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Target Tracking for Wireless Localization Systems
with Degraded Measurements and Quantization

Effects
Xingzhen Bai, Zidong Wang, Lei Zou and Cheng Cheng

Abstract—In this paper, the target tracking problem is in-
vestigated for a class of wireless localization systems with de-
graded measurements and quantization effects. The measurement
degradations induced by unreliable channels are characterized
by a random parameter matrix, and the quantization effects are
modeled by sector-bounded uncertainties. A recursive filtering
algorithm is proposed in order to track the plant states as
accurately as possible. An upper bound on the filtering error
covariance is first derived and such an upper bound is then
minimized by properly designing the filter gain at each sampling
instant. The desired filter parameters are obtained by solving
two sets of Riccati-like difference equations that are in a
recursive form suitable for the online application. Finally, a
simulation experiment is carried out for the scenario of personnel
localization/tracking problems in a mine industrial site and the
effectiveness of the proposed filter method is demonstrated.

Index Terms—Target tracking; recursive filtering; wireless
localization system; degraded measurement; quantization.

I. I NTRODUCTION

In industrial manufacturing processes especially safety-
critical systems, it is highly desirable to avoid adventitious
accidents which might lead to unexpected injuries and loss-
es. In this case, developing effective personnel/equipment
monitoring system is of practical significance in preserving
the operation and personnel safety. In particular, personnel
positioning plays a key role for personnel monitoring to ensure
the safety of personnel working in a hazardous workplace. In
engineering practice, wireless localization systems are usually
employed for safety control based on distributed sensing strate-
gies [1], [6], [20], [23], [25], [26]. Briefly speaking, the main
function of a wireless localization system is to track workers
and mobile equipments in industrial sites, thereby helping to
achieve the accurate perception of security information in the
industrial manufacturing process.

In practical systems, many different localization/tracking
methods have been introduced to meet specific industry
requirements. In general, the proposed localization/tracking
approaches are implemented based mainly on the distance
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measurement technologies which include, but are not limited
to, time-of-arrival (TOA) method [43], time-difference-of-
arrival (TDOA) [12] scheme, angle-of-arrival (AOA) approach
[27], received signal strength (RSS) strategy [2], and their
combinations [5], [24], [32]. In order to obtain the precise
target position, atwo-step localization scheme is usually
utilized in the localization approaches [38], [43]. First, the
sensors measure their distance to the target and transmit the
measurement data to the corresponding leader unit (either a
cluster head or a computing unit). Then, an estimate of the tar-
get position is generated based on the received measurements
[33]. Note that the distance between the sensors and the target
is often modeled by certain nonlinear functions and, therefore,
various nonlinear filtering algorithms have been developed to
deal with the target tracking problem for wireless localization
systems, where the covariance matrix of the estimation error
has been used to determine the next tasking node or the
sampling instant so as to improve the tracking accuracy [17],
[19], [39]. In [34], a new target tracking strategy has been
established for wireless sensor networks, where the maximum
likelihood estimation method and Kalman filtering technology
have been employed to eliminate the linearizing error of the
extended Kalman filtering algorithm.

Wireless communication is a typical network-based commu-
nication mode where the signal transmissions are likely affect-
ed by certain physical constraints including sensors aging and
limited bandwidth [8]. Accordingly, various network-induced
phenomena might occur during the wireless communication
which include, for instance, missing measurements, transmis-
sion delays and degraded measurements [18], [29], [41], [42].
For the filter design issue over wireless communication, if
the underlying network-induced phenomena are not properly
dealt with, it would be quite difficult to achieve a satisfactory
filtering performance. So far, considerable research attention
has been devoted to the filtering problems with different
network-induced phenomena [8], [9], [22], [28], [36], [44]. In
particular, an increasing research interest has been paid to the
filtering issues with measurement degradations, which serves
as a frequently encountered phenomenon during the signal
transmissions between the target and the sensors in wireless
localization systems. Clearly, the localization performance is
largely affected by the measurement accuracy and, therefore,
it is practically significant to develop effective filter schemes
concerning the target tracking issue on wireless localization
systems with degraded measurements.

In addition to the measurement degradation, another impor-
tant network-induced phenomenon in wireless communication
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errors as well as the corresponding covariance matrices are
defined by





x̃k+1/k , xk+1 − x̂k+1/k,

Σk+1/k , E{x̃k+1/kx̃
T
k+1/k},

x̃k+1/k+1 , xk+1 − x̂k+1/k+1,

Σk+1/k+1 , E{x̃k+1/k+1x̃
T
k+1/k+1}.

