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Abstract In this paper we propose new panel tests to detect changes in persistence.
The test statistics are used to test the null hypothesis of stationarity against the alterna-
tive of a change in persistence from I(0) to I(1), from I(1) to I(0), and in an unknown
direction. The limiting null distributions of the tests are derived and evaluated in
small samples by means of Monte Carlo simulations. An empirical illustration is also
provided.
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1 Introduction

Over the last two decades, a vast literature has investigated whether economic and
financial time series may be characterized by a change in persistence between separate
I(1) and I(0) regimes rather than simply I(1) or I(0) behavior. Changes of this kind
in macroeconomic variables are well documented; see the literature reviews in Kim
(2000) and Leybourne et al. (2003). A non-exhaustive list of the variables for which
such phenomena have been observed includes inflation, real output, budgetary deficits,
interest rates and exchange rates. Interestingly, while many data sets are in fact panels
of multiple time series, the way that existing tests are constructed requires that the
series are tested one at a time. This is wasteful in the sense that each time a test is
carried out the information contained in the other series is effectively ignored. The
current paper can be seen as a reaction to this. The purpose is to develop tests for
changes in persistence that explores the multiplicity of series, and that can be seen
as panel extensions of the time series tests of Kim (2000), Kim et al. (2002), and
Busetti and Taylor (2004). The tests can be used to flexibly test the null hypothesis of
stationarity against the alternative of a change in persistence not only from I(0) to I(1),
and from I(1) to 1(0), but also when the direction is unknown. The data generating
process (DGP) considered is quite general. Some of the allowances are unit-specific
constant and trend terms, cross-section heteroskedasticity, error serial correlation and
cross-section dependence in the form of common factors. The asymptotic distributions
of the tests are derived and evaluated in small samples using Monte Carlo simulation.
An empirical illustration is also provided showing how how inflation of 20 developed
countries has undergone a shift from I(0) to I(1).

The rest of the paper is organized as follows. Sections 2 and 3 present the model, the
test statistics, and their asymptotic distributions, which are evaluated using simulations
in Sect. 4. Section 5 reports the results from the empirical application. Section 6
concludes. Proofs of important results are provided in the Appendix.

2 Model and assumptions

Consider the panel data variable Y; ;, where i = 1,..., N and r = 1, ..., T index the
time-series and cross-sectional units, respectively. The DGP of this variable is given
by

Yi,t = 9,'/Dt,p + )‘-;Ft + ey, (1)
et = Wit + &y, (2)

where D; , = (1,1, ..., tP)" is a p-order trend polynomial such that D;p = 0is
p = —1, Fyis an r x 1 vector of common factors with A; being the corresponding
vector of factor loadings, and ¢; ; is a mean zero and I(0) error term. The following
three specifications of u; ; are considered, where 1(A), [x], ; ; and rio € [0, 1] denote
the indicator function of the event A, the integer part of x, a mean zero 1(0) error term,
and the break fraction, respectively:
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MUL. 1(0) = I(1): pis = i1 + 1G> LT Dnis.
MU2. 1(1) — 10): i, = pii—1 + 1t < [T Dmis.
MU3. Unknown direction: I(0) — I(1) or I(1) — I1(0).

Under MU1 Y;; is I(0) up to and including time I_IiOTJ but is I(1) after the break,
provided that 02 = var(n; ;) > 0. Under MU2 Y; ; is I(1) up to and including time

LrOTJ but it is I(O) after the break, provided again that 2, > 0. Therefore, the
hypothesis of stationarity against a shift in persistence from I(O) to I(1) or viceversa
can be stated as Hy : 021 =..= 0’2N = 0 versus Hj : 2i > 0 for at least some i.
Whenever the alternative is I(l) — I(O) we write “H; : I(1) — 1(0)”, whereas if the
alternative is I(1) — 1(0), we write “H; : I(1) — 1(0)”.

