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Abstract In this paper we propose new panel tests to detect changes in persistence.
The test statistics are used to test the null hypothesis of stationarity against the alterna-
tive of a change in persistence from I(0) to I(1), from I(1) to I(0), and in an unknown
direction. The limiting null distributions of the tests are derived and evaluated in
small samples by means of Monte Carlo simulations. An empirical illustration is also
provided.
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1 Introduction

Over the last two decades, a vast literature has investigated whether economic and
financial time series may be characterized by a change in persistence between separate
I(1) and I(0) regimes rather than simply I(1) or I(0) behavior. Changes of this kind
in macroeconomic variables are well documented; see the literature reviews in Kim
(2000) and Leybourne et al. (2003). A non-exhaustive list of the variables for which
such phenomena have been observed includes inflation, real output, budgetary deficits,
interest rates and exchange rates. Interestingly, while many data sets are in fact panels
of multiple time series, the way that existing tests are constructed requires that the
series are tested one at a time. This is wasteful in the sense that each time a test is
carried out the information contained in the other series is effectively ignored. The
current paper can be seen as a reaction to this. The purpose is to develop tests for
changes in persistence that explores the multiplicity of series, and that can be seen
as panel extensions of the time series tests of Kim (2000), Kim et al. (2002), and
Busetti and Taylor (2004). The tests can be used to flexibly test the null hypothesis of
stationarity against the alternative of a change in persistence not only from I(0) to I(1),
and from I(1) to I(0), but also when the direction is unknown. The data generating
process (DGP) considered is quite general. Some of the allowances are unit-specific
constant and trend terms, cross-section heteroskedasticity, error serial correlation and
cross-section dependence in the form of common factors. The asymptotic distributions
of the tests are derived and evaluated in small samples using Monte Carlo simulation.
An empirical illustration is also provided showing how how inflation of 20 developed
countries has undergone a shift from I(0) to I(1).

The rest of the paper is organized as follows. Sections 2 and 3 present the model, the
test statistics, and their asymptotic distributions, which are evaluated using simulations
in Sect. 4. Section 5 reports the results from the empirical application. Section 6
concludes. Proofs of important results are provided in the Appendix.

2 Model and assumptions

Consider the panel data variable Yi,t , where i = 1, ..., N and t = 1, ..., T index the
time-series and cross-sectional units, respectively. The DGP of this variable is given
by

Yi,t = θ ′
i Dt,p + λ′

i Ft + ei,t , (1)

ei,t = μi,t + εi,t , (2)

where Dt,p = (1, t, ..., t p)′ is a p-order trend polynomial such that Dt,p = 0 is
p = −1, Ft is an r × 1 vector of common factors with λi being the corresponding
vector of factor loadings, and εi,t is a mean zero and I(0) error term. The following
three specifications ofμi,t are considered, where 1(A), �x�, ηi,t and τ 0i ∈ [0, 1] denote
the indicator function of the event A, the integer part of x , a mean zero I(0) error term,
and the break fraction, respectively:
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MU1. I(0) → I(1): μi,t = μi,t−1 + 1(t > �T τ 0i �)ηi,t .
MU2. I(1) → I(0): μi,t = μi,t−1 + 1(t ≤ �T τ 0i �)ηi,t .
MU3. Unknown direction: I(0) → I(1) or I(1) → I(0).

Under MU1 Yi,t is I(0) up to and including time �τ 0i T � but is I(1) after the break,
provided that σ 2

η,i = var(ηi,t ) > 0. Under MU2 Yi,t is I(1) up to and including time

�τ 0i T � but it is I(0) after the break, provided again that σ 2
η,i > 0. Therefore, the

hypothesis of stationarity against a shift in persistence from I(0) to I(1) or viceversa
can be stated as H0 : σ 2

η,1 = ... = σ 2
η,N = 0 versus H1 : σ 2

η,i > 0 for at least some i .
Whenever the alternative is I(1) → I(0) we write “H1 : I(1) → I(0)”, whereas if the
alternative is I(1) → I(0), we write “H1 : I(1) → I(0)”.

