison may not encapsulate the same 

functionality, it is correspondingly unlikely that these functions will share the same 

number of parameters. This can be illustrated by extending the first example, where a 

8.6  Parametric variables



160 8   Automated feature function mapping

function containing four boolean parameters from a source CAD is matched to a function 

containing three boolean parameters within a target CAD as before.

If a geometric match between both functions is independent of the extra boolean 

parameter within , then the maximum number of trials is , if a match is not 

independent the maximum number of trials required to find a match is . In an 

undirected search it is unknown whether a parameter is required for a match. A brute-

force combinational parameter matching approach does not appear optimal for several 

reasons:

1. Real CAD feature functions may contain a substantial number of variables, leading 

to an exponential increase in search space. While certain commercial CAD API 

such as AutoCAD Inventor ® use a feature object paradigm that embody the set of 

methods and parameters, most CAD API tend to represent feature variants as 

additional function parameter options. This leads to a high combinational space 

when comparing functions.

2. A combinational approach is impractical for an unbounded parameter type, such as 

the set of integers, or floating point numbers.

3. A commercial CAD API may contains many hundreds of feature properties and 

methods. An undirected combinational search would require that a feature function 

in a source CAD be tested against every function in a target CAD. The potential for 

a one-to-many match, where the source function has a positive match with several 

target functions implies that feature searches must be exhaustive.

4. An exhaustive search cannot benefit from additional data, such as semantic 

matches of function parameter names, or the proximity of the function in the API 

data model to known functions.

8.6  Parametric variables



8   Automated feature function mapping 161

It is helpful to illustrate the claims above with data taken from the three 

commercial CAD programs tested for semantic similarity in Chapter 5.7. The 

documentation and text associated with the API of Rhino 5 Rhinoscript library, Solidworks 

2010 API and Autodesk Inventor 2012 is parsed to yield several XML files of uniform 

format. These files capture the function names, parameters, parameter data types and 

whether a parameter is required or optional. 

Figure 39 shows the proportion of functions relative to the number of associated function 

parameters. This graph has a logarithmic vertical axis to represent the number of 

functions of a certain number of parameters because of a wide variation in the distribution 

within each API, and also between each API. Several observations may be made with 

respect to the distribution of functions according to their number of parameters.

• The Inventor API follows an object model, many functions are descended from a 

“parent” function and are an object property that simply returns an object state, 

other functions are methods which might configure or determine the properties of 

an object. As an example the Arc2D object contains a method Arc2D.PutArcData, 

that sets the parameters defining an arc, it also contains a property Arc2D.Radius, 

that may be used to determine or configure a single object parameter. This style of 

API architecture creates a large number of single parameter functions.

• Both the Inventor and Solidworks API contain a larger number of functions than 

the Rhinoscript interface.

• The distribution of functions ranked according to number of parameters is an 

approximation to an inverse frequency relationship, this has important 

ramifications for the tractability of an automated search where the combinational 

search space is an exponent of the number of function parameters, this concept is 

covered in greater detail in Section 8.7.

8.6  Parametric variables



162 8   Automated feature function mapping

Geometric matching is a class of problem that can be solved within Non-

deterministic Polynomial time or -hard, the intuitive verifier-based definition is 

satisfied by the polynomial complexity of proving two surface models are geometrically 

identical, while an exhaustive combinational parameter search is of exponential 

complexity, as indicated in the simple example above. No simple or unique solution exists 

to direct a feature function parameter search for the purposes of feature matching. 

However, a combination of techniques can divide the potential search space into tractable 

partitions. These techniques are outlined as follows.

8.6  Parametric variables

Figure 39: distribution of CAD API functions ranked according to number of parameters



8   Automated feature function mapping 163

8.6.1 Function parameter label matching

Semantic matching is the use of the text associated with the API feature function 

description or type library to estimate relationships between similar concepts. This 

text may be drawn from help files, from the feature function names or from the 

embedded text in object files. These methods are more fully described in Chapters 4 

and 5, where the relative effectiveness of various techniques are tested on the short 

texts found in function descriptions. While the tests in Chapter 5 show the 

accuracy of the different techniques over a set of functions, the same methods can 

be used to detect syntactic or semantic similarities between the names or 

descriptions of function parameters undergoing testing.

8.6.2 Object model inference

The architecture of CAD program API tend to reveal conceptual relationships 

between feature functions. In all CAD programs examined (see table on page 35), 

there is a relationship between the API data model and the CAD feature taxonomy. 

While all major vendor software are based on an object-orientated data structure, 

API architecture is also shaped by the customs and constraints of the interface 

language. Some API structures such as RhinoScript 5, a native Python language 

interface to the Rhino 5 CAD program have a relatively flat object model with 

several object type categories and simple object handles and data structures. Other 

programs, such as CATIA V5R21 Automation interface have several layers of 

parent-child hierarchy that group feature functionality by inheritance, allowing 

structural relationships between functions to be deduced based on path length 

between function positions within the object model. Examples of similarity 

measures are Wu-Palmer, Resnik, Jiang-Conrath, Lin & Leacock-Chodorow. A full 

description of these methods is to be found in Chapter 4.5, WordNet similarity 

measures.

8.6  Parametric variables



164 8   Automated feature function mapping

8.6.3 Object model type inference

The API object data model generally has a structure that reflects the inheritance of 

feature objects. There is a more fundamental set of data types that are readily 

recognisable across different CAD API. A typical example is that of the floating 

point triplets that describe points in 3D space. These points are invariably floating 

point numbers commonly defined within an array structure containing three 

values. Another frequent parameter is a pointer to an object, or in some cases a 

reference string that is the handle for a feature object type, such as a model feature, 

or a surface face, or an entire body. Integers will invariably reference iterations 

rather than geometric values. 

8.7 Function parameter type heuristics

Certain heuristics may be used to reduce function parameter search space in a search for 

function equivalence. What follows is a typical sample from the Solidworks 2010 C++ API 

documentation that was introduced in Solidworks 2001. The first three parameters 

establish the position and orientation of the feature, a conical surface, the two parameters 

that follow establish the proportions of the feature. The function returns a pointer to the 

created conical surface object.

8.7  Function parameter type heuristics



8   Automated feature function mapping 165

CreateConicalSurface2(center, direction, refDirection, radius, semiAngle)

Parameters Description

Input: (double*) center Pointer to an array of 3 doubles, XYZ location 

which represents the center of the bottom

Input: (double*) 

direction

Pointer to an array of 3 doubles, XYZ direction of 

the axis of the conical surface

Input: (double*) 

refDirection

Pointer to an array of 3 doubles, XYZ direction of 

the axis of the conical surface

Input: (double) radius Radius at the center

Input: (double) 

semiAngle

Half angle of the cone in radians

Return: (LPSURFACE) 

retval

Pointer to the resulting Surface object

Table 6: parameter description of SolidWorks CreateConicalSurface2 function.

8.7  Function parameter type heuristics



166 8   Automated feature function mapping

Reverting to the simple illustrative notation used earlier in Section 8.6, this functions may 

be modelled as a source CAD function, where this time the parameter values in Table 6 are 

floating point numbers such that,

retval = CreateConicalSurface2(center.x,

                                     center.y,

                                     center.z, 

                                     direction.x,

                                     direction.y,

                                     direction.z,

                                     refDirection.x,

                                     refDirection.y,

                                     refDirection.z,

                                     radius, 

                                     semiAngle)

Reformulating this function where parameters are grouped by Cartesian triplets then 

gives,

Once the assumptions that floating point triplets represent spatial coordinates are 

factored in, the number of independent variables are halved. Recognising that the returned 

type  is a pointer handle to a data object and most likely the feature associated with the 

function reduces the number of unknown parameters further. 

8.7  Function parameter type heuristics



8   Automated feature function mapping 167

While    relate to the morphology of the feature,  determine the 

positioning and orientation of the feature within model space. Two of these three 

coordinates specifies the axis of the feature object, meaning that if the exact same 

coordinates are used, the function will return an error. Any other coordinate groups will 

create a feature that can be normalised with respect to absolute position, scale and 

orientation. Consequently the function has been reduced from twelve to two parameters 

using these heuristics. 

The scope of the data type heuristics described above are demonstrated with a 

comparison against a function with an equivalent geometric behaviour from the Autodesk 

2012 Inventor COM API Visual Basic reference. Note the slight differences in data type 

declaration convention. The same assumptions as used above reveal two coordinate data 

types, two floating point types that determine cone proportions and a boolean value that 

determines cone orientation.

Sub PutConeData( ByRef BasePoint As SAFEARRAY(double), 

ByRef AxisVector As SAFEARRAY(double), 

Radius As double, 

HalfAngle As double, 

IsExpanding As VARIANT_BOOL)

8.7  Function parameter type heuristics



168 8   Automated feature function mapping

Parameters Description

Input: BasePoint Input/output Double that specifies the base point 

of the cone.

Input: AxisVector Input/output Double that specifies axis vector.

Input: Radius Input Double that specifies the radius of the cone.

Input: HalfAngle Input Double that specifies the half-angle value 

for the cone.

Input: IsExpanding Input Boolean that specifies whether the radius of 

the cone is expanding or not, in the direction of 

the axis vector.

Table 7: parameter description of AutoDesk Inventor PutConeData function.

The two parameters governing the cone proportions are identical in both the 

Solidworks and Inventor functions. The convention for establishing a principle axis, or a 

direction vector differs, yet two the geometric models within the source and the target 

CAD programs will produce similar geometry for models that are normalised in scale, 

position and orientation.

The metric of similarity in this illustrative case can be the bidirectional Hausdorff 

measure, or a minimal affine-invariant feature description of extrema and symmetrical 

curves, in this case a single maxima at the tip of the cone, a single minima at the centre of 

the base and the single centre of the cone rim which coincides with the minima. These 

methods are described in detail in Chapter 6.25, A minimal set of registration features 

types, Explicit and implicit CAD model constraints . The task of identifying a similarity 

between two functions calls for a comparison between a potentially large number of 

geometric shapes. An efficient approach is to use a minimal representation of each shape, 

followed by a more detailed comparison of surface geometry. Hence the use of affine-

invariant feature representations which store a relatively small number of identifiers and 

8.7  Function parameter type heuristics



8   Automated feature function mapping 169

which may be compared in two stages. In the schema introduced in Chapter 6, several 

features types are extracted from the geometric model, the number and class of each 

feature type provides a descriptive signature for each shape. 

A comparison of affine feature categories will indicate a match in this example, 

both functions will generate a cone with a single minima, maxima and curve centre. These 

points are further distinguished by their relative displacement from the cone centroid. If 

random numbers are used as parameters to generate the cone model, it is unlikely that the 

respective signatures or vectors of point displacements will match. If the same values are 

used for both function parameters governing cone proportions, both cones will match, 

despite having a different parameter order. Similarly, if the values used to specify 

Cartesian values for points or vectors in the function parameters are taken from a minimal 

n-ary set of values, this reduces the base of the exponential combinational search space. 

For instance, a function requiring eight or   unique Cartesian triplets of floats may be 

specified in a psuedo-binary alphabet, [0.0, 1.0]. A function requiring 27 or   unique 

Cartesian triplets might use a trinary alphabet, etc. This heuristic is used for the parameter 

coding of the genetic algorithm solution presented in Section 8.12.

In Chapter 6, a method to efficiently match geometric shapes is presented. This 

method can determine whether two shapes are geometrically similar, independent of 

orientation, position or scale. Such a method may act as an objective function to allow 

automated testing of feature functions for geometric output equivalence. While such an 

oracle may indicate whether the shape created by two feature functions is similar, it 

cannot determine the required parameter combinations of functions undergoing 

comparison. 

8.8 Parameter mapping problem formulation

If this mapping process is described as a combinational search for feature function 

parameters which minimise a measure of geometric difference of the function outputs, 

8.8  Parameter mapping problem formulation



170 8   Automated feature function mapping

then the problem can be formulated as a Constraint Satisfaction Problem. The Constraint 

Satisfaction Problem is defined as a triple ,  such that, 

  is a set of Constraint Satisfaction Problem variables, each of which 

may  assume values within individual domains, 

 , subject to the set of constraints  .

These domains represent the set of possible values that each  may assume. Each 

constraint  specifies a subset  of the variables X with a k-ary relation  on the 

corresponding subset of associated domains . This relation can be expressed as the tuple 

 such that assigning variables to  satisfies the relations . A vector of variables 

assigned to each member of  which satisfy all members of   is a solution. A CSP may 

also have a solution that maximises or minimises an objective function. 

Unlike the generic representatives of the Constraint Satisfaction Problem, (such as 

Sudoku puzzle generators and 8-queen puzzles), the constraints inherent to CAD feature 

functions are not known prior to mapping. The search for parameters which generate 

identical geometries may be considered to have two distinct types of constraint, hard 

constraints and soft constraints. Hard constraints are equivalent to inviolable rules which, 

if broken, result in no solution. In this case, hard constraints are combinations of 

parameters that cause a CAD feature function to return an error rather than an instance of 

a shape. In the cone example presented later in Section 8.6, a FreeCAD makeCone function 

specifies a radius for the base and another radius for a frustum geometry, naturally if both 

these radii are equal the function produces a cylinder, but as this configuration is too far 

from the semantic conception of a cone or frustum, this combination of parameters is 

impermissible and does not output a shape. A soft constraint may be considered as a 

suboptimal solution according to a designated metric, which in this case is represented in 

the geometric similarity measure. An optimal solution has a minimal difference between 

generated shapes, which may be determined by a measure of geometric similarity. 

While individual constraints  may only reference a subset of parameters within a 

single function, the minimisation of shape difference is a global cost function (also known 

8.8  Parameter mapping problem formulation



8   Automated feature function mapping 171

as a criterion function or objective function). A Constraint Optimization Function 

describes problems that require determination of variable assignments , which satisfy 

the hard constraints  and return an optimal value for soft constraints, in this case the 

minimisation of a global objective function. This representation can be given as,

Where  represents the source function of   parameters from one CAD system 

undergoing mapping to a target feature function  of   parameters in a second CAD 

system. Solving this formulation gives a parameter configuration for functions  and  

which minimises the difference between function geometric output. However, there may 

be several solutions that minimise the objective function. Both functions may generate 

equivalent geometric shapes, but in different orientations. Equivalent parameters that alter 

the proportions of output shapes may generate entire families of geometrically equivalent 

shapes. The discovery of a single configuration of parameters that minimise the objective 

function does not, by itself, reveal a mapping between individual function parameters. 

A further objective is required to identify a solution with the most minimal values 

of parameters. This aspect is covered in the description of the heuristics used in Section 

8.12.3, at present it is sufficient to state that solutions that incorporate a high percentage 

of zero-valued parameters tend to have reduced dimensionality. Finding a set of 

parameters that satisfy hard feature function constraints while minimising a measure of 

similarity and parameter value may be classified as a Multi-objective Optimisation 

Problem incorporating both hard and soft constraints, respectively a combination of a CSP 

and COP. The hard constraints of the function parameters are unknown, the soft 

constraints of geometric similarity and minimisation of parameter values cannot be 

considered as continuous, linear functions. 

The continuity of the feasible parameter space may be characterised by the general 

categories of parameter, for instance, related feature constraints that define feature 

geometric proportions tend to be linear. Using a cone example, the radius values of two 

8.8  Parameter mapping problem formulation



172 8   Automated feature function mapping

cone features will cause a geometric similarity measure to vary proportionally to the 

difference of their relative values. However other parameters, such as a boolean or 

Cartesian array values that reverses the orientation of a feature shape will cause a non-

linear effect on a geometric similarity measure. The combination of unknown parameter 

constraints and multiple non-linear objective functions limit the methods that may be 

employed to solve this class of problem.

If this mapping problem is described as a decision problem, the combination of 

parameters tested give an answer to whether the parameters are a legal operation for both 

functions. They may also answer whether the geometric difference of the respective 

function outputs is below a numerical bound. The complexity of a problem is related to the 

time and space required for a particular algorithm to solve it. In combinational problems 

where the algorithms tend to be search methods, this is defined as the worst-case 

asymptotic time complexity. 

Two noteworthy complexity classes are those of  , the set of problems that can be 

solved by a deterministic machine in polynomial time, and , the set of problems that 

may be solved by a nondeterministic machine in polynomial time. A deterministic 

algorithm will always retrace a determinable execution path, while the progress of a 

nondeterministic algorithm cannot be predicted in advance, even with identical input. 

Conceptually, a nondeterministic algorithm is not necessarily a random process, but one 

which may take different execution paths, or may “guess” a process step. The equivalent 

so-called verifier definition of -class problems is the set of problem instances where a 

positive solution may be verified in polynomial time using a deterministic algorithm.

8.9 Problem complexity classification

This conceptualisation of problem complexity allows a useful classification. -hard 

problems are those which are at least as hard as any  problem, but are not themselves 

necessarily a member of  problems. A simple problem may be readily mapped to a 

more complex problem, but there is a distinct set, -complete, to which any  

8.9  Problem complexity classification



8   Automated feature function mapping 173

problem can be transformed to within polynomial time (this process is also termed 

polynomial reduction). There are a number of well-researched -complete problems that 

shed light on similar decision problems.

Returning to the case of identifying a mapping between two CAD feature functions, 

it may be assumed that the verification of both soft constraints and hard constraints are 

deterministic. The hard constraints are defined by the legal input of the respective feature 

functions. While the operation of the function response may be indeterminate, obfuscated 

by a compiled executable, the task is to determine whether the function input is of correct 

type and range, which is readily accomplished by a deterministic algorithm in polynomial 

time. The soft constraints of the mapping are also partly reliant on assumptions regarding 

the operation of the CAD software. 

If it is assumed that a deterministic algorithm is used to find the intersection of a 

vector and a surface within the CAD program then the process of checking the geometric 

difference between CAD models may be verified within polynomial time. The second soft 

constraint, that of overall input value minimisation, is a summation which is readily 

calculated. These independent verifications of each parameter combination solution 

occupy polynomial time, with the implication that the function mapping problem is a 

member of the set of   problems. 

This feature mapping problem can be specified as  -complete by comparison 

against the so-called knapsack problem. In brief, the knapsack problem is a classic 

multivariate optimisation problem. A selection of items of different costs and volumes 

must be chosen to fill a knapsack of finite volume, these items must be selected to 

maximise the value of the contents of this knapsack. Karp proved that this problem could 

be mapped to a known  -complete problem (Karp, 1972). This can be formally stated as 

a finite set   of elements, each possessing two properties, one defining the volume of 

each element,  , the other defining the value of each element,   for 

each   where   is the set of positive integers. The knapsack problem is the search 

for a subset   such that,

8.9  Problem complexity classification



174 8   Automated feature function mapping

 and 

where there is given a volume constraint   and a value threshold   .

The knapsack problem can be shown to map to the feature function mapping 

problem if the set   is taken to be the set of all legal input parameters for both functions. 

Define the similarity function    to be satisfied if is below a discrimination 

threshold  ,  and the summation of parameter values   to be 

satisfied if less than an arbitrary value . Then a set   can represent a solution instance 

that may satisfy a linear combination of these objective functions. This representation can 

be mapped to the knapsack problem formulation, meaning that for simple examples 

missing hard constraints, the feature mapping problem is -complete. Functions with 

parameters that dictate hard constraints are as least as complex as the knapsack problem, 

with parameter subset solutions that can be verified in polynomial time, meaning that 

they too are -complete. Certain -complete problems such as the knapsack problem 

have approximate solutions for limited subsets in , known as polynomial-time 

approximation schemes (PTAS) (Hromkovič, 2013). These work in polynomial time for an 

approximation ratio  , where the relative error   is greater than zero, within a time 

limited by a polynomial function of an order equivalent to that of the problem instance. 

Where this time has an upper bound of  , these approximation schemes are known as 

fully-polynomial-time approximation schemes (FPTAS). 

There are several approximate solutions to the related simple knapsack problem, 

e.g. (Johnson, 1974). To improve readability, the function parameter matching problem is 

abbreviated to FPMP, it must be remembered that the search for a set of parameters that 

result in a solution optimising soft geometric and value constraints does not in itself solve 

the identification of equivalent parameters. It is, however, the starting point for method 

that does so. While this FPMP may be at least -complete in complexity, this does not 

rule out practical solutions. -hardness reflects the worst case complexity, yet for many 

8.9  Problem complexity classification



8   Automated feature function mapping 175

problems the majority of solutions may be found in a comparatively short time. This may 

be shown empirically for certain algorithms such as the Simplex Algorithm for linear 

optimisation, which has an exponential complexity in the theoretical worst case but 

returns solutions in polynomial time in the average case (Klee & Minty, 1972). Other 

successful practical solutions to -hard problems identify a problem subclass that is 

more tractable. The signed SAT problem is -complete, yet some of its subclasses are 

polynomially solvable (Beckert et al, 2000). 

Where the order and behaviour of function parameters is unknown and there is a 

strong possibility of discontinuous or multimodal function response to function input 

parameters, it is unlikely that a deterministic method would be successful for matching a 

broad range of function types. An enumerative approach may be effective for functions 

with few parameters, but does not allow additional problem information or information 

derived from prior enumerations to guide the sequence of parameters to test. Stochastic 

search methods have been developed to tackle these particularly intractable classes of 

problems. In the next section, a brief overview of local stochastic search and optimisation 

methods serves to justify selecting an evolutionary algorithm to tackle the FPMP.

8.10 Stochastic Local Search methods

SLS methods are briefly introduced as a common approach to hard combinational 

problems. Information from a candidate solution is used to guide the search direction. This 

information may be simply a tally of search attempts for a restart algorithm, or data on 

recent search candidates used in a tabu search that avoids repetitively exploring the same 

search region. Local searches may be divided into a local search over a complete solution 

space, traversing the entire solution set, or local searches which find a path to the optimal 

value in a partial solution set. As complete searches, such as tree searches are impractical 

for -hard problems, they are not covered further.

A local search may be qualified by several common features, namely, 

• a search space,  which is the set of all possible parameter variations

8.10  Stochastic Local Search methods



176 8   Automated feature function mapping

• a solution set,  which is the subset of candidate solutions to the problem 

• a neighbourhood relation,  defining the relationship by which candidate 

solutions are considered search neighbours

• an evaluation function,  whereby the response of a solution candidate to 

the problem may be determined 

The local search starts from an initial position  ,  then uses information from the 

evaluation function to determine to which neighbouring position the search should 

progress. Constructions heuristics may start from an initial point and then extend a 

solution based on a neighbourhood evaluation heuristic. The first fit or best-first algorithm 

uses a greedy approach to select the highest-scoring neighbour for staging the next 

iteration. Bounded backtrack algorithms use heuristics to determine the scope of candidate 

solutions from neighbours reached by previous branching search path positions. Examples 

of backtracking heuristics include credit-based algorithms that employs an initial credit 

parameter which determines the breadth of the initial search paths, the distribution of 

credit among these created search paths as a measure of liberty to explore path depth, and 

finally a backtracking measure to determine the scope of the search neighbour cluster at 

the termination of individual search paths. The issue with local search techniques are that 

they tend to get stuck in local minima rather than finding a global minima, or maxima. 

The first fit algorithm is an example of a hill-climbing algorithm that suffers from this 

shortcoming. Adding random selection to the uphill neighbourhood moves available will 

improve global performance at the expense of speed.

Stochastic Local Search algorithms add a measure of randomness, or use other 

metaheuristics to find optimal solutions. The random-restart or shotgun hill-climbing 

algorithm performs a sequence of the search paths from random initial positions, 

increasing the likelihood of detecting a global extrema among local extrema. Simulated 

Annealing combines the exploration of a random neighbourhood search with the 

exploitation of local neighbourhood information. The metallurgical annealing analogy 

8.10  Stochastic Local Search methods



8   Automated feature function mapping 177

refers to the availability of transitional system states according to the level of free energy 

remaining in the system. The selection of the next iterative position in a simulated 

annealing search is based on an acceptance probability function, that changes neighbour 

selection from a relatively random candidate, to the most optimal candidate according to a 

varying “temperature” parameter.  The choice of neighbour is further determined by the 

heuristic to select neighbouring candidate positions. The original formulation described by 

Kirkpatrick used a Metropolis function to determine the candidate selection probability 

(Kirkpatrick et al, 1983). This algorithm is generated as follows; for each candidate 

neighbouring state, a random energy difference  is generated, representing the 

transition from the present state to the candidate state. If  is negative, the candidate is 

accepted. Otherwise the probability of transitioning to a prospective state is given by,

 

where  is the Boltzmann constant and  is the temperature. 

This probability decays exponentially with decreasing temperature, meaning that 

the search will converge to an optimum, but that it has less likelihood of becoming 

trapped in a local optimum in an early iteration of the algorithm. The other influences 

over the search pattern is the selection and qualification of suitable neighbouring 

candidates from the search space. 

Tabu search is another metaheuristic to circumvent searches becoming trapped in 

local optima. Where a simple hill-climb search will not select a neighbouring candidate if 

the position has a lower value, the tabu search will make exploratory detours to lower 

valued positions in the chance of finding a higher valued optimum. As this strategy 

regularly leads to repetitive cyclic search path behaviour, the tabu search will store the 

values of recently visited search positions on a taboo list, avoiding the same path twice.

The search methods described are based on a single search path in the solution 

space at any time. This is distinct from population-based searches which use several 

concurrent search processes. A process such as an Ant Colony Search models each search 

path process as a foraging virtual ant that lays a trail “pheromone” for subsequent ants. 

8.10  Stochastic Local Search methods



178 8   Automated feature function mapping

These trail pheromones degrade with time, or search iterations, so that short paths appear 

stronger. The technique combines elements of a tabu search, each ant agent recollects 

recent paths, a global heuristic, which is the relative strength of path pheromones, and a 

local heuristic, which may be a greedy search for nearby optimal candidates.

Particle Swarm Optimisation is another multi-agent search for a global optimum 

that combines a global heuristic, the transmission of information between particle agents, 

and a local heuristic such as a greedy search of the neighbouring candidates. These 

population-based searches are commonly hybridised with other search techniques for 

particular applications. 

The search method used to find a mapping between feature function parameters is 

another population-based method, a genetic or evolutionary algorithm. In brief, these 

methods use concepts from genetics, such as a pool of individual solution candidates that 

are interbred and randomly mutated to evolve a search solution. The next section outlines 

the structure of evolutionary algorithms and the rationale for implementation of an 

evolutionary algorithm as the basis of a feature function parameter mapping search.

A Genetic Algorithm, or GA, is selected for three reasons, 

A GA is arguably the most simple implementation of a local search method, the 

philosophy of selecting the most simple method to for exploratory research is 

described in Chapter 1.1.

A GA allows a combination of several search heuristics, in this case a semantic 

match score and a zero-valued parameter are trialled. This satisfies the requirement 

of a hybrid method search strategy described in Chapter 1.

A Genetic Algorithm can be considered as a robust search method. Consider pairs 

of function parameters that have a linear, proportionate effect on the geometry they 

create. A search method can readily determine a relationship using the response 

provided by an objective function measuring surface differences. However, once 

parameters with a non-linear effect on output geometry are introduced, the 

8.10  Stochastic Local Search methods



8   Automated feature function mapping 179

discontinuities in the solution space cause difficulty for traditional search methods. 

This is discussed in greater detail in Section 8.11, Genetic Algorithm overview.