(12)

B. Filter Design

In the next process, the one-step prediction and filtering
error covariances are first calculated, and then an upper bound
of the filtering error covariance is derived. In particular, a
sequence of positive-definite matricesPk/k (0 ≤ k ≤ N) is
found to ensureΣk/k ≤ Pk/k and, subsequently, the desired
filter gain is obtained by minimizing such an upper bound.

Before proceeding, the following lemmas are recalled which
will be used in later developments.

Lemma 1: [13] For any given vectorsX,Y ∈ R
n and a

positive scalarε > 0, the following inequality holds

XY T + Y XT ≤ εXXT + ε−1Y Y T . (13)

Lemma 2: [40] For Given matricesA, H , E andF with
appropriate dimensions andF satisfying FFT ≤ I, let X
be a symmetric positive definite matrix andγ be an arbitrary
positive constant such thatγ−1I − EXET > 0. Then, the
following inequality holds:

(A+HFE)X(A+HFE)T

≤ A(X−1 − γETE)
−1

AT + γ−1HHT . (14)

Lemma 3: [11] Let A be a real-valued matrix andB =
diag{b1, b2, · · ·, bp} be a diagonal random matrix. Then, one
has

E{BABT } =




E{b21} E{b1b2} · · · E{b1bp}
E{b2b1} E{b22} · · · E{b2bp}

...
...

...
...

E{bpb1} E{bpb2} · · · E{b2p}


 ◦A

(15)

where◦ is the Hadamard product.
Lemma 4: [15] For 0 ≤ k ≤ N , suppose that two

symmetric matricesX , Y satisfy 0 < X ≤ Y , Sk(X) =
ST
k (X) ∈ Rn×n and Sk(X) ≤ Sk(Y ). Then, the solutions

Mk, Nk to the following difference equations:

Mk+1 ≤ Sk(Mk), Nk+1 = Sk(Nk) (16)

with the initial condition0 < N0 = M0 satisfyMk ≤ Nk.
From (2), (10) and (12), the one-step prediction error and

the corresponding covariance matrix are obtained as follows:

x̃k+1/k = Akx̃k/k +Bkωk, (17)

Σk+1/k = AkΣk/kA
T
k +BkRωB

T
k . (18)

Moreover, the filtering error is given by:

x̃k+1/k+1

= x̃k+1/k −Kk+1(zk+1 − Ξ̄k+1g(x̂k+1/k)). (19)

Expandingg(xk+1) in a Taylor series around̂xk+1/k, we
derive that

g(xk+1)

= g(x̂k+1/k) +Gk+1x̃k+1/k + o(|x̃k+1/k|), (20)

whereGk+1 , ∂g(x)/∂x|x=x̂k+1/k
ando(|x̃k+1/k|) stands for

the high-order terms of the Taylor series expansion.
As shown in [16], the high-order terms can be transformed

into the following formulation:

o(|x̃k+1/k|) = Ck+1ℵk+1Lk+1x̃k+1/k, (21)

whereCk+1 ∈ R
m×n is a bounded problem-dependent scaling

matrix, Lk+1 ∈ R
n×n is introduced to provide an extra free-

dom degree to tune the filter, and the unknown time-varying
matrix ℵk+1 ∈ R

n×n satisfiesℵk+1ℵ
T
k+1 ≤ I accounting for

the linearization errors of the measurement model.
Based on (12) and (19)-(21), the filtering error is rearranged

as follows:

x̃k+1/k+1 =(I −Kk+1Ψk+1)x̃k+1/k −Kk+1

× {[(I + Fk+1Λ)Ξk+1 − Ξ̄k+1]g(xk+1)

+ (I + Fk+1Λ)ξk+1} (22)

where

Ψk+1 = Ξ̄k+1(Gk+1 + Ck+1ℵk+1Lk+1). (23)

From (12), the covariance of the filtering error is given as
follows:

Σk+1/k+1

= (I −Kk+1Ψk+1)Σk+1/k(I −Kk+1Ψk+1)
T

− E{(I −Kk+1Ψk+1)x̃k+1/k[Kk+1

× ((I + Fk+1Λ)Ξk+1 − Ξ̄k+1)g(xk+1)]
T }

−Kk+1E{[(I + Fk+1Λ)Ξk+1 − Ξ̄k+1]g(xk+1)

× [(I −Kk+1Ψk+1)x̃k+1/k]
T }

+Kk+1E{[(I + Fk+1Λ)Ξk+1 − Ξ̄k+1]g(xk+1)

× gT (xk+1)[(I + Fk+1Λ)Ξk+1 − Ξ̄k+1]
T }KT

k+1

+Kk+1(I + Fk+1Λ)Rξ(I + Fk+1Λ)
TKT

k+1. (24)

Now, we are in the position to present our main results.
The filter parameters are designed such that an optimized
upper bound on the filtering error covariance is derived at each
sampling instant, and the design procedure is summarized in
the following theorem.