The conditions placed on the aboveDGP are given inAssumption 1, whereC < ∞,
tr(A), ||A|| = √

tr(A′A), →p and Fi,t denote a generic positive constant, the trace
and Euclidean norm of the (generic) matrix A, convergence in probability, and the
sigma-field generated by {(εi,n, ηi,n)}tn=1, respectively.

Assumption 1 (i) εi,t = γi (L)vi,t , where vi,t is independent and identically distri-
bution (iid) with E(vi,t ) = 0, E(v2i,t ) = 1, E(v8i,t ) ≤ C , γi (L) = ∑∞

j=0 γ j i L j ,
∑∞

j=0 j ||γ j i || ≤ C and γi (1)2 > 0;

(ii) ηi,t = φi (L)wi,t , wherewi,t is iid with E(wi,t ) = 0, E(w2
i,t ) = 1, E(w8

i,t ) ≤ C ,

φi (L) = ∑∞
j=0 φ j i L j ,

∑∞
j=0 j ||φ j i || ≤ C and φi (1)2 > 0;

(iii) Ft is I(0) such that E(||Ft ||4) ≤ C and T−1 ∑T
t=1 Ft F

′
t →p 
F > 0;

(iv) εi,t , ηi,t and Ft are mutually independent;
(v) μ1,0 = ... = μN ,0 = 0;
(vi) λi is deterministic such that ||λi ||4 ≤ C , N−1 ∑N

i=1 λiλ
′
i → 
λ > 0 as N → ∞.

Remark 1 Assumption 1 puts restrictions on the time series and cross-sectional prop-
erties of εi,t and ηi,t . The restrictions are very similar to the ones of Bai and Ng (2004),
andwe therefore refer to this other paper for a detailed discussion. Themain difference
when compared to Bai and Ng (2004) is that here Ft cannot be I(1). Thus, while Yi,t
may be cross-correlated, it cannot be affected by common stochastic trends. However,
we would like to point out that this assumption is mainly for ease of interpretation
of the test outcome, for if Ft is allowed to be I(1) the persistence of Yi,t cannot be
inferred from ei,t alone, and in the present paper we focus on the testing of ei,t . Hence,
analogous to the PANIC approach of Bai and Ng (2004), if Ft is permitted to be I(1),
then we also need to test this variable.

3 The test statistics

The general testing idea is to first purge the effect of Ft , and then to submit the
resulting residuals to a test for a change in persistence. The implementation of the first
step depends on whether Ft is known or not.
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1082 R. Cerqueti et al.

3.1 Ft known

Consider the generic variable Xi,t . The detrended version of this variables is henceforth
denoted X p

i,t = Xi,t−∑T
n=1 Xi,nan,t,p, wherean,k,p = D′

n,p(
∑T

t=1 Dt,pD′
t,p)

−1Dk,p

and p ≥ 0. If p = −1, then we define X p
i,t = Xi,t . In this notation, the detrended and

defactored version of Yi,t is given by êi,t = Y p
i,t − λ̂′

i F
p
t , where λ̂i is the least squares

(LS) slope estimator in a regression of Y p
i,t onto F p

t . Thus, while in this section Ft
is assumed to be known, λi is still treated as unknown. Consider the following test
statistic, which is suitable for testing if cross-section unit i is I(0) versus I(1) → I(0)
(see, for example, Kim 2000; Kim et al. 2002; Busetti and Taylor 2004):

Ki,T (τ ) = (�T τ�)2
(T − �T τ�)2

∑T
t=�T τ�+1 S

1
i,t (τ )2

∑�T τ�
t=1 S0i,t (τ )2

,

where τ ∈ [0, 1], S0i,t (τ ) = ∑t
n=1 êi,n and S1i,t (τ ) = ∑t

n=�T τ�+1 êi,n . The error

sequences {êi,n}�T τ�
n=1 and {êi,n}Tn=�T τ�+1 come from two separate regressions; while

the former uses only the first �T τ� observations, the latter uses only the last �T (1−τ)�
observations.

Remark 2 The Ki,T (τ ) test considered here is in the spirit of Kwiatkowski et al.
(1992) in which the constant I(0) null is tested versus the constant I(1) alternative. An
alternative approach is to follow Banerjee et al. (1992) and Leybourne et al. (2003)
who use the Dickey–Fuller statistic, in which the null and the alternative hypotheses
are reversed. Panel variants of these can be constructed in the same way as the one
suggested below for Ki,T (τ ) (see Demetrescu and Hanck 2013, for such a proposal).

