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Abstract 

Over the last two decades, the telecommunication industry has witnessed sustained 

growth in the number of mobile user devices driven by the introduction of data services, the 

take-off of the internet and smart user equipment. This growth, which is forecasted to 

continue, has continued to push the data transfer capacity requirement on mobile networks 

and has motivated research into the design of 5th generation (5G) mobile networks. A key 

concern in the design of 5G is the infrastructure and power consumption cost of the base 

station network which is expected to be significantly more advanced and dense than that of 

existing conventional mobile networks. This thesis presents an optimisation framework for 

the cost efficient design of 5G base station networks, based on the application of meta-

heuristic algorithms.  

The presented optimisation framework is centred on the ability to exploit three key 

technologies of 5G, a heterogonous base station network with small-cells, multi-antenna 

spatial multiplexing MIMO and cell range extension. The framework includes mathematical 

integer programming models for supporting the decisions about the optimal base station 

topology in a 5G mobile network and provides a clear core for the application of meta-

heuristics for optimising 5G base station deployment. The core optimisation framework 

includes the definition of solution encoding/decoding and fitness mechanisms. To increase 

power consumption awareness of base station network design, an independent base station 

deployment strategy has been presented and evaluated. Simulation results show that the 

strategy can improve base station network design power consumption by as much as 34%.  

The work in this thesis has been extensively evaluated using a simulated 5G mobile 

network system model. Evaluations of algorithms have been performed through empirical 



 

 

measurements. The main contribution of this thesis is the definition of a clear framework for 

application fitness based heuristic search in the design of 5G mobile networks. 
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The following key notations are used throughout this thesis. 

      General 

RAN Radio access network  
nG nth  generation  
BS Base station 
BSs Base stations 
UE user equipment/terminal 
QoS Quality of service 
LTE-A Long term evolution (Advanced) 
MNO Mobile network operator/owner 
RF Radio frequency 
MIMO Multiple Input Multiple Output 
CRE Cell range extension technology 
CAPEX  Infrastructural Expenditure 
OPEX  Operational Expenditure 
TCO Total cost of ownership 
HetNet Heterogeneous base station access network 

Mathematical 

𝒙𝒙 Matrix or vector  
𝑥𝑥𝑖𝑖𝑖𝑖 Matrix element at row 𝑖𝑖 column 𝑗𝑗  
 X Set   
|X| Cardinality of set X 
𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥 is an element of  𝑋𝑋 
𝑋𝑋1 ∪ 𝑋𝑋2 The union of sets   𝑋𝑋2 and 𝑋𝑋1 
𝑋𝑋(𝑖𝑖) 𝑖𝑖th element of X 
 Algorithms 

SA Simulated Annealing Algorithm 
Λ Simulated Annealing cooling rate 
GA Genetic Algorithm 
HC Hill Climbing Algorithm 
RSM Random sampling approach  

 

Other notations are defined in the respective chapters. 

 

 

  



 

 

 

 

 

 

 

“All models are wrong, but some are useful” 

George E. P. Box 
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1. Introduction 

Cellular mobile communication systems have evolved over the last two decades into the 

landmark technology for providing ubiquitous wide area wireless communication services to 

the population in any civilised society, with fourth-generation (4G) LTE-Advanced 

representing the state of the art. Different from the earliest cellular system standards, current 

cellular systems are data traffic oriented as opposed to voice. The introduction of third-

generation (3G) mobile networks and smart user equipment in the mid-2000s instigated an 

exponential trend in the number of mobile subscribers and the demand for mobile data traffic, 

with the volume of mobile data traffic carried by mobile networks exceeding voice traffic for 

the first time in 2010 [1]. This exponential growth in the demand for mobile data services 

which began with the introduction of 3G mobile systems is expected to continue for the 

foreseeable future [2]. The 2017 Cisco visual networking index [2] reported that global 

mobile data traffic will increase sevenfold between 2016 and 2021. Mobile data traffic will 

grow at a compound annual growth rate of 47% from 2016 to 2021, reaching 49.0 Exabyte 

per month by 2021. This aggressive growth and projections are mainly due to the 

proliferation of smart user equipment and the rapid penetration of mobile services in 

developing societies. Cisco predicts there will be 11.6 billion mobile-connected devices by 

2021, including machine to machine (M2M) nodes; far exceeding the world’s human 

population projection at that time (7.8 billion people [3]). Globally, 74.7% of mobile devices 

will be smart devices by 2021, up from 36.7% in 2016. The vast majority of mobile data 

traffic (98 %) will originate from these smart devices by 2021, up from 89% in 2016.  

In response, and in a competitive market, mobile network stakeholders have continued to 

seek strategies to provide higher data handling capacity into their networks in order to 

maintain and grow their market share. In fact, this trend has motivated research into the 



 

 

modelling, design and operation of future fifth generation (5G) mobile networks [4][5][6]. 5G 

mobile networks are to be designed with the main objective of providing very high levels of 

data speed for subscribers in all scenarios, by leveraging many advanced technologies and 

very dense deployment of base stations as a key feature, since current mobile networks based 

on LTE 4G standard have almost approached fundamental limits of spectral link efficiency 

[7]. One of such advanced technologies is the transition from a flat homogenous base station 

access network architecture to a dense multi-tier heterogeneous base station access network 

with small-cell base stations. A multi-tier heterogeneous base station access network deviates 

from traditional flat homogenous base station access network by the introduction of local 

base stations knows as small-cells.  Other technologies include the use of aggressive multi-

antenna spatial multiplexing (known as MIMO), millimetre wave spectrum, on-demand 

network optimisation etc. 

1.1. Motivation  

A key challenge of implementing next-generation 5G mobile networks is the effect of the 

base station access network on the system cost [8][9]. The dense deployment of base stations 

is poised to drastically increase the system deployment cost and power usage of mobile 

networks. The base station network accounts for over 80% of the power usage in a typical 

mobile network, in addition to expensive site acquisition and equipment cost, with energy 

bills representing up to 15% in mature markets and 50% of the network operational cost in 

developing markets with a high number of off-grid sites [10]. The high power consumption 

of telecommunication networks also contributes to an increase in (carbon dioxide) CO2 

emission in the environment [11]. Generally, increasing the base station network density and 

complexity increases traffic handling capacity of the network; however, this also leads to an 

increase in the capital and operational expenditure incurred. Consequently, mobile network 

operators are faced with a question concerning this trade-off, of how to meet the very high 



 

 

system capacity requirement of next-generation 5G mobile networks at reduced system cost; 

which will be largely contributed by the base station deployment? To compound this 

challenge, mobile network operators have been reporting flat revenues; however, users are 

expecting higher and higher data speeds but are unwilling to pay more [12]. 

1.2. Research Scope and Aim 

Research into strategies for minimising the cost implications of the base station network 

is required in the build-up to 5G mobile networks. Such strategies are expected to minimise 

system cost without compromising the required capacity and coverage metrics seen by 

subscribers. One direction is focusing on cost and power consumption modelling of different 

base station network architectures. These models are important for gaining insights into the 

cost implications of different network designs in different scenarios. The other direction is 

focusing on techniques for maximising network cost efficiency. Given that the base stations 

consume the most power in a mobile network system, improving the power efficiency of the 

base stations at the component level is an active research area. For example, [13] discussed a 

conceptual strategy for improving the base station power amplifier efficiency, since the 

power amplifier consumes the most power relative to all other components. Beyond base 

station component level improvements, research into powering cellular access networks with 

renewable energy has also received increased attention. For example, authors in [14] 

proposed an optimisation framework for dimensioning photovoltaic power generators and 

energy storage to power the base station access network. At the link level, quite a number of 

improvements of radio interfaces have been achieved in the last decade, boosting spectral 

power efficiency i.e. the number of data bits that can be transferred for a fixed amount of 

spectrum and power. However, current state-of-the-art 4G LTE mobile systems based on 

orthogonal frequency division multiple access (OFDMA)  are approaching fundamental link 

efficiency limits through the use of higher order modulation schemes [7].    



 

 

In practice, the cost efficiency gains of component and link level strategies in base 

stations are limited, and the main gains are expected at the network level in the topology 

layout of base stations [13]. A key network level strategy for minimising power consumption 

that has gained research momentum in recent years is the management of base stations on-

demand. Base station networks are usually planned based on peak traffic hours which can be 

as high as 10 times the off-peak hours, however, currently base stations have limited ability 

to significantly scale their power consumption with traffic load; leading to very poor power 

efficiency in off-peak hours [15]. Spatial user traffic demand variation may also lead to poor 

network performance. To address this problems, the base station network should be managed 

such that unneeded base stations can be switched to sleep mode, while the configuration of 

the remaining network is adjusted to provide the required quality of service [16]. In this 

context, heuristic algorithms that can decide the topology of the network on demand in a 

power efficient manner have been a key research objective. The above approaches mainly 

focus on minimising the power consumption of the network and do not address the huge 

capital expenditure that will arise from the dense deployment of base stations in 5G. A more 

proactive approach is to design/plan a base station network that minimises the cost of the 

base stations deployed in the first place which includes both the infrastructure as well as the 

power consumption costs. Base station planning has been a fundamental research area in 

mobile networks where the main objective is to design a base station topology that minimises 

system cost without compromising the experienced subscriber quality of service measured by 

network coverage and capacity.  However, the design of a mobile network is a complex task 

involving many variables and has since motivated the development of optimised design 

support tools. In general, the design process is facilitated by mathematical models and 

heuristic algorithms for supporting the decisions on where to install new base stations and the 

selection of their optimum configurations so as to find an optimal trade-off between system 



 

 

performance and minimising system cost. The use of heuristics is necessary because of the 

complexity and difficulty of solving these mathematical models at scale using exact methods. 

The literature abounds with mathematical models and study of heuristics, particularly meta-

heuristics, for planning traditional mobile base station networks typical of 2nd and 3rd 

generation cellular standards. These models which are based on the assumption of a flat, 

sparse and homogenous base station network architecture typical of early cellular networks, 

are not optimised for planning of current 4G and next-generation 5G mobile networks which 

are based on a multi-tier heterogeneous base station network architecture incorporating 

advanced technologies like massive antenna spatial multiplexing MIMO and cell range 

extension. Furthermore, 5G mobile networks are expected to consist of significantly denser 

deployment of base stations (than current mobile networks) in order to provide high levels of 

data transfer capacity. This motivates the development/study of advanced and novel base 

station network planning models and heuristics for 5G mobile networks if mobile networks 

operators are to maximise the cost efficiency of 5G, and is indeed the main focus of this 

thesis. The research scope of this thesis is illustrated in Figure 1.1. 

The aim of this thesis is to develop and study a base station planning scheme for ‘cost 

efficient’ topology design of next-generation 5G base station access network architecture 

based on the application heuristic search optimisation. To achieve this aim, the following 

contributions have been made: 

1. The proposal of integer programming models for supporting the decisions on the 

deployment of an optimal base station topology in a 5G mobile network so as to find a 

trade-off between providing ‘high capacity everywhere’ requirement of 5G and 

minimising system cost. The proposed network design integer programming models 

are based on the hypothesis that operators can jointly exploit configuration 

heterogeneity offered by heterogeneous base station network architecture (with 



 

 

different classes of base stations) and advanced technologies such as MIMO and cell 

range extension to deploy a high capacity network that minimises cost both in terms 

of infrastructure (CAPEX) and power consumption.  

2. The second contribution is the definition of a clear framework for the application of 

iterative fitness based heuristic search techniques such as meta-heuristic for planning 

5G mobile networks. The framework includes a solution encoding, fitness function 

and definition of search operators. Using the framework, the performance of three 

heuristic search techniques, namely; Genetic algorithm, Simulated annealing and Hill 

climbing are analysed as deployment algorithms for 5G. 

3. Thirdly, an independent power consumption aware strategy for planning 5G base 

station networks, based on the principle of divide and conquer co-operative 

optimisation is proposed. Empirical simulation results validate that the proposed base 

station planning strategy is able to save as much as 34% of overall network power 

consumption depending on the traffic demand scenario. 

The contributions made in this thesis have been published/presented in: 

 

• Aondoakaa, D., Cosmas, J. and Swift, S. (2018) ‘Exploiting Heterogeneity For Cost 
Efficient Cellular Base Station Deployment Using Metaheuristics’, in 482nd 
International Conference on Communication and Signal Processing (ICCSP). Dubai, 
UAE. [Awarded Best Paper certificate] 

 

• Aondoakaa, D., Cosmas, J. and Swift, S. (2018) ‘Exploiting Heterogeneity For Cost 
Efficient Cellular Base Station Deployment Using Metaheuristics’, International 
Journal of Advances in Electronics and Computer Sciences (IJAES), 5(10). 

 



 

 

Figure 1.1: Diagram showing research scope 

 

 

1.1. Thesis Outline  

This thesis is organised as follows: 

Chapter 2 provides background knowledge on the main concepts, techniques and methods 

that are used in this thesis. It starts with an overview of the fundamentals of mobile cellular 

networks and their evolution towards next-generation 5G mobile networks. Next, key 

technologies for 5G mobile networks that include a Heterogeneous access network, small-

cells, and MIMO are reviewed. Finally, an overview of optimisation is presented and the 

meta-heuristic techniques which have been utilised for this research are described.  

Chapter 3 presents a literature review on cellular base station network optimisation with 

emphasis on problem modelling and the use of meta-heuristics and the transition to 5G 



 

 

heterogeneous base station mobile network architecture. The chapter characterises research 

development over time, analyses the state of the art and positions the contributions made in 

this thesis. This chapter also includes the definition of key terms.  

Chapter 4 describes the system model used for deployment analysis of a 5G mobile network 

with heterogeneous base stations based on the 4G LTE-Advanced cellular downlink standard. 

The system model described is based on mathematical representation and is derived by 

unifying existing models from the literature. The described model explicitly relates cost and 

quality of service (QoS) performance modelling of a base station access network as a 

function of the base station deployment and forms the basis for all the conclusions reached in 

this thesis. That is, for a given base station topology, the system model returns the system 

cost and performance implications with respect to the traffic scenario.   

Chapter 5 first presents an optimisation framework for the application of iterative fitness 

based heuristic search to the deployment of 5G heterogeneous base station architecture with 

cell range extension technology. The framework which is generic to both greenfield and 

expansion base station planning has three components: an integer programming 5G 

Heterogeneous base station deployment solution, which is engineered towards exploiting 

base station heterogeneity for cost efficient base station deployment; a solution encoding, and 

a fitness function. Next, the performance of three meta-heuristics algorithms; Simulated 

annealing, Hill climbing and Genetic algorithm are analysed as base station deployment tools 

for 5G.    

Chapter 6 proposes and evaluates a power-aware 2-Phase incremental strategy for the 5G 

base station deployment challenge formulated in chapter 5 that is independent of the meta-

heuristic algorithm used as the optimisation tool. The strategy is evaluated by comparing the 



 

 

average fitness and the network cost of the returned network topology when the strategy is 

used, against when it is not.   

Chapter 7 extends the 5G deployment challenge in chapter 5, to propose and analyse the 

benefit an advanced 5G base station deployment problem model that jointly optimises 

heterogeneous base station types, MIMO and Cell range extension configurations for 

achieving cost efficient and high capacity base station deployment.  The advanced 5G base 

station deployment problem model is evaluated by comparing its cost efficiency against 

existing models in the literature. 

Chapter 8 summarises the whole thesis. This chapter examines what has been developed 

within this research project and how this can be extended as further work. 

  



 

 

Figure 2.1: Typical cellular mobile network architecture 

2. Background Information 

This chapter provides background knowledge key to the work presented in this 

thesis. It starts with an overview of the fundamentals of mobile cellular networks and 

their evolution towards next-generation 5G mobile networks. Key technologies for 5G 

mobile networks that include a Heterogeneous base station access network, small-cells, 

and MIMO are overviewed. Finally, an overview of optimisation is presented and the 

meta-heuristic techniques which have been utilised for this research are described. 

2.1. Cellular networks:  The Basics   

 

A mobile cellular network (MCN) is a communication network designed to provide wide 

area wireless communication services.  A typical MCN consists of two parts; a radio access 

network (RAN) and a backhaul network that connects the RAN to the external network 

(Figure 2.1). The RAN, which is the focus of this thesis, consists of a collection of 



 

 

transceivers, called Base Stations (BSs) that transmit/receive information in the form of 

wireless signals to/from subscribers with user equipment (UE). Each base station (BS) 

provides radio coverage to a small geographical area, known as its cell. The integration of the 

coverage of various BSs provides radio coverage over a much larger geographical area, thus 

defining a mobile cellular network. Cellular network base stations communicate with 

subscribers through a government licenced radio frequency (RF) band based on a physical 

layer air interface. Communication from the base station to the user equipment is known as 

the downlink, while communication from the user equipment to the base station is uplink. 

2.1.1. Mobile networks:  Evolution towards 5G 

The first-generation (1G) of mobile telecommunication systems was released in Europe 

in the early 1980s. 1G mobile network standard was based on analogue communication 

techniques and extremely large cell size base stations, in order to provide large network 

coverage footprints. The 1G user equipment was bulky and expensive and were mainly 

limited to high profile and government users [17]. The launch of the second-generation (2G) 

Global System for Mobile Communications (GSM) by the European Telecommunications 

Standards Institute (ETSI) really kick-started the revolution of mobile networks as a 

landmark wide area wireless communication system and also the need for its proper planning. 

2G networks were developed as a replacement for the first-generation (1G) analogue mobile 

networks, and the GSM standard was originally described as a digital, circuit-switched 

network, optimised for full duplex voice telephony, which enhanced the efficiency of the 

radio spectrum usage, and led to the introduction of smaller and less expensive mobile 

phones. GSM was expanded over time to include data communications, first by supporting 

instant messaging service (SMS) and circuit switched data services up to 9.6Kbps data rates. 

Packet switching data capabilities were added to GSM using general packet radio services 

(GPRS), known as 2.5G. The 2.5G systems had a maximum theoretical downlink rate of 



 

 

171Kbps which was further improved to reach 384Kbps through enhanced data rates for 

GSM evolution (EDGE). As a result, the data usage increased, but the traffic volume in 

second-generation networks remained dominated by voice traffic. The need to support faster 

data rate services motivated the evolution to the third generation 3G cellular system standard. 

The Third-Generation Partnership Project (3GPP) was formed to develop the 3G Wideband 

Code Division Multiple Access (WCDMA) and Time Division Synchronous Code Division 

Multiple Access (TD-SCDMA) technologies. The Universal Mobile Telecommunication 

System (UMTS) was proposed as an evolution to GSM and quickly became the world’s 

dominant 3G system [17]. It initially had a downlink typical user data rate of 384Kbps to 

2Mbps, which was later enhanced to 10Mbit/s with the 3.5G technologies of high-speed 

downlink packet access (HSDPA) and high-speed uplink packet access (HSUPA).  

Architecturally, 3G cellular systems employed base stations with smaller cell sizes than GSM 

and were based on single frequency reuse among all the cells. The third evolution of cellular 

systems also happened on the user equipment side, as ‘smarter’ user terminals were 

developed to take advantage of the increased data transfer rates of the system. The 3G era 

really introduced various value-added services like video calling, live streaming, mobile 

internet access, IPTV etc. on mobile phones. These services were possible because the 3G 

standard provided the basic data speeds they required. 

2.1.2. LTE 4G and beyond 

The popularity of smart user equipment running fun and social applications such as high 

definition (HD) video and audio streaming, online gaming etc. motivated another evolution to 

the current state of art cellular mobile system, fourth-generation Long Term Evolution (LTE) 

in order to provide more data handling capacity than previous 2G and 3G systems which had 

become congested and unable to meet the continuous growth in data demand.  LTE cellular 

standard was developed by 3GPP as a high-speed data-oriented standard based on packet 



 

 

switching technology with the following basic target performance (relative to 3G HSPA) 

[18]:    

• Two to four times spectral efficiency compared with the HSPA Release 6.  

• Theoretical peak rates of more than 100Mbps downlink and 50Mbps uplink. 

• High level of mobility and security.  

• Optimised terminal power efficiency.  

• Flexibility in frequency allocation from below 1.5 MHz up to 20 MHz.  

The LTE mobile network standard is based on Orthogonal Frequency Division Multiple 

Access (OFDMA) in the downlink and Single Carrier Frequency Division Multiple Access 

(SC-FDMA) for the uplink. The LTE standard was first launched in 2009 as release 8 and has 

witnessed a number of enhancements in subsequent releases aimed at providing even higher 

data capacity. The LTE standard comprises of many advanced technologies and features that 

were not supported or matured in earlier generation mobile systems;   

• All IP network.  

• Support for 8x8 MIMO in downlink and 4x4 in the uplink.  

• Support FDD and TDD duplex mode.  

• Support for heterogeneous  access networks and  femto-cell base stations  

• Co-operative multipoint transmission and reception (CoMP). 

• Carrier aggregation.  

• Self-organising functionality (SON) improvement. 

• Support for relay base stations etc. 

Exponential growth in the demand for mobile data services which began with the 

introduction of 3G mobile systems is expected to continue for the foreseeable future [2]. The 

2017 Cisco visual networking index [2] reported that global mobile data traffic will increase 

sevenfold between 2016 and 2021. Mobile data traffic will grow at a compound annual 

growth rate of 47% from 2016 to 2021, reaching 49.0 Exabyte per month by 2021. This 



 

 

aggressive growth and projections are mainly due to the proliferation of smart user equipment 

and the rapid penetration of mobile services in developing societies.  Cisco predicts there will 

be 11.6 billion mobile-connected devices by 2021, including M2M modules; exceeding the 

world’s projected human population at that time (7.8 billion [3]). Globally, 74.7% of mobile 

devices will be smart devices by 2021, up from 36.7% in 2016. The vast majority of mobile 

data traffic (98%) will originate from these smart devices by 2021, up from 89% in 2016. In 

response, mobile network stakeholders have encouraged research into the standardisation and 

release of fifth-generation (5G) of mobile networks. The 5G cellular network is expected to 

inherit all of the features of 4G LTE standard as well as introduce new technologies and 

strategies in order to provide very high mobile data capacity. Design requirements for 5G 

include a minimum downlink average user throughput of 50Mbps ‘everywhere’ and up to 

1Gbps in ideal scenarios[19][20]! 

The following technologies are considered key to achieving 5G high capacity 

requirement:  

2.1.3. Heterogeneous networks (HetNet) 

In traditional mobile network architecture, a cellular base station was designed to provide 

wireless service over a sizeable area enabled by its high power consumption signal amplifier 

[21]. This type of base station is known as a macro base station and was deployed 

homogenously in 1st, 2nd and 3rd generation cellular systems. A GSM macro base station 

provides signal up to 10km in rural areas [22]. Due to their large coverage footprints, 

relatively few macro base station sites were required to provide signal coverage over an area. 

Driven by an aggressive increase in data traffic demand over the last decade, successive 

cellular system standards have however seen reductions in cell sizes of macro base stations 

resulting in denser base station deployments, providing higher system capacity, especially in 

urban centres. However, their site acquisition costs in a capacity limited dense urban area can 



 

 

get prohibitively expensive as well as the increasing power consumption cost of operating 

them [7]. LTE 4G cellular standard formally introduced the concept of a heterogonous base 

station access network (HetNet) as cost effective solution to macro base station densification. 

