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Abstract  7 

This study justifies strategies for new concept of agricultural waste management prior to bio-8 

refinery, based on comprehensive material science investigations. Efficient pre-treatments on the 9 

extraction, separation and fractionation of agricultural waste in conjunction with understanding 10 

the details of microstructure and properties can be essential for high efficiency bio-refinery. The 11 

information in this study shall serve as valuable and fundamental basis for researchers and 12 

industries in the sector of straw biomass bio-refinery. In order to achieve the maximum efficiency 13 

possible in agricultural waste valorisation, it is crucial to understand that not all parts of the straw 14 

are equally valuable and can be treated in a same bio-refinery process. In our studies, wheat 15 

straw stem that is composed of nodes and internodes has shown to have distinct properties and 16 

characteristics. Separation of these anatomical parts before bio-refinery process presents a 17 

unique area for future research investment as it can lead to higher performance of the intended 18 

product. For example, node has higher extractives and ash content that proved to be a diminishing 19 

factor for bio-composites or bio-energy production.  20 

Key words: 1) Material characterisation; 2) Sustainable materials; 3) Biomass conversion. 21 
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1. Introduction  30 

Life cycle efficiency improvements can be made by recycling and remanufacturing of waste or 31 

manufacturing by-products. This practice is directly linked to the circular economy that is 32 

becoming increasingly significant as a research area in the UK and worldwide. In 2017, 33 

humankind caused 32 billion metric tons of carbon dioxide to be released to the atmosphere, 34 

which was additional to naturally sourced emissions (1). Despite the billions of dollars invested in 35 

research, the total quantity of global greenhouse gas emitted per year, has continued its 36 

inexorable rise. 37 

Valorisation can be defined as the environmentally friendly, industrially feasible and sustainable 38 

conversion of agricultural waste to energy and other useful materials (2). The focus should be on 39 

the successful transition of laboratory scale to pilot and full scale demonstrations of bio-refinery 40 

of agricultural waste into multiple products and by-products such as biofuels, bio-products, 41 

fertilisers, heat and/or electricity (3–7). Advances in technologies such as biotechnology, process 42 

chemistry, and engineering are leading to the concept of bio-refining (8). In a bio-refinery, 43 

agricultural waste can be valorised in an integrated manner and thereby it can maximise the 44 

economic value and reduce the waste streams produced (9). Wheat straw biomass conversion 45 

processes are appealing to the industries and extension to future scenarios is easy for the public 46 

to envision. Fundamental research has historically been focused on wheat straw biomass 47 

conversion to fuels, chemicals and materials (10–15), however, limited sum of these efforts have 48 

been successfully translated into commercial practice.  49 

A successful utilisation of wheat straw requires comprehensive understanding of the following 50 

points: 1) structure; 2) chemistry; 3) morphology, and 4) how these characteristics are changed 51 

by a given pre-treatment and processing. Scientific investigation giving accurate database on the 52 

characteristics and composition of wheat straw agricultural waste is a basic requirement for any 53 

scheme in conversion and valorisation. Therefore, this paper will present the characteristics of 54 

wheat straw and discuss anatomical component for a selective bio-refinery strategy contributing 55 

to efficacy of the valorisation concept.   56 

2. Wheat straw main constituents    57 

Wheat straw is a polymeric composite with cell walls made up of cellulose (linear and crystalline), 58 

hemicellulose (branched non-cellulosic and non-crystalline hetero-polysaccharides) and lignin 59 
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(branched non-crystalline) (16). Lignin is primarily a structural material to add strength and rigidity 60 

to cell walls (17,18). Lignin acts as a matrix together with hemicelluloses for the cellulose 61 

microfibrials which are formed by ordered polymer chains that contain tightly packed, crystalline 62 

regions, represented in Figure 1.  63 

 64 
Figure 1 – Cellulose strands surrounded by hemicellulose and lignin (19) 65 

Cellulose is made from a long chain of glucose molecules that are linked to each other mainly by 66 