Let C = [τmin, τmax ] ⊆ (0, 1). In this paper, we consider three transformations to
eliminate the dependence on τ in Ki,T (τ ) (see, for example, Kim, 2000);

T1. The maximum-Chow transformation:

K 1
i,T = max

s=�T τmin�,...,�T τmax �
Ki (s/T ).

T2. The mean-exponential transformation:

K 2
i,T = ln

⎛

⎝(�T (τmax − τmin)� + 1)−1
�T τmax �∑

s=�T τmin�
exp[Ki (s/T )]

⎞

⎠ .

T3. The mean score transformation:

K 3
i,T = (�T (τmax − τmin)� + 1)−1

�T τmax �∑

s=�T τmin�
Ki (s/T ).
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Table 1 Simulated mean and standard deviation normalization factors

T K 1
NT K 2

NT K 3
NT R1

NT R2
NT R3

NT M1
NT M2

NT M3
NT

Mean, p = 0 (constant)

50 1.839 1.626 6.218 1.825 1.612 6.190 2.792 2.633 9.218

100 1.795 1.563 6.387 1.811 1.566 6.401 2.742 2.536 9.419

150 1.801 1.560 6.525 1.793 1.543 6.487 2.735 2.516 9.568

500 1.795 1.546 6.801 1.802 1.560 6.856 2.738 2.521 9.996

Standard deviation, p = 0 (constant)

50 1.607 2.355 5.960 1.575 2.262 5.799 1.757 2.883 6.821

100 1.528 2.135 5.755 1.528 2.082 5.661 1.663 2.594 6.478

150 1.530 2.129 5.842 1.521 2.088 5.750 1.664 2.599 6.585

500 1.541 2.098 5.966 1.540 2.121 6.027 1.683 2.599 6.797

Mean, p = 1 (constant and trend)

50 2.498 2.586 9.317 1.058 0.757 3.618 2.719 2.816 10.066

100 2.448 2.574 9.897 1.081 0.786 3.935 2.699 2.841 10.791

150 2.475 2.684 10.569 1.062 0.764 3.970 2.711 2.928 11.386

500 2.367 2.527 9.9038 1.069 0.828 3.903 2.916 1.196 10.339

Standard deviation, p = 1 (constant and trend)

50 1.447 2.528 6.288 0.707 0.879 2.973 1.327 2.477 6.022

100 1.416 2.578 6.622 0.761 0.967 3.332 1.294 2.531 6.322

150 1.421 2.625 6.853 0.723 0.906 3.291 1.291 2.563 6.519

500 1.480 2.645 6.447 0.799 0.910 3.247 1.442 2.724 6.571

Let Q j
NT = σ−1

Q, j N
−1/2 ∑N

i=1(Q
j
i,T − μQ, j ) be one of the nine test statistics considered, where j ∈

{1, 2, 3} and Q ∈ {K , R, M}. The values reported in the table refer to the appropriate mean and standard

deviation correction factors, μQ, j and σQ, j , respectively, needed to construct Q j
NT

In Appendix (Proof of Theorem 1), we show that Ki,T (τ ) →w Ki (τ ) as T →
∞, where →w signifies weak convergence and Ki (τ ) is a certain ratio of stochastic
integrals. Since K1(τ ), ..., KN (τ ) are iid, we may define μK , j = E(K j

i ) and σ 2
K , j =

var(K j
i ) for j ∈ {1, 2, 3}. Numerical values of μK , j and σK , j are reported in Table 1.

The proposed panel test statistic for testing H0 versus H1 : I(0) → I(1) is given by

K j
NT = 1

σK , j
√
N

N∑

i=1

(K j
i,T − μK , j ).

