
Journal of Software Engineering and Applications, 2019, 12, 365-382
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.129022 Sep. 29, 2019 365 Journal of Software Engineering and Applications

A Shallow Parsing Approach to Natural
Language Queries of a Database

Richard Skeggs, Stasha Lauria

College of Engineering, Design and Physical Sciences, Brunel University, London, UK

Abstract
The performance and reliability of converting natural language into struc-
tured query language can be problematic in handling nuances that are preva-
lent in natural language. Relational databases are not designed to understand
language nuance, therefore the question why we must handle nuance has to
be asked. This paper is looking at an alternative solution for the conversion of
a Natural Language Query into a Structured Query Language (SQL) capable
of being used to search a relational database. The process uses the natural
language concept, Part of Speech to identify words that can be used to identi-
fy database tables and table columns. The use of Open NLP based grammar
files, as well as additional configuration files, assist in the translation from
natural language to query language. Having identified which tables and which
columns contain the pertinent data the next step is to create the SQL state-
ment.

Keywords
NLIDB, Natural Language Processing, Database Query, Data Mining

1. Introduction

With the quantity of real-time data and the speed of data increases the need to
search and extract data from multiple sources is becoming more important.
Natural Language Processing can be useful for converting natural language text
into a formal structure that can be processed by a computer program.

The growth in size and importance of data within society has led to the de-
velopment of a new range of tools to query, examine and analyse data. Even the
increasing use of tools like Siri, Bixby, Alexa and Google Assistant to perform
searches is changing the way users look for information. With large quantities of
data stored within databases or databased backed repositories providing an in-

How to cite this paper: Skeggs, R. and
Lauria, S. (2019) A Shallow Parsing Ap-
proach to Natural Language Queries of a
Database. Journal of Software Engineering
and Applications, 12, 365-382.
https://doi.org/10.4236/jsea.2019.129022

Received: June 5, 2019
Accepted: September 26, 2019
Published: September 29, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.129022
https://www.scirp.org/
https://doi.org/10.4236/jsea.2019.129022
http://creativecommons.org/licenses/by/4.0/

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 366 Journal of Software Engineering and Applications

terface between a non-technical user and data is becoming increasingly impor-
tant.

The use of natural language interface to a database enables non-technical us-
ers to search a database using natural language statements, whether that is the
spoken or written word. The Natural Language Interface to Database (NLIDB)
provides the interface between a natural query and a structured data query lan-
guage like SQL. This allows for data retrieval without the need for technical
knowledge or a detailed understanding of the Structured Query Language (SQL)
or even knowledge of the underlying database.

A number of systems such as LADDER, CHAT-80, NaLIX and WASP [1]
have all been developed to become the interface between natural language and
the database but none of them have come into mainstream use. The issues these
tools have struggled with revolve around natural language complexity. The most
common one of these complexities has been understanding language nuance [2]
[3] [4]. Other issues have revolved around the performance of the interface in
converting the natural language query not only in a timely fashion but also with
the accuracy of the returned results [5].

This paper is proposing a solution to solve both the language nuance [3] [6]
and performance issues with the use of shallow parsing [7], which does not re-
quire an understanding of language nuances. The shallow parsing approach be-
ing proposed by this paper is the use of keywords [8] to identify characteristics
that are important for the search. This paper will introduce the use of an index
file containing keywords that can be used to enhance the performance. Jwalapu-
ram & Mamidi [5] are among a number of authors who have carried out re-
search into using keywords to enable NLIDB based systems to perform searches.

The keyword searching proposed in this paper unlike Jwalapuram & Mamidi
[5] uses Part of Speech (POS) [5] processing and an index file which allows for
individual words to be extracted from the natural language query. The indivi-
dually extracted words can then be used to create the query for the NLIDB solu-
tion.

2. Football Events Data

To test the performance of the NLIDB application an open data set was selected
for benchmarking. The website Kaggle.com has several openly available large
datasets that can be used freely. The Football Events dataset was chosen and is
available via the following link
(https://www.kaggle.com/secareanualin/football-events). The data contains two
tables which ensure that the feature to join two tables together can also be tested.
The concept of being able to join two or more tables together is important as this
feature is often useful when searching data repositories as data can be held
across multiple tables.