A Heterogeneous base station network is considered a key architecture for next-generation 

5G cellular systems and is a paradigm shift from macro base station only constructed cellular 

systems. The idea of a HetNet is to complement traditional long-range macro base stations 

with relatively small-cell base stations that have local range and low power consumption to 

extend coverage or boost system capacity. In traditional base station network architecture, the 

macro base stations are carefully placed to control the level of coverage overlap to minimise 

potential signal interference between base stations transmitting signals to different sets of 

users using the same frequency band. Controlling the overlap between base stations is also 

critical during network deployment to avoid base station redundancy leading to unnecessary 

system cost [23]. In contrast, in a HetNet, low range and power base stations can be deployed 

completely under the footprint of macro base stations using the same frequency band as a 

means of boosting coverage and capacity. Such a deployment scenario would require 

interference mitigation techniques to avoid potential high levels of signal interference 

between macro and small-cell base stations. One way to avoid inter-tier interference (i.e. 

interference from the macro base station to small-cell base station signal and vice versa) is to 

deploy small-cells on a different frequency band, however, this may reduce spectral 

efficiency. 

2.1.3.1. Small-Cells 

The LTE cellular standard defines different classes of small-cell base stations for 

different use cases.  Aside from very low power consumption, due to their smaller physical 

size, small-cell base stations offer flexible site acquisition, which minimises infrastructure 

cost of the system. For example, small-cells can be easily deployed on street lamp posts [7]. 



 

 

However, although the grid power consumption contribution per small-cell base station is 

relatively lower (compared to traditional macro base stations), a dense deployment of these 

base stations that is expected in next-generation 5G cellular systems still raises sizable power 

consumption concerns, which form the bulk of operational cost for mobile network operators 

(MNO), as well as capital expenditures [10].  

 

Figure 2.2: Heterogeneous base station access network consisting of different classes of base 
stations [24] 

 

2.1.3.2. Micro / Pico and Relay Base stations 

Micro/Pico/Relay small-cells are regular base stations with the only difference of having 

a smaller size, range and power consumption than traditional macro-cell base stations. They 

are typically equipped with omnidirectional antennas (as opposed to directional/sectored 

antennas) and are deployed and managed indoors or outdoors in a planned manner by mobile 

network providers using base station planning tools. Their transmit power ranges from 

250mW to approximately 2W for outdoor deployments, while it is typically 100mW or less 

for indoor deployments [7]. These small-cells are deployed as part of the mobile network 

operator’s core base station infrastructure and benefit from tight cooperation with macro base 



 

 

stations especially for inter-cell interference coordination (ICIC). Relay small-cells are 

unique in that they do not have wired backhaul i.e. the backhaul link is wireless. The 

backhaul, which provides the attachment of the relay to the rest of the network, may or may 

not use the same air interface resources of the cellular system in question.  

2.1.3.3. Femto Base stations 

Femto small-cells are indoor base stations much like Wi-Fi access points. They are 

typically consumer deployed in an unplanned manner for improving indoor cellular coverage 

and are backhauled via an internet connection such as DSL or cable modem. Femto cells are 

typically equipped with omnidirectional antennas with maximum transmission power of 

about 100mW [25]. Similar to residential Wi-Fi network, femto-cells are owned and managed 

by users and usually operated in restricted access mode i.e. only registered user devices can 

connect to them.  

2.1.3.4. Cell Range Expansion (CRE) 

A key-enabling feature standardised by 3GPP for heterogeneous base station access 

network is the technology for small-cell range expansion/extension (CRE) [26]. As illustrated 

in Figure 2.3, to attract more users, small-cells enabled with the CRE feature use a positive 

cell selection offset on their pilot channels. The major benefit of CRE is to avoid low 

utilisation of small-cells and over congestion of macro-cells by active users (i.e. load 

balancing). User devices usually attempt to connect to the base station from which they 

measure the strongest pilot power.  However, due to the transmit power disparity between 

macro and small-cell base stations, active users that could have connected to a nearby small-

cell base station still connect to the high power macro base station. This creates a situation 

where macro base stations become overloaded while the small-cells are practically free of 

user demand. CRE solves this problem by applying a positive cell selection bias to the pilot 



 

 

power of small-cells to attract more users from the macro base station. Finding an optimal 

bias for each small-cell base station results in challenging optimisation task in itself [27]. 

 
Figure 2.3: Illustration of small-cell range expansion in a heterogeneous network [28] 

2.1.4. MIMO  

(Multiple Input Multiple Output) MIMO is an advanced data transmission technique 

based on the concepts of Spatial multiplexing  and Transmitter diversity [29].  A simple point 

to point MIMO enabled system consists of a base station and a user device with multiple 

antennas to transmit and receive data. Every use of the channel comprises transmitting a 

signal vector and receiving a signal vector, where every received signal is a linear 

combination of transmitted signals, and the combining coefficients are determined by the 

propagation between the two ends of the link (between the base station and the user). MIMO 

spatial multiplexing is a key technology used in LTE and key to next-generation 5G mobile 

networks [30]. MIMO Spatial multiplexing is used to increase the overall data rate through 

transmission of two (or more) different data streams on two (or more) different antennas, 

using the same resources in both frequency and time; separated only through the use of 

different reference signals, to be received by two or more antennas, see Figure 2.4.  However, 

MIMO spatial multiplexing can only be efficiently used under a high-quality radio channel 



 

 

indicated by a high Signal to Noise ratio [29].  MIMO can also be used to improve the link 

quality by means of Transmit diversity. In this mode, all the antennas transmit the same data 

which is then combined by the receiving antennas to improve data decoding reliability. 5G 

mobile networks are expected to feature base stations with very aggressive MIMO orders 

[30][29]. 

 

 

Figure 2.4: Simplified illustration of 2x2 MIMO (Spatial Multiplexing). Two different data streams are 
transmitted on two TX antennas and received by two RX antennas, using the same frequency and 
time, separated only by the use of different reference signals[31]. 

  



 

 

2.2. Optimisation  

This sub-section provides general background knowledge on optimisation in sufficient 

detail for the reader to better appreciate the content of this thesis. A complete background on 

optimisation is out of scope and the reader is referred to [32]. Optimisation is a key decision-

making tool which has been applied in diverse subject areas and indeed in mobile networks. 

Optimisation has historically played an important role in mobile networks and is poised to be 

central in the design and operation of next-generation 5G cellular networks, which are 

expected to be significantly more complex. Many complex decisions can be formulated as 

optimisation models/problems and analysed. A typical optimisation framework consists of 

two parts: 

1. Problem model and formulation: A problem model is usually an abstract 

mathematical representation that captures the main characteristics of the problem to 

be optimised. Usually, models are intelligent simplifications of reality [33]. They 

involve approximations/assumptions and sometimes may skip processes that are 

complex to represent mathematically but can easily be modified and are still able to 

provide useful insights to the modelled problem. As part of the problem formulation, 

a set of decision variables, objective(s) and constraints that characterise the problem 

are clearly identified.  

2. Optimisation Method:  Once the optimisation problem is formulated, the next step 

is to solve the model, which involves finding the optimal values of the decision 

variable(s) to the model based on the objectives(s) and respecting the constraint(s) of 

the problem. Typically, efficient algorithms are developed to solve the model, either 

to optimality or approximately.  More details on algorithms are given in subsequent 

sections.  



 

 

An optimisation problem may be defined by the couple (𝑆𝑆,𝑓𝑓), where S represents the set 

of feasible solutions, and 𝑓𝑓: 𝑆𝑆 → 𝑅𝑅 the objective function to be optimised [32]. The objective 

function assigns a quantitative fitness value (r ∈ R) to every solution (s ∈ S) of the search 

space, indicating its quality at solving the model relative to any other solution in the search 

space. The solution s ∈ S assigned the best fitness by the objective function out of the pool of 

all other feasible solutions to the problem is the global optimum. Optimisation problems may 

have more than one global optimum.  In many complex optimisation problems such as 

mobile network design, finding the global optimum, is a near impossible task in acceptable 

computational time and a good approximation of the global optimum is sought instead.  

Definition 2.1: Feasible solution. A candidate solution to an optimisation problem is feasible 

if it obeys the constraints to the problem.  

Definition 2.2: Search space. The set of all possible solutions for any given optimisation 

problem. A search space will contain feasible and infeasible regions based on the constraints 

of the optimisation problem. The size of the search space is closely defined by the 

number/nature of decision variables to the problem.  

Definition 2.3: Global optimum. A solution 𝑠𝑠∗ ∈ 𝑆𝑆 is the global optimum if it has a better 

objective value than all solutions of the search space, i.e. ∀𝑠𝑠 ∈ 𝑆𝑆 ,𝑓𝑓(𝑠𝑠∗) ≤ 𝑓𝑓(𝑠𝑠) for a 

minimisation problem. 

Definition 2.4: Local optimum. A solution or point s’ ∈ S is a local optimum if it has a better 

objective function value than nearby points in the search space and is not the global optimum.  

Search spaces of typical optimisation problems contain lots of local optima. 

 



 

 

 

Figure 2.5:  illustration of Local and Global Optima, assuming a minimisation problem [34] 

 

2.2.1. Classification of Optimisation Models 

An important step in any optimisation process is the classification of the optimisation 

model. Different optimisation models are usually characterised by different internal 

structures, which significantly influence the class of optimisation methods applied to them.  

Optimisation models can be classified based on a number of different metrics [32]: 

1. Deterministic versus Uncertain Optimisation: In many optimisation problems, the data 

cannot be known accurately for a variety of reasons; the first reason may be due to simple 

errors in measurement. The second and more fundamental reason is that some data 

represents information about the future (e. g., product demand or price for a future time 

period) and simply cannot be known with certainty. Optimisation models are 

deterministic when all data to the model are known accurately throughout the process. In 

this thesis, the scope is limited to deterministic optimisation models with very little 

uncertainty. Although some aspects of a mobile network such as the wireless channel and 

the exact location of users in the service area are uncertain, to evaluate the performance of 

different heuristic algorithms, this uncertainty is removed by assuming a fixed snapshot 

of users and only taking into account the distant dependent path loss (between a user 

equipment and a base station) when modelling the wireless channel. This ensures that the 

algorithms are compared on exactly the same problem instance for fairness in the 

achieved results.     



 

 

2. Unconstrained versus Constrained Optimisation: Optimisation problems can also be 

distinguished based on the number of constraints. Unconstrained optimisation problems 

in which the problem is formulated with no explicit constraints arise directly in many 

practical applications. Unconstrained optimisation problems can also arise from the re-

formulation of constrained optimisation problems in which the constraints are replaced by 

penalty terms in the objective function. On the other hand, constrained optimisation 

problems have explicit constraints on the decision variables. The constraints on the 

variables can vary widely from simple bounds to systems of equalities and inequalities 

that model complex relationships among the variables. Constrained optimisation 

problems can be further classified according to the nature of the constraints (e.g., linear, 

nonlinear, convex) and the smoothness of the functions (e.g., differentiable or non-

differentiable). The optimisation models presented in this thesis are constrained because 

the deployment of a base station network is usually subject to a number a given 

constraints such as the budget. 

3. Continuous versus Discrete Optimisation: In many application areas the possible 

values of the decision variables can be modelled as a discrete set, often a subset of 

integers, whereas in other areas variables can take on any real value. Models with only 

discrete variables are discrete optimisation problems; models with continuous variables 

are continuous optimisation problems. Continuous optimisation problems tend to be 

easier to solve than discrete optimisation problems; the smoothness of the functions 

means that the objective function and constraint function values at a point 𝑥𝑥 can be used 

to deduce information about points in a neighbourhood of 𝑥𝑥. The optimisation models 

presented in this thesis are discrete is nature because the deployment of a base station 

network is usually based on a number finite variable choices available to a mobile 

network operator. 



 

 

4. Single versus Multiple Objectives: Many optimisation problems have a single objective 

function, however, many operational optimisation problems have multiple objective 

functions. Multi-objective optimisation problems arise in many fields (such as 

engineering, economics, and logistics etc.) when optimal decisions need to be taken in the 

presence of trade-offs between two or more conflicting objectives [35]. For example, in 

mobile network design, increasing the coverage footprint of a given network usually will 

involve the installation of more access points at strategic locations which in turn increases 

system cost. In this example, the optimisation presents two objectives; maximising 

coverage and minimising cost. In practice, problems with multiple objectives can be re-

formulated as single objective problems by either forming a weighted combination of the 

different objectives or by replacing some of the objectives by constraints. Another 

approach to optimisation models with multiple objectives is to seek a ‘Pareto front’, 

which is a set of non-dominated feasible solutions to the problem [35]. 

5. Complexities: Another important criterion for classification of optimisation problems is 

their complexity class. A complexity class represents the set of all problems that can be 

solved using a given amount of computational resources. There are two important classes 

of problems: P and NP. 

Definition 2.5: 𝑷𝑷 class. The complexity class 𝑷𝑷 is the set of all decision problems that 

can be solved by a deterministic machine in polynomial time [32]. 

An algorithm (deterministic) is polynomial for a decision problem 𝐴𝐴 if its worst 

complexity is bounded by a polynomial function 𝑝𝑝(𝑛𝑛) where 𝑛𝑛 represents the size of the 

input instance [32]. Hence, the class 𝑷𝑷 represents the family of problems where a known 

polynomial-time algorithm exists to solve the problem. Problems belonging to the class 𝑷𝑷 

are then relatively “easy” to solve and a global optimum solution can be found. 



 

 

Definition 2.6: NP class. The complexity class NP represents the set of all decision 

problems that can be solved by a non-deterministic algorithm in polynomial time [36].  

A non-deterministic algorithm can exhibit different outcomes on different executions 

even for the same input since there is no rigid specification of the search path.  A decision 

problem 𝐴𝐴 ∈  𝑵𝑵𝑷𝑷 is NP-complete if all other problems of class NP are reduced 

polynomially to the problem 𝐴𝐴 [32]. If a polynomial deterministic algorithm exists to 

solve a NP-complete problem, then all problems of class NP may be solved in polynomial 

time. NP-hard problems are optimisation problems whose associated decision problems 

are NP-complete. Most real-world operational optimisation problems (such as mobile 

network design problems) are NP-hard, for which provably efficient algorithms do not 

exist. They require exponential time (unless P = NP ) to be solved to optimality. Meta-

heuristics constitute an important alternative to solve this class of problems  [32]. 

2.2.2. Optimisation methods 

An optimisation problem may be solved by an approximate method or exact method, 

depending on its complexity and structure. Exact methods when applicable return global 

optimal solutions and guarantee their optimality. Approximate (or heuristic) methods, on the 

other hand, can generate good solutions in a reasonable time for practical use to complex 

problems where exact methods fail to scale, but there is no guarantee of finding a global 

optimum solution. Base station network planning optimisation problems are complex and 

difficult tasks that cannot be solved at scale using exact methods, hence, the focus is on 

heuristic algorithms. Heuristics methods can provide useful solutions to the task of base 

station network planning in practical time. 



 

 

2.2.2.1. Approximate and Heuristic Methods 

Some examples of exact methods include the following classical algorithms: dynamic 

programming, branch and bound algorithms, constraint programming, and A∗  family of 

search algorithms (A∗, IDA∗—iterative deepening algorithms) [37]. Exact methods can only 

be practically applied to small instances of difficult problems (NP-hard problems) due to the 

sheer amount of computation resources that will be required as the problem size grows [38]. 

These type of difficult optimisation problems are more practically approached by 

approximate methods, which are able to find acceptable solutions within practical 

computational resources. Two sub-classes of approximate methods may be distinguished: 

approximation and heuristic algorithms. Heuristic algorithms can be further distinguished 

into problem-specific heuristics and meta-heuristics, and do not give any approximation 

guarantee on the quality of the obtained solution(s). In contrast, approximation algorithms 

return provable solution quality guarantee from the global optimum and provable run-time 

bounds specific to the target optimisation problem (problem dependent). This characteristic 

limits their applicability. Moreover, in practice, attainable approximations are too far from 

the globally optimal solution, making those algorithms not very useful for many real-life 

applications [32]. 

Definition 2.7: A e-approximation algorithm generates an approximate solution  not less than 

a factor e-times the optimum solution [39] 

2.2.2.2. Meta-heuristics 

Meta-heuristics are general-purpose algorithms that can be applied to optimise almost 

any optimisation problem. They provide a general high-level methodology that can be used as 

a guiding strategy in designing underlying heuristics to solve specific optimisation problems. 

Unlike exact methods, meta-heuristics are more robust to scale (size) of problem instances by 



 

 

still returning satisfactory and practical solutions within acceptable computational time. 

However, solution quality is not guaranteed since they are heuristic algorithms. Moreover 

meta-heuristics “may” return global optimum solutions to some problem instances [40]. 

Meta-heuristics have received more and more popularity in the past 20 years, mainly because 

of their diverse application domains. Their use in many applications shows their efficiency 

and effectiveness to solve large and complex problems. A large number of different meta-

heuristic algorithms have been proposed and studied in the literature on different optimisation 

problems.  

 

Figure 2.6: Taxonomy of meta-heuristic algorithms 

 

Figure 2.6 shows taxonomy of some of the most popular meta-heuristic algorithms. The 

algorithms are generally inspired by a natural/physical phenomenon. Different types of meta-

heuristics need to be studied to find the most suitable for a given optimisation problem. 

METAHEURISTICS

STOCHASTIC
DETERMINISTIC

e.g
Tabu Search (TS)

SINGLE SOLUTION
BASED

e.g.
Simulated Annealing 

(SA)

POPULATION BASED

Evolutionary Algorithms
Genetic Algorithm (GA)

Evolutionary Strategy (ES)
Differential Evolution (DE)
Genetic Programming (GP)

Swarm Algorithms
Particle Swarm Optimisation  (PSO)

Ant Colony Optimisation (ACO)
Artificial Bee Colony (ABC)

Fish Swarm Algorithm (FSA)

Other Algorithms
Gravitational Search Algorithm 

(GSA)
Firefly Algorithm (FA)

Bat Algorithm (BA)
Harmony Search (HS)

etc.



 

 

2.2.2.3. Core Components of Meta-heuristics 

Regardless of the meta-heuristic algorithm considered to solve a given optimisation 

problem, there are three core design questions common to all meta-heuristics in approaching 

an optimisation problem; the solution encoding (or representation), definition of the objective 

(or fitness) function that will guide the search, and the definition of variation operators that 

move the algorithm from one point in the search space to another.  

1. Solution encoding: The solution encoding is the critical bridge between the problem 

model and the algorithm. It is a fundamental design question in the application of meta-

heuristics and plays a major role in the efficiency and effectiveness of any meta-heuristic. 

The encoding must be suitable and relevant to the tackled optimisation problem. In fact, 

when defining an encoding, one has to bear in mind how the solution will be evaluated 

and how the variation operators will operate on it. Many alternative representations may 

exist for a given problem. [32] defined the following criteria for designing a solution 

encoding :  

• Completeness: All solutions in the search space of the problem must be 

represented by the encoding. 

• Connexity: A search path must exist between any two solutions of the search 

space.  

• Efficiency: The representation must be easy to manipulate by the search 

operators, such that the time and space complexities of the operators dealing 

with the encoding are reduced. 

2. Objective function and Constraint handling: The objective (or fitness) function models 

the goal to be achieved [41]. It associates with each solution of the search space a real 

value that describes the quality or the fitness of the solution. The objective function is at 



 

 

the heart of designing a meta-heuristic to solve an optimisation model. It will guide the 

search towards “good” solutions of the search space in the hope of finding the global 

optimum solution. If the objective function is improperly defined, it can lead to non-

acceptable solutions whatever meta-heuristic is used [32]. Multi-objective optimisation 

problems have more than one objective function, however, it is not unusual to combine 

them into a single weighted objective function to be optimised. Most real word 

optimisation problems will have associated constraints that must not be violated for a 

candidate solution to be feasible. Dealing with constraints in optimisation problems is 

another important topic for the efficient design of meta-heuristics. The constraints may be 

of any kind; linear or non-linear, and equality or inequality constraints.  A simple way to 

deal with constraints is to reject solutions to the model that do not meet the constraints 

[42]. However, this strategy may not be very effective for complex search spaces with 

large infeasible regions and disjoint feasible regions. A better constraint strategy is to 

apply a penalty to infeasible solutions during the search process. The unconstrained 

objective function is extended by a penalty function that will penalise infeasible solutions. 

This is the most popular strategy used in the literature. The definition of the penalty 

function and how it is applied is a design decision to be considered by the algorithm 

designer. 

3. Variation Operators: Meta-heuristics require variation operators to move from one state 

to next in the search space. The variation operators work on the solution encoding and are 

designed based on the same. A common search operator to all Meta-heuristics is the 

Neighbourhood function. The Neighbourhood function of a solution 𝑠𝑠, 𝑁𝑁′(𝑠𝑠), creates a 

new solution s′ by making a single change to one of the decision variables of s. The 

change to s is usually done in a random manner, however, problem specific knowledge 

may also be used in the definition of Neighbourhood.  



 

 

2.2.2.4. Hill Climbing Algorithm (HC) 

 

Algorithm 2.1: Hill Climbing Algorithm 

Input: Iter:Number of iterations 
1.  Let x = a random solution 
2.  For i = 0 to Iter-1 
3.   Let f = fitness of x 
4.   Make a small change to x to make x’ 
5.   Let f’ = fitness of new point x’ 
6.   If f’ is better than f Then 
7.    Let x = x’ 
8.   End If 
9.  End For 

Output: The solution x 
 

The Hill climbing algorithm follows the problem-solving heuristic of making the locally 

optimal choice at each stage  [43]. The HC algorithm, as shown in the pseudo code1 of 

Algorithm 2.1, starts at a random point in the search space and aims for a better fitness value 

of the objective function by randomly exploring its neighbourhood, accepting only of better 

points in the search space. The process continues until the maximum number of iterations or 

some other stopping criteria is reached. The HC finds the neighbour of a solution by making 

a small change to the current solution. For example, the decision of whether or not to place 

base stations on a set of 5 candidate sites, can be represented by a 5 bit binary string. 

Assuming the binary string is “1010”, a neighbour solution can be created by flipping the first 

bit to create a new binary string, “0010”. The HC is particularly simply in its approach 

(compared to other algorithms), however, the HC may become trapped at local points in the 

search space because of its greedy approach. 

                                                            
1 Pseudo code is an implementation of an algorithm in the form of annotations and informative text 
written in plain English and has no syntax. 
 