The conditions placed on the above DGP are given in Assumption 1, where C < oo,
tr(A), ||A|| = J/tr(A’A), —, and F; ; denote a generic positive constant, the trace
and Euclidean norm of the (generic) matrix A, convergence in probability, and the
sigma-field generated by {(g; ,, ni.n)}._,, respectively.

n=1>

Assumption1 (i) &;; = y;(L)v; s, where v; ; is independent and identically distri-
bution (iid) with E(v; ;) =0, E7,) = 1, E@},) < C,yi(L) = Y52, v/,
Y520 jllyjill < € and y;(1)* > 0;

(i) miy = ¢i(L)wj, where w; ; isiid with E(w;,,) = 0, E(w},) = 1, Ewf,) < C,
¢i(L) =720 0)iL7, 372 jll¢jill < C and ¢;(1)* > 0;

(iii) F; is 1(0) such that E(||F;||*) < C and T~! ZzT:I FF/ —, %F > 0;

(iv) &y, nir and F; are mutually independent;

V) n1,0=-..=puno=0;

(vi) A;isdeterministic suchthat||A;||* < C,N~! ZlN:l Ak = X > 0asN — oo.

Remark 1 Assumption 1 puts restrictions on the time series and cross-sectional prop-
erties of ¢; ; and n); ;. The restrictions are very similar to the ones of Bai and Ng (2004),
and we therefore refer to this other paper for a detailed discussion. The main difference
when compared to Bai and Ng (2004) is that here F; cannot be I(1). Thus, while Y; ;
may be cross-correlated, it cannot be affected by common stochastic trends. However,
we would like to point out that this assumption is mainly for ease of interpretation
of the test outcome, for if F; is allowed to be I(1) the persistence of Y; ; cannot be
inferred from ¢; ; alone, and in the present paper we focus on the testing of ¢; ;. Hence,
analogous to the PANIC approach of Bai and Ng (2004), if F; is permitted to be I(1),
then we also need to test this variable.

3 The test statistics
The general testing idea is to first purge the effect of F;, and then to submit the

resulting residuals to a test for a change in persistence. The implementation of the first
step depends on whether F; is known or not.
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3.1 F; known

Consider the generic variable X; ;. The detrended version of this variables is henceforth
denoted X{?[ =X, -y, XinGn,i,p.Wherea, i , = D,/L,,(ZZT:1 D,,,,D;’p)_le,p
and p > 0.If p = —1, then we define X l.p . = Xi,r. In this notation, the detrended and
defactored version of Y; ; is given by ¢; ; = Yp — )AJ F| P where ): is the least squares

(LS) slope estimator in a regression of Y; p onto F/. » Thus, while in this section F;
is assumed to be known, A; is still treated as unknown. Consider the following test
statistic, which is suitable for testing if cross-section unit i is I(0) versus I(1) — I(0)
(see, for example, Kim 2000; Kim et al. 2002; Busetti and Taylor 2004):

(ATT)? Yoo S(@)?
(T —1Tz)? YIS0 (0)2

Kir(r) =

where T € [0, 1], Sgl(t) = 2221 é; n and Si{,(r) = Z;:LTTHI é;.n. The error

sequences {éi,n},&iﬁj and {éi,n}rLLTr |41 come from two separate regressions; while
the former uses only the first | 7't | observations, the latter uses only the last [ 7 (1 —17) |
observations.

Remark 2 The K; r(t) test considered here is in the spirit of Kwiatkowski et al.
(1992) in which the constant I(0) null is tested versus the constant I(1) alternative. An
alternative approach is to follow Banerjee et al. (1992) and Leybourne et al. (2003)
who use the Dickey—Fuller statistic, in which the null and the alternative hypotheses
are reversed. Panel variants of these can be constructed in the same way as the one
suggested below for K; 7(7) (see Demetrescu and Hanck 2013, for such a proposal).

