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Abstract—In this paper, the target tracking problem is in- measurement technologies which include, but are not limited
vestigated for a class of wireless localization systems with de-to, time-of-arrival (TOA) method [43], time-difference-of-
graded measurements and quantization effects. The measurement 5 riva| (TDOA) [12] scheme, angle-of-arrival (AOA) approach

degradations induced by unreliable channels are characterized . . .
by a random parameter matrix, and the quantization effects are [27], received signal strength (RSS) strategy [2], and their

modeled by sector-bounded uncertainties. A recursive filtering combinations [5], [24], [32]. In order to obtain the precise
algorithm is proposed in order to track the plant states as target position, atwo-step localization scheme is usually
accurately as possible. An upper bound on the filtering error ytilized in the localization approaches [38], [43]. First, the
covariance is first derived and such an upper bound is then gangors measure their distance to the target and transmit the
minimized by properly designing the filter gain at each sampling . . .
instant. The desired filter parameters are obtained by solving measurement data to th_e corr_espondlng Iead.er unit (either a
two sets of Riccati-like difference equations that are in a cCluster head or a computing unit). Then, an estimate of the tar-
recursive form suitable for the online application. Finally, a get position is generated based on the received measurements
simulation experiment is carried out for the scenario of personnel [33]. Note that the distance between the sensors and the target
localization/tracking problems in a mine industrial site and the 5 often modeled by certain nonlinear functions and, therefore,
effectiveness of the proposed filter method is demonstrated. . . e .
various nonlinear filtering algorithms have been developed to
Index Terms—Target tracking; recursive filtering; wireless  deal with the target tracking problem for wireless localization
localization system; degraded measurement; quantization. systems, where the covariance matrix of the estimation error
has been used to determine the next tasking node or the
[. INTRODUCTION sampling instant so as to improve the tracking accuracy [17],
In industrial manufacturing processes especially safetyt9], [39]. In [34], a new target tracking strategy has been
critical systems, it is highly desirable to avoid adventitiouéstablished for wireless sensor networks, where the maximum
accidents which might lead to unexpected injuries and lodéelihood estimation method and Kalman filtering technology
es. In this case, developing effective personnel/equipméy@ve been employed to eliminate the linearizing error of the
monitoring system is of practical significance in preservingxtended Kalman filtering algorithm.

the operation and personnel safety. In particular, personneiyjireless communication is a typical network-based commu-
positioning plays a key role for personnel monitoring to ensufgcation mode where the signal transmissions are likely affect-
the safety of personnel working in a hazardous workplace. & by certain physical constraints including sensors aging and
engineering practice, wireless localization systems are usuajfifited bandwidth [8]. Accordingly, various network-induced
employed for safety control based on distributed sensing strg$¢renomena might occur during the wireless communication
gies [1], [6], [20], [23], [25], [26]. Briefly speaking, the main\yhich include, for instance, missing measurements, transmis-
function of a wireless localization system is to track workergon delays and degraded measurements [18], [29], [41], [42].
and mobile equipments in industrial sites, thereby helping for the filter design issue over wireless communication, if
achieve the accurate perception of security information in thge underlying network-induced phenomena are not properly
industrial manufacturing process. o ~ dealt with, it would be quite difficult to achieve a satisfactory

In practical systems, many different localization/trackingjtering performance. So far, considerable research attention
methods have been introduced to meet specific indusiys peen devoted to the filtering problems with different
requirements. In _general, the proposed _Iocalization/trgckiﬂgtwork_induced phenomena [8], [9], [22], [28], [36], [44]. In
approaches are implemented based mainly on the distapgticular, an increasing research interest has been paid to the
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is the signal quantization [47], which is caused mainly by the
limited channel capacity [36]. Up to now. a series of theoretical
results have been available on the filtering/estimation problems
for various systems with quantization effects, see e.g. [4]. [10].
[15]. [37]. [45] and the references therein. For example, in
[10]. the distributed filtering problem has been studied for
time-varying systems over sensor networks subject to quan-
tization effects. In [45], the quantization technique has been
adopted to decrease the transmission rates for energy saving.
Note that quantization effects would lead to additional errors
on the available measurements [15], which may degrade the
filtering/estimation performance. Nevertheless, in the context
of wireless localization systems, the corresponding results
have been very few despite the importance of compensating
quantization errors for guaranteeing satisfactory monitoring
performance, and this constitutes another motivation for the
current investigation.