β (1→4) glycosidic bonds. Cellulose has a simple structure, which makes it biodegradable. 67 

Hemicellulose is a polysaccharide macromolecule from different sugars and it is different to 68 

cellulose in that it is not chemically homogeneous and has lower molecular weight. Hemicellulose 69 

has branches with short lateral chains containing several sugars, whereas cellulose has 70 

hydrolysable oligomers (16). Apart from the three main groups of organic mixtures, straw 71 

comprises several other organic compounds such as extractives, proteins, wax that protects the 72 

epidermis of the straw, sugars, salts and insoluble ash including silica. Wheat straw contains 35 73 

– 40% cellulose, 20 – 35% hemicellulose, and around 20% lignin (20). The small lignin percentage 74 

in wheat straw makes it a good raw materials for production of bioethanol (21). 75 

2.1 Anatomical and microstructure variations     76 

On a mass basis, wheat straw has 57 ± 10% of internodes, 10 ± 2% of nodes, 18 ± 3% of leaves, 77 

9 ± 4% chaffs and 6 ± 2% rachis (13) (see Figure 2). The composition of the chemical elements 78 

changes between and within anatomical parts of wheat straw. Wheat straw’s internodes have 79 

concentric rings leaving a lumen in the centre. The outermost ring contains a dense layer, which 80 

is cellulose-rich, called the epidermis. Epidermis has a concentration of silica on the surface. 81 
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Underneath the epidermis, there is a loose layer, which contains parenchyma and vascular 82 

bundles (22).  83 

 84 
Figure 2 – Wheat straw with nodes (N) and internodes (IN) 85 

For the experimental work, the leaves were separated from the stem, and then the stems were 86 

grouped and cleaned. The internodes were grouped and nodes were carefully cut and separated. 87 

When investigating the node’s morphology along the longitudinal direction, interesting results 88 

were revealed. By taking cross-section images after grinding small layers with smooth abrasive 89 

paper moving upwards to wheat grain, the 3D image as illustrated in Figure 3 was achieved. The 90 

morphological investigation began from the internode instantly before the node and then pass in 91 

the node core zone, which continues forward to where the brown elliptical rings get smaller and 92 

the beginning of the upper internode exposes. The brownish elliptical rings get smaller and 93 

smaller until they are fade. This is the start of the hollow upper internode. 94 

 95 
Figure 3 – Node outer (a) and inner (b) surface longitudinal view and the corresponding 96 
images to the position in the node shown by the arrows 97 
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Unlike node, the longitudinal microstructure of internode was found to be consistent. The outer 98 

surface of the straw internode contains wax and inorganic substances, and then follows a region 99 

with fibre bundles (vascular bundles) integrated in a region of parenchyma and vessel elements. 100 

The epidermis is a complex tissue with bubble-shaped polygonal short and long cell types, as 101 

shown in Figure 4. The epidermis is thin, but has dense and thick-walled cells with an outer wall 102 

coated with a waxy film of cutin cuticle (22).  103 

 104 
Figure 4 – Optical microscopy image of internode cross-section 105 

2.2 Elemental and cell wall composition of wheat straw 106 

There are distinct differences amongst the physicochemical characteristics and cell wall 107 

components of node and internode, making them appropriate or deficient for a specific bio-refinery 108 

pathway. The energy dispersive X-ray spectra were attained using an INCA Energy 400 109 

microanalysis system. The chemical elements detected were analysed using the database of 110 

standard samples. The elemental ratio of all elements detected was automatically calculated from 111 

their normalised peak areas. For quantitative element analyses, the recorded EDAX results were 112 

analysed by using Oxford INCA Version 4.02. The bulk structure of the wheat straw consisted of 113 

carbohydrates and lignin with a considerable amount of carbon (C) and oxygen (O), and a trace 114 

amount of silicon (Si) weight percentage (Table 1). The outer surface of internode has 115 

considerably higher Si weight percentage than the inner surface, i.e. 5.8% compared to 0.8%. 116 