For testing if cross-section unit i is I(0) versus I(1) → I(0), the following “reverse”
test statistic can be used (see Kim 2000; Kim et al. 2002; Busetti and Taylor 2004):

Ri (τ ) = (Ki (τ ))−1,

which can be transformed usingT1–T3 to eliminate the dependence on τ . The resulting
transformed statistic is written in an obvious notation as R j

i . Based on this test statistic,
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wemaydefine R j
NT = σ−1

R, j N
−1/2 ∑N

i=1(R
j
i,T −μR, j )with obvious definitions ofσ 2

R, j
and μR, j . When the direction of the persistency is unknown, the following maximum
statistic may be used:

M j
i,T = max{K j

i,T , R j
i,T },

which can again be normalized to obtain M j
NT = σ−1

M, j N
−1/2 ∑N

i=1(M
j
i,T − μM, j ).

Theorem 1 Under H0 and Assumption 1, as N , T → ∞ with N/T → 0,

K j
NT , R j

NT , M j
NT →d N (0, 1),

where →d signifies convergence in distribution.

Remark 3 While the test statistics considered here are independent of τ 01 , ..., τ 0N , in
applications it is sometimes useful to be able to estimate these parameters. This can be
accomplished using the proposal of Kim (2000, Sect. 3.2), which basically amounts to
setting τ̂ 0i equal to the suitablymaximizing orminimizing value of Ki,T (τ ), depending
on whether it is I(0) → I(1) or I(1) → I(0) that is being tested. Alternatively, we may
follow Busetti and Taylor (2004, Sect. 6.2), who suggest setting τ̂ 0i equal to the value
of τ 0i that minimizes the sum of squares of êi,t .

Remark 4 The requirement that N/T → 0 is sufficient but not necessary and is
needed to make sure that certain remainder terms are negligible. However, the order
of these terms is not the sharpest possible. Amore elaborate asymptotic analysis would
be required to obtain the exact order. In Sect. 4, we use Monte Carlo simulation to
evaluate the effect of N/T in small samples.

3.2 Ft unknown

The estimation of Ft can be performed in two ways; (i) unrestrictedly, or (ii) restricted
under H0. In both cases, we follow the bulk of the previous literature and use the
principal components method (see, for example, Bai and Ng 2004). The restricted
estimator of F = (F1, ..., FT )′, denoted F̂0 = (F̂0

1 , ..., F̂0
T )′, is

√
T times the eigen-

vectors corresponding to the first r largest eigenvalues of the T × T matrix Y p(Y p)′,
where Y p = (Y p

1 , ...,Y p
N ) and Y p

i = (Y p
i,1, ...,Y

p
i,T )′ are T × N and T × 1, respec-

tively. Under the normalization T−1 F̂0(F̂0)′ = Ir , the estimated loading matrix is
(λ̂0)′ = (λ̂01, ..., λ̂

0
N ) = T−1(F̂0)′Y p. The restricted estimator of ei,t that we will be

considering can now be constructed as

ê0i,t = Y p
i,t − (λ̂0i )

′ F̂0
t . (3)

Let X p−1
i,t be Xi,t when detrended using a trend polynomial of order p − 1. Hence,

X p−1
i,t = Xi,t if p = 0. Let ft = �Ft and yi,t = �Yi,t (for t = 2, ..., T ). The

unrestricted estimators f̂ 1t and λ̂1i of (the space spanned by) f p−1
t and λi are F̂0

t and

λ̂0i , respectively, but with Y p
i,t replaced by y p−1

i,t . Let
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ẽ1i,t =
t∑

n=2

[
y p−1
i,n − (λ̂1i )

′ f̂ 1n
]
, (4)

where ẽ1i,1 = 0. The unrestricted estimator ê1i,t of ei,t is given by ê1i,t = (ẽ1i,t )
p. The

appropriate test statistics to consider when Ft is unknown, henceforth denoted K j
hNT ,

R j
hNT and M j

hNT for h ∈ {0, 1}, are given by K j
NT , R

j
NT and M j

NT , respectively, with
êi,t replaced by êhi,t .

Theorem 2 Under H0 and Assumptions 1, as N , T → ∞ with N/T → 0,

K j
hNT , R j

hNT , M j
hNT →d N (0, 1).

As Theorem 2 makes clear, the factors can be unknown and still the asymptotic
distributions of the test statistics are N (0, 1). This is in agreement with the results
reported by Bai and Ng (2004) for their pooled panel unit root tests.