 

 

2.2.2.5. Simulated Annealing (SA) 

Algorithm 2.2: The Simulated Annealing Algorithm 

Input: T0 : Starting temperature 
Iter: Number of iterations 
Λ: The cooling rate 
T = T0 

1.  Let x = a random solution 
2.  For i = 1 to Iter 
3.   Let f = fitness of x 
4.   Make a small change to x to make x’ 
5.   Let f’ = fitness of new point x’ 
6.   If f’ is worse than f Then 
7.    Let p = exp(-(fitness difference)/T) 
8.    If p < rand(0,1) Then 
9.     Reject change (keep x and f) 
10.    Else 
11.     Accept change (keep x’ and f’) 
12.    End If 
13.   Else 
14.    Let x = x’ 
15.   End If 
16.   Let T = Tλ 
17.  End For 

Output: The solution x 
 

Simulated Annealing (SA)  [44]  is a probabilistic meta-heuristic technique for 

approximating the global optimum of a given function. The idea of SA originated from the 

natural process of annealing in metallurgy, which involves heating materials to a very high 

temperature and then allowing them to slowly cool down to alter its physical structure.  The 

SA algorithm, as shown in the pseudo code of Algorithm 2.2, has a temperature parameter 

that is kept to simulate the heating and cooling process in metallurgy; the temperature 

parameter along with the difference in fitness between two neighbour solutions is used to 

compute the probability of accepting a solution with a worse fitness following line 7 of 

Algorithm 2.2. The temperature variable is initially set to a high value, then steadily “cooled” 

in each iteration using a cooling rate (line 16, Algorithm 2.2 ) (i.e. the temperature decreases 

whilst running the algorithm). This temperature keeps decreasing towards zero by the end of 



 

 

the algorithm. At sufficiently low temperatures, the SA acts like the Hill climbing algorithm, 

accepting only better solutions. SA has been reported to be particularly suited to 

combinatorial search problems and has been previously used for network planning problems 

[45] [37].  

2.2.2.6. Genetic Algorithm (GA)   

Algorithm 2.3: Genetic Algorithm 

Input: T: Number of iterations 
Pz: population size 
P(t): Population in iteration t 

1.  Generate  Pz random solutions 
2.  While t < T 
3.  Evaluate P(t) 
4.  P_p (t)= P(t). Select parents() 
5.  P_c (t)=crossover (P_p) 
6.  P_c (t)= Mutate (P_c(t)) 
7.  Evaluate (P_c(t)) 
8.  P(t+1)= build next generation of size  Pz from 

P_c (t)  + P(t) 
9.  t= t+1 
10.  End  While 

Output: Best solution in iteration T 

 
 

A Genetic algorithm (GA) [46] is a meta-heuristic search technique inspired by natural 

evolution. The GA has been successfully applied to a wide range of real-world problems of 

significant complexity, too complex for exact methods. A GA operates on a population of 

often randomly generated solution representations known as chromosome(s). Each 

chromosome represents a solution to a problem and has a fitness (returned by the objective 

function), a real number which is a measure of how good a solution it is at addressing the 

particular optimisation problem. As shown in the pseudo code of Algorithm 2.3, starting from 

the generated population of chromosomes, a GA carries out a process of fitness-based 

selection and recombination to produce a successor population, referred to as the next 



 

 

generation. During recombination, parent chromosomes are selected and their genetic 

material (solution components) combined based on a crossover method to produce child 

chromosomes. These then pass into the successor population. As this process is iterated, a 

sequence of successive generations evolves and the average fitness of the chromosomes tends 

to improve until some stopping criterion is reached (often a maximum number of iterations). 

The fittest chromosome (i.e. the solution with the best objective value) in the ending 

population is returned as the optimal solution to the problem. In this way, a GA “evolves” the 

best solution to a given problem.  

A. Parent Selection 

The GA uses a selection operator to choose parent solutions that will breed to create the 

next (hopefully better) population of solutions. A widely used selection operator is the 

Roulette wheel selection [46]. In the Roulette wheel selection, parents are selected for 

breeding based on a fitness based probability wheel. In other words, the chance of a 

chromosome being selected is directly proportional to its fitness. Another selection operator 

is the Tournament selection [47]. In a Tournament selection, a chromosome is chosen as a 

parent after winning a fitness based Tournament of randomly chosen chromosomes in the 

current population. The optimal selection operator for a given problem can only be found 

through empirical experiments.  

B. Crossover 

The creation of an offspring population is at the core of the GA.  A crossover operator 

generates a pair of offspring solutions from a pair of parent solutions.  The crossover operator 

achieves this by combining the genes of the chosen parent solutions to create offspring.  A 

gene is the smallest component of an encoding. The mechanism of combining the parent 

genes could be one point [46], two-point [48] or uniform [49] (Figure 2.7). Crossover is 

applied according to a given probability known as the crossover probability. Like the parent 



 

 

selection operator, the optimal crossover operator and probability for a given problem can 

only be found through empirical experiments.  

C. Mutation 

Mutation alters one or more gene values in a chromosome from its initial state. Unlike the 

crossover operator, this can result in entirely new gene values being added to the gene pool. 

Using mutation a Genetic algorithm may be able to escape a local optimal point in the search 

space. Similarly to the crossover operator, the mutation operator has a mutation probability. 

The mutation probability is a very small value, much smaller than the crossover probability. 

Following the example in Figure 2.7, mutation can be performed by simply flipping a bit 

according to the mutation probability. 

 

Figure 2.7: Crossover example on a simple binary encoding[50] 

2.3. Summary 

This chapter presented the background material necessary for the rest of this thesis. It 

started with an overview of the fundamentals of mobile cellular networks and discussed their 

evolution towards next-generation 5G mobile networks. Next, key technologies for 5G 



 

 

mobile networks that include a heterogeneous base station access network, small-cells, and 

MIMO were introduced. Finally, an overview on optimisation and the background on three 

meta-heuristic search techniques used later in the thesis have been presented. 

 

  



 

 

3. Literature review: Cellular Base station Access Network Design 

This chapter presents a literature review on cellular base station access network design 

optimisation with emphasis on the use of meta-heuristics and the transition to a 

heterogeneous base station mobile network architecture. The aim is to characterise research 

development over time, analyse the state of the art and position the contributions made in this 

thesis. Some key terms are also explicitly defined.  

3.1. Introduction  

    Mobile network operators (MNOs) are constantly battling to optimise the trade-off 

between their network performance (as seen by their subscribers) and the cost of owning and 

operating their networks.  Generally, to significantly improve the network performance of 

their systems or enter new markets, MNOs carry out tasks such as upgrading to more 

advanced equipment or increasing the density of base stations. This in turn undesirably 

increases their system cost of ownership, hence strategies that optimise this trade-off have 

continued to be highly sort after. Optimised network planning, especially at the base station 

network level2, which leverages optimisation algorithms such as meta-heuristics for planning 

and operating the base stations has and will be a key strategy for optimising this trade-off in 

the future. The cost and performance implications of a typical cellular network are strongly 

dependent on the base station deployment, hence cellular network operators fundamentally 

carry out base station planning in order to establish or extend a base station topology that 

meets the required user equipment (UE) quality of service (QoS) metrics over a defined 

geographical area; while simultaneously minimising system cost of ownership. More 

recently, there has also been increased attention to the concept of ‘on demand network 

                                                            
2 Henceforth, by ‘network’, we refer to a collection of base stations deployed on a defined geographical area to 
provide wireless cellular communication services to subscribers.   



 

 

planning’ to reduce power consumption and improve traffic load balance across the base 

stations [15]. 

 Regardless of the use case, to improve the cost efficiency of mobile networks, operators 

have since adopted automatic methods (over manual methods) to carefully optimise design 

deployment of their base station and core networks, enabled by system simulation tools and 

application of optimisation problems and algorithms [51]. Such tools and algorithms are 

extremely important for determining a base station topology that provides the required QoS 

demands of users in cost effective way, and also for gaining better insights into how different 

technologies affect the trade-off between system performance and system cost.  On that note, 

the literature in cellular base station network planning and optimisation has fundamentally 

focused on developing representative cellular system models that capture the trade-off 

between system cost and system performance, and development and study of optimisation 

models and algorithms in order to find an optimal network topology balance between system 

cost and performance, also known as base station planning. This thesis places emphasis on 

the later without completely ignoring the former.  Although base station planning has been a 

well-studied research area, advancements in mobile network technology in recent years such 

as a heterogeneous base station access architecture, cell range expansion (CRE), MIMO and 

the need for denser base station deployments necessitate new system and problem models, 

insights, and algorithms/approaches for planning and operating cellular systems of the future. 

In general, the task of automatic base station planning can be broken down into three key 

steps;  

1. System modelling: Cost and Performance 

2. Optimisation problem design: Objectives, Decision variables and Constraints 

3. Algorithms for network optimisation  



 

 

3.1.1.   System Modelling: Cost and Performance   

Different base station configurations are poised to affect the cost and QoS performance 

(as seen by the subscribers) of the network differently. Usually, high-performance 

configurations also incur high system cost in terms of capital expenditure and power 

consumption, and as such capturing this trade-off is crucial to the network planning process. 

In the following sub-sections, some key definitions are made, the literature on system cost 

and QoS performance modelling is reviewed with emphasises on heterogeneous base station 

access network. 

3.1.1.1.  QoS Performance modelling  

The system level metrics used to measure the quality of service (QoS) experienced by 

subscribers of a mobile network in this thesis are the network coverage of the service area 

and the traffic handling capacity of the network.  

A. Coverage Metric 

The network coverage defines the reach or presence of a mobile network signal across 

the considered geographical area and is technically a measure of the received signal power 

from (and to) the base stations that should ideally be at or above a minimum radio frequency 

(RF) sensitivity level; beyond which wireless communication between the base station and a 

subscriber user equipment (UE) is not achievable. Cellular systems are designed to provide 

wide area wireless communication services for both stationary and nomadic subscribers, to 

achieve this objective, the base station network deployed by mobile network providers must 

provide sufficient coverage over the service area to guarantee wide area communication 

services. A widely adopted Test Point concept for modelling base station coverage in system 

simulation is proposed in [52]. In this concept, discrete test points densely distributed across 

the service area are used as RF signal measurement points. Test points that measure below 



 

 

the RF signal threshold from a given base station are said to be out of its coverage area, and 

as such subscribers in that region cannot access mobile network services through it (i.e. the 

base station). 

B. Capacity Metric 

In today’s cellular system it is not sufficient to merely provide sufficient coverage. The 

capacity of the cellular system must also be assured and is a measure of the system’s ability 

to deal with the traffic demand of its subscribers without compromising their experienced 

quality of service. In fact, the need to provide extremely high data traffic capacity in mobile 

networks is the key motivation for next-generation 5G mobile networks [53]. Base stations 

have a limited amount of resources such as bandwidth and transmission power which limits 

the maximum number of subscribers they can efficiently serve at any one time [54]. 

Consequently, like with the coverage, multiple base stations are required to provide sufficient 

capacity to subscribers. Next generation 5G mobile systems which must provide very high 

data capacity will be enabled by very dense base station deployments [20]. Earlier cellular 

systems such as GSM (Global System for Mobile Communication) were optimised mainly 

for wide-area wireless voice communication, however, driven by the success of internet 

connectivity and increasingly smart mobile terminals, the popularity of data traffic have since 

dwarfed voice [2]. Hence by traffic, we refer to the data transfer speed of a mobile network 

measured in bits per unit of time.  A standard theoretically measure of the wireless link 

(between a base station and a mobile terminal) data transfer capacity of a cellular system is 

the Shannon capacity theorem given by equation 3.1 [55]; 

𝑅𝑅(bps) = 𝑊𝑊 log2 �1 +
𝑆𝑆
𝑁𝑁�

 (3.1) 

Where 𝑅𝑅 is the theoretical maximum capacity of the channel (in bits/second), 𝑊𝑊 is the 

bandwidth of the channel in Hertz, (𝑆𝑆) is the desired signal power in Watts and (𝑁𝑁) is the 



 

 

noise power, also in Watts. The ratio (𝑆𝑆 𝑁𝑁⁄ ) is also known as the Signal to Noise Ratio and 

indicates the strength of the desired signal in comparison to Noise and interference (𝑁𝑁), as 

measured at the receiver.  Interference arises from simultaneous data transmissions on the 

same frequency block by neighbouring base stations. The Shannon capacity limit defines the 

theoretical upper bound at which data bits can be transmitted across the link with acceptable 

bit error probability. Clearly, the channel capacity is limited by the bandwidth and the signal 

to noise power level. It is shown later that the link capacity limit can be increased using multi 

antenna spatial multiplexing between the base station and the mobile terminal with MIMO 

technology.  

To better characterise base station capacity, a measure of its load is defined for LTE 

cellular standard. The load of a base station is a function of the number of users  in its cell, 

their data requirements and their signal to noise ratios [56]. The load of a base station 

measures the average utilization level of the transmission resources used in serving the 

demand of all active user equipment within its cell [57]. Hence subscribers connected to an 

over loaded base station may still suffer poor QoS even if they achieve good coverage and 

suffer little interference.  

3.1.1.2. Base station Deployment Cost Modelling  

A complete quantification of the deployment cost of a cellular radio access network 

(RAN) is difficult to perform. Certain cost components depend on factors that are not easily 

quantifiable, such as the contractual relationship between hardware manufacturer and 

operator, or the regulatory and legislative environment in the country of deployment. 

Furthermore, the RAN deployment cost can be shared between different mobile network 

operators by employing approaches like flexible spectrum sharing, roaming, and 

infrastructure sharing. Nevertheless, some key cost aspects of the RAN can be approximated 

with reasonable accuracy using mathematical relationships. These mathematical cost models 



 

 

discussed subsequently in this section form the basis of cellular base station deployment 

simulation tools and analysis. The objective is to capture the relationship between the cost 

implication of a mobile network deployment and its QoS performance under different cellular 

system technologies, as realistically and efficiently as possible. This plays an important role 

in evaluating the cost-performance trade-off of changing technologies, architectures, 

frequency bands, etc. in practical scenarios.  

The cost of owning and operating a mobile network also known as the total cost of 

ownership (TCO) can be broken into two main categories [21]; capital or infrastructural cost  

(CAPEX) and operational cost (OPEX). A number of research publications have reported 

power consumption cost (i.e. electricity bill) to be a major contributor to the OPEX of a 

typical mobile network [10]. Over the last two decades cellular mobile networks have 

evolved from 1st Generation (1G) to current state of the art LTE –Advanced 4G OFDMA 

based systems, incorporating more and more advanced technologies aimed at improving 

various system performance metrics. Current 4G LTE based cellular systems were 

standardised to provide significantly higher data capacity over previous cellular system 

generations. Advanced technologies such as heterogonous base station radio access networks 

enabled by the introduction of small-cell base stations (e.g. pico, femto, relay base stations), 

interference mitigation techniques, massive MIMO, co-operative multi-point transmission 

(CoMP), cloud-radio access network etc. have been introduced into the system to increase 

data carrying capacity and coverage.  However, despite the system performance gains these 

technologies bring, adopting them also influences the OPEX and CAPEX for mobile network 

operators. Consequently, models that relate their system QoS performance gain to system 

cost are central for cost efficient base station deployment. With particular emphasis on 

heterogeneous networks, the following key contributions in literature are reviewed. The 

authors of  [58] proposed a simple linear model for measuring the TCO of a traditional 



 

 

homogenous cellular system as function of the number of base stations deployed, the 

annualized cost of spectrum, energy and the annual cost per BS. However their work does not 

consider heterogeneous networks since the type of base station will impact on the TCO in this 

case. Furthermore, their model abstracts the individual base station configurations which 

should also be taken into account. For example a base station site with multiple sectors and 

antennas will certainly incur more costs than a simpler configuration base station even though 

they are of the same type. In  [59]  the authors take into account the influence of different 

types of base stations on the CAPEX cost by defining the cost of micro base stations as a 

fraction of the macro base station cost. They also propose the idea of deployment efficiency, 

which is the network capacity performance normalised by the TCO incurred. However, 

similar to [58], their work abstracts the impact of individual base station configurations which 

should be taken into account. In his well-cited work [60], Johnson proposed a discounted cost 

model for mobile networks based on heterogeneous base station access network architecture, 

which is used to account for inflation and the time value of money. However, his work does 

not explicitly consider the impact of power consumption. Based on the work of [60], Nikolikj 

in [61] presented dollar estimates of CAPEX cost for the different classes of base stations in a 

heterogeneous access network. In conclusion, the main limitation of these works (above) is 

the fact that they cover only limited RAN configurations and do not capture the impact of 

base station complexity on the cost of the system. A cost model that captures more 

configurations and also the impact of increasing complexity of base station setup, usually 

tailored at improving the network QoS performance, on the network cost is very desirable to 

improve the accuracy of conclusions reached.  

3.1.2.   Problem Modelling and Optimisation  

To overcome the complexity associated with the large number of base station variables 

that should be taken into account in order to optimally design/plan and operate mobile 



 

 

networks, the task of base station planning is viewed as an optimisation problem. This allows 

optimisation algorithms to be applied to various aspects of cellular network planning to 

improve accuracy and speed. The earliest cellular systems were manually planned based on 

the experience of engineers. However, the need for a more automatic and optimised 

framework for deploying base stations was quickly realised as the complexity of cellular 

systems increased [62]. Such optimisation tools for network deployment and management are 

key for next-generation 5G cellular networks, which are expected to transfer extremely large 

amounts of data at high speeds; from both a performance and cost perspective [20]. The key 

methodology for achieving this objective of automation can be broken down into two main 

steps (see Figure 3.1); (i) the formulation of practical system optimisation problems (ii) and 

application/development of efficient algorithms/tools to solve them, of which meta-heuristics 

constitute an import class.   

 

 

Figure 3.1: Automatic base station planning methodology 

In the first step, the objective is to formulate practical optimisation problems that 

influence the structure of the base station network, while the second step aims to develop 



 

 

efficient algorithms capable of finding the optimal operating values to the decision variables 

subject to the given constraints (as defined in step one). The basic idea is to deploy/design a 

network of base stations over a defined geographical area taking into account the user 

subscriber population demand and available cellular system technologies. The result of this 

process is a deterministic set of network parameters (such as the number, locations, 

transmission power etc.) of base stations that not only influence the quality of service (QoS) 

performance of the system but also the cost incurred by network operators. In essence, the 

optimisation problem model poses a network design question for which algorithms can be 

developed to answer. Over the last two decades, a number of base station planning 

optimisation problems have been proposed and studied in literature, engineered based on 

different cellular standards, scenarios and objectives.  

3.1.2.1. 2G and 3G base station planning  

The first base station planning problem was based on the 2nd Generation(2G) GSM 

standard and was motivated by the need to provide wide area mobile network coverage at a 

reduced cost [40][63][64]. The key decision variables were to optimise the number and 

locations of base stations such that network coverage is maximized while minimising the 

number of base stations used. The models were based on some variant of the un-capacitated 

set cover problem, which has been shown to be NP-hard [65] and thus motivated the 

application of heuristics/ meta-heuristics.  A large number of different heuristic methods have 

been published for tackling the GSM base station planning problem. Dedicated heuristic 

algorithms have been proposed by a range of authors [66],[67], [68]. However, approaching 

the problem using meta-heuristic algorithms was the most popular approach. The work in  

[40] established CHC [69] meta-heuristic as the optimal technique after empirically analysing 

its performance against a Simulated annealing algorithm and Genetic algorithm for solving 

the GSM base station problem, through empirical simulations. However, their work only 



 

 

assumed a perfectly uniform network structure, which is not realistic. The authors in [64] 

proposed a multi-objective hybrid framework for applying meta-heuristics to solve the GSM 

base station planning problem and analysed the performance NGSA-II[35], SPEA2 [70] and 

PESA [71] to generate the pareto-front between achieving higher coverage and minimising 

cost, and found comparable performance between them. The hybrid framework was based on 

an integer permutation solution encoding, a problem specific greedy decoding algorithm and 

a meta-heuristic algorithm. However, the performance of their framework against the 

standard application of meta-heuristic was not reported. The main drawback of this strategy is 

that the performance of the meta-heuristic is limited by the intelligence of the greedy 

decoder. The work in [63] showed that the speed of a Genetic algorithm at tackling the base 

station planning problem can be improved through execution parallelisation. The works in  

[72] and [45] showed the application of Simulated annealing to GSM and  3G  base station 

planning problems respectively. The 3G base station planning problem introduced additional 

complexity to the GSM problem. In GSM mobile network design, the issue of capacity was 

tackled in a separate optimisation problem known as the frequency assignment problem [73], 

hence the capacity issue was ignored in the problem formulation for base station deployment. 

As earlier mentioned in the background section (2.1.1), 3G systems were based on single 

frequency reuse and as such there was a need to consider the level of interference between 

base station cells and traffic handling capacity of the network in the problem formulation 

[74].  The 3G base station planning problem which is also NP-hard was tackled in [74] and 

[75], using a tabu search algorithm [76]. However, the solution encoding was not clearly 

defined. The works in [77][78] showed the application and effectiveness of the Genetic 

algorithm for solving the 3G base station planning problem, using a binary and an integer 

solution encoding respectively. The work in [79]  considered the 3G base station planning 

problem from both the downlink and uplink perspectives and analysed the performance of 



 

 

four meta-heuristic algorithms, Genetic algorithm, Simulated annealing and evolutionary 

Simulated annealing after 10000 fitness calls. They report the Simulated annealing algorithm 

to be better than the Genetic algorithm in terms of mean fitness and standard deviation. 

However, their problem model reduced the level of automation by fixing the number of base 

stations to deploy and only optimising their locations. A more robust model should also 

determine the number of sites deployed. Furthermore, their experiment set only considers a 

very small network instance with only 95 possible base station locations and the algorithms 

are only analysed on a uniform traffic distribution, which is not realistic to make conclusions 

applicable to real mobile networks. In fact, in most of the literature, this criticism is upheld. 

Another drawback of the literature is the lack of benchmark data to allow a holistic 

comparison of the approaches. The above literature, which is by no means exhaustive but 

certainly representative, shows that the base station planning problem in 2G and 3G mobile 

standards has been well investigated and the application of meta-heuristic to them has been 

extensive.  

3.1.2.2. Heterogeneous base station planning  

2G and 3G base station planning models were both based on a homogeneous flat network 

architecture including only macro base stations. Macro base stations have large coverage 

areas, high power consumption and CAPEX cost implications. A flat architecture consists of 

base stations of the same type and which have similar/identical coverage areas and cost 

implications. In contrast, current 4G LTE mobile networks have been standardised based on a 

multi-tier heterogeneous base station access network architecture consisting of traditional 

macro base stations and heterogeneous small-cell base stations (micro, pico and femto) with 

local coverage areas. A dense multi-tier heterogeneous access network architecture is one of 

the key technologies in next-generation 5G mobile networks system for achieving the 

“extreme” data capacity requirement [19]. The deployment of heterogeneous nodes in 5G 



 

 

systems will have a significantly higher density than today’s conventional networks [80]. In 

addition, many advanced technologies have been introduced into the network architecture 

(such as co-operative multi-point transmission (CoMP), MIMO, cell range expansion, 

advanced interference mitigation etc.). The holistic 5G heterogeneous system architecture 

taking into account the expected high density of base stations and advanced technologies 

presents a more complex planning environment and requires a paradigm shift from the base 

station planning models/approach of conventional flat networks if mobile network operators 

are to deliver 5G in a cost efficient manner.  

A key leverage of a 5G base station planning framework will be the ability to exploit 

heterogeneous base station types and small-cell base stations for different traffic scenarios. 

Hence an important sub-problem model that has been considered by a number of authors for 

5G is to determine the locations and number of small-cell base stations to deploy in an 

existing macro-cellular network [81][82][83]. However, this problem model only considers a 

single aspect of the 5G base station deployment problem.  Multiple types of base stations 

(such as macro, pico, femto and relay base stations) which have different characteristics (see 

section 2.1.3.1) should be exploited when formulating the base station planning problem for 

5G. Hence the “type” of base station to deploy would be a key decision variable. In addition, 

the optimal operating parameters (such as the transmission power etc.) of these base stations 

must also be considered, as well as other advanced cellular networking concepts key to 5G. 