Let C = [Tmins Tmax] € (0, 1). In this paper, we consider three transformations to
eliminate the dependence on 7 in K; 7(7) (see, for example, Kim, 2000);

T1. The maximum-Chow transformation:

Kly = Ki(s/T).
AT = LTTmthvHXwI_Ttnme l(S/ )

T2. The mean-exponential transformation:

LT tiax |
KI%T =In | (LT (tmax — Tmin)] + 1)_1 Z exp[K;(s/T)]
s=|TTyin]
T3. The mean score transformation:
LT Trax |
Kl‘3,T = (LT(Tmax - Tmin)J + 1)_1 Z K,'(S/T).
s=|TTyin]
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Table 1 Simulated mean and standard deviation normalization factors

T Kvr  Kir  Kir  Ryp  Rir Ry Myp Mg M3y
Mean, p = 0 (constant)
50 1.839 1.626 6.218 1.825 1.612 6.190 2.792 2.633 9.218
100 1.795 1.563 6.387 1.811 1.566 6.401 2.742 2.536 9.419
150 1.801 1.560 6.525 1.793 1.543 6.487 2.735 2.516 9.568
500 1.795 1.546 6.801 1.802 1.560 6.856 2.738 2.521 9.996
Standard deviation, p = 0 (constant)
50 1.607 2.355 5.960 1.575 2.262 5.799 1.757 2.883 6.821
100 1.528 2.135 5.755 1.528 2.082 5.661 1.663 2.594 6.478
150 1.530 2.129 5.842 1.521 2.088 5.750 1.664 2.599 6.585
500 1.541 2.098 5.966 1.540 2.121 6.027 1.683 2.599 6.797
Mean, p = 1 (constant and trend)
50 2.498 2.586 9.317 1.058 0.757 3.618 2.719 2.816 10.066
100 2.448 2.574 9.897 1.081 0.786 3.935 2.699 2.841 10.791
150 2475 2.684 10.569 1.062 0.764 3.970 2711 2.928 11.386
500 2.367 2.527 9.9038 1.069 0.828 3.903 2916 1.196 10.339
Standard deviation, p = 1 (constant and trend)
50 1.447 2.528 6.288 0.707 0.879 2.973 1.327 2477 6.022
100 1.416 2.578 6.622 0.761 0.967 3.332 1.294 2.531 6.322
150 1.421 2.625 6.853 0.723 0.906 3.291 1.291 2.563 6.519
500 1.480 2.645 6.447 0.799 0.910 3.247 1.442 2.724 6.571

Let Q{VT = aé’le_l/z Z,N=1 (sz,T — i@, j) be one of the nine test statistics considered, where j €
{1,2,3} and Q € {K, R, M}. The values reported in the table refer to the appropriate mean and standard
deviation correction factors, it ; and o ;, respectively, needed to construct Q{VT

In Appendix (Proof of Theorem 1), we show that K; 7(t) — Ki(r) as T —
oo, where —, signifies weak convergence and K;(7) is a certain ratiq of stochastic
integrals. Since K (), ..., Ky (7) are iid, we may define ux j = E(K/) and Ulzg,j =
var(Kij) for j € {1, 2, 3}. Numerical values of g ; and ok ; are reported in Table 1.
The proposed panel test statistic for testing Hy versus Hy : I(0) — I(1) is given by

N
A 1 .
Kyp=—F— E (K1 = k. j)-
NT / T 2]
ok, VN i l

For testing if cross-section unit 7 is 1(0) versus I(1) — 1(0), the following “reverse”
test statistic can be used (see Kim 2000; Kim et al. 2002; Busetti and Taylor 2004):

Ri(t) = (Ki(x) 7",

which can be transformed using T1-T3 to eliminate the dependence on t. The resulting
transformed statistic is written in an obvious notation as Ri] . Based on this test statistic,
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we may define R}, ; = a,;le’l/2 >N, (.Rl.{T — g j) with obvious definitions olfal%,j
and p g, ;. When the direction of the persistency is unknown, the following maximum
statistic may be used:
Jo_ J J
M; = max{K;;, R; 1},

NSV (M = ).

. . . . i -
which can again be normalized to obtain My, = o, ]

Theorem 1 Under Hy and Assumption 1, as N, T — oco with N/T — 0,

Kjps Ryps Moy —a N(O, 1),

where — ;4 signifies convergence in distribution.