4 Monte Carlo simulations

A small-scale Monte Carlo study was conducted to investigate the properties of the
new tests in small samples. The DGP is given by a restricted version of (1)–(2) that
sets εi,t ∼ N (0, σ 2

ε,i ), ηi,t ∼ N (0, σ 2
η ), ση ∈ {0, 0.25, 0.5}, τ 0i ∼ U (0.3, 0.7), r = 1,

and Ft = ρFt−1 + vt , where vt ∼ N (0, 1) and ρ ∈ {0.3, 0.6} (see, for example,
Gengenbach et al. 2010, for a similar parametrization). For σε,i , we consider two
cases. In the first, σε,i = 1 for all i , while in the second, σε,i ∼ U (1, 2). Since a
more volatile idiosyncratic error will make Ft more difficult to discern, we expect
that the results for the second case will deteriorate when compared to the first. All
results are based on 1,000 replications of samples of size N ∈ {5, 10, 20} and T ∈
{50, 100}. Also, following Kim (2000), C = [0.20, 0.80]. Results were obtained for
p ∈ {0, 1}, although in this paper we focus on the results for the empirically most
common specification with p = 0 (a constant but no trend). The results for p = 1
(constant and trend) can be obtained upon request. Both the restricted and unrestricted
factor estimation methods were simulated. Interestingly, the restricted method led to
better results in terms of both size accuracy and power. In this paper, we therefore
only report the results for the restricted method, where the number of common factors
is determined using the IC2 criterion of Bai and Ng (2002) with a maximum of three
factors.1

The 5% size and power results are reported in Tables 2, 3, 4 and 5. While Tables
2 (ρ = 0.3) and 3 (ρ = 0.6) contain the results for the tests of I(0) → I(1), Tables
4 (ρ = 0.3) and 5 (ρ = 0.6) contain the corresponding results for I(1) → I(0). The
information content of these tables may be summarized as follows.

• All tests have good size accuracy when σε,i = 1 and ρ = 0.3. This is true for all
constellations of T and N considered, although the distortions do have a tendency

1 SeeWesterlund andMishra (2016) for amore elaborate selection approach that uses a data-driven penalty.
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Table 6 Empirical test results Statistic Unrestricted Restricted

K 1
NT −0.921 −0.881

K 2
NT −0.658 −0.645

K 3
NT −0.985 −0.947

R1
NT 4.002*** 2.439**

R2
NT 4.565*** 2.636***

R3
NT 4.844*** 3.156***

M1
NT 3.027*** 1.662*

M2
NT 3.293*** 1.744*

M3
NT 3.862*** 2.293**

***, ** and * denote
significance at the 1, 5 and 10%
levels, respectively. While the
restricted factor estimation
method assumes that the null
hypothesis is true, the
unrestricted method does not

to increase slightly in N , which is consistent with the previous panel unit root
literature (seeWesterlund and Breitung 2013, for a discussion). While there are no
big differences, the best size accuracy is generally obtained by using K 2

NT , R
2
NT

and M2
NT , whereas K

3
NT , R

1
NT and R3

NT generally leads to the worst accuracy.
• As expected, increases in ρ and/or σε,i generally lead to reduced size accuracy,
although the distortions are never very large. This is true regardless of the direction
of the change in persistence. In fact, the results are remarkably stable, given that
the test statistics do not require any corrections to account for nuisance parameters.

• All tests perform quite well in terms of power, and there are clear improvements
as N and/or T increases. The fact that power is not only increasing in T , but also
in N illustrates the advantage of accounting for the cross-sectional variation of the
data. Power is also increasing in the distance to the null, as measured by ση, which
is again just as expected.

5 Empirical illustration

The question of whether inflation should be considered as I(0) or I(1) has been subject
to a long debate. According to recent studies (see, for example, Kim 2000; Busetti and
Taylor 2004), however, inflationmay be better characterized by a change in persistence
between separate I(1) and I(0) regimes rather than simply I(1) or I(0) behavior. The
purpose of this illustration is to test this hypothesis using a large panel of quarterly CPI
inflation data covering 20 countries (Australia, Austria, Belgium, Canada, Denmark,
Finland, France, Germany, Greece, Italy, Japan, Korea, the Netherlands, NewZealand,
Norway, Spain, Sweden, Switzerland, theUKand theUS) between 1970:1 and 2013:4.
All data are taken from OECD Main Economic Indicators.

