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Abstract 

The main aim of this work is investigation of localization problem in strain softening materials 

and regularization techniques, which will reduce and possibly remove mesh dependency of the 

numerical results and balance the effects of heterogeneous microstructure on local continua 

while keeping the boundary value problem of softening (damaged) continua well-posed. Finite 

Element Method (FEM) and Smooth Particle Hydrodynamic (SPH) combined with a local 

continuum damage model (CDM) were used for analysis of a dynamic stress wave propagation 

problem, which was analytically solved in (Bažant and Belytschko 1985). The analytical 

solution was compared to the numerical results, obtained by using a stable, Total-Lagrange 

form of SPH (Vignjevic et al. 2006, Vignjevic et al. 2009), and two material models 

implemented in the FEM based on: 1) classic CDM; and 2) equivalent damage force. The 

numerical results demonstrate that the size of the damaged zone is controlled by element size in 

classic FEM and the smoothing length in the SPH, which suggests that the SPH method is 

inherently non-local method and that the smoothing length should be linked to the material 

characteristic length scale in solid mechanics simulations. 
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1. Introduction 

When material response to the mechanical loading includes degeneration of material properties, 

application of the local continuum damage mechanics (CDM) models to the strain softening 

materials, including some composites, is rather limited.  In this case, a local damage model 

implemented in the finite element method (FEM) leads an ill posed boundary value problem, 

where the local governing hyperbolic differential equations at a point become elliptic, which 

leads to numerical instability.  This instability is mesh-sensitive and manifests itself as non-

physical deformation of the softening continuum (due to deformation localization, infinite 

number of bifurcated branches and post-bifurcation mesh dependency issues). 

A well-known solution to the localization problem is addition of a characteristic length scale to 

CDM models, a non-local approach, which maintains the character of the governing equations 

in the material softening deformation regime.  The characteristic length scale is typically 
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defined either in the form of spatial gradients (Dillon and Kratochvill 1970, Aifantis 1984, 

Bammann and Solanki 2010) or integral nonlocal terms, see for instance (Pijaudier-Cabot  and 

Bazant 1987, Tvergaard and Needleman 1995, Tvergaard and Needleman 1997, Enakoutsa et. 

al. 2007).  Non-local approach based on the introduction of length scale provides a framework 

for modelling relevant aspects of the underlying physics (sub continuum scale effects) of 

materials. 

Two discretization methods were considered in this work: FEM and Smoothed Particle 

Hydrodynamics (SPH) (Gingold and Monaghan 1977, Libersky and Petschek, 1991, Libersky 

et. al. 1993).  The SPH is a meshless particle method, which does not require a structured grid.  

The motion of the continuum is approximated by motion of discrete material points (particles) 

with no fixed connectivity. Interaction of particles is defined by a weighting (smoothing) 

function, where the smoothing length (size of the smoothing function domain) defines the range 

of influence of an individual particle.  It is this smoothing length scale that makes the SPH a 

non-local method. 

The main aim of this paper was analysis of strain softening effects observed in a dynamic stress 

wave propagation problem using FEM and SPH method, with two specific objectives: 1) to 

establish if SPH is by nature a nonlocal method capable of overcoming difficulties related to 

material softening without any additional regularization measures; and 2) to find a suitable 

solution for the localization problem observed in the classic FEM.  The chosen one dimensional 

stress wave propagation problem, analytically solved in (Bažant and Belytschko 1985), was 

modelled in LLNL Dyna3D and in house developed SPH code.  The exact analytical solution 

was compared to the numerical results, obtained by using a stable, Total-Lagrange form of SPH 

described in (Vignjevic et al. 2006, Vignjevic et al. 2009), and two models implemented in the 

explicit FEM.  The first material model was developed using classical continuum damage 

mechanics approach, whilst the second model was a proposed solution for strain softening 

problem, developed based on equivalent damage force.  

This paper consists of four sections: following the introduction on the dynamic strain softening 

problem given above, analytical solution of the problem is given in Section 2, which is followed 

with the numerical experiments described in Section 3. Conclusion and future work are 

presented in Section 4.   

2. Dynamic strain softening problem and its analytical solution 

One dimensional stress wave propagation problem defined in (Bažant and Belytschko 1985) is 

shown in Fig. 1.  The problem is 2L  long bar, symmetrically loaded at both ends with a 

constant velocity v .  In the original paper (Bažant and Belytschko 1985), material behavior of 

the bar was determined by stress strain relationship illustrated in Fig. 1b, where the softening 

zone between Point P and Point F, is characterized with a negative slope and elastic 

unloading/reloading law. 