8.11 Genetic Algorithm overview

A Genetic Algorithm is used to map unknown function parameters. The general properties 

of evolutionary algorithms are based on the concept of Darwinian natural selection, taken 

from evolutionary biology. A problem is formulated so that successive sets of promising 

candidate solutions are intermingled and refined to maximise an objective function. What 

distinguishes this method from other non-deterministic population search methods is the 

creation of new candidate solutions; rather than simply using enumerative or random 

methods to identify neighbouring candidate solutions from a search space, the candidates 

are assembled from the components of high-scoring previous candidates using processes 

that mimic genetic adaptation to evolutionary pressures. 

This genetic metaphor extends to the representation of a candidate solution, the 

properties of the solution are encoded as an n-ary string similar to the base pairs of DNA. 

This representation enables the solution to be subdivided into smaller chunks, which may 

then be exchanged in crossover processes between parent solution strings. There are 

several schema that combine chance and fitness in selecting which parents to combine, as 

there are in selecting which portions of the parent strings to swap in order to generate 

offspring. The other important modification to solution candidates is the introduction of 

string mutations, analogous to the random mutations introduced into chromosomes by 

meiosis or mutagens. These mutations may simply be a random process to reverse the 

value of a bit in a binary coded string. 

In a simple GA, a randomly generated population of candidate strings is tested 

against the objective function to reveal the relative fitness of each solution. These 

solutions are combined in a crossover scheme and subjected to random mutation, then 

evaluated again. This cycle is repeated for a predetermined number of generations, or it 

may be terminated should any individual reach a fitness threshold criterion. Genetic 

8.11  Genetic Algorithm overview



180 8   Automated feature function mapping

Algorithms lend themselves to diverse combinations of random and probabilistic methods 

to mutate, modify or select individuals from a population. Candidates may be selected for 

reproduction based on a roulette wheel strategy, a random selection of individuals 

weighted by respective fitness values, or tournament selection where a random selections 

of candidates are reduced tyo their fittest members

For a GA to converge, there must be some indication of an improving fitness, this 

technique will not work with an entirely discontinuous or random solution space. What 

stands out is the ability of GA to converge to optimal solutions despite discontinuities in 

the search space, the robustness of this method is attributed to the survival of successful 

partial patterns, or schemata, in solutions with higher fitness values. These patterns are 

accumulate in successive generations, if a population is large enough to offset the 

destructive actions of crossover and mutations. A schemata is formalised as the same 

alphabet that comprises the chromosome coding, with an extra “wildcard” character that 

may represent any string value. This allows partial representations of solutions with 

irrelevant values ignored by the wildcard character. Holland used this definition to 

calculate the lower bound of the numbers of schema surviving crossover (Holland, 1975). 

One observation that can be made from the analysis of partial solutions within the 

schemata is their durability across generations. Holland's schema theorem suggest single-

point crossover that cuts both strings at the same site tend to sever linkages that arise from 

broad schemata, or in other words, where there is a relationship between a value near the 

beginning of a string and near the end, they are liable to be separated, while two adjacent 

values are more likely to survive a single-point crossover process. However, the findings 

of the Exact Schema Theorem of Stephens and Waelbroeck suggests that attempting to 

order the sequence of values in any string is futile (Stephens & Waelbroeck, 1998). The 

genetic algorithm used for the method demonstration use a single-point crossover, this is 

justified in Chapter 9.1.

In the following section, a genetic algorithm is described for matching parameters 

of two similar functions from heterogeneous CAD programs. This technique is a 

8.11  Genetic Algorithm overview



8   Automated feature function mapping 181

qualitative assessment of this search technique as compared with a brute force 

combinational search equivalent.

8.12 Representing a function comparison as a Genetic Algorithm

To represent a candidate solution of two functions undergoing geometric comparison, a 

string is generated. This string contains coded values representing the parameters of the 

functions, with the values representing the parameters of one function concatenated to 

the values representing the parameters of the other function. 

The required parameters of both functions are coded as a psuedo-binary alphabet in 

the range [0.0, 10.0]. The choice of values for an n-ary coding is chosen to be the minimum 

number of default values available over the union of parameters of the two functions. This 

gives a string, or chromosome, to use the GA parlance, 

Where   are coded values mapped to the parameters of the source function, , 

and   are coded values mapped to the parameters of the target function, . 

This formulation is used to search for a permutation of parameter values over both 

functions undergoing comparison such that the geometry created is identical within the 

Cartesian model space of the two respective CAD programs. This outcome does not 

identify equivalent parameters between functions, but serves as a “ground state” from 

which parameters may be readily identified. Three heuristics are proposed to reduce the 

combinational space of the potential solutions, these are described below.

Figure 40 shows an overview of the cyclical process used to determine this “ground 

state” that permits a mapping to be found between individual function parameters, details 

of this subsequent mapping process are given in Section 8.14. The diagram in Figure 40 

shows the psuedo-binary alphabet representation of independent CAD parameter values, 

where the list of numbers at the top of the diagram is a fragment of a generated 

8.12  Representing a function comparison as a Genetic Algorithm



182 8   Automated feature function mapping

population. These individual candidates can be seen as a concatenation of the two sets of 

required parameters to generate function outputs in the respective CAD programs 

undergoing function mapping. In this case both functions generate a cone geometry. Both 

these cones might then be probed for similarity within their respective CAD model spaces. 

In the lower part of Figure 40, these cones are shown superimposed on one another within 

a common Cartesian model space. This superimposition is intended to illustrate the 

intersection of radiating vectors from the common model space origins with each cone 

instance. The distance between the points at which the rays intersect with the cone 

surfaces constitute the geometric difference between the respective cone surfaces as 

sampled at each ray. This measured disparity is highlighted in red for clarity. These surface 

difference measures may be summed to produce a single number that represents the 

sampled similarity between cone surfaces. If the parameters that generate the respective 

cone geometries produce two nominally identical cones, this surface deviation value will 

be reduced to the error applicable to the relative precision of both CAD programs 

(Chapter 3.12 describes a proxy model that encompasses these errors of program 

geometric precision). This surface deviation value is then suited to use as a fitness value 

that represents the success of each GA candidate. A bidirectional Hausdorff measure 

(Chapter 3.11) using the same set of intersection values may also be used in this 

application. 

8.12.1 Restricted range parameter coding

Zero is a commonly used default parameter across CAD programs, either for binary values 

or for Cartesian points. Another example is the default value of 360 used in the angle 

parameter of the Part.makeCone FreeCAD function (see Chapter 9.6, Published parameters of

the functions used in tests for complete API details), in one test configuration, a [0.0, 

360.0] binary was used but did not converge to relatively small values, suggesting that this 

method is sensitive to scaling. As each additional parameter within a function introduces 

an exponential increase in potential parameter combinations, the coding of parameter 

values is reduced a minimum of bases. In practical terms this means that if two values may 

8.12  Representing a function comparison as a Genetic Algorithm



8   Automated feature function mapping 183

be used as legal input to both functions, the coding for generating candidate solutions 

should be restricted to these two values, a psuedo-binary, three values imply a psuedo-

trinary and so on. While a binary or boolean normally refers to a data type in the context 

of function parameters, a restricted coding alphabet may contain floating point, integer or 

string values. The number of values, or codes used in the alphabet set corresponds to the 

base of the exponential combinational search space. The strength of a genetic algorithm is 

the ability to retain and combine partial solution fragments in the search for an optimal 

solution value. Consequently continuous unbounded parameters such as unsigned 

integers, or floating point representations that have a base-10 representation may be 

discretised and re-encoded as a base-2 representation to allow the preservation of longer 

string fragments (Goldberg, 1991). 

8.12.2  Default function configuration

The second heuristic employed in feature function matching is the minimisation of 

function options. CAD API functions commonly use a multitude of optional parameters 

that are set at a default value. Certain CAD API use a hierarchical API data model that 

represents feature subvariants as individual child functions, or child object functions (e.g. 

AutoDesk Inventor). However the trend is for most commercial CAD programs to add 

optional parameters to extend the behaviour of the feature concept, as an example, the 

SolidWorks API FeatureManager.FeatureFillet function contain 25 independent 

variables which combine to produce 144 different variants of edge fillet feature. The 

strategy adopted is to match a minimum representation of a feature that reduces the 

number of parameter combinations available within the search space for a geometric 

match. This minimisation is justified by the customary practice of using the default values 

of a feature functions optional parameters to represent the most simple and most widely 

accepted representation of the feature geometry that the function controls.

8.12  Representing a function comparison as a Genetic Algorithm



184 8   Automated feature function mapping

8.12.3  Zero-valued parameter assumption 

The third heuristic introduced is a minimisation of the sum of coded value states, so that 

candidate solutions with more zeros are evaluated as more fit. Consider that the first stage 

in matching function parameters to be the search for a parameter state that results in a 

minimal geometric difference between respective CAD models. There may be several 

different parameter states that generate identical geometric models. An additional 

optimisation goal is introduced to minimise the summed values of the coded parameter 

states, giving priority to solutions that contain more zeros, as zero is a common default 

value in CAD functions.  The GA may then be formulated as follows

where  and  are weights applied to the objective functions to give a summed fitness 

value. Details of the penalty values used are given in Chapter 9.1, A Genetic Algorithm 

configuration demonstrating CAD function matching.

This representation of soft constraints is similar to that commonly used on the so-

called knapsack problem, where both the summed value and the summed volume of 

knapsack contents contribute to the fitness of a solution. In this instance, the soft 

constraints are accompanied by hard constraints, namely illegal parameter combinations 

that result in an error state when applied to their respective function. These combinations 

are recorded and candidate solutions that incorporate these combinations are awarded a 

low fitness value, as this optimisation search is to minimise geometric difference this 

results in a high number.

In the tests conducted in Chapter 9, a configuration using dual objective functions 

as described is compared for efficiency against a configuration with a single objective 

function that minimises the geometric distance between respective models.

Michalewicz defines the set of hard constraints limiting a search space as two 

disjoint subsets of feasible and infeasible subspaces, there are a number of approaches 

8.12  Representing a function comparison as a Genetic Algorithm



8   Automated feature function mapping 185

taken to incorporate this information into Genetic Algorithm searches (Michalewicz, 

1995). Certain techniques remove infeasible candidates from GA populations, other ascribe 

a variable fitness penalty dependent on the level of transgression. In this particular 

application, the domain of illegal candidate solutions is hard to model. The CAD functions 

queried act as an oracle, either returning an instance of the desired geometric operation or 

registering an error. Therefore it is impractical to assign varying penalty values to illegal 

candidates. 

In the trials run in Chapter 9, it was found that feasible candidate solutions 

comprised a relatively small subset of populations, while the coding of illegal candidates 

may have been close to an optimal solution. In this instance, a large fixed penalty value 

was awarded to illegal candidates. Illegal candidate solutions are integral to the automated 

mapping of feature functions, therefore these values are retained, allowing detection of 

similarly illegal solutions to be assigned a penalty fitness without having to undergo a 

computationally expensive fitness evaluation. Selecting a predetermined number of 

candidates ranked by fitness score allows identification of candidates suited to generating 

subsequent populations. This approach permits the few legal solutions to be included on 

every cycle. The selection of crossover is described in Chapter 9.1, A Genetic Algorithm 

configuration demonstrating CAD function matching, while the mutation parameters are 

described in Chapter 9.2, Elevated mutation constant.

8.12  Representing a function comparison as a Genetic Algorithm



186 8   Automated feature function mapping

8.13 

8.14 Individual parameter mapping

Once such a “ground state” is identified, then functional relationships between individual 

parameters may be detected via perturbation of individual parameters in one function 

against individual parameters in the second function to identify bijective mapping. If an 

additional base is added to the code alphabet used for parametric testing, individual 

parameter matches may be identified via the geometric similarity measure with a 

minimum number of search attempts. In the cone example presented below, a string with 

a solution of 

8.14  Individual parameter mapping

Part.makeCone radius1

radius2

height

Rhino.AddCone arrBase.x

arrBase.y

arrBase.z

arrHeight.x

arrHeight.y

arrHeight.z

dblRadius

Table 8: genetic algorithm string values 
mapped to concatenated function 
parameters.



8   Automated feature function mapping 187

generates identical cone models in both CAD programs with a maximum number of zero 

values. This string is based on the required values of the FreeCAD Part.makeCone 

function concatenated with the required parameter values of the RhinoScript 

Rhino.AddCone function where A is set to a non-zero value. The sequence of required 

parameters is mapped to their respective function names in Table 8, documentation 

excerpts from the relevant APIs are given at the end of the chapter 

(Developer.rhino3d.com, 2017; Riegel, 2017). These functions reflect the common practice 

of using zero as a default value.

Once a configuration is found that returns a model match, the search for individual 

matching parameters is a comparatively simple sequential search using an additional base, 

[0, A, B]. A parameter search may be as simple as a Gray code combinational search of the 

non-zero parameters, as demonstrated in the following example.

The sequence between  and 

 are omitted as there is no change to the three codes in 

the first part of the chromosome mapped to the first function parameters.

 -no match for Part.makeCone height parameter

 -height parameters matched

 - base radius parameters matched

Identified parameter relationships are used to “mask” sequences of the concatenated string

8.14  Individual parameter mapping



188 8   Automated feature function mapping

which may be represented as,

This representation allows the function parameter search space to be partitioned 

over a smaller range of combinations. A Gray code is used in the example above simply to 

minimise the number of parameter changes between permutations, but any combinational 

method including a text-directed genetic algorithm may be used to perform a search for 

individual parameters over this reduced combinational space. If all individual parameters 

are identified, the zero values may then in turn be exchanged for suitable code alphabet 

values and subjected to a combinational search to identify related parameters common to 

both CAD API functions. After searches have been performed for individual parameters, it 

is then possible to attempt to match the optional parameters to these functions which 

have so far been excluded. In the example above no match would be found for the zero 

values in the second function in the chromosome until the optional parameters of the first 

function are tested as shown (the optional parameter description is listed in tabular form 

in Chapter 9.6, Published parameters of the functions used in tests).

The example here shows that a directed search may identify relationships more rapidly 

than an exhaustive search, but this method will find relatively simple matches of single 

parameters between functions, the efficiency of this approach is limited to the 

independence of model parameters. In cases where model parameters are not independent, 

the exclusion of prior mapped parameter discoveries may have to be abandoned to 

determine a potential mapping. 

This chapter has described the common methods used to construct CAD model 

geometry. Construction of parametric feature-based geometry using a sequence of explicit 

and implicit constraint parameters is defined. Dynamic feature mapping is proposed as a 

solution to the challenge of detecting implicit constraints set by feature operations outside 

the scope of the feature under test. Testing function equivalence using dynamic mapping 

is a labour intensive task that requires automated function checking to be practical. 

8.14  Individual parameter mapping



8   Automated feature function mapping 189

The task of automating a search for parameter combinations to detect a function mapping 

is described. A genetic algorithm parameter search method is described in detail where 

several heuristics are introduced to partition the combinational search space. This 

proposed method is tested in Chapter 9.

8.14  Individual parameter mapping



190 8   Automated feature function mapping

8.14  Individual parameter mapping
Figure 40: Overview of genetic algorithm process to generate CAD function parameter mapping



9   An automated search for function equivalence 191

9  An automated search for function equivalence

Chapter 8 describes a method of performing a genetic algorithm based search for matching 

function parameters using a restricted set of parameter values and a geometry matching 

method similar to that described in Chapter 6. This algorithm configuration is described, and 

the results of tests on functions are presented. Several algorithm configurations are compared 

for relative efficiency.

9.1 A Genetic Algorithm configuration demonstrating CAD function 

matching

An implementation of a Genetic Algorithm scheme for matching CAD API functions was 

created using the DEAP evolutionary algorithm framework (Fortin & Rainville, 2012). Two 

CAD programs with relatively trouble free API access were selected, Rhino 5 via the 

Rhinoscript 5 Automation API and FreeCAD 0.17 via a native Python interface. The 

Python comtypes library is used to negotiate Automation access to the Rhinoscript 

interface, while a FreeCAD instance can be accessed as a native Python object (Heller et al, 

2019; Riegel et al, 2017; Baer, 2011). 

The algorithm used takes the form of the most simple genetic algorithm implementation 

(Bäck et al, 2018).

• An initial population of solution candidates is generated.

• These candidates are evaluated against a measure of fitness.

• While there is no overall optimum best solution candidate, or other termination 

criterion,

◦ The most successful candidates are recombined

◦ This pool of recombined candidates are subjected to random mutation.

9.1  A Genetic Algorithm configuration demonstrating CAD function matching



192 9   An automated search for function equivalence

◦ This pool is re-evaluated for fitness and the elite candidates are selected for the 

next generation.

Each of these steps merits further description.  To recap, each chromosome string is the 

concatenation of parameters from two CAD API functions undergoing parameter mapping 

or functional similarity detection. The function parameter type, formatting and optionality 

are stored in a format that allows ready generation of legitimate variants. An initial 

population is seeded with randomly created individuals.

The fitness of each individual is expressed as a weight attribute. This may be a 

single weight that represents the similarity of the CAD models that the individual 

candidate represents, or it may include further objectives. 

There are several variants of GA trialled. In a the multi-objective implementation 

(GAP_Match07_multiRun.py) each individual candidate has two objectives, the first is to 

minimise the geometric difference between CAD models that these candidates represent. 

The second objective to minimise is the value of numeric parameters, this heuristic sets 

available numeric parameters to zero with the aim of determining a viable geometric 

model configuration with a maximum number of default zero-valued parameters. 

The so-called Knapsack problem is a simple representation of a multi-objective GA 

(see also Chapter 8.9). Selections from a set of items of differing size and value are to be 

fitted within the finite volume of a knapsack in such a way that the value of the contents 

is maximised, but the sum volume of contents is less than the knapsack capacity. The 

solutions to this problem may be represented as individual collections with a summed 

volume approaching an optimum value of a maximum summed worth. This can be 

represented as two weights attributes, one which maximises value, the second which 

approaches the maximum volume value. 

Once an initial population is generated, the fitness of each of these individuals is 

tested. The chromosome is split into the segments that map to the individual parameters 

9.1  A Genetic Algorithm configuration demonstrating CAD function matching



9   An automated search for function equivalence 193

of both functions under test and the functions generate CAD geometry models in their 

respective CAD programs using the parameter data. 

To test geometric equivalence, a basic implementation of the method detailed in 

Chapter 6 is used to sample points from the surfaces of both these geometries. A series of 

evenly distributed points on a unit sphere are generated using the method described by 

Deserno (Deserno, 2004). These points direct the angle of vectors emanating from the 

model space centroids. Where these vectors intersect the generated function models, the 

points are returned for comparison. Unlike the complex method described in Chapter 6.11, 

there is no search for feature registration points nor affine transformation between 

models. Consequently both models register a minimum deviation in point values once 

they occupy the same absolute Cartesian model space with respect to the sampling 

vectors. In the case of optimisation for zero-valued codes, the code values of the individual 

candidate are summed. 

These tests form the basis of candidate fitness. In the frequent instances of 

parameter combinations that do not return any value, such as an instance of all 

parameters set at a zero value, the geometric fitness weight is set to a large penalty value (

). These values are recorded so that there is no requirement to re-evaluate these 

combinations. The evolutionary algorithm method used for all the trials generates an 

entirely new population from a recombination of relatively successful instances from the 

prior generation population (eaSimple). It was found that other models tested, such as 

versions that would add a fraction of unmodified elite individuals from the prior 

generation showed comparatively little effect on this class of partially continuous 

matching problem (eaMuPlusLambda). The eaSimple strategy is used as a baseline for all 

models. There are a range of established methods to cut and recombine individual 

candidates, in this instance the most simple technique is used, the one point crossover. As 

the name suggests, both parents are cut at the same random location and subsequently 

spliced to form a new individual (deap.tools.cxOnePoint). 

This new generation of individuals is then subjected to mutation, where each code 

in each individual may change to another code value dependent on a probability derived 

9.1  A Genetic Algorithm configuration demonstrating CAD function matching



194 9   An automated search for function equivalence

from a psuedorandom value (deap.tools.mutFlipBit). This function is modified to 

operate with trinary and n-ary code bases. 

This process continues until either the maximum iteration of population 

generations is reached, or if the fitness of any particular candidate instance is found to 

surpass a threshold. In this case, this equates to the average displacement between 

compared model intersection points falling below a threshold. 

9.2 Elevated mutation constant

The directed guessing technique employed by a genetic algorithm is reliant on the results 

of the objective function decreasing as both CAD models approach a uniform 

configuration. A GA is more robust than other methods in tackling discontinuities in the 

output of the objective function, but without any discernable relationship between 

parameters it will perform no better than a brute force combinational search. All GA 

variants used relatively high probability values of mutation to compensate for a 

discontinuous objective function. Only a subset of parameter adjustment leads to a 

smoothly varying objective function, consequently additional randomness appears to lead 

to faster solutions.

9.2  Elevated mutation constant



9   An automated search for function equivalence 195

9.2.1 Comparative testing of multi-objective and single objective fitness 

functions

The success of the GA technique may be measured against the exhaustive number of 

parameter combinations available for the base of the code set. In the following graphs 

these are represented as red vertical bars and can be considered as a limit of method 

efficiency. If any method takes, on average, fewer operations than this limit value, it may 

be considered to be more efficient than a brute force method. Two measures of GA 

9.2  Elevated mutation constant

Figure 41: Single objective function GA performance without semantic match assistance.



196 9   An automated search for function equivalence

operation are superimposed on each of the graphs (Figure 41 to Figure 46), the green lines 

indicate the value of the objective function to be minimised, the blue crosses the number 

of CAD operations. Both measures indicate the progress towards a solution, the inclusion 

of CAD operations is a measure of algorithm efficiency against a brute force solution.

The minimum geometric values attained within each generation are displayed for 

20 different separate trials. The average value of these minima is plotted and these values 

taken to construct a linear least squares regression curve. From a comparison of the multi-

objective fitness variant, (Figure 45) against that of the single objective fitness variant 

(Figure 42), biasing a solution towards zero code values appears to reduce the number of 

generations taken to reach a threshold model equivalence value. The caveat with this 

finding is that it is only tested on four representative API functions. 

The number of generations of populations are not indicative of the number of times 

that the represented function parameters are used to test comparative CAD models before 

a solution is reached. The number of actual CAD comparative tests performed is marked 

by a blue cross at the number of evaluations at which a solution is found. It is observed 

that these computationally expensive tests involve a comparatively small number of tests 

compared to the exhaustive combinational test benchmark4. The number of CAD search 

operations required for the GA solution is divided by the number of combinations 

required for a brute force solution to the particular pair of CAD functions (note that there 

are several correct solutions). This figure is averaged over a series of 20 runs to give an 

estimate of advantage that the GA solution has over the combinational solution for each 

function pair. The representative GA configuration used will regularly regenerate 

combinations that have already been tested. In the implementation shown, each legitimate 

CAD operation outcome is recorded to avoid expensive duplicate geometric matching (see 

Table 9). 

4 The combinational limit represents the required number of parameter code permutations to guarantee a solution is 

found, provided that one exists. Note that the highest probability of determining a correct solution using random, 

unrepeated guesses corresponds to half that figure. For simplicity, the maximum value is used.

9.2  Elevated mutation constant



9   An automated search for function equivalence 197

Cone Function Pair Torus Function Pair

Single objective function 0.071 0.073

Dual objective function 0.062 0.050

Single objective function with semantic match 
assist.

0.084 0.062

Dual objective function with semantic match 
assist.

0.096 0.061

Table 9: averaged value of CAD match operations of GA variants as a fraction of required CAD 
match operations for combinational search.

9.2  Elevated mutation constant

Figure 42: Multi-objective function GA performance using binary coding, no semantic match 
assistance



198 9   An automated search for function equivalence

9.3 Semantic match assisted Genetic Algorithm trials

The final set of tests add semantic matching information determined from the labels given 

to the function parameters. A large matrix of word pair similarity matches is used to 

establish semantic match probabilities between words (the Word2vec model derived from 

the Wikipedia corpus, Chapter 4.5.6, Word Embedding and the word2vec similarity 

measure). Unlike the greedy method described in Chapter 5.2, the matching process 

simply finds the matching word pair with the highest value. The semantic similarity of 

parameter names is used to influence the creation of new chromosome individuals, or 

generate a new population during the initialisation of the genetic algorithm. For a pair of 

functions undergoing analysis, groups of semantically-related parameters may be 

identified. This corresponds to parameter labels that return a score of high semantic 

similarity when matched together.

A rule is introduced, that at least one member of an identified group within each 

function has at least one non-zero assigned value. In practice this imposes a requirement 

that there are at least two non-zero values per group, one of the parameters of the first 

function and one of the parameters of the second function. Groups that are unique to only 

one function are discarded. Random chromosomes are generated from the permissible set 

of parameter values and instances that do not conform to the semantic group rule as 

defined above are discarded.

9.3  Semantic match assisted Genetic Algorithm trials



9   An automated search for function equivalence 199

Surprisingly, this additional information led to reduced GA efficiency. A 

consistently higher number of search attempts was recorded for both CAD function pairs 

tested. If the parameter names are compared with the semantic matching ratios, it seems 

that there is ambiguity arising from inadequate discrimination between categories. For 

example, three of the four functions tested had more than one “radius” parameter. A 

semantic matching would determine a relationship between the identical syntax, but not 

yield any finer discrimination. The limited range of functions tested restricts the scope of 

conclusions that can be drawn.

9.3  Semantic match assisted Genetic Algorithm trials

Figure 43: Single-objective function GA performance using binary coding, with semantic match 
assistance



200 9   An automated search for function equivalence

9.3  Semantic match assisted Genetic Algorithm trials

Figure 44: Multi-objective function GA performance using binary coding, with semantic match 
assistance



9   An automated search for function equivalence 201

9.4 Tests extending beyond psuedo-binary coding

The example presented here is a simple known match. While there is some parameter 

mismatch between the two API functions, both functions will produce valid models with a 

minimum of two code values, in this case [0, 10]. 

A function of similar apparent complexity, the RhinoScript AddTorus command, is 

an example of a function that must take three codes to generate minimum valid output. 

This function places a constraint on parameters such that the radius of the torus about its 

centroid must be larger than the sectional radius of the torus. This requirement demands a 

minimum of three codes, say [0, 10, 20]. However this requirement may only be 

determined after an exhaustive search of the parameters, in this case   combinations. See 

Figure 45 and Figure 46.

If the number of independent parameters required to create an identical geometry 

model are not known in advance, this would indicate that coding the problem as a genetic 

algorithm would require a minimum of  operations, where  is the minimum 

number of parameter states required to find a solution to two functions with  

independent parameters between them.

9.4  Tests extending beyond psuedo-binary coding



202 9   An automated search for function equivalence

9.4  Tests extending beyond psuedo-binary coding

Figure 45: Single objective function GA performance using trinary coding, no semantic match 
assistance



9   An automated search for function equivalence 203

 

Figure 46: Multi-objective function GA performance using trinary coding, no semantic match 
assistance



204 9   An automated search for function equivalence

9.5 

Results summary

This chapter demonstrates the viability of stochastic local search techniques to map the 

functionality of parameters. In the illustrative examples a geometry comparison indicates 

whether model parameters create an identical model within Cartesian model space.

This automated search uses a genetic algorithm with an objective function based on 

the absolute geometric difference between CAD models generated by each function 

parameter configuration. This geometric difference is a summation of numerical 

differences between model surface boundary points sampled at identical locations on both 

models. The sampled points correspond to intersections with vectors radiating from each 

model centroid.