Theorem 1:Consider the covariance matrices of the one-
step prediction error and the filtering error in (18) and (24).
Let ε1, ε2, ε3, γ1, γ2 be positive scalars. Assume that the
following two discrete-time Riccati-like difference equations:

Pk+1/k = APk/kA
T +BkRωB

T
k , (25)

Pk+1/k+1

= (1 + ε1)(I −Kk+1Ξ̄k+1Gk+1)

× [P−1
k+1/k − γ1L

T
k+1Lk+1]

−1(I −Kk+1Ξ̄k+1Gk+1)
T

+Kk+1{(1 + ε1)γ
−1
1 Ξ̄k+1Ck+1C

T
k+1Ξ̄

T
k+1 + (1 + ε−1

1 )

× [(1 + ε3)Ξ̃k+1 ◦Πk+1 + (1 + ε−1
3 )tr{ϕk+1}I]

+ (R−1
ξ − γ2Λ

TΛ)−1 + γ−1
2 I}KT

k+1 (26)
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= (1 + ε3)Ξ̃k+1 ◦ E{g(xk+1)g
T (xk+1)}+ (1 + ε−1

3 )

× Fk+1Λ(Ξ̆k+1 ◦ E{g(xk+1)g
T (xk+1)})ΛFk+1

≤ (1 + ε3)Ξ̃k+1 ◦ Ωk+1 + (1 + ε−1
3 )tr{φk+1}I, (37)

where

φk+1 = Λ{Ξ̆k+1 ◦ Ωk+1}Λ
T . (38)

Furthermore, it follows from Lemma 2 and (27) that

(I + Fk+1Λ)Rξ(I + Fk+1Λ)
T

≤ (R−1
ξ − γ2Λ

TΛ)−1 + γ−1
2 I. (39)

In view of (30), (31), (37) and (39), we obtain

Σk+1/k+1

≤ (1 + ε1)(I −Kk+1Ξ̄k+1Gk+1)

× [Σ−1
k+1/k − γ1L

T
k+1Lk+1]

−1(I −Kk+1Ξ̄k+1Gk+1)
T

+Kk+1{(1 + ε1)γ
−1
1 Ξ̄k+1Ck+1C

T
k+1Ξ̄

T
k+1 + (1 + ε−1

1 )

× [(1 + ε3)Ξ̃k+1 ◦ Ωk+1 + (1 + ε−1
3 )tr{φk+1}I]

+ (R−1
ξ − γ2Λ

TΛ)−1 + γ−1
2 I}KT

k+1. (40)

From (25) and (26), matrixPk+1/k+1 can be viewed as
a function ofPk/k, i.e., Pk+1/k+1 = fk(Pk/k), wherefk(·)
denotes the specific functional relationship betweenPk+1/k+1

and Pk/k. Moreover, noting thatΣk+1/k+1 ≤ fk(Σk/k),
fk(·) = fT

k (·) andP0/0 = Σ0/0, we conclude from Lemma 4
thatΣk+1/k+1 ≤ Pk+1/k+1.

To determine the filter gain, we take the partial derivative
of Pk+1/k+1 with respect toKk+1 and let such a derivative
be zero. Then, we have

∂tr(Pk+1/k+1)/∂Kk+1

= −2(1 + ε1)[P
−1
k+1/k − γ1L

T
k+1Lk+1]

−1GT
k+1Ξ̄

T
k+1

+ 2Kk+1{(1 + ε1)Ξ̄k+1Gk+1[P
−1
k+1/k − γ1L

T
k+1Lk+1]

−1

×GT
k+1Ξ̄

T
k+1 + (1 + ε1)γ

−1
1 Ξ̄k+1Ck+1C

T
k+1Ξ̄

T
k+1

+ (1 + ε−1
1 )[(1 + ε3)Ξ̃k+1 ◦Πk+1 + (1 + ε−1

3 )

× tr{ϕk+1}I] + (R−1
ξ − γ2Λ

TΛ)−1 + γ−1
2 I} = 0. (41)

The filter gain is calculated as shown in (28) which minimizes
the upper boundPk+1/k+1 of the filtering error covariance.
Therefore, the proof is complete.