Remark 3 While the test statistics considered here are independent of 1:10, r/?,, in

applications it is sometimes useful to be able to estimate these parameters. This can be
accomplished using the proposal of Kim (2000, Sect. 3.2), which basically amounts to
setting fio equal to the suitably maximizing or minimizing value of K; 7(7), depending
on whether it is I(0) — I(1) or I(1) — 1(0) that is being tested. Alternatively, we may
follow Busetti and Taylor (2004, Sect. 6.2), who suggest setting fio equal to the value
of rio that minimizes the sum of squares of ¢; ;.

Remark 4 The requirement that N/T — 0 is sufficient but not necessary and is
needed to make sure that certain remainder terms are negligible. However, the order
of these terms is not the sharpest possible. A more elaborate asymptotic analysis would
be required to obtain the exact order. In Sect. 4, we use Monte Carlo simulation to
evaluate the effect of N/ T in small samples.

3.2 F; unknown

The estimation of F; can be performed in two ways; (i) unrestrictedly, or (ii) restricted
under Hyp. In both cases, we follow the bulk of the previous literature and use the
principal components method (see, for example, Bai and Ng 2004). The restricted
estimator of F = (Fy, ..., Fr)’, denoted FO = (ﬁo, ﬁ}))/, is /T times the eigen-
vectors corresponding to the first r largest eigenvalues of the T x T matrix Y7 (Y?)/,
where Y7 = (Y}, ..., Y}) and Y/ = (Y;l,) s Yif’T)/ are T x N and T x 1, respec-
tively. Under the normalization 7~ I:"O(I:"O)’ = I, the estimated loading matrix is
A0y = (30, .., ):‘1)\,) = T~'(F°)'Y?. The restricted estimator of ¢;; that we will be
considering can now be constructed as

&, =yl —G)E. (3)

Let X lp . "be X i.+ when detrended using a trend polynomial of order p — 1. Hence,
x/7' = Xi if p = 0.Let f, = AF, and y;; = AY;, (for 1 = 2,...,T). The
unrestricted estimators f,l and iil of (the space spanned by) f,” ~and A; are I:",0 and

)A»?, respectively, but with ¥ i{’ , replaced by yi’? . ' Let
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t

il =Y i - Ab A, )

n=2

where e e 1 = 0. The unrestricted estimator e , of ¢; ; is given by e e (élt)p The
approprlate test statistics to consider when F; is unknown, hencefonh denoted K/ ANT>

RhNT and M}{NT for h € {0, 1}, are given by KNT, RNT and MNT, respectively, with
é; s replaced by é ei’t

Theorem 2 Under Hy and Assumptions I, as N, T — cowith N/T — O,

Kf{NTv RIJLNT’ Mg —a N, 1).

As Theorem 2 makes clear, the factors can be unknown and still the asymptotic
distributions of the test statistics are N (0, 1). This is in agreement with the results
reported by Bai and Ng (2004) for their pooled panel unit root tests.

4 Monte Carlo simulations

A small-scale Monte Carlo study was conducted to investigate the properties of the
new tests in small samples. The DGP is given by a restricted version of (1)—(2) that
sets &;. ~ N(0,02,), nis ~ N(0,07), 0y € {0,0.25,0.5}, 7 ~ U(0.3,0.7), r = 1,
and F; = pF;_1 + v, where vy ~ N(0, 1) and p € {0.3, 0.6} (see, for example,
Gengenbach et al. 2010, for a similar parametrization). For o ;, we consider two
cases. In the first, o, ; = 1 for all i, while in the second, o, ; ~ U(l,2). Since a
more volatile idiosyncratic error will make F; more difficult to discern, we expect
that the results for the second case will deteriorate when compared to the first. All
results are based on 1,000 replications of samples of size N € {5,10,20} and T €
{50, 100}. Also, following Kim (2000), C = [0.20, 0.80]. Results were obtained for
p € {0, 1}, although in this paper we focus on the results for the empirically most
common specification with p = 0 (a constant but no trend). The results for p = 1
(constant and trend) can be obtained upon request. Both the restricted and unrestricted
factor estimation methods were simulated. Interestingly, the restricted method led to
better results in terms of both size accuracy and power. In this paper, we therefore
only report the results for the restricted method, where the number of common factors
is determined using the / C; criterion of Bai and Ng (2002) with a maximum of three
factors. !