The dataset comes in the form of two comma separated value (CSV) files
which are labelled EVENTS and GINF. The events recorded in the tables cover
9074 football games from across Europe. The two tables are in CSV format

https://doi.org/10.4236/jsea.2019.129022
https://www.kaggle.com/secareanualin/football-events

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 367 Journal of Software Engineering and Applications

which makes it easier to load into a database whether that is a no-SQL or
RDBMS version. The EVENTS table as shown in Table 1 contains details about
each game. The data has been scrapped from bbc.com, espn.com and onefoot-
ball.com and has 941009 recorded items. The GINF table, details are shown in
Table 2 contains metadata and market betting odds for each game and contains
10,112 entries. The odds for the dataset were supplied by oddsportal.com.

The two tables can be joined using the common key ID_ODSP, which is the
unique identifier for the game.

Table 1. The EVENTS table describes the structure of the events database. The details of
the event types can be found in Appendix B.

Column Name Data Type Description

ID_ODSP String Unique id of the game

ID_EVENT String Unique identifier of event (ID_ODSP + SORT_ORDER)

SORT_ORDER Number Chronological sequence of events in a game

Time Number Minutes into the match

Text String Description of event

EVENT_TYPE String

Primary event. 11 unique events (1-attempt (shot),
2-corner, 3-foul, 4-yellow card, 5-second yellow card,
6-(straight) red card, 7-substitution, 8-free kick won,
9-offside, 10-hand ball, 11-penalty conceded)

EVENT_TYPE 2 String
Secondary event. 4 unique events (12-key Pass, 13-failed
through ball, 14-sending off, 15-own goal)

Side String Home or away team (1-home, 2-away)

EVENT_TEAM String
Team that produced the event (In case of Own goals,
event team is the team that beneficiated from the own goal)

Opponent String Opposing team

Player String Player involved

Player 2 String Player involved

PLAYER_IN String Player that came in (only applies to substitutions)

PLAYER_OUT String Player substituted (only applies to substitutions)

SHOT_PLACE String
Placement of the shot (13 possible placement locations,
available in the dictionary, only applies to shots)

SHOT_OUTCOME String
4 possible outcomes (1-on target, 2-off target,
3-blocked, 4-hit the post)

IS_GOAL Boolean
binary variable if the shot resulted in a goal
(own goals included)

Location String
Location on the pitch where the event happened
(19 possible locations, available in the dictionary)

Body Part String Body part ball touches (1-right foot, 2-left foot, 3-head)

ASSIST_METHOD String
In case of an assisted shot, 5 possible assist methods
(details in the dictionary)

Situation String
In case of an assisted shot, 5 possible assist methods
(details in the dictionary)

FAST_BREAK Boolean Did a fast break occur

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 368 Journal of Software Engineering and Applications

Table 2. The GINF table describes the features of the GINF table.

Column Name Data Type Description

ID_ODSP String Unique ID of the game

LINK_ODSP String Link to odd sportal page

ADV_STATS Boolean Availability of advanced statistics

Date Date Date of event

League String The league the match was played in

Season Number The year the season finished

Country Number The country the match was played in

Ht String Home team

At String Way team

Fthg Number Full time home goals

Ftag Number Full time away goals

ODD_H Number Highest home win market odds

ODD_D Number Highest draw market odds

ODD_A Number Highest away market odds

ODD_OVER String Highest over 2.5 market odds

ODD_UNDER String Highest under 2.5 market odds

ODD_BTS String Highest both teams to score market odds

ODD_BTS_N String Highest both teams NOT to score market odds

3. Proposed Configuration

This paper is proposing to use three index files to aid the conversion from natu-
ral language query to SQL. The files being proposed are the Grammar file, Join
file and Index file. The use of these files ultimately describes the structure of the
underlying database which will become the target for searching, while providing
an index like data structure that can be used to identify the database table(s) and
table columns relevant for the database search.

The files describe in this section can be created either manually or through
scripting. The grammar file should be created through the collection of queries
that been used to query the underlying database. With a historic record of prior
questions, the grammar file can be enhanced.