The other key enabler for a 5G base station planning framework will be a clear framework for 

applying heuristic algorithms to support decision making for 5G base station deployment. 

The 5G problem inherits the complexity of flat network design, which has been proven 

severally to be NP-hard; and introduces additional dimensions to the problem. This 

complexity and the expected high density of base stations in 5G motivate the application of 

heuristic algorithms over exact methods. Heuristics and meta-heuristics have been 



 

 

extensively studied and established for base station planning of conventional flat architecture 

based mobile networks. However, their application to the 5G heterogeneous access 

environment has not been clearly established. The authors in [84] proposed approximation 

algorithms to select a subset of candidate sites to deploy macro or small cells to minimize the 

total cost of ownership (TCO) of the cellular system while satisfying  coverage and capacity 

constraints. However, their work simplifies the 5G network planning task. For example, their 

work assumes that the base station transmit power is always fixed and that the type of base 

station to install in each candidate site is known. Furthermore their work does not consider 

the optimisation of key 5G technologies like cell range extension (CRE) and MIMO.  The 

authors in  [85],[86] and [87] formulate the same problem as in [84] as a multi-objective 

problem and tackle it using different metaheuristic algorithms.  The main criticism of these 

works is the simplicity of the network planning problem model assumed which is inadequate 

for proper planning of a 5G network. Furthermore, 5G networks will leverage multiple key 

technologies like MIMO and CRE which is not considered in these work.  Moreover, the use 

of metaheuristic for online network management is not given any consideration in these 

works. This thesis attempts to fill these gaps by proposing a clear framework for exploiting 

heterogeneity in 5G base station planning by jointly optimizing heterogeneous base station 

architecture, MIMO and Cell range extension, using meta-heuristics. 

3.2. Summary  

This chapter reviewed research development in mobile network base station planning 

starting from the early models based on the 2G cellular standard, analysed the state of the art 

and positioned the contribution of this thesis while defining key concepts. The development 

of 2G and 3G base station planning problems were based on the conventional flat network 

and the application of meta-heuristic has been extensive. However, base station planning 

problems based on conventional flat network design are not optimised for planning 4G and 



 

 

next-generation 5G mobile networks which are based multi-tier heterogeneous base station 

network architecture. In addition, many advanced technologies have also been introduced in 

the RAN and as such more sophisticated base station planning models are required for 

efficient planning of 5G networks.  

 

  



 

 

4. 5G Heterogeneous Base station planning System Model with CRE 

4.1. Introduction 

The motivation of this chapter is to describe the cost and QoS performance system model 

used in the rest of this thesis for deployment analysis of a 5G mobile network with 

heterogeneous base stations and cell range extension technology. The user QoS performance 

metric used are the network coverage and the average throughput of users. This chapter does 

not include novel contributions and only describes the computation of key metrics and 

assumptions used in the analysis of 5G in this thesis. 

The system model for a 5G cellular network with heterogeneous base stations and cell 

range extension technology described in this chapter is based on the 4G LTE-Advanced 

cellular downlink standard [31]. The LTE-Advanced standard is the most advanced release 

defined for 4G LTE and is adopted as the air interface in this project since a 5G air interface 

has not been standardised. Moreover, the 5G standard is expected to inherit and extend most 

of the technologies in the LTE-Advanced standard [88]. We explicitly consider mathematical 

representations of two advanced LTE-Advanced features; small base station cell range 

expansion and a multi-tier heterogeneous base station access architecture in the proposed 

system model, which are considered key technologies in next-generation 5G mobile networks 

[19]. The system model proposed is generic to both greenfield and expansion base station 

planning but presented with emphases on the downlink of a LTE-Advanced mobile network, 

assuming a greenfield scenario and is derived by unifying existing models from the literature 

(discussed in section 3.1.1). The described system model explicitly relates system cost and 

QoS performance modelling of a mobile network as a function of the base station deployment 

and forms the basis for all the conclusions reached in this thesis. That is, for a given base 



 

 

station topology (deployment), the system model returns the system cost and performance 

implications with respect to the traffic scenario.  

4.1.1. Proposed 5G System Model based on LTE-Advanced 

A 3D simulation area, A, is considered with sets of discrete test points in Cartesian 

coordinates (x,y,z).  The simulation area model represents a defined geographical area where 

5G base stations are to be deployed. Different types of base stations (macro, micro and pico) 

can be deployed and configured to provide cellular service to subscribers. It is assumed that 

the candidate locations (candidate sites) where these base stations can be installed are known 

and given as input to the model, hence the focus is on the question of “how to cost effectively 

deploy the base stations without violating the quality of service metrics?” The assumption on 

candidate sites is valid as in practice, mobile network operators will only have a finite set of 

locations for installing base stations as opposed to complete freedom. 

U Set of demand nodes/points (DN)  
M Set of candidate sites for macro base station deployment 
S Set of candidate sites for small-cell deployment3  
𝑁𝑁 Set of base station  models/types  
𝑣𝑣𝑖𝑖 Site acquisition cost of  site  𝑖𝑖 ∈ 𝑀𝑀 ∪ 𝑆𝑆 
𝑏𝑏𝑖𝑖 Backhaul cost of site  𝑖𝑖 
𝑒𝑒𝑛𝑛 RF equipment cost of BS model 𝑛𝑛 ∈ 𝑁𝑁 
𝑃𝑃 Discrete set of possible transmission power levels of base 

stations 
D Discrete set of deployed base stations   
 𝜌𝜌𝑢𝑢 Signal to interference and noise ratio of  DN u ∈ 𝑈𝑈 
 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 Maximum achievable spectral efficiency  
𝑊𝑊 Available bandwidth 
𝐶𝐶𝐶𝐶𝑣𝑣′ Service area coverage percentage requirement 
𝐶𝐶𝐶𝐶𝑝𝑝′ Capacity requirement 
𝛿𝛿 RF sensitivity limit 
𝐵𝐵 Set of possible bias values for CRE  
𝐶𝐶 Discrete set of coverage test points 

Table 4.1: System model variables 

The types of base stations considered are grouped into two classes, tier 1 (macro base 

                                                            
3 The phrase small cells refers to all other types of base stations except the macro base station 



 

 

stations) and tier 2 (small-cell base stations). Conventional cellular standards were only based 

on tier 1 base stations. The small-cell base station models considered are micro and pico base 

stations. For clarity, the notation 𝑦𝑦 and 𝑦𝑦� is used for macro and small-cell base station 

variables, respectively, where the distinction is necessary. The following describe the system 

model;  

1. A “network” or “cell plan” is made up of base station sites deployed with base 

stations to provide cellular service to a set U of demand nodes distributed on the 

service area.  A demand node (or point) aggregates traffic from active users in a 

small area. The demand point concept proposed in [89] has become a widely 

accepted method for simulating cellular traffic. For simplicity it assumed that every 

base station deployed forms only one cell, hence the terms base station and cell are 

used interchangeably. 

2. The set U of demand points in a region is static for every simulation and represents a 

snapshot of the spatial distribution of users at a particular time. This is a reasonable 

assumption as the cellular network subscriber distribution is usually statistically 

stable for fixed intervals [90]. Base station network planning is usually carried out on 

the worst case traffic scenario in order to build robustness into the network design4. 

3. Demand nodes connect to base stations in order to receive data bits. Unless stated 

otherwise, every demand node associates to and is served by one base station in every 

simulation.  

4. For simplicity, it assumed that all base stations use the equal resource allocation 

policy, hence, all active user equipment served by a given base station receive an 

equal allocation of its transmission resources. 

                                                            
4 The worst case traffic scenario is the time period when the network experiences the most data demand from 
its subscribers 



 

 

5. Each candidate base station site is defined by 2 variables; (a) x,y,z coordinates and (b) 

site acquisition cost. The cost of site acquisition for small-cells is significantly 

cheaper than for macro sites [7]. Legacy sites may or may not exist; they do not have 

site acquisition cost as they are already deployed, however, the base stations 

deployed add to the power consumption cost of the network.  

4.1.2. Base station Models and Configurations 

In each candidate macro site (𝑚𝑚 ∈ 𝑀𝑀), it is assumed that mobile operators can deploy an 

omnidirectional macro base station operating with a transmission power level  𝑃𝑃𝑡𝑡 ∈ 𝑃𝑃. While 

in each candidate small-cell site (s ∈ S), one of |𝑁𝑁�| models for small-cell base stations can be 

deployed, operating with a transmission power level  𝑃𝑃𝑡𝑡 ∈ 𝑃𝑃�. Each small-cell model represents 

a different type of small-cell base station with a different power consumption profile, 

communication range (i.e. maximum transmit power) and equipment cost.  



 

 

 

4.1.3. Link Modelling  

To model the link between a base station and an active subscriber (represented by a 

demand point), the Hata path loss model for metropolitan areas is adopted [91]. However, 

other propagation models can also be used. The downlink received signal power by a demand 

point 𝑢𝑢 ∈ 𝑈𝑈 from a base station deployed in site 𝑚𝑚 ∈  𝑀𝑀 and can be described by equation 4.1 

[92]. 

𝑃𝑃𝑟𝑟𝑚𝑚(𝑚𝑚,𝑢𝑢)[dBm] = 10 log10 �
𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡𝑡𝑡
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

� + 30 − 𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐻𝐻(𝑚𝑚,𝑢𝑢) (4.1) 

𝐻𝐻(𝑚𝑚,𝑢𝑢) [dB] =  −(PL𝑚𝑚,𝑢𝑢 +   σ𝑚𝑚,𝑢𝑢 + L𝑝𝑝𝑓𝑓𝑛𝑛) (4.2) 

 

Figure 4.1: Service area (A). Black and red dots are candidate macro and 
small cell locations, respectively. Filled dots indicate deployed sites 



 

 

𝑃𝑃𝑡𝑡  is the transmission power of the base station (in Watts) and 𝐺𝐺𝑡𝑡𝑚𝑚 is transmitter gain 

multiplier while  𝐻𝐻(𝑚𝑚,𝑢𝑢)  is the channel gain between the base station 𝑚𝑚 and user u ∈  𝑈𝑈. The 

channel gain 𝐻𝐻(𝑚𝑚,𝑢𝑢) comprises the deterministic distance dependent path loss PL𝑚𝑚,𝑢𝑢 and 

σ𝑚𝑚,𝑢𝑢 is a zero-mean Gaussian random variable that models the effect of shadowing. L𝑝𝑝𝑓𝑓𝑛𝑛 

models the outdoor to indoor penetration loss experienced by users accessing cellular services 

from indoor areas. 𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the transmitter feeder cable loss. 𝑁𝑁𝑠𝑠𝑢𝑢𝑠𝑠 is the number of OFDMA 

subcarriers in the considered bandwidth.  

4.1.4. Cell Association with CRE feature  

An important decision variable for the quality of service (QoS) received by a user 

equipment is the decision on which base station it connects. Although LTE-Advanced allows 

co-ordinated multi-base station data transmission (CoMP) unless otherwise stated it is simply 

assumed that user equipment (demand point) can only be linked to one BS and consequently 

receives data from only that BS at a time. To aid the problem formulation, let the binary 

matrix a represent the demand point to BS associations such that 𝐶𝐶(𝑓𝑓,𝑢𝑢)  determines if the 

demand point 𝑢𝑢 ∈  𝑈𝑈 is  associated to base station 𝑑𝑑 ∈ 𝐷𝐷, were the variable is “1” if it does or 

“0” otherwise. In conventional cellular network architecture (without small-cell base 

stations), a user equipment 𝑢𝑢 associates to a base station 𝑑𝑑𝑢𝑢 from which it receives the 

strongest downlink pilot power, according to equation 4.3;  

𝑑𝑑𝑢𝑢 = arg max
𝑓𝑓

 �𝑃𝑃𝑟𝑟𝑚𝑚(𝑓𝑓,𝑢𝑢)�  | 𝑃𝑃𝑟𝑟𝑚𝑚(𝑓𝑓,𝑢𝑢) ≥  𝛿𝛿  ∀𝑑𝑑 ∈ 𝐷𝐷 (4.3) 

𝑑𝑑𝑢𝑢 = arg max
𝑓𝑓

 �β𝑓𝑓 + 𝑃𝑃𝑟𝑟𝑚𝑚(𝑓𝑓,𝑢𝑢 � | 𝑃𝑃𝑟𝑟𝑚𝑚(𝑓𝑓,𝑢𝑢) ≥  𝛿𝛿    (4.4) 

However, due to the very small transmission power (cell sizes) of small-cell base stations 

(compared to macro base stations), cell range extension is defined for small-cell networks 



 

 

(also known as cell biasing, see section 2.1.3.4). The use of cell biasing allows small-cell 

base stations to attract more users. The LTE-Advanced standard defines the concept of 

biasing for all base station types, however, it is assumed that only small-cell base stations 

utilise cell biasing technology, consequently, the bias value for a macro base station is zero. 

Consequently, equation 4.3 is modified to equation 4.4. β𝑓𝑓 is the bias value (in decibels) set 

for base station  𝑑𝑑. Note that biasing does not increase the transmission power of the small-

cell base station but simply entices more user equipment to connect to the small-cell layer of 

base stations thereby offloading the macro layer base stations. The use of small-cell biasing 

avoids an artificial capacity crunch that may be created by overloaded macro base stations 

and is considered key in 5G mobile network design. 

4.1.5. Quality of Service Performance Metrics 

This sub-section defines the metrics used for quantifying the quality of service (QoS) 

performance of a network in terms of its ability to provide the required coverage and the 

required capacity to meet the demand from its subscribers.   

4.1.5.1. Network Coverage  

To model signal coverage over the service area, a set C, of dense and uniformly 

distributed points on the service area that should receive radio frequency (RF) signal power 

from at least one base station above a given RF (radio frequency) sensitivity limit,  𝛿𝛿, is 

defined. The percentage of points in C that are covered defines the degree of coverage of the 

network, which should be maximised. Clearly, the highest coverage that can be achieved is 

100% and is computed by equation (4.6). 

𝛶𝛶𝑓𝑓,𝑐𝑐 = �1,   if  point c (𝑐𝑐 ∈ 𝐶𝐶) is covered by  BS 𝑑𝑑
0,    𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒  

(4.5) 



 

 

𝐶𝐶𝐶𝐶𝑣𝑣𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒 =

⎝

⎜
⎛� � 𝛶𝛶𝑓𝑓,𝑐𝑐 

|𝐶𝐶|
𝑐𝑐

|𝐷𝐷|

𝑓𝑓
|𝐶𝐶|

⎠

⎟
⎞

 .100 

(4.6) 

4.1.5.2. Network Capacity 

The network capacity defines the traffic handling capability of the network. The 

download speeds of users from a given base station are a function of the available bandwidth, 

the number of users in its cell, data requirements, and their experienced signal to noise ratio 

(𝜌𝜌). Overloaded base stations may provide connected users with poor quality of service 

(QoS).  The proposed capacity metric is to maximise the downlink average network user 

throughput (equation 4.7), which is a fairer metric for experienced user data speeds than sum 

throughput often used in literature. 𝑁𝑁𝑢𝑢 is the number of demand nodes served by the same 

base station cell as 𝑢𝑢 ∈ 𝑈𝑈. 𝐴𝐴𝐴𝐴 is the average network user throughput. The maximum spectral 

efficiency ωmax is set by limiting the maximum possible value of experienced signal to noise 

ratio to 30dB. 

4.1.5.3. Power Consumption 

Minimising the power consumption of cellular networks is one of the key design 

performance metrics in 5G for both economic and environmental reasons[19]. The huge 

𝐴𝐴𝐴𝐴 =
∑ 𝑅𝑅𝑢𝑢

|𝑈𝑈|
𝑢𝑢
|𝑈𝑈|

 
(4.7) 

𝑅𝑅𝑢𝑢 = �𝑊𝑊
𝑁𝑁𝑠𝑠
�.𝜔𝜔 (4.8)  

𝜔𝜔 = min  ( log2( 1 +  𝜌𝜌𝑢𝑢) ,  ωmax)  (4.9)  



 

 

density of base stations that will be deployed in a 5G mobile network is poised to 

significantly increase the power consumption cost. To model the network power 

consumption, the power model from [93] which describes detailed power consumption 

profiles for different types of base stations as a function of their parameters, is adopted.  

Parameters Macro  Micro Pico 
𝜗𝜗𝑃𝑃𝑃𝑃 ( amplifier efficiency) [%] 31.1 22.8 6.7 
𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (Feeder loss) [dB] -3 0 0 
P𝑅𝑅𝑅𝑅 [W] 12.9 6.5 1.0 
𝑃𝑃𝐵𝐵𝐵𝐵 [W] 29.6 27.3 3.0 
σ𝐷𝐷𝐶𝐶 [%] 7.5 7.5 9.0 
σ𝑀𝑀𝑀𝑀 [%] 9.0 9.0 11.0 
σ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [%] 10.0 0.0 0.0 

Table 4.2: base station power consumption parameters [93] 

 

𝑃𝑃𝐶𝐶 = 𝑁𝑁𝑇𝑇𝑇𝑇

𝑃𝑃𝑡𝑡
𝜗𝜗𝑃𝑃𝑃𝑃. (1 − 𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) + P𝑅𝑅𝑅𝑅 + 𝑃𝑃𝐵𝐵𝐵𝐵

(1 − σ𝐷𝐷𝐶𝐶)(1 − σ𝑀𝑀𝑀𝑀)(1 − σ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
 

(4.10) 

 

The power consumption of the network is mainly a function of the number, type/model, 

transmit power and the number of transmitter chains (𝑁𝑁𝑇𝑇𝑇𝑇 = 1, 𝑓𝑓𝐶𝐶𝑒𝑒 𝑛𝑛𝐶𝐶𝑒𝑒) of the deployed base 

stations.  Given the BS model 𝑛𝑛 ∈ 𝑁𝑁 and the base station transmit power 𝑃𝑃𝑡𝑡 let the power 

consumption of BS 𝑑𝑑 be given by the function 𝑃𝑃𝐶𝐶𝑓𝑓 = 𝑃𝑃𝐶𝐶(𝑛𝑛,𝑃𝑃𝑡𝑡, N𝑇𝑇𝑇𝑇). 

 

4.2. Summary 

This chapter described a system model for deployment analysis of 5G cellular networks 

with heterogeneous base stations based on the 4G LTE-Advanced cellular downlink standard. 

We explicitly show the mathematical representations of two advanced LTE features; small-



 

 

cell range expansion and a multi-tier heterogeneous base station architecture in the proposed 

model, which are key technologies in next-generation 5G mobile networks. The proposed 

model, which is derived by unifying existing literature, explicitly relates cost and QoS 

performance modelling of a mobile network as a function of the base station deployment and 

forms the basis for all the conclusions reached hereafter. That is, for a given base station 

topology, the system model returns the system cost and QoS performance implications with 

respect to the traffic scenario.  

  



 

 

5. Meta-heuristic for planning 5G Heterogeneous access network with 
cell range extension 
5.1. Introduction 

The 5G mobile network standard is to be developed with the concept of “broadband 

access everywhere” providing typical user download data rates of at least 50-100 Mbps 

everywhere, and much higher in ideal scenarios[20]. In addition to other advanced 

technologies, a consensus capacity solution for 5G between industry and academia is to 

densify the base station (BS) cells in a given area [7]. However, this hike in the deployment 

of base stations will also lead to an immense increase in capital cost (CAPEX) and power 

consumption, which accounts for the majority of operational cost (OPEX) for a typical 

mobile network operator (MNO) [94]. Traditional long-range base stations (henceforth 

referred to as macro BSs) account for over 60% of power usage in a typical cellular system in 

addition to expensive site acquisition and equipment costs [21]. The high power consumption 

of telecommunication networks also implies an increase in CO2 emissions in the 

environment. A heterogeneous access network, which combines standard long-range macro 

base stations and low range base stations (known as small-cells) has been standardised as a 

key 5G technology to cost-efficiently increase system capacity of current and future mobile 

cellular networks [7]. Small-cell BSs have significantly lower power consumption, site 

acquisition, equipment cost, range and size than standard macro base stations and are 

designed to provide local coverage and capacity. Next generation 5G cellular networks, 

which must deliver on extreme capacity requirement are predicted to consist of a high density 

of heterogeneous small-cell deployments, with some scholars even envisaging a total 

elimination of traditional macro base stations [59]. In any case, the optimal deployment in 

such a network should achieve very high coverage and capacity both for outdoor and indoor 

users; while simultaneously minimising CAPEX and OPEX cost. A key enabling feature 

standardised by 3GPP for heterogeneous base station access network is the technology for 



 

 

small-cell range extension (CRE). In CRE, a positive cell selection offset is used by small-

cells to attract more users. The major benefit of CRE is to ensure that small-cells actually 

serve enough users that would otherwise have been served by the macro base stations. 

However excessive cell range extension can potentially increase interference strength and 

consequently decrease overall system throughput if no additional interference mitigation 

techniques are employed. Finding the optimal CRE value for every deployed small-cell base 

station results in a complex optimisation problem in its own right [95] 

Considering the discussion (above) on the requirements of 5G, cost efficient deployment 

of 5G base stations will be very essential to mobile operators but significantly more complex 

than traditional mobile networks and motivates the novel application of heuristics techniques. 

Traditional base station planning schemes, which are based on flat homogenous design are 

not optimised to deal with planning a 5G cellular access network architecture, which will 

consist of a high density of heterogeneous network nodes (i.e. base stations) and advanced 

features such as CRE extension. Hence, the objective/contributions of this chapter are 

twofold;  

1. To provide an optimisation framework for the application of heuristic search for the 

deployment of 5G heterogeneous base station deployment taking into account cell range 

extension feature of small-cells. The framework, which is generic to both greenfield and 

expansion network planning is made up of an integer programming problem, which is 

designed towards exploiting base station heterogeneity; a solution encoding, and a fitness 

function.  

2. To analyse the performance of meta-heuristics algorithms (Simulated annealing, Hill 

claiming and Genetic algorithm) as base station deployment/planning tools for 5G.  Meta-



 

 

heuristics algorithms were widely used for planning conventional networks (see 3.1.2.1), 

however, their application to the 5G environment is an open research area.  

The most related literature to the work of this chapter are the works in [96] and [87]. In  

[96], the authors proposed an integer programming optimisation model for exploiting base 

station heterogeneity in the design of cost efficient cellular networks. However, their problem 

model does not include cell range extension. Furthermore, no heuristic algorithms were 

presented for optimising the model. The authors in  [87] considered the application of meta-

heuristic for optimising the deployment of a heterogeneous base station access network, 

however, their problem does not include cell range extension. Furthermore, their model 

which does not take into account network power consumption assumes that base station 

transmit power is fixed, which simplifies the problem. Moreover, this work did not explicitly 

present an integer programming model to the problem.  This chapter builds and extends on 

these works. 

5.2. System Model Recap 

The system model and assumptions defined in chapter 4 are adopted unless explicitly 

stated otherwise. The system model captures the key deployment aspects of a heterogeneous 

base station cellular access network as a key technology of next-generation 5G cellular 

architecture. To model this heterogeneity, different models of base stations are considered.  