This approach requires that parameters with an X, Y, and Z axis component is 

solved for each axis. For instance, each vector value contains three independent Cartesian 

parameters. The method of comparing CAD model surface boundaries described in 6 is 

independent of model orientation, location and scale. Employing this method as an 

objective function is more complex, but reduces the number of independent variables 

within a search for model parity. For the cone example, this represents a reduction from 

ten to six independent parameters

This chapter demonstrates two pairs of CAD functions that are solved using a 

restricted set of parameter values is adequate for determining a correspondence between 

CAD functions. On average, the simple genetic algorithm used returns a solution in under 

a tenth of all possible permutations used in an exhaustive search (see Table 9). Part of the 

reason for this efficiency is that illegal CAD states are recorded for each function 

alongside solutions that return a model. This search method is found to be improved by an 

additional search objective, the minimisation of search values. 

Finally, the method of generating candidate solutions is modified to include 

semantic relationships between individual function parameter text labels. In the function 

pairs tested this resulted in a slight degradation of performance. Additional semantic 

9.5   Results summary



9   An automated search for function equivalence 205

information may lead to faster solutions between parameters with a larger number of 

parameters, but this is not covered in these exploratory tests.

In this chapter, a stochastic local search method has been used to determine a 

parameter state required for model parity. In Chapter 8, the method is presented as a 

means to map individual parameters between functions. The same technique may be used 

to determine whether unknown functions share a capacity to create similar geometrical 

models. 

9.6 Published parameters of the functions used in tests

Part.makeCone (radius1,  radius2,  height,  [pnt,  dir,  angle])

Description: Makes a cone with given radii and height. By default pnt is 

Vector(0,0,0), dir is Vector(0,0,1) and angle is 360

Parameters

Name Optional Type Description

radius1 Required Number
Radius of the arc or circle defining the lower 

face

radius2 Required Number
Radius of the arc or circle defining the upper 

face

height Required Number The height of the Part Cone

pnt Optional Number By default point is Vector(0,0,0).

dir Optional Number By default dir is Vector(0,0,1).

angle Optional Number

The default 360 creates circular faces, a lower 

value will create a portion of a cone as 

defined by upper and lower faces each with 

edges defined by an arc of the number of 

degrees and two radii.

9.6  Published parameters of the functions used in tests



206 9   An automated search for function equivalence

Returns

Object The created shape object reference.

N/A If not successful, or on error.

Rhino.AddCone (arrBase, arrHeight, dblRadius [, blnCap])

Rhino.AddCone (arrPlane, dblHeight, dblRadius [, blnCap])

Parameters

Name Optional Type Description

arrBase Required Array The 3-D origin point of the cone.

arrPlane Required Array

The cone's base plane. The apex of cone is at 

plane's origin and the axis of the cone is 

plane's Z axis.

arrHeight Required Array

The 3-D height point of the cone. The height 

point defines the height and direction of the 

cone.

dblHeight Required Number

The height of the cone. If arrPlane is 

specified, then the center of the arrPlane is 

height * the plane's Z axis.

dblRadius Required Number
The radius at the base of the cone. Note, 

tan(cone_angle) = dblRadius / dblHeight.

blnCap Optional Boolean
Cap the base of the cone. The default is to cap 

the cone (True).

Returns

String The identifier of the new object if successful.

9.6  Published parameters of the functions used in tests



9   An automated search for function equivalence 207

Null If not successful, or on error.

Part.makeTorus(radius1,radius2,[pnt,dir,angle1,angle2,angle]).

By default pnt=Vector(0,0,0),dir=Vector(0,0,1),angle1=0,angle2=360 and 

angle=360.

Parameters

Name Optional Type Description

radius1 Required Number
Radius of the circle around which the disc 

circulate.

radius2 Required Number
Radius of the disc defining the form of the 

torus.

pnt Optional Number
The center of torus. 

By default pnt is Vector(0,0,0).

dir Optional Number By default dir is Vector(0,0,1).

angle1 Optional Number 1st angle to cut / define the disc of the torus

angle2 Optional Number 2nd angle to cut / define the disc of the torus

angle3 Optional Number
3rd angle to define the circumference of the 

torus

Returns

Object The created shape object reference.

N/A If not successful, or on error.

Rhino.AddTorus(arrBase, dblMajorRadius, dblMinorRadius[, arrDirection]) 

Rhino.AddTorus(arrPlane, dblMajorRadius, dblMinorRadius)

9.6  Published parameters of the functions used in tests



208 9   An automated search for function equivalence

Parameters

Name Optional Type Description

arrBase Required Array The 3-D origin point of the torus.

arrPlane Required Array The base plane of the torus.

dblMajorRadius Required Number

The major radius of the torus.The major 

radius must be larger than the minor 

radius.

dblMinorRadius Required Number
The minor radius of the torus.The minor 

radius must be greater than zero.

arrDirection Optional Array

A point that defines the direction of 

the torus.If omitted, a torus that is 

parallel to the world XY plane is 

created.

Returns

String The identifier of the new object if successful.

Null If not successful, or on error.

9.6  Published parameters of the functions used in tests



10   Conclusions and future directions 209

10  Conclusions and future directions

Computer Aided Engineering has evolved from simple drafting programs to the nexus of 

design, simulation and production information. There has been a proliferation of 

commercial offerings that have improved the capture, specification and transfer of product 

information, however the profusion of vendor systems has not coalesced around a de facto 

representation of product data. The conceptual vocabulary of vendor design elements have 

no universally agreed semantics or architecture. 

This thesis outlines the efforts to agree, impose and deduce interoperability across 

these different varieties of vendor software. When design data was little more than fixed 

model boundary geometry, it was comparatively easy to standardise the formats that 

captured this data. The introduction of parametric design features led to significantly more 

complex interpretations of user-specified parameters that frustrate standardisation efforts. 

Transfer of data between CAE software must now include more design concepts, or 

“design intent”, than the boundary surfaces of designed objects, but there are no common 

standards to permit this transfer.

There have been significant efforts to formalise the semantic definitions of the 

concepts and terminology used within parametric feature CAD programs. A formal 

ontology capturing the specification of features and their constraints for several programs 

should allow machine checking for equivalence between CAD features. This in turn 

promises to facilitate the reconstruction of models from features that have been mapped 

between CAD programs. The “top-down” approach of determining a universal ontology 

that might be subsequently endorsed by vendors has not led to a widely-adopted common 

ontology. The “bottom-up” approach is a pragmatic effort to discover existing relationships 

between CAD concepts and capture these mappings within an ontology. This concept has 

been extended from a static mapping between CAD feature libraries, to a “dynamic 

mapping” that determine feature equivalence for each instance within a model based on 

formal type checking of a shared ontological description. 

10   Conclusions and future directions



210 10   Conclusions and future directions

Dynamic mapping methods allows the capture of decisions applied during 

sequential feature operations that create a model, where a static mapping method might 

return an ambiguous interpretation of these sequential feature model decisions 

accumulated through design choices, termed “implicit constraints”. Methods that use this 

dynamic feature mapping approach require a that either a large body of potential mapping 

data exists, or that a large number of candidate features are trialled to determine an 

accurate map. If an ontology is used to search or validate a candidate function mapping, 

this will still require that the ontology holds sufficient detail on CAD feature libraries to 

allow accurate machine reasoning. These requirements limit the practicality of this 

exploratory technique.

An automated means to test CAD functions for equivalence under explicit and 

implicit parameter configurations dispenses with the costly requirements of expert feature 

checking. To do so requires an efficient means to search for feature similarity and 

mapping validation.  This thesis has developed techniques for both retrieval and validation 

of candidates for CAD feature function mapping between heterogeneous CAD programs. 

It is shown that there is a tractable approach to automated testing and matching of CAD 

geometric functions between heterogeneous programs. This research has been exploratory, 

testing the viability of different methods that reduce the combinational search for 

matches.

10.1 Fulfilment of research objectives

Three different research strands are developed to address the research question, namely,

1. Semantic matching of API text, existing and novel matching methods are tested 

on the short texts accompanying CAD function descriptions.

2. An affine invariant geometry matching method is described and tested on a range 

of benchmark CAD shapes.

3. A search for matching function parameters is coded as an evolutionary 

algorithm.

10.1  Fulfilment of research objectives



10   Conclusions and future directions 211

These three strands are assessed with respect to the research objectives given in (REF). The 

short descriptions of the research objectives are repeated below.

Objective III: determine the applicability of semantic matching methods suited to 

identification of CAD software API function matches. (Chapter 1.2)

There are hybrid techniques that are adapted to identifying semantic similarity 

between the short, terse texts associated with CAD API libraries. Only the Doc2vec 

method is adapted to ranking a text against the comparatively large number of texts found 

in a CAD API. A greedy method is developed to combine semantic similarity scores of 

individual word pairs. This method is tested using a variety of word pair measures on two 

sets of known function matches from commercial CAD API documentation. None of the 

text similarity techniques tested demonstrate sufficient accuracy to merit a stand-alone 

CAD function matching technique. However all of the short text similarity tests reduced 

the function search space to a third of the API sets indicating that semantic text matching 

has utility as part of a hybrid matching technique.

The methods defined and tested in Chapters 4 and 5 are all tested on the same test 

data allowing a measure of comparison. While it is relatively easy to predict the 

comparatively poor performance of methods designed for larger documents, such as LSA 

and TF-IDF, there is a surprising disparity between the other methods tested. This is 

further compounded by large performance variations between similar methods using 

different parameter settings, notably the importance of word order in the doc2vec method. 

The initial objective is fulfilled if one were to consider that there is strong evidence from 

test results that semantic matching may significantly reduce the search space of 

automated API matching. However this variability suggests that further performance 

optimisation may be attained from a more judicious selection of methods and parameters.

10.1  Fulfilment of research objectives



212 10   Conclusions and future directions

Objective I: devise and test an algorithm capable of identifying two equivalent geometrical 

surfaces independent of scaling, rotation and translation while independent of vendor specific 

CAD programs. (Chapter 1.2)

The geometric similarity technique introduced is distinct from other CAD model 

matching techniques by virtue of using registration feature regions. While registration 

regions such as areas of high curvature are not a novel technique within the broad field of 

3D object matching and registration, they do not appear within CAD model matching, 

which tends to use graph based representations of surface face connectivity (AAG, MAAG, 

see Appendix 12, CAD graph methods). A set of registration feature types are defined that 

can serve as points to allow a closed-form calculation of a rotation matrix and translation 

between shapes undergoing comparison, while also serving as a distinctive model 

signature to allow rapid similarity searching within a model database. The geometric 

matching algorithm validates model geometry similarity using a transform of registration 

points between two models alongside a transform of random sampled points. This 

approach returns a correlation between model similarity confidence and the number of 

sampled points tested.

A robust method must identify registration feature points on CAD models without 

recourse to neutral formats or interface code reliant on API functions that identify these 

regions. This is accomplished with a hill-climb algorithm that is solely dependent on 

points returned from the intersection of a ray with the model boundary surface. The 

efficiency of this method is tested against the Drexel CAD benchmark library of primitive 

shapes, returning sufficiently high scores to be considered applicable for a geometric 

surface similarity and verification method suited to CAD feature mapping. 

This method of determining feature point signatures for models, then using a multi-

stage process for testing similarity provides an accuracy that outperforms other methods 

on the same benchmark data set. This accuracy is proportional to the complexity of the 

compared models and the number of surface samples taken to verify equivalence. This 

approach fulfils the criteria of the first research objective, namely to devise a method to 

determine the similarity of two CAD model surfaces independent of affine transformation. 

10.1  Fulfilment of research objectives



10   Conclusions and future directions 213

Objective II: devise and test a method capable of identifying the range of geometrical 

operations normally found within representative commercial CAD programs. (Chapter 4)

The second research objective is addressed in Chapter 6.25 , 6.26 and 7.5. It is found that 

the set of feature identification points (Table 6.25) when used in conjunction with the 

multi-stage geometry matching process (Chapter 6.11, A progressive search refinement 

strategy) will uniquely identify each shape within the Drexel benchmark CAD library of 

primitive shapes and variants (CAD Models Dataset. 2004). 

The original second objective is resolved using several methods in sequence. It can be seen 

that no individual method used is suited to an accurate comparison, for example the 

method that compares point signatures will return a false positive result for instances of 

elongated spheres and torus shapes (Chapter 7.4, Instances of registration feature 

mismatch). This hybrid approach is justifiable within a Design Research methodology 

where an artefact may include exceptions to a rule. The proposed hill-walking feature 

detection algorithm is an example, where shapes that cannot be uniquely defined by 

corners such as cylinders and spheres require the set of identifying features to be extended 

to allow their unique identification. 

Once an object has more than the minimum number of feature points required to 

allow a rotation transform, there is an opportunity to change to a selective set of features 

that have a high probability of detection using the hill-walking method (Chapter  6.24). 

This strategy encompasses models of a higher geometric complexity than the primitive 

models used for the tests in Chapter 7.1. It may be observed that a methodology that 

permits a hybrid of partial solutions to address a problem may return a “good-enough” 

solution to perform subsequent analysis, such as as objective function as used for GA 

parameter matching in Chapter 9.1. Simon refers to this concept as “satisficing” (Simon, 

1956).

10.1  Fulfilment of research objectives



214 10   Conclusions and future directions

Objective IV: demonstrate how a measure of surface boundary geometry similarity may be used to 

map features between heterogeneous CAD programs, where features are defined by interface library 

routines. (Chapter 1.2)

The fourth research objective specifies a demonstration of how a geometry comparison 

test may be used to search for matching CAD feature functions. This is pursued in the 

third strand of the thesis that uses an evolutionary algorithm as a local search method. 

This third section explores heuristics to partition the combinational search space 

associated with CAD feature mapping using a geometric verification technique. CAD API 

functions typically feature large numbers of parameters. It is unlikely that all parameters 

have a bijective mapping between functions. Once a parameter configuration is found for 

both functions that returns an equivalent geometrical model output, then subsequently 

identifying individual parameter mapping uses a reduced combinational space. Functions 

may be matched using an exhaustive search for parameters, but this is liable to be 

computationally intensive without a reduction of parameter values to a minimum set of 

possible states. A Genetic Algorithm is used to search for a set of function parameter 

values that return an equivalent geometric output. The geometric difference between 

models is calculated using a simplified variant of the described geometry matching schema 

and set as the objective function. Simultaneous tests between functions within different 

CAD programs returns a solution within a fraction of the CAD operations required by an 

exhaustive search. A multi-objective Genetic Algorithm variant using geometric distance 

and a minimised parameter value is found to arrive at a solution in fewer operations. 

Semantic similarity information is added to the GA tests but is found to increase the 

average time to arrive at a solution.

10.2 Contributions to knowledge

Several contributions to knowledge are made during the course of this research, these are 

summarised here for reference.

• A novel greedy algorithm for fast short phrase matching is developed and tested 

against a representative range of contemporary text matching methods. Unlike 

10.2  Contributions to knowledge



10   Conclusions and future directions 215

other short text semantic comparison method, this greedy approach permits 

comparison over large collections of phrases within a useful computational time, 

see Chapter 5.3.

• Several instances of commercial CAD API library documentation are converted to 

short texts and used to compare the efficiency of a broad range of semantic 

matching methods for determining function similarity, see Chapter 5.4.

• A novel method is developed and tested to determine similarity between surface 

geometry models independent of position, orientation and scaling. This method is 

found to perform significantly better over a benchmark library of CAD shapes than 

existing methods. This method is described in Chapter 6.

• A “hill-climbing” nearest neighbour search method that allows detection of surface 

boundary geometry feature points relative to a model centroid. This method is 

modified to describe a set of simple and unique feature point classifications. See 

Chapter 6.24.

• A novel helical feature point ordering algorithm allows the use of a Kabsch 

algorithm to solve the optimal rotation matrix between two geometry surfaces 

represented by registration feature points. Detailed in Chapter 6.17.

• A robust local search method is used to demonstrate an efficient function parameter 

matching method using a minimal parameter representation This approach is 

shown to perform significantly better than a combinational search, see Chapter 

9.2.1.

10.3 Program requirements for a production environment

This research is an exploration of the feasibility of automated feature mapping. The 

implementations of the algorithms described are not optimised for speed nor efficiency, 

several improvements appear evident, listed at the end of Chapter 7. This thesis probes the 

feasibility of several novel or repurposed techniques to address the research question of 

10.3  Program requirements for a production environment



216 10   Conclusions and future directions

whether a CAD API feature mapping could be automated. This in turn would allow a 

translation between CAD models that captures a greater proportion of the design 

information embodied within CAD models (Chapter 3.3). 

The code is scripted in Python for rapid development, there is a potential for 

performance gains if refactored in a faster language such as C++ and subsequently 

profiled for a production environment. There are several approaches that may reduce the 

number of samples to determine geometric similarity, in turn reducing the number of calls 

made to the CAD API via the COM interface. Details of these potential optimisations are 

outlined in Chapter 7.7. The research is presented as three separate experiments over a 

representative data set, but there is little detail of what an efficient production system 

might require, this may be outlined as follows. Consider that there are two separate 

requirements, 

• a program that takes a CAD model in source CAD program format and replaces it 

with a functionally equivalent model in a target CAD program format, 

• a program that searches for functions within heterogeneous CAD programs that 

test positive for geometrical equivalence.

These two distinct operations may be described in more detail. In the case of the first task, 

each CAD model to be translated would require that the sequential operations used for 

construction are retained in the form of native API function calls. If access to the native 

CAD system is not available, the intermediate model geometry produced at each step of a 

sequential process would be needed. Assuming that a CAD mapping exists with an 

equivalent function operation in a target CAD program, each stage of a model may be 

mapped to its target counterpart and tested against the geometric intermediate form.

The task of determining mapping between heterogeneous CAD is essentially a 

search problem that may be conducted between any agent with access to a copy of the 

source or target CAD programs. Each CAD program requires a minimal interface program 

that directs the projection of vectors through CAD model surfaces and returns the 

absolute Cartesian points of intersections with these vectors. This search may be 

10.3  Program requirements for a production environment



10   Conclusions and future directions 217

conducted between multiple agents who share the results of tests, which may then 

contribute to a search space database of completed tests.

10.4 Potential stakeholders and relevant groups

For a company trying to compete in a market of shorter product life-cycles, the 

integration of heterogeneous systems that make up Product Lifecycle Management is 

crucial. Off-the-shelf PLM products require expensive adaptation to an existing 

manufacturer development cycle, including an adoption cost. Devising a PLM solution 

around existing company software systems is prohibitively expensive and generally only 

feasible for the largest of companies (Chapter 2.3). Large manufacturers and their value 

chains place demands of interoperability on their CAE software products, and of the 

software products used by their value chain.

There are significant switching costs changing from one CAD system and ancillary 

software to another, these costs may be compounded by frequent software product 

upgrades, where support for design stored within legacy software becomes an additional 

expense. These costs present a market barrier to small to medium enterprises who might 

wish to supply several top-tier manufacturers demanding different CAD systems. The 

appearance of methods to reduce labour and expense in developing API mapping for 

improved data translation promises to lower additional costs arising from inefficient data 

transfer. 

It is worthwhile briefly speculating on the groups that might adopt and contribute 

to such a research program. The research presented here immediately lends itself to 

furthering open-source CAE projects, such as the FreeCAD CAD program (Riegel et al, 

2019), where the utility of open-source software is increased by the ability to transfer data 

to and from commercial equivalents. This facility is equally attractive to CAD vendors 

who may wish to  reduce the labour required to add a translation functionality to their 

software.

10.4  Potential stakeholders and relevant groups



218 10   Conclusions and future directions

Automated function-mapping techniques also lend themselves to public-funded 

efforts to preserve and coordinate data between industries. As an example, the US 

Department of Defence invests significant resources in standardisation efforts (Rachuri et 

al, 2006). More recently the DoD has promoted a Model Based Engineering approach 

(Duncan, 2019), placing further demands on commercial CAD and PLM software 

interoperability.

Large to medium companies that rely on efficient communication between different 

departments and value chains have a financial incentive to develop cheaper automated 

methods to enhance interoperability between their preferred choice of business and 

engineering software, these arguments are detailed further in Chapter 2.3. This technology 

will also appeal to companies with a business based around transfer of models between 

representations in commercial systems.

10.5 Observations and Future Directions

The hybrid method proposed for identifying and mapping API functions between 

heterogeneous CAD programs uses techniques that are broadly applicable to mapping 

functions between API libraries. The semantic similarity measures used for short 

descriptive  text requires no adaptation to function for all API documentation. The genetic 

algorithm used to find sets of parameters producing a matching function output requires 

an objective function that can determine a measure of similarity between the output of 

functions undergoing comparative testing. As an example, the API of two image-

processing programs undergoing comparison might use screen capture bitmaps to create 

an objective function for minimisation. The bitmaps of functions that produce an identical 

screen image may be compared to yield a numerical measure of similarity.

The development of a feature function matching technique to map similarities 

between programs presents a novel perspective on the creation of associated semantic 

ontologies. An automated mapping cannot ascribe semantic meaning to discovered 

matches, yet it is possible to determine functional equivalence of parameters according to 

10.5  Observations and Future Directions



10   Conclusions and future directions 219

a geometric measure. In the event that one CAD API parameter has a purely geometric 

semantic definition, can mapping this parameter to another CAD API to another yield a 

semantic match? A feature function ontology will typically use a reasoner to infer 

relationships, however there is an unexplored possibility of constructing geometric 

semantic relationships via a combination of mapping and inference.

10.5  Observations and Future Directions



220 10   Conclusions and future directions

10.5  Observations and Future Directions



11   Bibliography 221

11  Bibliography

3ds.com. 2019. CATIA™ 3DEXPERIENCE® - Dassault Systèmes® 3D Software. [online] Available 

at: https://www.3ds.com/products-services/catia/ [Accessed 22 Mar. 2019].

10303-21:2016, I. (2016). ISO 10303-21:2016. [online] ISO. Available at: 

https://www.iso.org/standard/63141.html [Accessed 9 Mar. 2019].

Abdul-Ghafour, S., Ghodous, P., Shariat, B. and Perna, E., 2007, November. A common design-

features ontology for product data semantics interoperability. In Proceedings of the 

IEEE/WIC/ACM international conference on web intelligence(pp. 443-446). IEEE Computer 

Society.

Abdul-Ghafour, S., Ghodous, P., Shariat, B., Perna, E., and Khosrowshahi, F., 2014, “Semantic 

Interoperability of Knowledge in Feature-Based CAD Models,” Comput.-Aided Des., 56(11), pp. 

45–57.

Aerospace Industry Guidelines For Implementing Interoperability Standards For Engineering 

Data. (2013). 1st ed. [ebook] Aerospace Industries Association. Available at: http://www.aia-

aerospace.org/wp-content/uploads/2016/05/AIA_EDIG_Guidebook.pdf [Accessed 10 Apr. 2018].

Aguilera, U., Abaitua, J., Diaz, J., Bujan, D. and de Ipina, D.L., 2007, September. A semantic 

matching algorithm for discovery in UDDI. In International Conference on Semantic Computing 

(ICSC 2007) (pp. 751-758). IEEE. 

Ahmed, F., and Han, S., 2015, “Interoperability of Product and Manufacturing Information Using 

Ontology,” Concurrent Eng., 23(3), pp. 265–278.

Akinci, B. and Lipman, R.R., 2010. Semiha Kiziltas, Fernanda Leite. CAD and GIS Integration, p.73.

Alted, F. and Fernández-Alonso, M., 2003. PyTables: processing and analyzing extremely large 

amounts of data in Python. PyCon2003. April, pp.1-9.

Altidor, J., Wileden, J., Wang, Y., Hanayneh, L. and Wang, Y., 2009, January. Analyzing and 

implementing a feature mapping approach to CAD system interoperability. In ASME 2009 

International Design Engineering Technical Conferences and Computers and Information in 

Engineering Conference (pp. 695-707). American Society of Mechanical Engineers.

11   Bibliography



222 11   Bibliography

Altszyler, E., Sigman, M. and Slezak, D.F., 2017. Corpus specificity in LSA and Word2vec: the role 

of out-of-domain documents. arXiv preprint arXiv:1712.10054.

Anderson, B. and Ansaldi, S., 1998. ENGEN Data Model: a neutral model to capture design intent. 

PROLAMAT98.

Ankerst, M., Kastenmüller, G., Kriegel, H.P. and Seidl, T., 1999, July. 3D shape histograms for 

similarity search and classification in spatial databases. In International Symposium on Spatial 

Databases (pp. 207-226). Springer, Berlin, Heidelberg.

Ansary, T.F., Daoudi, M. and Vandeborre, J.P., 2007. A bayesian 3-d search engine using adaptive 

views clustering. IEEE Transactions on Multimedia, 9(1), pp.78-88.

Ansys.com. 2019. Engineering Simulation & 3D Design Software | ANSYS. [online] Available at: 

https://www.ansys.com/en-gb/ [Accessed 22 Mar. 2019].

Anumba, C.J., Siemieniuch, C.E. and Sinclair, M.A., 2000. Supply chain implications of concurrent 

engineering. International Journal of Physical Distribution & Logistics Management, 30(7/8), 

pp.566-597.

Assouroko, I., Ducellier, G., Belkadim, F., Eynard, B. and Boutinaud, P., 2010. Improvement of 

engineering design and numerical simulation data exchange based on requirements deployment: a 

conceptual framework. In Proceedings of the 7th International Product Lifecycle Management 

Conference, Bremen.

Atkinson, P.E., 2004, June. Strengths and Weaknesses of SME Statistics Systems: The Users' 

Perspective'OECD Presentation of Identified Key Issues. In Special Workshop on'SME Statistics: 

Towards a More Systematic Statistical Measurement of SME Behaviour', 2nd OECD Conference of 

Ministers responsible for SMEs, Istanbul (pp. 3-5). 

Audette, M.A., Ferrie, F.P. and Peters, T.M., 2000. An algorithmic overview of surface registration 

techniques for medical imaging. Medical image analysis, 4(3), pp.201-217.

Autodesk.co.uk. (2018). 360-cloud. [online] Available at: https://www.autodesk.co.uk/360-cloud 

[Accessed 22 Jun. 2018].

Autodesk.com. (1997). General DXF File Structure [DXF - DXF Reference]. [online] Available at: 

https://www.autodesk.com/techpubs/autocad/acad2000/dxf/general_dxf_file_structure_dxf_aa.ht

m [Accessed 9 Mar. 2019].

11   Bibliography



11   Bibliography 223

Ayubi, H.H., 2011. Advanced skills required for engineering leaders in global product 

development (Doctoral dissertation, Massachusetts Institute of Technology).

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., 2010, The 

Description Logic Handbook: Theory, Implementation and Applications, 2nd ed., Cambridge 

University Press, Cambridge, UK

Babic, B., Nesic, N. and Miljkovic, Z., 2008. A review of automated feature recognition with rule-

based pattern recognition. Computers in Industry, 59(4), pp.321-337.

Bae, K.H. and Lichti, D.D., 2006. Automated registration of unorganised point clouds from 

terrestrial laser scanners. Curtin University of Technology..

Bae, K.H., 2006. Automated registration of unorganised point clouds from terrestrial laser 

scanners (Doctoral dissertation, Curtin University).

Baer, S., 2011. RhinoPython Scripts. [online] GitHub. Available at: 

https://github.com/mcneel/rhinoscriptsyntax/blob/rhino-6.x/README.md [Accessed 14 Mar. 

2019].

Barbau, R., Krima, S., Rachuri, S., Narayanan, A., Fiorentini, X., Foufou, S., and Sriram, R. D., 2012, 

“OntoSTEP: Enriching Product Model Data Using Ontologies,” Comput.-Aided Des., 44(6), pp. 

575–590.