In view of the above discussion, in this paper, we aim to de-
sign a recursive filtering algorithm for the target tracking issue
of the wireless localization system subject to both degraded
measurements and quantization effects, thereby facilitating the
real-time personnel tracking and improving the safety manage-
ment level in the industrial site. Considering that the signal
transmission between the target and the sensors is severely
affected by the unreliable wireless channel in a complicated in-
dustrial environment, a stochastic model is adopted to describe
the degradation phenomenon of the distance measurement
process. In addition, the signal transmission between the
sensors and the filter is affected by a logarithmic quantization.
A recursive filtering algorithm is designed such that an upper
bound of the filtering error covariance is guaranteed and then
minimized by appropriately designing the filter gain.

The main technical contributions of this paper are sum-
marized as follows. 1) In order to reflect the reality of the
constrained communication, both the degraded measurements
and the signal quantization are considered in the measurement
model of the wireless localization system. 2) A dedicated
recursive filtering algorithm is developed to guarantee the
filtering performance of the target tracking, where the desired
filter gain is calculated recursively which is suitable for online
application. 3) The developed filter scheme is applied to
the mine industrial site to improve the performance of the
personnel tracking, and is therefore propitious to enhance the
safety management capability in the industrial manufacturing
process.

Notation: The notation used here is fairly standard ex-
cept where otherwise stated. R™ and R™*™ denote the n-
dimensional Euclidean space and the set of all n x m real
matrices, respectively. The notation X > Y (respectively,
X > Y), where X and Y are real symmetric matrices,
means that X — Y is positive definite (respectively. positive
semi-definite). I denotes the identity matrix with compatible
dimension. AT and A~! represent the transpose and inverse of
matrix A, respectively. E{z} stands for the expectation of the
random variable z. o denotes the Hadamard product defined
by [Ao Bl;; = A;j - B;j. tr(-) represents the trace of a matrix.
diag{ Xy, Xo,...,X,} stands for a block-diagonal matrix
with matrices X1, Xo,...,X,, on the diagonal. Matrices are
assumed to have compatible dimensions if their dimensions

are not stated explicitly.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a wireless localization system deployed in the
maintenance platform for the reliable operation of mine hoister
as shown in Fig. 1. The target moves in the monitored area
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Fig. 1: Maintenance platform for the reliable operation of mine hoister

whose position and velocity are described by the following
vector:

zr = [z1(k) vi(k) z2(k) va(k)]” (1)

where z;(k) and v;(k) (i = 1,2) denote, respectively, the
coordinate values of the target positions and velocities along
the x; axis at time ¢;. The dynamics of z}, is given as follows
[30]. [33]:

Tr1 = ApZk + Bjwy ()
where
1 Aty 0 0 A% 0
o AR A e
0 0 0 1 0 Aty
and Aty = tpy1 — t; represents the time interval between

two successive sampling instant of the wireless localization
system. wi = [wi(k) wo (k)]T is the white Gaussian noise
with zero mean and covariance matrix R,,. Here, w;(k) and
wo(k) are the noise components along the z; and zo axes,
respectively, which are not correlated with each other.

Next. let us introduce the measurement output of system
(2). Suppose that there are m tasking sensors, and the cor-
responding measurement data of the i-th sensor at time ;. is
r; (k). The signal transmissions between the target and sensors
are implemented via an unreliable wireless medium leading to
measurement degradations. In this paper, 7; (k) is described by:

ri(k) = Brgi(zk) + &, 3)



where the measurement coefficients 3 (i = 1,--- ,m) are
mutually independent random variables having the probability
density function pj (s) on the interval [0, 1] with mathematical

expectations 3}, and variances v}. £} is the measurement noise.
gi(zr) is the (flstance function given as

gilor) = /(@1 (k) = 27,.)2 + (2 (k) — 23,.)2

where z7 ; and z7, denote the coordinate values of the i-th
sensor node along the x; and z9 axes, respectively.
For notation simplicity, we let