These models are operator owned base stations with different characteristics such as cost, 

power consumption and coverage. Two classes of base station models are considered; 

traditional macro-cell base stations with large coverage and high power consumption, and 

small-cell base stations with much smaller coverage footprint and significantly lower cost. 

Two kinds of small-cell base stations are considered based on their coverage footprint, micro 

and pico small-cells. Cellular operators through a network planning scheme can exploit the 



 

 

characteristics of the different models of base stations to design a high capacity but cost 

efficient cellular access architecture. 

5.3. 5G Heterogeneous Network planning Problem Formulation   with CRE 

The objective of the 5G network planning problem is to design a cellular wireless access 

network by deterministically finding the optimal number, locations, types, transmission 

powers (the base station transmission power determines its cell radius) of base stations to 

deploy in a given service area to provide a certain level of capacity and coverage while 

minimising power consumption and CAPEX cost. The 5G network planning problem model 

also includes optimisation of CRE bias value for each small-cell base station deployed, which 

substantially expands the problem search space. In the problem model defined below, 

operators aim to exploit the different kinds of base stations (i.e. base station heterogeneity) 

and small-cell range extension feature to design a high capacity but cost efficient base station 

network.   

M Set of candidate sites for macro base station deployment 
S Set of candidate sites for small-cell deployment5  
L Set of all candidate sites  𝐿𝐿 ∈ 𝑀𝑀 ∪ 𝑆𝑆 
𝑁𝑁 Set of base station  models/types  
𝑣𝑣𝑖𝑖 Site acquisition cost of  site  𝑖𝑖 ∈ 𝑀𝑀 ∪ 𝑆𝑆 
𝑏𝑏𝑖𝑖 Backhaul cost of site  𝑖𝑖 
𝑒𝑒𝑛𝑛 RF equipment cost of BS model 𝑛𝑛 ∈ 𝑁𝑁 
𝑃𝑃 Discrete set of possible transmission power levels of base 

stations 
D Discrete set of deployed base stations   
𝐶𝐶𝐶𝐶𝑣𝑣′ Service area coverage percentage requirement 
𝐶𝐶𝐶𝐶𝑝𝑝′ Capacity requirement 
𝐵𝐵 Set of possible bias values for CRE  
𝐶𝐶 Discrete set of coverage test points 
𝑃𝑃𝐶𝐶 BS power consumption function 

Table 5.1: 5G network planning problem formulation variables 

                                                            
5 The phrase small cells refers to all other types of base stations except the macro base station 



 

 

The notation  𝑦𝑦  and 𝑦𝑦�  is used to differentiate the variables for macro sites and small-cell 

sites, respectively, where necessary. All variables used are defined in Table 5.1. The 

following decision variables are introduced to facilitate mathematical representation;  

• Site deployment variable: 𝒙𝒙  is a deployment vector that indicates if a candidate site is 

deployed with a base station or not.  

𝑥𝑥𝑖𝑖  =  �1, if  a BS is deployed in site 𝑖𝑖 ∈ 𝐿𝐿
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒    (5.1) 

 
• Base station deployment variable: 𝒛𝒛  is a deployment matrix that indicates the model 

of base station deployed in each site. 

𝑧𝑧𝑖𝑖𝑛𝑛  = �1, if a  BS of model 𝑛𝑛 ∈ 𝑁𝑁 is deployed in site 𝑖𝑖 ∈ 𝐿𝐿  
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒  (5.2) 

 

• Power deployment variable: 𝒋𝒋  is a deployment matrix that indicates the transmission 

power of deployed base stations. 

𝑗𝑗𝑝𝑝𝑓𝑓  = �1, if a  BS  𝑑𝑑 uses power level 𝑝𝑝 ∈ 𝑃𝑃  ,𝑑𝑑 ∈ 𝐷𝐷 
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒  (5.3) 

 
• CRE deployment variable: 𝒌𝒌  is a deployment matrix that indicates the CRE value of 

deployed small-cell base stations. 

𝑘𝑘𝑠𝑠𝑓𝑓 = �1, if a small BS  𝑑𝑑 uses bias level 𝑏𝑏, 𝑏𝑏 ∈ 𝐵𝐵 
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠  (5.4) 

5.3.1. Objectives 

The following are the objectives considered to the optimisation problem:  

C1 = � 𝑥𝑥𝑚𝑚 � 𝑧𝑧𝑚𝑚𝑛𝑛  �𝑒𝑒𝑛𝑛 + (𝑣𝑣𝑚𝑚 + 𝑏𝑏𝑚𝑚)�
|𝑁𝑁|

𝑛𝑛∈𝑁𝑁

|𝑀𝑀|

𝑚𝑚∈𝑀𝑀

 
(5.5) 

 



 

 

C2 =�𝑥𝑥𝑠𝑠 � 𝑧𝑧𝑠𝑠𝑛𝑛  �𝑒𝑒𝑛𝑛 + (𝑣𝑣𝑠𝑠 + 𝑏𝑏𝑠𝑠)�
|𝑁𝑁�|

𝑛𝑛∈𝑁𝑁�

|𝑀𝑀|

𝑠𝑠∈𝑀𝑀

 
(5.6) 

 
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂: 

,
min
𝒙𝒙,𝒛𝒛

 [C1 + C2] (5.7) 

 

P1 = �𝑥𝑥𝑠𝑠�𝑧𝑧𝑠𝑠𝑛𝑛�𝑗𝑗𝑝𝑝𝑓𝑓

|𝑃𝑃�|

𝑝𝑝

𝑃𝑃𝐶𝐶(𝑛𝑛, 𝑝𝑝, 1)
|𝑁𝑁�|

𝑛𝑛

|𝑀𝑀|

𝑠𝑠

 
(5.8) 

P2 = �𝑥𝑥𝑚𝑚�𝑧𝑧𝑚𝑚𝑛𝑛�𝑗𝑗𝑝𝑝𝑓𝑓

|𝑃𝑃|

𝑝𝑝

𝑃𝑃𝐶𝐶(𝑛𝑛,𝑝𝑝, 1)
|𝑁𝑁|

𝑛𝑛

|𝑀𝑀|

𝑚𝑚

 
(5.9) 

Power: min
𝒙𝒙,𝒋𝒋,𝒛𝒛,𝒌𝒌

P1 + P2 (5.10) 

5.3.2. Constraints 

Constraint (5.11) requires the service area coverage to be met by requiring its signal 

coverage to meet a given percentage threshold (𝐶𝐶𝐶𝐶𝑣𝑣′). 

���𝛶𝛶𝑓𝑓𝑐𝑐

|𝐶𝐶|

𝑐𝑐=1

|𝐷𝐷|

𝑓𝑓=1

� ≥  𝐶𝐶𝐶𝐶𝑣𝑣′ 
(5.11) 

 
Constraint (5.12) requires the capacity target to be met by ensuring the average user 

throughput meets a given minimum value (𝐶𝐶𝐶𝐶𝑝𝑝′). 

𝐴𝐴𝐴𝐴 ≥  𝐶𝐶𝐶𝐶𝑝𝑝′ (5.12) 
 

Constraint (5.13) states that only one base station model can be deployed at any site. 

�𝑧𝑧𝑖𝑖𝑛𝑛

|𝑁𝑁|

𝑛𝑛=1

≤ 1 ∀𝑖𝑖 ∈ 𝐿𝐿 
(5.13) 

 



 

 

Constraint (5.14) states that a deployed base station can only use one power level at a 

time.  

�𝑗𝑗𝑓𝑓𝑝𝑝

|𝑃𝑃|

𝑝𝑝=1

= 1 ∀𝑑𝑑 ∈ 𝐷𝐷 
(5.14) 

 
Constraint (5.15) states that a deployed small-cell base station can only use up to one 

CRE level at a time. 

 ∑ 𝑘𝑘𝑠𝑠,𝑓𝑓
|𝐵𝐵|
𝑠𝑠=1 ≤ 1 ∀𝑑𝑑 ∈   𝐷𝐷� (5.15) 

 

Constraint (5.16) states that a user only associates to one BS at a time 

�𝐶𝐶𝑓𝑓𝑢𝑢

|𝐷𝐷|

𝑓𝑓=1

≤ 1 
(5.16) 

Constraint (5.17) states that a user can only associate to a deployed BS 

𝐶𝐶𝑓𝑓𝑢𝑢  <  1 ∀𝑢𝑢,𝑑𝑑 ∉ 𝐷𝐷 (5.17) 

5.4. 5G deployment using the stochastic meta-heuristic approach  

The 5G base station problem has a significantly bigger search space than traditional base 

station deployment problems due to the number of decision variables and the high density of 

candidate sites that will be needed to provide extreme levels of user capacity in 5G. For 

example, a scenario with merely ‘30’ candidate base stations sites and ‘5’ possible site 

configurations has a solution search space of 530. This means that for every candidate site one 

of 5 BS configurations can be chosen to form the network. The 5G base station network 

architecture has introduced new BS configuration variables (which are not seen in a 

conventional mobile network) such as the type of base station to deploy, thereby significantly 

expanding the search space for finding an optimal network planning solution. Meta-heuristic 



 

 

algorithms offer a general and robust approach to tackling many large scale and complex 

optimisation problems where exact methods cannot be applied.  However, their successful 

application in 5G cellular architecture depends on novel problem representation, the design of 

efficient search operators, tuning and comparisons between different algorithms, and 

incorporation of problem specific knowledge. Hence, this section starts by proposing a core 

framework for the application of meta-heuristics to 5G network planning based on the 

problem defined in section 5.3. The framework includes; the definition of the solution 

encoding, fitness function and search operators. The framework provides an integral 

structure for applying any type of meta-heuristics/heuristics to tackle the problem. Finally, 

the performance of three different algorithms is compared in terms of optimality and 

efficiency. The algorithms considered are; Simulated annealing, Genetic algorithm and Hill 

climbing algorithms.  A random sampling approach is also developed as a baseline approach 

for analysing the effectiveness of the considered algorithms. 

5.4.1. Meta-heuristics Framework  

The proposed 5G deployment meta-heuristic framework is described in the following 

steps; 

5.4.1.1. Solution Encoding 

The first step in the proposed 5G deployment meta-heuristic framework is the solution 

encoding. An integer matrix representation where the deployment configuration of every 

candidate site is represented by an integer row vector, is proposed and shown in Figure 5.1. 

The integer matrix represents the configurations of an arbitrary deployment of base stations 

for which the cost and performance implications are computed as given by chapter 4 and 

section 5.3.  



 

 

 

 

Figure 5.1: Illustration of proposed solution encoding (L is the set of all candidate sites) 

 

The matrix has the same number of rows as the total number of candidate base station sites 

(|𝐿𝐿|), such that the deployment configuration for the 𝑖𝑖th candidate site is given by the 𝑖𝑖th row 

of the matrix. In this chapter, four configurations per site are considered; the deployment 

variable, the base station model (𝑛𝑛), the BS transmission power level (𝑝𝑝) and the CRE value 

(𝑏𝑏) for small-cell base stations. The deployment variable is fused with the transmission power 

such that the site where 𝑝𝑝 = 0 is not deployed.  Figure 5.2 illustrates the decoding of the 

solution encoding.  A code book is consulted to translate the integer matrix into a network 

solution. The neighbourhood function (see section 2.2.2.3) creates a network solution 𝑠𝑠′, 

from a current solution 𝑠𝑠, by changing the value of an arbitrary configuration of 𝑠𝑠. For 

example, with reference to Figure 5.2, the ‘site A’ power variable could be changed from 43 

to 0, which removes the site from the resulting network plan. For this project, all 

neighbourhood changes are stochastic. Future work will consider the design of intelligent 



 

 

neighbourhood changes. The crossover operator (only relevant to the Genetic algorithm) 

creates new network solutions by combining configurations from two existing network 

solutions, as illustrated in section 2.2.2.6.   

 

Figure 5.2: Illustration of solution decoding 

 

5.4.1.2.  Fitness Function  

𝐹𝐹 = 𝐶𝐶𝐶𝐶𝑠𝑠𝑡𝑡 +  (𝐾𝐾1𝐶𝐶𝐶𝐶𝑝𝑝) +  (𝐾𝐾2𝐶𝐶𝑐𝑐𝐶𝐶) (5.18) 

𝐶𝐶𝐶𝐶𝑣𝑣 = 𝐶𝐶𝐶𝐶𝑣𝑣𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒 𝑇𝑇𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒𝑡𝑡 − 𝐴𝐴𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑣𝑣𝑒𝑒𝑑𝑑 𝐶𝐶𝐶𝐶𝑣𝑣𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒 

𝐶𝐶𝐶𝐶𝑣𝑣 = max {0,𝐶𝐶𝐶𝐶𝑣𝑣} 

𝐶𝐶𝐶𝐶𝑝𝑝 = 𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦 𝑇𝑇𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒𝑡𝑡 − 𝐴𝐴𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑣𝑣𝑒𝑒𝑑𝑑 𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦 

𝐶𝐶𝐶𝐶𝑝𝑝 = max {0,𝐶𝐶𝐶𝐶𝑝𝑝} 
 

 

At the heart of the framework is a fitness function, which is used to quantify the quality 

of a candidate solution to the 5G deployment problem, in terms of the objective values and 

constraint violations. The proposed fitness function (𝐹𝐹) which is to be minimised, penalises 

solutions that do not meet the coverage and capacity requirement constraints provided as 

input to the model; when both requirements are satisfied, the fitness function simply 



 

 

minimises the cost of the implied network. 𝐾𝐾1 and 𝐾𝐾2  are penalty magnitudes for the capacity 

and coverage constraints, respectively. Setting the values for 𝐾𝐾1 and 𝐾𝐾2  is fairly straight 

forward as long as equation (5.19) applies for both. K stands for either 𝐾𝐾1 or 𝐾𝐾2. 

𝐾𝐾.𝐺𝐺𝐶𝐶𝑝𝑝 > 𝑐𝑐𝐶𝐶𝑠𝑠𝑡𝑡 (5.19) 

The ‘𝐺𝐺𝐶𝐶𝑝𝑝’ is the difference between the target coverage/capacity and the achieved 

coverage/capacity computed in equation 5.18. The ‘cost’ term can either be the network 

power consumption, the CAPEX or a combination of the two. The exact combination 

function will be dependent on the preference of the mobile network operator or the financial 

implications. A simple and logical combination function is to convert the power consumption 

of the network in a particular time period H (for example, hours in one year) to an energy bill 

and add it to the Capital expenditure of the network as shown in equation 5.21. 𝜖𝜖 is the 

effective working period probability of a base station i.e. the probability that a base stations is 

fully operational or in sleep mode. It is assumed that small-cell base stations can be switched 

into sleep mode  at extremely off peak times, however switching macro-cell base stations into 

sleep mode  has been shown to be impractical because of their large coverage areas [97]. 

Hence 𝜖𝜖 = 1 , 0.5 is for macro and small-cell base stations respectively. 𝜂𝜂 is the energy price 

per kilo watt hour. CAPEX  is the total capital expenditure  as computed in equation 5.7. 𝐷𝐷 is 

the set of  deployed base stations. 𝑃𝑃𝐶𝐶𝑓𝑓    is the power consumption of base station 𝑑𝑑. 

𝐸𝐸𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡 = �𝑃𝑃𝐶𝐶𝑓𝑓𝜖𝜖𝐻𝐻
|𝐷𝐷|

𝑓𝑓∈𝐷𝐷

 
(5.20) 

𝑐𝑐𝐶𝐶𝑠𝑠𝑡𝑡 = CAPEX + (𝐸𝐸𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡 . 𝜂𝜂) (5.21) 



 

 

5.5. Evaluation of Algorithms and Discussions 

In this section, the performance of three (3) meta-heuristic algorithms, namely; 

Simulated annealing, Genetic algorithm and Hill climbing algorithms are analysed using the 

core framework outlined above. These algorithms were chosen based on their wide 

application to optimising 2G and 3G base station models (see section 3.1.2.1). Details on the 

algorithms have been provided in the background chapter 2. The algorithms are compared in 

terms of their optimality and efficiency to the 5G deployment problem.  Finding optimal 

network topologies will be very important in 5G design as this can save mobile network 

operators huge deployment capital expenditure and operational maintenance cost and is 

indeed the main metric considered in this thesis. However, to improve system performance 

through load balancing and reduce network power consumption, 5G network will incorporate 

self-organising ability (basically real-time base station management) in response to traffic 

conditions [98]. This application context requires base station deployment algorithms that are 

efficient i.e. they can return ‘good’ network solutions in a short space of time and with 

reduced computational effort. The efficiency of algorithms was not considered in the design 

of earlier cellular standards, however the efficiency of algorithms is an important metric for 

the design of 5G since there is a need and capability to manage the status of base stations on 

demand. The main novelty of this section is the analyses of the considered heuristic 

algorithms from both an offline and an online perspective for 5G design.  

A random sampling approach (Algorithm 5.1) is developed as a baseline approach for 

analysing the performance of all the meta-heuristic algorithms considered.  

 

 



 

 

5.5.1. Experimental setup 

Table 5.2: Parameters used for problem instances 

The performance of each algorithm is analysed using a range of engineered test problems 

after 25 independent runs using the fitness function described in section 5.4.1.2. Test 

problems are distinguished by the density of candidate sites and distribution of demand nodes 

in a 16km2 service area (see Table 5.2). Two (2) densities are used to simulate “Small” and 

“Large” problem instances.  For each test problem class, three traffic demand patterns are 

drawn from three different distributions (Figure 5.3): a Uniform distribution, a Gaussian 

distribution, and multi-Gaussian distribution.  

 

Uniform Gaussian Multi-Gaussian 

Figure 5.3: Traffic demand distributions 

In the Uniform distribution, users are distributed randomly but uniformly over the entire 

service area. The Gaussian distribution simulates a single hotspot traffic scenario with user 

density at a maximum in the centre, and gradually decreasing toward the boundary of the 

area. The multi-Gaussian distribution models a scenario with multiple hotspots. Additionally, 

Parameter Small Large 
Number Of Macro BS Sites 52 178 
Number Of Small BS Sites 100 1000 
Total 152 1178 
Capacity  Requirement (Mbps) 𝑪𝑪𝑪𝑪𝑪𝑪′  5 50 
Coverage Requirement (%) 𝑪𝑪𝑪𝑪𝑪𝑪′ 99 



 

 

each class of test problem has the required coverage and capacity target that must be satisfied 

as hard constraints. The system parameters used for the evaluation are shown in Table 5.4 

and Table 5.3. To quantify the optimality of the algorithms, each algorithm is run for a 

maximum of 500,000 fitness calls in each run, which was large enough to ensure 

convergence. The number of fitness (nf) calls is a practical measure of an algorithm’s 

computational effort especially when the time it takes to re-compute the network metrics is 

much larger than every other algorithm step as expected in a real-world application. To assess 

the efficiency of the algorithms, each algorithm is also run for a maximum of 100,000 fitness 

calls in each simulation run. An additional stopping criterion of 50,000 iterations of 

unchanged best-found solution is also introduced.  The RSM approach is run for two (2) 

million fitness calls on each test problem and used as a baseline. 

 

Parameter   Values 
Frequency   1.8 GHz   
Macro/small  BS/ UE height  31m / 5m/ 1m   
RF sensitivity limit 𝛿𝛿 -110dBm    
Bandwidth  50Mhz/tier     
K1 1   
K2 20000   
Base station Types                                                  Macro BS Micro BS Pico BS 
Max. Cell radius (Km) 0.6 0.18 0.05 
Max. Power (dBm) 46 38 22 
Power levels (dBm) 46,43,40  38  22 
Antenna Gain dB 18 6 6 
CRE config. (dBm) NA 0,1,2,3,4,5 0,1,2,3,4,5 
Equipment Cost (£) 40,000 0.3* MacroBS 0.1* MacroBS 
Site Cost (£) 100,000 0.3* MacroBS 0.05*MacroBS 
Backhaul (£) 15000 150000 15000 
Energy unit price (£), 𝜂𝜂 0.13 

Table 5.3:  Simulation Parameters 
 



 

 

Distribution  Centroid(s)   Standard deviation  

Gaussian  (2.0,2.0)       0.8 

Multi-Gaussian (0.5,0.5) (1.5,1.5) (2.3,2.3) (3.5,35)       0.3 

Table 5.4: Parameters for Gaussian distributions 

 

Parameter GA SA HC 
Max. Number of Fitness calls (nf)  (Iter) 500,000  and 100,000 
Population size  1000 NA NA 
Selection  Roulette Wheel NA NA 
Crossover/percentage Uniform/100%  NA NA 
Mutation percentage/probability 100%/0.25 NA NA 
Start Temp T0 NA 0.025 NA 
End Temp TE NA 0.00005 NA 
Cooling rate (SA only) Λ  Solve for x : (𝑥𝑥𝑛𝑛𝑓𝑓)T0=TE 
Inner Loop 1000                                  

Table 5.5: Algorithm Parameters 

5.5.2. Random Sampling Approach (RSM) 

Ideally, the performance of the considered algorithms should be evaluated using the 

global optimum solution. However, finding the global optimum solution is not feasible due to 

the complexity of the problem and the extremely large search space.  As suggested in [32], a 

Random Sampling Approach (RSM) is developed as a baseline for comparing the 

performance of the meta-heuristic algorithms considered. In RSM, k candidate solutions to 

the problem are randomly generated and evaluated based on the fitness function (see 

Algorithm 5.1). This approach can represent a manual approach to planning where k experts 

try to guess the optimal network architecture.     

 

 

 



 

 

Algorithm 5.1: Random Sampling Algorithm (RSM) 
Input: k: Maximum Number of samples 

1.  f’= positive infinity 
2.  For i = 0 to k-1 
3.  Let x = a random solution 
4.   Let f = fitness of x 
5.   If f is less than f’ Then 
6.    Let x’ = x 
7.  Let f’ = f 
8.   End If 
9.  End For 

Output: The solution x’ 

 

5.5.3. Results and Discussion  

 
Figure 5.4: Comparison of Best run for each algorithm on Small instance. (rsm is the same as RSM) 

 
Figure 5.5: Comparison of Average of 25 runs for each algorithm on Small problem instance 

 

 

 

 



 

 

Uniform  traffic distribution 

Algorithm Fitness Coverage 
(%) 

Capacity 
(Mbps ) Power(kWh) CAPEX(M£) Success 

(%) 
RSM 
(baseline) 9056.10 98.5 5.00 111440.00 8.197 100 

GA   4661.28 98.6 5.01 93492.32 4.580 100 
SA    4604.24 98.8 5.00 95714.42 4.580 100 
HC   6210.82 99.1 5.00 90924.84 6.198 100 

Gaussian traffic distribution 
RSM 
(baseline) 9192.10 98.4 5.00 117750.00 8.772 100 

GA   4652.00 98.8 5.00 93561.00 4.630 100 
SA   4678.30 98.6 5.00 92081.00 4.628 100 
HC  5908.10 99.1 5.00 93254.00 5.900 100 

Multi-Gaussian traffic distribution 
RSM 
(baseline) 9001.00 98.5 5.00 101440.00  

8.097 100 

GA  4775.00 98.9 5.09 94764.00 4.760 100 
SA   4647.00 98.8 5.06 95783.00 4.628 100 
HC  6103.80 99.0 5.00 89757.00 6.091 100 

Table 5.6: Comparison of Algorithms using best run (Small problem instance) 

Results in Figure 5.4 and Figure 5.5 show the best and average fitness performance of the 

four different approaches across the different traffic demand distribution patterns on the 

Small problem instance, using the stopping criteria of 500,000 fitness calls. As seen in Table 

5.6, all approaches achieved a 100% success rate on all runs in that they were able to return 

feasible network topologies that obeyed the coverage and capacity constraints. However, it is 

easy to see that the random sampling approach (RSM) returns network solutions with the 

worst fitness across the different user demand distribution patterns.  On average, the RSM 

approach returned networks with a worse fitness than the Simulated annealing (SA) by 

almost 100%. The poor performance of the RSM is not unconnected to its non-evolving 

approach. In every iteration, the algorithm generates a random network solution (from the 

search space) and evaluates its fitness. Essentially, there is no evolution mechanism between 

topologies in successive iterations, which results in a random guess at each iteration. The 

Genetic algorithm (GA) and the Simulated annealing (SA) showed very comparable fitness 

values, across the different problem instances. The greedy Hill climbing (HC) algorithm 



 

 

consistently returned a worse network than the GA and the SA.  For example, on the Uniform 

traffic instance, the HC returns a network with about 35% higher total cost than the SA. The 

main drawback of the Hill climbing algorithm is the lack of a mechanism for escaping a local 

optimal point in the search space.  