Barber, S.L., Junankar, A., Maitra, S., Iyer, G. and Devarajan, V., 2010. Experience in Development 

of Translators for AP203 Edition 2 Construction History. Computer-Aided Design and 

Applications, 7(4), pp.565-578.

Beckert, B., Hähnle, R. and Manya, F., 2000. The SAT problem of signed CNF formulas. In Labelled 

Deduction (pp. 59-80). Springer, Dordrecht.

Berners-Lee, T., Hendler, J., and Lassila, O., 2001, “The Semantic Web,” Sci.Am., 284(5), pp. 28–37.

Bernstein, P.A., Madhavan, J. and Rahm, E., 2011. Generic schema matching, ten years later. 

Proceedings of the VLDB Endowment, 4(11), pp.695-701.

Besl, P.J. and Jain, R.C., 1986. Invariant surface characteristics for 3D object recognition in range 

images. Computer vision, graphics, and image processing, 33(1), pp.33-80.

11   Bibliography



224 11   Bibliography

Besl, P.J. and McKay, N.D., 1992, April. Method for registration of 3-D shapes. In Sensor Fusion IV: 

Control Paradigms and Data Structures (Vol. 1611, pp. 586-607). International Society for Optics 

and Photonics.

Bespalov, D., Ip, C.Y., Regli, W.C. and Shaffer, J., 2005, June. Benchmarking CAD search 

techniques. In Proceedings of the 2005 ACM symposium on Solid and physical modeling (pp. 275-

286). ACM.

Bidan, M., Rowe, F. and Truex, D., 2012. An empirical study of IS architectures in French SMEs: 

integration approaches. European Journal of Information Systems, 21(3), pp.287-302.

Bin, W., Kaimo, H., Dong, L. and Hui, Z., 2017. Solid model edit distance: a multi-application and 

multi-level schema for CAD model retrieval. Visual Computing for Industry, Biomedicine and Art, 

30(01), p.3.

Bird, S., Klein, E. and Loper, E., 2009. Natural language processing with Python: analyzing text 

with the natural language toolkit. " O'Reilly Media, Inc.".

Bittner, T., Donnelly, M. and Winter, S., 2005. Ontology and semantic interoperability. Large-scale 

3D data integration: Challenges and Opportunities, pp.139-160.

Björk, B.C. and Laakso, M., 2010. CAD standardisation in the construction industry—A process 

view. Automation in Construction, 19(4), pp.398-406.

Blum, C., Puchinger, J., Raidl, G.R. and Roli, A., 2011. Hybrid metaheuristics in combinatorial 

optimization: A survey. Applied Soft Computing, 11(6), pp.4135-4151.

Bronstein, M.M. and Kokkinos, I., 2010, June. Scale-invariant heat kernel signatures for non-rigid 

shape recognition. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on 

(pp. 1704-1711). IEEE.

Bronsvoort, W.F. and Bidarra, R., 2000. Semantic feature modeling. Computer-Aided Design, 32, 

pp.201-225.

Buckley, C. and Voorhees, E.M., 2004, July. Retrieval evaluation with incomplete information. In 

Proceedings of the 27th annual international ACM SIGIR conference on Research and 

development in information retrieval (pp. 25-32). ACM.

11   Bibliography



11   Bibliography 225

Budanitsky, A. and Hirst, G., 2001, June. Semantic distance in WordNet: An experimental, 

application-oriented evaluation of five measures. In Workshop on WordNet and other lexical 

resources (Vol. 2, pp. 2-2).

BuildingSMART: Industry Foundation Classes Edition 3 Technical Corrigendum 1. 

http://www.buildingsmart.com (July 2007)

Burel, Gilles, and Hugues Hénocq. "Three-dimensional invariants and their application to object 

recognition." Signal Processing 45.1 (1995): 1-22.

Bustos, B., Keim, D.A., Saupe, D., Schreck, T. and Vranić, D.V., 2005. Feature-based similarity 

search in 3D object databases. ACM Computing Surveys (CSUR), 37(4), pp.345-387.

Butala, P., Vrabič, R. and Oosthuizen, G., 2013. Distributed manufacturing systems and the 

internet of things: a case study.

Bäck, T., Fogel, D.B. and Michalewicz, Z. eds., 2018. Evolutionary computation 1: Basic algorithms 

and operators. CRC press.

CAD Models Dataset. 2004, [online] Available at: 

https://web.archive.org/web/20181127121430/http://edge.cs.drexel.edu/repository/ [Accessed 27 

Feb. 2019].

Camarinha-Matos, L.M., Afsarmanesh, H. and Rabelo, R.J., 2003. Infrastructure developments for 

agile virtual enterprises. International Journal of Computer Integrated Manufacturing, 16(4-5), 

pp.235-254.

Camba, J.D. and Contero, M., 2016. Parametric CAD modeling: An analysis of strategies for design 

reusability. Computer-Aided Design, 74, pp.18-31.

Cao, Y. and Petzold, L., 2006. Accuracy limitations and the measurement of errors in the stochastic 

simulation of chemically reacting systems. Journal of Computational Physics, 212(1), pp.6-24.

Cardone, A., Gupta, S.K. and Karnik, M., 2003. A survey of shape similarity assessment algorithms 

for product design and manufacturing applications. Journal of Computing and Information 

Science in Engineering, 3(2), pp.109-118.

Chen, D.Y., Tian, X.P., Shen, Y.T. and Ouhyoung, M., 2003, September. On visual similarity based 

3D model retrieval. In Computer graphics forum (Vol. 22, No. 3, pp. 223-232). Blackwell 

Publishing, Inc.

11   Bibliography



226 11   Bibliography

Chen, H. and Lynch, K.J., 1992. Automatic construction of networks of concepts characterizing 

document databases. IEEE Transactions on Systems, Man, and Cybernetics, 22(5), pp.885-902.

Choi, G.H., Mun, D. and Han, S., 2002. Exchange of CAD part models based on the macro-

parametric approach. International Journal of CAD/CAM, 2(1), pp.13-21.

Choi, N., Song, I. Y., & Han, H. (2006). A survey on ontology mapping. SIGMOD Record, 35(3), 34-

41.

Christoph, M.H., Robert, J.A. and Arinyo, J., 1998. CAD and the product master model. Computer-

Aided Design, 30(11), pp.905-918.

Chu, C.H. and Hsu, Y.C., 2006. Similarity assessment of 3D mechanical components for design 

reuse. Robotics and Computer-Integrated Manufacturing, 22(4), pp.332-341.

Chungoora, N. and Young, R. I. M., 2008, Ontology Mapping To Support Semantic Interoperability 

In Product Design & Manufacture, Proceedings of the 1st International Workshop on Model 

Driven Interoperability for Sustainable Information Systems (MDISIS’08) in Conjunction with the 

CAiSE’08 Conference, 340, pp. 1-15.

Church, K.W. and Hanks, P., 1990. Word association norms, mutual information, and lexicography. 

Computational linguistics,16(1), pp.22-29.

Cicirello, V.A. and Regli, W.C., 1999, June. Resolving non-uniqueness in design feature histories. In 

Proceedings of the fifth ACM symposium on Solid modeling and applications (pp. 76-84). ACM.

Cicirello, V.A. and Regli, W.C., 2002. An approach to a feature-based comparison of solid models 

of machined parts. AI EDAM, 16(5), pp.385-399.

Ciocoiu, M., Nau, D.S. and Gruninger, M., 2001. Ontologies for integrating engineering 

applications. Journal of Computing and Information Science in Engineering, 1(1), pp.12-22.

Cordella, A., 2006. Transaction costs and information systems: does IT add up?. Journal of 

information technology, 21(3), pp.195-202.

Corley, C. and Mihalcea, R., 2005, June. Measuring the semantic similarity of texts. In Proceedings 

of the ACL workshop on empirical modeling of semantic equivalence and entailment (pp. 13-18). 

Association for Computational Linguistics.

11   Bibliography



11   Bibliography 227

Costa, C.A., Harding J.A., Young R.I.M., (2001) "The application of UML and an open distribute 

process framework to information systems design" Computers in Industry Vol 46, pp33-48.

Crossley, S., Dascalu, M. and McNamara, D., 2017, May. How Important Is Size? An Investigation 

of Corpus Size and Meaning in both Latent Semantic Analysis and Latent Dirichlet Allocation. In 

The Thirtieth International Flairs Conference.

Crouch, C.J., 1990. An approach to the automatic construction of global thesauri. Information 

Processing & Management, 26(5), pp.629-640.

Ćuković, S., Devedžić, G., Fiorentino, M., Ghionea, I., Anwer, N., Qiao, L. and Rakonjac, B.,  2017. 

A comparative study of CAD data exchange based on the STEP standard. U.P.B. Sci. Bull., Series 

D, Vol. 79, Iss. 4.

Dalianis, H. and Hovy, E., 1998, August. Integrating STEP schemata using automatic methods. In 

Proceedings of the ECAI-98 Workshop on Applications of Ontologies and Problem-Solving 

Methods (pp. 54-66).

Daras, P. and Axenopoulos, A., 2009, June. A compact multi-view descriptor for 3D object 

retrieval. In Content-Based Multimedia Indexing, 2009. CBMI'09. Seventh International Workshop 

on (pp. 115-119). IEEE.

Daras, P. and Axenopoulos, A., 2010. A 3D shape retrieval framework supporting multimodal 

queries. International Journal of Computer Vision, 89(2-3), pp.229-247.

Dartigues, C., 2003. Product data exchange in a collaborative environment. Lyon: PhD Thesis, 

University of Claude Bernard-Lyon.

Dartigues, C., Ghodous, P., Gruninger, M., Pallez, D. and Sriram, R., 2007. CAD/CAPP integration 

using feature ontology. Concurrent Engineering, 15(2), pp.237-249.

De Sapio, V., 2010. Long-term archival and retrieval of engineering data: implications for the 

DART workbench (No. SAND2010-2477). Sandia National Laboratories.

Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K. and Harshman, R., 1990. Indexing by 

latent semantic analysis. Journal of the American society for information science, 41(6), pp.391-

407.

Deitz, P.H. and Appllin, K.A., 1993. Practices and Standards in the Construction of BRL-CAD 

Target Descriptions (No. ARL-MR-103). Army Research Lab Aberdeen Proving Ground MD.

11   Bibliography



228 11   Bibliography

Deserno, M., 2004. How to generate equidistributed points on the surface of a sphere. P.-If 

Polymerforshung (Ed.), p.99.

developer.rhino3d.com., 2017. RhinoScript Programmer's Reference. [online] Available at: 

https://developer.rhino3d.com/api/rhinoscript/index.html [Accessed 14 Mar. 2019].

Docs.microsoft.com. (2018). Component Object Model (COM) - Windows applications. [online] 

Available at: https://docs.microsoft.com/en-gb/windows/desktop/com/component-object-model--

com--portal [Accessed 8 Feb. 2018].

Dong, W., Wang, Z., Charikar, M. and Li, K., 2008, October. Efficiently matching sets of features 

with random histograms. In Proceedings of the 16th ACM international conference on Multimedia 

(pp. 179-188). ACM.

Dong, X., Halevy, A., Madhavan, J., Nemes, E. and Zhang, J., 2004, August. Similarity search for 

web services. In Proceedings of the Thirtieth international conference on Very large data bases-

Volume 30 (pp. 372-383). VLDB Endowment.

Dorador J.M., Young R.I.M. (2000). The Application of IDEF0, IDEF3 AND UML Methodologies in 

the Creation of Information Models. International Journal of Computer Integrated Manufacture, 

Vol.13, No.5, pp430-445 ISSN 0951-192X

Dublincore.org. (2012). DCMI: DCMI Metadata Terms. [online] Available at: http://dublincore.org/

documents/dcmi-terms/ [Accessed 4 Jun. 2018].

Duncan, D. (2019). DoD as a Model-Based Enterprise. Defense Standardization Journal, [online] 

October/December 2015. Available at: 

https://www.dsp.dla.mil/Portals/26/Documents/Publications/Journal/151201-DSPJ-04.pdf 

[Accessed 22 Aug. 2019]. 

Dusserre, E. and Padró, M., 2017. Bigger does not mean better! We prefer specificity. In Iwcs 2017

—12th international conference on computational semantics—short papers.

Dutagaci, H., Sankur, B. and Yemez, Y., 2005, June. Transform-based methods for indexing and 

retrieval of 3d objects. In 3-D Digital Imaging and Modeling, 2005. 3DIM 2005. Fifth International 

Conference on (pp. 188-195). IEEE.

Eddy, D., Krishnamurty, S., Grosse, I., Liotta, A. and Wileden, J., 2012, August. Toward Integration 

of a Semantic Framework With a Commercial PLM System. In ASME 2012 International Design 

11   Bibliography



11   Bibliography 229

Engineering Technical Conferences and Computers and Information in Engineering Conference 

(pp. 1247-1261). American Society of Mechanical Engineers.

Edelsbrunner, H., Letscher, D. and Zomorodian, A., 2000. Topological persistence and 

simplification. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium 

on (pp. 454-463). IEEE.

Eekels, J. and Roozenburg, N.F., 1991. A methodological comparison of the structures of scientific 

research and engineering design: their similarities and differences. Design studies, 12(4), pp.197-

203. 

Egenhofer, M.J. and Franzosa, R.D., 1991. Point-set topological spatial relations. International 

Journal of Geographical Information System, 5(2), pp.161-174.

El Kadiri, S., and Kiritsis, D., 2015, “Ontologies in the Context of Product Lifecycle Management: 

State of the Art Literature Review,” Int. J. Prod. Res., 53(18), pp. 5657–5668.

El-Mehalawi, M. and Miller, R.A., 2003. A database system of mechanical components based on 

geometric and topological similarity. Part I: representation. Computer-Aided Design, 35(1), pp.83-

94.

El-Mehalawi, M. and Miller, R.A., 2003. A database system of mechanical components based on 

geometric and topological similarity. Part II: indexing, retrieval, matching, and similarity 

assessment. Computer-Aided Design, 35(1), pp.95-105.

Elinson, A., Nau, D.S. and Regli, W.C., 1997, May. Feature-based similarity assessment of solid 

models. In Proceedings of the fourth ACM symposium on Solid modeling and applications (pp. 

297-310). ACM.

Erber, T. and Hockney, G.M., 1991. Equilibrium configurations of N equal charges on a sphere. 

Journal of Physics A: Mathematical and General, 24(23), p.L1369.

Euzenat, J., Le Bach, T., Barrasa, J., Bouquet, P., De Bo, J. and Dieng, R., 2004. State of the art on 

ontology alignment. KnowledgeWeb deliverable D2. 2.3. Karlsruhe, Germany: University of 

Karlsruhe.

Fankam, C., Jean, S., Pierra, G., Bellatreche, L. and Ameur, Y.A., 2009, March. Towards connecting 

database applications to ontologies. In Advances in Databases, Knowledge, and Data Applications, 

2009. DBKDA'09. First International Conference on (pp. 131-137). IEEE.

11   Bibliography



230 11   Bibliography

Farin, G. and Hansford, D., 1999. Discrete Coons patches. Computer Aided Geometric Design, 16(7), 

pp.691-700. 

Farjana, S.H., Han, S. and Mun, D., 2016. Implementation of persistent identification of topological 

entities based on macro-parametrics approach. Journal of Computational Design and Engineering, 

3(2), pp.161-177.

Fielding, N.G., 2012. Triangulation and mixed methods designs: Data integration with new 

research technologies. Journal of mixed methods research, 6(2), pp.124-136. 

Fellbaum, C., 1998. A semantic network of English verbs. WordNet: An electronic lexical database, 

3, pp.153-178. Available at https://wordnet.princeton.edu/

Fenves, S.J., Foufou, S., Bock, C. and Sriram, R.D., 2008. CPM2: a core model for product data. 

Journal of computing and information science in engineering, 8(1), p.014501.

Ferri, M., Frosini, P. and Landi, C., 2011. Stable shape comparison by persistent homology. Atti 

Semin. Mat. Fis. Univ. Modena Reggio Emilia, 58, pp.143-162.

Firth, J.R., 1957. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis.

Folk, M., Heber, G., Koziol, Q., Pourmal, E. and Robinson, D., 2011, March. An overview of the 

HDF5 technology suite and its applications. In Proceedings of the EDBT/ICDT 2011 Workshop on 

Array Databases (pp. 36-47). ACM.

Foltz, P.W., Kintsch, W. and Landauer, T.K., 1998. The measurement of textual coherence with 

latent semantic analysis. Discourse processes, 25(2-3), pp.285-307.

Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M. and Gagné, C., 2012. DEAP: 

Evolutionary algorithms made easy. Journal of Machine Learning Research, 13(Jul), pp.2171-2175.

Fortineau, V., Paviot, T., and Lamouri, S., 2013, “Improving the Interoperability of Industrial 

Information Systems With Description Logic-Based Models— The State of the Art,” Comput. Ind., 

64(4), pp. 363–375

Freecadweb.org., 2019. Part Cone - FreeCAD Documentation. [online] Available at: 

https://www.freecadweb.org/wiki/Part_Cone [Accessed 14 Mar. 2019].

Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D. and Jacobs, D., 2003. A 

search engine for 3D models. ACM Transactions on Graphics (TOG), 22(1), pp.83-105.

11   Bibliography

https://wordnet.princeton.edu/


11   Bibliography 231

Gallaher, M.P., O’Connor, A.C., Dettbarn Jr, J.L. and Gilday, L.T., 2004. Cost Analysis of Inadequate 

Interoperability in the US Capital Facilities Industry. 2004. National Institute of Standards and 

Technology: Gaithersburg, Maryland, p.210.

Gao, S. and Shah, J.J., 1998. Automatic recognition of interacting machining features based on 

minimal condition subgraph. Computer-Aided Design, 30(9), pp.727-739.

Gao, Y., Dai, Q. and Zhang, N.Y., 2010. 3D model comparison using spatial structure circular 

descriptor. Pattern Recognition, 43(3), pp.1142-1151.

Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, New York, 1979.

GCR, N., 2004. Cost analysis of inadequate interoperability in the US capital facilities industry. 

National Institute of Standards and Technology (NIST).

Gelfand, N., Mitra, N.J., Guibas, L.J. and Pottmann, H., 2005, July. Robust global registration. In 

Symposium on geometry processing (Vol. 2, No. 3, p. 5).

Gerbino, S. and Brondi, A., 2004. Interoperability issues among CAD systems: a benchmarking 

study of 7 commercial MCAD software. In DS 32: Proceedings of DESIGN 2004, the 8th 

International Design Conference, Dubrovnik, Croatia.

Gerst, M. and Bunduchi, R., 2005. Shaping IT standardization in the automotive industry–the role 

of power in driving portal standardization. Electronic Markets, 15(4), pp.335-343.

Ghafour, S.A., Ghodous, P., Shariat, B. and Perna, E., 2006. An Ontology-Based Approach for" 

Procedural CAD Models" Data Exchange. Frontiers In Artificial Intelligence And Applications, 

143, p.251.

Gielingh, W., 2008. An assessment of the current state of product data technologies. Computer-

Aided Design, 40(7), pp.750-759.

Giunchiglia, F., Yatskevich, M. and Shvaiko, P., 2007. Semantic matching: Algorithms and 

implementation. In Journal on data semantics IX (pp. 1-38). Springer, Berlin, Heidelberg.

Global Supplier Info Pack For FEDE-C3PNG Integration. (2017). [ebook] Lindsay Larcombe. 

Available at: https://web.c3p.ford.com/start/Global_Info_Pack_version_1.4.5_English.pdf 

[Accessed 10 Jan. 2018].

11   Bibliography



232 11   Bibliography

Goldberg, D.E., 1991. Real-coded genetic algorithms, virtual alphabets, and blocking. Complex 

systems, 5(2), pp.139-167.

Gomaa, W.H. and Fahmy, A.A., 2013. A survey of text similarity approaches. International Journal 

of Computer Applications, 68(13), pp.13-18.

Goossenaerts, J., Dreverman, M., Smits, J.M. and van Exel, P.W., 2009. Plant lifecycle data 

standards in the process industry: diagnosis and resolution of collective action failure.

Gope, C. and Kehtarnavaz, N., 2007. Affine invariant comparison of point-sets using convex hulls 

and hausdorff distances. Pattern Recognition, 40(1), pp.309-320. 

Gregor, S. and Hevner, A.R., 2013. Positioning and presenting design science research for 

maximum impact. MIS quarterly, pp.337-355. 

Gruber, T.R., 1993. A translation approach to portable ontology specifications. Knowledge 

acquisition, 5(2), pp.199-220.

Gruber, T.R., 1995. Toward principles for the design of ontologies used for knowledge sharing?. 

International journal of human-computer studies, 43(5-6), pp.907-928.

Gruninger, M. and Menzel, C., 2003. The process specification language (PSL) theory and 

applications. AI magazine, 24(3), p.63.

Guarino, N. ed., 1998. Formal ontology in information systems: Proceedings of the first 

international conference (FOIS'98), June 6-8, Trento, Italy (Vol. 46). IOS press.

Guo, W. and Diab, M., 2012, July. Modeling sentences in the latent space. In Proceedings of the 

50th Annual Meeting of the Association for Computational Linguistics: Long Papers-volume 1 

(pp. 864-872). Association for Computational Linguistics.

Gupta, R. K., and Gurumoorthy, B., 2008, “A Feature-Based Framework for Semantic 

Interoperability of Product Models,” J. Mech. Eng., 54(6), pp. 446–457.

Han, J., Pratt, M. and Regli, W.C., 2000. Manufacturing feature recognition from solid models: a 

status report. IEEE Transactions on Robotics and Automation, 16(6), pp.782-796.

Hanayneh, L., Wang, Y., Wang, Y., Wileden, J.C. and Qureshi, K.A., 2008, January. Feature 

mapping automation for CAD data exchange. In ASME 2008 International Design Engineering 

11   Bibliography



11   Bibliography 233

Technical Conferences and Computers and Information in Engineering Conference (pp. 1257-

1266). American Society of Mechanical Engineers.

Harris, C. and Stephens, M., 1988, August. A combined corner and edge detector. In Alvey vision 

conference (Vol. 15, No. 50, pp. 10-5244).

Harris, Z., (1968), "Mathematical Structures of Language," New York: Wiley.

Haythornthwaite, C., 2009, January. Crowds and communities: Light and heavyweight models of 

peer production. In System Sciences, 2009. HICSS'09. 42nd Hawaii International Conference on 

(pp. 1-10). IEEE.

He, L., Ming, X., Ni, Y., Li, M., Zheng, M., and Xu, Z., 2015, “Ontology Based Information 

Integration and Sharing for Collaborative Part and Tooling Development,” Concurrent Eng., 23(3), 

pp. 199–212.

Healy, D.M., Rockmore, D.N., Kostelec, P.J. and Moore, S., 2003. FFTs for the 2-sphere-

improvements and variations. Journal of Fourier Analysis and Applications, 9(4), pp.341-385.

Heller, T., Farrow, C., 2006-2019, comtypes (Version 1.1.4) [Software] Available from 

https://github.com/enthought/comtypes

Henderson, M.R. and Anderson, D.C., 1984. Computer recognition and extraction of form features: 

a CAD/CAM link. Computers in industry, 5(4), pp.329-339.

Hendler, J. and McGuinness, D.L., 2000. The DARPA agent markup language. IEEE Intelligent 

systems, 15(6), pp.67-73.

Heutelbeck, D., Brunsmann, J., Wilkes, W. and Hundsdörfer, A., 2009, June. Motivations and 

challenges for digital preservation in design and engineering. In Proceedings of First International 

Workshop on Innovation in Digital Preservation.

Hevner, A. and Chatterjee, S., 2010. Design science research in information systems. In Design 

research in information systems (pp. 9-22). Springer, Boston, MA. 

Hevner, A., March, S.T., Park, J. and Ram, S., 2004. Design science in information systems 

research. MIS quarterly, 28(1), pp.75-105. 

11   Bibliography



234 11   Bibliography

Hilaga, M., Shinagawa, Y., Kohmura, T. and Kunii, T.L., 2001, August. Topology matching for fully 

automatic similarity estimation of 3D shapes. In Proceedings of the 28th annual conference on 

Computer graphics and interactive techniques(pp. 203-212). ACM.

Hoffmann, C., Shapiro, V. and Srinivasan, V., 2014. Geometric interoperability via queries. 

Computer-Aided Design, 46, pp.148-159.

Hoffmann, C.M. and Juan, R., 1992. EREP An editable high-level representation for geometric 

design and analysis.

Holland, J.H., 1998. Adaptation in Natural and Artificial Systems: An Introductory Analysis with 

Applications to biology, control and artificial intelligence. MIT Press, ISBN 0-262-58111- 6. (NB 

original printing 1975).

Horrocks, I. and Tobies, S., 2000. Reasoning with Axioms: Theory and Pratice. arXiv preprint 

cs/0005012.

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B. and Dean, M., 2004. SWRL: A 

semantic web rule language combining OWL and RuleML. W3C Member submission, 21, p.79.

Horst, J., Hartman, N. and Wong, G., 2010, September. Metrics for the cost of proprietary 

information exchange languages in intelligent systems. In Proceedings of the 10th Performance 

Metrics for Intelligent Systems Workshop (pp. 77-81). ACM.

Hounsell, M.S. and Case, K., 1998. Feature-based designer's intents. Manufacturing Strategies for 

Europe, The Proc of the 15th Conf of the Irish Manuf Cttee, IMC-15, (eds C Hepburn and D M J 

Harris), University of Ulster

Howard, R. and Björk, B.C., 2008. Building information modelling–Experts’ views on 

standardisation and industry deployment. Advanced Engineering Informatics, 22(2), pp.271-280.

Hromkovič, J., 2013. Algorithmics for hard problems: introduction to combinatorial optimization, 

randomization, approximation, and heuristics. Springer Science & Business Media.

Huang, R., Zhang, S., Bai, X., Xu, C. and Huang, B., 2015. An effective subpart retrieval approach 

of 3D CAD models for manufacturing process reuse. Computers in Industry, 67, pp.38-53.

Iti-global.com. 2018, Proficiency. [online] Available at: https://www.iti-global.com/proficiency 

[Accessed 4 Jun. 2018].

11   Bibliography



11   Bibliography 235

Jiang, J.J. and Conrath, D.W., 1997. Semantic similarity based on corpus statistics and lexical 

taxonomy. arXiv preprint cmp-lg/9709008.

Jiayi, P., Cheng, C.P.J., Lau, G.T. and Law, K.H., 2008. Utilizing statistical semantic similarity 

techniques for ontology mapping—With applications to AEC standard models. Tsinghua Science 

& Technology, 13, pp.217-222.

Johnson, A.E. and Hebert, M., 1999. Using spin images for efficient object recognition in cluttered 

3D scenes. IEEE Transactions on pattern analysis and machine intelligence, 21(5), pp.433-449.

Johnson, A.E., 1997. Spin-images: a representation for 3-D surface matching (Doctoral 

dissertation, Carnegie Mellon University).

Jolliffe, I.T., 1986. Principal component analysis and factor analysis. In Principal component 

analysis (pp. 115-128). Springer, New York, NY.

Joshi, S. and Chang, T.C., 1988. Graph-based heuristics for recognition of machined features from 

a 3D solid model. Computer-Aided Design, 20(2), pp.58-66.

Jørgensen, S., Nielsen, K. and Jørgensen, K.A., 2011. Reconfigurable manufacturing systems as an 

application of mass customisation. International Journal of Industrial Engineering and 

Management, 1(3), pp.111-119.