)
Uk = 2: ;o glzk) £ gQ:k - @)
rm (k) 9m (k)

Then, the measured signal is rewritten as:
Uk = Zxg(zr) + &k (5)

where & = [& & - '"]T is a zero-mean Gaus-
slan noise sequence with covariance matrix Re. and = S =
diag{ ﬂ,{ -, Bi* } with the mathematical expectation = =
diag{3; ,Bk, -+, By*}. In addition, the measured signal would
be quantized before being transmitted to the filter. The quantiz-
er h(-) = [h1(-) ha() B (- )] is assumed to be of
the logarithmic type. Particularly, for each h;(-) (1 < i < m),
the set of quantization levels is described by

U= {zp? 1P = Xip§,i=0,£1,£2,...3U {0},
0<X; <1#(J)>0 (6)

where A; (j 1,2,...m) is the so-called quantization
density. The number of the quantizer level is supposed to
be sufficient large. Each quantization level corresponds to a
segment such that the quantizer maps the whole segment to
this quantization level. The logarithmic quantizer h;(-) is given
by

#SJ) 1+16] #EJ) < y(J) < - 6, #SJ)
hj(ri(k)) =<0, 79 =0
—hj(rj(k)), 7 <0

(M
where §; = (1 — &;)/(1 + &j). It follows from (7) that
h;(r;(k)) can be expressed as h;(r;(k)) = (1+ AY)r; (k)
for certain AY with |AY)| < 4;. According to the
above transformation, the quantization effects can be trans-
formed into the sector-bounded uncertainties. Defining Ay =

dlag{A(l) -Afcm)}, the measurement after quantization is
expressed as

z = (I + Ak)Tg- 3

Combining with the measurement description (5), we have
zr = (I + Ak)(Erg(zk) + &k)- ©)

Letting A = diag{6y,--- ,0,n} and Fy = ApA~1, we know
that Fj is a time-varying matrix satisfying FkFE <I.

Remark 1: The recursive filtering scheme subject to de-
graded measurements and quantization effects is illustrated in
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Fig. 2: Filtering for target tracking in wireless localization systems with
degraded measurements and quantization effects

Fig. 2. It can be found that the transmissions between the
target and the filter could be divided into two stages. The first
stage is the sensing process where the position information
is measured by sensors suffering from measurement degrada-
tions, and the second stage is the communication stage where
the measurements would be transmitted to the filter via the
communication channel subject to quantization effects.
Remark 2: The signal quantization is a common network-
induced phenomenon, which is mainly caused by the limited
transmission capacity in the wireless network. The signal
quantization has a significant impact on the system perfor-
mance [21]. [31]. There are two kinds of quantization schemes
widely adopted in the literature, namely. the uniform quanti-
zation and the logarithmic quantization. Generally speaking,
a uniform quantizer has uniformly-spaced quantization levels
throughout the range. Hence, small-amplitude signals have the
same quantization levels to large-amplitude signals, which im-
plies that small-amplitude signals will lead to a lower signal-
to-noise ratio (SNR). Compared with the uniform quantizer,
logarithmic quantizer could ensure a steady SNR for both
small-amplitude signals and large-amplitude signals. In this
paper, the logarithmic quantizer is adopted to guarantee a
satisfactory SNR for the wireless localization system.

III. RECURSIVE FILTER DESIGN

In this section, the recursive filter design is investigated
for the time-varying system in the simultaneous presence of
degraded measurements and quantization effects. A sufficient
condition for the design of filter parameter is established to
guarantee an upper bound of the filtering error covariance.
Furthermore, such an upper bound can be minimized by
properly designing the filter gain parameter.