The 5% size and power results are reported in Tables 2, 3, 4 and 5. While Tables
2 (p = 0.3) and 3 (p = 0.6) contain the results for the tests of I(0) — I(1), Tables
4 (p = 0.3)and 5 (p = 0.6) contain the corresponding results for I(1) — 1(0). The
information content of these tables may be summarized as follows.

e All tests have good size accuracy when o, ; = 1 and p = 0.3. This is true for all
constellations of 7 and N considered, although the distortions do have a tendency

1 See Westerlund and Mishra (2016) for a more elaborate selection approach that uses a data-driven penalty.
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Table 6 Empirical test results

Statistic Unrestricted Restricted
1
Kyt —0.921 —0.881
2
Kyr —0.658 —0.645
3
Kyr ~0.985 —0.947
1 kst
Ryt 4.002%* 2.439%:*
2 o o
s%_#% and * denote Ry T 4.565 2.636
significance at the 1, 5 and 10% R?VT 4.844 %% 3.156%%*
level.s, respectively.v Wh?le the M 11\/ , 30075 1,662
restricted factor estimation 5
method assumes that the null My 3.203%% 1.744%
hypothesis is true, the M?\/T 3.862% % 2.293%x

unrestricted method does not

to increase slightly in N, which is consistent with the previous panel unit root
literature (see Westerlund and Breitung 2013, for a discussion). While there are no
big differences, the best size accuracy is generally obtained by using K ]%,T, R12VT
and M /%,T, whereas K ?VT, R}VT and R?\,T generally leads to the worst accuracy.

e As expected, increases in p and/or o, ; generally lead to reduced size accuracy,
although the distortions are never very large. This is true regardless of the direction
of the change in persistence. In fact, the results are remarkably stable, given that
the test statistics do not require any corrections to account for nuisance parameters.

e All tests perform quite well in terms of power, and there are clear improvements
as N and/or T increases. The fact that power is not only increasing in 7', but also
in N illustrates the advantage of accounting for the cross-sectional variation of the
data. Power is also increasing in the distance to the null, as measured by o3, which
is again just as expected.

5 Empirical illustration

The question of whether inflation should be considered as 1(0) or I(1) has been subject
to a long debate. According to recent studies (see, for example, Kim 2000; Busetti and
Taylor 2004), however, inflation may be better characterized by a change in persistence
between separate I(1) and I(0) regimes rather than simply I(1) or I(0) behavior. The
purpose of this illustration is to test this hypothesis using a large panel of quarterly CPI
inflation data covering 20 countries (Australia, Austria, Belgium, Canada, Denmark,
Finland, France, Germany, Greece, Italy, Japan, Korea, the Netherlands, New Zealand,
Norway, Spain, Sweden, Switzerland, the UK and the US) between 1970:1 and 2013:4.
All data are taken from OECD Main Economic Indicators.

The number of common factors is determined in the same way as in the simulations.
As is customary when dealing with inflation (see, for example, Leybourne et al. 2003),
the tests are fitted with a constant but no trend. The results are reported in Table 6. The
first thing to note is that while in case of K IIVT’ K ?VT and K 13vT there is no evidence
against the I(0) null, R }VT, R12\7T and R13\,T all lead to a clear rejection. This is true
even at the most conservative 1% level. We therefore conclude that inflation has been
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subject to a change in persistence from I(1) to I(0), which is in agreement with the
recent empirical literature based on US data (see, for example, Busetti and Taylor 2004;
Harvey et al. 2006). A common explanation for the observed change in persistence of
inflation in the US is that it is due to the stock market collapse of the late 1980s and
the recession that followed it. One interpretation of the results reported in the current
paper is therefore that they reflect the worldwide recession of the early 1990s, which
was to a large extent triggered by the recession in the US. Another possibility is that
the results reflect in part monetary policy shifts (see, for example, Davig and Doh
2014, and the references provided therein).