Figure 1 shows an overview of the proposed architecture for the NLIDB solu-
tion being discussed in this paper. The details of which will be expanded in this
section, but the first step is to parse the incoming natural language query using
the grammar file to identify parts of the query and to be able to tag individual
words appropriately. The second step is to translate the natural language into an
SQL statement. The join file and the index file contain the information about the
database; details of this process are discussed below. The final step is the query
itself. Having created the SQL query the next step is to execute the query against
the database.

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 369 Journal of Software Engineering and Applications

Figure 1. Shows an overview of the proposed system.

3.1. Grammar File

The database extraction process which provides data for the three configuration
files manually extracts data from the target database. Thought the process is
manual there is nothing about the structure of the configuration files nor the
data used by the files which stop their creation from being automatic.

The first of these is the Apache Open NLP [9] grammar file which is used to
identify words in the natural language query. The content from the database is
used to create the grammar file, column names from the database tables and the
database tables are used with the grammar file. Separate tags are assigned to each
word which identifies words of importance that can be labelled as either a table
name or column name. The convention for tags is that VB identifies a verb, N
for noun and ADJ for adjective, a full list of tags can be found in Appendix A.
The list of tags is used by convention rather than being statically defined, there-
fore custom tags can be created to fulfil a specific task. This paper uses a custom
tag IRR to identify words that are irrelevant in the conversion from natural lan-
guage to query language. In the example used for this paper, the grammar file is
constructed from entries from both the GINF and EVENTS tables. Questions
posed to the application are also used as part of the grammar file. Table 3 lists
the column names from both source files that are used within the grammar file.

The index data extracted from the GINF table contain 10,643 entries which
are made up of the original entries with some additional data. Entries from the
Events table create an index file with 1201 unique entries in the data. The struc-
ture of the table is made up of potential questions that could be posed to the
NLIDB application. Each word is assigned a tag representing how that word
should be treated. The tags follow the appropriate word and are separated from
it by an underscore.

The grammar file (an extract of which is Figure 2) for this paper uses a couple
of tags, IRR which stands for irrelevant and ensures that the word will be ig-
nored in the conversion from natural language to structure query language. The
IRR tag is defined as being words or values not found within the underlying da-
tabase as either table names, columns or values.

NP, which signifies that the word is important in the conversion process and
states that is a value of significance and will be used within the search as this is
the search criteria. Words tagged with AP signify the table that must be searched.

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 370 Journal of Software Engineering and Applications

Table 3. Lists the entries extracted from the database for inclusion into the index file.

Events GNIF

ID_ODSP ID_ODSP

Side Date

EVENT_TEAM League

Opponent Season

Player County

Player 2 Ht

SHOT_PLACE At

SHOT_OUTCOME Fthg

 Ftag

 ODD_H

 ODD_D

Figure 2. The table is an extract from the grammar file showing the data structure.

Finally, the tag N defines which column the search criteria could potentially be
found in.

3.2. Index File

In addition, the grammar file is the index file. This file is currently created ma-
nually but there is nothing within the file that prevents its creation through au-
tomated scripts. The file contains elements from the database being searched; an
extract from the index file is shown in Figure 3. The data is made up of three
columns; the first column shows the relationship between the table, the table
column and the database value. The index file uses the same tags as the grammar
file to identify elements that are within the database such as the tables, columns
and values. Figure 3 shows that the AP tag is assigned to the value event, this
represents the table. The second value is player which is assigned the tag N,
which represents the column in the table. The third column shows a value in this
case the name of a player (Abdoulaye Diaby) which has been assigned the tag NP.

From this, information the query is beginning to be built and simplistically
the query is “select * from event”. The second column describes which variable
from the table to use as part of the condition. In the example below, the column

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 371 Journal of Software Engineering and Applications

Figure 3. Extract from the index file.

is “player”. This now means that the query is “select * from event where player =”.
The only element missing is the value to search on or in this case the player’s
name. This information comes from the third column labelled NP. From the ex-
tract in Figure 2, there is an extract of abdoulaye#diaby_NP, so the final query is
now “select * from event where player = ‘abdoulayediaby’’’.