More silicon (in the form of silica) is located mainly on the outer surface (epidermis) of wheat 117 

straw.  118 

 119 

 120 

 121 

 122 
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Table 1 Node and internode profile elemental composition based on EDAX-SEM analysis  123 
Profile 

Surface  

Sample Percentage % O/C 

C O Si 

Inner   Internode  

  

54.1 

(2) 

45 

(1) 

0.8 

(4) 

0.83 

Node  54.1 

(9) 

45.6 

(7) 

0.7 

(6) 

0.84 

Outer  Internode   51.3 

(2) 

43.4 

(5) 

5.8 

(2) 

0.84 

Node  53.7 

(3) 

43.5 

(8) 

2.8 

(2) 

0.81 

* Values in () are Coefficient of Variance % 124 

The assessment of cell wall composition in straw biomass is usually conducted on milled samples 125 

of the whole stem, without separating node and internode. The cell wall composition of the 126 

internode may be rather different from that of the node. Table 2 shows the main chemical 127 

components of wheat straw investigated following the NREL/TP-510-42620. Wheat straw node 128 

yielded slightly higher extractives and ash content than internode, which can be related to their 129 

microstructure, i.e. higher ash and extractives content in the node are explained by thicker 130 

epidermis tissue. The extractives are a heterogeneous group of substances including resin acids, 131 

sterol esters, waxes, triglycerides, fatty acids, sterols, fatty alcohols and a selection of phenolic 132 

compounds (23). As shown in Table 2, the extractives in nodes are higher than in internodes, for 133 

both hot-water extraction and ethanol extraction. The results also showed that the node contains 134 

more ash, in both non-extracted samples (structural ash) and extracted samples through hot 135 

water and ethanol. 136 

 137 

 138 

 139 

 140 

 141 

 142 



Page 7 of 18 
 

Table 2 Extractives and ash content of wheat straw (% dry straw) 143 
Sample  Hot-water extraction 

 

Ethanol extraction 

  

Non-extracted 

samples 

Extractives 

(%) 

Ash content 

(%) 

 Extractives 

(%) 

Ash content 

(%) 

 Ash content 

(%) 

Internode 

 

4.2 

(4) 

0.9 

(8) 

 3.8 

(9) 

1.5 

(2) 

 3.2 

(2) 

Node 4.6 

(5) 

1.3 

(7) 

 4.0 

(7) 

1.9 

(3) 

 5.3 

(4) 

* Values in () are coefficient of variance % 144 

2.3 Characterization of surface chemical distribution 145 

Fig. 5 shows surface chemical distributions of wheat straw node and internode, inner and outer 146 

surfaces. Table 3 summarises the characteristics of surface profiles in node and internode. The 147 

intensity of 2850 and 2920 cm-1 is much higher in a node (Fig. 5), which is ascribed to the higher 148 

intensity of waxes on the surface. Moreover, by comparing inner to outer surface, it is observed 149 

that the broad and more intense band in the 3200-3600 cm-1 region, reflects the hydrophilic 150 

tendency of the inner surface of both node and internode. In wheat straw, some chemical bonds 151 

are present in node, but absent in internode and vice versa, i.e. 2955, 720 and 790 cm-1 in node 152 

and 985 cm-1 in internode.  153 

Table 3 Band assignments and observed differences between node and internode   154 
Wavenumber 

(cm-1) 

Bands assignment Observations  Ref. 

720 Methylene CH2 in-plane deformation 

rocking  

 

Only detectable in node outer 

surface 

 

(24) 

790 Si-C stretching vibration  

985 Si-O stretching vibration  Only detectable in outer surface of 

internode  

1160 C-O-C antisymmetric bridge in 

hemicellulose and cellulose  

Sharper in internode than node  
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1435 C=O methoxyl group in lignin  Sharper in internode inner surface 

than outer surface 

1510 C=C lignin aromatic ring stretch  Sharper in internode of treated 

straws  

(25) 

1739 Carboxyl groups  High intensities in internode and 

node outer surfaces. 