 #Macro BS #Micro BS #Pico BS 
GA 28.3 0.0 11.0 
SA 28.0 0.0 11.3 
HC 37.7 1.7 5.3 

Table 5.7: Comparison of network structure (Small problem instance). The network structure 
describes the optimal base station topology return by an algorithm.  

As reported in Table 5.7, the GA and SA designed almost identical network structures of 

mainly macro base stations (70%) complemented with pico base stations while the HC  

deployed a higher density of macro base stations (about 82% of the total base stations 

deployed). Overall, all the algorithms designed network solutions with a higher number of 

macro base stations despite a higher number of available small-cell candidate sites in the 

problem instance. This is mainly due to the fact the Small problem instance is coverage 

oriented with a low capacity requirement and as such macro base stations with large coverage 

footprints are preferred over local base stations. The Small instance is less typical of the 5G 

deployment problem due to the low capacity requirement and low site density, however, it is 

useful to understand the topology features under low capacity requirement and the 

performance of the algorithms in a relatively small search space. 

 #Macro BS #Micro BS #Pico BS 
GA 31.0 56.0 164.3 
SA 32.3 48.7 159.7 
HC 57.7 118.3 98.7 

Table 5.8: Comparison Table of network structure (Large problem instance). 



 

 

  

Figure 5.6: Comparison of Best run for each algorithm on Large problem instance 

 

Figure 5.7: Comparison of Average of 25 runs for each algorithm on Large problem instance 

 

The Large problem instance better characterises the 5G deployment problem, which is 

expected to consist of a high density of base stations and at least 50Mbps average user 

throughput requirement. Results in Figure 5.6 and Figure 5.7 show the best and average 

fitness performance of the four different approaches across the different user distribution 

patterns on the Large problem instance using stopping criteria of 500,000 fitness calls. A 

similar fitness graph to the Small problem instance is observed, with the RSM approach 

achieving the worst fitness performance, followed by the HC while the GA and the SA show 

comparable performance. Due to the significantly larger search space of the Large problem 



 

 

instance, the RSM approach, which essentially attempts to guess the optimal network 

topology in each iteration was found to be ineffective with 0% success rate in terms of its 

ability to design a network that satisfies the coverage and capacity requirements.  On average, 

the RSM approach returned a network with a worse fitness than the Simulated annealing (SA) 

by almost 79707.5% on the Large problem instance compared to 100% on the Small problem 

instance.  

Uniform traffic distribution 

Algorithm Fitness Coverage 
(%) 

Capacity 
(Mbps) 

Power 
(kWh) CAPEX(M£) Success 

(%) 
RSM 
(baseline) 2635500.00 99.9 47.0 374050.00 46.000 

 
0 

GA   9586.78 98.6 50.0 95632.65 9.536 100 
SA    10870.00 98.6 50.0 100900.00 10.819 100 
HC   16642.62 98.6 50.0 132799.80 16.587 100 

Gaussian traffic distribution 
RSM 
(baseline) 12072000.00 100.0 38.0 359060.00 47.600 

 
0 

GA   12109.00 98.6 50.0 118190.00 12.055 100 
SA   11607.00 98.6 50.0 104690.00 11.524 100 
HC  18360.60 98.6 50.0 155778.90 18.302 100 

Multi-Gaussian traffic distribution 
RSM 
(baseline) 14641000 100.0 35.4 349220 47.300 

 
0 

GA  14288 98.6 50.0 134810 14.232 100 
SA   12595 98.6 50.0 120559 12.510 100 
HC  19325 98.6 50.0 164616 19.265 100 

Table 5.9: Comparison of Algorithms using best run (Large problem instance) 

The significantly worst performance of the RSM is a result of the much larger search space of 

Large problem instance. This result shows the RSM to be an ineffective approach for the 

planning of dense 5G mobile networks. The HC algorithm returns network topologies with a 

worse fitness (on average) across the traffic demand patterns by approximately 51% and 55% 

than the GA and SA respectively. The GA performed better on average than SA by 11.8% on 

the Uniform traffic distribution and 0.79% on the Gaussian traffic distribution.  However, the 

SA was found to perform better than GA on the multi-Gaussian traffic distribution 9.5%. 

These results demonstrate that the Simulated annealing and Genetic algorithm to be the most 



 

 

effective of the evaluated approaches for offline planning of 5G where their relative 

performance depends on the traffic scenario. 

 

 

Figure 5.8: cost break down of the network topology returned by GA on Large uniform instance 

 

Figure 5.9: cost break down of the network topology returned by the HC on Large uniform instance 

To gain insight into the relationship between the network structure and the CAPEX cost 

and power consumption of the network, Figure 5.8 and Figure 5.9 show the cost breakdown 

of the network topology returned by GA and HC on Large uniform problem instance 

respectively. It can be seen that for the same scenario, the GA deployed a network topology 

with 42.5% less CAPEX cost and 27.9% less power consumption than the HC. It can also be 



 

 

observed that the network topologies returned by the algorithms mainly differ in the density 

of macro base stations and the types of small-cell base stations deployed. Furthermore, it can 

be clearly seen that the CAPEX cost and power consumption is mainly influenced by the 

density of macro base stations used in the network topology.  For example, the network 

topology returned by the network GA algorithm consists of only 28 macro base stations out 

of the 239 total base station deployed, yet account for about 92% of the network power 

consumption and about 45.5% of the CAPEX cost. This result suggests that finding the 

optimal density of macro base stations may lead to more CAPEX efficient and power 

consumption aware network topologies. 

 
To investigate the efficiency of the algorithms (i.e. their ability to return a good solution 

in short time), all experiments as described above were repeated using a stopping criteria of 

100 thousand maximum fitness calls instead 500 thousand. Figure 5.10 shows the average 

fitness performance of all algorithms across the different traffic distributions on the Large 

problem instance. A very different performance graph is observed compared to when the 

stopping criteria of 500 thousand maximum fitness calls was used.  The Hill climbing 

algorithm was found to outperform the Genetic algorithm in terms of fitness by 

Figure 5.10: Fitness Comparison of algorithms using stopping criteria of maximum of 100 thousand 
fitness calls 

 



 

 

approximately 30% while the Simulated annealing returned the most optimal network 

topologies, outperforming the Hill climber by approximately 29%.  However, all algorithms 

were still found to be effective even under the tight stopping criteria.  Figure 5.11 shows the 

efficiency of the algorithms based on execution time.  The Genetic algorithm was found to 

have the worst efficiency with an average execution time of 4 hours, while the Simulated 

annealing had an execution time of 1 hour. The Hill climbing algorithm was found to have 

the highest efficiency for solving the 5G deployment problem with an execution time of 

32minutes. The high execution time of Genetic algorithm can be attributed to the extra time it 

takes to perform the selection of parent solutions and crossover (see section 2.2.2.6), while 

the fast execution time of the Hill climber can be attributed to its simple greedy acceptance 

criteria, which leads it to converge at a much faster rate. This result suggests that the Hill 

climbing algorithm may be a good candidate for on-demand base station network 

management where finding a good network plan in a timely manner is favoured over finding 

the most optimal network topology.  

 

Algorithm GA SA HC 
Execution time  4.1 1 0.53 

Table 5.10: Algorithm execution time in hours 

 

Figure 5.11: Efficiency of algorithms in terms of execution time taken  
 



 

 

5.6. Summary 

This chapter first provided an optimisation framework for the application of heuristic 

search for 5G heterogeneous base station deployment, with cell range extension feature, 

which is a key technology for next-generation 5G mobile networks.  The framework which is 

generic includes an integer programming problem for supporting the design of a cost efficient 

base station topology that was engineered towards exploiting base station heterogeneity, a 

solution encoding and fitness function. The performance of three heuristic search algorithms, 

namely; Simulated annealing (SA), Hill claiming (HC) and Genetic algorithm (GA) were 

analysed empirically as 5G base station planning algorithms using the proposed framework 

and a baseline random sampling approach. Each algorithm was run for a maximum of 

500,000 and 100,000 fitness calls on two problem instances of different sizes. Experimental 

results show that the GA and the SA have comparable performance on average in terms of 

fitness of the best found network plan and outperform the HC by up to 50% on some problem 

instances when the run for up to 500,000 fitness calls.  However, the Simulated annealing 

algorithm is found to outperform the GA across the test instances on average by 

approximately 50% when executed for only 100,000 fitness calls while the Hill climbing 

algorithm was found to be the most efficient algorithm in terms of its ability to return a good 

network in the shortest time compared to the SA and GA, making it the most suitable 

algorithm for on-demand 5G base station management. 

 

  



 

 

6. Power-aware 2-Phase Incremental Deployment strategy for 5G 
Deployment 
6.1. Introduction  

The motivation for this chapter is from the results obtained in the preceding chapter. Despite 

the effectiveness of the studied heuristics at tackling the 5G network planning problem, a 

deeper analysis of the designed 5G networks showed that the network power consumption is 

mainly influenced by the density of macro base stations used in the network topology.  For 

example, a network topology returned by GA algorithm consisted of only 28 macro base 

stations out of the 239 total base station deployed, yet they accounted for about 92% of the 

network power consumption and about 45.5% of the CAPEX cost. Hence, this chapter seeks 

to improve the cost efficiency of the designed networks by proposing a strategy for finding 

the optimal (i.e. most cost efficient) density of macro base stations in a 5G network design.  

This chapter proposes and evaluates a novel power aware two-phase incremental strategy 

(2-Phase) for resolving the 5G heterogeneous deployment problem formulated in section 5.3 

which is independent of the algorithms used for the optimisation. The results from the 

preceding chapter are used as a benchmarks for evaluating the effectiveness of the strategy. 

The proposed strategy is to break down the optimisation problem formulated in section 5.3  

into two complementary but independent optimisation phases with smaller search spaces 

(than the original problem), whose solutions are then combined to solve the original problem. 

The first phase is optimised to maximise coverage cost efficiency and returns a basic 

coverage network based primarily on macro-cell base stations with large coverage footprints.  

The second phase builds a capacity deployment on the basic coverage network returned by 

the first phase through the deployment of small-cell base stations that can be switched on/off 

in times when the extra capacity is not needed, in order to save power consumption.  The 

proposed strategy is motivated by two concepts; (i) divide and conquer co-operative 



 

 

optimisation, and (ii) small-cell base station sleep technology [97], used for minimising 

network power consumption during off-peak hours.  

The divide and conquer technique is an algorithm design paradigm that advocates 

recursively breaking down a large complex problem into two or more sub-problems of the 

same or related type, that can be solved with higher optimality [99]. This technique has been 

applied by a number of authors to other complex optimisation problems with high dimensions 

and has been shown to improve the solution quality over directly optimising the original 

optimisation problem, especially on large problem instances.  

A key technology for minimising base station network power consumption is the 

technology to put some base stations to sleep during extremely low demand periods (such as 

at night time in office areas) to save power consumption. Base stations use very little power 

when sleep mode is enabled6 [15]. Base station sleep technology is better suited to small-cell 

base stations because of their local coverage areas and their ability to be re-activated in a 

short amount of time, while the technical feasibility of employing sleep mode technology in 

macro-cell base stations has been questioned [97]. Hence we assume that macro base stations 

will always be active while small-cell base stations can be switched to sleep mode during off-

peak hours. Based on this assumption, it is a logical hypothesis to make that a network with a 

high deployment of small-cell base stations and low macro-cell base station deployment will 

be more power efficient since the small-cells can be switched off when not needed. This 

hypothesis was observed to hold in the simulation results discussed in section 5.5.3. 

However, a dense deployment of small-cell base stations may still pose significant CAPEX 

and power consumption cost. Hence, the strategy seeks the optimal base station density for 

both macro and small-cell base stations that jointly minimises CAPEX and network power 

consumption cost.  

                                                            
6 Note that base station sleep mode technology is different from base stations with zero load  



 

 

The proposed optimisation strategy introduces problem domain intelligence into the 

exploration of the very large solution search space with the objective of improving the 

solution quality of the network design on large scale instances and to increase the power 

efficiency of the returned network. The strategy is generic and can be employed using any 

combination of algorithms to optimise the phases. For a given scenario, an initial network 

assessment phase is also used to determine the appropriate optimisation phase to run. Figure 

6.1 shows a graphical representation of the strategy. 

6.2. Phase 1: Coverage Deployment 

In the coverage phase, the meta-heuristic algorithm (or any other suitable algorithm 

employed) searches for an optimal network purely based on maximising the cost efficiency in 

terms of the coverage performance metric (see equation 4.6). No consideration is given to the 

capacity of the network at this stage and the network deployed will form the basic structure of 

the network that may then be improved upon by the capacity phase, if needed. In the 

coverage phase, only macro-cell base stations are considered for deployment.  

 

 

Figure 6.1: Power-aware 2-Phase optimisation for 5G base station deployment (F1 and F2 are the 
fitness functions for the respective phases) 



 

 

 

6.2.1. Problem formulation (Phase-1) 

Given a set of macro base station candidate site locations, 𝑀𝑀, the Phase-1 deployment 

problem is to select a subset of M for the deployment of macro-cell base stations. The 

transmission power for each deployed macro-cell base station is set to its maximum in order 

to maximise service area coverage. Let 𝒙𝒙 be a deployment vector with the same length as 

𝑀𝑀 such that: 

𝑥𝑥𝑖𝑖  =  �1, if  site 𝑖𝑖 is deployed with a macro BS  (𝑖𝑖 ∈ 𝑀𝑀)
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒  (6.1) 

 

𝐹𝐹1 = max ∶
𝒙𝒙

(𝑒𝑒𝑒𝑒𝑢𝑢𝐶𝐶𝑡𝑡𝑖𝑖𝐶𝐶𝑛𝑛 4.6)𝛼𝛼

𝑐𝑐𝐶𝐶𝑠𝑠𝑡𝑡
 

(6.2) 

The optimisation problem defined above replicates the 2G base station planning 

problem (see section 3.1.2.1). To solve the model a simple binary encoding is used, as in 

[40]. 𝛼𝛼 is a parameter for tuning the trade-off between the achieved service area coverage and 

deployment cost of macro base stations. Coverage and deployment cost are computed in the 

same way as in section 4.1.5 and 5.4.1.2, respectively. The objective function (equation 6.2) 

is simply a weighted cost efficiency function. The objective of this phase is to design a cost 

efficient coverage network of macro-cell base stations that will then be passed to the capacity 

deployment phase (i.e. Phase-2) and complemented with small-cell base station deployment. 

6.2.2. Results and Discussion (Phase-I) 

  This sub-section presents results and discussion on the impact of the alpha (𝛼𝛼) 

parameter on the cost efficiency of the deployed network in Phase-I of the proposed strategy. 

Integer values between 1 and 10 have been analysed for alpha. For simplicity, only the 

Genetic algorithm (GA) is adopted in this chapter, to evaluate the proposed II-step strategy 



 

 

since both the Genetic algorithm and Simulated annealing were found to have comparable 

performance in the preceding chapter. 

 

Figure 6.2: trade-off between cost and coverage of macro-cell Base station deployment 

 

Figure 6.2 shows the observed impact of the alpha (𝛼𝛼) parameter on the coverage, cost 

trade-off and the cost efficiency of the optimal macro-cell network returned by the Genetic 

algorithm. It can be observed that higher values of 𝛼𝛼 increasingly favour the network 

coverage metric over the cost efficiency of the network in the fitness function. The highest 

cost efficiency is observed when  𝛼𝛼 = 1, however, the returned network does not make 

practical sense as it achieves less than 10% coverage of the service area (see Figure 6.4, 𝛼𝛼 =

1). To achieve higher network coverage more macro base station nodes are required which in 

turn increases cost and consequently lowers the cost efficiency of the network.  This is 

mainly because of the expensive infrastructural cost incurred with each additional macro base 

station deployment and slowing return on coverage due to duplicate coverage as shown in 

Figure 6.4  (𝛼𝛼 =10).    
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Figure 6.3: Marginal cost of increasing macro-cell Base station deployment 

Figure 6.3 shows the marginal cost of coverage as a function of increasing macro-cell 

deployment. A drastic increase in the marginal cost of coverage (over 800%) of increasing 

coverage from 90% (𝛼𝛼 =6) towards 100% by the deployment of additional macro-cell base 

stations is observed. This result shows the practical point at which the deployment of 

additional (expensive) macro-cell base station infrastructure to provide additional coverage 

becomes extremely cost inefficient.  Network topologies for different values of alpha (𝛼𝛼) are 

shown in Figure 6.4.  
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Figure 6.4: Optimal network topologies for different values of alpha (𝛼𝛼) 

6.3. Phase 2: Capacity Deployment (Small-cell deployment) 

The capacity optimisation phase takes the basic structure deployed by the coverage 

optimisation phase as input and the chosen meta-heuristic tries to improve the capacity and 

coverage of the basic structure by deploying small-cell base stations, which are more cost-

effective than macro-cell base stations. The resulting optimisation problem takes the same 

form as the 5G problem presented in chapter 5 but with a reduced search space since the 

macro candidate sites are no longer considered in the optimisation. However, the macro 

network is included in the computation of the fitness function. The use of small-cell base 

stations to complement the macro network taking into account the cost efficiency of the 

macro-cell deployment avoids the deployment of a network with a high density of macro base 

stations which have expensive infrastructure and are not power aware.  

6.4. Evaluation and Discussion on 2-phase Incremental Deployment strategy 

This section evaluates the performance of the proposed power-aware two-phase 

incremental deployment strategy for 5G, using the performance of the Genetic algorithm on 
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the Large problem instance detailed in section 5.5. The proposed strategy is evaluated in 

terms of its ability to improve the optimal fitness function returned and design a network 

whose power consumption budget is lowered compared to the results of the Genetic 

algorithm in the previous chapter.  

6.4.1. Experimental setup 

Similar to the previous chapter, the performance of the strategy is averaged after 25 

independent simulation executions on the Large problem instance (see section 5.5) using the 

stopping criteria of 500,000 fitness calls. The main characteristic of the Large problem 

instance is the large search space due to the high density of candidate sites (see Table 5.2). 

All system parameters are the same as outlined in Table 5.3. The performance of the GA 

algorithm on the Large problem from section 5.5 is used as a baseline. The strategy is 

evaluated for different values of the alpha parameter (see 6.2.1) and results are discussed. The 

Alpha parameter (𝛼𝛼) controls the density of macro base stations in the returned network 

topology and is used in phase-1 of the strategy (see section 6.2).  

6.4.2. Evaluations Results 

For comparative analysis, all results in this section are presented using a grouped bar 

chart with a real numbered scale on the y axis that indicates performance and the actual units 

are shown on the x axis, for when the strategy is used against when it isn’t. The results show 

the performance of the proposed strategy at minimising the power consumption and fitness of 

the designed 5G networks, using ranging values of  the alpha (𝛼𝛼) parameter used in equation 

6.2 . The aim of the experiment is to find the alpha (𝛼𝛼) value at which the strategy performs 

the best and establish the effectiveness of the proposed strategy. Obviously, the shorter the 

bars in chart, the better, since 5G network planning is formulated as a minimisation problem. 



 

 

 
Figure 6.5: Performance of proposed strategy for alpha=1.2 (Uniform traffic distribution) 

Figure 6.5 shows the performance of the proposed strategy using a Genetic algorithm for 

an alpha (𝛼𝛼) value of 1.2 based on the uniform distribution traffic instance (section 5.5). The 

following can be observed; using the proposed strategy with a low value of alpha (i.e. a value 

close to 1 ) significantly reduces the number of macro base stations and consequently their 

CAPEX cost and power consumption relative to the baseline (i.e. when the strategy is not 

used). Quantitatively, using the strategy with an alpha value of 1.2 reduced the number of 

deployed macro base stations by almost 65% (from 28 to 10), and results in a 65% and 61% 

decrease in their CAPEX cost and power consumption, respectively.  However, it can be seen 

that the final network returned when the strategy is used for alpha=1.2 is significantly worse 

in terms of cost efficiency with approximately 72% higher total cost and about 3%  higher 

power consumption compared to the baseline network.  This is explained by the higher cost 

that is incurred by the denser deployment of small-cell base stations (despite their low 

individual cost) when the strategy is used for alpha=1.2, deploying a sparse number of macro 

base stations. The increased density of small-cell base stations deployed when using the 

strategy for such a low value of alpha is basically to complement the sparse macro base 

station deployment.   
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Figure 6.6: Performance of proposed strategy for alpha=1.8 (Uniform traffic distribution) 

Figure 6.6 shows the performance of the proposed strategy using a Genetic algorithm for 

an alpha value of 1.8. It can be observed that the performance of the strategy as measured by 

the fitness function shows much more comparable performance to the baseline performance 

compared to the case when alpha=1.2, with only a 2%  difference in fitness. A higher value of 

alpha at 1.8 increased the number of macro base stations deployed from 10 (for alpha=1.2) to 

16, which in turn reduced the number of the small-cell base station deployment from 347 to 

235. In comparison to the baseline performance, using the proposed strategy resulted in 20% 

decrease in network power consumption, however, the returned network was slightly worse 

in terms of total cost (2.6%) for alpha=1.8. The power efficiency gain is mainly from the 

reduced density of high power consumption macro base stations from 28 in the baseline 

topology to 16 in the returned network by the proposed strategy as shown in Figure 6.7. 
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(a) (b) 

Figure 6.7: Network topologies. Topology (a) is turned by the proposed strategy while (b) is 
the baseline topology returned when the strategy is not used. It can be observed that the 
density of macro base stations is much higher in (b) compared to (a). Macro base stations 
have high power consumption profiles and should be optimised to create more power-
efficient network topologies.   

 

Figure 6.8 shows the average performance of the proposed strategy after 25 runs for an alpha 

value of 2.1 on the Uniform traffic distribution. It can be observed that the performance of the 

strategy (as measured by the fitness function) is better than the baseline by 4% on the 

Uniform traffic distribution. The strategy was found to decrease the network power 

consumption and total annual cost relative to the baseline performance by approximately 23%  

Figure 6.8: Performance of proposed strategy for alpha=2.1 (Uniform demand distribution) 
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and 4% respectively for alpha=2.1 on the Uniform traffic distribution. A diminishing return 

on the performance of the strategy relative to the baseline was observed for higher values of 

alpha. This result shows that for a given traffic scenario, there exist an optimal density of 

macro base stations that should be complemented with small-cell deployment in designing a 

heterogeneous base station network that is cost efficient in terms of infrastructural cost and 

power consumption.   