The number of common factors is determined in the sameway as in the simulations.
As is customary when dealing with inflation (see, for example, Leybourne et al. 2003),
the tests are fitted with a constant but no trend. The results are reported in Table 6. The
first thing to note is that while in case of K 1

NT , K
2
NT and K 3

NT there is no evidence
against the I(0) null, R1

NT , R
2
NT and R3

NT all lead to a clear rejection. This is true
even at the most conservative 1% level. We therefore conclude that inflation has been
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Panel stationary tests against changes in persistence 1095

subject to a change in persistence from I(1) to I(0), which is in agreement with the
recent empirical literature based onUSdata (see, for example, Busetti andTaylor 2004;
Harvey et al. 2006). A common explanation for the observed change in persistence of
inflation in the US is that it is due to the stock market collapse of the late 1980s and
the recession that followed it. One interpretation of the results reported in the current
paper is therefore that they reflect the worldwide recession of the early 1990s, which
was to a large extent triggered by the recession in the US. Another possibility is that
the results reflect in part monetary policy shifts (see, for example, Davig and Doh
2014, and the references provided therein).

6 Conclusion

This paper develops panel tests that are suitable for testing the null hypothesis of sta-
tionarity against the alternative of a change in persistence from I(0) to I(1), from I(1) to
I(0), or when the direction is unknown. The DGP used for this purpose is quite general
and allows unit-specific constant and trend terms, cross-section heteroskedasticity,
error serial correlation and cross-section dependence in the form of common factors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proofs

The proofs of Theorems 1 and 2 are established for K j
NT ; the proofs for R j

NT and

M j
NT are entirely analogous.

Proof of Theorem 1 Under MU1, μi,t = ∑t
k=1 1(k > �T τ�)ηi,k , and by further

invoking H0, μi,t = 0, giving

Yi,t = θ ′
i Dt + λ′

i Ft + μi,t + εi,t = θ ′
i Dt + λ′

i Ft + εi,t , (5)

It follows that

Y p
i,t = λ′

i F
p
t + ε

p
i,t , (6)

with obvious definitions of F p
t and ε

p
i,t , which in turn implies

êi,t = Y p
i,t − λ̂′

i F
p
t = ε

p
i,t − (λ̂i − λi )

′F p
t , (7)

Therefore,

T−1/2
t∑

n=1

êi,n = T−1/2
t∑

n=1

ε
p
i,n − (λ̂i − λi )

′T−1/2
t∑

n=1

F p
n . (8)
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Under H0 and with Ft known Yi,t = θ ′
i Dt + λ′

i Ft + εi,t is just an ordinary time series
regression in I(0) variables with exogenous regressors. It follows that

√
T (λ̂i − λi ) =

Op(1), and therefore, since T−1/2 ∑t
n=1 F

p
n = Op(1),

T−1/2
t∑

n=1

êi,n = T−1/2
t∑

n=1

ε
p
i,n + Op(T

−1/2). (9)

Hence, using Ki,T (τ ) to denote Ki,T (τ ) with êi,n replaces by ei,n , we have

Ki,T (τ ) = Ki,T (τ ) + Op(T
−1/2), (10)

where the first term on the right is the same as in Harvey et al. (2006). It follows from
their results that

Ki,T (τ ) →w Ki (τ ) = Ai (τ )

Bi (τ )
, (11)

as T → ∞, where →w signifies weak convergence, and

Ai (τ ) = (1 − τ)−2
∫ 1

τ
ai (r)

2dr,

Bi (τ ) = τ−2
∫ τ

0
bi (r)

2dr,

ai (τ ) = Wε,i (τ ) − Wε,i (r) −
∫ 1

τ
dWε,i (r)Dp(r)

′
(∫ 1

τ
Dp(r)Dp(r)

′dr
)−1 ∫ r

τ
Dp(s)ds,

bi (τ ) = Wε,i (r) −
∫ τ

0
dWε,i (r)Dp(r)

′
(∫ τ

0
Dp(r)Dp(r)

′dr
)−1 ∫ r

0
Dp(s)ds,

withWε,i (r)being a standardBrownianmotion, andDp(r) is such thatQ
−1
T D�Tr�,p →