A. Filter Structure

In this paper, from (2) and (9), the recursive filter is designed
as follows:

ry1/k = Arr/k (10)
Fht1/k+1
= Zr41/k + K1 (2k+1 - Eak+19(ik+1/k)) (11)

where %1/} and 2,1 /x4 are the one-step state prediction
and the estimation of zx4+1 at time k + 1, respectively. Kx4+1
is the filter gain to be determined. The prediction and filtering



errors as well as the corresponding covariance matrices ar&xpandingg(zx1) in a Taylor series around;,,;, we

defined by derive that
Tht1/k = Thit — Bpg1n 9(@k+1)
Stk 2 B{E 1 /nEh 1 p s 12) = 9(@k+1/6) + Gr1Zrgrsk +0(|Trrayel)s  (20)
Tl 1 ht1 = Tht1 — Bhot1 Jhot 15 whereGyy1 £ 9g(x)/0x]o=z,.,,, ando(|Zx1,|) stands for

the high-order terms of the Taylor series expansion.
As shown in [16], the high-order terms can be transformed
into the following formulation:

A mra T
Tkt = E{@rp1/m1 41 pp1 }-

B. Filter Design

In the next process, the one-step prediction and filtering
error covariances are first calculated, and then an upper bowitereCy1 € R™*" is a bounded problem-dependent scaling
of the filtering error covariance is derived. In particular, aatrix, L+; € R™*™ is introduced to provide an extra free-
sequence of positive-definite matric&s,, (0 < k < N)is dom degree to tune the filter, and the unknown time-varying
found to ensureZ;, < P/, and, subsequently, the desirednatrix ¥y, € R"*" satisfiestHN}fH < I accounting for
filter gain is obtained by minimizing such an upper bound. the linearization errors of the measurement model.

Before proceeding, the following lemmas are recalled which Based on (12) and (19)-(21), the filtering error is rearranged
will be used in later developments. as follows:

Lemma 1: [13] For any given vectors{,Y € R™ and a
positive scalae > 0, the following inequality holds

o(|Zp1/kl) = Crp1Ner1 Lkt 1T 41 ks (21)

Tppr/err = = Kpp1 V1) Trga /e — Ki
T T T, 1T X[ + Frp1M)Zp 1 — Exr1]9(wri1)
e serte e 0 (T4 Boya ) @2)

Lemma 2: [40] For Given matricesd, H, E and F' with \yhere
appropriate dimensions anBl satisfying FFT < I, let X

be a symmetric positive definite matrix andbe an arbitrary Wit = Ekt1(Grar + Crpa Vi1 Lt). (23)
positive constant such that'/ — EXET > 0. Then, the  prom (12), the covariance of the filtering error is given as
following inequality holds: follows:
(A+ HFE)X(A+ HFE)" Skt1/kt1
_ —1 _
<AX ' —~ETE) AT +47'HHT.  (14) = — Ky V1) Sh1 /(I — Kig1 Wpgr)”
Lemma 3: [11] Let A be a real-valued matrix an® = —E{( - K’“J“l\ll“l)jkfl/k[[{k“
diag{b1,bs,- - -,b,} be a diagonal random matrix. Then, one X (I + Fyps10)Epp1 — Zpy1)g(ziin)] "}
has = K1 E{[(1 + Fi10)Ek11 — Epg]g(Tr41)
E{b7} E{blgﬂ‘ o E{biby} X (I = K1 k1) Tpp1yn)” }
E{BABT} — e o + Kp 1 B{[( + Fr1A)Er1 — Erta]g(@rr1)
5 : - - X " (@) [(+ Frin M) — S "I K
E{bpbr} E{bpbo} - E{by} s + Kt (I+ Fop M Re(I + Fon MK, (24)

h is th q d q Now, we are in the position to present our main results.
whereo s t .eHa amard product. The filter parameters are designed such that an optimized
Lemma 4: [15] For 0 < k < N, suppose that two \;5her hound on the filtering error covariance is derived at each

symmetric matricesX, Y satisfy 0 < X <Y, Si(X) = sampling instant, and the design procedure is summarized in
SE(X) € R™™ and S,(X) < Si(Y). Then, the solutions ¢ following theorem.