3.3. Join File

The above example shows the first step into parsing a natural language query
into simple SQL statement. Not all queries are that simplistic as some will re-
quire that tables are joined to extract the required data. A key aspect is how the
joins between tables can be identified not just from the natural language query
but also from the table structure. One possible solution is from the configuration
within the index files.

This paper suggests using a join file which lists the table and the primary key
for the table. This table (see Figure 4) allows two tables to be joined. The table
contains two entries which are the table name and the primary key of the table.
In the example below, both the Event table and the GINF table can be joined and
both share the same primary key (ID_ODSP).

The process for creating the join file is manual but as discussed above in the
section titled Proposed Configuration there is the possibility of automating this
process. The caveat when creating an automatic script is to identify which tables
have an identifiable relationship as well as what contrives to make that relation-
ship. In the simple case discussed within this paper, the relationship is easy to
identify and easy to create as only two tables exist. In larger more complicated
database environments identifying these relationships may be harder to identify.
Using deep learning techniques to identify which tables are related and how that
relationship exists may be required.

4. Conversion Steps

The solution proposed by this paper allows for the natural language query
“What are the odds on a game involving caro?” to be converted into an SQL
statement using the following steps:

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 372 Journal of Software Engineering and Applications

Figure 4. The join properties file lists the table name with the primary key which allows
multiple tables to be joined.

1) Tag the natural language statement. The Open NLP tagger process takes the
original statement and labels each word r component with a natural language
tag. An example output from the tagging process will look like
what_IRRare_IRRthe_IRRodds_NPon_IRRa_IRRgame_IRRevent_APinvolving_
IRRcaro_NP.

2) Looking at Figure 1 the grammar file identifies that the word event has the
tag “AP”. The conversion process identifies AP as a table. Using this informa-
tion, the first part of the query is “select * from event”.

3) The next step taken by the proposed is to identify that the query should join
the events and the GINF table together as the query is asking for odds from the
GINF table and player (caro) from the events table. The join table specifies that
the tables’ event and ginf are joined by the column ID_ODSP. This creates the
where clause “where event.id_odsp = ginf.id_odsp”.

4) The final step is to identify that the player being searched for is “caro” (see
above). This gives the final part of the query where player = “caro’’.

5) The query can now be joined into select * from events where
event.id_odsp= ginf.id_odsp where player = “caro”.

6) Currently, the select statement just uses “select * from”. The next step is to
retrieve just the requested data or columns from the database. Through the use
and application of machine learning techniques it is anticipated that select eve-
rything could be reduced to selecting only relevant columns from the query.

5. Training the Model

The Open NLP toolkit model uses machine learning algorithms at its core. Hav-
ing created the configuration to be used as a model, the next step is training the
Apache Open NLP model. Training the model is an important aspect of the
Apache Open NLP process. The mathematical models used by the Open NLP
application require that the model is trained. The training allows the model to
perform the word tagging using the grammar file more accurately than would
have been otherwise achieved. The machine learning models used by Open NLP
for training include maximum entropy and perceptron-based machine learning.

The use of a maximum entropy model as described by Ratnaparkhi [8], en-
sures that the model best represents the current state of knowledge. The current
state of knowledge in the case of the model proposed by this paper is the training
set of questions being asked by users to query the underlying data repository.

The solution allows for more questions to be added as the process evolves.
The additional questions can be added as part of an automated process or ma-
nually. Each question added would need to be tagged and the process retrained.
This allows for the continued evolution of the system.

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 373 Journal of Software Engineering and Applications

The tagging model used for this solution is the Part of Speech (POS) tagger
which converts every word into a token. Each token has an associated tag. Open
NLP will use a probability model to predict the correct tag for each word in the
sentence. The fewer the tags used the quicker the performance, this can be seen
from testing and appears to be supported by Taghipour [10] but more thorough
performance testing is required. The tests that were carried out were performed
on whole sentences, which included tags that can be identified as having a data-
base related value. An example of this would be where the name of a database
table or table column appears in the natural language query. In the case of the
natural language query “Which event has Abdoulaye Diaby played in.”, “event”
is an identifiable database table. The sentence can then be processed, and rele-
vant tags will be applied to the parts of the query (see Table 1), irrelevant tags
will be ignored.