Dp(r), where QT = diag(1, T, ..., T p). Note in particular how D0(r) = 1 and

D1(r) = (1, r)′. Therefore, by the continuous mapping theorem, and writing K j
i,T =

Hj (Ki,T (τ )) and K
j
i,T = Hj (Ki,T (τ )) as in Busetti and Taylor (2004),

K j
i,T = K

j
i,T (τ ) + Op

(
T−1/2) →w Hj (Ki (τ )) = K

j
i . (12)

Let us now consider K j
NT . By using the previous result

K j
NT = 1

σK , j
√
N

N∑

i=1

(
K j
i,T − μK , j

)
= 1

σK , j
√
N

N∑

i=1

(
K

j
i,T − μK , j

)
+ Op(

√
NT−1/2)

(13)
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where Op(
√
NT−1/2) = op(1) under our assumption that N/T = o(1). We now use

the same steps as in Moon and Phillips (2000, p. 994) to verify that (K
j
i,T − μK , j )

satisfies conditions (i)–(iv) of the central limit theorem of Phillips and Moon (1999,

Theorem 2). In so doing we follow their notation and write Qi,T = (K
j
i,T − μK , j ),

which is iid with mean zero and variance σ 2
K , j ≤ C . We have already shown that

K
j
i,T →w K

j
i as T → ∞, which implies Qi,T →d Qi = (K

j
i − μK , j ), and it is

also not difficult to verify that E(Q2
i,T ) → E(Q2

i ) = σ 2
K , j . This verifies conditions

(i), (ii) and (iv). Condition (iv) follows from noting that, by the continuous mapping
theorem, Q2

i,T →w Q2
i . It follows that

K j
NT = 1

σK , j
√
N

N∑

i=1

(
K j
i,T − μK , j

)

= 1

σK , j
√
N

N∑

i=1

(
K

j
i,T − μK , j ) + Op(

√
NT−1/2

)
→d N (0, 1) (14)

as N , T → ∞ with N/T → 0. 
�

Proof of Theorem 2 We begin by considering the case when the estimator of ei,t is
based on the restricted estimators of λi and Ft under H0. As in Proof of Theorem 1,
under MU1 and H0, Yi,t = θ ′

i Di,t +λ′
i Ft + εi,t . In order to capture the fact that λi and

Ft are not separately identifiable we introduce the r × r rotation matrix H such that

ê0i,t = Y p
i,t − (λ̂0i )

′ F̂0
t = ε

p
i,t − λ′

i H
−1(F̂0

t − HF p
t ) − (λ̂i − (H−1)′λi )′ F̂0

t . (15)

Hence,

T−1/2
t∑

n=1

ê0i,n = T−1/2
t∑

n=1

ε
p
i,n − λ′

i H
−1T−1/2

t∑

n=1

(F̂0
n − HF p

n )

− (λ̂i − (H−1)′λi )′T−1/2
t∑

n=1

F̂0
n . (16)

By Lemmas 1(c) and 2 of Bai and Ng (2004), ||λ̂i − (H−1)′λi || = Op(N−1) +
Op(T−1/2) and ||T−1/2 ∑t

n=1(F̂
0
n −HF p

n )|| = Op(N−1/2)+Op(T−3/4), where the
latter result holds uniformly in t . Hence, since

T−1/2
t∑

n=1

F̂0
n = HT−1/2

t∑

n=1

F p
n + T−1/2

t∑

n=1

(F̂0
n − HF p

n ) = Op(1), (17)
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we can show that

T−1/2
t∑

n=1

ê0i,n = T−1/2
t∑

n=1

ε
p
i,n + Op(N

−1/2) + Op(T
−1/2). (18)

Hence, as in the case when Ft is known (see Proof of Theorem 1), the estimation and
removal of the common component do not affect the asymptotic distribution of the
test statistic. Specifically, using K j

0i,T to denote K j
i,T with ê0i,n in place of êi,n , we get

∣
∣
∣K

j
0i,T − K j

i,T

∣
∣
∣ = Op(N

−1/2) + Op(T
−1/2), (19)

which holds uniformly in ( j, i). In order to show that the resulting panel statistic,
K j
0NT say, converges to N (0, 1), we may use the same argument as in Westerlund and