My, Ny, to the following difference equations: Theorem 1:Consider the covariance matrices of the one-
Myt < Si(My),  Nyg1 = Sp(Ny) (16) step prediction error and the filtering error in (18) and (24).
N ’ Let 1, €2, €3, 71, 72 be positive scalars. Assume that the
with the initial condition0 < Ny = M, satisfy My < Ny. following two discrete-time Riccati-like difference equations:
From (2), (10) and (12), the one-step prediction error an B T T
the corresponding covariance matrix are obtained as follows: *+1/+k — APy A” + Belo By, (25)
. . Pri1/k41
The1/k = AkTr/k +TB’€W7€7 . an - (1+e1)( — Kpt1Z541Grt1)
Ek+1/k = AkEk/kAk + BkaBk . (18) % [ijrll/k _ ’71L£+1Lk+1]_1(1 _ Kk+1ék+1Gk+1)T
Moreover, the filtering error is given by: + Kt {1+ 1)y ' Err1 Crn Ciig Sy + (L 67
Tt1/k+1 X [(1+ €3)Zp1 0 Mir + (1 + 5 Htr{ g1 H]

= Ttk — Kig1 (21 — Srs19( s /n))- (19) + (Rt = ATA) T 4 T KT (26)



X K1+ Kiy1(I 4+ FraA)Re(I + FreaA)" Ky
(30)

with the initial condition ¥g,0 = Fp/o have positive definite
solutions ¥ 1 /x and Xj 1 /x4 such that, forall0 <k < N
From Lemma 2 and (27), it is easy to obtain
(I — Kps 193 1) Spp1/n(l — K1 Upsn)”
Ki11Zk41Ck 18k 41 Lk 1)

(27) -
(I — Ki41Zk41Grs1

the following constraints
T — Li+1Prey1k LT >0

X Bps1/k(L = Kk 1Zk41Gry1

T

{ Y5 'T — AR:AT >0
are satisfied where
Ep1 = diag{v}, v3,--- v}, — Ki41Zk41Chks1Re41Lk41)
T _
o o Qam <({- Kk+1-—'k+1Gk+l)[Ek+1/k Y1Liy1Li+1]
: : : : + 71 " Kr1Zk01Ce1 O Eh 1 Ky (1)
Am1 QAm2 - Qm
=Bi)+vi, (i=1,2,---,m) Setting 2 — [1; 23,]" and & — [z1(k) za(k)]”,
_ o one has g;(z1) = |2 — z||. which further results in
=ﬂ;cﬂi7 (27&]7 "'7.7=172"' m) 5 .
Ori1 = AMEri1 0 M1 JAT, lgi(zrs1) — gi(@)ll = €41 — 27N — 12 — ||
< #k+1 — Ekl < llzr+1 — zel|-
Mg =tr [m(l +€2) Pry1/k
m Accordingly, it is easy to check that the nonlinear function
+ Z(l +€{1)5§i k+1i?k+1]f gi(xx) satisfies g?(zx) = ||g:(zx)|| < ||zx — Z7||. Hence, we
~ ’ ’ have
Zi k1 = Trp1/k — I;» m m
w=[ri, 0 3, 07 lgi)ll = ([ D g2(@e) < (| D Iz — 22 (32)
! ’ o ' =1 i=1
Then, the desired filter gain K}, is given by which implies
E{9(zrs1)9" (zk+1)} < E{llg(ze+1)|*} T
Ky m
— = —* 12
= (L+e)[Py i ’71L£+1Lk+1] 'GlEin <E {Z lzx+1 — Z7 ]|
x {(1+ €1)Zr41Gr1 [Py, k+1/k —y1Li 41 Lies] ™! m
=Y o {E{(zer1 — %) (zrs1 — )"}, (33)
Based on Lemma 1., we arrive at
T

X Gk+1~k+1 + (14 ~k+10k+lck+1-k+1
+ (147 1)[(1 + 53)-—k+1 o k41
+ (143 )er{ s ]

E{(zr+1 — Z})(@es1 — Z7)" }
= E{(Zr+1/k + Zik+1)(Trt+1/k + Fik+1) }
—1\ s 27
(34)