The Open NLP model training task process output: The output from training
the model against the grammar file, which contains the list of potential asked
questions that is shown in Figure 5.

As can be seen from the training output, the test was run against a training file
with approximately 36,000 entries that were processed and indexed. From the
36,432 source entries, 11,666 were identified as either significant or unique. The
number of outcomes in Figure 5 refers to the number of possible outcomes from
the model. For the shallow parsing approach proposed by this paper, the number
is not significant. Though not significant for this paper the number of predicates
could indicate the number of sentences in the data frame. The predicate identi-
fies what is happening with the subject of a sentence. Though this might be
helpful when trying to understand the content or meaning of the sentence for
the shallow parse approach being taken by this paper the number of predicates is
inconsequential.

6. Evaluation

During the evaluation phase of the proposed system, the idea was to measure the
performance of the natural language conversion to SQL. The Java Virtual Ma-
chine (JVM) usage was monitored and the code profiled. The details of the pro-
posed system performance are discussed in this section.

Figure 5. The output from the training model.

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 374 Journal of Software Engineering and Applications

6.1. Computer System

The computer used for the development and testing of the application is of a
standard desktop configuration. The very utilitarian nature of the computer used
for developing and testing this solution supports the concept that the conversion
process does not require a large, expensive dedicated server. The specifications
of the test machine for the natural language to SQL conversion are shown in Ta-
ble 4.

6.2. Java Virtual Machine

The Java Machine used for the development and testing of the application is
again a standard build. The application does run on a single JVM instance, the
settings for which are shown in Figure 6.

6.3. Performance Results

The profiling of software allows for some tangible method to measure software
excellence [11] [12]. The tests performed on the software show the resources
used for converting a natural language query into a SQL based query. A number
of tools have been employed to monitor the performance of the application
which includes Java Visual VM from Oracle, YourKit Java Profiler, and the
Coverage tool from JetBrains IntelliJ Java IDE. These tools highlight the com-
puter resources used by the code in terms of virtual memory allocation and call
time per function. The concept of benchmarking software performance provides

Figure 6. The shows the setting for the Java Virtual Machine on the test server. The
output was taken from the Java Visual VM application version 1.8.0_25 (build 140407).

Table 4. Server specifications.

Variable Value

Operating System Windows 7 Enterprise

Service Pack SP1

Processor Intel® Core™ i5-4570 CPU @3.2GHz

Installed Memory 8.00 GB

System Type 64-bit Operating System

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 375 Journal of Software Engineering and Applications

a tangible metric to evidence the performance of a software solution as sup-
ported by Sims et al. [12]. The benchmarking work carried out by Siewiorek et
al. [13] highlights the fact that monitoring memory is key to understanding the
performance of a software solution. These techniques update the work by Gama
et al. [14] and Whaley [15].

The YourKit Java profiler was used to measure the CPU of a conversion from
a natural query to SQL. The profile modelled the application through the re-
quired classes as part of the execution cycle. Figure 6 shows the performance in
milliseconds that each class takes to complete a task. Figure 7 shows just how
much of the code gets executed when converting a simple natural language
query to an SQL statement. For the simple example used as part of the test the
execution time to convert the natural language query to SQL took a total of 665
milliseconds.

The Java Visual VM tool provides detailed information about Java applica-
tions while being executed on a Java Virtual Machine. The performance figures
highlight the fact that no specialist hardware is required to run the process,
which could be hosted on commodity hardware. To substantiate this Figure 7
shows the screenshot from of the Visual Machine usage, that the largest resource
allocation during testing was 42 Mb which accounted for 51% of all memory al-
locations by the virtual machine. Running tests against larger data will use more
resources but the need to move to specialist hardware may not be a requirement,
though further testing will need to be conducted to determine more accurately
resource requirements. Tuning for performance in high throughput environ-
ments can also be managed by distributing resources across a platform when
bottlenecks are identified. More in depth testing will need to be carried out to
understand where and when these limits are reached (Figure 8).