6 Conclusion

This paper develops panel tests that are suitable for testing the null hypothesis of sta-
tionarity against the alternative of a change in persistence from I(0) to I(1), from I(1) to
1(0), or when the direction is unknown. The DGP used for this purpose is quite general
and allows unit-specific constant and trend terms, cross-section heteroskedasticity,
error serial correlation and cross-section dependence in the form of common factors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proofs

The proofs of Theorems 1 and 2 are established for K! N> the proofs for R{;,T and

J
My, are entirely analogous.

Proof of Theorem 1 Under MU1, w;, = > i_; 1(k > |Tt])nix, and by further
invoking Hy, u;, = 0, giving

Yie =0/Di 4 A F + iy + €10 = 0Dy + 1 Fy + &0, )
It follows that
Yh = F + el (6)
with obvious definitions of F/” and af ;» which in turn implies

biy =Yl —NFEP =&l — Gi—2) FF, 7

1t

Therefore,

t
T2y 6, _T71/228 (o _)\)T*I/ZZF”. ®)
n=1

n=1
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Under Hp and with F; known Y; ; = 9{ D; + A; F; + &+ is just an ordinary time series

regression in I(0) variables with exogenous regressors. It follows that JT ():i —Xi) =
0,(1), and therefore, since T~1/2 3" _| FY = 0,(1),

n=1

t t
T2y e =T el + 0,17/, 9)
n=1

n=I1
Hence, using E,‘,T(r) to denote K; 7(t) with ¢é; , replaces by ¢; ,,, we have
Kir(t) = Kir(t)+ 0T/, (10)

where the first term on the right is the same as in Harvey et al. (2006). It follows from
their results that

|

i(t)
 (7)

Kir(v) =y Ki(1) = , (1)

=l

as T — oo, where —, signifies weak convergence, and

1
A =(1-1)"2 / a;(r)%dr,

T
T
Bi(t) =12 / b, (r)*dr,
0
—1

1 1 r
(1) = Wi (1) — Wo i () — / AW, :(r)Dp(r)’ (f D,;(r)Dp(r)/dr) f Dp(s)ds.
T T

T

T T -1 ,r
Ei(f):W&i(r)—/ dWe i(r)Dp(r) (/ Dp(r)Dp(r)/dr> /Dp(s)ds,
0 0 0

with W, ; (r) being a standard Brownian motion, and D, (r) is such that Q;IDLT, 1.p—
D, (r), where Qr = diag(1,T,..., T?). Note in particular how Do(r) = 1 and
Di(r) = (1, r)’. Therefore, by the continuous mapping theorem, and writing K l] r=

H;(K;r(r))and E{,T = H;(K; 1 (1)) as in Busetti and Taylor (2004),
K!; =Kl ;) + 0,(T7"%) -, H;(K;(1)) = K] . (12)

Let us now consider K }’\,T. By using the previous result

N N
K. = K/ —ugi)= K/, —ug i)+ 0,WNT~1/?
NT oK. ﬁN Z( i, T J) oK. ﬁN P ( i, T sj) 14
(13)

@ Springer
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where OP(«/NT_l/z) = 0, (1) under our assumption that N/T = o(1). We now use
the same steps as in Moon and Phillips (2000, p. 994) to verify that (ff’T — K,j)
satisfies conditions (i)—(iv) of the central limit theorem of Phillips and Moon (1999,
Theorem 2). In so doing we follow their notation and write Q; r = (?{,T — K,j)s

which is iid with mean zero and variance 012( j < C. We have already shown that

?le —w fj as T — oo, which implies Q; 7 —4 Q, = (?j — 1k,j), and it is
also not difficult to verify that £ (Q2T) — E (Q ) = o2 K.j .. This verifies conditions

(i), (ii) and (iv). Condition (iv) follows from noting that, by the continuous mapping
theorem, Q%T — Q2. Tt follows that

Ky = ( MK)
NT GKJfZ i.T j

= f Z ( — IK,j) + OP(WT‘I/Z) —4 N©O,1) (14

OK,j
asN, T - oowith N/T — 0. O

Proof of Theorem 2 'We begin by considering the case when the estimator of ¢; ; is
based on the restricted estimators of A; and F; under Hy. As in Proof of Theorem 1,
under MU and Ho, Y; ; = 6/ D; ; + A, F; + &; ;. In order to capture the fact that A; and
F; are not separately identifiable we introduce the r x r rotation matrix H such that