The loading defined in Fig. 1 generates two tensile step stress waves, which propagate towards 

the midsection of the bar ( 0x  ), where they are superposed at time /t L c .  Superposition of 

the strain waves in the midsection of the bar instantaneously doubles the strain at that point, 

which can result in strain softening material behavior.   
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Fig. 1. (a) Geometry and loading of softening bar; (b) stress strain law (Bažant and Belytschko 

1985) 

Analytical solution for this stress wave propagation problem was defined with the following set 

of equations for displacement, strain and stress components in the loading direction: 
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Where:  ,u x t  is displacement, x  strain in loading x  direction, x  stress in loading x  

direction, H  is Heaviside function, t  is time, c  is elastic speed of sound and E  and   are 

Young’s modulus and Poisson’s ratio, respectively.   

The analytical solutions for displacement, strain, stress and internal energy in the strain 

softening problem, at the response time 3 / 2t L c , are shown in Fig. 2.  The key difference 

between the elastic nonlocal solution and the strain softening (local) solution is discontinuity in 

the displacements and development of the standing strain wave in the midsection of the bar, 

which occurred as a result of superposition of the waves propagating from the bar ends.  The 

obtained discontinuity could not propagate away from the localization zone, so that material 

unloads outside of the localization zone.  In other words, the softening zone acts as a free 

boundary.   

3. Simulation results for dynamic strain softening problem  

The dynamic strain softening problem described in the previous section was modelled by using 

two models implemented in the FEM and a classic CDM model implemented in the SPH, with 

the material behavior described as a bilinear constitutive law with isotropic material properties.  

Following an overview on the SPH method and the implemented constitutive law, the numerical 

results are presented in three subsections, starting from the classic FEM, followed by SPH 

solution and a nonlocal equivalent damage force (EDF) method. 
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a) b)  

c) d)  

Fig. 2. Elastic local and nonlocal solutions at the time instance t=3L/2c for: (a) normalised 

displacement; (b) normalised strain; (c) normalised stress; (d) normalised internal energy; 

SPH is a meshless particle method which does not require a structured grid.  The motion of the 

continuum is approximated by motion of discrete material points (particles) with no fixed 

connectivity.  Interaction of particles is defined by a weighting (smoothing) function, where the 

smoothing length (size of the smoothing function domain) defines the range of influence of an 

individual particle.  For instance, an estimate value of the function  f x  at the location x  is 

given as a continuous integral function in the following form: 

      
Ω

,f f W h d x x' x x' x'  (4) 

where the angled brackets   denote kernel approximation, W  is a weighting function, x  is 

a new independent variable and h  denotes smoothing length, i.e. size of the kernel support.  

The smoothing length is illustrated in Fig. 3 and calculated from inter-particle distance, p , as: 

 h p   (5) 

A discrete form of the kernel approximation, where the function is known at finite number of 

points N , is given in terms of a sum:  
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with the corresponding gradient equal to:  
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For more information on the in house developed SPH code available at Brunel University 

London, please see (Vignjevic et al. 2006, Vignjevic et al. 2009).  A specific objective of this 
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investigation was to establish if SPH is by nature a nonlocal method capable of overcoming 

difficulties related to material softening without any additional regularization measures.   

 

 Fig. 3. Definition of neighborhood in SPH discretisation method 

Stress strain relationship of an isotropic bilinear material model with damage, implemented in 

the two numerical codes, is shown in Fig. 4.  The damage was described with a single damage 

parameter  , using a local continuum damage mechanics approach.  The strain softening and 

the damage evolution developed when strain was in a range between i  and e f .   
 

 

 

 

 

 

 

 

  

      

  

  

  

    

 

Fig. 4. Bilinear law implemented in the FEM and SPH codes using a damage parameter   and 

classic CDM approach 

The effective stress, damage and tangent stiffness/slope of the stress stain curve at the material 

state determined by * , were respectively calculated as: 
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In the equations above,   and   are, true stress and effective stress respectively, whist E  is a 

Young modulus of the virgin material.   

The experimental programme consisted of the simulations run with four FEM and three SPH 

models with different discretion densities as shown in Fig. 5 and Fig. 6.  
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Fig. 5.  Spatial discretization used in the FEM simulations of the dynamic strain-softening bar   

 

 

 