(26) 

2850 & 2920 Symmetric & asymmetric stretching 

of CH2 in aliphatic fraction of waxes 

Sharper in node than internode and 

outer than inner surface  

(27) 

2955 Asymmetric stretching of CH3 in fatty 

acids  

Only detectable in node untreated    (28) 

3200-3600 OH stretching vibration of hydroxyl 

groups  

Higher intensity for the inner 

surface compared to outer surface, 

both in node and internode 

(29) 

 155 
Figure 5 – ATR-FTIR spectra of wheat straw internode and node outer and inner surface 156 

3. Strategies for valorisation of wheat straw  157 

Without an appropriate strategy for disposal of agricultural waste, many aspects of the 158 

environment may be negatively affected (30). The most abundantly available, cheap and 159 

renewable raw materials for bioethanol production is lignocellulosic biomass due to its high 160 
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cellulosic content. Wheat straw is a potential source of feedstock for biofuel production that does 161 

not compete with food (31).   162 

Lignocellulosic materials from agriculture waste biomass are the largest sources of hexose (C-6) 163 

and pentose (C-5) sugars with a potential for the production of biofuels, chemicals and other by-164 

products. For bioethanol/biofuel production, the three main steps include pre-treatment, 165 

enzymatic hydrolysis and fermentation (21) (see Fig 6). 166 

 167 
Figure 6 – Agricultural waste valorisation: lignin recovery and bio-energy production   168 

Physical, chemical, physicochemical and biological pre-treatments have been utilised for adding 169 

value to wheat straw as agricultural waste. The pre-treatments must be carefully designed and its 170 

parameters must be chosen in a way that improves the enzymatic hydrolysis, avoids 171 

carbohydrates degradation, prevents formation of inhibitors for the following hydrolysis and 172 

fermentation processes, produces high yields of monosaccharides, generates highly hydrolysable 173 

cellulose for efficient conversion to chemicals and be economically feasible, e.g. low energy and 174 

low cost (32–34). 175 

In an investigation on valorisation of wheat straw, Kaparaju et al. (9) studied the production of 176 

bioethanol from cellulose, bio-hydrogen from hemicelluloses and biogas from the waste of 177 

bioethanol and bio-hydrogen processes. This is in line with an effective low-cost bio-refinery 178 

concept. Some of wheat straw was utilised without any treatment, and some was pre-treated 179 

using hydrothermal process. The pre-treated wheat straw yielded liquid fraction hydrolysate that 180 

contained hemicelluloses and a solid cellulose fraction. Kaparaju et al. (9) investigation 181 

discovered that the production of biogas from wheat straw or production of different biofuels from 182 
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wheat straw was an energy efficient technology in comparison to mono-fuel generation including 183 

bioethanol from hexose sugars fermentation. They also concluded that the integrated waste bio-184 

refinery is more feasible than using individual bio-refinery technology for the generation of single 185 

fuel.  186 

Biological pre-treatment weakens the heterogeneous straw biomass with lignin biodegrading 187 

microorganisms that can degrade aromatic compounds. A biological process removes substantial 188 

amount of lignin, which increases the enzymatic hydrolysis efficiency (35). The important benefits 189 

of biological pre-treatments are small energy input, no chemical obligation, environmentally 190 

friendly working style. On the other hand, the drawbacks are the slow pre-treatment rate. The 191 

introduction of some kind of catalyst is necessary which can accelerate the process and improve 192 

the efficiency (36). Combination of biological pre-treatment with mild physical, chemical or 193 

mechanical pre-treatments is also one way of improving the slow rate of biological pre-treatment, 194 

therefore improving the industrial feasibility (37). Yu et al. (38) showed that pre-treatment of corn 195 

stalks with Irpex lacteus can modify the lignin structure and facilitate lignin biodegradation and 196 

xylan elimination under mild alkaline environment (1.5% NaOH, 30–75˚C for 15–120 min). 197 