Kalfoglou, Y. and Schorlemmer, M., 2003. Ontology mapping: the state of the art. The knowledge 

engineering review, 18(1), pp.1-31.

Karp, R.M., 1972. Reducibility among combinatorial problems. In Complexity of computer 

computations (pp. 85-103). Springer, Boston, MA.

Katz, M.L. and Shapiro, C., 1985. Network externalities, competition, and compatibility. The 

American economic review, 75(3), pp.424-440.

Kazmi, I.K., You, L. and Zhang, J.J., 2013, August. A survey of 2d and 3d shape descriptors. In 

Computer graphics, imaging and visualization (cgiv), 2013 10th international conference(pp. 1-10). 

IEEE.

Khuri, S., Bäck, T. and Heitkötter, J., 1994, April. The zero/one multiple knapsack problem and 

genetic algorithms. In Proceedings of the 1994 ACM symposium on Applied computing (pp. 188-

193). ACM.

11   Bibliography



236 11   Bibliography

Kim, B. and Han, S., 2007. Integration of history-based parametric translators using the 

automation APIs. International Journal of Product Lifecycle Management, 2(1), pp.18-29.

Kim, J., Pratt, M.J., Iyer, R. and Sriram, R., 2007. Data exchange of parametric CAD models using 

ISO 10303-108. NIST intergovernmental report. Gaithersburg (MD, USA): National Institute of 

Standards and Technology.

Kim, J., Pratt, M.J., Iyer, R.G. and Sriram, R.D., 2008. Standardized data exchange of CAD models 

with design intent. Computer-Aided Design, 40(7), pp.760-777.

Kim, K.Y., Manley, D.G. and Yang, H., 2006. Ontology-based assembly design and information 

sharing for collaborative product development. Computer-Aided Design, 38(12), pp.1233-1250.

Kim, O., Jayaram, U., Jayaram, S. and Zhu, L., 2009, January. An ontology mapping application 

using a shared ontology approach and a bridge ontology. In ASME 2009 International Design 

Engineering Technical Conferences and Computers and Information in Engineering Conference 

(pp. 431-441). American Society of Mechanical Engineers.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., 1983. Optimization by simulated annealing. science, 

220(4598), pp.671-680.

Klusch, M. and Kapahnke, P. (2019). SemWebCentral: OWL-S Service Retrieval Test Collection: 

Project Info. [online] Projects.semwebcentral.org. Available at: http://projects.semwebcentral.org/

projects/owls-tc/ [Accessed 16 Feb. 2019]. 

Koenderink, J.J. and Van Doorn, A.J., 1992. Surface shape and curvature scales. Image and vision 

computing, 10(8), pp.557-564.

Kosanke, K., 2006. ISO Standards for Interoperability: a comparison. In Interoperability of 

enterprise software and applications (pp. 55-64). Springer, London.

Krima, S., Barbau, R., Fiorentini, X., Sudarsan, R. and Sriram, R.D., 2009. Ontostep: OWL-DL 

ontology for step. National Institute of Standards and Technology, NISTIR, 7561.

Kubotek USA (2006), “The 2006 CAD interoperability survey results: a Kubotek USA study of the 

design and manufacturing marketplace,” (online) 

http://www.kubotekusa.com/company/interopsurvey/index.asp (retrieved September 30, 2010)

Kuhn, H.W., 1955. The Hungarian method for the assignment problem. Naval research logistics 

quarterly, 2(1‐2), pp.83-97.

11   Bibliography



11   Bibliography 237

Kuzminykh, A. and Hoffmann, C., 2008. On validating STEP product data exchange. Computer-

Aided Design, 40(2), pp.133-138.

Kyprianou, L.K., 1980. Shape classification in computer-aided design (Doctoral dissertation, 

University of Cambridge).

Lakshmi, H.N. and Mohanty, H., 2015, February. A Preprocessing of Service Registry: Based on I/O 

Parameter Similarity. In International Conference on Distributed Computing and Internet 

Technology (pp. 220-232). Springer, Cham.

Landauer, T.K., Foltz, P.W. and Laham, D., 1998. An introduction to latent semantic analysis. 

Discourse processes, 25(2-3), pp.259-284.

Le Duigou, J., Bernard, A. and Perry, N., 2011. Framework for product lifecycle management 

integration in small and medium enterprises networks. Computer-Aided Design and Applications, 

8(4), pp.531-544.

Le Duigou, J., Bernard, A., Perry, N. and Delplace, J.C., 2011. Application of PLM processes to 

respond to mechanical SMEs needs. In Global Product Development (pp. 319-326). Springer, 

Berlin, Heidelberg.

Le Duigou, J., Bernard, A., Perry, N. and Delplace, J.C., 2012. Generic PLM system for SMEs: 

Application to an equipment manufacturer. International Journal of Product Lifecycle 

Management 7, 6(1), pp.51-64.

Le, Q. and Mikolov, T., 2014, January. Distributed representations of sentences and documents. In 

International Conference on Machine Learning (pp. 1188-1196).

Leacock, C. and Chodorow, M., 1998. Combining local context and WordNet similarity for word 

sense identification. WordNet: An electronic lexical database, 49(2), pp.265-283.

Leifman, G., Katz, S., Tal, A. and Meir, R., 2003, February. Signatures of 3D models for retrieval. In 

Proceedings of the 4th Israel-Korea Bi-National Conference on Geometric Modeling and 

Computer Graphics (pp. 159-163).

Li, B., Lu, Y., Li, C., Godil, A., Schreck, T., Aono, M., Burtscher, M., Fu, H., Furuya, T., Johan, H. and 

Liu, J., 2014. SHREC’14 track: Extended large scale sketch-based 3D shape retrieval. In 

Eurographics workshop on 3D object retrieval (Vol. 2014).

11   Bibliography



238 11   Bibliography

Li, J., Han, S., Shin, S., Lee, S., Kang, Y., Cho, H., Kim, H., Song, I., Kim, I. and Rathore, P.S., 2010. 

CAD data exchange using the macro-parametrics approach: an error report. International Journal 

of CAD/CAM, 10(2).

Li, M., Zhang, Y.F. and Fuh, J.Y.H., 2010. Retrieving reusable 3D CAD models using knowledge-

driven dependency graph partitioning. Computer-Aided Design and Applications, 7(3), pp.417-

430.

Li, X., He, F., Cai, X. and Zhang, D., 2012. CAD data exchange based on the recovery of feature 

modelling procedure. International Journal of Computer Integrated Manufacturing, 25(10), pp.874-

887.

Li, Y., McLean, D., Bandar, Z.A. and Crockett, K., 2006. Sentence similarity based on semantic nets 

and corpus statistics. IEEE Transactions on Knowledge & Data Engineering, (8), pp.1138-1150.

Li, Z., Zhou, X. and Liu, W., 2015. A geometric reasoning approach to hierarchical representation 

for B-rep model retrieval. Computer-Aided Design, 62, pp.190-202.

Lin, D., 1998, July. An information-theoretic definition of similarity. In Icml (Vol. 98, No. 1998, pp. 

296-304).

Lionel, S. 2019. Memory Limits for Applications on Windows*. [online] Software.intel.com. 

Available at: https://software.intel.com/en-us/articles/memory-limits-applications-windows 

[Accessed 17 Jan. 2019].

Liu, Q., 2012. A survey of recent view-based 3d model retrieval methods. arXiv preprint 

arXiv:1208.3670.

Liu, Y., Zha, H. and Qin, H., 2006, June. The generalized shape distributions for shape matching 

and analysis. In Shape Modeling and Applications, 2006. SMI 2006. IEEE International Conference 

on (pp. 16-16). IEEE.

Lomas, C. D. L. and Matthews, P. C. (2007) 'Meta-design for agile concurrent product design in the 

virtual enterprise.', International journal of agile manufacturing., 10 (2), pp.77-87.

Lu, W., Qin, Y., Qi, Q., Zeng, W., Zhong, Y., Liu, X. and Jiang, X., 2016. Selecting a semantic 

similarity measure for concepts in two different CAD model data ontologies. Advanced 

Engineering Informatics, 30(3), pp.449-466. 

11   Bibliography



11   Bibliography 239

Lubell, J., Rachuri, S., Mani, M. and Subrahmanian, E., 2008. Sustaining engineering informatics: 

Toward methods and metrics for digital curation. International Journal of Digital Curation, 3(2).

Ma, L., Huang, Z. and Wang, Y., 2009, August. Common design structure discovery from CAD 

models. In Computer-Aided Design and Computer Graphics, 2009. CAD/Graphics' 09. 11th IEEE 

International Conference on (pp. 363-366). IEEE.

Ma, Y.S., Chen, G. and Thimm, G., 2008. Paradigm shift: unified and associative feature-based 

concurrent and collaborative engineering. Journal of Intelligent Manufacturing, 19(6), pp.625-641.

Maier, F. and Stumptner, M., 2007, October. Enhancements and ontological use of ISO-10303 

(STEP) to support the exchange of parameterised product data models. In Intelligent Systems 

Design and Applications, 2007. ISDA 2007. Seventh International Conference on (pp. 433-440). 

IEEE.

Malone, T.W., Yates, J. and Benjamin, R.I., 1987. Electronic markets and electronic hierarchies. 

Communications of the ACM, 30(6), pp.484-497.

March, S.T. and Smith, G.F., 1995. Design and natural science research on information 

technology. Decision support systems, 15(4), pp.251-266. 

Marefat, M. and Kashyap, R.L., 1990. Geometric reasoning for recognition of three-dimensional 

object features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), pp.949-

965.

Masuda, T. and Yokoya, N., 1994, February. A robust method for registration and segmentation of 

multiple range images. In CAD-Based Vision Workshop, 1994., Proceedings of the 1994 Second 

(pp. 106-113). IEEE.

Masuda, T. and Yokoya, N., 1995. A robust method for registration and segmentation of multiple 

range images. Computer vision and image understanding, 61(3), pp.295-307.

McGuinness, D. L., and Harmelen, F. V., 2004, “OWL Web Ontology Language Overview,” last 

accessed Jan. 18, 2016, http://www.w3.org/TR/owlfeatures/

McKenzie-Veal, D., Hartman, N.W. and Springer, J., 2010. Implementing ontology-based 

information sharing in product lifecycle management. In 65th Midyear Meeting Proceedings, 

Houghton, MI, Oct (pp. 3-6).

11   Bibliography



240 11   Bibliography

Miao, H.K., Sridharan, N. and Shah, J.J., 2002. CAD-CAM integration using machining features. In 

International Journal of Computer Integrated Manufacturing, 15(4), pp.296-318.

Michalewicz, Z., 1995. A survey of constraint handling techniques in evolutionary computation 

methods. Evolutionary programming, 4, pp.135-155.

Middleditch, A. and Reade, C., 1997, May. A kernel for geometric features. In Proceedings of the 

fourth ACM symposium on Solid modeling and applications (pp. 131-140). ACM.

Mihalcea, R., Corley, C. and Strapparava, C., 2006, July. Corpus-based and knowledge-based 

measures of text semantic similarity. In AAAI (Vol. 6, pp. 775-780).

Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word representations 

in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 2013. Distributed representations of 

words and phrases and their compositionality. In Advances in neural information processing 

systems (pp. 3111-3119).

Miller, G.A., 1995. WordNet: a lexical database for English. Communications of the ACM, 38(11), 

pp.39-41.

Miller, G.A., 1995. WordNet: a lexical database for English. Communications of the ACM, 38(11), 

pp.39-41.

Min, P., Kazhdan, M. and Funkhouser, T., 2004, September. A comparison of text and shape 

matching for retrieval of online 3D models. In International Conference on Theory and Practice of 

Digital Libraries (pp. 209-220). Springer, Berlin, Heidelberg.

Ming, X.G., Yan, J.Q., Lu, W.F. and Ma, D.Z., 2005. Technology solutions for collaborative product 

lifecycle management–status review and future trend. Concurrent Engineering, 13(4), pp.311-319.

Mostefai, S., Bouras, A., Batouche, M. Effective collaboration in product development via a 

common sharable ontology. International Journal of Computer Intelligence, vol. 2, no. 4, 2005, p. 

206-212.

Mun, D. and Han, S., 2005. Identification of topological entities and naming mapping for 

parametric CAD model exchange. In Intl. J. of CAD/CAM.

11   Bibliography



11   Bibliography 241

Mun, D., Han, S., Kim, J. and Oh, Y., 2003. A set of standard modeling commands for the history-

based parametric approach. Computer-aided design, 35(13), pp.1171-1179.

National Design Repository,  2005, National Institute of Standards and Technology, 

http://edge.mcs.drexel.edu/repository/frameset.html, [Accessed 8 Feb. 2018].

Negri, E., Fumagalli, L., Garetti, M., and Tanca, L., 2015, “Requirements and Languages for the 

Semantic Representation of Manufacturing Systems,” Comput. Ind., 81(9), pp. 55–66.

Nunamaker Jr, J.F., Chen, M. and Purdin, T.D., 1990. Systems development in information systems 

research. Journal of management information systems, 7(3), pp.89-106. 

OECD, 2000, Enhancing the Competitiveness of SMEs In The Global Economy: Strategies And 

Policies, Bologna: OECD

Ohbuchi, R., Osada, K., Furuya, T. and Banno, T., 2008, June. Salient local visual features for shape-

based 3D model retrieval. In Shape Modeling and Applications, 2008. SMI 2008. IEEE International 

Conference on (pp. 93-102). IEEE.

Ohbuchi, R., Otagiri, T., Ibato, M. and Takei, T., 2002. Shape-similarity search of three-dimensional 

models using parameterized statistics. In Computer Graphics and Applications, 2002. Proceedings. 

10th Pacific Conference on(pp. 265-274). IEEE.

Oomori, S., Nishida, T. and Kurogi, S., 2016. Point cloud matching using singular value 

decomposition. Artificial Life and Robotics, 21(2), pp.149-154.

Osada, R., Funkhouser, T., Chazelle, B. and Dobkin, D., 2002. Shape distributions. ACM 

Transactions on Graphics (TOG), 21(4), pp.807-832.

Paik, I., Fujikawa, E. and Kim, S., 2010, November. Aggregating Web Service matchmaking 

variants using web search engine and machine learning. In 2010 2nd International Symposium on 

Aware Computing (pp. 191-195). IEEE. 

Pal, S., 2019. Computing Semantic Similarity for Short Sentences. [online] Sujitpal.blogspot.com. 

Available at: http://sujitpal.blogspot.com/2014/12/semantic-similarity-for-short-sentences.html 

[Accessed 13 Jan. 2016].

Panetto, H. and Molina, A., 2008. Enterprise integration and interoperability in manufacturing 

systems: Trends and issues. Computers in industry, 59(7), pp.641-646.

11   Bibliography



242 11   Bibliography

Paquet, E., Rioux, M., Murching, A., Naveen, T. and Tabatabai, A., 2000. Description of shape 

information for 2-D and 3-D objects. Signal processing: Image communication, 16(1-2), pp.103-

122.

Passos, A. and Wainer, J., 2009, September. Wordnet-based metrics do not seem to help document 

clustering. In International Workshop on Web and Text Intelligence (WTI-2009).

Patel, M. and Ball, A., 2008. Challenges and issues relating to the use of representation 

information for the digital curation of crystallography and engineering data. In International 

Journal of Digital Curation, 3(1).

Patel, M., Ball, A. and Ding, L., 2008, October. Curation and preservation of CAD engineering 

models in product lifecycle management. In Conference on Virtual Systems and Multimedia 

Dedicated to Digital Heritage (VSMM’08) (pp. 59-66). University of Bath.

Patil, L., Dutta, D. and Sriram, R., 2005. Ontology-based exchange of product data semantics. IEEE 

Transactions on automation science and engineering, 2(3), pp.213-225.

Paviot, T., Cheutet, V. and Lamouri, S., 2009, July. Design and logistics IT federation through 

Product Lifecycle Support standard. In PLM09, IFIP WG 5.1 (pp. pp-139).

Paviot, T., Lamouri, S. and Cheutet, V., 2011. A generic multiCAD/multiPDM interoperability 

framework. International Journal of Services Operations and Informatics, 6(1-2), pp.124-137.

Pease, A. 2018. The Suggested Upper Merged Ontology (SUMO) - Ontology Portal. [online] 

Adampease.org. Available at: http://www.adampease.org/OP/ [Accessed 4 Jun. 2018].

Pedersen, T., 2008. Computational approaches to measuring the similarity of short contexts: A 

review of applications and methods. arXiv preprint arXiv:0806.3787.

Peeling, N. and Satchell, J., 2001. Analysis of the impact of open source software. QinetiQ Ltd. 

QINETIQ/KI/SEB/CR010223. 

Peffers, K., Tuunanen, T., Rothenberger, M.A. and Chatterjee, S., 2007. A design science research 

methodology for information systems research. Journal of management information 

systems, 24(3), pp.45-77. 

Pennington, J., Socher, R. and Manning, C., 2014. Glove: Global vectors for word representation. In 

Proceedings of the 2014 conference on empirical methods in natural language processing 

(EMNLP) (pp. 1532-1543).

11   Bibliography



11   Bibliography 243

Peruzzini, M., Mengoni, M. and Germani, M., 2011, July. PLM benefits for networked SMEs. In The 

proceedings of 11th International Conference on Product Lifecycle Management. Edited by JH, 

Pels et al., PLM 11, 11-13 July, 2011, Eindhoven University of Technology. 14 pp.

Piegl, L. and Tiller, W., 1987. Curve and surface constructions using rational B-splines. Computer-

Aided Design, 19(9), pp.485-498.

Pilgrim (2019). Munkres' Assignment Algorithm. [online] Csclab.murraystate.edu. Available at: 

http://csclab.murraystate.edu/~bob.pilgrim/445/munkres_old.html [Accessed 21 Jan. 2019].

Pilli, S.I.S.S., 2017. Algorithms for Recognition of Geometric and Parametric Features in prismatic 

parts using IGES. International Journal Of Engineering And Computer Science, 6(4).

Pratt, M.J. and Anderson, B.D., 2001. A shape modelling applications programming interface for 

the STEP standard. Computer-Aided Design, 33(7), pp.531-543.

Pratt, M.J. and Kim, J., 2006, June. Experience in the exchange of procedural shape models using 

ISO 10303 (STEP). In Proceedings of the 2006 ACM symposium on Solid and physical modeling 

(pp. 229-238). ACM.

Pratt, M.J., 2001. Introduction to ISO 10303—the STEP standard for product data exchange. Journal 

of Computing and Information Science in Engineering, 1(1), pp.102-103.

Pratt, M.J., 2004, June. Extension of ISO 10303, the STEP standard, for the exchange of procedural 

shape models. In Shape Modeling Applications, 2004. Proceedings (pp. 317-326). IEEE.

Pratt, M.J., 2005. ISO 10303, the STEP standard for product data exchange, and its PLM 

capabilities. International Journal of Product Lifecycle Management, 1(1), pp.86-94.

Pratt, M.J., Anderson, B.D. and Ranger, T., 2005. Towards the standardized exchange of 

parameterized feature-based CAD models. Computer-Aided Design, 37(12), pp.1251-1265.

Qi, J. and Shapiro, V., 2006. Geometric interoperability with epsilon solidity. Journal of computing 

and information science in engineering, 6(3), pp.213-220.

Qin, Y., Lu, W., Qi, Q., Liu, X., Zhong, Y., Scott, P.J. and Jiang, X., 2017. Status, comparison, and 

issues of Computer-Aided Design model data exchange methods based on standardized neutral 

files and Web Ontology Language file. Journal of Computing and Information Science in 

Engineering, 17(1), p.010801.

11   Bibliography



244 11   Bibliography

Rachuri, S., Foufou, S., Kemmerer, S. and Rachuri, S., 2006. Analysis of Standards for Lifecycle 

Management of Systems for US Army: A Preliminary Investigation. US Department of Commerce, 

National Institute of Standards and Technology. 

Rahm, E. and Bernstein, P.A., 2001. A survey of approaches to automatic schema matching. the 

VLDB Journal, 10(4), pp.334-350.

Rakhmanov, E.A., Saff, E.B. and Zhou, Y.M., 1994. Minimal discrete energy on the sphere. Math. 

Res. Lett, 1(6), pp.647-662.

Ramesh, M., Yip-Hoi, D. and Dutta, D., 2001. Feature based shape similarity measurement for 

retrieval of mechanical parts. Journal of Computing and Information Science in Engineering, 1(3), 

pp.245-256.

Ramos, L., 2015, “Semantic Web for Manufacturing, Trends and Open Issues: Toward a State of the 

Art,” Comput. Ind. Eng., 90(12), pp. 444–460.

Rappoport, A., 2003, June. An architecture for universal CAD data exchange. In ACM Symposium 

on Solid and Physical Modeling: Proceedings of the eighth ACM symposium on Solid modeling 

and applications (Vol. 16, No. 20, pp. 266-269).

Rappoport, A., Spitz, S. and Etzion, M., 2005, June. One-dimensional selections for feature-based 

data exchange. In Proceedings of the 2005 ACM symposium on Solid and physical modeling (pp. 

125-134). ACM.

Rappoport, A., Spitz, S. and Etzion, M., 2006, July. Two-dimensional selections for feature-based 

data exchange. In International Conference on Geometric Modeling and Processing (pp. 325-342). 

Springer, Berlin, Heidelberg.

Reed, S.L. and Lenat, D.B., 2002, July. Mapping ontologies into Cyc. In AAAI 2002 Conference 

Workshop on Ontologies For The Semantic Web (pp. 1-6).

Regli, W. and Gaines, D. (1997). A National Repository for Design and Process Planning. [online] 

NIST. Available at: https://www.nist.gov/publications/national-repository-design-and-process-

planning [Accessed 27 Feb. 2019].

Regli, W.C., Gupta, S.K. and Nau, D.S., 1995. Extracting alternative machining features: An 

algorithmic approach. Research in Engineering Design, 7(3), pp.173-192.

11   Bibliography



11   Bibliography 245

Rehurek, R. and Sojka, P., 2010. Software framework for topic modelling with large corpora. In In 

Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks.

Resnik, P., 1995. Using information content to evaluate semantic similarity in a taxonomy. arXiv 

preprint cmp-lg/9511007.

Richardson, L. (2019). Beautiful Soup: We called him Tortoise because he taught us.. [online] 

Crummy.com. Available at: https://www.crummy.com/software/BeautifulSoup/ [Accessed 28 Jan. 

2019].

Riegel, J., Mayer, M., van Havre, Y., 2001-2017, FreeCAD (Version 0.17.13522) [Software] Available 

from http://www.freecadweb.org

Romero, D., Rabelo, R.J. and Molina, A., 2012, June. On the management of virtual enterprise's 

inheritance between virtual manufacturing & service enterprises: Supporting “dynamic” product-

service business ecosystems. In Engineering, Technology and Innovation (ICE), 2012 18th 

International ICE Conference on (pp. 1-11). IEEE.

Romero, D., Rabelo, R.J., Hincapie, M. and Molina, A., 2009. Next generation manufacturing 

systems and the virtual enterprise. IFAC Proceedings Volumes, 42(4), pp.630-637.

Rong, X., 2014. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.

Rullani, E., 2000. Enhancing the competitiveness of SMEs in the global economy: the strategies 

and policies. In Bologna 2000 SME Conference, June.

Rusu, R.B., Marton, Z.C., Blodow, N. and Beetz, M., 2008. Persistent point feature histograms for 

3D point clouds. In Proc 10th Int Conf Intel Autonomous Syst (IAS-10), Baden-Baden, Germany 

(pp. 119-128).

Sadjadi, F.A. and Hall, E.L., 1980. Three-dimensional moment invariants. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, (2), pp.127-136.

Sakurai, H., 1995. Volume decomposition and feature recognition: Part 1—polyhedral objects. 

Computer-Aided Design, 27(11), pp.833-843.

Salton, G., Wong, A. and Yang, C.S., 1975. A vector space model for automatic indexing. 

Communications of the ACM, 18(11), pp.613-620.

11   Bibliography



246 11   Bibliography

Sanchez, L.M. and Nagi, R., 2001. A review of agile manufacturing systems. International Journal 

of Production Research, 39(16), pp.3561-3600.

Sanfilippo, E.M. and Borgo, S., 2016. What are features? An ontology-based review of the 

literature. Computer-Aided Design, 80, pp.9-18.

Šarić, F., Glavaš, G., Karan, M., Šnajder, J. and Bašić, B.D., 2012, June. Takelab: Systems for 

measuring semantic text similarity. In Proceedings of the First Joint Conference on Lexical and 

Computational Semantics-Volume 1: Proceedings of the main conference and the shared task, and 

Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (pp. 441-448). 

Association for Computational Linguistics.

Sawtell, M.A., 2002. A Study of the Communication of Design Engineering Information by Way of 

Computer Systems within the Automotive Manufacturing Community.

Sebastian, R., 2010, May. Breaking through business and legal barriers of open collaborative 

processes based on building information modelling (BIM). In W113-Special Track 18th CIB World 

Building Congress May 2010 Salford, United Kingdom (p. 166).

Senellart, P. and Blondel, V.D., 2008. Automatic discovery of similar words. In Survey of Text 

Mining II (pp. 25-44). Springer, London.

Seo, T.S., Lee, Y.S., Cheon, S.U., Han, S.H., Patil, L. and Dutta, D., 2005. Sharing CAD models based 

on feature ontology of commands history. International Journal of CAD/CAM, 5(1), pp.39-47.

Shah, J.J. and Mathew, A., 1991. Experimental investigation of the STEP form-feature information 

model. Computer-Aided Design, 23(4), pp.282-296.

Shah, J.J., Anderson, D., Kim, Y.S. and Joshi, S., 2001. A discourse on geometric feature recognition 

from CAD models. Journal of computing and information science in engineering, 1(1), pp.41-51.

Sharp, G.C., Lee, S.W. and Wehe, D.K., 2002. ICP registration using invariant features. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 24(1), pp.90-102.

Shih, C.H. and Anderson, B., 1997, May. A design/constraint model to capture design intent. In 

Proceedings of the fourth ACM symposium on Solid modeling and applications (pp. 255-264). 

ACM.

Shilane, P., Min, P., Kazhdan, M. and Funkhouser, T., 2004, June. The princeton shape benchmark. 

In Proceedings Shape Modeling Applications, 2004. (pp. 167-178). IEEE.

11   Bibliography



11   Bibliography 247

Shvaiko, P. and Euzenat, J., 2005. A survey of schema-based matching approaches. In Journal on 

data semantics IV (pp. 146-171). Springer, Berlin, Heidelberg.

Simon, H.A., 1956. Rational choice and the structure of the environment. Psychological 

review, 63(2), p.129. 

Singer., P. 2019. Handling huge matrices in Python. [online] Available at: 

https://medium.com/@ph_singer/handling-huge-matrices-in-python-dff4e31d4417. [Accessed 17 

January 2018].

Sipiran, I. and Bustos, B., 2011. Harris 3D: a robust extension of the Harris operator for interest 

point detection on 3D meshes. The Visual Computer, 27(11), p.963.

Skelly, Luke J., Stan Sclaroff., 2007, Improved feature descriptors for 3D surface matching. Optics 

East 2007. International Society for Optics and Photonics, (2007).

Slansky, D., Interoperability and Openness across PLM: Have We Finally Arrived? sl: ARC 

Strategies, OCTOBER 2005. Copyright© ARC Advisory Group.

Song, I. and Han, S., 2010, September. Parametric CAD data exchange using geometry-based 

neutral macro file. In International Conference on Cooperative Design, Visualization and 

Engineering (pp. 145-152). Springer, Berlin, Heidelberg.