Having completed a conversion and extraction of data from the dataset the
next step was to compare performance the system discussed in this paper with
other comparable systems. For this, the paper by Joshi, Akerkar [7] which pro-
posed a similar approach using a Part of Speech based algorithm for converting
natural language into an extraction-based query. The researchers compared the
performance for two systems and the results are summarised in Table 5.

Table 5. Shows the performance figures from Joshi, Akerkar [7]

Type of Data
No. of Words

Time Required by QTAG
(Used in Enlight)

Time Required by Minipar
(Used in Sapere)

News Extract
Times of India (202 Words)

1.71 secs 2.88 secs

Reply START QA System
(251 Words)

1.89 secs 3.11 secs

University Information
NMU Broacher (226 Words)

1.55 secs 2.86 secs

Brazil Information
Source: Wikipedia (226 Words)

1.67 secs 3.13 secs

Average 1.705 secs 2.995 secs

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 376 Journal of Software Engineering and Applications

Figure 7. Shows the execution time the conversion process took courtesy of the YourKit
Java Profiler.

Figure 8. This shows the memory allocation of the NLIDB process. Courtesy of Oracle’s
Java VisualVM.

The paper [7] did not specify the specification of the computer used to carry
out the benchmark. The questions used by the paper [7] were taken from the
TREC-2005 Question Database but there was some ambiguity in identifying the
actual datasets used for the benchmarking. In comparison, this paper has taken a
much larger dataset and has added the additional complexity of creating a join
between two tables. The natural language questions used by this paper were of a
similar complexity to the questions used in testing carried out by Joshi, Akerkar

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 377 Journal of Software Engineering and Applications

[7] and are listed in Table 6. The average conversion time using the solution
proposed by Joshi et al. was 1.7 seconds with the fastest being 1.5 seconds.

Testing the solution proposed by this paper the conversion time from natural
language to structured query language took consistently under 700 milliseconds.
The datasets from this paper consists of two files one containing over 36,000
events and the other over 11,000 (see Figure 5). Where also larger than the da-
tasets used by Joshi et al. as these datasets contained approximately 220 records
(see Table 5). Table 5 also shows the completion of time for the solution pro-
posed by Joshi et al. and Table 7 also contains the times of each process to com-
plete by the solution discussed in this paper. In summary, the tables highlight
the improvements in performance the approach being taken by the paper as over
existing solutions.

7. Conclusions

There are a number of limitations to the system being proposed in this paper.
The storage space required for the index file and index file might make this solu-
tion unworkable. More testing against larger datasets is also required to under-
stand the limitations and performance of the proposed solution. This paper has
suggested a solution for joining tables together. Further testing would also be
required to validate the performance of joining more than two tables.

The biggest issue that has not been addressed by this paper is that around the
selection of data points being retrieved from the underlying database. Currently,
the solution relies on the statement SELECT * which retrieves all data points
from the tables being searched. Retrieving data from all columns in the target
database could prove to be costly in terms of memory and processing resources.
Refining the SELECT statement could possibly be achieved through the use of
deep learning techniques. It may be possible to identify columns in tables that
have a higher probability of being selected.

Table 6. Sample questions used for performance comparison by Joshi, AkerKer [7].

Who killed militants?

Who did Forman defeat for his first heavyweight championship?

What do frogs eat?

Who visited Bill Clinton?

Who did France beat for the World Cup?

What Shiite leaders were killed in Pakistan?

What is the largest volcano in the Solar System?

What is the longest river in the world?

Table 7. Performance from the proposed system which includes the conversion from
natural language to SQL.

College SQL Conversion Data Extraction

ginf.csv (19531 Words)
events.csv (13697026 Words)

0.665 secs 0.9 secs

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 378 Journal of Software Engineering and Applications

Regardless of the identifiable short comings from the proposed system, the
paper has reinforced the benefits of using part of speech within a framework that
translates natural language into a query language for searching a database. Per-
formance of NLIDB solutions has been an issue that researchers are continually
trying to improve upon [1] [3] [5] [7] [16]. As can be seen from this paper the
performance of the proposed system is an improvement on the performance
recorded by Enlight and Sapere (Table 7).