Larsson (2009).
Consider the unrestricted estimator of ei,t . We have ẽ1i,t = ∑t

n=2[y p−1
i,n − (λ̂1i )

′ f̂ 1n ],
where, under H0, yi,t = �Yi,t = θ ′

i�Dt + λ′
i ft + �εi,t with ft = �Ft . It follows

that y p−1
i,t = λ′

i f
p−1
t + (�εi,t )

p−1, and therefore

ẽ1i,t =
t∑

n=2

[
y p−1
i,n − (λ̂1i )

′ f̂ 1n
]

=
t∑

n=2

[
(�εi,t )

p−1 − λ′
i H

−1( f̂ 1t − H f p−1
t ) − (λ̂i − (H−1)′λi )′ f̂ 1t

]
. (20)

Consider
∑t

n=2

(
f̂ 1t − H f p−1

t
)
. From Proof of Theorem 3 in Bai (2003), using V to

denote a diagonal matrix consisting of the first r eigenvalues of (NT )−1y p−1(y p−1)′
in decreasing order,

t∑

n=2

(
f̂ 1t − H f p−1

t

)

= N−1/2V−1T−1
T∑

n=2

f̂ 1t
(
f p−1
t

)′
N−1/2

N∑

i=1

λi

t∑

n=2

(�εi,t )
p−1 + Op

(
N−1

)
+ Op

(
T−1

)

= N−1/2V−1HT−1
T∑

n=2

f p−1
t

(
f p−1
t

)′
N−1/2

N∑

i=1

λi

(
ε
p−1
i,t − ε

p−1
i,1

)

+ N−1/2V−1T−1
T∑

n=2

(
f̂ 1t − H f p−1

t

)(
f p−1
t

)′
N−1/2

N∑

i=1

λi

(
ε
p−1
i,t − ε

p−1
i,1

)

+ Op

(
N−1

)
+ Op

(
T−1

)
. (21)
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where we have made use of the fact that
∑t

n=2(�εi,n)
p−1 = ε

p−1
i,t −ε

p−1
i,1 . Now, ||V ||

and ||N−1/2 ∑N
i=1 λi (ε

p−1
i,t − ε

p−1
i,1 )|| are both Op(1). Moreover, by Lemma A.1 of

Bai (2003),
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
T−1

T∑

n=2

( f̂ 1t − H f p−1
t )( f p−1

t )′
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
(

T−1
T∑

n=2

|| f̂ 1t − H f p−1
t ||2

)1/2 (

T−1
T∑

n=2

|| f p−1
t ||2

)1/2

= Op(N
−1/2) + Op(T

−1/2),

from which it follows that
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

t∑

n=2

( f̂ 1t − H f p−1
t )

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
= Op(N

−1/2) + Op(T
−1). (22)

By using this and F̂1
t = ∑t

n=2 f̂ 1t = H(F p−1
t − F p−1

1 ) + ∑t
n=2( f̂

1
t − H f p−1

t ), we
obtain

ẽ1i,t =
t∑

n=2

(�εi,t )
p−1 − λ′

i H
−1

t∑

n=2

(
f̂ 1t − H f p−1

t

)
− (λ̂i − (H−1)′λi )′

t∑

n=2

f̂ 1t

= ε
p−1
i,t − ε

p−1
i,1 − λ′

i H
−1

t∑

n=2

(
f̂ 1t − H f p−1

t

)

− (λ̂i − (H−1)′λi )′H(F p−1
t − F p−1

1 ) − (λ̂i −(H−1)′λi )′
t∑

n=2

(
f̂ 1t −H f p−1

t

)

= ε
p−1
i,t − ε

p−1
i,1 + Op(N

−1/2) + Op(T
−1/2). (23)

suggesting that for p ≥ 0,

ê1i,t = (ẽ1i,t )
p = ε

p
i,t + Op

(
N−1/2) + Op

(
T−1/2). (24)

When appropriately normalized by T−1/2, taking partial sums do not affect the order
of the remainder terms. Hence, again, the estimation and removal of the common
component do not affect the asymptotic distribution of the test statistic. 
�
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