Sorkine-Hornung, O. and Rabinovich, M., 2017. Least-Squares Rigid Motion Using SVD. 

Computing, 1, p.1.

Soumaya El Kadiri & Dimitris Kiritsis (2015) Ontologies in the context of product lifecycle 

management: state of the art literature review, International Journal of Production Research, 

53:18, 5657-5668, DOI: 10.1080/00207543.2015.1052155

Souza, M.C.F., Sacco, M. and Porto, A.J.V., 2006. Virtual manufacturing as a way for the factory of 

the future. Journal of Intelligent Manufacturing, 17(6), pp.725-735.

Stark, R., Krause, F.L., Kind, C., Rothenburg, U., Müller, P., Hayka, H. and Stöckert, H., 2010. 

Competing in engineering design—The role of Virtual Product Creation. CIRP Journal of 

Manufacturing Science and Technology, 3(3), pp.175-184.

Steel, J., Drogemuller, R. and Toth, B., 2012. Model interoperability in building information 

modelling. Software & Systems Modeling, 11(1), pp.99-109.

11   Bibliography



248 11   Bibliography

Steinfield, C., Markus, M.L. and Wigand, R.T., 2011. Through a glass clearly: standards, 

architecture, and process transparency in global supply chains. Journal of Management 

Information Systems, 28(2), pp.75-108.

Stephens, C.R. and Waelbroeck, H., 1998. Effective degrees of freedom in genetic algorithms. 

Physical Review E, 57(3), p.3251.

Subrahmanian, E., Rachuri, S., Fenves, S.J., Foufou, S. and Sriram, R.D., 2005. Challenges in 

supporting product design and manufacturing in a networked economy: A PLM perspective. PLM, 

5, pp.11-13.

Subrahmanian, E., Rachuri, S., Fenves, S.J., Foufou, S. and Sriram, R.D., 2005. Product lifecycle 

management support: a challenge in supporting product design and manufacturing in a 

networked economy. International Journal of Product Lifecycle Management, 1(1), pp.4-25.

Subramani, S. Feature mapping, associativity and exchange for feature-based product modeling. 

PhD thesis, Indian Institute of Science, Department of Mechanical Engineering, Bangalore, India, 

2005

Sudarsan, R., Fenves, S.J., Sriram, R.D. and Wang, F., 2005. A product information modeling 

framework for product lifecycle management. Computer-aided design, 37(13), pp.1399-1411.

Sun, J., Ovsjanikov, M. and Guibas, L., 2009, July. A concise and provably informative multi‐scale 

signature based on heat diffusion. In Computer graphics forum (Vol. 28, No. 5, pp. 1383-1392). 

Blackwell Publishing Ltd.

Sundar, H., Silver, D., Gagvani, N. and Dickinson, S., 2003, May. Skeleton based shape matching 

and retrieval. In Shape Modeling International, 2003 (pp. 130-139). IEEE.

Swain, M.J. and Ballard, D.H., 1991. Color indexing. International journal of computer vision, 7(1), 

pp.11-32. 

Szykman, S., Fenves, S.J., Keirouz, W. and Shooter, S.B., 2001. A foundation for interoperability in 

next-generation product development systems. Computer-Aided Design, 33(7), pp.545-559.

Tan, C.F., Kher, V.K. and Ismail, N., 2013. Design of a feature recognition system for CAD/CAM 

integration. World Applied Sciences Journal, 21(8), pp.1162-1166.

Tangelder, J.W. and Veltkamp, R.C., 2004, June. A survey of content based 3D shape retrieval 

methods. In Shape Modeling Applications, 2004. Proceedings (pp. 145-156). IEEE.

11   Bibliography



11   Bibliography 249

Tao, F., Zhang, L., Venkatesh, V.C., Luo, Y. and Cheng, Y., 2011. Cloud manufacturing: a computing 

and service-oriented manufacturing model. Proceedings of the Institution of Mechanical 

Engineers, Part B: Journal of Engineering Manufacture, 225(10), pp.1969-1976.

Tassey, G., 2000. Standardization in technology-based markets. Research policy, 29(4-5), pp.587-

602.

Tassey, G., Brunnermeier, S.B. and Martin, S.A., 1999. Interoperability cost analysis of the US 

automotive supply chain. Research Triangle Institute, Report, (7007-03).

Taylor, A., Marcus, M. and Santorini, B., 2003. The Penn treebank: an overview. InTreebanks (pp. 

5-22). Springer, Dordrecht.

Terzi, S., Cassina, J. and Panetto, H., 2006. Development of a metamodel to foster interoperability 

along the product lifecycle traceability. In Interoperability of Enterprise Software and 

Applications (pp. 1-11). Springer, London.

Tessier, S. and Wang, Y., 2013. Ontology-based feature mapping and verification between CAD 

systems. Advanced Engineering Informatics, 27(1), pp.76-92.

Tessier, S., 2011. Ontology-based approach to enable feature interoperability between CAD 

systems. PhD, Georgia Institute of Technology.

Thomsen, K. 2012. 'Generalized spiral points': further improvement - sci.math | Google Groups. 

[online] Web.archive.org. Available at: 

http://web.archive.org/web/20121103201321/http://groups.google.com/group/sci.math/

browse_thread/thread/983105fb1ced42c/e803d9e3e9ba3d23#e803d9e3e9ba3d23%22%22 [Accessed 

23 Feb. 2019].

Trucco, E., Fusiello, A. and Roberto, V., 1999. Robust motion and correspondence of noisy 3-D 

point sets with missing data. Pattern recognition letters, 20(9), pp.889-898.

Tuma, A., 1998. Configuration and coordination of virtual production networks. International 

Journal of Production Economics, 56, pp.641-648.

Umeyama, S., 1991. Least-squares estimation of transformation parameters between two point 

patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence, (4), pp.376-380.

Vaishnavi, V.K. and Kuechler, W., 2015. Design science research methods and patterns: innovating 

information and communication technology. CRC Press. 

11   Bibliography



250 11   Bibliography

Van Wijk, D., Etienne, A., Guyot, E., Eynard, B. and Roucoules, L., 2010. Enabled virtual and 

collaborative engineering coupling PLM system to a product data kernel.

Vandenbrande, J.H. and Requicha, A.A., 1993. Spatial reasoning for the automatic recognition of 

machinable features in solid models. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 15(12), pp.1269-1285.

Venuvinod, P.K. and Wong, S.Y., 1995. A graph-based expert system approach to geometric feature 

recognition. Journal of Intelligent Manufacturing, 6(3), pp.155-162.

Vranic, D. and Saupe, D., 2001. 3D shape descriptor based on 3D Fourier transform. In EURASIP 

(pp. 271-274).

Vranic, D.V. and Saupe, D., 2002. Description of 3D-shape using a complex function on the sphere. 

In Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on (Vol. 

1, pp. 177-180). IEEE.

Vranic, D.V., 2003, September. An improvement of rotation invariant 3D-shape based on functions 

on concentric spheres. In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International 

Conference on (Vol. 3, pp. III-757). IEEE.

W3.org. 2016) OWL/Implementations - Semantic Web Standards. [online] Available at: 

https://www.w3.org/2001/sw/wiki/OWL/Implementations [Accessed 5 Jun. 2018].

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H. and Hübner, S., 

2001, August. Ontology-Based Integration of Information-A Survey of Existing Approaches. In 

OIS@ IJCAI.

Wang, B., Li, D., Hu, K. and Zhang, H., 2010, May. Shape similarity assessment approach for cad 

models based on graph edit distance. In Short Paper Proceedings of EUROGRAPHICS 2010 

Workshop on 3D Object Retrieval(pp. 13-16).

Wang, E. and Kim, Y.S., 1998. Form feature recognition using convex decomposition: results 

presented at the 1997 ASME CIE Feature Panel Session. Computer-Aided Design, 30(13), pp.983-

989.

Wang, J. and Wang, H., 2014. Product Design Ontology System Based on FBS-API. JCP, 9(3), 

pp.543-550.

11   Bibliography



11   Bibliography 251

Wang, M., Lu, Z., Li, H. and Liu, Q., 2015. Syntax-based deep matching of short texts. arXiv 

preprint arXiv:1503.02427.

Wang, X., 2012. Development of an Interoperable Cloud-based Manufacturing System (Doctoral 

dissertation, ResearchSpace@ Auckland).

Wang, Y. and Nnaji, B.O., 2004. UL-PML: constraint-enabled distributed product data model. 

International Journal of Production Research, 42(17), pp.3743-3763.

Wang, Y. and Nnaji, B.O., 2006. Document-driven design for distributed CAD services in service-

oriented architecture. Journal of Computing and Information Science in Engineering, 6(2), pp.127-

138.

Wu, Z. and Palmer, M., 1994, June. Verbs semantics and lexical selection. In Proceedings of the 

32nd annual meeting on Association for Computational Linguistics (pp. 133-138). Association for 

Computational Linguistics.

Xiong, H., Szedmak, S. and Piater, J., 2013, June. A study of point cloud registration with 

probability product kernel functions. In 3D Vision-3DV 2013, 2013 International Conference on 

(pp. 207-214). IEEE.

Yang, Q. Z., and Miao, C. Y., 2007, “Semantic Enhancement and Ontology for Interoperability of 

Design Information Systems,” IEEE Conference on Emerging Technologies and Factory 

Automation, IEEE, New York, pp. 169–176.

Yassine, A. and Braha, D., 2003. Complex concurrent engineering and the design structure matrix 

method. Concurrent Engineering, 11(3), pp.165-176.

Yeo, I., 2009. Matching methods for semantic interoperability in Product Lifecycle Management.

Yusuf, Y.Y., Sarhadi, M. and Gunasekaran, A., 1999. Agile manufacturing:: The drivers, concepts 

and attributes. International Journal of production economics, 62(1-2), pp.33-43.

Zachariadis, M., Scott, S. and Barrett, M., 2013. Methodological implications of critical realism for 

mixed-methods research. MIS quarterly, pp.855-879. 

Zaharescu, A., Boyer, E., Varanasi, K. and Horaud, R., 2009, June. Surface feature detection and 

description with applications to mesh matching. In Computer Vision and Pattern Recognition, 

2009. CVPR 2009. IEEE Conference on(pp. 373-380). IEEE.

11   Bibliography



252 11   Bibliography

Zaharia, T. and Preteux, F.J., 2001, May. 3D-shape-based retrieval within the MPEG-7 framework. 

In Nonlinear Image Processing and Pattern Analysis XII (Vol. 4304, pp. 133-146). International 

Society for Optics and Photonics.

Zaharia, T. and Prêteux, F., 2002. Shape-based retrieval of 3D mesh models. In Multimedia and 

Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on (Vol. 1, pp. 437-440). 

IEEE.

Zehtaban, L., Elazhary, O. and Roller, D., 2016. A framework for similarity recognition of CAD 

models. Journal of Computational Design and Engineering, 3(3), pp.274-285. 

Zhan, P., Jayaram, U. and Jayaram, S., 2006, July. A Method of Capturing Product Data Semantics 

by Building Engineering Ontology. In Proceedings of NSF Design, Service, and Manufacturing 

Grantees and Research Conference (pp. 24-26).

Zhan, P., Jayaram, U., Jayaram, S., 2007, "A Semantic Approach for CAD/CAE Integration", 

Proceedings of 2008 NSF Engineering Research and Innovation Conference.

Zhan, P., Jayaram, U., Jayaram, S., Kim, O., Zhu, L., 2008, “Knowledge Representation and 

Ontology Mapping Methods For Product Data In Engineering Applications”, Proceeding of 2008 

ASME IDETC/CIE Conference.

Zhan, P., Jayaram, U., Kim, O., and Zhu, L., 2010, “Knowledge Representation and Ontology 

Mapping Methods for Product Data in Engineering Applications,” ASME J. Comput. Inf. Sci. Eng., 

10(2), p. 021004.

Zhang, C. and Chen, T., 2001. Efficient feature extraction for 2D/3D objects in mesh 

representation. In Image Processing, 2001. Proceedings. 2001 International Conference on (Vol. 3, 

pp. 935-938). IEEE.

Zhang, D.J., He, F.Z., Han, S.H. and Li, X.X., 2016. Quantitative optimization of interoperability 

during feature-based data exchange. Integrated Computer-Aided Engineering, 23(1), pp.31-50.

Zhang, L., da Fonseca, M.J., Ferreira, A. and e Recuperação, C.R.A., 2007. Survey on 3D shape 

descriptors. FundaÃgao para a Cincia ea Tecnologia, Lisboa, Portugal, Tech. Rep. Technical 

Report, DecorAR (FCT POSC/EIA/59938/2004), 3.

Zhang, Z., Gentile, A.L. and Ciravegna, F., 2013. Recent advances in methods of lexical semantic 

relatedness–a survey. Natural Language Engineering, 19(4), pp.411-479.

11   Bibliography



11   Bibliography 253

Zhu, K.P., Wong, Y.S., Lu, W.F. and Loh, H.T., 2010. 3D CAD model matching from 2D local 

invariant features. Computers in industry, 61(5), pp.432-439.

Zhu, L., Jayaram, U., Jayaram, S. and Kim, O., 2009, January. Ontology-driven integration of CAD/

CAE applications: strategies and comparisons. In ASME 2009 International Design Engineering 

Technical Conferences and Computers and Information in Engineering Conference (pp. 1461-

1472). American Society of Mechanical Engineers.

Zimmermann, J.U., Haasis, S. and Van Houten, F.J., 2002, January. Applying Universal Linking of 

Engineering Objects in the Automotive Industry: Practical Aspects, Benefits, and Prototypes. In 

ASME 2002 International Design Engineering Technical Conferences and Computers and 

Information in Engineering Conference pp. 65-74). American Society of Mechanical Engineers.

11   Bibliography



254 11   Bibliography

11   Bibliography



12    Ontologies for CAE interoperability 255

12   Ontologies for CAE interoperability 

A.1  Introduction

To start, it is helpful to broadly define an ontology with respect to Information Science, 

which is a formal description of the types, properties and relationship of information 

within a specific domain; the representation of information structure, semantics and 

relationships in an ontology preserves a consistent interpretation of data. Guarino gives a 

useful definition of an ontology (Guarino, 1998). Here, a conceptualisation covers the 

intended meaning of a formal vocabulary, rather than real-world, ad-hoc usage that 

language undergoes. 

“An ontology is a logical theory accounting for the intended meaning of a formal 

vocabulary, i.e. its ontological commitment to a particular conceptualization of the world. 

The intended models of a logical language using such a vocabulary are constrained by its 

ontological commitment. An ontology indirectly reflects this commitment (and the 

underlying conceptualisation) by approximating these intended models”

Ontologies can be separated into two broad categories (Fankam, 2009). The first are 

storage-oriented ontologies that define the elements and their position within a domain 

architecture using a common vocabulary, what Fankam et al define as a conceptual 

canonical model where a class may only contain a single datum.

The second category of ontologies, or non conceptual canonical model allows 

machine reasoning on the domain content, where elements may be shared between 

multiple classes. The latter category is used within CAE ontological modelling where the 

intent is to create interoperability between heterogeneous systems and consequently is of 

interest to modelling CAE systems. Subsequent references to ontologies are considered to 

be exclusively of this class.

12    Ontologies for CAE interoperability 



256 12    Ontologies for CAE interoperability 

A.2 Layered ontologies

Guarino describes four distinctive types of ontology, which later give an indication of the 

limits of their applicability (Guarino, 1998). 

A top-level ontology may define very fundamental concepts that encapsulate a 

frame of reference, such as space, time, events, actions, objects. Such a top-level ontology 

would be distinguished by organising the most basic taxonomy from which other 

ontologies might then be derived, other terms used are foundation ontology and common 

sense ontology. Dublin Core, SUMO and CYC are examples of top-level ontologies 

(Dublincore.org, 2012; Pease, 2018; Reed & Lenat, 2002).

A domain ontology is distinguished by representing the subset of objects, with a 

specific domain while a task ontology is distinguished by actions or processes associated 

within a domain such as medicine or agriculture. An application ontology encompasses 

both concepts and operations associated with a domain. There is a trade-off between the 

generality of an ontology, as in the breadth of concepts that it addresses, and the utility of 

this same ontology, or the ability to perform useful reasoning. Gruber refers to this 

balance as the problem of portability (Gruber, 1993). The drawback of a single ontology 

approach, where each application shares the same ontology, is the difficulty in specifying 

a global shared vocabulary sufficiently general to represent diverse domain associations, 

yet economical enough to be computationally effective (Wache et al, 2001). 

A.3 The Core Product Model

The Core Product Model of the National Institute of Standards and Technology was another 

project devised to address the deficiencies of STEP models, adding the capacity to 

represent function and behaviour  (or as a concept familiar to engineers, intended 

behaviour and observed behaviour). NIST augmented this model with a Design-Analysis 

Integration Model, a Product Family Evolution Model and an Open Assembly model to 

define assembly, geometric tolerancing, kinematics and engineering analysis structured 

within the associated relationship hierarchy (Sudarsan et al, 2005). 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 257

A.4 Product Specification Language, Product Semantic Representation 

Language

Product Specification Language was developed at NIST as a production process ontology, 

limited to geometry and related manufacturing processes (Gruniger & Menzel, 2003). 

Product Semantic Representation Language took the NIST Core Product Model and 

defined an ontology aimed at semantic interoperability between CAD geometry 

terminology and Computer Aided Process Planning terminology (Patil et al, 2005). This 

research encoded the ontology syntax in the newly developed DARPA Agent Markup 

Language, an emerging standard from the field of Semantic Web research (Hendler & 

McGuinness, 2000). 

Dartigues et al extended the NIST Core Product Model to provide a sufficient 

ontology to allow interoperability between a CAD software (Pro-Engineer) and a 

Computer Aided Process Planning software (PART) using the Knowledge Interchange 

Format (KIF). The researchers note that a further challenge to domain interoperability 

arises from the use of heterogeneous languages to defining ontologies. This research 

demonstrated that a feature entirely described in semantic terms could be transferred from 

one domain to another without a geometrical model (Dartigues et al, 2007).

Chungoora et al describe a heavyweight manufacturing ontology based on a 

foundation layer modelled with a Common Logic based formalism. The research 

intentionally captures the semantics of multiple domain perspectives of a common 

product artifact (Chungoora & Young, 2008). OntoSTEP was introduced to add descriptive 

semantic references to STEP Application Protocol Models, but did not capture the 

conceptual data associated with product models (Barbau et al, 2011; Krima et al, 2012). 

A.5 Ontologies based on the semantic web, OWL, RDF

The readability, extensibility and self-documenting properties of the Extensible Markup 

Language, or XML, gave rise to a family of languages to extend the scope of internet web 

12    Ontologies for CAE interoperability 



258 12    Ontologies for CAE interoperability 

pages. The so-called semantic web incorporates a layer of self-description that allows 

machine reasoning. An embedded semantic page description allows automated searches 

across internet web pages that can contextualise page data without human intervention. 

Resource Description Framework is one of these languages that allow in-line definition of 

web page metadata in a machine-interpretable format. Data can be ordered within classes 

allowing the expression of subject – predicate – object relationships. For example, 

subject: Jack, predicate: isBrotherOf object: Jill.

Web Ontology Language or OWL takes this metadata triplet further, allowing axioms to 

specify relationships between RDF annotations. OWL retains the advantages of XML in 

being relatively flexible, readable and reusable  (McGuinness & Harmelen, 2004;  Berners-

Lee et al, 2001). OWL also enjoys widespread web adoption with a correspondingly mature 

tool-chain, consequently there have been numerous research prototypes integrating 

Computer Aided Engineering domain semantics using ontologies based on OWL (W3.org, 

2016). What follows are research developments that give an indication of the scope of 

these efforts, for an exhaustive catalogue of CAE interoperability research using OWL 

ontologies see (Soumaya et al 2015; Qin et al 2017).

Yang and Miao create an ontology for the semantic integration of a prototype 

Design Information System, essentially an architecture to allow interaction between 

different processes of an engineering design cycle (Yang, Miao, 2007). The prototype 

integrates AutoCAD CAD software along with OptiCAD optical CAD software. OptiCAD 

and AutoCAD are both AutoDesk products, there is no published detail of CAD 

interoperability.

Mostefai et al create a prototype ontology that encompasses part detail, 

manufacturing process and assembly design (Mostefai et al, 2005). This ontology is based 

on feature representation, describing both geometric and semantic aspects. 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 259

Domain Independent Form Feature, or DIFF, is an ontology structured around a 

geometric classification of CAD form features defined by surface faces (Gupta & 

Gurumoorthy, 2008). The geometric characteristics of features used in proprietary CAD 

systems are abstracted as classes of faces inherent within the feature, further distinguished 

by the interrelation between adjacent faces. This abstract feature representation is adapted 

from Subramani and used to represent the construction history of CAD models 

(Subramani, 2005). The DIFF ontology research identifies several problems unique to 

semantic interoperability between CAx systems that can be identified and resolved using a 

non-proprietary geometric representation of features. These problems can be summarised 

as,

1. Different syntactic labels referencing identical feature geometries

2. Different construction histories that generate identical model geometries.

Ahmed and Han create a platform to integrate CAD/CAM operations using a 

common OWL ontology to augment parametric CAD data with non-parametric Geometry, 

Dimensioning and Tolerance PMI data and machining data (Ahmed and Han, 2015). This 

platform employs the macro-parametric approach, or MPA, to define a set of neutral 

modelling commands for the purpose of CAD interoperability (Choi, Han, Mun, 2002). The 

macro-parametric method is previously described in detail in Chapter 3.8.

He et al propose an OWL based ontology to facilitate collaborative part and tooling 

development, a process requiring interaction between the domains of design, 

manufacturing process planning and tooling development (He et al, 2015). 

These ontologies have been developed to test the potential for knowledge sharing 

between computer aided engineering domains. As traditionally a product model would 

have to be reconstructed or adapted to be transferred to a different design cycle process, 

the ability to share a single model between different domains offers better efficiency and 

data integrity (Gupta & Gurumoorthy, 2008). At a higher level, ontologies may be used to 

standardise the interpretation of semantic information used within application syntax of 

12    Ontologies for CAE interoperability 



260 12    Ontologies for CAE interoperability 

heterogeneous domains (Altidor, 2009). 

A.6 Top-down ontologies and interlingua

Anticipation of the required scope of an upper ontology is a difficult proposition, as it 

presupposes future development of applications. One example of a top-down ontology 

that has been subsequently adopted by commercial vendors is the Egenhofer and Franzosa 

formalisation of topological relationships that is supported by all mainstream 

Geographical Information Services software (Egenhofer and Franzosa, 1991). It is also 

incorporated within the relevant standard, the Simple Feature Specification of the Open 

Geospatial Consortium. This contrasts with the domain of Computer Aided Engineering 

where most innovation has been initiated by commercial vendors and no top-down 

ontologies or published semantic models are used to represent data. 

In the absence of an adopted top-down CAD or CAE ontology, researchers have 

explored methods to generate or extract a shared ontology from heterogeneous domain 

ontologies. One alternative is a bottom-up approach, creating a bridging ontology or 

interlingua based on a mapping between CAD systems (Uschold & Gruniger, 1996). 

Zhan and Kim broach the requirement of mapping similar domain ontologies (Zhan 

& Kim, 2010). The research identified a means to map application ontologies rather than 

attempting to define a unique ontology that defines all use cases and domains. The 

proposition takes an overarching General Domain Ontology that specifies the broadest of 

concepts shared by all conceivable sub-ontologies. From this universal ontology they 

model Domain Specific Ontologies that encapsulate the semantics of terminology within 

domains such as product design and assembly simulation. A third layer of more 

specialised ontologies, Application Specific Ontologies inherit the concepts of the Domain 

Specific and General Domain ontologies. These hierarchical ontologies can be seen to 

correspond with the Gerbino definition of a top-level ontology, a domain ontology and 

application ontologies respectively. The example applications are given as instances of 

commercial software ontologies and covered in greater detail in Zhu (Zhu et al, 2009). 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 261

Zhan proposes several techniques for mapping the semantics between these 

application specific ontologies using a set of heuristics. Similarity is based on the 

proportion of syntactic matches within an element. Zhan presents an example that defines 

geometrical matching between elements, but these matches are based on syntactic 

matching of the features described in the referenced CAD ontologies rather than a 

comparison of geometry. Each atomic element within these application specific ontologies 

is defined as a Basic Design Entity, a triplet capturing attributes of function and behaviour 

(similar to the NIST CPD ontology). The rules of establishing an entity match are derived 

from the relationship to known matches, whether this is matches of associated attributes 

or a matching position within both ontologies under scrutiny.

Jiavy et al examine the use of statistical methods to determine similarity between 

commonplace ontologies used within the building industry, (the Industry Foundation 

Class (IFC), CIMsteel Integration Standards (CIS/2), OmniClass Construction Classification 

System). The ontologies are considered as text corpora that can be compared under 

Jaccard similarity coefficient and Cosine similarity measures. This research also 

experiments with a Market Basket Analysis to derive a comparative measure between 

ontology elements. This approach is functionally identical to the comparative assessment 

of associated ontology element attributes used in the matching rules of Zhan (duck 

typing).

Ciocoiu et al adopt the top-down layered ontology approach described in Zhan et 

al, but append bottom-up ontologies in cases of pre-existing heterogeneous application 

ontologies which are to be integrated within this layered ontology structure. In a top-

down layered ontology structure, the application ontologies inherit concepts from the 

upper ontologies. Real-world applications require that predefined ontologies or data 

models are bridged with a shared upper ontology. The mappings, or axioms, that define 

identical or related concepts between a source ontology and the shared upper ontology 

require the intervention of a domain expert. 

Seo et al state that the macro-parametric approach, or MPA, captures inadequate 

semantic detail to allow automated translation between CAD systems. The OntoSmart 

12    Ontologies for CAE interoperability 



262 12    Ontologies for CAE interoperability 

system described in the research uses the macro-parametric CAD script input that is 

translated to a target CAD script, but instead of using the routines described in Cho et al, 

the OntoSmart uses ontology reasoning to achieve the same outcome. Note that the 

OntoSmart system uses an F-Logic based ontology rather than the more widespread OWL 

basis. Seo et al use a similar ontology structure to determine semantic matching between 

features. Unlike prior research that matched feature semantics via syntactic mapping 

between parameter labels (macro-parametric), a shared base ontology mapped or bridged 

to local CAD ontologies captures sufficient semantic detail to allow recognition of 

semantically similar features via pre-determined rules, described as axiom bridges (Seo et 

al, 2005).

Wang and Nnaji describe an XML/RDF triplet-based domain ontology that captures 

the semantics of features within different CAE programs to allow mapping and machine 

reasoning.

Jayaram et al describe a method that extracts product model metadata via a CAD 

program API and creates a corresponding semantic model by matching this metadata with 

concepts from a pre-existing ontology. 

Eddy et al describe a process to extract the semantic content of a CAD model. A 

commercial Product Lifecycle Modelling software can derive a Bill of Materials from the 

CAD model, which comprises a detailed textual description of model features. Part 

relationships are identified by the vocabulary used.