 

 

Figure 6.9 and Figure 6.10 show the average performance of the proposed strategy after 25 

independent simulation runs on the Gaussian and multi-Gaussian traffic distributions, 

respectively. The strategy returned a network topology with a better fitness by 14% and 27% 

Figure 6.10: Performance of proposed strategy for alpha=2.1 (multi-Gaussian traffic distribution) 

Figure 6.9: Performance of proposed strategy for alpha=2.1 (Gaussian traffic distribution) 
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(compared to the baseline) and approximately 32% and 34% less power consumption on the 

Gaussian and multi-Gaussian traffic distributions, respectively. 

6.5. Case Study 

This section presents results on a case study using the proposed network planning solver 

outlined thus far. The aim of the case study is to quantify the cost-benefit of a heterogonous 

base station access network architecture over the traditional homogenous macro-cell base 

station architecture as a function of increasing capacity demand.  In the traditional 

homogenous macro base station architecture, only macro base stations are deployed while in 

a heterogonous base station network architecture both macro and small-cell base stations can 

be deployed. The same cost models and assumptions made thus far are sustained. Three 

traffic demand scenarios are analysed and described below;  

I. Low demand: The low demand scenario is based on the Uniform traffic 

distribution. The average throughput requirement for this scenario is set to 

1Mbps.  

II. Medium demand: The medium scenario is based on the Gaussian traffic 

distribution. The average throughput requirement for this scenario is set to 

25Mbps then 50Mbps. 

III. High demand: The high demand scenario is based on the Gaussian traffic 

distribution. The average throughput requirement for this scenario is set to 

100Mbps.  

From Figure 6.11 and Figure 6.12, it is very easy to observe that regardless of the 

approach used, the power consumption and CAPEX cost increases as the demand for higher 

capacity increases. This trend is expected as more base stations are deployed to satisfy the 

increase in demand which in turn increases the CAPEX and power cost required to deploy 

and operate them. In traditional network planning, only macro BSs are deployed to increase 

capacity. Macro base stations have large cell sizes but consume significant power in addition 



 

 

to expensive equipment and site acquisition/build up cost. As shown in Figure 6.11 and Figure 

6.12, this type of deployment rapidly increases the CAPEX and power consumption cost the 

network as the demand for capacity rises. In a heterogeneous base station architecture, 

operators can leverage cheaper small-cell base stations (that consume less power) through the 

proposed deployment strategy, instead of deploying dense macro base stations, to slow the 

cost implications of expanding the network. Based on simulation scenarios and taking into 

account the assumptions made, it is reported that a mobile network operator can save up to 

90% on power consumption and 75% on CAPEX by leveraging a heterogeneous base station 

cellular network over the traditional homogenous macro base station architecture. It is also 

observed that the cost savings of leveraging a heterogeneous base station access network 

widen with increasing capacity demand. 

 
Figure 6.11: CAPEX cost as a function of increasing capacity requirement 

Figure 6.12:  Power consumption as a function of increasing capacity requirement 



 

 

6.6. Summary  

This chapter proposed and evaluated a novel power aware two-phase incremental 

strategy (2-phase)  for 5G heterogeneous base station deployment that is independent of the 

of heuristic search techniques used to optimise the network deployment.  The proposed 

strategy is to break down the 5G base station deployment optimisation problem formulated in 

section 5.3 in two complementary but independent optimisation problem phases with smaller 

search spaces (than the original problem), whose solutions are then combined to solve the 

original problem. The first phase is optimised to maximise coverage cost efficiency and 

returns a basic coverage network using macro-cell base stations with large coverage 

footprints.  The second phase builds a capacity deployment on the basic coverage through the 

deployment of small-cell base stations. The proposed strategy was evaluated using a Genetic 

algorithm on a problem instance with 1,178 candidate base station sites and on different 

demand distributions. The strategy was found to improve the fitness of the Genetic algorithm 

on average by 4% and decrease the power consumption cost of the returned network by up to 

34% depending on the traffic distribution pattern. However, the performance of the strategy 

is subject to finding the optimal density of macro-cell base stations to be complemented by 

small-cell deployment by tuning an integer parameter in phase-1.  

 

 

  



 

 

7. Joint MIMO and Heterogeneous base station 5G access network 

deployment Model  

7.1. Introduction 

The previous chapters introduced an optimisation problem for exploiting heterogeneous 

base station types in the context of cost efficient deployment of next-generation 5G mobile 

networks and analysed heuristic strategies for optimising it. This chapter builds on the 5G 

deployment problem formulated in chapter 5.3, to propose and analyse the benefit (in terms 

of deployment cost efficiency) of an advanced 5G base station deployment problem model 

that jointly optimises heterogeneous base station types and MIMO configurations.  

In addition to dense deployment of small-cell base stations in a heterogeneous access 

network, another key technology for providing high data capacity in 5G is MIMO (Multiple-

Input Multiple-Output) spatial multiplexing, which means using multiple antennas on a base 

station to increase its capacity. Deploying base stations with high MIMO antennas can 

significantly increase the spectral efficiency since more data bits can be transmitted using the 

same amount of spectrum, however, this is poised to also increase the power consumption 

and CAPEX cost of the system [100]. For example, a single transmitter base station system 

(i.e. no MIMO capability) will definitely cost less to buy than a base station with MIMO 

capacity. Likewise, a high order MIMO base station will be more expensive and consume 

more power than a low order MIMO base station since an additional power amplifier is 

needed to power each additional MIMO transmitter chain. Nevertheless, the use of large-

scale MIMO is considered a key technology for meeting the extreme capacity requirement of 

5G [19]. 

 Considering the above trade-off, an important research question is how to maximise the 

cost efficiency of MIMO in 5G? Existing research to address this question has exclusively 

focused on the maximising power efficiency by optimising the number of active MIMO 



 

 

chains in low traffic periods also known as Antenna Muting, after an initial un-optimised 

homogenous high-order macro-cell MIMO deployment [101][102]. For example, [101] 

reported after system simulations that antenna muting can reduce the power consumption of a 

4x4 MIMO LTE macro-cellular network by up to 50% in a low load scenario without 

significantly affecting the user throughput. However, a clear mathematical optimisation 

model was not included. [102] presented a mathematical model for downlink antenna muting 

in a large-scale LTE MIMO system based on optimising the number of active MIMO RF 

chains and their transmit powers, and analysed the trade-off between power and spectrum 

efficiency. However, no clear heuristic algorithms were presented.   

Different from existing literature, this chapter proposes and evaluates a multi-

dimensional approach through an optimisation framework for jointly optimising (exploiting) 

the different configurations of MIMO and heterogeneous base station deployment for more 

cost efficient 5G base station deployment, since different configurations will have different 

power consumption, CAPEX and system capacity implications. In addition to reducing power 

consumption of their existing networks in low demand periods, the framework can be used 

during base station deployment to also minimise infrastructural cost (CAPEX). Hence the 

main aim of this chapter is to propose and evaluate/quantify the cost efficiency benefit of the 

framework under the high user data requirement of 5G. 

The contributions of this chapter are as follows: 

• The formulation of an optimisation framework in which three key 5G technologies; 

Heterogeneous base station access network, MIMO and small-cell Cell range 

extension (CRE)  are jointly optimised for cost-effective base station deployment. To 

the best of our knowledge, such a framework for 5G base station deployment has 

never been explicitly presented before. The work in [103] analysed the energy 

efficiency of a heterogeneous base station access network with MIMO against other 



 

 

network deployments however their work does not include a clear optimisation 

framework for jointly optimising heterogeneous base station types, MIMO and small-

cell cell range extension (CRE). 

• Simulation analysis on the benefit of the advanced 5G base station deployment 

problem framework that jointly optimises heterogeneous base station types, MIMO 

and cell range extension configurations in terms of network deployment cost 

efficiency.   

7.2. System Model  

U Set of demand nodes 
M Set of candidate sites for macro base station deployment 
S Set of candidate sites for small-cell deployment 
𝑁𝑁 Set of base station models  
𝑣𝑣𝑖𝑖 Site acquisition cost of site 𝑖𝑖, 𝑖𝑖 ∈ 𝑀𝑀 ∪ 𝑆𝑆 
𝑏𝑏𝑖𝑖 Backhaul cost of site  𝑖𝑖 
T Set of MIMO configurations 
𝑒𝑒(𝑛𝑛,𝑡𝑡) RF equipment cost of BS model 𝑛𝑛 with MIMO configuration 𝑡𝑡  
𝑃𝑃 Set of transmission power levels of base stations 
D Set of deployed base stations7 
𝑁𝑁𝑇𝑇𝑇𝑇 Number of transmitters on base station model n  
𝜕𝜕 MIMO efficiency  
𝜌𝜌𝑢𝑢 Signal to interference and noise ratio of UE u 
𝑊𝑊 Available bandwidth 
𝐶𝐶𝐶𝐶𝑣𝑣′ Service area coverage percentage threshold 
𝐶𝐶𝐶𝐶𝑝𝑝′ Capacity requirement 
𝐵𝐵 Set of CRE levels 

Table 7.1: System model parameter for joint MIMO and Heterogeneous base station model 

The deployment of a 5G mobile network with heterogeneous base station types/models 

(macro, micro and pico-cells) and MIMO multi-antenna transmission on 3D geographical 

service area, A, is considered. The system model presented here is an extension to section 

4.1.1, which did not include MIMO.  Each site is defined by 3 variables; (a) x,y,z coordinates 

                                                            
7 A base station may or may not be deployed with MIMO  



 

 

(b) site acquisition cost (c) and backhaul cost. The notation 𝑥𝑥 and 𝑥𝑥�  is used for macro and 

small-cell base stations respectively, where the distinction is necessary. 

7.2.1. Base station Models and Configurations 

• In each candidate macro site m ∈ M, it is assumed that operators can deploy an 

omnidirectional macro-cell base station operating with one of |T| MIMO RF transmitter 

chains/configurations. Let 𝑃𝑃𝑡𝑡 be the signal transmission power of a base station deployed 

in site 𝑚𝑚, such that 𝑃𝑃𝑡𝑡(𝑖𝑖) ∈ 𝑃𝑃 is the transmit power of the 𝑖𝑖th MIMO transmitter of the base 

station deployed in the site. For simplicity, it is assumed that all MIMO transmitters 

installed on a base station operate at the same power level. This assumption means that 

the transmit power of a base station with MIMO can still be controlled by setting a single 

scaler power variable as done in chapter 5. MIMO base station spatial multiplexing is 

assumed to increase system capacity [29]. Thus, the capacity of the base station to handle 

traffic is increased as the number of MIMO RF chains increases, however, this also 

increases the power consumption of the base station and also the equipment cost.  

• While in each small-cell site s ∈ S, one of |𝑁𝑁�| models for small-cell base stations can be 

deployed, operating with one of   |𝑇𝑇� | MIMO antenna configurations at a transmit power 

level  𝑃𝑃𝑡𝑡 ∈ 𝑃𝑃�, such that 𝑃𝑃𝑡𝑡(𝑖𝑖) ∈ 𝑃𝑃� is the transmit power of the 𝑖𝑖th MIMO transmitter of the 

base station. Each small-cell BS model represents a different type of small-cell base 

station with a different power consumption profile, communication range and 

infrastructure cost. Small-cell base stations can expand their coverage by using Cell 

range expansion (CRE) by selecting one of |𝐵𝐵| CRE values. 

7.2.2. Coverage and Traffic Model  

The coverage, traffic and CRE inclusive demand node to base station association model are 

the same as described in section 4.1.5.1.  



 

 

𝛶𝛶𝑓𝑓,𝑐𝑐 = �1 if point c (𝑐𝑐 ∈ 𝐶𝐶) is covered by BS 𝑑𝑑 ∈ 𝐷𝐷
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒                                                        

  (7.1) 

𝐶𝐶𝑢𝑢,𝑓𝑓 = �1 if demand node 𝑢𝑢 ∈ 𝑈𝑈 𝑖𝑖s associated to  BS 𝑑𝑑 ∈ 𝐷𝐷
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒                                                                        

  (7.2) 

7.2.3. Network Capacity 

The system capacity of the simulated 5G mobile network is computed assuming an LTE-

Advanced 𝑁𝑁𝑇𝑇𝑇𝑇x𝑁𝑁𝑅𝑅𝑇𝑇  MIMO downlink multi-user system. 𝑁𝑁𝑇𝑇𝑇𝑇 is the number of base station 

MIMO transmitters and is determined by the installed MIMO configuration. While  𝑁𝑁𝑅𝑅𝑇𝑇  is 

the number of MIMO antennas at the user equipment. In this project, only the downlink is 

considered i.e. data transfer from the base station to the user equipment.  However, 

conclusions made are expected to also hold for the reverse link. 

According to [29], the multi-user MIMO  capacity of a base station  can be 

approximately viewed as 𝑁𝑁𝑢𝑢 point to point  MIMO links. 𝑁𝑁𝑢𝑢  is the number user equipment 

served by the serving base station of user u.  The data capacity of a user equipment u, at 

sufficiently high signal to noise ratio (𝜌𝜌𝑢𝑢), can be approximated by equation 7.3 [29]. 𝜔𝜔 is the 

user equipment spectral efficiency for a  SISO8 link computed in equation 4.9. 𝑊𝑊𝑢𝑢 is the 

bandwidth allocated to a user equipment u by the base station. Based on the earlier 

assumption of an equal resource allocation policy of base stations, 𝑊𝑊𝑢𝑢  is dictated by 𝑁𝑁𝑢𝑢 and 

the available bandwidth (W) according to equation 7.4. 

𝑅𝑅𝑢𝑢 ∝ (min(𝑁𝑁𝑇𝑇𝑇𝑇 ,𝑁𝑁𝑅𝑅𝑇𝑇)𝜔𝜔)𝑊𝑊𝑢𝑢 (7.3) 

𝑊𝑊𝑢𝑢 =
𝑊𝑊
𝑁𝑁𝑢𝑢

 (7.4) 

                                                            
8  A SISO link is formed by a base station and user equipment with only one antenna. 



 

 

𝑅𝑅𝑢𝑢 ∝ ([1 +  𝜇𝜇𝜕𝜕]𝜔𝜔)𝑊𝑊𝑢𝑢 (7.5) 

𝜇𝜇 = min(𝑁𝑁𝑇𝑇𝑇𝑇 ,𝑁𝑁𝑅𝑅𝑇𝑇) − 1 (7.6) 

𝜕𝜕 = �
1, 𝑖𝑖𝑓𝑓 𝜌𝜌𝑢𝑢 ≥ 12dB 

0.6,       5 ≤ 𝜌𝜌𝑢𝑢 < 12dB
0.3,                otherwise 

 
(7.7) 

𝐴𝐴𝐴𝐴 =
∑ 𝑅𝑅𝑢𝑢

|𝑈𝑈|
𝑢𝑢
|𝑈𝑈|

 
(7.8) 

However, the spatial multiplexing gain (𝜇𝜇) of MIMO drops significantly at lower signal 

to noise ratio values [104]. To model this effect, a MIMO efficiency curve fitting 

parameter, 𝜕𝜕, is introduced at lower UE signal to noise ratio values. Hence, equation 7.3 is 

modified to equation 7.5. The network capacity, measured by the average user network 

throughput is then given by equation 7.8.  

7.3. Problem Formulation 

The objective of the advanced  5G base station deployment problem is to jointly find the 

optimal number, locations, types, transmission powers, small-cell CRE bias vector and 

MIMO configurations of base stations that minimises the CAPEX and power consumption 

network cost, subject to the coverage and capacity constraint. All notations used here are 

defined in Table 7.1. The following decision variables are introduced for the advanced 5G 

base station deployment problem;  

𝑥𝑥𝑖𝑖  =   �1,             if a BS is deployed in site 𝑖𝑖 ∈ 𝑀𝑀 ∪ 𝑆𝑆
0,             𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒   (7.9) 

𝑧𝑧𝑖𝑖𝑛𝑛  = �1, if a  BS model 𝑛𝑛 ∈ 𝑁𝑁 is deployed in site 𝑖𝑖 ∈ 𝑀𝑀 ∪ 𝑆𝑆  
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒  (7.10) 



 

 

𝑗𝑗𝑝𝑝𝑓𝑓  = �1, if a  BS  𝑑𝑑 uses power level 𝑝𝑝 ∈ 𝑃𝑃  ,𝑑𝑑 ∈ 𝐷𝐷 
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒  (7.11) 

𝑘𝑘𝑠𝑠𝑓𝑓 = �1, if a small BS  𝑑𝑑 uses bias level 𝑏𝑏, 𝑏𝑏 ∈ 𝐵𝐵 ,𝑑𝑑 ∈ 𝐷𝐷 
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠  (7.12) 

𝑓𝑓𝑛𝑛𝑡𝑡  = �1, if a  BS model 𝑛𝑛 ∈ 𝑁𝑁 is deployed with MIMO  config 𝑡𝑡 ∈ 𝑇𝑇 
0, 𝐶𝐶𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒  (7.13) 

The 5G network design objectives are as follows: 

C1 = � 𝑥𝑥𝑚𝑚 � 𝑧𝑧𝑚𝑚𝑛𝑛�𝑓𝑓𝑛𝑛𝑡𝑡

|𝑇𝑇|

𝑡𝑡∈𝑇𝑇  

�𝑒𝑒(𝑛𝑛,𝑡𝑡) + (𝑣𝑣𝑚𝑚 + 𝑏𝑏𝑠𝑠)�
|𝑁𝑁|

𝑛𝑛∈𝑁𝑁

|𝑀𝑀|

𝑚𝑚∈𝑀𝑀

 
(7.14) 

C2 =�𝑥𝑥𝑠𝑠 � 𝑧𝑧𝑠𝑠𝑛𝑛  �𝑓𝑓𝑛𝑛𝑡𝑡

|𝑇𝑇� |

𝑡𝑡∈𝑇𝑇�

�𝑒𝑒(𝑛𝑛,𝑡𝑡) + (𝑣𝑣𝑠𝑠 + 𝑏𝑏𝑠𝑠)�
|𝑁𝑁�|

𝑛𝑛∈𝑁𝑁�

|𝑀𝑀|

𝑠𝑠∈𝑀𝑀

 
(7.15) 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂: 
,

min
𝒙𝒙,𝒛𝒛

 [C1 + C2] (7.16) 

 P1 = �𝑥𝑥𝑠𝑠�𝑧𝑧𝑠𝑠𝑛𝑛�𝑓𝑓𝑛𝑛𝑡𝑡

|𝑇𝑇� |

𝑡𝑡

�𝑗𝑗𝑝𝑝𝑓𝑓

|𝑃𝑃�|

𝑝𝑝

𝑃𝑃𝐶𝐶(𝑛𝑛, 𝑝𝑝, 𝑡𝑡)
|𝑁𝑁�|

𝑛𝑛

|𝑀𝑀|

𝑠𝑠∈𝑀𝑀

 
(7.17) 

P2 = �𝑥𝑥𝑚𝑚�𝑧𝑧𝑚𝑚𝑛𝑛�𝑓𝑓𝑛𝑛𝑡𝑡

|𝑇𝑇|

𝑡𝑡

�𝑗𝑗𝑝𝑝𝑓𝑓

|𝑃𝑃|

𝑝𝑝

𝑃𝑃𝐶𝐶(𝑛𝑛,𝑝𝑝, 𝑡𝑡)
|𝑁𝑁|

𝑛𝑛

|𝑀𝑀|

𝑚𝑚

 
(7.18) 

Power: min
𝒙𝒙,𝒋𝒋,𝒛𝒛,𝒌𝒌

P1 + P2 (7.19) 

Subject to 

���𝛶𝛶𝑓𝑓𝑐𝑐

|𝐶𝐶|

𝑐𝑐=1

|𝐷𝐷|

𝑓𝑓=1

� ≥  𝐶𝐶𝐶𝐶𝑣𝑣′ 
 
(7.20) 



 

 

�𝑓𝑓𝑛𝑛𝑡𝑡

|𝑇𝑇|

𝑡𝑡=1

≤ 1 ∀𝑛𝑛 ∈ 𝐷𝐷 
(7.21) 

𝐴𝐴𝐴𝐴 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝′ (7.22) 

 
The above optimisation problem designs a high capacity but cost efficient base station access 

network by jointly exploiting heterogeneous base station types, MIMO multi-antenna 

transmission and cell range extension technology. The optimisation problem extends the 

problem defined in section 5.3 by the introduction of a new dimension, which is to also 

optimise the MIMO configuration per deployed base station. In the advanced 5G problem 

formulation, a base station’s capacity, power consumption and equipment cost are a function 

of the MIMO configuration it uses.  

Identical to section 5.3, equation 7.20 and 7.22 ensure that the coverage and capacity 

requirements are meet as hard constraints. While equation 7.21  is a new constraint that states 

that a deployed base station can only use one MIMO configuration. The advanced 5G 

problem formulation inherits all other constraints defined in section 5.3 and as such, they are 

not redefined here. 

7.4. Optimisation 

In order to optimise the advanced 5G problem formulation, the procedures outlined in 

chapter 5 and 6 are adopted. However, the solution encoding is extended to incorporate the 

extra dimension of MIMO optimisation. The solution encoding presented in section 5.4.1.1 is 

extended by the introduction of an additional column to the candidate site configuration 

matrix to hold the MIMO configuration for each deployed site, as illustrated in Figure 7.1. 

The decoding mechanism is the same as presented in section 5.4.1.1.  

 



 

 

 

 

Figure 7.1: Illustration of solution encoding for advanced 5G network planning with MIMO  

7.5. Results and Discussion 

This section evaluates the proposed advanced 5G base station planning problem that 

jointly optimises the base station types to deploy, their MIMO configurations and cell range 

extension, in terms of the network deployment cost efficiency and discusses results observed. 

It is necessary to distinguish between network deployment and power consumption 

efficiency. The deployment cost looks at the total cost of the network design which includes 

both CAPEX and power consumption. While power consumption cost exclusively focuses on 

the power usage of the network.  

 

 

 



 

 

7.5.1. Simulation set up 

Table 7.2: Simulation Parameters 

 

The following system parameters are used in the results presented hereafter. All base 

stations are assumed to use omnidirectional antennas. It is assumed that macro and small-cell 

base stations use separate 50MHz bandwidth at 1.8GHz frequency range as such no inter-tier 

interference is assumed between them, however, there is inter-cell interference between cells 

of the same tier since they are co-channel. Other interference scenarios can also be assumed. 