Fig. 6 Particle discretization in SPH of the dynamic strain-softening bar   

3.1 Classic FEM analysis of strain softening problem 

The numerical results obtained with four FEM models combined with classic local CDM 

damage formulation are shown in Fig. 7 and compared with the local analytical solution for 

displacement, strain and stress field, at response time 3 / 2t L c .  The results show a strong 

dependence on the mesh density in the strain-softening area as a consequence of the local 

strain-softening.  The numerical results are converging to the local analytical solution with the 

increase in the mesh density.  The strain developed in a single element in the midsection of the 

bar and its magnitude increased with the mesh refinement i.e. reduction of the size of the 

softening zone.  This strain increase in the midsection of the bar lead to rapid development of 

damage parameter to the value of 1, which corresponds to total failure.  The damaged zone was 

limited to a single element and the size of softening zone in which damage accumulates was 

influenced by the initial element size, as illustrated in Fig. 8.   
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(a) (b)  

(c) (d)  

Fig. 7. Classic FEM solutions of dynamic strain softening problem at the time instance t=3L/2c 

for: (a) Longitudinal displacement; (b) Longitudinal strain; (c) Longitudinal stress;  (d) Damage 

distribution;   

 

Fig. 8. FEM results for damage distribution within dynamic strain softening problem using 

classical CDM approach; (fringe level: damage [-]) 

One possible way to address this problem is alternative approach to modelling damage 

described in the Subsection 3.3.   

3.2 SPH analysis of strain softening problem 

The SPH simulation programme was run with three discretization densities shown in Fig. 6.  

The influence of the smoothing domain on the numerical results was analyzed in terms of each 

parameter that constitute the smoothing length.  Consequently, three sets of numerical tests 

were run with three discretization densities for analysis the influence of: 1) inter-particle 

distance p ; 2) parameter  ; and 3) smoothing length, h .  It was observed that the SPH 
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method is inherently nonlocal and that the results were sensitive to the changes of the 

smoothing length.  However, when the smoothing length was kept constant between the three 

models with different discretization densities (interparticle distance p ), the numerical results 

for displacement, strain, stress and damage remained the same as illustrated in Fig. 9.  The 

damage distribution obtained with three models with the fixed smoothing length shown in Fig. 

10 is independent of the interparticle distance h ; instead the damage zone within the three 

models was constant and equal to 4h , which suggests that the smoothing length should be 

considered as a material property – characteristic length.   

(a) (b)  

(c) (d)  

Fig. 9. SPH solutions of dynamic strain softening problem at the time instance t=3L/2c for: (a) 

Longitudinal displacement; (b) Longitudinal strain; (c) Longitudinal stress; (d) Damage 

distribution;   

 

Fig. 10. Localisation of damage within a limited zone 4h in size (h=2.5mm) around the bar 

symmetry plane at response time t=3L/2c (fringe level: damage [-]);   
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3.3 FEM analysis of strain softening problem with EDF 

The first attempt to address the pronounced localization problem of the classic FEM was made 

by using an equivalent damage force as an alternative method for modelling damage, where the 

damage contribution to the conservation of momentum was defined by the means of divergence 

of damage and stress tensors.  This approach did not affect the well posiness of the boundary 

problem, provided the nonlocal solutions for damage distribution in the considered wave 

propagation problem and allowed for implementation of the material characteristic length scale 

in the FEM solution.  The first implementation of the equivalent damage force model was done 

in in-house developed FEM/SPH code and the numerical experiments were run for a one 

dimensional wave propagation problem described above.  The simulation results for damage 

distribution equivalent to the results shown in Fig. 8 and Fig. 10, now obtained with the EDF 

model are shown in Fig. 11.  The EDF results for damage distribution in the problem 

considered, are not localized in one layer of elements, but distributed over a limited zone which 

is approximately 3l  wide, where the l  is input parameter.  The EDF results for displacement, 

strain and stress are stable and consistent with the nonlocal analytical solutions presented in Fig. 

2.   

a)  

b)  

c)   

Fig. 11. Finite element results for damage distribution within dynamic strain softening problem 

obtained with EDF model at response time t=3L/2c (fringe level: damage [-]) with: (a) 101 

element in impact direction; (b) 151 element in the impact direction; (c) 201 element in the 

impact direction;   
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4. Conclusions 

A series of numerical experiments, using both SPH and FEM solvers, demonstrated that the 

width of the strain softening region is controlled by the element size in classic FEM but in SPH 

it is controlled by the smoothing length, rather than the inter-particle distance, which is 

analogous to the element size in the FEM.  This demonstrates that the SPH method is inherently 

non-local and suggests that the SPH smoothing length should be linked to the material 

characteristic length scale in solid mechanics simulations.  The first attempt to address the 

localization problem in the FEM model was made by alternative definition of damage effects 

using EDF.  The numerical results obtained with this model show stable and nonlocal character, 

with a reduced mesh dependency, where the size of damaged zone was controlled with 

characteristic length, as a material input parameter.  Future work on this problem will be 

focused on extension of the equivalent damage force approach to orthotropic material 

formulation, suitable for composite materials. 
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