Hydrothermal pre-treatment (200˚C for 10 minutes) was the initial stage in the procedure of 198 

turning wheat straw into second generation bioethanol (39), where the enzymes were added to 199 

the fibre mass (mostly of cellulose and lignin), for bioconversion of cellulose to lower 200 

carbohydrates, enabling the fermentation of ethanol in the following stage. Pre-treatment of straw 201 

for the production of bioethanol is estimated to account for 33% of the summed cost of bioethanol 202 

production (40). Developing an economically suitable processing is therefore the key for 203 

bioconversion of straw biomass into bioethanol. The ideal pre-treatment in terms of technical 204 

aspects would be to i) expose the cell wall constituents for enzymatic attack, ii) increase the 205 

porosity and surface area of the substrate, iii) diminish the cellulose crystallinity and disrupt the 206 

heterogeneous structure of lignocellulosic biomass (37).  207 

3.1 Wheat straw as bio-based building product  208 

Buildings under construction and in use generate a disproportionate amount of non-recyclable 209 

waste along with around 40% of greenhouse gas emissions. Therefore, the construction industry 210 

has seen increasing demands for natural novel eco-innovative products e.g. compressed straw 211 

boards. While in the distant past, most buildings were made of bio-sourced, ultimately 212 
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biodegradable materials: wood, straw, reed, rammed earth or adobe; today, there is a tendency 213 

to regard these as primitive: either insufficiently durable, too weak to withstand forces of nature 214 

or loads in use over time. This is not necessarily an accurate perception. In the case of straw, its 215 

life in a building is indefinite; provided that it is kept dry (41). It is the emergent understanding of 216 

the potential durability of straw and its self-evident modest structural capability that has prompted 217 

research that aims to reinstate it as a viable building material for modern building construction. 218 

As the growth of straw, converts airborne CO2 into carbon by photosynthesis, its incorporation 219 

into the fabric of a long-lived building after suitable processing would fit in with two pressing policy 220 

objectives referred to above. Firstly, that of achieving a "closed-loop" cycle of growth, material 221 

use and ultimate safe return to nature and, secondly, ensuring the effective capture and long-222 

term storage of atmospheric CO2.  223 

Our developed and demonstrated pilot results, where an environmentally friendly pre-treatment 224 

was employed, which led to an improved interface between resins and the micro porous surface 225 

of straw. The results showed that chemical functionalities of various surface profiles (i.e. when 226 

cut longitudinally in half, inner and outer) altered the bonding performance, i.e. extractive, aliphatic 227 

fraction of waxes, and silica concentrated on the outer surface, inhibited the bonding quality which 228 

translates into an inefficient stress transfer under load. The pre-treatment (P < 0.05) however, 229 

could significantly: (i) modify the surface of straw with the partial removal of extractives, waxes, 230 

and silica which made it more hydrophilic and more compatible with water based resins, (ii) cause 231 

the microcellular structure of straw to expand and hence induce the mechanical entanglement on 232 

a micro level upon resin solidification. Therefore, these pilot results have given us the motivation 233 

to upscale the pre-treatment. So far, manufacture of bio-composites, whether for use in vehicles 234 

or in construction, has been held back due to their non-reliable load-bearing capability. Research 235 

on bio-composites from straw by-products has been focused on utilising them in small particle 236 

and/or short fibre form (42), as fillers in plastic composites, while, as proposed herein, the 237 

mechanical properties of the composites could potentially increase by using longer straw strands. 238 