& =yl — Q) =el, =\ H " (F) —HF/) — Gy — (H YA FY. (15)

Hence,
t t t
T2 Zégn =712 Zsfﬂ —MHTTT? Z(F,? — HFED)
n=I1 n=I n=I
t
— Gy = (H YTV F. (16)
n=1

By Lemmas 1(c) and 2 of Bai and Ng (2004), [[A; — (H~"YAi]| = O,(N~") +

Op(T~12yand |T12 Y _((FO— HFD)|| = 0,(N~Y2) + 0,(T~3/*), where the
latter result holds uniformly in 7. Hence, since

' 4 !
TN BN = HTTURY RN 1Ty E — HED = 0,0, (1)

n=1 n=1
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we can show that

t t
TN e, =Tl 0,(NT2) 4 0,(T712), (18)

n=1

Hence, as in the case when F; is known (see Proof of Theorem 1), the estimation and
removal of the common component do not affect the asymptotlc distribution of the

test statistic. Specifically, using KO 7 to denote K J , with é e , in place of ¢; ,,, we get
Kyir = Kl p| = 0,(N"V2) 4+ 0,171/, (19)

which holds uniformly in (j, i). In order to show that the resulting panel statistic,
K é N Say, converges to N (0, 1), we may use the same argument as in Westerlund and
Larsson (2009).

Consider the unrestricted estimator of ¢; ;. We have Eilj = Z;zz[yf " I ():il)’ fnl],
where, under Ho, yi; = AY;; = 0/AD; + A, f; + As,‘;, with f; = AF,. It follows
that y/;” - =M "4 (Aei)P~!, and therefore

t

~ -1 SN
eo=Y [t =]

n=2

t
=Y (e =i G = 1Y = G T A o)

n=2

Consider Y, (f;! = Hf~"). From Proof of Theorem 3 in Bai (2003), using V to
denote a diagonal matrix consisting of the first r eigenvalues of (NT)~!yP~1(yP=1y
in decreasing order,

i(ﬁl _ Hffpfl)

n=2

SNV () Y S+ 0,(471) 4 0,(17)

n=2 i=1 n=2

— N 12y- HTIprl<17 1) 1/22)”(,;1_8[1 )

n=2

N () )

n=2

+0,(N7") +0,(17). @21
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where we have made use of the fact that }" _,(Ag; ,)P~! = eipt_l — 81-1)1_1. Now, || V]

and ||[N~1/2 Z:N:l Ai (85’71 — sffl)|l are both O, (1). Moreover, by Lemma A.1 of
Bai (2003),

172 172

T
T—l Z(ftl _ Hfrp_l)(f;p_l)/
n=2

T
< <T—1 YA - Hﬂ”_1||2>
n=2

= 0,(N"Y%) 4+ 0,(177?),

T
(T‘1 S 2)
n=2

from which it follows that
t
. 1 B B
Y S = HETH]| = 0,(NTA +0,(T7h. (22)
n=2

—1

. . A A —1 A —1
By using this and Ftl = Z;ZZ f,l = H(F,p - Flp ) + Zi,:z(le - Hf,P ), we

obtain

t t t
~ _ _ S 1 ~ _ ~
o= M) =T Y (A= HAT) = G = Y Y A
n=2 n=2

n=2

t
p—1 p—1 s rr—1 A p—1
g, —&1 —MH Z(fz — Hf; )
n=2

t
— G = HY R HE ™ = F7Y = o= Y (£ -H)

n=2
-1 -1 _ _
=&l =&l +0,(NTH 0,171 (23)
suggesting that for p > 0,
el =@ )" =el,+0,(N"'?) + 0,(17'7). (24)

When appropriately normalized by 7~!/2, taking partial sums do not affect the order
of the remainder terms. Hence, again, the estimation and removal of the common
component do not affect the asymptotic distribution of the test statistic. O
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