Remark 3: In this paper, we focus our attention on the
filter design for the nonlinear systems with white Gaussian
noise. The recursive filtering is one of the mostly investigated
technologies dealing with the state estimation problem with
white noise. At each iteration step, we can compute the desired
filter parameter based on the solution of two discrete-time
Riccati-like difference equations. Note that the solution of
the Riccati-like difference equations could be easily obtained
by iterative computation, which implies that the feasibility
of the filter design could be guaranteed. In Theorem 1, the
desired filter parameter is derived based on the value of
Pk+1|k, which could be computed recursively according to two
discrete-time Riccati-like difference equations. In the compu-
tation process, certain scaling methods have been employed to
deal with the inequalities, which would “amplify” the corre-
sponding filtering error covariance. For example, by applying
the trigonometric-inequality-based technology, the nonlinear

function gi(xk) satisfiesg2i (xk) = ‖gi(xk)‖ ≤ ‖xk − x̄∗
i ‖.

Even though the computation of the filter parameter leads to
the conservatism of the result, it is propitious to realize the
filter design conveniently.

Remark 4: It is well known that the traditional Kalman
filter has been widely adopted dealing with the estimation
problem of the time-varying linear system. The conventional
extended Kalman filter has been widely employed to deal
with the filtering problem for nonlinear systems, where the
involved nonlinearity would be linearized and the correspond-
ing linearization error (i.e. the high-order terms caused by the
Taylor expansion) is simply neglected, which inevitably leads
to conservatism in certain cases. In [3], Calafiore proposed a
more accurate approach to depict the high-order terms in the
Taylor series in terms of parameter uncertainties. Similarly,
in this paper, we use the deterministic matrixℵk and the
scaling matrixLk to account for the linearization errors in
obtaining the matrixAk, which is shown in (21). For more
details, we refer the reader to Appendix C of [3] where a nice
interpretation has been given. In addition, It can be seen from
(21) that the high-order terms in the Taylor series expansion
are commonly bounded, then it is reasonable to regard them
as deterministic uncertainties affecting the system matrixAk.

IV. A PPLICATION TO THELOCALIZATION IN THE

INDUSTRIAL CITES

In this section, we present an application example for the
wireless localization system to illustrate the effectiveness of
the proposed filter design scheme.

Consider the wireless sensors that are deployed in the
maintenance region as shown in Fig. 1. The distance mea-
surements are obtained from sensors deployed in the wireless
localization system for mine personnel-safety monitor. The
“target” is fixed on the safety helmet (the worker must wear
the helmet while working in the region), which periodically
broadcast its identity and time stamp information through the
communication channel. Sensors receive the signal and then
generate the measurements which are transmitted to the filter.
Based on the received measurements, the estimates are derived
via the filtering algorithm and transmitted to the computer for
the corresponding cooperative control implementation.

In this experiment, there are6 sensor nodes performing the
target tracking task and the target node is within the radio
range of sensors in the maintenance region. As shown in Fig. 1,
the coordinates of Sensors1-6 are (20, 2), (20, 12), (10, 14),
(0, 12), (0, 2) and(10, 0), respectively. The target moves along
certain elliptical trajectory with a constant speed. The sampling
period is∆tk = 200 ms. The initial position of the target is
(10, 1), x̂0/0 =

[
10 0.13 1 0

]T
and P0/0 = I4×4. For

the algorithmic quantizer, we setµ(j)
0 = 1 andXj = 0.9 (j =

1, . . . , 6). The statistical characteristics ofβi
k are given as̄βi

k =
0.8 and νik = 0.04. Other parameters are chosen asγ1 = 1,
γ2 = 100, ε0 = ε1 = ε2 = 0.6,Ck+1 = 0.01I6×6 andLk+1 =[
0.01I4×4 04×2

]T
. Furthermore, the covariance matrices of

noises are set asRω = 0.01I4×4 andRξ = 0.1I6×6.
From Theorem 1, the filter parameters can be designed

recursively and the corresponding simulation results are shown
in Figs. 3-9. In particular, to reveal the effects of degradation
and quantization on the distance measurements, Fig. 3(a) plots
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