(28)
S E{(1 + e2)Fs1/kTpp1/k + (1 +€3 ) Fikr1%] 11}
T

+(Rgt = pATA) a5}
under which the matrix P,/ is an upper bound for
Yrg1/kers 1 Brgryegr < Peyaka o
Proof: Based on Lemma 1. the second and third terms of =(1+e)Sm+ Q1+ e3 )Fi k1% ki1
the right-hand side of (24) are rearranged as follows:
and hence
E{—[I — Ki+1Px+1]Zk11/k T
- N E{9(zx+1)g" (Th+1)} < Qi (35)
X [Ki+1[(I + Frs1A)Zkt1 — Exs1]g(@riayw)]”
— [Kk+1[(I + Fie+1A)Ek41 — Elc+1]9(-”b‘k+1/k)] where
X [(I = Ki41Pk41)Trp1/k] } Qpey1 =tr[m(1 +22)8k 417k
< e[l — Kip1 Vi | Zpqanll — K1 Wrya] =
- = 1465 #1301 |1 36
+ &7 K1 E{[(I + Fr41A)Zk41 — Ert1]9(Th+1) + ;( +e3 )2 ’k“I"k“] (36)
—Zen|TIKT.. (29) . R
+ k+1 According to Lemma 1 and Lemma 3, one has
E{[(I + Fr41M)Ers1 — Exr1]9(zr41)g" (Tht1)
- Ern]"}

X [(I + Fr4+1A)Zk41
<E{(1+£3)(Er+1 — Ext1)9(Ths1)9” (Ths1)
Sir)T 4+ (1 + 3 ) Frs1AZks

X (Epg41 — 2
T T
X 9(Tk+1)9" (Tt+1)Z41AF i1}

-1
X g (Tr4+1)[( + Fie41A)Ek+1
Then, it follows from (24) and (29) that
Yks1/k+1
(I +e1)( = K1 Pr41)Zpp1/6 (0 — Kiep1Whi1)
Ek+1 — Skt1]

<
+ (1 +eTHEKr 1 B{[(I + Fry1A)Zrs1
X 9(z4+1)9" (@r41)[(I + Fr1A)Zps1 — Zira]”}



= (1+€3)Zks1 0 E{g(wrin)g” (@ren)} + (1 +57) function gu(z,) satisfiesg?(ax) = ou(a)| < lai — &)
= T Even though the computation of the filter parameter leads to
“ FkHAfHkH ° E{g(wir)g” (@) DAFis the conser%atism of trl?e result, it is propitli%us to realize the
< (L+e3)Zh1 0 Qrr + (L+e3)tr{dnr},  (37) filter design conveniently.
where Remark 4:1t is well known that the traditional Kalman
. filter has been widely adopted dealing with the estimation
Ori1 = MExp1 0 Qyr JAT. (38) problem of the time-varying linear system. The conventional
extended Kalman filter has been widely employed to deal

Furthermore, it follows from Lemma 2 and (27) that _ S .
with the filtering problem for nonlinear systems, where the

(I + Fpp1 M) Re(I + Fr AT involved nonlinearity would be linearized and the correspond-

< (Rgl — 1 ATA)! + 72—1[_ (39) ing Iinearizatiqn error (i.e. the high-order terms capsed by the

Taylor expansion) is simply neglected, which inevitably leads
In view of (30), (31), (37) and (39), we obtain to conservatism in certain cases. In [3], Calafiore proposed a
w more accurate approach to depict the high-order terms in the
kt1/k+1 - Taylor series in terms of parameter uncertainties. Similarly,

< (I +e)( = K1 Zp 1 Grpa) in this paper, we use the deterministic matitx and the
X [E,;jl/k — 1 Lp Ley1) M (I = Kiy1Zk01Gn) - scaling matrixL;, to account for the linearization errors in

- T =T 1 obtaining the matrixA;, which is shown in (21). For more
+ Ken {1+ e B Cen Cpn B + (THE7) Goiis e refer the reader to Appendix C of [3] where a nice
X [(1 4 €3)Zpt1 0 Qg1 + (1 + 5 ) tr{dpr1}H] interpretation has been given. In addition, It can be seen from
+ (Rgl — ATA) "+ 72—1]}](,{“, (40) (21) that the high-order terms in the Taylor series expansion
are commonly bounded, then it is reasonable to regard them