The shallow nature of the parsing through the use of the natural language part
of speech also reduces the need to understand the complexity underpinning
language nuance. Further work will be carried out to improve the performance
of the proposed system as well as reduce the number of identifiable shortcom-
ings. The proposed work will look at the use of deep learning to refine the select
statement.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Soumya, M.D. and Patil, B.A. (2017) An Interactive Interface for Natural Language

Query Processing to Database Using Semantic Grammar. International Journal of
Advance Research, Ideas and Innovations in Technology, 3, 193-198.

[2] Kim, M. and Kim, H. (2018) Dialogue Act Classification Model Based on Deep
Neural Networks for a Natural Language Interface to Databases in Korean. IEEE
International Conference on Big Data and Smart Computing, Shanghai, 15-17 Jan-
uary 2018, 537-540. https://doi.org/10.1109/BigComp.2018.00090

[3] Bais, H., Machkour, M. and Koutti, L. (2018) An Arabic Natural Language Interface
for Querying Relational Databases Based on Natural Language Processing and
Graph Theory Methods. International Journal of Reasoning-Based Intelligent Sys-
tems, 10, 155-165. https://doi.org/10.1504/IJRIS.2018.092221

[4] Li, Y.Y. and Rafiei, D. (2017) Natural Language Data Management and Interfaces:
Recent Development and Open Challenges. Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, Chicago, 14-19 May 2017, 1765-1770.
https://doi.org/10.1145/3035918.3054783

[5] Jwalapuram, P. and Mamidi, R. (2017) Domain Independent Keyword Identifica-
tion for Question Answering. International Conference on Asian Language
Processing, Singapore, 5-7 December 2017, 95-98.
https://doi.org/10.1109/IALP.2017.8300554

[6] Voorhees, E.M. (2001) The TREC Question Answering Track. Natural Language
Engineering, 7, 361-378. https://doi.org/10.1017/S1351324901002789

[7] Joshi, M.R. and Akerkar, R.A. (2008) Algorithms to Improve Performance of Natu-
ral Language Interface. International Journal of Computer Science and Applica-
tions, 5, 52-68.

[8] Ratnaparkhi, A. (1996) A Maximum Entropy Model for Part-of-Speech Tagging. In:
Conference on Empirical Methods in Natural Language Processing, Association for
Computational Linguistics, Stroudsburg, 133-142.

https://doi.org/10.4236/jsea.2019.129022
https://doi.org/10.1109/BigComp.2018.00090
https://doi.org/10.1504/IJRIS.2018.092221
https://doi.org/10.1145/3035918.3054783
https://doi.org/10.1109/IALP.2017.8300554
https://doi.org/10.1017/S1351324901002789

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 379 Journal of Software Engineering and Applications

http://aclweb.org/anthology/W/W96/W96-0213

[9] Baldridge, J. (2005) The OpenNLP Project. http://opennlp.apache.org/

[10] Taghipour, K. and HweeTou, N. (2015) One Million Sense-Tagged Instances for
Word Sense Disambiguation and Induction. In: Proceedings of the Nineteenth
Conference on Computational Natural Language Learning, Association for Com-
putational Linguistics, Beijing, 338-344. https://doi.org/10.18653/v1/K15-1037
http://www.aclweb.org/anthology/K15-1037

[11] Deuter, A. and Hans-Jürgen, K. (2015) Applying Manufacturing Performance Fig-
ures to Measure Software Development Excellence. In: Software Measurement,
Lecture Notes in Business Information Processing, Springer, Cham, 62-77.
https://doi.org/10.1007/978-3-319-24285-9_5

[12] Sim, S.E., Easterbrook, S. and Holt, R.C. (2003) Using Benchmarking to Advance
Research: A Challenge to Software Engineering. 25th International Conference on
Software Engineering, Portland, 3-10 May 2003, 74-83.
https://doi.org/10.1109/ICSE.2003.1201189

[13] Siewiorek, D.P., Hudak, J.J., Suh, B.H. and Segal, Z. (1993) Development of a
Benchmark to Measure System Robustness. The 23rd International Symposium on
Fault-Tolerant Computing, Toulouse, 22-24 June 1993, 88-97.
https://doi.org/10.1109/FTCS.1993.627311