Altidor et al develop algorithms to automate mappings between semantic 

descriptions of CAD features (Altidor et al, 2009, Hanayneh et al, 2008). A CAD feature is 

represented as a directed, labelled and attributed graph capturing explicit and implicit 

parameters. Further layers of description such as topological relationship of the feature to 

the CAD model and the individual attributes of the feature are combined to describe a 

Hybrid Semantic Feature. Two forms of matching are used, graph matching and type 

matching to compare semantic structure and labels between hybrid semantic features. The 

graph matching uses an unspecified subgraph isomorphism algorithm over the feature 

graph and those within another CAD feature library. 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 263

Altidor describes the conventional function mapping between source and target 

CAD programs as static mapping, where a single hybrid semantic feature instance in the 

source CAD is mapped to one or more equivalent instances in the target CAD class-level 

library. A system of dynamic mapping is proposed where a hybrid semantic feature 

instance is dynamically mapped to a feature equivalent within the set of target CAD 

features. Every time a translation is made for an individual feature, the mapping is 

determined by a search process rather than a look-up process. This approach has the 

primary advantage of only requiring access to the target CAD function library. 

Tessier and Wang use four distinct categories to define CAD feature elements 

within an ontology, parameter attributes, reference attributes, feature type and geometric 

surface data (B-rep data). The feature type stores previous successful function matches. 

The other three categories are of interest here. While parameter attributes are defined as 

the explicit parameters referenced in the feature API function description, reference 

attributes are defined as the prior selections, datums and other references that are 

implicitly required of a function operation. Geometric surface data is included as a feature 

representation independent of the syntactic description of parameter and reference 

attributes. An independent geometry description allows verification of feature matches in 

instances where the parameter and reference attributes are insufficient for unambiguous 

mapping. This geometric description is derived from a rule-based analysis of basic 

geometric features made accessible via an API. The derivation of feature definitions is 

similar to rule-based automated feature recognition that depend on formalised 

descriptions of geometric rules associated with particular features (Henderson & 

Anderson, 1984). This approach describes dynamic matching between feature instances 

with the feature library of the target CAD program, rather than the customary static 

matching requiring access to the class-level libraries of both CAD systems undergoing a 

feature mapping.

Existing software has an internal architecture that may not conform to a published 

ontology. A fixed ontology hampers innovation as there is no opportunity to experiment 

with novel taxonomies of features. There is no defined optimal set of features that might 

12    Ontologies for CAE interoperability 



264 12    Ontologies for CAE interoperability 

be universally adopted, consequently an ontology sufficiently general to allow the 

representation of disparate feature hierarchies would be of limited utility. 

The allure of defining CAE features as ontologies stems from the promise of formal 

reasoning to automatically determine the relationships between heterogeneous CAE 

systems. Though many theoretical efforts exist, only a few subsets of commercial CAD 

programs have been translated into ontologies (Qin et al, 2017). Defining CAD features 

within an ontology is labour intensive, limiting the practicality of this approach. 

A.7 Ontology mapping: OWL DL

Semantic mapping between CAD ontologies generally uses one of three methods, OWL 

inference, SWRL inference or semantic mapping (Shvaiko & Euzenat, 2005).

In the case of OWL, the most expressive variant OWL DL is commonly used. Of the other 

two varieties of OWL, OWL Lite is limited in expressiveness while OWL Full is 

undecidable and does not work with reasoners. Inference reasoning in OWL DL is based 

on the satisfiability decision algorithm or Tableau algorithm.  A hypothetical feature class 

may be further defined using a number of rules or axioms. For example,

“a hole feature has an axis of symmetry”

“a hole feature has only one axis of symmetry”

An OWL DL ontology allows the classes and properties to be posed as propositional logic 

theorems and tested for veracity. A tableau algorithm will construct each class instance as 

a node within a tree and test axiom propositions until it encounters either a false result or 

completes. These axioms may be tested on the classes and properties of CAD domain 

ontologies that describe the set of features of specific CAD programs. If both feature 

classes are semantically equivalent, all instances of the source class are recreated within 

the target class. 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 265

 To describe this process further it is helpful to adopt the terminology of the 

OntoSTEP OWL ontology, used to model STEP EXPRESS CAD data (Krima et al, 2009).  

An ontology has a set of classes, these classes correspond to instances of objects or 

artefacts, in the case of OntoSTEP, the classes correspond to STEP entities which represent 

model instances. A class will normally have an identifying name and an associated 

description. A class may also have a subclass, where another class inherits the 

characteristics of the class, but possessing a more specific definition. Within EXPRESS an 

attribute defines the relationship between entity and an instance of data, or a relationship 

defined between entities. A useful ontology will possess a set of properties, for example 

OntoSTEP ontology properties map the STEP attributes. These properties also contain a 

description and a name associated with the attribute. Where this becomes relevant, is the 

ability of OWL reasoners to distinguish semantically matched classes, but not matched 

properties. In other words, it is possible to compare instances, but not qualities.

The Common Design Feature Ontology (CDFO) of Kim et al, Assembly Relation Model 

(ARM) of Abdul-Ghafour et al, Ontology-Based Information Integration and Sharing (OBIIS) 

framework of He et al the Three-Branch Hybrid Feature Model of Tessier and Wang and the PRO-

AO, VADE-AO and CAT-AO layered ontologies of Zhu et al all adopt SWRL reasoning (Kim et al, 

2006; Abdul-Ghafour et al, 2007; He et al, 2015; Tessier & Wang, 2013; Zhu et al, 2009).

As mentioned above, OWL DL can test for semantic equivalence between classes, 

but not properties. Deriving valid axioms that might encapsulate the essence of CAD 

features or models is a difficult task, requiring skilled intervention and an in-depth 

knowledge of both CAD feature concepts and propositional logic. Consequently several 

researchers address the property shortcomings of OWL DL using Semantic Web Rule 

Language or SWRL (Horrocks et al, 2004). SWRL is an extension of OWL representation 

that conveniently allows ontology properties to be assessed for semantic equivalence. 

A.8 OWL SWRL

SWRL retains the same drawback as OWL DL, axioms used to infer semantic equivalence 

must be carefully conceived by a skilled practitioner expert in conceptual definitions of 

12    Ontologies for CAE interoperability 



266 12    Ontologies for CAE interoperability 

CAD features.  OWL descriptions logic uses relatively simple terminological axioms, or so-

called T-box, generally involving set membership or equivalence relations, e.g. “banana is a 

kind of fruit”. SWRL, on the other hand, uses assertional reasoning, requiring A-box 

axioms (Horrocks & Tobles, 2000). Asserting facts from ontology concepts adds a level of 

difficulty in determining reliable universal truths about CAD features, which are in 

themselves more of a conceptual commercial construct than a consistently defined system. 

Sanfilippo and Borges exhaustive review of the CAD features literature draws several 

conclusions that make ontological models of features difficult (Sanfilippo & Borges, 2016). 

The last method used to match ontologies is semantic matching. The labels used in 

ontologies are compared for semantic or syntactic similarity. Patil et al describes a method 

that can replace exact equivalences (Patil et al, 2005).

A.9 Limitations of ontologies and semantic inference

Semantic feature representations and explicit research ontologies have not been 

retrospectively adopted by commercial CAD vendors. The semantic models, ontologies or 

interlingua described propose specific architectures, or prescriptive concepts which are 

then verified as a necessarily limited research experiment. 

There is no general theory supporting feature representation. Ad hoc feature design 

has led to a balkanisation of specifications. What feature representation exists, tends to 

have unspecified implicit properties inherent to the domain in which they are defined. 

Feature-based models describe the parameters and constraints that define features, but 

they do not describe a semantic quality that defines a feature. Nor do ontology models 

define interrelation of features within a model in a non-geometric sense, a hole might exist 

within a model, but is only anchored in place by geometrical constraints. 

Objects referenced within CAD & CAE do not have universally agreed semantic 

description, moreover the different terminologies are associated with geometrical identity 

rather than a pure language description. Research efforts focus on the ability of ontologies 

to structure descriptive terms, but there is no equivalent approach to create non-verbal 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 267

taxonomies of geometries. Mapping semantic similarity is only a partial solution to a 

requirement to map a geometric similarity.

12    Ontologies for CAE interoperability 



268 12    Ontologies for CAE interoperability 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 269

B  3D Shape matching methods overview

B.1 3D Shape matching introduction

The challenge of determining a geometric similarity between virtual three dimensional 

models has attracted different approaches within different fields. Point cloud registration, 

image recognition, model retrieval and CAD geometry feature extraction all share a 

similar requirement to recognise a match between shape geometry. The nature of the 

available data from which a comparison is drawn influences the methodologies used, 

images have pixels of differing intensities or colours, point clouds are arrays of 3-D point 

coordinates defining a surface, most 3-D models are models defined by triangular facets, 

CAD models may have several means to define boundary model surfaces. Central to the 

task of shape recognition is the ability to detect similarity despite changes in orientation, 

scale or position of shapes under comparison. This task may be further complicated by 

recognising shapes that have been distorted, or matching incomplete shapes. 

A robust method to detect similarity between two CAD surface boundary models 

must be insensitive to differences of model orientation, position or scale. This can be 

described as a rigid body transformation problem (the more complex case of recognising a 

deformed instance of a non-rigid body is not required for this application).

Prior research that has compared CAD models from different software for similarity 

has relied on an export to a neutral format, resulting in difficulties encountered with the 

uneven commercial implementations of STEP AP203 Edition 2 (McKenzie-Veal et al, 2010). 

Other research is reliant on an existing CAD API that can export the model surfaces 

(Tessier & Wang, 2013).

Three-dimensional shape descriptors are an active research area, drawing methods 

from related disciplines such as image matching, point cloud registration, 3D shape 

retrieval. Tangelder et al have categorised the methods within four basic approaches as 

12    Ontologies for CAE interoperability 



270 12    Ontologies for CAE interoperability 

follows (Tangelder et al, 2007; Kazmi et al, 2013).

View-Based the shape description is extracted from multiple 2D images taken of 

the 3D shape.

Histogram-Based the discriminating features of the shape are represented as a unique 

histogram signature comprising a vector of numerical identifiers.

Transform-Based the 3D shape is transformed to a non-geometric mathematical 

domain where the defining characteristics are unaffected by the 

orientation or position of the geometric shape.

Graph-Base a 3D shape is transformed to a simplified topological representation.

Table 10: shape matching method categories

It is helpful to give an overview of the representative techniques within each of this 

taxonomy, but distracting to attempt an exhaustive categorisation of this broad field. There 

are several surveys that cover 3D shape matching and shape description (Kazmi et al, 2013; 

Cardone et al, 2003; Zhang et al, 2007).

B.2 View-Based shape matching methods

View-Based shape matching methods benefit from extensive research matching 2D images 

and from the ability to operate without explicit reference to the virtual shape model data. 

Most methods take an image of the shape model from several angles and combine them to 

form a characteristic shape descriptor. 

The Light Field Descriptor described by Chen et al which takes the shape silhouettes 

from images taken at ten evenly spaced angles and characterises them via a Zernike 

moment descriptor or Fourier descriptor to provide an orientation-invariant signature (Chen 

et al, 2003). 

Adaptive Views Clustering uses 320 images represented as Zernicke moments and 

then creates a series of K-means clusters of these Zernicke moments defined with a 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 271

different number of clusters. The number of clusters that represent the optimal level of 

shape information are selected via a Bayesian Information Criteria calculation. As each 

shape is represented by a the optimal number of image signatures, the researchers specify 

a probabilistic Bayes matching approach to rank shape similarity according to the most 

similar of associated image signatures.

The Compact Multi-View Descriptor takes two image descriptors, the shape outline 

and the pixel brightness intensity and generates three image descriptors based on the 

rotationally invariant Polar-Fourier transforms, Zernicke moments and Krawtchouk 

moments. The orientation of each shape model is normalised using Principle Component 

Axis alignment, allowing direct matching between the images to sum to a match 

probability.

Ohbuchi et al describe an image-based 3D shape matching algorithm based on the 

well-known SIFT feature matching algorithm used in image matching applications 

(Ohbuchi et al, 2008). This method is based around the Bag-of-Features method used in 

semantic matching. Multiple images are taken from a shape normalised in scale and pose 

orientation. The Scale Invariant Feature Transform identifies image regions that can be 

identified at different scales and image rotations. This gives a number of features such as 

corner points or distinctive marks. These features are clustered using a k-means technique 

and the SIFT features are ordered into histogram bins depending on their proximity to the 

cluster barycentres. These barycentres must be pre-computed. Using vector quantisation 

terminology, the histograms are vectors that identify the shape features. The distance 

between the vectors representing the shape models is calculated using the Kullback-

Leibler divergence measure.

Gao et al present Spatial Structure Circular Descriptors as a projective image-based 

3D shape comparison method (Gao et al, 2010). A 3D shape is pose normalised using PCA, 

each surface point is projected to a minimal bounding sphere. This sphere is then mapped 

to a flat circular image. As several surfaces of the 3D shape may be coincident with a ray 

projection from the sphere origin to the sphere surface, multiple surfaces data are mapped 

to a separate circular images. These images are segmented into regions for the purposes of 

12    Ontologies for CAE interoperability 



272 12    Ontologies for CAE interoperability 

creating bins suited to histograms. As each shape will produce several histograms, the best 

matches between shapes are detected using the Munkres-Kuhn method. For a more 

exhaustive catalogue of View-Based shape matching methods see Liu (Liu, 2012).

B.3 Histogram-Based shape matching methods

Histograms are a common representation of a unique shape signature that allows rapid 

comparison with other shapes. Descriptive characteristics are sorted by a quantisation of a 

property range (commonly known as bins), or by distinct categories to form a numerical 

signature intended to be independent of shape position, orientation and scale. Histograms 

may also be characterised as feature vectors within a dimensional space defined by the 

number of bins, or quanta (Bustos et al, 2005).

B.4 Spatial map-based methods

The spatial map-based approach segments the shape into regions in order to generate a 

histogram from the proportion of each region occupied by shape volume. Ankerst et al 

describe a method that partitions the shape model within an encompassing sphere 

internally divided by radial and angular subdivisions (Ankerst et al, 1999). The limited 

resolution of the sphere subdivisions becomes apparent using a Euclidean distance metric 

between the histograms generated by the approach. A quadratic form distance function is 

used to circumvent this issue, essentially weighting the values of sectors in close 

proximity.

Vranic et al record shape model boundary intersections with a series of concentric 

spheres around the shape barycentre (Vranic & Saupe, 2002), (Vranic, 2003). These points 

are computed to determine the discrete Legendre transforms that comprise a Spherical 

Fourier Transform, allowing the shape to be approximated as a spherical harmonic 

function  (Healy et al, 2003). While this method is insensitive to shape orientation, it is 

also incapable of discriminating shape distortions that preserve radial dimensions. 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 273

Ohbuchi et al describe an approach that measures the moment of inertia of a slice 

of a shape taken along it's longest axis of inertia (Ohbuchi et al, 2002). Each vertex is 

assigned a weight and the eigenvalues of the derived covariance matrix determines the 

principle axis of inertia. The weighted vertices of the model are divided into sections along 

this axis, each of which yield a characteristic inertial moment and barycentre. These 

values give a histogram.

B.5

Local feature based methods

The 3D Shape Spectrum Descriptor uses the instances of a range of surface geometry 

features to define a histogram (Zaharia & Prêteux, 2001). These features are defined as the 

properties of surface curvatures along two axes, or the Koenderink shape index 

(Koenderink & Van Doorn, 1992). This ranges from a local surface indentation at a point, 

to a groove, a saddle inflection, a ridge to a surface peak. A polygon mesh surface is 

smoothed by a parametric continuous representation, regions that conform to the shape 

index are identified and are accumulated in bins defined by a division of the shape index.

The 2D Hough transform may map a line to a curve via a radius and angle, in the 3D 

equivalent, this is achieved via spherical coordinates. The 3D Hough Transform polls a 

shape model for polygon mesh planes using a radius, azimuth and elevation basis centred 

at the shape model barycentre (Zaharia & Prêteux, 2002). Dividing a spherical sampling 

volume into meridian and parallel regions creates unequal volumes, a 3D Hough 

transform that compensates for this by re-sampling along the three axes of inertia of the 

model is computationally expensive. A Canonical 3D Hough Transform is described that 

maps the spherical sampling partitions to an octagonal partition schema.

12    Ontologies for CAE interoperability 



274 12    Ontologies for CAE interoperability 

B.6 Point signatures

Surface curvature methods define local features, other methods determine non-local 

general features. Zhang and Chen describe a means to tessellate 2D and 3D polygon mesh 

models to calculate volume (Zhang & Chen, 2001). These discrete volumes can be 

integrated to derive a moment characteristic that is independent of shape orientation. The 

Fourier transform of these volumes provides a distinct set of coefficients that also serve as 

a unique shape signature. The second order moments may also be used to derive the 

principle axes of a shape, allowing for pose normalisation. 

Paquet et al describe general shape descriptors that identify 2D or 3D shapes 

(Paquet et al, 2000). A bounding box is the smallest box that encloses a shape, this data and 

the absolute position and orientation of this box constitute a coarse discrimination 

between shapes. Further discriminants may be derived from the volume of the box 

occupied by the shape. A cord technique that describes a ray from the shape barycentre to 

the centroid of shape surface polygons gives a set of angles that can form a signature 

histogram. The cords concept also allows the moment of the shape volume to be 

calculated. A wavelet transform of these cords vectors gives a set of signature coefficients.

Vranic and Saupe extend the idea of a bounding box, subdividing it into cubes or 

voxels (volumetric pixels) and retaining those voxels that intersect the shape model 

(Vranic & Saupe, 2001). The 3D discrete Fourier transform of the voxels representing the 

shape model give a unique set of coefficients to form a characteristic histogram.

B.7 Variant models

Dutagaci et al generate a voxel representative of a shape model and trial a Discrete Fourier 

Transform alongside a Radial Cosine Transform function to minimise the influence of 

shape orientation on the derived representation (Dutagaci et al, 2005). A spectral energy 

representation of shape boundaries is also tested to determine improvement over the 

discrete binary voxel model. This Radial Cosine Transform of the 3D function  is:

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 275

where   are radial cosine transform basis functions defined as follows:

B.8 Shape distribution signatures

Burel and Hénocq decompose a point cloud object into eigenvectors of the angular 

momentum to generate invariant tensor descriptions. If point clouds are represented as 

angular momentum, eigenvector decomposition can be used to represent the clouds as 

spherical harmonic invariants (Burel & Hénocq, 1995). 

Sadjadi and Hall describe an invariant moment features that create rotationally 

invariant signatures based on the enclosed space within a point cloud or polygon mesh 

(Sadjadi & Hall, 1980).

Osada et al explore a range of shape functions that return a value within a single 

parameter range, allowing a characteristic histogram shape signature to be generated 

(Osada et al, 2002). The functions tested are chosen to provide a robust metric for shapes 

represented by a polygon mesh, a representation that may suffer from discontinuities, 

duplicate polygons, missing polygons, and irregularly sampled meshes. These unintuitive 

shape functions embody general statistical properties of the mesh, for example the angle 

between three random vertices on the mesh, or the root of the area between three random 

surface vertices. The discriminative quality of each metric is tested by adding noise to the 

test models. The best overall measure is found to be the distance between two random 

sampled vertices on the surface. 

12    Ontologies for CAE interoperability 



276 12    Ontologies for CAE interoperability 

B.9 Curvature based descriptors

Two common curvature based surface descriptors are defined by the principle curvatures at 

a point, namely the curves of maximum and minimum curvature that can be projected on 

to a surface normal through the point. While the principle curvatures are defined by the 

Euclidean space that the surface is embedded in (or possessing an extrinsic quality), the 

product of these curvatures, the Gaussian curvature is independent of this space (or 

possessing an intrinsic quality). This gives Gaussian curvature the quality of invariance 

under isometric transforms, hence it's utility in defining feature descriptors.

Besl and Jain take the Gaussian curvature,  , and the mean value of the maximum 

and minimum curvatures (H) to formulate a metric that identifies a surface point region as 

a ridge or groove, or as a saddle ridge, or saddle valley, a concave or convex ellipsoid (Besl 

& Jain, 1986).

Koenderink and van Doorn take a different combination of the principle curvatures 

to define a shape index, which describes the curve inflection type within a single 

parameter  (Koenderink & Van Doorn, 1992).  varies from concave  , to 

hyperbolic , to convex . , the shape index, is defined as:

The degree of curvedness, , is represented in a second expression:

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 277

B.10 Spin images

The problem of shape orientation within to Euclidean reference frames has led to the 

development of local reference frames generated on geometric shapes. The Spin Image 

(Johnson & Hebert, 1999, Johnson, 1997) is the best known instance. A spin-image is an 

image that acts as a local vertex signature or a local basis. It is composed of the individual 

images of vertex points encountered by a plane spun around the axis of the normal vector 

passing through the vertex. The density of accumulated points on this revolved plane are 

then coded as pixel-wide histogram bins, the darkness of an image pixel corresponds to 

the accumulated point density. Each of these local point spin-images may be readily 

compared with point images from point spin-images on a comparative shape. This is 

similar in concept to comparing two panorama images to determine if they were taken 

from the same spot. Efficient image matching requires image compression, Principle 

Component Analysis is used to create a compressed representation of multiple images that 

can be directly compared. 

In the search for rotationally-invariant shape discrimination, Liu et al derive a 

coordinate system based on surface characteristics (Liu et al, 2006). Spin images are used 

as local descriptors and evenly sampled over the surfaces of all models to be compared. 

These spin images are clustered into a smaller set of representative local descriptors. The 

Osada shape distribution measure between two surface points is augmented with 

coordinates relative to the nearest generated local descriptors, avoiding the orientation 

sensitivity of absolute euclidean coordinates.

B.11 Integral volume

An alternative approach to determining intrinsic surface curvature descriptors is to 

sample the proportion of shape volume captured within a sphere at a point.

Gelfand et al describe a method based on the determination of volume within a 

sphere centered on a point (Gelfand et al, 2005). An integral volume descriptor is defined 

at each vertex  on the model as described:

12    Ontologies for CAE interoperability 



278 12    Ontologies for CAE interoperability 

The integration kernel   is a sphere of radius  centered at vertex point  .

 represents the model surface boundary, so that  is the volume enclosed by the 

intersection of the interior of the sphere with the model surface. The volume of each 

surface point is aggregated within histogram bins, the least common value of volume 

associated with a point is selected from these bins. Nearby point values are winnowed 

from this point to avoid indistinct feature point sets. The scale-space of each point is 

readily adjusted by varying the size of the sphere sampling the point volume. The 

described method incorporates data for feature points matched at varying scales.

One approach examines the deviation of a mesh vertex from it's surrounding 

neighbours. The difference in the position of a vertex from the mean value of it's 

immediate neighbouring vertices gives an intrinsic surface descriptor. The MeshDOG 

feature detection described by Zaharescu et al convolves a surface function (possibly 

curvature or texture) with a radially symmetrical Gaussian kernel across the ring of 

vertices surrounding the vertex undergoing evaluation (Zaharescu et al, 2005). This 

function is applied to successive concentric rings of vertices, which is then subtracted 

from the value of the previous inner ring to form a “Difference of Gaussian” scale space 

representation. All points are tested for this measure and those over a threshold value are 

extracted. This set of points is further filtered to find those that exhibit corner 

characteristics. This is determined using the Hessian operator and setting a threshold ratio 

for the difference of the minimum and maximum eigenvalues.

The Harris operator is a simple and effective point detector that captures distinctive 

pixels from an image (Harris & Stephens, 1988). This edge and corner detector smooths the 

pixel intensity contrast around the source pixel with an analytic expansion similar to the 

autocorrelation function. Using the notation of Sipiran and Bustos, the difference in 

overall intensity   of a region under analysis , defined as a Gaussian function is 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 279

derived from small shifts of   around  as follows:

(HO1)

The window  is defined as a Gaussian function and  describes the image 

function.

A Taylor expansion to first order terms gives an autocorrelation patch matrix with the 

subscripted  values representing the partial derivatives. 

(HO2)

Harris avoids eigenvalue calculation with the following approximation: [Eq 3]

(HO3)

To apply this method to a 3D polygon-mesh introduces additional complications of 

potentially irregularly spaced vertices and topology, causing difficulty calculating 

derivatives. Sipiran and Bustos use PCA to fit a plane over the region under analysis, the 

vertices within the region are rotated to local tangent plane coordinates  over this 

plane and fitted with a quadratic surface (Sipiran & Bustos, 2011). A second order 

parametric equation of the form in Equation.4 is considered sufficient to capture the most 

complex shapes encountered, yet allows relatively simple differentiation. The quadratic 

patch parameters are represented by , such that:

(HO4)

12    Ontologies for CAE interoperability 



280 12    Ontologies for CAE interoperability 

Yielding a 3D Harris expression of the form:

(HO5)

Note that the discrete Gaussian function  representing the region is replaced with a 

continuous Gaussian function. The 3D Harris Operator is calculated as before via (HO4) 

and those of the highest value are selected or those over a threshold.

(HO6)

B.12 Heat diffusion features

The Heat Equation defines heat diffusion across a surface from a point. As the rate of 

diffusion is tied to the curvature of the surface, but not dependent on the Euclidean 

orientation of the point this makes it a basis for an intrinsic feature detector. This heat 

diffusion equation over a compact Riemannian manifold is defined by:

(HKS1)

where  is heat distribution with respect to a point,  , at a time, , and   is the 

Laplace-Beltrami operator. The Laplace-Betrami operator, can be considered here as the 

divergence of heat from the point source, but in more general terms is the divergence of a 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 281

gradient on functions defined on surfaces in Euclidean space. The Laplace-Beltrami 

operator is defined as:

(HKS2)

for smooth scalar fields  where  represents the differential area or volume 

of the manifold. For a Euclidean metric, where , the Laplace-Beltrami operator 

reduces to:

(HKS3)

The heat kernel is a solution to an initial point condition    representing 

the heat transferred from   to   in time   via diffusion. If   are the eigenfunctions and 

the eigenvalues of the Laplace-Beltrami operator such that   the heat kernel 

can be represented as:

(HKS4)

The most attractive feature of this heat kernel is that it is intrinsic, or invariant to 

isometric deformation. This allows recognition of articulated or crumpled geometric 

models. Because the analytical geometry of shapes presents difficulty in calculation, heat 

kernels are calculated from the discrete form of the Laplace-Beltrami operator 

characterised as: 

(HKS5)

12    Ontologies for CAE interoperability 



282 12    Ontologies for CAE interoperability 

where  are the normalisation coefficients and  are the weights. Reformulating to 

matrix notation gives:

(HKS6)

where  and 

The eigenvalues and eigenvectors are calculated over surface mesh of   vertices using the 

finite element method or the generalised eigendecomposition of discrete Laplace operators 

over the model mesh surface. If the eigenvalues  are ordered by size within a 

 diagonal matrix  and the corresponding eigenfunctions  

within a  matrix  this gives a formulation:

(HKS7)

Sun et al introduce a Heat Kernel Signature (HKS) based on the Heat equation for the 

purposes of determining distinctive features on mesh shape models (Sun et al, 2009). As 

computing the diffusion between the point of interest and all other mesh points is 

prohibitively expensive, only the time parameter is calculated and calculation over the 

spatial domain is dropped.

(HKS8)

 The analytical solution to the underlying manifold is generally unknown, so approaches 

are based around discrete mesh-based methods. A discrete Laplace operator may be 

constructed from a sparse matrix , representing the area associated with each mesh 

vertex as  on the matrix diagonal and , represents a symmetric semi-definite 

matrix:

(HKS9)

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 283

This arrangement guarantees that the general eigenproblem description  is 

composed of real eigenvalues and eigenvectors. The Laplace mesh can then be defined as 

(HKS10)

such that  is a matrix of eigenvector columns and  is a diagonal matrix of eigenvalues. 