From (25) and (26), matrix..1/r41 can be viewed as 55 deterministic uncertainties affecting the system matyix
a function of P/, i.e., Pry1/k1 = fu(Prsr), Where fi(-)

denotes the specific functional relationship betwégn; /5,1
and Py /,. Moreover, noting thats, 1 /p11 < fe(Zk/k),
T
= -y and Py, = Xg/0, Wwe conclude from Lemma 4 _ ) L
i;fa(lt)E 0 <P 0/0 0/0 In this section, we present an application example for the
To Sgtlélrgrfning thkg lﬁ/llt“érrl .gain we take the partial derivativ ireless localization system to illustrate the effectiveness of

: - ... the proposed filter design scheme.
of P, with respect tok’ and let such a derivative ; . .
be zkej;(l)/kﬁen we hgve h Consider the wireless sensors that are deployed in the

maintenance region as shown in Fig. 1. The distance mea-

IV. APPLICATION TO THELOCALIZATION IN THE
INDUSTRIAL CITES

Ot ( Py k1) /0Ky surements are obtained from sensors deployed in the wireless
= —2(1+51)[Pz§+11/k —Lf 1 L) T G Bl localization system for mine personnel-safety monitor. The

_ . T’ _, ‘target’ is fixed on the safety helmet (the worker must wear

+ 2K {(1 + 51):k+1Gk+1[Pk+1/k =MLy 1 L] the helmet while working in the region), which periodically

x GE S +(1+ 61)7{1§k+10k+1013+1§f+1 broadcas_t its_ identity and time stamp ir_1formatio_n through the
1 = 1 communication channel. Sensors receive the signal and then

+ (1 +er )+ e3)Skr o iy + (1 +657) generate the measurements which are transmitted to the filter.

X tr{gpr1 H] + (R; ' —72ATA)" 44511} = 0. (41) Based on the received measurements, the estimates are derived

The filter gain is calculated as shown in (28) which minimize\%a the filtering algorithm and transmitted to the computer for

e upper b, of the Ttering eror covarance, s S1SPONANG cosperatue cont plementaton,
Therefore, the proof is complete. [ | P ’ P 9

Remark 3:In this paper, we focus our attention on théarget tracking task and the target node is within the radio

filter design for the nonlinear systems with white Gaussi ‘Enge of sensors in the maintenance region. As shown in Fig. 1,

noise. The recursive filtering is one of the mostly investigat elgoor(()jn;atesdo{OSgnsotsﬁ artg (2|O’_2r)h' (t207 123' (10, 14)|’
technologies dealing with the state estimation problem with’ ), (0,2) and(10,0), respectively. The target moves along

white noise. At each iteration step, we can compute the desit%%?ain _eIIipticaI trajectory With_a_qonstant_speed. The sampling
filter parameter based on the solution of two discrete-tin‘?eerIOOI 'SAAt’“ = 200 ms. The |n|t|a%l position of the target is
Riccati-like difference equations. Note that the solution ¢fl0> 1) Zoj0 = [10 013 1 0]" and Pyyg = lixa. For

the Riccati-like difference equations could be easily obtaindde algorithmic quantizer, we spt/) = 1 andX; =09 (j =

by iterative computation, which implies that the feasibilityl, . - -, 6). The statistical characteristics gf are given agl;, =

of the filter design could be guaranteed. In Theorem 1, tRed andv; = 0.04. Other parameters are chosenas= 1,
desired filter parameter is derived based on the value of = 100,90 =1 = €2 = 0.6, Cy 1 = 0.01/gx andLy41 =

Py 1)1, Which could be computed recursively according to tw@().0114x4 O4X2}T. Furthermore, the covariance matrices of
discrete-time Riccati-like difference equations. In the compuoises are set aB,, = 0.0114x4 and Re = 0.115x¢.

tation process, certain scaling methods have been employed tBrom Theorem 1, the filter parameters can be designed
deal with the inequalities, which would “amplify” the corre-recursively and the corresponding simulation results are shown
sponding filtering error covariance. For example, by applyirig Figs. 3-9. In particular, to reveal the effects of degradation
the trigonometric-inequality-based technology, the nonlineand quantization on the distance measurements, Fig. 3(a) plots



the measurements of Sensor 3 with and without degradation,
and Fig. 3(b) plots the measurements with and without quanti-
zation effects. Clearly, the degradation and quantization effects
have led to non-negligible errors for the measurement signals.