The highly processed products from straw, entailing the extraction of cellulose for papermaking 239 

require high-energy inputs and pose significant negative environmental impacts and a cost 240 

penalty arising from the need to treat large quantities of complex effluents. The other product 241 

stream is straw as bales with almost no processing, however, straw bales underutilise the inherent 242 
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properties of straw, where structural performance tends to be affected by compaction and in 243 

humid climates decay is caused by internal condensation. 244 

Our research has revealed that the micro-architecture of straw nodes is very different from that of 245 

the internode (43). It is much less structurally competent and distributions of node and soluble 246 

starch from nodes have been found to deteriorate the performance of the straw strand/stem when 247 

these are reconfigured into a bio-composite material. We found out this is due to node’s 248 

morphology and surface chemical functional groups (Ghaffar, Fan and McVicar, 2017). Moreover, 249 

the values of tensile strengths of wheat straw internodes are in the range of 66-89MPa, whereas 250 

the node showed a tensile strength in the range of 12-20MPa (43), further proving the fact that 251 

node would act as a defect in bio-composites. 252 

4. Challenges and perspectives of agricultural waste valorisation 253 

There is a lack of effective utilization of wheat straw for further bio-refinery and bioconversion to 254 

value added products. The complex chemical structure of straw biomass has various mechanisms 255 

for resisting attacks on their structural sugars from microorganisms, these include: 1) the 256 

epidermal tissue, particularly the cuticle and waxes, 2) the arrangement and density of the 257 

vascular bundles, 3) the relative amount of sclerenchymatous (thick wall) tissue, 5) the 258 

heterogeneity of cell wall constituent (45). To overcome the biomass recalcitrance and thus, 259 

producing cost-competitive bio-products from straw biomass, the new findings of the fundamental 260 

properties of straw material sciences need to be integrated into the conversion processes.   261 

The main challenge is to demonstrate the feasibility of one novel technology chain aimed at 262 

valorising several types of agricultural wastes by converting them into an array of valuable bio-263 

based products (e.g. bioplastics, bio-composites and bio-energy), while also minimising any 264 

residual or consequent waste requiring disposal. There are needs within different fronts, including 265 

but not limited to: (i) technical development and product innovation, (ii) increasing the bio-based 266 

product market demand and (iii) gathering sufficient and accurate information about specific 267 

variations in straw biomass properties, which is not straightforward.  268 

The change from a linear economy towards a circular economy is essential and therefore the 269 

selective and optimised bio-refinery of agricultural waste can be the vision to promote a shift from 270 

the consumption of fossil reserves to renewable resources, leading to mitigation of greenhouse 271 

gases emissions and their impact on climate change. Collaborative projects between farmers, 272 
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research institutes, industrial beneficiaries and policy makers are vital for the success in 273 

valorisation of agricultural wastes. The strategies for these types of activities should aim to reduce 274 

the carbon footprint of bio-based products, promote the creation of new job and market 275 

opportunities, and lead towards expanded bio-economy, greatly needed for future environmental 276 

and economic sustainability. 277 

5. Conclusions  278 

Utilisation of agricultural waste as raw materials positively affects environmental and socio-279 

economic aspects by not only generating additional income to the farmers, but also generating 280 

cost-effective high performing bio-products. Our research contributed to comprehensive 281 

understanding of wheat straw biomass (Triticum aestivum L.) by: 1) examining and revealing the 282 

morphology of node and internode with a 3D model of node and its core (22). 2) analysing different 283 

physicochemical properties of node and internode and their surface profile functionalisation 284 

(43,46,47). 3) developing an environmentally friendly pre-treatment for surface modification and 285 

optimisation of interfacial bonding (48). 4) studying the interfacial bonding and developing a 286 

physical model of failure mechanisms in straw composite (48). The complicated heterogeneous 287 

characteristics of straw, makes their comprehensive analysis essential prior to bioconversion 288 

process. It is worth emphasising that straw biomass’s chemical composition can vary with 289 

species, location, storage time, harvest, stage of maturity, environmental conditions and 290 

anatomical parts, i.e. node and internode.   291 
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