The local maxima of the HKS function at large time values is used to determine salient 

feature points. The authors introduce a multiscale variation of the HKS by altering the 

time parameter in a logarithmic fashion (see Eqn. HKS8), reflecting the exponential decay 

of the heat diffusion equation. 

The Heat Kernel Signature is invariant with respect to Euclidean coordinates and 

possesses a robust invariance to moderate geometric distortion, yet the Heat Equation is 

not independent of scale. Some approaches normalise the entire shape model to similar 

dimensions (global pre-normalisation). The Scale Invariant Heat Kernel Signature or SI-

HKS is an approach that normalises the local scale, using a logarithmic factor to correct 

the exponential form of the heat kernel.

B.13 Graph methods

Topological persistence is a concept introduced by Edelsbrunner et al, different topological 

shape features appear at different values of spatial resolution, otherwise known as 

persistent homology (Edelsbrunner et al, 2000). The appearance, and disappearance of 

topological features such as voids, connections, tubes for varying values of the scale 

parameter constitute a numerical signature independent of orientation, (though not of 

scale). A continuous non-negative scalar function, such a heat kernel, is defined on 

the surface of a shape, this single parameter filtering function reveals the disappearances of 

geometrical local maxima and corresponding changes in the level sets defining the shape 

topology. Ferri et al report that a vector-valued filtering function is stable with regard to 

function perturbations and geometrical space perturbations (Ferri et al, 2011). The interval 

12    Ontologies for CAE interoperability 



284 12    Ontologies for CAE interoperability 

between appearances and annihilation of topological features are characterised as 

persistent Betti numbers or represented on a persistence diagram. 

To briefly introduce a number of connected mathematical concepts, a level set is the 

set where a real-valued function holds the same constant value. For a function of two 

variables, this is a level line or contour line, for a three variable function, a level surface, or 

isosurface, for a higher number of variables, a level hypersurface. A quotient topology is the 

representation of level sets defined as equivalent classes within a topological space. A 

Reeb graph is a mapping of level sets of a function within a quotient topology. 

For a continuous, real-valued functions that describe a surface and are free of 

degenerate critical points, the corresponding Reeb graph is more readily defined: vertices 

of the Reeb graph correspond to critical points, arcs to connected components of level sets 

and level sets are contracted to points. As the topological connectedness of a shape is 

independent of orientation, it is a candidate for a numerical signature identifying an 

object. A function based on object height in one dimension is adequate for a Reeb graph 

on a two-dimensional manifold, but is sensitive to shape orientation. 

Hilaga et al describe a function to allow determination of mesh-based shape 

topology independent of shape orientation (Hilaga et al, 2001). Each vertex point is 

defined relative to the summed distance from all other vertex points. These individual 

displacements are calculated from a geodesic distance edge length metric based on 

Dijkstra's algorithm. These values are normalised for scale as the geodesic distance 

measure is not scale invariant. Mesh polygons may be subdivided for further accuracy. 

This Reeb graph is then used to generate a multi-resolution shape signature, the graph is 

divided by the finest resolution and adjacent nodes within the same graph division are 

subsumed into one another. This process is repeated for coarser graph divisions until a set 

of graphs are generated at multiple scales.

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 285

B.14 Greedy matching method

Skeletal graphs produce a visually similar graph as Reeb graphs. Rather than determining 

critical points at connecting level sets, a skeletal graph will thin the volume of a shape 

along an insignificant axis to produce a stick-figure representation of a shape volume. 

Sundar et al describe one implementation where a shape mode is transformed to a 

voxellised representation (Sundar et al, 2003). For each voxel, its minimum distance to a 

nearest boundary surface is compared against the mean minimum boundary distance of 

that of its 26 neighbours. If this value is over a specific threshold, and the voxel is not too 

close to the boundary surface, the voxel can be used as a skeletal point. A Minimum 

Spanning Tree algorithm is subsequently used to connect these points to form an 

undirected acyclic graph, which may be further refined.

B.15 Hybrid mesh methods

Researchers have found that combining several distinct polygon mesh matching methods 

leads to higher overall accuracy. Daras and Axenopoulos describe a Compact Multi-View 

Descriptor, a combination of three 2D view matching techniques, namely Polar-Fourier 

Coefficients, Zernike Moments and Krawtchouk Moments (Daras & Axenopoulos, 2010). 

The 2014 Eurographics Workshop on 3D Object Retrieval event tests refined shape 

matching techniques against a prepared dataset. Four of the five methods entered combine 

several methods to boost overall accuracy (Li et al, 2014).

B.16 CAD graph methods

CAD programs retain geometry description within internal proprietary program formats, 

or exported to external neutral formats such as ISO 10303 (See Chapter 3 for further 

details). Efforts to compare geometry models defined within CAD programs have 

extracted descriptive data from available program API, or from the geometry exported to a 

neutral format representation (Miao et al, 2002). CAD model matching methods are limited 

12    Ontologies for CAE interoperability 



286 12    Ontologies for CAE interoperability 

by the available access to shape data. API access to CAD program internal geometry 

model representation is limited to the proprietary CAD programs that support equivalent 

API access. External comparisons can be made from CAD model representations that are 

exported to a documented neutral file format such as IGES, STEP or DXF. Other research 

will take two-dimensional representations of 3D CAD models such as a screen grab and 

use SIFT image matching techniques to derive a match (Zhu et al, 2010).

Some use heuristics to determine the feature representation from descriptive 

semantics within neutral formats (Tan et al, 2013). The approach that has attracted most 

research attention extracts the model as a collection of distinct boundary surfaces 

including a description of interconnection with adjoining surfaces. Each surface is 

represented as a node within an Attributed Adjacent Graph, while the edge between 

surfaces is represented as a connecting arc, (Joshi & Chang, 1988). The distinction between 

an internal angle and an external angle is given by a binary value attached to the arc. AAG 

graphs generated via different model geometries can be compared to determine similarity 

using techniques of subgraph isomorphism, namely identifying similarities between graph 

subsets. 

The basic AAG graph is limited to polyhedral shapes rather than curved faces and 

was adapted to work in cases where a single surface contacts more than one other edge, 

such as the cap of a cylinder adjoining cylinder walls defined by several surfaces.

B.17 Multi-attributed adjacency graph

The multi-attributed adjacency graph or MAAG addresses several of the shortcomings of 

the AAG, describing the angle between mating surfaces in greater resolution. Venuvinod 

and Wong present a more detailed representation of surface characteristics within an 

enhanced winged-edge data structure, capturing extra geometric data available in the 

common AutoCAD Drawing eXchange Format or the predecessor to the STEP format, 

IGES (Venuvinod & Wong, 1995). Much of the impetus behind developing geometric shape 

comparison within CAD derives from the utility of transferring an engineering design to a 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 287

Computer Aided Machining tool without human intervention. As geometric forms within 

modern CAD programs are defined as a set of “features“, CAD graph techniques attempt 

to extract geometric regions that correspond to CAD features, such as recognising a boss, 

or a slot (Henderson & Anderson, 1984). 

An extra complication is the different set of features inherent to CAM 

manufacturing operations; features may be defined by machining operations rather than 

geometries relevant to engineering form concepts. For example, a manufacturing feature 

might be determined to be a volume removed by a tool in a single cutting operation, yet a 

form feature could describe a volume swept by a referenced face. Elinson et al describe 

classification trees, hierarchical graphs of manufacturing features for the purpose of 

identifying model similarity (Elinson et al, 1997). 

Attempts to create rule-based systems or algorithms that can categorise CAD or 

CAM features from model geometries are limited by the lack of a canonical set of feature 

types and by the difficulty of identifying intersecting features in a geometric definition 

(Han et al, 2000),  (Marefat & Kashyap, 1990). One common heuristic adopted extends 

identified features to determine the largest coherent feature volume (Regli et al, 1995). 

To briefly observe in passing, most form features depend on prior features. For 

example, a hole feature requires a pre-existing solid feature. This dependency is covered in 

more detail in Chapter 5. Parametric feature CAD programs commonly use hierarchical 

tree structures to graphically represent the interdependency of form features. These 

relationships are described in a Model Dependency Graph, capturing the interdependence 

of identified machining features (Cicirello & Regli, 1999). There may be several different 

possible configurations of feature hierarchy, consequently the Model Dependency Graphs 

of identical geometrical models may not have unique feature orders, this property is 

defined as D-morphism. Part similarity is determined via the largest common subgraph 

using Ullmann's algorithm or a Greedy Subgraph Isomorphism Checker, fully solving D-

morphism uniqueness requires additional model geometric or topological data (Cicirello & 

Regli, 2002). 

12    Ontologies for CAE interoperability 



288 12    Ontologies for CAE interoperability 

El-Mehalawi and Miller, describe a graph matching method that extracts model face 

connectivity from an exported neutral STEP AP203 geometry file. This method extracts 

topological and vertex geometry information, but does not describe a matching process 

that uses this geometric information (El-Mehalawi & Miller, 2003a), (El-Mehalawi & Miller, 

2003b). Ma et al group topological graph features by the extra geometrical information of 

nodes (Ma et al, 2009). Wang et al optimise the subgraph isomorphism calculation for 

similarity matching by pruning inconsequential surfaces and weighting more salient 

surface nodes (Wang et al, 2010). Li et al introduce a feature hierarchy, each identified 

feature is assigned a parent-child relationship within a Hierarchical Partition Graph that 

allows the use of a more efficient Greedy Matching algorithm for model comparison (Li et 

al, 2015). 

Bin et al adopt an attributed graph with nodes based on primitive geometric 

surfaces (presumably extracted from the STEP neutral file format data strings) and edges 

defined by connecting model faces (Bin et al, 2017). The graph edit distance, or the number 

of graph edits required to transform one model graph to another between two graphs is 

defined as the model similarity. 

Zehtaban et al introduce a method converting a CAD graph model into an Opitz 

alphanumerical code for ready comparison of Computer Aided Machining objects with 

other similar shapes, this method is notable in that the shape signatures may be 

numerically compared using cosine similarity or similar metrics  (Zehtaban et al, 2016).

B.18 Volumetric CAD methods

Convex hull volume decomposition methods and cell based volumetric decomposition 

approaches are other methods for CAD feature identification, but are primarily developed 

for the recognition of manufacturing operations rather than creating a representation 

suited to similarity matching. 

Convex hull volumetric decomposition approach starts with the convex hull of the 

model shape, then removes select prismatic or cylindrical volumes to arrive at the final 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 289

shape. While the concept is simple, the implementation is difficult with a mixture of 

curved and flat surfaces. Kyprianou described the original concept, Wang and Kim 

developed practical techniques using a sequence of boolean addition and subtraction 

operations to represent the model geometry, described as the Alternating Sum of Volumes 

with Partitioning method (Kyprianou, 1980), (Wang & Kim, 1982). The differences between 

a geometric model and its convex hull can be recursively decomposed until they become 

convex. This process generates a structured hierarchy of model boundary faces that allows 

an association with volumetric representations. Cylindrical or curved surfaces are 

replaced by equivalent planar volumes, to be re-inserted into the model after 

decomposition. This approach is hampered by a limited capacity to tackle free-form 

surfaces, or curved surfaces that do not follow the principle axes of the model.

Cell-based volumetric decomposition has a similar approach to shape 

decomposition from a CAM machining perspective. The negative voids in the convex hull 

of a geometry model are voxelised and then regrouped to correspond with the most 

efficient toolpath volume. As a brute force comparison of multiple cellular voids is 

computationally expensive, several heuristics are introduced to partition the search space 

(Sakurai, 1995). While these methods are not directly used for geometric comparison, 

volumetric decomposition has been used to determine the presence of CAD features 

within models (Pilli, 2017; Ramesh et al, 2001). 

B.19 Hint based matching

Vandenbrande and Requicha describe a hint-based method to guess the feature 

composition of a model (Vandenbrande & Requicha, 1993). Where previous feature 

recognition methods used a minimum set of geometrical and topological properties to 

identify machinable features, the hint-based approach relaxes these constraints to allow 

partial representations of feature boundaries or topologies, allowing intersecting features 

to be recognised. One common heuristic is to extend the characteristic boundary surface 

of a machinable feature to test if it coincides with other faces of the model geometry. The 

12    Ontologies for CAE interoperability 



290 12    Ontologies for CAE interoperability 

range of hints has also been extended to non-geometric manufacturing attributes such as 

design features, design attributes and tolerances.

As testing all surface geometry to identify potential feature membership is 

computationally expensive, the process is optimised by ordering matching candidates 

within a priority queue ranked by measure of matching probability, a form of greedy 

matching. More in-depth reviews of these approaches are given in Shah, Babic, Han (Shah 

et al, 2001; Babic et al, 2008; Han et al, 2000).

B.20 Interacting Multiple Methods

Gao and Shah adapt the hint-based approach to encompass several types of graph 

matching in an Extended Attributed Adjacency Graph method (Gao & Shah, 1998). The 

requirement of hint-based methods to amalgamate information from multiple topological 

relationships is formalised as Concave Adjacency Graphs, Manufacturing Face Adjacency 

Graphs, Minimal Condition Subgraphs, Partly Concave Adjacency Graphs and Concave 

Adjacency Graphs. Inference rules determine feature type from configurations of the 

extended graph information. Gao and Shah describe their approach as a hybrid method, 

combining hint-based matching with graph matching.

B.21 Hybrid methods

Chu and Hsu introduce a hybrid method that combines elements of three disparate CAD 

model representations (Chu & Hsu, 2006). Form Feature Adjacency Graph or FAG, is 

composed of feature volumes combined via additive or subtractive operations. Each node 

of this FAG contains a topological graph of its corresponding feature volume, similar to an 

Attributed Adjacency Graph. The similarity of individual FAG nodes are determined. A 

similar method compares topographical graph data. The resulting similarity matrices can 

yield an optimal solution as an assignment problem solved via the Hungarian algorithm. 

12    Ontologies for CAE interoperability 



12    Ontologies for CAE interoperability 291

The FAG and topological representation of a model does not contain distinguishing 

geometrical information and may yield matches for differing model geometries. A third 

model analysis creates a D2 statistical histogram from sampled points on the model 

surface, allowing a further level of model discrimination. 

Li et al use a similar combination of a form feature graph combined with a D2 

statistical measure (Li et al, 2010). The interdependencies between features are represented 

with a Feature Dependency Directed Acyclic Graph, relying on a CAD API for feature 

hierarchy information. This graph representation allows sub-components to be extracted 

from the model, given as independent graph branches from a root node. It also permits 

“de-featured” simplified representations stripped of minor surface features, the outermost 

nodes of this graph. 

Huang et al extend this method to match model sub-parts in more detail, 

incorporating model characteristics such as axial and radial geometric dimensioning, part 

tolerances and a measure of the relative angles between characteristic machining feature 

data (referenced as “tool access direction”) (Huang et al, 2015). 

These hybrid methods illustrate a recent trend towards combination of several 

matching methods to achieve higher matching scores. Techniques are drawn from the 

formerly divergent domains of 3D polygonal mesh matching and feature matching 

performed on data extracted from CAD programs or output files.

This appendix has briefly outlined the approaches to surface geometry model matching 

within the broad areas of shape matching, shape registration and feature recognition 

using the four distinct approaches of view-based matching, histogram-based matching, 

transform-based matching and graph-based matching.

12    Ontologies for CAE interoperability 



292 12    Ontologies for CAE interoperability 

C  Single model geometric matching test

12    Ontologies for CAE interoperability 

+ve target nam
e

+ve target gen tim
e

+ve target insertion po+ve target scale
+ve target rotation

+ve target R
M

SE m
atc h

-ve target nam
e

-ve target gen tim
e

-ve target scale
-ve target rotation

-ve target R
M

SE m
atch

unit_torus_z2.0.stp
39.7137581103Point(x=0.180087140148161

1.7800715208
258.9365217997inf

unit_cyl_yz4.0_blend.01.stp
19.3392398625

1.7846706225
19.2503027947inf

unit_torus_z2.0.stp
333.0471164047Point(x=0.180087140148161

1.7800715208
258.9365217997

0.0009467013unit_cyl_yz4.0_blend.01.stp
19.3392398625

1.7846706225
19.2503027947inf

unit_sphere_xy1.5.stp
40.4736870914Point(x=0.235314571307478

2.9480444526
130.0669988063

0.0007854441unit_cube_x1.5_blend.01.stp
21.3815919112

6.348338601
229.2861091327inf

unit_sphere_z2.0.stp
30.7176357002Point(x=4, y=7, z=7)

3
246

0.0004366373unit_cube_xz4.0_blend.03.st p
41.1745807359

1
184inf

unit_cube_yz1.5_blend.05.st p
31.3971981907Point(x=0, y=8, z=2)

2
61

0.0007901559unit_sphere_yz1.5.stp
32.5692439562

10
172inf

unit_cube_x1.5.stp
31.2476360803Point(x=2, y=3, z=5)

2
228

0.0002502628unit_cube_x1.5_blend.01.stp
21.1061851908

3
294

0.0095419462
unit_cube_xz2.0_blend.06.st p

27.2522544473Point(x=7, y=9, z=9)
15

88
0.0014994855unit_cube_yz4.0_blend.05.st p

87.4976326593
7

31
7.8400170077

unit_cube_inc1.5_blend.01.s tp
47.2122069333Point(x=7, y=2, z=1)

8
180

0.0008541827unit_cyl_y4.0_blend.01.stp
16.2191002737

7
218inf

unit_cube_yz8.0_blend.05.st p
113.6132731489Point(x=0, y=0, z=6)

4
341

0.0008526973unit_cyl_xy1.5_blend.06.stp
64.3592101262

2
50

inf
unit_cyl_yz1.5_blend.03.stp

25.1167743652Point(x=1, y=3, z=2)
14

10
0.0068035635unit_cyl_xy4.0_blend.06.stp

186.9959848715
12

120inf
unit_cube_yz4.0_blend.03.st p

115.7963558613Point(x=3, y=2, z=7)
12

270
0.0006179216unit_cube_yz8.0_blend.05.st p

72.140584613
11

187
24.4893052907

unit_torus_xy2.0.stp
16.6745807359Point(x=1, y=5, z=8)

4
286

0.0044845181unit_cyl_xz4.0.stp
94.755928995

12
52

63.5526788635
unit_cyl_xz8.0.stp

19.1086118291Point(x=4, y=5, z=6)
5

266
0.6122820025unit_cube_yz2.0_blend.05.st p

67.1895590695
8

86inf
unit_cyl_xy1.5_blend.03.stp

57.5333655162Point(x=5, y=2, z=0)
1

304
0.0003368171unit_cube_inc1.5_blend.03.s tp

20.2865535198
1

97inf
unit_cyl_xz4.0.stp

79.6016390452Point(x=3, y=8, z=7)
14

328
0.0146435488unit_torus_y1.5.stp

26.2492462369
18

302inf
unit_cube_inc1.5_blend.01.s tp

106.8164318838Point(x=0, y=5, z=5)
12

318
0.0009347494unit_cyl_xy4.0_blend.01.stp

79.779361411
3

167inf
unit_cube_inc8.0.stp

11.5492344534Point(x=6, y=0, z=3)
9

165
0.0103911574unit_sphere_yz8.0.stp

117.116246769
7

195inf
unit_cube_xy1.5.stp

12.4770803558Point(x=4, y=1, z=8)
15

254
0.0019652096unit_cyl_inc8.0_blend.05.stp

153.5342401551
1

125inf
unit_cube_yz4.0_blend.06.st p

151.482329329482Point(x=3, y=2, z=7)
19

140
0.0492605528539unit_cube_inc1.5_blend.06.s tp

28.5175824844154
12

177
6.0268339089

unit_cube_inc8.0.stp
11.5492344533982

Point(x=6, y=0, z=3)
9

165
0.0170182818151unit_sphere_yz8.0.stp

117.116246769044
7

195inf
unit_cyl_inc4.0_blend.01.stp

204.973529967427Point(x=7, y=9, z=2)
10

351
0.0358331253775unit_cyl_xy4.0_blend.03.stp

71.6208034978122
4

90
inf

unit_cube_xz1.5_blend.03.st p
23.5626522186528Point(x=5, y=8, z=2)

19
273

0.0104541719378tetrahedron.scaled.stp
8.11443193433772

6
79inf

unit_cyl_xz1.5_blend.01.stp
17.5869881965566Point(x=7, y=1, z=9)

8
223

0.0148690155142unit_cube_xy4.0_blend.01.st p
52.238067597151

15
165inf

unit_cube_xz2.0_blend.05.st p
24.6191807191544Point(x=0, y=9, z=7)

4
349

0.00278070674117unit_cube_yz8.0.stp
47.8948801314339

6
358

22.6425263458
unit_torus_xy4.0.stp

37.0538531394818Point(x=9.0, y=8.0, z=0.0)
4

320
0.00149816779644unit_cube_yz4.0.stp

17.7436180779596
4

188inf
unit_cube_inc4.0.stp

9.36607476489857Point(x=2, y=8, z=9)
1

211
1.27382490328unit_cube_xz8.0_blend.03.st p

68.0409469363923
14

332
41.5475251391

unit_torus_xz1.5.stp
65.3982786914223Point(x=7.0, y=9.0, z=5.0)

5
239

0.320736885394unit_cyl_z1.5_blend.03.stp
132.644710307971

16
194inf

unit_cube_xy1.5_blend.06.st p
57.4374580192977Point(x=5, y=5, z=7)

12
18

0.00661077156934unit_torus_x2.0.stp
15.3549772244593

1
60inf

unit_torus_inc4.0.stp
237.418900030524Point(x=3.0, y=5.0, z=1.0)

15
198

0.0100690846715unit_torus_inc1.5.stp
153.978585707916

6
67

0.00200294625604
unit_cube_x2.0_blend.01.stp

21.0876182634634Point(x=3, y=5, z=9)
2

85
0.729623677492unit_cyl_xy8.0_blend.05.stp

191.559778429322
7

253inf
unit_cube_inc1.5_blend.01.s tp

104.711082677323
Point(x=8, y=0, z=1)

14
30

0.00363373348527unit_cyl_z1.5_blend.03.stp
1280.11889923225

2
280inf

unit_cyl_inc2.0_blend.03.stp
183.020692423574Point(x=8, y=5, z=6)

10
55

0.00565485513796unit_torus_y1.5.stp
38.5498151993805

17
165inf

unit_cube_inc2.0.stp
14.1386348664391Point(x=8, y=2, z=0)

3
99

0.00124003609203unit_sphere_xy4.0.stp
79.6740788383809

7
92inf

unit_cube_xz1.5_blend.01.st p
46.8101052468323Point(x=4, y=0, z=9)

2
125

0.001367358144unit_cyl_xy2.0_blend.03.stp
190.489483109455

15
67

inf
unit_cyl_x2.0.stp

58.9267837545753Point(x=6, y=4, z=8)
12

289
0.0140252500004unit_cube_x8.0_blend.01.stp

47.070758319259
7

205inf
tetrahedron.scaled.stp

8.79842268499363Point(x=6, y=5, z=9)
12

244
0.0207446776016unit_cube_yz8.0_blend.01.st p

115.292015009087
15

35inf
unit_cyl_inc1.5_blend.01.stp

88.7516874959374Point(x=3, y=5, z=3)
8

125
0.00255444885233unit_cube_inc2.0_blend.01.s tp

96.6343410982665
11

265inf
unit_cube_xz4.0.stp

35.6773719120545Point(x=0, y=9, z=2)
23

185inf
unit_cyl_inc4.0_blend.05.stp

102.014513776513
21

352inf
unit_cube_inc1.5_blend.03.s tp

21.4554271853628Point(x=0, y=5, z=7)
11

54
0.00625075529923unit_cyl_z1.5_blend.01.stp

195.205562987114
15

48inf
unit_cube_inc2.0.stp

14.1386348664391Point(x=8, y=2, z=0)
3

99
0.00113026838328unit_sphere_xy4.0.stp

79.6740788383809
7

92
inf

unit_cube_xz1.5_blend.03.st p
27.7889946793083Point(x=2, y=1, z=3)

18
45

0.00717375446365unit_cyl_z2.0_blend.05.stp
1675.7303526512

21
318inf

unit_cube_xz4.0.stp
32.6235674293232Point(x=0, y=9, z=2)

23
185

0.0322571685624unit_cyl_inc4.0_blend.05.stp
108.692227806345

21
352inf

unit_cube_inc8.0_blend.05.s tp
155.189135251702Point(x=8.0, y=8.0, z=8.0)

19
188

0.0225497483775unit_cyl_inc4.0_blend.03.stp
2552.95978063408

24
352inf

unit_cube_inc8.0.stp
6.28264478329308Point(x=2, y=8, z=7)

10
334

0.0172894129138unit_cyl_y8.0.stp
211.837803482227

17
170inf

unit_cyl_xy1.5_blend.06.stp
86.5866080656928Point(x=9, y=6, z=6)

20
348

0.0153979514085unit_cyl_x8.0.stp
86.3169192826322

13
179inf

unit_cube_yz4.0.stp
18.5827885107727Point(x=8, y=2, z=4)

13
197

0.0143826204041unit_sphere_inc2.0.stp
15.424560939349

18
251inf

unit_cube_x4.0_blend.03.stp
153.528529011397Point(x=2, y=9, z=7)

17
237

0.00292022172177unit_cube_x4.0_blend.01.stp
48.1081738399262

12
323

0.173837766789
unit_cyl_inc1.5.stp

657.466058685363Point(x=0, y=7, z=6)
8

155
0.0114905035688unit_cube_inc2.0.stp

5.81135359658917
5

343inf
unit_cube_xz2.0_blend.06.st p

27.2522544473168Point(x=7, y=9, z=9)
15

88
0.0079805286846unit_cube_yz4.0_blend.05.st p

87.4976326592669
7

31
8.60023987198

unit_cube_yz4.0_blend.06.st p
111.623026455831Point(x=0.0, y=0.0, z=0.0)

10
90

0.0050583648446unit_cube_inc1.5_blend.06.s tp
28.5175824844154

12
177

5.5185358576
unit_cube_yz4.0_blend.06.st p

151.482329329482Point(x=3, y=2, z=7)
19

140
0.0492605528539unit_cube_inc1.5_blend.06.s tp

28.5175824844154
12

177
6.0268339089

unit_cyl_inc4.0_blend.03.stp
90.7728258130144Point(x=8, y=6, z=4)

5
295

0.00247623503715unit_cyl_xy2.0_blend.05.stp
172.327903544074

5
35inf

unit_cyl_z4.0_blend.03.stp
196.465629517618Point(x=4, y=9, z=3)

13
111

0.00546070767158unit_cyl_xy4.0_blend.03.stp
100.28377453222

23
28inf

unit_cube_inc2.0.stp
6.16422489606272Point(x=3, y=7, z=4)

13
295

0.0063628949913unit_cyl_xy2.0_blend.03.stp
95.2426504548456

22
8inf

unit_cube_inc2.0_blend.01.s tp
22.4446573177282Point(x=6, y=0, z=9)

6
264

0.00244026519714unit_cube_xy4.0_blend.01.st p
84.5927798703982

6
273

9.6985562581
unit_cyl_xy1.5.stp

45.8452369412694Point(x=5, y=0, z=3)
11

18
0.0256148744242unit_cube_inc8.0_blend.03.s tp

62.2471732518637
13

188inf
unit_cyl_inc1.5_blend.05.stp

148.823428453479Point(x=5, y=6, z=3)
10

41
0.00112803362712unit_cyl_y2.0_blend.01.stp

21.2237343827986
18

184inf