[14] Gama, K., Pedraza, G., Lévêque, T. and Donsez, D. (2011) Application Management
Plug-Ins through Dynamically Pluggable Probes. Proceedings of the 1st Workshop
on Developing Tools as Plug-Ins, Waikiki, 28 May 2011, 32-35.
https://doi.org/10.1145/1984708.1984718

[15] Whaley, J. (2000) A Portable Sampling-Based Profiler for Java Virtual Machines.
Proceedings of the ACM Conference on Java Grande, San Francisco, 3-4 June 2000,
78-87. https://doi.org/10.1145/337449.337483

[16] Brad, F., Iacob, R., Hosu, I. and Rebedea, T. (2017) Dataset for a Neural Natural
Language Interface for Databases (NNLIDB). Proceedings of the 8th International
Joint Conference on Natural Language Processing, Vol. 1, 13 p.
http://arxiv.org/abs/1707.03172

https://doi.org/10.4236/jsea.2019.129022
http://aclweb.org/anthology/W/W96/W96-0213
http://opennlp.apache.org/
https://doi.org/10.18653/v1/K15-1037
http://www.aclweb.org/anthology/K15-1037
https://doi.org/10.1007/978-3-319-24285-9_5
https://doi.org/10.1109/ICSE.2003.1201189
https://doi.org/10.1109/FTCS.1993.627311
https://doi.org/10.1145/1984708.1984718
https://doi.org/10.1145/337449.337483
http://arxiv.org/abs/1707.03172

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 380 Journal of Software Engineering and Applications

Appendix A

The standard list of tags and definitions used by Apache Open NLP (These tags
are not a definitive list and are used by convention).

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Propernoun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non 3rd person singular present
VBZ Verb, 3rd person singular present
WDT Whdeterminer
WP Whpronoun
WP$ Possessive whpronoun
WRB Whadverb

Appendix B

The data is from the dictionary text file. The data contains a dictionary with the
textual description of each categorical variable coded with integers event_type.

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 381 Journal of Software Engineering and Applications

1) Announcement
2) Attempt
3) Corner
4) Foul
5) Yellow card
6) Second yellow card
7) Red card
8) Substitution
9) Free kick won
10) Offside
11) Hand ball
12) Penalty conceded
EVENT_TYPE 2
13) Key Pass
14) Failed through ball
15) Sending off
16) Own goal
SIDE
1) Home
2) Away
SHOT_PLACE
1) Bit too high
2) Blocked
3) Bottom left corner
4) Bottom right corner
5) Centre of the goal
6) High and wide
7) Hits the bar
8) Misses to the left
9) Misses to the right
10) Too high
11) Top centre of the goal
12) Top left corner
13) Top right corner
SHOT_OUTCOME
1) On target
2) Off target
3) Blocked
4) Hit the bar
LOCATION
1) Attacking half
2) Defensive half
3) Centre of the box
4) Left wing

https://doi.org/10.4236/jsea.2019.129022

R. Skeggs, S. Lauria

DOI: 10.4236/jsea.2019.129022 382 Journal of Software Engineering and Applications

5) Right wing
6) Difficult angle and long range
7) Difficult angle on the left
8) Difficult angle on the right
9) Left side of the box
10) Left side of the six yard box
11) Right side of the box
12) Right side of the six yard box
13) Very close range
14) Penalty spot
15) Outside the box
16) Long range
17) More than 35 yards
18) More than 40 yards
19) Not recorded
BODYPART
1) right foot
2) left foot
3) head
ASSIST_METHOD
1) None
2) Pass
3) Cross
4) Headed pass
5) Through ball
SITUATION
1) Open play
2) Set piece
3) Corner
4) Free kick

https://doi.org/10.4236/jsea.2019.129022

	A Shallow Parsing Approach to Natural Language Queries of a Database
	Abstract
	Keywords
	1. Introduction
	2. Football Events Data
	3. Proposed Configuration
	3.1. Grammar File
	3.2. Index File
	3.3. Join File

	4. Conversion Steps
	5. Training the Model
	6. Evaluation
	6.1. Computer System
	6.2. Java Virtual Machine
	6.3. Performance Results

	7. Conclusions
	Conflicts of Interest
	References
	Appendix A
	Appendix B