When only macro-cell base stations are used, the entire 100Mhz bandwidth is available to 

them. Table 7.2 shows all the system parameters assumed. The network cost and power 

consumption are computed in the same manner as described in 5.4.1.2 and 4.1.5.3 

respectively, assuming a period of 1 year. However, to capture the inherent equipment cost 

difference between (for example) a base station with a single transmitter (SISO BS) and a 

8. Parameter   Values 
Frequency   1.8 GHz   
Macro/small  BS height  31m / 5m   
Coverage req. -110dBm    
Bandwidth /tier 50Mhz     
K1 1   
K2 20000   
𝜖𝜖 1   
Demand distribution Normal   
Base station Types                                                  Macro BS Micro BS Pico BS 
Max. Cell radius (Km) 0.6 0.18 0.05 
Max. Power (dBm) 46 38 22 
Power levels (dBm)/ 
Transmitter 

46,43,40  38  22 

Antenna Gain dB 18 6 6 
CRE config. (dBm) NA 0,1,2,3,4,5 0,1,2,3,4,5 
Equipment Cost of SISO BS (£) 40,000 0.3* Macro BS 0.1* Macro BS 
Site Cost (£) 100,000 0.3* Macro BS 0.05*MacroBS 
Backhaul (£) 15000 15000 15000 
Energy unit price (£), 𝜂𝜂 0.13   
MIMO config 1x1 to 8x8 
Algorithm Genetic algorithm 



 

 

MIMO base station, it is assumed that the equipment cost of a MIMO base station is 20% (of 

the equipment cost of a SISO BS) higher for each additional MIMO RF chain [105]. For 

example, a three (3) transmitter MIMO base station, will cost £64,000 

((3 x 0.2 x 𝑐𝑐𝐶𝐶𝑠𝑠𝑡𝑡𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐 𝐵𝐵𝑆𝑆) + 𝑐𝑐𝐶𝐶𝑠𝑠𝑡𝑡𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐 𝐵𝐵𝑆𝑆) instead of £40,000 for a single transmitter base 

station (SISO BS).  The equipment cost values used are based on domain expert 

recommendation and the literature. All simulations are repeated 25 times and the best run is 

reported. The scenario ‘setup’ is the MIMO configuration used. It is assumed that 𝑁𝑁𝑇𝑇𝑇𝑇 =𝑁𝑁𝑅𝑅𝑇𝑇 

8.1.1. Case study 

To quantify the cost efficiency benefit of the proposed advanced 5G base station 

deployment framework, the deployment framework is analysed as against the following 

single dimensional deployments from the literature; 

A.  Macro BS + MIMO: This deployment model uses only macro-cell base stations 

and relies on homogenously increasing BS MIMO setup to deliver the required UE 

throughput level [101].  

B. HetNet: This deployment model exploits base station heterogeneity and relies on 

the deployment of small-cell base stations to provide the required throughput but 

does not include MIMO capability and CRE [87].  

  



 

 

 
Figure 7.2: Simulation Case study service area. Black circles are candidate sites for macro-cell base 

stations, red circles are candidate sites for small-cell base stations. Black dots are the demand nodes.  

 

The proposed advanced 5G base station deployment model jointly exploits heterogeneity in 

three key 5G technologies, heterogeneous base station architecture, MIMO and small-cell 

range extension by jointly optimising their respective configurations. 

The 5G network deployment case study considered is a 16Km2 service area with 778 

candidate sites for base station location and 2000 demand nodes normally distributed as 

shown in Figure 7.2. The 5G network capacity requirement is first set to 50Mbs then increased 

to 350Mbps. 
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Dep MIMO Cov DC(M£) DE #Mac #BSs PC(kWh) 
A(baseline) 1x1 100 28.26 1.8 182 182 396267 
A 2x2 99 16.53 3.0 101 101 491962 
A 3x3 100 12.5 4.0 72 72 542966 
A 4x4 100 10.95 4.6 59 59 704338 
A 5x5 100 10.59 4.7 53 53 791085 
A 6x6 100 10.19 4.9 47 47 838579 
A 7x7 100 10.68 4.7 45 45 977568 
A 8x8 100 9.95 5.0 38 38 1018311 

Table 7.3: Comparison of deployment cost efficient as a function of the MIMO configuration for an 
average network user rate of 50Mbps. (PC: Power consumption, DC: Deployment cost, Dep:  
Deployment, #Mac: number of macro BSs, Cov: Coverage) 

Table 7.3 shows the influence of MIMO on the network deployment cost efficiency for 

achieving an average network user rate of 50Mbps using Deployment A, which utilises only 

macro-cell base stations. It can be clearly observed from Table 7.3 that increasing the MIMO 

setup (i.e. the number of MIMO transmitters) across the base stations consistently results in 

an increase in the network deployment cost efficiency. Compared to the baseline with no 

MIMO, the network deployment cost efficiency increased by approximately 178% when the 

MIMO configuration per base station is increased to 8x8. As shown in Table 7.3, a main 

characteristic of the network returned when the MIMO configuration per base station is 

increased to 8x8, is the very low number of base station sites deployed (79% less) compared 

to the baseline when MIMO is not used. When high order MIMO is used on a base station, 

the capacity of the base station is increased and consequently, the number of user equipment 

it can serve is also increased. This means that a reduced number of base stations can be used 

to provide the same quality of service when the base stations use high order MIMO 

configurations. This leads to significant network deployment cost savings that arise from the 

reduced cost associated with the deployment of new base station sites and backhauling them 

to the core network. However, despite the significant reduction in the number of base station 

sites required when the MIMO configuration per base station is increased to 8x8, this 



 

 

deployment configuration was observed to consume the highest amount of power. Compared 

to the baseline with no MIMO, the network power consumption increased by approximately 

157% when the MIMO configuration per base station is increased to 8x8. The increase in 

power consumption is mainly a consequence of the extra power amplifiers that are required to 

power each extra MIMO transmitter.   

 

Deployment  MIMO Cov DC(M£) DE #Mac #Mic #Pic #BS PC(kWh) 
A  
(Macro+MIMO) 8x8 100 9.95 5.0 38 0 0 38 1018311 

B (HetNet) 1x1 98 17.95 2.8 17 219 117 353 242013 
Proposed 
(HetNet+MIMO+CRE) All 100 8.41 6.0 17 78 25 120 197096 

Table 7.4: Comparison of 5G deployment models (for 50Mbs average network user throughput) 

 
Table 7.4 presents a comparison of the proposed advanced 5G base station deployment 

framework that jointly exploits three key 5G technologies (heterogeneous base stations, 

MIMO and CRE ) against two existing one-dimensional models from the literature, in terms 

of network deployment efficiency. Deployment A, which utilises macro-cell base stations 

installed with a high order MIMO configuration was observed to be more cost efficient than 

Deployment B (which exploits small-cells but not MIMO) by approximately 78%. The main 

difference in their respective network topologies can be seen in the number of base station 

sites. While a high order  MIMO macro-cell deployment (Deployment A)  requires only 38 

candidate sites (out of the 778) to be installed, Deployment B, which relies on the 

deployment of small-cell base stations installs as many as 315 more sites, to provide the same 

average user throughput of 50Mbps. However, it can be seen that Deployment B which relies 

on dense small-cell deployment rather than high order MIMO macro-cell deployment 

(Deployment A), is more power efficient by approximately 320%.  The proposed advanced 

5G base station deployment framework can be seen to be the most cost efficient deployment, 

improving the network deployment cost efficiency by 20% and the power efficiency by 



 

 

approximately 23%. These cost efficient gains can be attributed to the increased network 

design flexibility introduced by the proposed framework in terms of possible network 

configurations by leveraging both MIMO and small-cell deployment as well as cell range 

extension. Figure 7.3 illustrates the heterogeneous configuration network design returned by 

the advanced 5G base station deployment framework.  However, the framework also 

increases the size of the problem search space due to an increase in the number of network 

configuration possibilities. 

Deployment  MIMO Cov DC(M£) DE #Mac #Mic #Pic #BS PC(kWh) 
A  
(Macro+MIMO) 8x8 100 47.41 7.4 182 0 0 182 3051658 

B (HetNet) 1x1 - -   - - - - - - 
Proposed 
(HetNet+MIMO+CRE) All 100 20.34 17.2 17 164 108 289 197096 

Table 7.5: Comparison of 5G deployment models (for 350Mbs average network user throughput) 

A second empirical simulation is performed using a much higher capacity requirement of 

350Mbps average network user throughput instead of 50Mbps, and results are shown in Table 

7.5. As shown in Table 7.5, Deployment B, which relies on the dense deployment of small-cell 

base stations was unable to meet the much-increased capacity requirement of 350Mbps and 

as such is not included in the results for fairness. This was mainly due to the effect of inter-

cell interference between small-cells as their density is increased. This demonstrates that 

interference mitigation techniques will be key to achieving the high capacity requirement of 

5G. As expected, the network deployment cost, power consumption and the number of base 

stations deployed increases sizably compared to results in Table 7.4 (when the capacity 

requirement was 50Mbps), regardless of the deployment model. This is logical as more 

network infrastructure is required to meet the raised capacity requirement. However, the 

proposed advanced 5G deployment model can be seen to maximise the network deployment 

cost and power efficiency by approximately 133% and 1448% (respectively) compared to 



 

 

Deployment A, despite installing more candidate sites. The deployment cost and power 

saving gains are achieved by balancing the use of MIMO and small-cell deployment such that 

cost is minimised. These results demonstrate the deployment cost gains introduced by the 

proposed advanced 5G base station deployment model that exploits heterogeneity in all three 

technologies by deciding if it is more cost effective to deploy a new base station, the type of 

base station or if it better to employ more MIMO antennas on existing base stations. 

 

 

Figure 7.3: Network topology created by the advanced 5G base station deployment framework. The 
numbers indicate the number of MIMO transmitters installed on a base station. It can be seen that 
the MIMO setup per base station is different as well as the types of base stations deployed. Bold 
black dots are installed macro BS locations while bold red dots/stars are installed pico/micro base 
stations.    

8.2. Summary  

This chapter presented and evaluated an advanced 5G base station deployment 

framework in which three key 5G technologies; heterogeneous base station architecture, 

MIMO and small-cell range extension configurations are jointly optimised for more cost 

efficient base station deployment. This is in contrast to existing base station deployment 



 

 

models from the literature that take a one-dimensional approach focused on only one 

technology. The framework includes an enabling integer programming problem and a 

solution encoding for applying meta-heuristics and is presented as an extension to chapter 5. 

The benefit of the advanced 5G base station deployment framework (in terms of network 

deployment cost efficiency) was analysed against two deployment models from the literature: 

(i) high order MIMO macro-cell network deployment and (ii) high-density heterogeneous 

base station network deployment, through empirical simulations. Simulation results show that 

the advanced 5G base station deployment framework can improve the network deployment 

cost and power efficiency by more than 100% and 1000% (respectively) when the capacity 

requirement is high, compared to a high order MIMO macro-cell network. Other results show 

that the capacity gain from the dense deployment of small-cell base stations is limited by 

inter-cell interference. Furthermore, results show that there is a sizable reduction in the 

number of deployed candidate sites required to provide the same level capacity when higher 

MIMO order base stations are deployed.  

 

  



 

 

9. Conclusion and Future work  

The sustained growth in the number of mobile user devices driven by the introduction of 

data services, the take-off of the internet and smart user equipment, and the aggressive 

forecast by industry experts has continued to push the data transfer capacity requirement on 

mobile networks and has motivated research into the design of 5th generation (5G) mobile 

networks. A key concern in the design of 5G is the infrastructure and power consumption 

cost of the base station network, which is expected to be significantly more advanced and 

dense than of existing conventional mobile networks. For example, unlike conventional 

mobile standards, which are based on flat homogenous base station access network 

architecture, 5G is to be designed based on a dense multi-tier heterogeneous base station 

access network with small-cell base stations and employing advanced technologies like 

higher order signal spatial multiplexing (MIMO) and cell range extension. Optimising the 

design deployment of 5G base station network is an important challenge faced by mobile 

network operators in order to provide the very high data transfer speed requirement of 5G at 

minimum infrastructure and power consumption cost. However, the complex 5G base station 

network environment requires the development of novel strategies for base station network 

design and motivates the research work presented in this thesis.  

This thesis presented a core optimisation framework for the cost efficient design of 5G 

base station networks, based on the application of meta-heuristic/heuristic algorithms. It 

provides novel first steps into the design of 5G mobile networks using heuristic search. The 

main methodology adopted is the use of mathematical programming models and empirical 

system level simulations. The following key contributions have been made: 

1. The proposal of integer programming models for supporting the decisions on the 

deployment of an optimal base station topology in a 5G mobile network, in order to 



 

 

find the best trade-off between providing the ‘high capacity everywhere’ requirement 

of 5G and minimising system cost. The proposed network design integer 

programming models have been designed to exploit configuration heterogeneity 

offered by three key 5G technologies; heterogeneous base station architecture, MIMO 

and cell range extension configurations for more cost efficient base station network 

design.  

2. The second contribution is the definition of a clear framework for the application of 

iterative fitness based heuristic search techniques such as meta-heuristics for planning 

5G mobile networks. The framework includes a solution encoding, fitness function 

and definition of search operators. Using the framework, the performance of three 

heuristic search techniques, namely; Genetic algorithm, Simulated annealing and Hill 

climbing are analysed as deployment algorithms for 5G. 

3. The third contribution is the proposal of an independent power consumption aware 

strategy for planning 5G base station network, based on the principle of divide and 

conquer co-operative optimisation. Empirical simulation results validate that the 

proposed base station planning strategy is able to save as much as 34% of overall 

network power consumption depending on the traffic demand scenario. 

9.1. Results  

This section is an overview of the main contribution chapters and their results. 

Chapter 5  presented an optimisation framework for the application of iterative fitness based 

heuristic search to the deployment of 5G heterogeneous base station architecture with cell 

range extension technology. The framework has three components: an integer programming 

5G base station deployment challenge, which is designed towards exploiting base station 



 

 

heterogeneity for cost efficient base station deployment; a solution encoding, and a fitness 

function. The performance of three meta-heuristics algorithms; Simulated annealing, Hill 

climbing and Genetic algorithm were analysed as base station deployment tools for 5G in 

terms of optimality and efficiency. Each algorithm was run for a maximum of 500,000 and 

100,000 fitness calls on two problem instances of different sizes. Experimental results show 

that the GA and the SA have comparable performance on average in terms of fitness of the 

best found network plan and outperform the HC by up to 50% on some problem instances 

when the run for up to 500,000 fitness calls. However, the Simulated annealing algorithm is 

found to outperform the GA across the test instances on average by approximately 50% when 

executed for only 100,000 fitness calls while the Hill climbing algorithm was found to be the 

most efficient algorithm in terms of its ability to return a good network in the shortest time 

compared to the SA and GA, making it the most suitable algorithm for on-demand 5G base 

station management.   

Chapter 6 proposed and evaluated a power-aware 2-Phase incremental strategy (based on the 

5G base station deployment problem formulated in chapter 5) that is independent of the 

meta-heuristic algorithm used as the optimisation tool. The proposed strategy is to break 

down the 5G base station deployment optimisation problem formulated in Chapter 5 in two 

complementary but independent optimisation problem phases with smaller search spaces 

(than the original problem), whose solutions are then combined to solve the original problem. 

The first phase is optimised to maximise coverage cost efficiency and returns a basic 

coverage network using only macro-cell base stations with large coverage footprints.  The 

second phase builds a capacity deployment on the basic coverage through the deployment of 

small-cell base stations. The strategy is evaluated by comparing the average fitness and the 

network cost of the returned network topology when the strategy is used against when it is 

not. The proposed strategy was evaluated using a Genetic algorithm on a problem instance 



 

 

with 1,178 candidate base station sites and on different traffic demand distributions. The 

strategy was found to improve the fitness of the Genetic algorithm on average by 4% and 

decrease the power consumption cost of the returned network by up to 34% depending on the 

traffic distribution pattern. However, the performance of the strategy is subject to finding the 

optimal density of macro-cell base stations to be complemented by small-cell deployment by 

tuning an alpha parameter. A case study analysis using the proposed network planning solver 

was performed to quantify the cost-benefit of a heterogonous base station access network 

architecture over the traditional homogenous macro-cell base station architecture as a 

function of increasing capacity demand. The case study results show that a mobile network 

operator can save up to 90% on power consumption and 75% on CAPEX by leveraging a 

heterogeneous base station access network with small-cells over the traditional homogenous 

macro base station architecture. It is also observed that the cost savings of leveraging a 

heterogeneous base station access network widen with increasing capacity demand. 

Chapter 7 extended the 5G deployment challenge in chapter 5, to propose and analyse the 

benefit of an advanced 5G base station deployment problem framework that jointly optimises 

heterogeneous base station types, MIMO and cell range extension configurations for 

achieving cost efficient and high capacity base station deployment. The framework includes 

an enabling integer programming problem and solution encoding for applying heuristic 

techniques and is presented as an extension to chapter 5. The benefit of the advanced 5G 

base station deployment framework (in terms of network deployment cost efficiency) was 

analysed against two deployment models from the literature: (i) high order MIMO macro-cell 

network deployment and (ii) high-density heterogeneous base station network deployment, 

through empirical system level simulations. Simulation results show that the advanced 5G 

base station deployment framework can improve the network deployment cost and power 

efficiency by more than 100% and 1000% (respectively) when the capacity requirement is 



 

 

high, compared to high order MIMO macro-cell network. Other results show that the capacity 

gain from the dense deployment of small-cell base stations is limited by inter-cell 

interference. Furthermore, results show that there is a sizable reduction in the number of 

deployed candidate sites required to provide the same level capacity when higher MIMO 

order base stations are deployed.  

9.2. Limitations  

The main limitation of this thesis is the lack of data from mobile network. Such data 

which is considered commercially sensitive by most mobile networks would have been useful 

to produce tighter bounds on the results. Nevertheless, the simulated data used to analyse the 

strategies have been developed in close collaboration with some industry experts and with 

extensive research of the existing references.  

9.3. Future Work 

This section looks at the possible extensions to the work presented in this thesis. The possible 

extensions are discussed from three perspectives; system modelling, algorithms and 

scenarios. 

9.3.1. System Modelling  

The conclusions made in this thesis have been based on a preliminary system model for 

deployment analysis of 5G cellular networks with heterogeneous base stations based on the 

4G LTE-Advanced cellular downlink standard. One direction to extend the work is to employ 

more intrinsic modelling. For example, ray tracing algorithms could be used to more 

accurately model signal propagation between a base station and user equipment instead of 

empirical models. Another improvement of the work would be to explicitly consider the 

uplink as well as the downlink direction in the system model. Furthermore, a more detailed 

resource allocation policy could be included into how base stations share their transmission 



 

 

resources to active user equipment instead of the equal resource allocation policy used in this 

thesis.  Further, the assumption that all base stations use omnidirectional antenna can be 

extended to include the use of directional antennas and beamforming when MIMO is used.   

9.3.2. Algorithms  

The work presented in this thesis only analysed the performance of three meta-heuristics; the 

Genetic algorithm, the Simulated annealing and the greedy Hill climbing algorithm.  A 

natural extension of the work is to analyse the performance of other meta-heuristic algorithms 

such Particle swarm optimiser, Ant colony algorithm or even hybrid algorithms.  

Furthermore, the work presented in this thesis only utilised stochastic search variation 

operators, it will be useful and interesting to look at the possibility of developing intelligent 

problem specific search operators.  

9.3.3. Scenarios 

The 5G mobile network analyses presented in this thesis has focused on the single operator 

non-sharing greenfield base station deployment taking into account three key 5G 

technologies; heterogeneous access network, MIMO spatial multiplexing and cell range 

extension.  A very interesting improvement of this thesis would be to consider the potential 

cost saving implication of network infrastructural sharing between different mobile networks 

in the developed deployment models. Furthermore, other 5G technologies like carrier 

aggregation and indoor femto-cell networks could be considered for future work. Another 

very interesting angle for future work is to consider the environment impact of 5G base 

stations in terms of electromagnetic field radiation.  

  



 

 

A. Appendix 

This appendix provides additional details about the system model presented in Chapter 4. 

Okumura-Hata model 

This section describes in detail the Okumura-Hata signal propagation model used to 

compute the signal path-loss (𝑃𝑃𝐿𝐿) between a base station and a demand point, in equation 4.1.  

𝑃𝑃𝐿𝐿 =  𝐴𝐴 +  𝐵𝐵 𝑙𝑙𝐶𝐶𝐶𝐶(𝑑𝑑)  +  𝐶𝐶 (A.1) 

where 𝐴𝐴,𝐵𝐵, and 𝐶𝐶 are factors that depend on frequency and antenna height.  

𝐴𝐴 = 69.55 + 26.16 log ( 𝑓𝑓𝑐𝑐) − 13.82 log (ℎ𝑠𝑠) − 𝐶𝐶(ℎ𝑚𝑚) (A.2) 

B = 44.9 − 6.55 log ( ℎ𝑠𝑠) (A.3) 

where 𝑓𝑓𝑐𝑐 is the frequency given in MHz and 𝑑𝑑  is the distance between the base station and 

the user equipment in km.  ℎ𝑠𝑠  and ℎ𝑚𝑚 are the base station and user equipment heights 

respectively  in meters.  

The function 𝐶𝐶(ℎ𝑚𝑚) and the factor 𝐶𝐶 depend on the environment:  

• small and medium-sized cities: 

𝐶𝐶(ℎ𝑚𝑚)  =  (1.1 log ( 𝑓𝑓𝑐𝑐)  −  0.7)ℎ𝑚𝑚  −  (1.56 log (𝑓𝑓𝑐𝑐)  −  0.8)  (A.4) 

𝐶𝐶 =  0  (A.5) 

 

• metropolitan areas  

𝐶𝐶(ℎ𝑚𝑚) = �8.29(log(1.54ℎ𝑚𝑚)2  −  1.1 for f ≤  200 MHz  
3.2(log(11.75ℎ𝑚𝑚)2  −  4.97 for f ≥  400 MHz

 
(A.6) 

𝐶𝐶 =  0   (A.7) 

 



 

 

• suburban environments  

𝐶𝐶 =  −2[(log 𝑓𝑓𝑐𝑐 28⁄ )]2  −  5.4 (A.8) 

 

• rural area 

𝐶𝐶 =  −4.78[log 𝑓𝑓𝑐𝑐] 2 +  18.33 log 𝑓𝑓𝑐𝑐  −  40.98 (A.9) 

 

The function 𝐶𝐶(ℎ𝑚𝑚) in suburban and rural areas is the same as for urban (small and medium-

sized cities) areas. 

 

Signal to noise ratio 

This section describes the computation of the UE signal to noise ratio module. 

Let D be the set of deployed base stations on a service area using the same frequency channel 

to serve a set U of users. The signal to noise ratio of a user (𝜌𝜌𝑢𝑢) connected to a base station 

𝑠𝑠 ∈ 𝐷𝐷 is given by equation 2.1. 

𝜌𝜌𝑢𝑢 =
𝑃𝑃𝑟𝑟𝑚𝑚(𝑠𝑠,𝑢𝑢)

� 𝑃𝑃𝑟𝑟𝑚𝑚(𝑓𝑓,𝑢𝑢)

|𝐷𝐷|

𝑓𝑓≠𝑠𝑠

 
(A.10) 

 

where 𝑃𝑃𝑟𝑟𝑚𝑚(𝑓𝑓,𝑢𝑢) is the received power by base station u from base station d 

 

 

 

 



 

 

B. Appendix 

This appendix provides convergence plots to support the results of Chapter 5. The 

comparable performance between the SA and GA can be observed when the number of 

iterations is 500,000. However, the fitness of the GA significantly worsened when the 

number of fitness calls is reduced to 100,000.  
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