For purpose of demonstrating the superiority of the pro-
posed filtering algorithm, the mean square error (MSE) is
adopted to evaluate the estimation accuracy of the target
position. Let MSE;(k) = (1/9) X5, (z:(k) — #:(k))? be
the mean square error of z;(k) (i = 1,2), and M SE3(k) =
(1/9) T [(@1 (k) —21(k))*+ (2 (k) — 32 (k))?] be the mean
square error of the target position estimate, where ¥ = 100
is the number of Monte Carlo simulations and Z;(k) is the
estimate of z;(k) at time ¢;. Fig. 4 shows the trajectory of
log(M SE;(k)) (i = 1,2) and the corresponding upper bound.
It can be seen that the error covariance for each component
stays indeed below its upper bound.

Fig. 5 plots the actual moving trajectory and the position
estimate of the target in the two-dimensional plane. Let
E. = (I/N)LN, V@) — 21(8) + @2(k) — 22(F)?
be the mean square error of the estimation from instant 1
to N = 200. The mean square error between the actual
trajectory and the estimate of the proposed filter is about
E. = 0.43m. Furthermore, the actual coordinates z1(k) and
z9(k) of the target position and their estimates are plotted
in Fig. 6(a) and Fig. 6(b), respectively., and the maximal
errors of the coordinate values and their estimates is about
0.31m and 0.24m, respectively, which reveals the satisfactory
performance of the recursive filtering algorithm. Moreover,
Fig. 7 shows the filtering performance comparison between
the recursive filtering algorithm and the extended Kalman
filtering algorithm, and their maximal errors are about 0.58m
and 0.81m, respectively. It is obvious that the recursive
filtering algorithm has smaller filtering error, which reflects the
superiority over the conventional extended Kalman algorithm.

Let us now demonstrate the impact on the filter performance
(in terms of the mean square error of the position estimate)
from the degraded measurements and the quantization effects,
respectively. It can be seen from Fig. 8 that the filtering perfor-
mance is significantly improved by considering the degraded
measurements and quantization effects in the filter design
procedure. In addition, the filter performance with different
degradation coefficients and quantization densities is depicted
in Fig. 9 and Fig. 10, respectively. Fig. 9 plots the trajectory
of log(M SE3(k)) subject to different degradation coefficients
under the same quantization density x; = 0.9. where the
best filtering performance is achieved with i = 0.8 and
vi = 0.04. Fig. 10 shows the trajectory of log(MSEs(k))
subject to different quantization density under the same de-
graded coefficients 3; = 0.8 and v} = 0.04. It can be observed
that the filtering performance can be enhanced by adequately
accounting for the impacts from measurement degradations
and quantization effects on the filter design.

V. CONCLUSION

In this paper, in order to enhance the management capability
of personnel safety in industrial sites, we have dealt with the
wireless target tracking problem for the dynamic personnel
localization. In the complicated wireless communication en-
vironment, sensor nodes have the limited capability of signal

acquisition and transmission. and the signal transmissions are
therefore subject to degraded measurements and quantization
effects. Our attention has been focused on the recursive
filter design issue by taking measurement degradations and
quantization effects into special consideration. The proposed
filtering algorithm can be implemented recursively, which
is suitable for the online computation. Finally, a simulation
experiment has been carried out for the wireless personnel
tracking system in a mine industry production to demonstrate
the effectiveness of the proposed method in practice. Com-
pared with the widely studied quantized H ., filtering scheme
[37]. the recursive filtering algorithm developed in this paper
could ensure the minimization of the upper bound of the
filtering error covariance, thereby leading to the satisfactory
local filter performance. Several interesting research topics are
to be considered in the future, for example, 1) the filtering
problem for uncertain high-order nonlinear systems [46]; 2)
the sliding mode filtering problem [14], [35] for wireless
localization systems: and 3) the distributed filtering problem
for wireless localization systems with stochastic sampling and
cyber attacks [7], [28].
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Fig. 3: Measurements with and without degraded measurements and
quantization effects.
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